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A Learning Automaton-based Scheme for
Scheduling Domestic Shiftable

Loads in Smart Grids
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Abstract—In this paper, we consider the problem of scheduling
shiftable loads, over multiple users, in smart electrical grids. We
approach the problem, which is becoming increasingly pertinent
in our present energy-thirsty society, using a novel distributed
game-theoretic framework. In our specific instantiation, we
consider the scenario when the power system has a local-area
Smart Grid (SG) subnet comprising of a single power source
and multiple customers. The objective of the exercise is to tacitly
control the total power consumption of the customers’ shiftable
loads so to approach the rigid power budget determined by the
power source, but to simultaneously not exceed this threshold.
As opposed to the “traditional” paradigm that utilizes a central
controller to achieve the load scheduling, we seek to achieve this
by pursuing a distributed approach that allows the users1 to
make individual decisions by invoking negotiations with other
customers. The decisions are essentially of the sort where the
individual users can choose whether they want to be supplied
or not. From a modeling perspective, the distributed scheduling
problem is formulated as a game, and in particular, a so-called
“Potential” game. This game has at least one pure strategy Nash
Equilibrium (NE), and we demonstrate that the NE point is
a global optimal point. The solution that we propose, which
utilizes the theory of Learning Automata (LA), permits the total
supplied loads to approach the power budget of the subnet once
the algorithm has converged to the NE point. The scheduling
is achieved by attaching a LA to each customer. The paper
discusses the applicability of three different LA schemes, and in
particular the recently-introduced Bayesian Learning Automata
(BLA). Numerical results, obtained from testing the schemes on
numerous simulated datasets, demonstrate the speed and the
accuracy of proposed algorithms in terms of their convergence
to the game’s NE point.
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1In this paper, we use the terms “customers” and “users” interchangeably.

I. INTRODUCTION

As society becomes increasingly energy-thirsty, the prob-
lems associated with collectively controlling the use of energy
resources so that the electrical grids are not overloaded, are
becoming more dominant2. Power utility companies often
warn customers to limit their power consumption especially
in the warmer summer months. Although this is deemed to
be voluntary, these utility companies attempt to enforce it by
charging higher rates for the power that is consumed during
“peak hours”.

Utility companies attempt to monitor and control the use
of energy by resorting to so-called “Smart Grids” (SGs). In
a SG, loads can be categorized as being either “shiftable” or
“non-shiftable”. Non-shiftable loads comprise of devices such
as bulbs, where there is no room for scheduling, since the
power required by the device must be supplied as soon as the
device is turned on. Shiftable loads, on the other hand, such
as water and floor heaters3, can tolerate a certain amount of
delay, permitting the users the possibility to schedule them
when they are turned on. Since these shiftable loads can be
adaptively scheduled, the system is capable of smoothing the
domestic power consumption curve.

SGs have gained interest and popularity in the academia
[2]–[4], and also in the industry [5]. Indeed, they have already
become a reality in many developed countries; many of these
countries have already deployed SG architectures in their
power networks.

Power scheduling approaches that work with the SG
paradigm fall under two main classes, namely, those that
use centralized [6]–[9] or distributed approaches4 [10]–[12].
Centralized scheduling schemes involve a Central Controller
(CC) that decides the responses that are made when it concerns
the users’ demands. Within these schemes, customers are

2Wikipedia records an interesting report about the so-called Northeast
Blackout of 2003. This caused a widespread power outage that occurred
throughout parts of the Northeastern and Midwestern United States and the
Canadian province of Ontario on Thursday, August 14, 2003, during a “heat
wave”, just after 4:10 PM (EDT). Apparently, the outage affected an estimated
10 million people in Ontario and 45 million people in eight U.S. states.
Although some power was restored by 11:00 PM (EDT) on the same day,
many others did not get their power back until about two days later. Indeed,
in more remote areas, it took nearly a week to restore power. At that time, it
was the world’s second-most widespread blackout in history. We conjecture
that the universal use of SGs could have mitigated this blackout!

3These are every-day, commonplace appliances in countries with colder
climates.

4A more detailed explanation of these two modes of operation is found in
Section III-C.
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required to send their demands to the supplier’s CC so that
the scheduling can be achieved. These methods are frowned
upon – because the deployment of an external controller to
regulate the power supplied to the entire customer base could
violate the privacy that the customers expect. This could also
lead a biased “differentiated” treatment based on the identity
of the customer, where certain “preferred” customers (for
example, those who are economically sound), are provided
with a superior class of service. As opposed to this, a method
that invokes distributed power scheduling, effectively reduces
the significance of the power controller in the process of load
scheduling, because it permits the peer users to negotiate a
scheduling protocol between themselves. Consequently, dis-
tributed power scheduling methods are of great interest due
to these potential benefits. Besides, over and above these,
one reaps the well-acclaimed advantages associated with the
distributed model of computation.

There is a vast body of literature associated with achieving
distributed scheduling in SGs, all of which focus on the various
facets of the problems encountered in this area [12]–[14].
The main focus of the existing studies that use distributed
algorithms is to distribute the computational load to multiple
controllers/agents in order to reduce the overall communi-
cation and computational complexity, and consequently to
“spread them out” to be handled by the individual users.
In these cases, the appliances of the end-users (the actual
customers) may still be controlled by a local controller/agent.

As opposed to this, in this current study, the various
customers are allowed to decide by themselves whether they
want to turn a load on or not. Giving the end-user the ability to
make these decisions eliminates the role of the suppliers/agents
to achieve the scheduling of the load in the local-area subnets.
To achieve this goal, we advocate a distributed Learning Au-
tomata (LA)-based approach, where each customer is equipped
with a LA to learn from the environment in order to decide
whether to turn on its appliances or not.

A LA is an adaptive decision-making unit, which learns
the optimal action out of a set of actions provided by the
environment it operates in [15], [16]. The beauty of a LA
is that it learns from its environment during the course of
interacting with it. In other words, the tasks of learning and
taking actions happen simultaneously. In classic LA, such as
in the Linear Reward-Inaction (LRI) scheme and the family
of Pursuit algorithms, the learning speed needs to be pre-
determined (by determining the learning parameter which
controls the speed of learning) in order to achieve the optimal
trade-off between the machine’s speed and accuracy. Indeed,
this becomes a limitation in the the load balancing scenarios
where the environment can be quite different from one system
to another, and can even change over time. Because it is not
easy to find a universal learning parameter which can provide
a high performance for the LA in all different environments,
a superior type of LA, whose learning speed can be adaptive
to different types of environments, is desirable.

The application of LA in SGs has been studied a lit-
tle, including using them in the underlying communication
network in SGs [17], [18], and in the power scheduling
approaches [19]. The solution model we propose in this paper

is distinct. Firstly, we model the system as a specific type
of game and proceed to study its properties. Based on the
these properties, we design a distributed LA-based algorithm
to solve the game. With regard to solution strategies, we
propose the deployment of three LA schemes, namely the LRI
[16], the Coordination-game Learning Automata (CLA) [20],
and the more-recently introduced Bayesian Learning Automata
(BLA) [21]. We emphasize that in the case of all these LA-
based schemes, the consumers do not need to share infor-
mation to the provider. Rather, they can negotiate the power
utilization and make a decision between themselves, implying
that the power supplier has to merely perform the task of being
a power budget provider, rather than also a scheduler.

A. Contributions of the Paper

The novel contributions of this paper are listed below:
• We present a comprehensive solution to using LA to

control SGs in a distributed manner.
• We demonstrate that the control of the SG reduces to

a multi-player game, and in particular, to a so-called
Potential Game possessing at least one pure strategy Nash
equilibrium.

• We have shown how we can control the SG by assigning
a LA to each user.

• We have also recorded the distinct advantages of using
three types of LA to achieve this control, and in particu-
lar, the recently-introduced Bayesian Learning Automata
(BLA).

• Finally, we have included experimental results that
demonstrate the power of each of these LA in achieving
the control of the SG.

B. Organization of the Paper

The rest of this paper has been organized as follows. Section
III presents the preliminaries that the paper is built on and a
fairly brief survey of the field, included so that this document
is a stand-alone publication. Section IV contains the model of
the system and formulates the problem to be solved. In Section
V, we study the analysis of the game and its properties. In
Section VI, we explain the details of the implementation of the
distributed decision-making algorithm (i.e., the protocol for the
selection or rejection of the load) for the LA-based scheduling.
The simulations and numerical results of the algorithms have
been presented in Section VII. We conclude this paper in
Section VIII, where we also briefly visit the avenues for future
work.

II. WHAT ARE SMART GRIDS

Before we proceed, it is wise to briefly explain what SGs
are and how they operate.

A lot of research has been carried out in the field of SGs
with the attempt to replace/upgrade the traditional electric grid
to yield advanced “intelligent” or Smart Grid systems. Many
power grid operators in the USA, Canada, China, South Korea
etc. have already implemented different features of SGs to
overcome the shortcomings of traditional electrical grid sys-
tem [3]. SG systems are expected to implement these aspects,
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possibly with some slight modifications, based on their specific
requirements. Various studies have been performed on all of
these aspects, and improvements have been suggested for each
of them. These improvements have led to the development of
the overall SG network, and have been incorporated into the
various sub-components such as electrical substations, trans-
mission lines, and the corresponding electrical and electronic
devices that communicate with each other in a fast, secured
and reliable manner.

The primary significant differences between the traditional
grid systems, that still dominate most parts of the world, and
SGs are explained in [22]. These are as summarized in Table I.

TABLE I: Differences between the traditional grid and modern SG [22].

Traditional grid Smart Grid
Electromechanical network Digital network
One-way communication Two-way communication
Centralized generation Distributed generation
Few sensors Sensors throughout
Manual monitoring Self-monitoring
Manual restoration Self-healing
Failures and blackouts Adaptive and islanding
Limited control Pervasive control
Few customer choices Many customer choices

The authors of [3] have also explained how traditional
grid systems are being upgraded and replaced by SGs. They
have also given due considerations for the issues/hurdles
encountered, and also for the potentials and opportunities
for even smarter grid systems. Different wired and wireless
means of communication have been used in SGs, as per the
respective requirements and feasibility. This has led to the real-
time monitoring and access control of customers’ appliances,
so as to achieve real-time electricity-price signaling and ef-
ficient fault diagnosis. The communication methods between
the SG entities for transferring data and control commands
are discussed in [23]. More recent advancements in the SG
technology have resulted in the establishment of bi-directional
connectivity of IP addressable devices which, in turn, provide
services to both the set of consumers and to the operators [24].
In this manner, all the details of the devices used can be
known by other remote devices or controllers by the sharing
of information through sensors attached to the devices.

III. FUNDAMENTAL ISSUES IN SGS

A. Demand Response

The phenomenon of Demand Response (DR) is a prime
focus area in field of SGs, and it can involve several possible
methods. The DR is defined as follows: “Changes in electric
usage by end-use customers from their normal consumption
patterns in response to changes in the price of electricity
over time, or to incentive payments designed to induce lower
electricity use at times of high wholesale market prices or
when system reliability is jeopardized” [25]. Put informally,
anything that is done on the consumers’ side (loads) to change
the total demand is referred to as the DR [26]. In other words,
it involves the response made by the loads (demands) due
to changes in certain constraints in SG system. In particular,
“Demand Scheduling” is also a component of DR, where

the consumers have to change their usage behavior, by the
process of selection or rejection, to either utilize or refrain
from utilizing the capacity offered by the SG.

Demand Scheduling can be achieved by applying decisions
that are based on mathematical logical operations, directly
on the demands or through constraints set by the SG’s CC.
The task of Demand Scheduling is a DR process which
can be done either distributively or centrally, and several
algorithms and ideas that have been implemented in SGs have
been reported. These are explained in more detail in Section
III-C. The effect of these operations on the system’s demands
varies depending upon the methods applied to achieve the
scheduling. In particular, techniques such as load shifting,
peak clipping, conservation, load building, valley filling and
assigning flexible loads, are techniques used for DR [9]. The
methods devised in this paper fall within the family of load
shifting techniques, in which the loads encountered at high
demand times are transferred so that they are done at times
when the demand is lower.

Classical Direct Load Control (DLC) mentioned in [27] is
a classical and yet the simplest method in which the CC is
assumed to have the complete control on the consumers’ loads.
From the users’ perspective, such a scheme is sub-optimal
when it concerns fairness of selection [28], privacy, and the
security associated with the users’ information [29].

Loads can be scheduled on the basis of the priority of their
time constraints, i.e., on a first-come-first-serve basis. Such a
scheme has been described in [30] for electric vehicles, where
the demand requests arriving earliest are provided with the
highest priority, while those arriving later are assigned a lower
priority. In this method, the loads with a higher priority get
served early and demands with lower priority will be placed in
a queue if the SG is not able to serve them all simultaneously.
This can be seen to be a centralized mechanism, because the
controller should be able to know their demand values along
with their time of arrival. The SG’s controller uses the time of
arrival as a decision parameter to accomplish the scheduling,
i.e., to decide whether they have to place the DRs in a queue
and/or to serve them. Thereafter, the demands in the queue will
be activated as per their position, and whenever one/some of
the DRs get served it will provide sufficient space for other
DRs to be placed in the queue.

B. Dynamic Pricing

Dynamic Pricing is one of the most popular approaches by
which DR is achieved. This motivates the users of the SG to
change the behavior of their usage according to the varying
prices of electricity. This, in turn, is enforced with the aid of
smart meters that obtain information about the end users’ load
devices [31]. This method favors both the users and the SG
provider, because by virtue of their choice, the users can take
advantage of these dynamic electricity prices and thus lower
their electricity bills. Simultaneously, operators can indirectly
control (as least, in a weak manner) the unusual peaks and
troughs of the electricity demands on the SG.

Time-based and incentive-based DR programs, that should
be compared against the “flat” electricity pricing model, have
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been proposed and studied in [26]. These models have already
been implemented in many SGs around the world. The dis-
tributed dynamic pricing system proposed in [29] is a method
by which the users are charged as per dynamic prices, that
are set in place to encourage users to bring changes to their
demands. A high price and a low price at peak demand times
and at low demand times respectively, have been proposed, and
these have been seen to be helpful in bringing about a change
in the behavior of the users’ power usage. Of course, however,
this method is dependent on the users’ financial condition and
their behavioral patterns.

Another method which achieves Demand Scheduling em-
ploys the strategy of postponing the load demand up to its
deadline, when the power utilization in the SG has reached
it’s peak. This method is called Threshold Postponement, and
was devised in [32]. The method utilizes the advantage of
time-flexibility, so that shiftable loads can wait to get served.
When the SG’s power consumption is low, the loads can be
added into the grid for consumption. Otherwise, they will
be placed in a queue, waiting to be served. The authors of
[32] also discussed the economical advantages of scheduling
the demands over the cost of supplying the extra demands
whenever the capacity of the SG is lower than its total
demands.

C. Distributed vs Centralized Scheduling Algorithms

Generally speaking, there are two reported families of
methods available for load selection:
• By the CC itself taking care of the task, and this is

referred to as “centralized” selection, and
• The decision being made by the users, and this is referred

to as “distributed” selection.
The main issues that have to be taken into consideration

when one considers these families of methods are fairness of
selection [27], privacy and secrecy of user information, and
consumer’s usage behavior [33]. These aspects are addressed
in different ways by the above-mentioned families of methods
depending upon the algorithm utilized. Most of the research
done in SGs is based on the centralized selection model. This
is the simpler model and it is easier to design and implement,
because it allows the proprietor of the SG to implement the
decision-making algorithm through its CC. Methods within
this family are, generally, considered to be to the advantage of
the SG’s operator. The operators of the SG attempt to satisfy
the user’s concerns, so as to avoid their dissatisfaction and
the possibility of them changing their providers. Distributed
methods utilize the decisions of users themselves for the usage
of electricity, with the user possibly accessing the SG fully,
partially or by withdrawing from it all together. The family of
distributed methods are expected to carry out a fair selection
algorithm so as to avoid the disapproval of rejected users, and
they do this by transferring the control to the users themselves
– unlike the fully owner-controlled centralized methods.

The real-time pricing system, where the controller of the
SG changes the electricity prices according to fluctuations in
demands and capacity, have been devised in [34], [7] and by
many other researchers. This is a distributed method of power

scheduling which forces the consumers to change their usage
behavior to “synchronize” with the changing rates. The authors
generally claim that such a model motivates users to change
their electricity usage behavior. This is because the consumers’
demand is expressed as a function of numerous factors such
as electricity price, time of day, region, weather etc. Likewise,
the classical DLC method discussed in [27] is a centralized
method of load selection where the CC has full control over
the devices, whence it can supply power as per its own will.
In [35], the proposed scheduling algorithms were distributed
approaches in nature, while a central unit was adopted for the
purposes of information sharing.

The most prominent disadvantage of using centralized selec-
tion methods is the fact that they are (or can be perceived to be)
biased. They can favor certain preferred users, e.g., those who
are more financially secure, and who are thus less influenced
by dynamic pricing. Further, the SG system’s CC can directly
and/or indirectly control user demands by invoking dynamic
electricity prices. The distributed methods were proposed to
address these issues, i.e., to permit users themselves to decide
whether to get involved in power scheduling or not. But these
distributed methods have not been able to fully remove the
CC’s control over the users’ demands. Rather, the SG’s CC can
indirectly control the demands through different constraints in
these distributed methods.

The aim of this paper is to propose “pure” distributive
method where the users’ decision is not influenced by the CC
in any way, and where the CC’s role, on the other hand, is
restricted only to supplying the power needed on the SG after
the scheduling has been done as shown in Figure 1.

Selected load

Selected load

Selected load

Selected load

VLC
Smart Grid

Power Supplier

Send total 

power demand

Supply power

Power

Communication

Fig. 1: Limiting the role of the Smart Grid’s CC and protecting privacy of users.

In addition, it would be desirable if all the users are satisfied
with the SG’s service by serving their important demands,
while their less-important demands are either selected or
rejected in the overall scheduling process. Indeed, we shall
demonstrate that it is possible to generate decisions solely
from users’ perspective by the application of a rather simple
mathematical model, and without the CC bearing any influence
in the overall power distribution. This will also guarantee the
protection of the privacy of the users’ information – which is
a facet that has not been adequately addressed in the literature
before.

From Figure 1, we can clearly observe that the demand
scheduling, denoted by the dotted lines, is done by commu-
nication between the users and the Virtual Logical Controller
(VLC)5 only. The CC of the SG has its limited role, receiving

5Note that this VLC is used as a virtual module only for the purpose of
illustration. However, it does not exist as a device/entity in the network. Its
functionality can be carried out through mutual communication between the
users.
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the total request from the VLC according to decision generated
at the users’ side, and supplying the power accordingly, which
is shown by two arrows between the VLC and the SG’s CC.
According to the requests (from the loads that have been
selected already), the users will be served with power through
the VLC, again restricting the communication between CC and
the users.

IV. SYSTEM MODEL

A. Problem Formulation

Fig. 2: A high level structure of the power grid.

The research undertaken in this paper focuses on the do-
mestic smart-grid subnet. Figure 2 illustrates a hierarchical
structure of the power grid which includes several levels.
The lowest level, i.e., the local domestic network between
the transformers and the households, is the subnet that we
shall concentrate on here, which is a micro-smart grid. A
typical scenario of this subnet, as illustrated in Figure 2, is an
apartment building with a few families which play the role of
the customers, and where the building is connected to a main
power source. This power source is provided and installed by
the power supplier, and it obtains its power budget from the
upper levels of the power network based on the scheduling of
the supplier. The objective of the power source is to provide
power to the various families, and at the same time to maintain
the overall power consumption below a given power budget.

Following the common practice [36]–[39], the overall bud-
get for the shiftable load can be suggested by the source to
the customers, and this quantity is denoted by CSL. Typically,
the time index is segmented into slots, indexed by t, which are
of the order of several minutes long. In the beginning of each
time slot, the budget for the shiftable load is offered to all the
customers. But once the customers obtain this budget, they will
have to compete with each other for their own loads. Once a
consumer wins the competition, his load will be served within
this time slot. The competition among the various customers is
carried out through mutual communications and information
exchange.

Suppose there are, in total N customers, indexed by i ∈
{1,2, . . . ,N}, who have their individual aggregated demands
{L1,L2, . . . ,LN} for their respective shiftable loads at time slot
t. CSL, referred to above, may not be sufficient to serve all the
{Li} loads for all the customers. It would thus be necessary for
the system to figure out which users can be served such that
∑

N
i=1 Lidi ≤CSL, where di ∈ {1,0} denotes whether customer

i is to be served or not. In other words, a decision of 1
for a particular customer implies that the specific customer’s
demand is to be served by the grid in the current time slot,
while the decision of 0 means that the corresponding load
demand will not be served by the grid in the current time
slot. Thus, clearly, all the the users who attain the decision 1
accomplish the sharing of the total shiftable loads’ budget, CSL.
However, a customer that is not served in the current time slot
will eventually be served in the future time slots. The objective
of the distributed scheduling problem is to determine a proper
sub-group of customers whose aggregated demand is as close
to the budget as possible, although it is not allowed to exceed
the budget. Formally, the problem is formulated as follows:

max
{di}

N

∑
i=1

(diLi)

s.t.
N

∑
i=1

(diLi)≤CSL,

di ∈ {1,0}.

(1)

To simplify the notation, unless explicitly stated, we shall
denote the quantity ∑

N
i=1(diLi) as LT .

Comparing the values of ∑
N
i=1 Li and CSL, we highlight the

following variations of the problem:
i) Total shiftable demand is less than shiftable capacity:

N

∑
i=1

Li ≤CSL. (2)

Clearly, in this scenario, since the capacity permitted is
more than the demand, all the loads can be served by the
source.

ii) Total shiftable demand is greater than shiftable capacity:
N

∑
i=1

Li >CSL. (3)

This is the condition of greatest concern for both the
supplier and the set of customers, because, clearly all
the demands cannot be served by CSL. Note that within
this case, there is also a special case where the load of
certain customers is greater6 than the available shiftable
capacity. Indeed, the scheme that we propose presently
can also be applied to it.

The problem described in Case ii) above (except for the
special case where ∀i,Li > CSL), is NP-Hard because it can
be reduced to a subset-sum problem. As we know, for such
an NP-Hard problem, the complexity increases dramatically
when the number of customers increases. As the main focus
of this study is the scheduling of aggregated shiftable loads
of households in domestic networks between transformers and
the households, in our case, the total number of customers is
limited.

To solve this problem in a distributed manner, the customers
need to communicate with each other and to send their
respective decisions {di} (i.e., their decision values of either

6If ∃i,s.t.Li > CSL, our solution is applicable by excluding those users
whose demands exceed the shiftable capacity. Thus, we will not elaborate
on this scenario in any greater detail.
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1 or 0 , meaning “YES” and “NO” respectively), along with
their demands {Li}. This process is carried out iteratively until
a proper common consensus is attained on the usage of the
available capacity for all customers, through each customer’s
individual decision. Once the common consensus is reached,
the power source can provide the corresponding power accord-
ingly. Thus, the interaction between the customers is modeled
as a game, detailed presently.

B. An Example for Load Selection

The decision process modeled as a game can be explained
by an example. Suppose there are 5 users with shiftable loads
1, 3, 4, 4 and 5 units respectively, and where the capacity
of the SG available for shiftable loads at this timeslot is
CSL=10 units7. The users will make a decision of either 1 or
0 repeatedly until a final decision is reached. Let us suppose
that the initial set of decisions, made randomly, is {1,1,0,1,0}
respectively. These decisions from the set of 5 loads are shared
among each other (or equivalently, sent to the VLC) that is
aware of the fact that CSL=10 units. These decisions mean
that only loads L1,L2 and L4 are requesting to be served.
This is not the optimal decision because it will not utilize
the full capacity of 10 units as d1L1 + d2L2 + d4L4=8 units.
Since this set of decisions is non-optimal, each user will either
be rewarded or penalized collectively by the VLC for their
good or bad decisions respectively. This Reward/Penalty is to
be explained in next section. Based on the Reward/Penalty
feedback responses and the previous decisions, each user will
arrive at a new decision set using the corresponding LA. Let
us assume that the new decision is {0,1,0,1,1}. This set of
decisions leads to the new demand of d2L2+d4L4+d5L5 = 12
units. Again, a Reward/Penalty is calculated by the VLC and
sent back to users. By repeating the process and the feedback
between the users and the VLC, one can arrive at a final
decision set, say {1,0,1,0,1} which leads to the total load
consumption of ∑i={1,3,5}Lidi = 10 units, which equals to CSL.
The consequence of this decision is that loads L1,L3 and L5
will be served. Observe that another decision set {1,0,0,1,1}
is equally possible, and so if the algorithm could attain to
either of these decisions, it will confirm that it is unbiased.

V. MODELING AND ANALYSIS OF THE GAME

The distributed decision-making problem can be formulated
as a game denoted by G= [I,{di}i∈I ,{Ui}i∈I ], where:
• I is the set of customers with shiftable loads
{1,2,3, ....N}, with any specific customer being indexed
by i.

• {di} is the set of decision actions taken by the customers,
i.e., D = {d1,d2, ...,dN}, where di ∈D is the decision/ac-
tion of customer i. Decision di = 0 represents the event
that customer i does not turn on his load, while di = 1
represents the condition when customer i does turn it on.

7In this example, since the number of users is so small, we can, almost
trivially, see that there exists a combination of user demands that yields
∑

5
i=1 Lidi =CSL, which, of course, will not be possible if the number of users

is large.

• {Ui}i∈I is the utility function of user i, and can be
expressed in terms of CSL as in Eq. (4):

Ui(di,d−i) =


1

Lidi+ ∑
j∈I\i

L jd j+CSL
, CSL < Lidi + ∑

j∈I\i
L jd j,

1
CSL−Lidi− ∑

j∈I\i
L jd j

, CSL ≥ Lidi + ∑
j∈I\i

L jd j,

(4)

where d−i denotes the set of decisions taken by users
other than user i.
The utility function of an individual user is defined from
the perspective of the overall system. More specifically,
it is beneficial for a user if the sum of the loads based on
the current decision of all the users approaches CSL from
the left, i.e., whenever the value approaches CSL although
it is less than or equal to it. Otherwise, the value of the
utility function of each user is reduced.

The formulated game is an exact Potential Game [40] and
the reasons are as follows: According to the definition of a
Potential Game, the payoff of any player by changing its
strategy can be expressed using a single global function, i.e., a
so-called potential function. In this particular game, the utility
function for each player is defined as a global function, which
can be considered to be the potential function itself. Therefore,
this game is indeed a Potential Game. Understandably, this
game is an exact Potential Game because if a player switches
from one action (decision) to another, the change in the
potential equals to the change in the utility of that player [40].
From the properties of Potential Games, we see that the game
has at least one pure strategy Nash Equilibrium (NE) point.

Based on the utility function Ui, the NE point of the
game can be defined as follows. The solution point attained
by the selection of the decisions (d∗1 ,d

∗
2 , ...,d

∗
N) by the N

users is a NE point of G if no user can improve his utility
function by deviating from it unilaterally. Formally, the NE
point satisfies: (d∗i ,d∗−i) as Ui(d∗i ,d∗−i)≥Ui(di,d∗−i), ∀i∈ I and
∀di ∈ {0,1}\{d∗i }.

Before we proceed, we will demonstrate that a global
optimal point of the problem is a NE point of the game, and
vice versa. As a global optimal point, it is obvious that any
unilateral change of decision of any user at the point will
result in a decrease in the utility function. In other words,
any user’s deviation from 0 to 1 will result in grid overload
because the sum of the loads will be over CSL. Similarly, any
change from 1 to 0 will move the sum of the loads farther away
from CSL, resulting in a decreased value of its utility function.
Thus, the global optimal solution is, indeed, a NE point of G.
Arguing in the converse manner, for any NE point, if it is not
a global optimum, it implies that we could shift at least one
user with decision 0, who was not already selected into the
set of selected users, with decisions 1, leading to a positive
increase towards CSL, which is, indeed, the consequence of a
unilateral change. But such a unilateral user-shifting cannot
occur because it contradicts the fundamental definition of the
NE point. A similar argument can be presented when a single
user’s decision is changed from 1 to 0. We can, thus, conclude
that the NE point is, indeed, a global optimal point in G, and
vice versa.
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In the next section, we shall propose a LA-based learning
algorithm that assigns a LA to each customer in order to allow
their collective decisions to converge to the game’s NE point.

VI. IMPLEMENTATION OF LA IN DEMAND SCHEDULING

In our design, the users improve their decisions based on
the rewards/penalties received for the decisions they made in
previous iterations, and after sufficient number of iterations,
users will, hopefully, converge to the NE point, which is the
globally optimal solution of the problem.

A. Decisions of Users and Their Effects on Total Load

Figure 3 demonstrates a typical working scenario for a LA.
It consists of a sequence of interaction cycles between the LA
and its environment. In each iteration, the LA selects an action
(αi), which is either rewarded (R = 1) or penalized (R = 0)
by the environment as a response.

Fig. 3: The schematic of how a LA interacts with the Environment.

Based on the response and the knowledge acquired from
the previous iterations, the LA adjusts its strategy of selecting
actions in order to make a “wiser” decision in the next
iteration. The optimal action is the one with the largest reward
probability. The way by which the LA adjusts its strategy de-
pends on whether it has a fixed or variable structure, and if the
actions are chosen as per an action probability rule. The latter
action probability rule is updated based on the Reward/Penalty
response that was received from the Environment, and/or the
estimates of the set of reward probabilities obtained from the
previous responses. The goal of a LA is to maximize the total
probability of receiving rewards during and subsequent to the
learning.

The most difficult part of designing a LA-based solution
for a new application domain is that of determining what the
“Environment” is, and then of knowing how the LA itself is
“Rewarded” or “Penalized”.

In our specific SG-based domain, since a users’ decision di
is either 0 and 1, the load for this user will be either 0 or Li
respectively, and so the total load “LT ” can be calculated by
summing up these individual contributions in each iteration.
Every iteration yields a new value of LT . The decision-making
process will go through an iterative process so that “LT ” will
approach the global optimal CSL. To capture the number of
iterations, we denote a new index, s ∈ {1,2, ...,M} for the
number of iterations, where M is the maximum number of
iterations permitted. Correspondingly, the decision of user i at
the iteration s is denoted by di(s), i ∈ {1,2, ....,N}. Similarly,
we denote LT (s) as the current value of the total of the load
values at iteration s. Obviously, the value of LT (s) differs as
the values of the decisions {di(s)} change. As the aim of

the game is to achieve a value that is as close as possible
to CSL after every iteration, our task is to define the current
Reward/Penalty so as to guide the users’ decision-making
process towards the optimal point.

B. Calculation of Reward and Penalty

We shall now consider the intricate problem of determining
when the LA should be rewarded or penalized.

In order to reach the closest possible value of CSL, it is
beneficial if the value of LT (s) approaches CSL but, at the
same time, that it is less than or equal to CSL, as the iterations
proceed. In this case, a Reward is applied to all the users.
In more details, a Reward is given if LT (s) is less than or
equal to CSL and at the same time larger than or equal to
Cmax, where Cmax maintains the maximum of the valid8 sum
of loads obtained until the last iterations. Otherwise, a Penalty
is applied (i.e., when LT (s) is either greater than CSL, or
less than the maximum valid load sum Cmax). The procedure
for deciding on a Reward/Penalty is formally outlined in
Algorithm 1.

Algorithm 1 Reward/Penalty Assignments
Input:
• The loads of all the users and their decisions, {di(s)} at

a time instant, s.
• The maximum of the valid sum of loads among all the

previous iterations, Cmax.
Output:
• The assignment of a Reward or a Penalty to all users at

the time instant, s.

1: begin
2: for every user i do
3: Calculate LT (s) = ∑

N
i=1 di(s)Li based on the infor-

mation obtained from the other users.
4: if LT (s)≤CSL and LT (s)≥Cmax then
5: Decision di(s) leads to a Reward to user i.
6: Cmax = LT (s). . Update the load sum.
7: else
8: Decision di(s) leads to a Penalty to user i.
9: end if

10: end for
11: end

Algorithm 1 is carried out for every decision-making it-
eration and stopped when the decision-making process ends.
This termination phase will be discussed presently. Note that
by embarking on this mutual information sharing, each user
will be able to individually calculate the Reward or Penalty
that he receives.

C. Decision Making on the Actions in the Iteration

Once the Reward/Penalty for each user has been assigned,
we need to specify a learning scheme for deciding the action
(0 or 1) that he has to make in the next iteration. As mentioned

8Here “valid” means that Cmax ≤CSL holds.
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earlier, in this work, we opt to use LA to achieve this, and
in this regard, we select three well-established LA to do this
learning, namely, the LRI scheme [16], the CLA [20], and the
more-recently introduced BLA [21].

1) Decision Making for the LRI: The way the decisions are
made for the LRI scheme, is straightforward. The action that
each LA makes is based on the action selection probability.
Each LA maintains two parameters p0 and p1 representing the
probability of selecting 0 and 1 respectively, with p0+ p1 = 1.
The quantities are initialized to 0.5. If the chosen action (either
0 or 1) is rewarded, the probability of the alternate action (p1
or p0 respectively) is decreased using a user-defined parameter,
λ, and thus the probability associated with the chosen action
is increased. The LA keeps the action probabilities unchanged
in the case of a penalty feedback.

The formal algorithmic version is straightforward, and is
thus omitted. We mention, though, that the actual decision
communicated to the SG’s CC will occur after a final decision
is attained by the LA-based scheme, and concluded by the
stopping criteria specified in Section VI-D for the correspond-
ing time slot.

2) Decision Making for the CLA: The CLA is similar to
the LRI scheme due to the fact that it involves the action
probabilities and a learning parameter (denoted by λ), whose
value affects the convergence speed and the proximity of the
final solution to the optimal point. The CLA-based scheme
is different from the LRI scheme (and the BLA) due to the
fact that it explicitly uses a continuous utility function in the
update equation. It is based on the work of Mason on LA
with a continuous feedback response [20]. The rationale for
using this type of LA is the fact that the utility function is
continuous. In our particular problem, we need a normalization
of the values of the utility in order to ensure that the feedback
is in the interval [0,1] [20]. These steps are specified in Lines
13-32 in the Algorithm 2 below.

Using such a mapping and updating rule, it is possible to
prove that the CLA will converge to the pure equilibrium of the
game with a probability that approaches unity, as the update
parameter is made arbitrarily small. This is a consequence of
the work due to Sastry et al. [41] since the NE of our Potential
Game corresponds to the mode of the payoff matrix.

The formal steps in the CLA-based decision making process
is detailed in Algorithm 2.

Again, the actual decision communicated to the SG’s CC
will occur after a final decision is attained by the CLA-based
scheme, and concluded by the stopping criteria specified in
Section VI-D for the corresponding time slot.

3) BLA based Decision Making Process: In the BLA-based
learning scheme, each LA maintains two hyper-parameters ai, j
and bi, j. These are introduced to count the number of rewards
and penalties respectively, where index i is the index of the
user and j∈{0,1} denotes the decisions that the LA has made.
In each iteration, the LA makes a decision about the choice
of the action. Thereafter, the value of ai, j is increased if the
decision leads to a reward, and the value of bi, j is increased
if the decision leads to a penalty, as formalized in Table II.

We detail the BLA-based algorithm for each user i in
Algorithm 3.

Algorithm 2 CLA-based Decision Making
Input:
• Initialize s = 0, pi,0 = pi,1 = 0.5, where i is the index of

users. MaxSoFar = 0.01.
• Declare variables Utility and NormUtility where Utility

gives the utility function of the corresponding iteration,
MaxSoFar is the maximum utility value until the current
iteration, and NormUtility is the ratio of Utility and
MaxSoFar.

Output:
• Sequence of decisions made as per the CLA.
• Sequence of Action Probability values.

1: begin
2: Cmax = 0. . Maintain the maximum valid load sum.
3: repeat
4: for every user i do
5: Generate a random number Randomi =

uni f orm(0,1).
6: if pi,0 of user i ≤ Randomi then
7: Decision di(s) = 0.
8: else
9: Decision di(s) = 1.

10: end if
11: end for
12: Calculate the Reward/Penalty received due to de-

cision as per Step 3-9 of Algorithm 1.
13: for every user i do
14: if Reward is received then
15: Reward = true.
16: end if
17: Calculation of Utility.
18: if Utility≥MaxSoFar then
19: MaxSoFar =Utility.
20: end if
21: NormUtility = Utility

MaxSoFar .
22: if Reward then
23: if di(s) = 0 then
24: pi,0 = pi,0 +λ ·NormUtility · (1− pi,0).
25: pi,1 = pi,1−λ ·NormUtility · pi,1.
26: end if
27: if di(s) = 1 then
28: pi,1 = pi,1 +λ ·NormUtility · (1− pi,1).
29: pi,0 = pi,0−λ ·NormUtility · pi,0.
30: end if
31: end if
32: end for
33: s = s+1.
34: until Either Stopping criterion in Section VI-D satis-

fied.
35: end

D. Stopping Criteria for the Number of Iterations

The problem that we are studying is NP-Hard. It is, prob-
ably, thus not possible to attain to the optimal solution in
polynomial time. The best that we can hope for using heuristic
solutions is an approximately-optimal solution as the search
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TABLE II: The effect of the Reward/Penalty responses on the BLA’s decision (for user
i at iteration s) on its parameters.

di(s)=1 di(s)=0
Reward ai,1 = ai,1 +1 ai,0 = ai,0 +1
Penalty bi,1 = bi,1 +1 bi,0 = bi,0 +1

Algorithm 3 BLA-based Decision Making
Input:
• Initialize s = 0,ai,0 = bi,0 = ai,1 = bi,1 = 1 where s is the

index of iterations.
Output:
• Sequence of decisions made as per the BLA.
• Sequence of values of {ai} and {bi} for all the users.

1: begin
2: Cmax = 0. . Maintain the maximum valid load sum.
3: repeat
4: s = s+1.
5: for each user i do
6: draw xi,0,xi,1, from Beta distribution given by

β(ai,0,bi,0) and β(ai,1,bi,1), where:

β(ai, j,bi, j) =

∫ xi, j
0 v(ai, j−1)(1− v)(bi, j−1)dv∫ 1
0 u(ai, j−1)(1−u)(bi, j−1)du

. (5)

7: if xi,0 ≤ xi,1 then
8: Decision di(s) = 1.
9: else

10: Decision di(s) = 0.
11: end if
12: end for
13: Based on di(s), calculate the Reward/Penalty re-

ceived as per Step 3-9 of Algorithm 1.
14: for each user i do
15: if (Reward is received) then
16: if (di(s) = 0) then
17: ai,0 = ai,0 +1.
18: else
19: ai,1 = ai,1 +1.
20: end if
21: else . i.e., Penalty is received
22: if (di(s) = 0) then
23: bi,0 = bi,0 +1.
24: else
25: bi,1 = bi,1 +1.
26: end if
27: end if
28: end for
29: until Either Stopping criterion in Section VI-D satis-

fied.
30: end

for the truly-optimal solution, in a reasonable amount of
time, may be infeasible. To enable the algorithm to terminate
with a reasonably-accurate solution, and to prevent it from
looping unnecessarily, we have opted to include a terminating
condition. The algorithm will stop when one of the following
criteria is satisfied:

1) If the number of iterations has reached maximum, i.e.,

s = M, or
2) The decisions for all the users, that lead to a Reward

response, remains unchanged for a certain number of
iterations, Z (implying that the iteration has converged).
In this case, we know that we have attained a solution
that is, with a very high likelihood, a near-optimal one.

These criteria can be applied to any of the LA-based
solutions proposed in Section VI-C.

E. Overall LA-based SG Algorithm
Till now, the distributed LA-based load scheduling algo-

rithm has been explained step-by-step. We shall now explain
how the LA-based algorithms fit into the overall scheme of
things. To do this, we shall use the BLA to encapsulate the
learning process, although the exact same principles will be
true for the other two LA we have described above.

In the beginning of time slot t, the power source will
announce its power budget for the shiftable loads to all users.
Once the users receive this budget, they will check if the
budget is sufficient to accommodate all the users’ demands
via mutual communications. If all their loads can be accom-
modated, the learning process is not necessary and the users
can just turn on their loads. If their cumulative loads cannot
be accommodated, they will initiate the learning process so
that they will be able to converge to a combination that will
yield the closest value to the budget. In each iteration, each
user will broadcast its power demand and current decision to
all the other users. Based on this mutual information sharing,
all the users will possess a global view of the game so that
each of them can decide on their rewards/penalties, and make
a decision for the next iteration. When the stopping criteria is
fulfilled at any iteration, the iterations for that time slot will
terminate and the users who decide “Yes” (i.e., who converge
to the action ‘1’) will turn on their loads. One must observe
that during the process, the information is exchanged between
their users only, and the power appliances will not be turned
on or off until the iteration terminates.

The sequence of steps mentioned above is formalized below
in Algorithm 4.

VII. SIMULATION AND EXPERIMENTAL RESULTS

To evaluate the performance of the LA-based schemes,
we carried out simulations9 on numerous SGs, where the
number of users and the parameters were varied. However,
in the interest of brevity and space, we merely cite the
results obtained from a subset of these experiments10. The
experiments were conducted to capture two important metrics,
namely, the accuracy of the convergence of the scheme used,
and its speed of the convergence.

A. The Data Sets
The simulation configuration was derived based on the

real-life measurements of the electricity consumption for 28
domestic users [42]–[44], as shown in Table III.

9The simulations were done in MATLAB, but on “real-life” data, as
explained below.

10Additional results can be seen from the Masters’ thesis of the First Author,
and can be made available on request.
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Algorithm 4 The Overall SG Algorithm
Input:
• The total load that the SG can provide and the individual

loads of the users.
• The parameters for the Stopping Criteria.

Output:
• The users whose loads can be turned on.

1: begin
2: Every user broadcasts his demand to all the other

users.
3: if ∑

N
i=1 Li <CSL then

4: All the users can turn their loads on.
5: Exit.
6: end if
7: Initialize s=0, ai, j = bi, j = 1, Cmax = 0.
8: s = s+1.
9: for each user i do

10: Draw a random value xi, j from β(ai, j,bi, j) obeying
Eq. (5).

11: xi,0 from β(ai,0,bi,0) for j=0.
12: xi,1 from β(ai,1,bi,1) for j=1.
13: if xi,0 < xi,1 then
14: Decision di(s)=1.
15: else
16: Decision di(s)=0.
17: end if
18: Broadcast the user’s decision to all other users.
19: end for
20: for each user i do
21: Calculate LT (s) = ∑

N
i=1(di(s)Li).

22: if LT (s)≤CSL and LT (s)≥Cmax then
23: Decision di(s) leads to a Reward to user i.
24: Cmax = LT (s).
25: else
26: di(s) leads to a Penalty to user i.
27: end if
28: if (Reward is received) then
29: if (di(s) = 0) then ai,0 = ai,0 +1.
30: else ai,1 = ai,1 +1.
31: end if
32: else . i.e., Penalty is received
33: if (di(s) = 0) then bi,0 = bi,0 +1.
34: else bi,1 = bi,1 +1.
35: end if
36: end if
37: end for
38: if Either Stopping Criterion Satisfied then
39: The users who have “converged” to 1 turn on their

loads.
40: else
41: Go to Step 8 and repeat the BLA choice.
42: end if
43: end

A word about how the data in Table III was obtained is not
out of place. Specifically, the annual power consumption in

TABLE III: This table lists the demands of 28 user (in KWh) used in our experiments.

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10
242 146 131 111 97 95 92 82 75 74
L11 L12 L13 L14 L15 L16 L17 L18 L19 L20
74 74 71 59 57 55 51 49 42 41
L21 L22 L23 L24 L25 L26 L27 L28
39 37 35 35 31 15 11 11

[42] was converted to yield the average consumption for every
15 minutes timespan [43] considering the scheduling interval
in real life. Half of these customers’ demands were considered
as shiftable loads [44]. In our simulation, we considered the
scenario where only a subset of all the users could be selected
for the given capacity, i.e., 0 < CSL < ∑Li. Although the
shiftable capacity of the SG and the shiftable demands were
subject to change due to various reasons [34], without loss of
generality, we assumed that the capacity of the shiftable load,
CSL, was about 70% of the total demand for the shiftable load.

B. Convergence to 0 and 1 Decisions

To illustrate how the learning process takes place, consider
Figure 4. This figure illustrates the respective decisions, be-
tween 1 and 0 given in y-axis, made by a specific user plotted
as a function of the number of iterations for a single trial in
the BLA-based algorithm.
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Fig. 4: The pattern of the 1 and 0 decisions for a specific user who is participating in
the partial selection process.

From this figure, we can clearly see that before the 240th it-
eration, the decision of the user changed between the decisions
of 1 and 0, implying that the user was able to “learn” from
the environment by trying (using the BLA scheme) different
options. After 240 iterations, the user converged to the decision
1 as it had consecutively made decision 1 from the 240th

iteration onwards.
Figure 5 depicts the same phenomenon but from a different

perspective as the y-axis indicates the number of decisions
of 1 and 0 that were made as the iteration continued. Before
240 iterations, the number of decisions of 0 and 1 increased
monotonically. On the other hand, after this juncture, the
number of 0’s stopped increasing because the decision had
converged to 1. Indeed, after a certain number of consecutive
decision of 1, the second stopping criteria of Section VI-D was
fulfilled, and so the user terminated the iteration and froze its
decision. A similar convergence procedure can be observed for
CLA and LRI-based learning algorithms, but are not included
here to avoid repetition.
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Fig. 5: The number of 1 and 0 decisions for a specific user who is participating in the
partial selection process.

C. Average Convergence Characterisitics

To illustrate the average number of iterations before con-
vergence and the average value of the total selected power
demands, we present the simulation results of the experiments
in Tables IV and V. Table IV illustrates the simulation results
with all 28 users while Table V summarizes the results when
the last 15 users in Table III are used. All the results presented
in these tables are averaged values of over an ensemble of
400 independent replications. For the cases of the CLA and
the LRI, the results are illustrated for different values of λ.
As opposed to this, since the BLA does not depend on any
parameter, the results for the BLA are presented, in those
tables, in a single line.

TABLE IV: Simulation results from the BLA and LRI-based algorithms with i = 28 and
CSL=1352 KWh.

Method Sum of selected loads Iterations
BLA 1351.998 20306

LRI CLA LRI CLA
λ=0.01 - - 300000+ 300000+
λ=0.03 1352.000 1352.000 136737 141411
λ=0.05 1352.000 1352.000 60045 61853
λ=0.08 1352.000 1352.000 25690 26986
λ=0.10 1352.000 1352.000 16906 17863
λ=0.12 1352.000 1352.000 11458 12231
λ=0.13 1352.000 1352.000 9091 10259
λ=0.14 1352.000 1352.000 7797 8460
λ=0.15 1352.000 1352.000 6781 7517
λ=0.16 1351.998 1352.000 5391 6409
λ=0.17 1351.998 1351.998 4772 5333
λ=0.2 1351.946 1351.988 2933 3417
λ=0.3 1349.608 1351.408 581 911
λ=0.4 1335.400 1348.530 181 300
λ=0.5 1289.444 1342.843 92 135

As an overall observation, we mention that for the
parameter-free BLA-based algorithm, the average value of the
selected load is very close to the optimal point in both tables.
This indicates that the convergence accuracy of the algorithm
is close to the NE point. Further, unlike the other LA-based
schemes, there is no speed/accuracy conflict. Understandably,
the average number of iterations, before convergence, for the
scenario when there are 28 users is much more than the
corresponding figure that we encounter when we deal with
only 15 users. The reason is for this is obvious: Because the
problem is NP-Hard, the complexity of the problem increases
super-linearly with the number of users. That being said, it is

TABLE V: Simulation results from the BLA and LRI-based algorithms with i=15 and
CSL=300 KWh.

Method Sum of selected loads Iterations
BLA 299.872 1101

LRI CLA LRI CLA
λ=0.01 - - 300000+ 300000+
λ=0.06 300.000 300.000 5764 6082
λ=0.07 300.000 300.000 4600 4596
λ=0.08 300.000 300.000 3763 3767
λ=0.09 300.000 300.000 3056 3148
λ=0.10 299.997 299.997 2630 2537
λ=0.11 299.990 299.995 2168 2139
λ=0.12 299.985 299.995 1772 1930
λ=0.13 299.975 299.970 1509 1528
λ=0.14 299.975 299.975 1357 1496
λ=0.16 299.917 299.947 1010 1142
λ=0.20 299.785 299.722 613 612
λ=0.30 298.215 298.347 223 222
λ=0.40 294.497 294.882 114 113
λ=0.50 285.892 289.745 76 78

still worth mentioning that the BLA can efficiently solve the
problem after a fairly reasonable number of iterations.

The performances of the LRI and the CLA depend fun-
damentally on the value of the LA’s parameter, λ. With a
sufficiently small value for λ, the algorithms can converge
to the NE point with high precision at a cost of executing a
large number of iterations. Of course, the number of iteration is
smaller when λ is relative large, but the convergence accuracy
is compromised. If we compare the λ-dependent schemes
(i.e., the CLA and the LRI) with the BLA-based algorithms,
the number of iterations for the former were smaller than
that for the latter, i.e., if the average value of the selected
loads was almost identical. For example, when λ = 0.16 for
i = 15, the average load was 299.917 after 1,010 iterations
for LRI, and 299.947 after 1,142 iterations for the CLA.
As opposed to this, the BLA yielded a lower load value of
299.872 after 1,101 iterations. Interestingly, the traditional
age-old LRI with λ = 0.16 was superior to the CLA and the
BLA in such a configuration. Similarly, when i = 28, both
the CLA and the LRI with the parametric setting of λ = 0.17
yielded a better performance than the BLA. Comparing the λ-
dependent schemes, arguably the LRI yielded a slightly better
performance than the CLA in most cases, as the CLA needed
more iterations to converge.

Although, as demonstrated by the results presented in the
tables, comparatively smaller values of λ led to a superior
performance for the LRI and the CLA, than for the BLA, the λ

values could be quite different depending on the system’s con-
figurations. Consequently, the issue of determining the ideal
value of λ was mandatory for a certain system configuration,
whenever the LRI or the CLA was applied. However, the BLA-
based approach did not require the setting of any a priori
configurations, which renders it to be a more practical option
in this application domain.

The general conclusion of our experiments can be stated as
follows:
• If one wants a “quick-and-dirty” solution to the problem,

it is better to use a large value of λ for either of the
λ-dependent schemes, and to converge to a reasonably
accurate solution, very quickly. Thus, as we can see from
Table V, we can converge to a fairly good solution in less
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than 80 iterations by using a value of λ that is as large
as 0.50.

• If one wants to get a fine and accurate solution and has the
time available to test the SG using different λ-dependent
schemes, it is advisable to use various values of λ during
a training-like phase, and to then use the best value of λ

in the actual real-life execution of the schemes.
• Finally, if one is not willing to go through a rigorous

phase where the schemes are tested for various values
of λ, we recommend that one utilizes the BLA scheme,
which, being parameter-free, is best suited for such sce-
narios.

VIII. CONCLUSIONS AND FUTURE WORK

In this work, we have studied the problem of the schedul-
ing of loads for domestic users in Smart Grids (SGs) in
a distributed manner. This load scheduling problem is NP-
Hard, and the distributed scheduling process is formulated as
an exact Potential Game that has at least one pure strategy
NE point. In this paper, we proposed a LA-based algorithm
which utilized three distinct LA alternatives, i.e., the LRI,
the CLA and the BLA. Each of the multiple users utilized a
LA to achieve the decision making process, and to thus solve
the problem in a distributed manner. The simulations results
show that the proposed approaches converge to a solution
close to the NE point of the game, which is also the global
optimal point. The advantage of the BLA-based approach is
that without any pre-configuration (i.e., the setting of any user-
defined parameter), the algorithm can converge to the NE point
with a very high probability. As opposed to this, the LRI
and CLA-based approaches possess the advantage that their
accuracy and the number of iterations can be compromised by
tuning the learning parameter λ. Otherwise, the convergence
of all the schemes is comparable.

A. Future Work
In spite of the fact that our schemes permits a randomized

schedule, there is no guarantee that this schedule is “fair”
over time. This is because there is the possibility that some
customers might randomly get favored. A possible research
direction is to consider providing fairness to the scheduling
process by considering the history of the assignments. One
possible solution would be to alter the initial probabilities of
the actions, so as to increase the likelihood of the system to
converge to one of the actions. Another option would be to
decide, at each epoch, which customers are allowed to enter
the game and to exclude the rest.

Another research direction worth investigating when facing
a large-scale game with a large number of customers, is that
of dividing the customers into k groups where each group
plays exactly the same game with a uniform constraint on
the load CSL

k . Based on the concept of creating groups and of
dividing the loads between the groups, one could devise more
sophisticated approaches that do not necessarily distribute the
load in a uniform manner. Finally, it is also possible to allow
communication between these groups themselves so that the
groups that have complementary loads can enter into alliances
and be scheduled simultaneously.

REFERENCES

[1] R. Thapa, L. Jiao, B. Oommen, John, and A. Yazidi, “Dynamic pricing
and stabilization of supply and demand in modern electric power grids,”
in International Conference on Smart Grid Inspired Future Technologies
(Smartgift). EAI, 2017, pp. 1–10.

[2] H. Farhangi, “The path of the smart grid,” IEEE Power and Energy
Magazine, vol. 8, no. 1, pp. 18–28, 2010.

[3] V. C. Gungor, D. Sahin, T. Kocak, S. Ergut, C. Buccella, C. Cecati, and
G. P. Hancke, “Smart grid technologies: communication technologies
and standards,” IEEE Trans. on Industrial Informatics, vol. 7, no. 4, pp.
529–539, 2011.

[4] V. C. Gungor, B. Lu, and G. P. Hancke, “Opportunities and challenges
of wireless sensor networks in smart grid,” IEEE Trans. on Industrial
Electronics, vol. 57, no. 10, pp. 3557–3564, 2010.

[5] “Semiah: Scalable energy management infrastructure for aggregation
of households,” Accessed September 17, 2016, available at /http://
semiah.eu/.

[6] A. J. Conejo, J. M. Morales, and L. Baringo, “Real-time demand
response model,” IEEE Trans. on Smart Grid, vol. 1, no. 3, pp. 236–242,
2010.

[7] M. Roozbehani, M. Dahleh, and S. Mitter, “Dynamic pricing and
stabilization of supply and demand in modern electric power grids,”
in IEEE International Conference on Smart Grid Communications
(SmartGridComm). IEEE, 2010, pp. 543–548.

[8] A.-H. Mohsenian-Rad and A. Leon-Garcia, “Optimal residential load
control with price prediction in real-time electricity pricing environ-
ments,” IEEE Trans. on Smart Grid, vol. 1, no. 2, pp. 120–133, 2010.

[9] T. Logenthiran, D. Srinivasan, and T. Z. Shun, “Demand side manage-
ment in smart grid using heuristic optimization,” IEEE Trans. on Smart
Grid, vol. 3, no. 3, pp. 1244–1252, 2012.

[10] A.-H. Mohsenian-Rad, V. W. Wong, J. Jatskevich, and R. Schober, “Op-
timal and autonomous incentive-based energy consumption scheduling
algorithm for smart grid,” in Innovative Smart Grid Technologies (ISGT).
IEEE, 2010, pp. 1–6.

[11] A.-H. Mohsenian-Rad, V. W. Wong, J. Jatskevich, R. Schober, and
A. Leon-Garcia, “Autonomous demand-side management based on
game-theoretic energy consumption scheduling for the future smart
grid,” IEEE Trans. on Smart Grid, vol. 1, no. 3, pp. 320–331, 2010.

[12] P. Chavali, P. Yang, and A. Nehorai, “A distributed algorithm of appli-
ance scheduling for home energy management system,” IEEE Trans. on
Smart Grid, vol. 5, no. 1, pp. 282–290, 2014.

[13] Z. Fan, “A distributed demand response algorithm and its application to
phev charging in smart grids,” IEEE Trans. on Smart Grid, vol. 3, no. 3,
pp. 1280–1290, 2012.

[14] W. Saad, Z. Han, H. V. Poor, and T. Basar, “Game-theoretic methods
for the smart grid: An overview of microgrid systems, demand-side
management, and smart grid communications,” IEEE Signal Processing
Magazine, vol. 29, no. 5, pp. 86–105, 2012.

[15] M. Thathachar and B. R. Harita, “Learning automata with changing
number of actions,” IEEE Trans. on Systems, Man, and Cybernetics,
vol. 17, no. 6, pp. 1095–1100, 1987.

[16] K. S. Narendra and M. A. Thathachar, Learning automata: an introduc-
tion. Courier Corporation, 2012.

[17] N. Kumar, S. Misra, and M. S. Obaidat, “Routing as a Bayesian coalition
game in smart grid neighborhood area networks: Learning automata-
based approach,” in IEEE International Conference on Communications
(ICC). IEEE, 2014, pp. 1502–1507.

[18] S. Misra, P. V. Krishna, V. Saritha, H. Agarwal, and A. Ahuja, “Learning
automata-based multi-constrained fault-tolerance approach for effective
energy management in smart grid communication network,” Journal of
Network and Computer Applications, vol. 44, pp. 212–219, 2014.

[19] S. Misra, P. V. Krishna, V. Saritha, and M. S. Obaidat, “Learning
automata as a utility for power management in smart grids,” IEEE
Communications Magazine, vol. 51, no. 1, pp. 98–104, 2013.

[20] L. Mason, “An optimal learning algorithm for s-model environments,”
IEEE Trans. on Automatic Control, vol. 18, no. 5, pp. 493–496, 1973.

[21] O.-C. Granmo and S. Glimsdal, “Accelerated Bayesian learning for
decentralized two-armed bandit based decision making with applications
to the Goore game,” Applied Intelligence, vol. 38, no. 4, pp. 479–488,
2013.

[22] X. Fang, S. Misra, G. Xue, and D. Yang, “Smart grid: The new and
improved power grid: A survey,” IEEE Communications Surveys &
Tutorials, vol. 14, no. 4, pp. 944–980, 2012.

[23] W. Wang, Y. Xu, and M. Khanna, “A survey on the communication
architectures in smart grid,” Computer Networks, vol. 55, no. 15, pp.
3604–3629, 2011.



2169-3536 (c) 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2017.2788051, IEEE Access

13

[24] K. Moslehi and R. Kumar, “Smart grid-a reliability perspective,” in
Innovative Smart Grid Technologies (ISGT). IEEE, 2010, pp. 1–8.

[25] Q. QDR, “Benefits of demand response in electricity markets and
recommendations for achieving them,” US Dept. Energy, Washington,
DC, USA, Tech. Rep, 2006.

[26] M. Parvania and M. Fotuhi-Firuzabad, “Demand response scheduling by
stochastic scuc,” IEEE Trans. on Smart Grid, vol. 1, no. 1, pp. 89–98,
2010.

[27] P. Palensky and D. Dietrich, “Demand side management: Demand
response, intelligent energy systems, and smart loads,” IEEE Trans. on
Industrial Informatics, vol. 7, no. 3, pp. 381–388, 2011.

[28] S. K. Vuppala, K. Padmanabh, S. K. Bose, and S. Paul, “Incorporating
fairness within demand response programs in smart grid,” in IEEE
Innovative Smart Grid Technologies (ISGT). IEEE, 2011, pp. 1–9.

[29] X. Liang, X. Li, R. Lu, X. Lin, and X. Shen, “Udp: Usage-based dynamic
pricing with privacy preservation for smart grid,” IEEE Trans. on Smart
Grid, vol. 4, no. 1, pp. 141–150, 2013.

[30] K. Mets, T. Verschueren, W. Haerick, C. Develder, and F. De Turck,
“Optimizing smart energy control strategies for plug-in hybrid electric
vehicle charging,” in IEEE/IFIP Network Operations and Management
Symposium Workshops. IEEE, 2010, pp. 293–299.

[31] J. Zheng, D. W. Gao, and L. Lin, “Smart meters in smart grid: An
overview,” in IEEE Green Technologies Conference. IEEE, 2013, pp.
57–64.

[32] I. Koutsopoulos and L. Tassiulas, “Optimal control policies for power
demand scheduling in the smart grid,” IEEE Journal on Selected Areas
in Communications, vol. 30, no. 6, pp. 1049–1060, 2012.

[33] K. Kursawe, G. Danezis, and M. Kohlweiss, “Privacy-friendly ag-
gregation for the smart-grid,” in International Symposium on Privacy
Enhancing Technologies Symposium. Springer, 2011, pp. 175–191.

[34] T. Batterberry, M. Miller, K. Jaskolka, and R. Toll, “Smart grid price
response service for dynamically balancing energy supply and demand,”
Jun. 12 2009, uS Patent App. 12/483,975.

[35] H. Wang, T. Huang, X. Liao, A.-R. Haitham, and C. Guo, “Reinforce-
ment learning in energy trading game among smart microgrids,” IEEE
Trans. on Industrial Informatics, vol. 63, no. 8, pp. 5109–5119, 2016.

[36] S. Bakr and S. Cranefield, “Optimizing shiftable appliance schedules
across residential neighbourhoods for lower energy costs and fair
billing,” in The Second Australasian Workshop on Artificial Intelligence
in Health (AIH 2013) and the Fourth International Workshop on
Collaborative Agents - Research and Development (CARE), 2013, pp.
45–52.

[37] Y. Liu, N. U. Hassan, S. Huang, and C. Yuen, “Electricity cost
minimization for a residential smart grid with distributed generation
and bidirectional power transactions,” in IEEE Innovative Smart Grid
Technologies (ISGT). IEEE, 2013, pp. 1–6.

[38] Z. Zhu, J. Tang, S. Lambotharan, W. H. Chin, and Z. Fan, “An
integer linear programming based optimization for home demand-side
management in smart grid,” in IEEE Innovative Smart Grid Technologies
(ISGT). IEEE, 2012, pp. 1–5.

[39] T. Kato, K. Yuasa, and T. Matsuyama, “Energy on demand: Efficient
and versatile energy control system for home energy management,”
in IEEE International Conference on Smart Grid Communications
(SmartGridComm). IEEE, 2011, pp. 392–397.

[40] D. Monderer and L. S. Shapley, “Potential games,” Games and Economic
Behavior, vol. 14, no. 1, pp. 124–143, 1996.

[41] P. Sastry, V. Phansalkar, and M. Thathachar, “Decentralized learning
of Nash equilibria in multi-person stochastic games with incomplete
information,” IEEE Trans. on Systems, Man, and Cybernetics, vol. 24,
no. 5, pp. 769–777, 1994.

[42] J.-P. Zimmermann, M. Evans, J. Griggs, N. King, L. Harding, P. Roberts,
and C. Evans, “Household electricity survey: A study of domestic
electrical product usage,” Intertek Testing & Certification Ltd, 2012.

[43] H.-L. Chao, C.-C. Tsai, P.-A. Hsiung, I. Chou et al., “Smart grid as a
service: a discussion on design issues,” The Scientific World Journal,
vol. 2014, 2014.

[44] S. Rajakaruna, F. Shahnia, and A. Ghosh, Plug in electric vehicles in
smart grids. Springer, 2015.


