
Secure Group Key Agreement

Dissertation zur Erlangung des Grades

Doktor der Ingenieurwissenschaften (Dr. Ing.)
der Naturwissenschaftlich-Technischen Fakultät I

der Universität des Saarlandes

von
Michael Steiner

Gutachter:
Prof. Dr. Birgit Pfitzmann

Prof. Dr. Gene Tsudik

Dekan:
Prof. Dr. Rainer Schulze-Pillot-Ziemen

Einreichung:

20 Dezember, 2001

Promotions-Kolloquium:
15. März, 2002

U
N

IV
E R S IT A

S

S
A

R
A V I E N

S
I S

Saarbrücken, 2002

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Acronym

https://core.ac.uk/display/196651207?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

Abstract

As a result of the increased popularity of group-oriented applications and
protocols, group communication occurs in many different settings: from
network multicasting to application layer tele- and video-conferencing. Re-
gardless of the application environment, security services are necessary to
provide communication privacy and integrity.

This thesis considers the problem of key management in a special class
of groups, namely, dynamic peer groups. Key management, especially in
a group setting, is the corner stone for all other security services. Dy-
namic peer groups require not only initial key agreement but also auxiliary
key agreement operations such as member addition, member exclusion and
group fusion. We discuss all group key agreement operations and present a
concrete protocol suite, CLIQUES, which offers all of these operations. By
providing the first formal model for group key establishment and investi-
gating carefully the underlying cryptographic assumptions as well as their
relations, we formally prove the security of a subset of the protocols based
on the security of the Decisional Diffie-Hellman assumption; achieving as a
side-effect the first provably secure group key agreement protocol.

iv

Kurzzusammenfassung

Mit der Verbreitung offener Netze, insbesondere des Internets, fand auch
die Gruppenkommunikation eine rasante Verbreitung. Eine Vielzahl heuti-
ger Protokolle sind gruppen-orientiert: angefangen bei Multicast-Diensten
in der Netzwerkschicht bis hin zu Videokonferenzsystemen auf der Anwen-
dungsschicht. Alle diese Dienste haben Sicherheitsanforderungen wie Ver-
traulichkeit und Integrität zu erfüllen, die den Einsatz kryptographischer
Techniken und die Verfügbarkeit gemeinsamer kryptographischen Schlüssel
oft unumgänglich machen.

In der folgenden Doktorarbeit betrachte ich dieses grundlegendste Pro-
blem der Gruppenkommunikation, nämlich das Schlüsselmanagement, für
dynamische Gruppen, die sogenannten “Dynamic Peer-Groups”. Die Dy-
namik dieser Gruppen erfordert nicht nur initialen Schlüsselaustausch in-
nerhalb einer Gruppe sondern auch sichere und effiziente Verfahren für die
Aufnahme neuer und den Ausschluß alter Gruppenmitglieder. Ich diskutiere
alle dafür notwendigen Dienste und präsentiere CLIQUES, eine Familie von
Protokollen, die diese Dienste implementiert. Ich gebe erstmalig eine for-
male Definition für sicheres Gruppen-Schlüsselmanagement und beweise die
Sicherheit der genannten Protokolle basierend auf einer kryptographischen
Standardannahme, der “Decisional Diffie-Hellman” Annahme. Diese Sicher-
heitsbetrachtung wird durch eine detaillierte Untersuchung dieser Annahme
und ihrer Relation zu verwandten Annahmen abgeschlossen.

vi

Zusammenfassung

Der zunehmende Bedarf an gruppenorientierten Anwendungen und Proto-
kollen hat in den letzten Jahren zu einer enormen Verbreitung der Grup-
penkommunikation in verschiedensten Bereichen geführt: angefangen bei
Multicast-Diensten in der Netzwerkschicht bis hin zu Videokonferenzsyste-
men auf der Anwendungsschicht. Die Gewährleistung von Sicherheitsgaran-
tien wie Vertraulichkeit, Authentizität und Integrität sind dabei wichtige
Eigenschaften von Gruppenkommunikation, vor allem um die notwendige
Akzeptanz auf der Anwenderseite zu erreichen.

Während Peer-to-Peer Sicherheit ein relativ erwachsenes und gut er-
forschtes Gebiet ist, stellt die sichere Gruppenkommunikation noch im-
mer eine ziemlich unerforschte Landschaft dar. Entgegen einer weit ver-
breiteten Fehleinschätzung, ist sichere Gruppenkommunikation keine trivia-
le Erweiterung sicherer Zwei-Parteien-Kommunikation. Es gibt eine Viel-
zahl gravierender Unterschiede und sichere Gruppenkommunikation stellt
noch immer zahlreiche Herausforderungen an die Forschungsgemeinde (vgl.
Smith and Weingarten (1997) und Canetti et al. (1999)).

An dieser Stelle seien nur einige Unterschiede und Probleme erwähnt:
Aufgrund ihrer zahlreichen und sehr unterschiedlichen Einsatzgebiete ist es
sehr schwer eine allgemeingültige und konsistente Definition für Gruppen-
Kommunikation zu finden. So haben beispielsweise Gruppen, die für ei-
ne Video-on-Demand Anwendung gebildet wurden, grundlegend andere Si-
cherheitsanforderungen als dynamische, spontan gebildete Peer-Gruppen in
drahtlosen ad-hoc Netzwerken. Folglich werden Taxonomien und Klassifizie-
rungskriterien benötigt, um Problemklassen und ihre Sicherheitsanforderun-
gen zu identifizieren und zu definieren.1 Noch wichtiger ist es die Sicherheit
grundlegender Dienste, wie beispielsweise Authentifikation, formal zu defi-
nieren, da ohne fundierte und formale Sicherheitsdefinitionen, die Sicherheit
der zugrundeliegenden Protokolle nicht rigoros bewiesen werden kann.

Ein zweiter Unterschied liegt in der größeren Bedeutung der Rechen- und
Kommunikationskomplexität der Protokolle, da diese in direkter Abhängig-
keit zur Anzahl der Teilnehmer steht. Desweiteren sind Topologie und Cha-

1Erste Schritte zur Charakterisierung sicherer Gruppenkommunikation wurden bereits
in Hutchinson (1995) und Canetti et al. (1999) diskutiert, jedoch nur als sehr abstrakte
und informelle Taxonomien.

vii

viii

rakteristik des Netzwerkes bedeutende Faktoren für das Design und die Aus-
wahl geeigneter Protokolle.

Ein weiterer Unterschied liegt in der Dynamik der Gruppen: Zwei-
Parteien-Kommunikation kann als ein diskretes Phänomen betrachtet wer-
den: es beginnt, hat eine bestimmte Dauer und endet wieder. Gruppenkom-
munikation ist komplexer: die Gruppe wird gebildet, kann sich durch Ein-
oder Austritt von Teilnehmern ändern und es gibt nicht notwendigerweise
ein fest definiertes Ende. Diese Dynamik macht die Garantie von Sicher-
heitseigenschaften wesentlich aufwendiger und erschwert insbesondere auch
das Schlüsselmanagement.

Die Lösung all dieser Fragen würde den Rahmen einer Doktorarbeit bei
weitem sprengen. Daher betrachte ich in dieser Arbeit das grundlegendste
Problem auf dem alle weiteren Sicherheitsmechanismen der Gruppenkom-
munikation aufbauen, nämlich das Schlüsselmanagement. Desweiteren be-
schränke ich mich auf eine spezielle Klasse von Gruppen, die Dynamischen
Peer-Gruppen (DPG). DPGs sind Gruppen deren Mitglieder in symmetri-
schen Relationen zueinander stehen und daher als äquivalent bzw. gleich-
wertig behandelt werden. Insbesondere sind spezielle Rollen wie Gruppen-
Koordinator nicht von vornherein fixiert, d.h. es gibt keine zentrale Instanz,
die mehr Möglichkeiten als andere Gruppenmitglieder hat. Eine Zuweisung
dieser speziellen Rollen sollte nur von der (möglicherweise variablen) Sicher-
heitsstrategie abhängen und unabhängig von dem Schlüsselmanagementpro-
tokoll sein. Die Gruppenzugehörigkeit ist dynamisch, d.h. jeder Teilnehmer,
insbesondere auch der aktuelle Gruppen-Koordinator, sollte sich prinzipi-
ell einer Gruppe anschließen, oder diese auch verlassen können. Diese an-
spruchsvollen Eigenschaften heben DPGs von der zur Verteilung digitaler
Multimediainhalte üblichen Multicast-Gruppen ab und machen sie zu ei-
nem interessanten Studienobjekt. DPGs sind in vielen Netzwerkschichten
und Anwendungsgebieten üblich. Beispiele umfassen replizierte Server aller
Bereiche (wie Datenbank-, Web- oder Zeitserver), Audio- und Videokonfe-
renzsysteme, Battlefield-Netze oder kooperationsunterstützende Anwendun-
gen aller Art. Im Gegensatz zu großen Multicast-Gruppen sind DPGs relativ
klein. Größere Gruppen auf Peer-Basis sind sehr schwierig zu kontrollieren
und werden daher meist hierarchisch organisiert. DPGs besitzen im allge-
meinen auch ein many-to-many Kommunikationsmuster statt der üblichen
one-to-many Kommunikation in großen hierarchischen Gruppen.

Überblick

Die Doktorarbeit ist wie folgt aufgebaut:
In den Kapiteln 1 und 2 gebe ich eine Einführung in die Thematik und

analysiere notwendige Anforderungen an die Schlüsselverwaltung, um die
Dynamik von DPGs zu unterstützen.

Die Basis für eine rigorose Sicherheitsanalyse lege ich in Kapitel 3, in

ix

dem ich die notwendigen fundamentalen mathematischen Aspekte untersu-
che. Dabei betrachte ich insbesondere kryptographische Annahmen, die auf
diskreten Logarithmen aufbauen, klassifiziere sie und diskutiere wichtige Ei-
genschaften und Parameter, deren Veränderung unterschiedliche Varianten
dieser Annahmen implizieren. Zusätzlich beweise ich mehrere Relationen
zwischen unterschiedlichen Annahmen, welche sich in späteren Sicherheits-
beweisen für die Protokolle zum Gruppen-Schlüsselaustausch als hilfreich
erweisen werden. Insbesondere wird die Äquivalenz des Decisional Genera-
lized Diffie-Hellman Problems und des Decisional Diffie-Hellman Problems
konstruktiv bewiesen, indem eine effiziente Reduktion zwischen beiden Pro-
blemen in einer Vielzahl von Annahmenformulierungen angegeben wird.
Desweiteren zeige ich, wie Bit-Strings aus Diffie-Hellman Schlüsseln erzeugt
werden können, so daß diese Strings ununterscheidbar von gleichverteilten
Strings sind.

Kapitel 4 zeigt CLIQUES, eine vollständige Familie von Protokollen zur
Schlüsselverwaltung in Netzen mit authentischen Verbindungen. Diese um-
faßt Protokolle zum initialen Schlüsselaustausch, zur Schlüsselerneuerung
und zur Änderung von Gruppenzugehörigkeiten. Das Kapitel schließt mit
einer Untersuchung der Eigenschaften und Effizienz dieser Protokolle sowie
einigen Argumenten zum Beweis ihrer Sicherheit.

Diese Sicherheitsargumente entsprechen vom Formalitätsgrad her den Si-
cherheitsbeweisen existierender Gruppen-Schlüsselaustausch Protokolle. In
Kapitel 5 gehe ich weit über dieses bisher übliche Maß an Formalität hinaus.
Dazu definiere ich zunächst ein formales Modell für Gruppen-Schlüsselaus-
tausch Protokolle und zeige einen detailierten und rigorosen Sicherheitsbe-
weis eines der CLIQUES Protokolle zum initialen Schlüsselaustausch. Ins-
besondere zeige ich, daß das Protokoll sogar gegen adaptive Angreifer unter
der Decisional Diffie-Hellman Annahme sicher ist, wenn das Protokoll um
eine Bestätigungsnachricht erweitert wird.

Die Arbeit schließt in Kapitel 6 mit einer Zusammenfassung der vorge-
stellten Ergebnisse und einem Ausblick auf offene Probleme und mögliche
weitere Forschungsrichtungen.

Ergebnisse

Die Hauptresultate dieser Arbeit können wie folgt zusammengefaßt werden:

1. Die erste detaillierte Klassifizierung kryptographischer Annahmen ba-
sierend auf diskreten Logarithmen wird vorgestellt. Diese Klassifizie-
rung erlaubt eine präzise und dennoch allgemeine Darstellung dieser
Annahmen und liefert neuartige Einsichten in die Zusammenhänge
zwischen diesen Annahmen. So wurden ausgehend von dieser Klas-
sifizierung überraschende Ergebnisse hinsichtlich der Separierbarkeit
von Annahmen in Abhängigkeit des zugrundeliegenden Wahrschein-
lichkeitsraumes erzielt (Sadeghi and Steiner 2001).

x

2. Ein neues Problem, das Decisional Generalized Diffie-Hellman Pro-
blem, wird eingeführt und konstruktiv als äquivalent zum Decisional
Diffie-Hellman Problem bewiesen, wobei der Beweis auch die konkrete
Sicherheit, d.h., die genauen Reduktionskosten liefert. Das Problem
bzw. die zugehörige Annahme ist nicht nur im Kontext von Diffie-
Hellman-basierten Gruppen-Schlüsselaustausch Protokollen nützlich,
sondern dient auch als Basis für die erste effiziente Konstruktion einer
beweisbar sicheren Pseudo-Zufallfunktion (Naor and Reingold 1997).

3. CLIQUES, eine Familie flexibler Schlüsselmanagementprotokolle für
dynamische Peer-Gruppen, wird eingeführt. Sie sind die ersten kol-
lusionstoleranten2 Protokolle, die keinen festen Gruppen-Koordinator
voraussetzen. Die Protokolle sind optimal oder zumindest nahezu op-
timal bezüglich verschiedenster Leistungsmerkmale.

4. Die erste formale Definition von sicherem Gruppen-Schlüsselaustausch
wird präsentiert. Ausgehend von dieser Definition wird die Sicherheit
zweier effizienter Gruppen-Schlüsselaustausch Protokolle auf Netz-
werken mit authentischen Verbindungen bewiesen. Dadurch wird ei-
ne wichtige Lücke in der Sicherheitsanalyse von Protokollen zum
Gruppen-Schlüsselmanagement geschlossen und das Vertrauen in der-
artige Protokolle entsprechend erhöht. Ein weiterer Vorteil dieser De-
finition ist, daß sie die sichere modulare Kombination mit anderen
Protokollen ermöglicht. Als Spezialfall liefert sie gleichzeitig auch die
erste Definition für ein sicheres, modular kombinierbares Schlüsselaus-
tausch Protokoll für den Zwei-Parteien-Fall.

Alle oben genannten Ergebnisse wurden bereits in
Vorversionen veröffentlicht. Die erste Publikation ist
Steiner, Tsudik, and Waidner (1996), welche die Grundlage für die
Protokollfamilie CLIQUES legte, das Decisional Generalized Diffie-Hellman
Problem einführte sowie einen ersten, nicht-konstruktiven Äquivalenzbeweis
zwischen dem Generalized Diffie-Hellman Problem und dem Decisional
Diffie-Hellman Problem enthielt. Die dynamischen Aspekte von Gruppen-
Schlüsselaustausch wurden in Steiner, Tsudik, and Waidner (1998) beleuch-
tet. Diese Publikation führte auch die ersten Gruppen-Schlüsselaustausch-
Protokolle ein, die kollusionstolerant sind und dynamische Gruppen-
Koordinatore erlauben. Diese Papiere wurden zu einer erweiterten
Journalversion (Steiner, Tsudik, and Waidner 2000) kombiniert. Die Un-
tersuchung und Klassifizierung der kryptographischen Annahmen, wie in
Kapitel 3 gezeigt, basiert auf Sadeghi and Steiner (2001, 2002). Das formale
Modell von Group-Key-Agreement und die zugehörigen Beweise wurden in
Pfitzmann, Steiner, and Waidner (2002) veröffentlicht.

2Kollusionen sind Koalitionen von unehrlichen Teilnehmern.

Contents

1 Introduction and Overview 1
1.1 Outline . 2
1.2 Results . 3

2 Dimensions of Key Agreement 7
2.1 Key Establishment in the Two-Party Case 10

2.1.1 Service and Security Properties 10
2.1.2 Adversary Model . 11
2.1.3 Types . 12

2.2 Key Establishment for Groups 13
2.2.1 Basic Service and Additional Security Properties . . . 13
2.2.2 Types . 14
2.2.3 Fault-Tolerance . 14
2.2.4 Management of Groups 15

2.3 Handling the Dynamics of Groups 16
2.3.1 Initial Key Agreement (IKA) 16
2.3.2 Auxiliary Key Agreement (AKA) Operations 16

2.4 Measures . 20

3 Exploring the Mathematical Foundations 21
3.1 Terminology . 23

3.1.1 General Notational Conventions 23
3.1.2 Asymptotics . 24
3.1.3 Computational Model 25
3.1.4 Indistinguishability . 26
3.1.5 Algebraic Structures 26
3.1.6 Problems . 27
3.1.7 Samplers . 28

3.2 Classifying Discrete Log-Based Assumptions 31
3.3 Defining Assumptions . 40
3.4 Granularity . 47
3.5 Decisional Generalized Diffie-Hellman 50
3.6 Key Derivation . 62

xi

xii CONTENTS

4 CLIQUES 67
4.1 Generic n-Party Diffie-Hellman Key Agreement 68
4.2 CLIQUES: Initial Key Agreement 73

4.2.1 IKA.1 . 73
4.2.2 IKA.2 . 76

4.3 CLIQUES: Auxiliary Key Agreement 79
4.3.1 Member Addition . 80
4.3.2 Mass Join . 82
4.3.3 Group Fusion . 83
4.3.4 Member Exclusion . 85
4.3.5 Subgroup Exclusion 86
4.3.6 Key Refresh . 86
4.3.7 Security Considerations for AKA Operations 87

4.4 Related Work . 90
4.4.1 Contributory Key Agreement 90
4.4.2 Key Transport . 94
4.4.3 Other . 95

4.5 Summary . 95

5 Formal Model and Proofs 97
5.1 Basic Definitions and Notation 101

5.1.1 System Model and Simulatability 101
5.1.2 Standard Cryptographic Systems 102
5.1.3 Notation . 103

5.2 Ideal System for Group Key Establishment 104
5.3 Real System for Group Key Establishment 113
5.4 Security of Real System . 119

5.4.1 Interactive Generalized Diffie-Hellman Problem 119
5.4.2 Real System Rewritten with Interactive Diffie-Hellman Machine124

5.4.3 Replacing GDH
(0)
n,mxkey by GDH

(1)
n,mxkey 133

5.4.4 Security with Respect to the Ideal System 133

6 Conclusion and Outlook 137

Bibliography 140

Index 159

A Deriving Formal Assumptions from the Parameters 165

B Detailed Specification of Models and Protocols 169
Scheme 5.1 Sysgke,ideal

n,tb,ct . 169

Scheme 5.2 Sysgke,ika1
n,tb,ct . 174

Scheme 5.4 Sysgke,ika1,sr
n,tb,ct . 180

CONTENTS xiii

Scheme 5.4’ Sysgke,ika1,si
n,tb,ct . 191

Scheme 5.5 Sysgke,ika1,simul
n,tb,ct . 192

xiv CONTENTS

List of Figures

2.1 AKA Operations . 17

4.1 Notational conventions used throughout Chapter 4 68
4.2 Two-party Diffie-Hellman key-exchange 69
4.3 Group Key Agreement: IKA.1 74
4.4 Example of IKA.1 . 74
4.5 Group Key Agreement: IKA.2 77
4.6 Example of IKA.2 . 78
4.7 Member Addition . 81
4.8 Example of member addition 81
4.9 Mass Join . 83
4.10 Member Exclusion . 85
4.11 Key Refresh . 87
4.12 ING Protocol . 91

5.1 Ports and buffers . 101
5.2 Trusted host and its message types 105
5.3 Sketch of the real system . 114
5.4 Semi-real system . 124
5.5 Simulator . 133

B.1 Trusted host and its message types 171
B.2 Sketch of the real system . 174
B.3 Semi-real system . 180
B.4 Simulator . 192

xv

xvi LIST OF FIGURES

List of Tables

5.1 The message types and parameters handled by THH 106
5.2 Variables in THH . 107
5.3 Variables in M∗

u . 116

5.4 The message types and parameters handled by GDH
(b)
n,mxkey . . 120

5.5 Variables in GDH
(b)
n,mxkey . 120

5.6 Changed elementary actions in the semi-real machines M′
u . . 126

5.7 Messages at “Upper” ports of GDH Mux 126
5.8 Variables in GDH Mux . 127

B.1 The message types and parameters handled by THH 170
B.2 Variables of THH . 171
B.3 The message types and parameters handled by Gen and Mu . 175
B.4 Variables in Gen and Mu . 176
B.5 The message types and parameters handled by GDH Mux and GDH

(b)
n,mxkey181

B.6 Variables in Gen′ and M′
u . 182

B.7 Variables in GDH Mux and GDH
(b)
n,mxkey 183

B.8 The message types and parameters handled on “upper” interface of M′′
u193

B.9 The message types and parameters handled by GDH Mux′ . . 193
B.10 Variables in M′′

u and GDH Mux′ 194

xvii

xviii LIST OF TABLES

Chapter 1

Introduction and Overview

This chapter gives an outline of the content of this thesis. In particular,
it provides a summary of the major results: The first provably secure key
agreement protocol for dynamic peer groups and a thorough study and
classification of the underlying cryptographic assumptions.

A
S a result of the increased popularity of group-oriented applications and
protocols, group communication occurs in many different settings: from

network layer multicasting to application layer tele- and video-conferencing.
Regardless of the underlying environment, security services are necessary to
provide authenticity, integrity and communication privacy.

While peer-to-peer security is a quite mature and well-developed
field, secure group communication remains comparably unexplored.
Contrary to a common initial impression, secure group communi-
cation is not a simple extension of secure two-party communica-
tion. There are important differences and many research chal-
lenges remain open as pointed out by Smith and Weingarten (1997) and
Canetti, Garay, Itkis, Micciancio, Naor, and Pinkas (1999). In the follow-
ing, I just mention a few.

First, there are a number of definitional problems, as group communi-
cation comes in various and fundamentally different forms. For example,
groups as formed during a video-on-demand multicast expose quite different
security requirements than requirements of dynamic peer groups in ad-hoc
wireless networks. This means that we need taxonomies and classifications
to characterize problem classes and their requirements.1 However and even
more importantly, basic services such as authentication need formal defi-

1Some initial steps towards such a characterization of group communication and secu-
rity were already taken in the high-level and informal taxonomies of Hutchinson (1995)
and Canetti et al. (1999).

1

2 Introduction and Overview

nitions of security. Without such definitions we can never get a thorough
confidence in proposed protocols as there is no way of rigorously and for-
mally proving their security.

Secondly, protocol efficiency is of greater concern due to the direct re-
lation of the number of participants with computation and communication
complexity. Network topologies and characteristics are key issues for the
design and selection of appropriate protocols.

A third difference is due to group dynamics. Two-party communication
can be viewed as a discrete phenomenon: it starts, lasts for a while and
ends. Group communication is more complicated: the groups starts, it
might mutate (members leave and join) and there might not be a well-
defined end. This complicates attendant security services, in particular for
key management.

To tackle all these question would go far beyond the scope of a single
thesis. In this work, I specifically focus on key management, the corner stone
of the security services, and on Dynamic Peer Groups (DPG). DPGs
are groups where all members have a symmetric relationship and are treated
equivalently. In particular, roles such as group controllership are not a priori
fixed, i.e., there is no central authority with more power than other mem-
bers, and assignment of such roles should be only a matter of (potentially
variable) policy and orthogonal to the key management protocols. Further-
more, membership is highly dynamic, i.e., any member might join or leave,
including a member who holds at that moment the role of a group controller.
This makes DPGs an interesting object of study and separates them, e.g.,
from multicast groups used in multimedia distribution services. DPGs are
common in many layers of the network protocol stack and many application
areas of modern computing. Examples of DPGs include replicated servers
(such as database, web, or time servers), audio and video conferencing appli-
cations, battlefield networks, and, more generally, collaborative applications
of all kinds. In contrast to large multicast groups, DPGs are relatively small
in size, on the order of a hundred members. Larger groups are harder to
control on a peer basis and are typically organized in a hierarchy of some
sort. DPGs typically assume a many-to-many communication pattern rather
than one-to-many commonly found in larger, hierarchical groups.

1.1 Outline

The reminder of this thesis is as follows:
In Chapter 2, I discuss and analyze the requirements for key management

in supporting the dynamics of DPGs.
Laying the ground for a rigorous analysis, I then investigate in Chap-

ter 3 the mathematical foundations. I take a closer look at cryptographic
assumptions based on discrete logarithms, and classify and discuss impor-

1.2 Results 3

tant properties differentiating variants of such assumptions. Furthermore,
I prove a tool box of relations among different assumptions. This tool box
will be helpful in later proving the security of the group key agreement pro-
tocols. In particular, I investigate the relation of the Decisional Generalized
Diffie-Hellman problem and the Decisional Diffie-Hellman problem. I show
constructively that there is an efficient reduction equating the difficulty of
the two problems in a variety of assumption formulations. Furthermore, I
show how to derive bit strings from Diffie-Hellman keys such that these bit
strings are computationally indistinguishable from uniformly chosen ones.

Chapter 4 presents CLIQUES, a complete family of protocols for key-
management, namely, initial key agreement, key-renewal and membership
change, in a model with authenticated links. I analyze properties and effi-
ciency of these protocols and give arguments for their security.

The security arguments given in the previous section are not very formal.
Nevertheless, they represent the practice of proving security for group key
protocols in the past. In Chapter 5 I go beyond that. I define a formal
model for group key agreement protocols and give a detailed and rigorous
proof for one of the previously presented protocols, the initial key agreement.
In particular, I show that under the Decisional Diffie-Hellman assumption
and the addition of a confirmation flow the initial key agreement protocol
is secure even in the presence of adaptive adversaries.

Finally in Chapter 6, I summarize the work and give an outlook on open
problems and possible research directions.

1.2 Results

The major results of this thesis are as follows:

1. This thesis contains the first thorough classification of cryptographic
assumptions related to discrete logarithms. This classification en-
ables concise yet general assumption statements and gives novel
insights into the relation of these assumptions, e.g., based on it
Sadeghi and Steiner (2001) showed a surprising separability result.

2. A new problem, the Decisional Generalized Diffie-Hellman prob-
lem, is introduced and shown equivalent to the Decisional Diffie-
Hellman problem with a constructive reduction giving the concrete
security. This problem, or more precisely the related assumptions, is
very useful in the context of Diffie-Hellman based group key agree-
ment protocols. Additionally, it also serves as the basis of the
first efficient construction of provably secure pseudo-random functions
(Naor and Reingold 1997).

3. CLIQUES, a family of flexible key-management protocols for dynamic
peer groups is presented. They are the first collusion-tolerant proto-

4 Introduction and Overview

cols without the need for a fixed group controller. The protocols are
optimal or close to optimal in a number of metrics.

4. The first formal definition of secure group key management is given.
Based on this definition, the security of an efficient group key agree-
ment protocol is proven for networks which provide authenticated
links. This closes an important gap in the security analysis of group
key management protocols and increases sharply the resulting confi-
dence in such protocols. Furthermore, the definition allows the secure
composition with other protocols and — when restricting the number
of parties to two — gives even the first definition and provably secure
key agreement protocol exhibiting such a property in the two-party
case.

Most of above results were already published in preliminary form
in a number of previous publications. The paper trail begins with
Steiner, Tsudik, and Waidner (1996). This paper laid the ground to the
protocol family CLIQUES, introduced the Decisional Generalized Diffie-
Hellman problem and gave the first though non-constructive proof of
the equivalence of the Decisional Diffie-Hellman problem and the Deci-
sional Generalized Diffie-Hellman problem. The work was continued in
Steiner, Tsudik, and Waidner (1998), a paper which discussed the dynamic
aspects of group key agreements and proposed the first protocol family for
group key management which is collusion-tolerant and allows dynamic group
controllers. These two papers were combined into an extended journal ver-
sion (Steiner, Tsudik, and Waidner 2000). The study and classification of
assumptions presented in Chapter 3 is based on Sadeghi and Steiner (2001,
2002). Finally, the formal model and the corresponding proofs are published
in Pfitzmann, Steiner, and Waidner (2002).

Acknowledgements

Naturally, my first thanks go to the coauthors of the papers which form the
basis of my thesis and are mentioned above: Ahmad-Reza Sadeghi, Birgit
Pfitzmann, Michael Waidner and Gene Tsudik. Furthermore, a lot of thanks
also belong to the long list of all other coauthors of publications of mine and
coworkers on projects such as SAMSON, SEMPER, iKP or CLIQUES. All
your cooperation was very helpful for me in finding my way in research and,
besides, was a lot of fun (How boring would research be if everything would
have to be done alone :-).

For my scientific career three people have been most influential: From
my early time with IBM Research, Gene Tsudik and Michael Waidner were
great mentors of mine. While Gene showed me with lots of humor how
much fun research can be and largely stimulated my curiosity on the many

1.2 Results 5

facets of research, I am indebted to Michael for teaching me that theory and
formality should not be overlooked and for convincing me to pursue a Ph.D.
Finally, Birgit Pfitzmann provided me with the opportunity to do a Ph.D.
in Saarbrücken and showed me how fascinating it can be if you look at the
details. Without all of you this work would have certainly been impossible.
Thanks a lot!

Special credits go to the colleagues with whom I had the pleasure to
share an office for a longer time at IBM and in Saarbrücken: Ralf, thanks
for sharing with me your enthusiasm for research and for turning ideas to
realities; Asokan, thanks for being a good friend and a great and sincere
collaborator (although your struggle to improve my English was probably
not so successful. Well, the reader might judge this best herself while try-
ing to digest this text . . .); Ahmad, thanks for being a good friend as well
as a fun person to be with, and for pushing me to be more goal-oriented
(except that in respect to the goal “PhD” you were not always that suc-
cessful. However, this might not be such a surprise since in this particular
aspect your goal-orientation is also not completely perfect when applied to
yourself. . . :-).

If this thesis (hopefully) ended up being understandable and not being
garnished with too many errors, it is certainly due to the detailed comments,
the careful proof reading and the help with the german part (swiss-german,
my mother tongue, is in subtle ways different to “real” german as I had
to learn the hard way round when I moved to Germany . . .) of Ahmad,
André,2 Birgit and Gene. Thank you for your help!

Not to forget are all my colleagues in Saarbrücken: Ahmad, Alexander,
Ammar, André, Chris, Matthias, Michael, Petra, and Sandra. Thank you
for providing me with a nice and inspiring environment.

Furthermore, I like to express my gratitude towards my doctorate com-
mittee, namely to Reinhard Wilhelm, Birgit Pfitzmann, Gene Tsudik, and
Stefan Funke.

Doing research is fun but does not directly pay the bills of your meals
and your apartment. Therefore, I am very grateful for the financial support
I received during my doctoral studies from the Graduiertenkolleg “Effizienz
und Komplexität von Algorithmen und Rechenanlagen” and from the EU
ITS project Maftia (Malicious- and Accidental-Fault Tolerance for Internet
Applications).

Last but not least, I like to thank my parents who supported me through
all my life and without whom I would certainly not stand where I stand
today.

2By the way, André is author of a number of interesting publications
on proof of ownership of digital content (Adelsbach 1999; Adelsbach et al. 2000;
Adelsbach and Sadeghi 2001). Unfortunately, nobody seems to reference this work. I
hope my citations will correct now this glaring injustice :-)

6 Introduction and Overview

Chapter 2

Dimensions of Key
Agreement

In this chapter, I investigate key management in the context of group
communication. In particular, I introduce and define the required services
such as initial key agreement (IKA) at the time of the group genesis and the
auxiliary key agreement (AKA) services (key renewal, membership change)
required later in the life time of a group. A special focus will be on dynamic
peer groups and the question what environment can be expected and what
properties are desired from key management protocols. I also discuss the
particular metrics (e.g., for communication complexity) used in the sequel.

A
UTHENTICATION and key establishment is the cornerstone of any
secure communication. Without some form of authentication, all the

other common security properties such as integrity or confidentiality do not
make much sense.

Authentication is generally based on long-term keys which can be as-
sociated with identities. Note that the term “long-term key” is usually very
broad and covers all forms of information which can be linked to identities.
For example, it not only includes cryptographic keys such as DES (NIST
1999) or RSA (Rivest et al. 1978)1 keys but also encompasses passwords
and biometric information. However, in the sequel I will assume that cryp-
tographic keys are the only form of long-term keys as usually done in the
context of group key establishment. On the one hand, passwords require
special treatment (Katz et al. 2001; Steiner et al. 2001) due to their low en-

1In the sequel of this thesis, I will primarily cite original literature, e.g., papers
which introduced terms and concepts or contributed state-of-the-art protocols, and only
few surveys. For general background information on cryptography, security and secu-
rity engineering, I refer you to the books of Pfleeger (1997), Menezes et al. (1997) and
Anderson (2001), respectively.

7

8 Dimensions of Key Agreement

tropy and, therefore, are rarely used directly in the context of group key
establishment, the only exception being Asokan and Ginzboorg (2000). On
the other hand, biometric systems seem to be quite unsuitable for remote
authentication and, to date, no viable protocol is known in the literature.

To associate identities with long-term keys, I will assume the exis-
tence of a public-key infrastructure (PKI) (Diffie and Hellman 1976;
Kohnfelder 1978) which provides parties with some mechanisms for secure
key registration and secure access to long-term keys of prospective peers.
The issue of trust and PKIs will not be touched in this thesis.2 I will assume
that the PKI, or, more precisely, the involved registration and certification
authorities, is unconditionally trusted to securely and reliably associate the
correct identities and keys of entities. However, to minimize assumptions on
the PKI and to match current practice, I will neither require that the certifi-
cation authorities verify on registration that a public key pair is unique nor
that the party registering a public key also knows the corresponding secret
key. For example, an adversary will be able to register a public key of some-
body else under his name. This scenario with a PKI also covers the case of
pre-distributed pairwise shared long-term secret keys where each party is im-
plicitly its own PKI. However, it does not directly apply to situations where
trusted third-parties known as key distribution centers mediate session
keys such as Kerberos (Medvinsky and Hur 1999; Kohl and Neuman 1993)
and KryptoKnight (Janson et al. 1997; Molva et al. 1992).

Security properties — such as authenticity, integrity and confidential-
ity — are normally only meaningful when guaranteed during a complete
session of closely related interactions over a communication channel. (Be
it the transfer of a single e-mail between two companies which has to stay
confidential or a long-standing connection between two servers which should
guarantee the integrity of exchanged packets.) In most of these cases, there
is a need for some temporary keys, e.g., an encryption key for a shared-key
encryption scheme in the e-mail scenario or a key for a message authentica-
tion code in the second example. The goal of using temporary keys instead
of using the long-term keys directly is threefold: (1) to limit the amount of
cryptographic material available to cryptanalytic attacks; (2) to limit the
exposure when keys are lost; and (3) to create independence between differ-
ent and unrelated sessions. Furthermore, if our long-term keys are based on
asymmetric cryptography, using session keys based on (faster) symmetric
cryptography can bring a considerable gain in efficiency. The establishment
of such temporary keys, usually called session keys, often involves inter-
active cryptographic protocols. These protocols should ensure that all the
required security properties, such as the authenticity and freshness of the

2I refer you elsewhere (Ellison and Schneier 2000; Adams et al. 2000;
Kohlas and Maurer 2000b; Kohlas and Maurer 2000a) for discussions on various as-
pects of this controversial topic .

9

resulting session key, are guaranteed. Such protocols are referred to as key
establishment protocols and are the focus of this thesis.

As mentioned above, authentication is central to security. However,
the term is very broad and can mean anything from access control, authen-
tication of entities, data origin or keys to non-repudiation. The focus of this
thesis is limited to authentication of (session) keys and I will define below in
more detail what I mean by key authentication or, more precisely, (authen-
ticated) key establishment. However, we first briefly digress on the subject
of entity authentication as this term is often wrongly used as a synonym for
authentication. This practice can lead to confusion when reasoning about
protocols for entity authentication and (authenticated) key establishment.

A protocol providing entity authentication (often also referred to
as identification) informally means that a party successfully engaging an
other party in such a protocol can be assured of the other party’s identity
and its active presence during the protocol. If we consider potential appli-
cations of such a mechanism, it is clear that entity authentication cannot be
seen in isolation and must be considered in a wider context. Mostly, entity
authentication is required as part of a session of subsequent and separate
actions over some form of channel and the authenticity has to extend over
the complete lifetime of the session.3 In cases where physical properties
of the underlying channel, e.g., separate and tamper-resistant wires used
exclusively to connect two secure access points, guarantee the integrity of
a channel and its unique assignment to a particular session, an entity au-
thentication protocol might be sufficient to ensure the authenticity over the
lifetime of the session. However, one has to be very careful to make sure that
apparent end-points of the channel really correspond to the authenticated
party. Otherwise, there is a considerable danger that one falls prey to Mafia
fraud (Bengio et al. 1991), a man-in-the-middle attack where the adversary
transparently passes the protocol messages of the entity authentication pro-
tocol but modifies subsequent actions. For example, the (apparent) proxim-
ity of a user to her device, when performing mutual entity authentication,
would seem to prevent adversaries from interfering. Nonetheless, this can be
a completely false assumption (Pfitzmann et al. 1997; Asokan et al. 1999).
In general, the identification of a peer and the securing of the communication
channel are not orthogonal. For example, a web-banking application which
separates the authentication of the client, e.g., based on passwords, from
the securing of the channel, e.g., via SSL (Freier et al. 1996), might be vul-
nerable to man-in-the-middle-attacks (Steiner et al. 2001). Therefore, for
situations with channels where the integrity and confidentiality of a ses-
sion can only be guaranteed based on the establishment of a session-specific

3Two of the rare exceptions where entity authentication might make sense without
an associated session are secure liveness check of servers and access control combined in
an atomic action with the access itself, e.g., when authentication is required to access a
protected room.

10 Dimensions of Key Agreement

virtual channel secured by cryptography — as is the case for most appli-
cations where cryptographic authentication protocols might be deployed —
an entity authentication protocol is of no use. The authentication has to be
securely tied to the session keys, that is, we require an authenticated key
establishment protocol.

2.1 Key Establishment in the Two-Party Case

Before getting into specific aspects of key establishment in group settings,
we first overview key establishment in the classical two-party setting by in-
troducing the necessary terminology and giving intuitive and informal def-
initions4 for the different properties and requirements. (Some of these are
adapted from Menezes, van Oorschot, and Vanstone (1997).)

2.1.1 Service and Security Properties

The basic service of a key establishment mechanism is clear: Two parties
want to establish a shared session key. Less clear are the specific security
properties which have to be provided by a protocol implementing such a
service. Let us discuss the main properties in turn:

To achieve our goal of cleanly separating different sessions, the resulting
session key has to be new and independent of other session keys. This
property is usually called key freshness.

Furthermore, the session key should be known only to the involved par-
ties. This aspect of key secrecy is often phrased as the inability of ad-
versaries to learn the (complete) key. However, this formulation has its
problems as it presupposes that the leakage of partial information—this
would not be ruled out by such a definition!—on the session key has no
effect. For example, consider an application which naively splits a session
key in half into an encryption key and a key for a message authentication
code. Above secrecy definition ensures that an attacker is not able to get
both keys. However, it does not prevent that the attacker learns either one
of them. This clearly defeats the security of such a system. Similarly, the
direct use of the session key in a key establishment protocol message (as
often done in the past, e.g., for key-confirmation flows) might violate the
security of a higher-level protocol relying on the resulting session key: This
message also can have a meaning in the higher-level protocol. To allow the
arbitrary and modular composition of cryptographic protocols, we better do
not make any assumptions on the usage pattern. Therefore, every single bit
of the resulting session key should be unpredictable, a formulation which
in the usual complexity-theoretic setting can be traced back to the poly-

4A formal treatment of n-party key agreement which will also cover the two-party case
will be given later in Chapter 5.

2.1 Key Establishment in the Two-Party Case 11

nomial security (or semantic security, a slightly different formulation
of an equivalent meaning and a more commonly used term) introduced by
Goldwasser and Micali (1984).

Implicitly, the term “key secrecy” already includes some notion of au-
thentication: We require that only the intended peer is able to learn the key
(or any information thereof). This is called implicit key authentication.
If the protocol confirms additionally the active and current participation
of the peer in a particular session, we talk about explicit key authenti-
cation. This can be seen as a special form of entity authentication which
provides additionally the establishment of a secure and coupled session key.
Usually, this is achieved with a key confirmation, a protocol which shows
evidence that the (same) session key is also possessed by the peer. While
we usually cannot enforce liveness, i.e., guarantee a successful and timely
termination of the protocol,5 and key confirmation does not prevent a peer
from crashing immediately afterwards, it can still form a useful basis in im-
plementing robust and fail-safe applications. For example, honest parties
might always write the application context, including the session key, to
stable storage before sending a key-confirmation and make all efforts to re-
cover such sessions after a crash; insofar, the key-confirmation would signal
the successful and reliable establishment of the related session. Finally, we
have to consider the reciprocity of the authentication. Usually, both parties
want to authenticate each other including the common session context, e.g.,
they need an agreement on all information (explicitly or implicitly) visible
at the service interface such as the particular session, both of their identi-
ties and the common key. This is called mutual key authentication. If
authentication is one-sided, such as is typically the case for SSL-based web
applications where only server authentication is used, we talk about unilat-
eral key authentication. In the hierarchy of authentication specifications
introduced by Lowe (1997), mutual key authentication corresponds to the
level “Agreement” with the set of agreed data items defined as all protocol
information visible to a service user. In particular, we do not require any
agreement on protocols messages as implied by the level “Full Agreement”
— or, for that matter, by intensional specifications (Roscoe 1996) — as this
result in an over-specification. The security requirements should be defined
based only on the service interface and not on the implementation, i.e., the
protocol!

2.1.2 Adversary Model

So far, we discussed only useful security properties of a key establishment
mechanism but did not mention adversaries trying to break these proper-
ties. Of course, to be able to reason about security, we also have to define

5Obviously a protocol should complete successfully when honest parties do not crash
and the network faithfully forwards messages.

12 Dimensions of Key Agreement

our adversary model. We are less interested here in the particular attacks
an adversary might try — see Clark and Jacob (1997) for an extensive list
of two-party key establishment protocols and related attacks — but rather
in a generic categorization of bounds on their capabilities. There are two
main aspects which we have to consider when defining the adversaries we are
willing to cope with: their computational power and their access to the sys-
tem and the underlying infrastructure. In this thesis, we will consider only
adversaries whose computational power falls into the class of probabilistic
polynomial-time algorithms. This is currently the most realistic complexity
class which still allows for practical solutions.6 The adversary will usually
have access to the network and will be able to eavesdrop, insert, delete,
replace and replay messages. Furthermore, the adversary may steal infor-
mation, e.g., session or long-term keys, from honest parties and may even
corrupt parties and learn their current state including their keys. Clearly,
we cannot provide any security for a session where the session key is stolen
or for a party from the point on where she is corrupted. However, depending
on the impact of the loss of keys on other and past sessions, we can classify
key agreement protocols as follows: If the compromise of long-term keys
cannot result in the compromise of past session keys of a particular pro-
tocol, we say it offers perfect forward secrecy (PFS) (Günther 1990).
Furthermore, if the compromise of session keys of a particular protocol al-
lows (1) a passive adversary to compromise keys of other sessions, or (2) an
active adversary to impersonate the identity of one of the protocol parties
in other sessions, we say that this protocol is vulnerable to a known-key
attack (KKA) (Yacobi and Shmuely 1990; Burmester 1994).

2.1.3 Types

A final distinction which one can make in a key establishment protocol is on
who generates the key: In a key transport protocol, one party determines
a session key and secretly sends it to the other party. In a key agreement7

protocol, the session key is derived jointly by both parties as a function
of information contributed by, or associated with, each of these, such that
no party can predetermine the resulting value. This assures a party which
contributed fresh information that an obtained session key is fresh even if
the peer is dishonest.8

6Under some weak physical assumption it is in principle feasible to achieve secure key
establishment also in information-theoretic settings (Maurer and Wolf 1999). However,
there is still a long way to go before this becomes practical.

7The term “agreement” might sound a bit misleading here but is used for historical
reasons. An agreement in the intuitive sense of a common understanding on the session
context, e.g., identities and session key, is already required by mutual authentication and
is orthogonal to the distinction in key transport and key agreement protocols.

8While the session key is guaranteed to be fresh, an adversary might nevertheless
achieve some skew in the probability distribution of the session key, a distribution which

2.2 Key Establishment for Groups 13

2.2 Key Establishment for Groups

2.2.1 Basic Service and Additional Security Properties

The basic service and security properties of a key establishment are roughly
the same for the n-party case, i.e., groups, as they are for the two-party case
described above. The main differences which have to be considered are as
follows. On the one hand, due to the dynamic nature of a group, it is more
difficult to reason about the honesty of parties. A party might be considered
trusted in respect to its “legal” membership period. However, it also might
try to misuse this time to prepare access to the group at other “illegal”
membership periods, potentially even in collusion with other former group
members. In fact, a number of group key establishment protocols actually
fall prey to such collusion attacks, e.g., Briscoe (1999), Chang et al. (1999),
and Caronni et al. (1999). On the other hand, the notion of key authenti-
cation has to be broadened. In the two-party case it is natural to always
require that both parties agree on each others identities, at least for mutual
key authentication.9 This extends to the n-party case. Nonetheless, one can
also imagine a weaker form of key authentication where group members are
just assured that only legitimate group members are present without neces-
sarily getting any knowledge on the actual group membership of a session.
The former will be called mutual group key authentication whereas the
latter will be called simple group key authentication. Simple group key
authentication is the sufficient and only practical form of authentication in
the case of large asymmetric groups where a static party controls access to
the group and members do not know each other, e.g., in video-on-demand
applications. However, in DPGs, where the roles of group members are
symmetric and a common agreement on the group membership is essential,
mutual group key authentication is more desirable and more natural than
simple group key authentication. In groups, the verification of the authen-
ticity does not always have to be direct as in the two-party case. It also
can be indirect via some other group member(s). This requires additional
trust assumptions in these intermediary group members. Nonetheless, these
trust assumptions are quite natural as we do already trust insiders not to
give away the common group key. Similarly, in extending explicit key au-
thentication we have the option of requiring a confirmation which is either
direct and pairwise or indirect (e.g., over a spanning tree on the membership
graph.)

usually is uniform when peers are honest. To achieve the additional property that keys
are always uniformly distributed even in the presence of dishonest parties, one would have
to start from fair coin-tossing protocols (Blum 1982; Lindell 2001) and add the necessary
key authentication and secrecy properties.

9Unilateral key authentication does not seem to have an equivalent in a group setting.

14 Dimensions of Key Agreement

2.2.2 Types

We mentioned above that key establishment can be realized either as key
transport or key agreement. In the following, we consider a special form of
key agreement: If the individual contribution of each (honest) parties in a
key agreement protocol remains computationally hidden after a protocol run
even to any collusions of peers, we call such a protocol contributory key
agreement. In these protocols, we can reuse the individual key contribu-
tions for subsequent key agreements. This is essential for DPGs, as can be
seen below. A natural example of a contributory key agreement protocol for
groups of two is the Diffie-Hellman key exchange (Diffie and Hellman 1976).
A important advantage of contributory key agreement schemes is that they
almost automatically yield perfect forward secrecy and resistance to active
known-key attacks. Note that almost all group key transport protocols fail
to provide at least one of perfect forward secrecy and resistance to known-
key attacks.

If a group key agreement protocol assures additionally that a session key
is shared by any two group members only if all members in the common view
on the group membership did actively participate, we say it is a complete
group key agreement (Hutchinson 1995; Ateniese et al. 2000). Implicitly,
such a protocol provides mutual group key authentication and authentica-
tion is direct between any two group members.

2.2.3 Fault-Tolerance

Several group key agreement schemes have been proposed
in the literature (Ingemarsson et al. 1982; Steer et al. 1990;
Burmester and Desmedt 1995; Just 1994; Steiner et al. 1996;
Just and Vaudenay 1996; Becker and Wille 1998), however, none have been
widely deployed. In practice, group key establishment is typically done
in a centralized manner (Harney and Muckenhirn 1997; Wong et al. 1998;
Wallner et al. 1997): one dedicated party (typically, a group leader) chooses
the group key and distributes it to all group members. This is actually key
transport (often also called key distribution in such a context), not key
agreement.

While the centralized approach works reasonably well for static groups
or very large groups, it turns out that key agreement is superior for DPGs,
i.e, flat (non-hierarchical) groups with dynamically changing membership.

A permanently fixed group leader is a potential performance bottleneck
and a single point of failure. Some DPG environments (such as ad hoc
wireless networks) are highly dynamic and no group member can be assumed
to be present all the time. This is also the case in wired networks when high
availability is required. Therefore, my view is that fault-tolerance (such as
handling network partitions and other events) is best achieved by treating

2.2 Key Establishment for Groups 15

all parties as peers. This is supported by the state-of-the-art in reliable
group communication (see, for example, Birman (1996).)

Secure group key agreement protocols such as the CLIQUES family
presented later are fault-tolerant in terms of integrity and confidentiality,
e.g., the authenticity and secrecy of the key is ensured. To enhance fault-
tolerance also in form of availability (or liveness), e.g., to prevent accidental
denial of service, I suggest the use of some reliable group communication
system which is resistant to fail-stop10 failures and provides consistent, i.e.,
reliable and causally ordered, membership views and a corresponding mul-
ticast facility to all group members. A developer integrating a group key
agreement protocol into an application will also benefit from the easier ad-
ministration of group membership provided by such a group communication
system.

While group key agreement protocols and group communication systems
are a priori orthogonal, the integration of group key agreement and reliable
group communication to form a secure group communication system raises
a number of issues such as efficient handling of various cascading failures.
Owing to the built-in flexibility of CLIQUES protocols, these issues can be
resolved in an efficient and modular manner without interfering with the
security properties discussed in this thesis. For further information, I refer
you to some recent work (Amir et al. 2000; Agarwal et al. 2001) which re-
ports on the integration of CLIQUES with the reliable group communication
systems SPREAD (Amir and Stanton 1998) and Totem (Moser et al. 1996).

2.2.4 Management of Groups

There is no inherent reason to require a single group leader to make the de-
cisions as to whom to add to, or exclude from, a group.11 Ideally, decisions
regarding group admission control, e.g., who can be added to or removed
from a group and who can coordinate such operations, should be taken ac-
cording to some local group policy (see, for example, Kim et al. (2002) for
some discussion on this issue) and should be orthogonal to the actual key
establishment protocol deployed. For instance, in some applications, each
peer must be allowed to add new members and exclude members that it pre-
viously added. This policy independence cannot be easily implemented
in centralized schemes, while the approach presented later supports it quite
elegantly and efficiently: any party can initiate all membership change pro-
tocols.

10We are trusting legitimate group members. Therefore, assuming fail-stop and not
byzantine behavior of group members seems appropriate and allows more efficient systems.

11One obvious issue with having a fixed group leader is how to handle its expulsion from
the group. However, also environments with no hierarchy of trust are a poor match for
centralized key transport. For example, consider a peer group composed of members in
different, and perhaps competing, organizations or countries.

16 Dimensions of Key Agreement

Although I argue in favor of distributed key agreement for DPGs, I
also recognize the need for a central point of control for group membership
operations such as adding and excluding members. This type of a role
(group controller) serves only to coordinate and synchronize the membership
operations and prevent chaos. However, the existence and assignment of this
role is orthogonal to key establishment, can be changed at any time and is
largely a matter of policy.

2.3 Handling the Dynamics of Groups

A key aspect of groups is their dynamic behavior as they evolve over
time. This has to be reflected in a set of corresponding key establish-
ment services, too. In the following, I distinguish between Initial Key
Agreement (IKA), a kind of group genesis, and Auxiliary Key Agree-
ment (AKA). AKA encompasses all operations that modify group mem-
bership, such as member addition and exclusion. Time periods separated by
AKA operations will be called epochs whereas the term session is mostly
used for the complete lifetime of a group. Nevertheless, for convenience I
will talk about session keys even though the term epoch keys would be more
correct.

2.3.1 Initial Key Agreement (IKA)

IKA takes place at the time of group genesis. On the one hand, this is
the time when protocol overhead should be minimized since key agreement
is a prerequisite for secure group communication. On the other hand, for
highly dynamic groups, certain allowances can be made: for example, extra
IKA overhead can be tolerated in exchange for lower AKA (subsequent key
agreement operations) costs. However, note that it is the security of the
IKA, not its overhead costs, that is the overriding concern.

Naturally, IKA requires contacting every prospective group member to
obtain a key share from each member. Hence, it may be possible to coincide
(or interleave) with the IKA other security services such as access control.
However, care has to be taken that this does not interfere with the security
of the key agreement protocols, in particular agreed keys should only be
used when the protocol specification explicitly hands them back to higher
layers.

2.3.2 Auxiliary Key Agreement (AKA) Operations

As mentioned above, initial group key agreement is only a part, albeit a
major one, of the protocol suite needed to support secure communication
in dynamic groups. In this section, I discuss other auxiliary group key
operations and the attendant security issues. (See also Figure 2.1.)

2.3 Handling the Dynamics of Groups 17

Figure 2.1 AKA Operations

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

Mass Leave

Mass Join

Member Addition

Member Exclusion

Group Division / Fission

Group Fusion / Rejoining

18 Dimensions of Key Agreement

The security property crucial to all AKA operations is key indepen-
dence. Informally, it encompasses the following two requirements closely
related to PFS and in particular KKA:

• Old group keys used in past epochs must not be discovered by new
group member(s). In other words, a group member must not have
knowledge of keys used before it joined the group.

• New keys must remain out of reach of former group members, i.e.,
members excluded in past epochs.

Note that recent papers termed above two cases explicitly as forward and
backward access control (Meadows, Syverson, and Cervesato 2001) or for-
ward and backward secrecy (Kim, Perrig, and Tsudik 2001). This is useful
to label some protocols which do not provide (full) key independence yet
still some weaker form of it. However, in the sequel we will focus only on
the combined key independence, the most desirable property.

While the requirement for key independence is fairly intuitive, we need
to keep in mind that, in practice, it may be undesirable under certain cir-
cumstances. For example, a group conference can commence despite some of
the intended participants running late. Upon their arrival, it might be best
not to change the current group key so as to allow the tardy participant(s)
to catch up.12 In any case, this decision should be determined by policy
local to a particular group.

Single Member Operations

The AKA operations involving single group members are member addi-
tion and member exclusion. The former is a seemingly simple procedure
of admitting a new member to an existing group. We can assume that
member addition is always multi-lateral or, at least, bilateral (i.e., it takes
at least the group leader’s and the new member’s consent to take place.)
Member exclusion is also relatively simple with the exception that it can
be performed either unilaterally (by expulsion) or by mutual consent. In
either case, the security implications of member exclusion are the same, i.e.,
an excluded member should not have access (knowledge) of any future key
unless it is re-admitted to the group.

Subgroup Operations

Subgroup operations are group addition and group exclusion. Group addi-
tion, in turn, has multiple variants:

12Adding a new member without changing a group key is easy: the controller sends
the new member the current key over an authentic and private channel providing PFS.
Although the new member has not contributed to the group key, it can do so later by
initiating a key refresh.

2.3 Handling the Dynamics of Groups 19

• Mass join: the case of multiple new members who have to be brought
into an existing group and, moreover, these new members do not al-
ready form a group of their own.

• Group fusion: the case of two groups merging to form a super-group;
perhaps only temporarily.

• Group rejoining: A special case of fusion where two groups merge
which resulted from a previous division (see below).

Similarly, subgroup exclusion can also be thought of as having multiple
flavors:

• Mass leave: multiple members must be excluded at the same time.

• Group division: a monolithic group needs to be broken up in smaller
groups.

• Group fission: a previously merged group must be split apart.

Although the actual protocols for handling all subgroup operations may
differ from those on single members, the salient security requirements (key
independence) remain the same.

While group fission and group rejoining can be quite relevant in spe-
cial scenarios, e.g., when network partitions require temporary subgroups,
it requires keeping track of the various subgroups. As in most cases this
might not be worth the bookkeeping effort I will not address them in the
sequel. Furthermore, scenarios like aforementioned temporary network par-
tition normally do not require changing the key — the decisions to change
key epochs, and the related desire for key independence, are usually driven
by application layer requirements and policies, and rarely by such network
events.

Remark 2.1. In recent papers on group security the terminology has slightly
changed, e.g., “addition” became “join”, “exclusion” became “leave”, “fu-
sion” and “rejoining” are now often termed “merge”, and “division” and
“fission” are replaced by “partition”. However, for historical reasons I kept
the terminology as used in the original papers. ◦

Group Key Refresh

For a variety of reasons it is often necessary to perform a routine key change
operation independent of the group membership changes. This may include,
for example, local policy that restricts the usage of a single key by time or by
the amount of data that this key is used to encrypt or sign. To distinguish
it from key changes due to membership changes, I refer to this operation in
the sequel as key refresh.

20 Dimensions of Key Agreement

2.4 Measures

Above I described the required key management services, i.e., IKA and
AKA, and desirable properties such as PFS or policy independence. Clearly,
we also have to consider the cost and performance of protocols to estimate
their practicality, their scalability and their suitability to particular environ-
ments. There are primarily two aspects in measuring the cost: computation
and communication.

It is impossible to estimate concrete computational costs as many
cost-critical aspects are implementation-dependent and some primitives are
difficult to compare. However, we should get a good base for comparison
by identifying the expensive and time-critical operations, and by just con-
sidering them individually. Furthermore, computational capabilities might
largely differ among the involved parties. However, in a DPG, all group
members are equal and we can safely assume that they have similar compu-
tational capabilities. Therefore, my approach is to list for each protocol the
number of expensive operations, on the one hand, summed up for individual
group members and, on the other hand, as the sum of these operations on
the critical path13 of a protocol run. The former gives an estimate on the
computational load on individual group members whereas the latter provides
a lower bound on the duration of a protocol run.

Regarding communication costs, the impact of a protocol clearly de-
pends on the topology and properties of the network and the group commu-
nication system used. The critical aspects are primarily latency and band-
width. Unfortunately, they cannot be measured directly. My approach in
the following will be to list for each protocol the number of messages, their
cumulative size, and the number of rounds, i.e., the number of messages
on the critical path in a protocol. Additionally, I will distinguish between
unicast and multicast messages, i.e., messages from one group members to
another one and from one group member to the rest of the group, respec-
tively. From these numbers we can then derive an estimate on the concrete
protocol latency and network load when the actual networking environment
is known.

13The critical path denotes the sequence of all operations which have to be performed
sequentially. Therefore, parallel operations are counted only once in computing the cost.
The critical path corresponds to what is called elsewhere (Kim et al. 2000) the serial

operations.

Chapter 3

Exploring the Mathematical
Foundations

In this chapter, I investigate the mathematical foundations of the group key
agreement protocols presented later. I take a closer look at cryptographic
assumptions based on discrete logarithms. I classify and discuss important
properties which significantly differentiate variants of such assumptions.
Furthermore, I introduce the Decisional Generalized Diffie-Hellman problem
and investigate its relation to the Decisional Diffie-Hellman problem. I
prove a tool box of relations among these assumptions which will be helpful
in proving the security of the group key agreement protocols introduced later.

M
OST modern cryptographic systems rely on assumptions on the com-
putational difficulty of some particular number-theoretic problem.1

One well-known class of assumptions is related to the difficulty of com-
puting discrete logarithms in cyclic groups (McCurley 1990). In this class
a number of variants exists. The most prominent ones, besides Dis-
crete Logarithm (DL), are the computational and decisional Diffie-
Hellman (DH) assumptions (Diffie and Hellman 1976; Brands 1994). Less
known assumptions are Matching Diffie-Hellman (Frankel et al. 1996),
Square Exponent (SE) (Maurer and Wolf 1996), and Inverse Ex-
ponent (IE) (Pfitzmann and Sadeghi 2000), an assumption closely re-
lated to the Inverted-Additive Exponent (IAE) Problem intro-
duced by MacKenzie (2001)2 and also implicitly required for the secu-

1The exceptions are information-theoretically secure systems and systems such as hash-
functions or shared-key encryption relying on heuristic assumptions, e.g., the Random
Oracle Model (Bellare and Rogaway 1993).

2Note that SE and IAE are originally called Squaring Diffie-Hellman (Wolf 1999) and
Inverted-Additive Diffie-Hellman (MacKenzie 2001), respectively. They are renamed here
for consistency and clarity reasons.

21

22 Exploring the Mathematical Foundations

rity of the schemes proposed by Camenisch, Maurer, and Stadler (1996)
and Davida, Frankel, Tsiounis, and Yung (1997). Further related assump-
tions mentioned in the sequel are Generalized Diffie-Hellman (GDH)
(Shmuely 1985; Steiner et al. 1996) and the Representation Prob-
lem (RP) (Brands 1994). Several additional papers have studied rela-
tions among these assumptions, e.g., (Shoup 1997; Maurer and Wolf 1998a;
Maurer and Wolf 1998b; Biham et al. 1999; Wolf 1999).

In the concrete formalizations of these assumptions, one has various de-
grees of freedom offered by parameters such as computational model, prob-
lem type (computational, decisional or matching) or success probability of
the adversary. However, such aspects are often not precisely considered in
the literature and consequences are simply overlooked. In this chapter, I ad-
dress these aspects by identifying the parameters relevant to cryptographic
assumptions. Based on this, I present a formal framework and a concise
notation for defining DL-related assumptions. This enables us to precisely
and systematically classify these assumptions.

Among the specified parameters, an interesting and, so far, overlooked
parameter relevant to many cryptographic applications is the granularity of
the probability space which underlies an assumption. Granularity defines
what part of the underlying algebraic structure (i.e., algebraic group and
generator) is part of the probability space and what is fixed in advance: For
high granularity, an assumption has to hold for all groups and generators;
for medium granularity, the choice of the generator is included in the prob-
ability space, and for low granularity, the probability is taken over both the
choice of the group and the generator. Assumptions with lower granularity
are weaker than those with higher granularity. Nonetheless, not all cryp-
tographic settings can rely on the weaker variants: Only when the choice
of the system parameters is guaranteed to be random, one can rely on a
low-granularity assumption. For example, consider an anonymous payment
system where the bank chooses the system parameters. To base the secu-
rity of such a system a-priori on a low-granularity assumption would not be
appropriate. A cheating bank might try to choose a weak group with trap-
doors (easy problem instances) to violate the anonymity of the customer.
Such a cheater strategy might be possible even if the low-granular assump-
tion holds: The assumption would ensure that the overall number of easy
problem instances is asymptotically negligible (in respect to the security pa-
rameter). Nonetheless, it would not rule out that there are infinitely many
weak groups! However, if we choose the system parameters of the payment
system through a random yet verifiable process we can resort to a weaker
assumption with lower granularity. To my knowledge no paper on anony-
mous payment systems addresses this issue properly. Granularity was also
overlooked in different contexts, e.g., Boneh (1998) ignores the fact that low-
granular assumptions are not known to be random self-reducible and comes
to a wrong conclusion regarding the correctness of a certain self-corrector.

3.1 Terminology 23

The rest of this chapter is structured as follows: In the next section,
I define the basic terminology. Section 3.2 introduces the classification of
discrete-logarithm-based assumptions, and in Section 3.3 we see how this
classification can be used to concisely yet precisely describe assumptions
and relations among them. Section 3.4 briefly discusses the newly intro-
duced “granularity” parameter and some results relevant in the context of
this thesis. In Section 3.5, we take a closer look at the cornerstone of the
following protocols, the Generalized Diffie-Hellman assumption. Finally, in
Section 3.6, we see how we can derive a random bit-string from (Generalized)
Diffie-Hellman keys.

3.1 Terminology

3.1.1 General Notational Conventions

By {a, b, c, . . .} and (a, b, c, . . .) I denote the set and the sequence
consisting of the elements a, b, c, By specifying a set as
{f(v1 , . . . , vn) | pred(v1 , . . . , vn)} I mean the set of elements we get by eval-
uating the formula f with any instantiation of the n free variables v1 , . . . , vn

which fulfills the predicate pred, e.g., {(v , v2) | v ∈ N} denotes the set of
all tuples which contain a natural number and its square. Similarly, I de-
fine (f(v1 , . . . , vn) | pred(v1 , . . . , vn)) to be the sequence of elements we get
by evaluating the formula f with any instantiation of the n free variables
v1 , . . . , vn which fulfills the predicate pred. The elements are ordered accord-
ing to some arbitrary but fixed order relation on the (instantiated) argument
tuples (v1 , . . . , vn). For example, ((v , v2) | v ∈ N) denotes the infinite se-
quence of all tuples which contain a natural number and its square, and
where the sequence is ordered, e.g., using the standard order < on N and
the value of v as the sort index.

The evaluation and following assignment of an expression expr to a vari-
able v is denoted by v ← expr. By v R← S I mean the assignment of a
uniformly chosen random element from the set S to variable v . Similarly,
v ∈R S denotes that v is a uniformly distributed random element from set
S . Finally, by t := expr I mean that by definition the term t is equal to expr.

Simple random variables are specified as v R← S as mentioned above.
To specify more complicated random variables, I use the following notation:
(f(v1 , . . . , vn) :: assign(v1 , . . . , vn)). By this I mean the random variable
having a structure as defined by the formula f and a probability space as
induced by binding the n free variables v1 , . . . , vn via the assignment rule
assign, e.g., ((v , v2) :: v R← Zn) denotes the random variable consisting of a
tuple which contains an integer and its square where the integer is uniformly
chosen from Zn. Similarly, {f(v1 , . . . , vn) :: assign(v1 , . . . , vn)} defines an
ensemble of random variables indexed by the free variables vi which are
left unspecified in the assignment rule assign and which have by definition

24 Exploring the Mathematical Foundations

domain N, e.g., {(v , vk) :: v R← Zn} denotes the ensemble of random variables
consisting of a tuple which contain an integer and its k-th power where the
integer is uniformly chosen from Zn and the natural number k is the index
of the ensemble. Finally, let v be some arbitrary random variable or random
variable ensemble. Then, [v] denotes the set of all possible values of v .

To specify probabilities, I use the notation Prob[pred(v1 , . . . , vn) ::
assign(v1 , . . . , vn)]. This denotes the probability that the predicate pred

holds when the probability is taken over a probability space defined by the
formula assign on the n free variables vi of the predicate pred. For example,
Prob[v ≡ 0 (mod 2) :: v R← Zn] denotes the probability that a random
element of Zn is even.

For convenience, by log I always mean the logarithm to the base two,
define In := {0, 1}n as the set of all n-bit strings and 1n as the bit string
consisting of n 1’s, i.e., n in unary encoding.

3.1.2 Asymptotics

Cryptographic assumptions are always expressed asymptotically in a secu-
rity parameter k ∈ N. To classify the asymptotic behavior of functionsN → R∗ (with R∗ denoting the set of all non-negative real numbers) we
require the following definitions.

We can extend ordinary relation operators op ∈ {<,≤,=, >,≥} on ele-
ments of R∗ to asymptotic relation operators op∞ on functions f1 and f2

defined as above as follows:

f1(k) op∞ f2(k) := ∃k0 ∀k>k0 : f1(k) op f2(k).

The corresponding negation of the asymptotic relation operators is then
denoted by 6<∞ , 6≤∞ , 6=∞ , 6≥∞ , and 6>∞ , respectively.

For example, f1(k) <∞ f2(k) means that f1 is asymptotically strictly
smaller than f2 and f1(k) 6≥∞ f2(k) means that f1 is not asymptoti-
cally larger or equal to f2, i.e., for each k0 there is a k1 > k0 such that
f1(k1) < f2(k1). However, note that the f1(k) 6≥∞ f2(k) does not imply
f1(k) <∞ f2(k)!

Let poly(v) be the class of univariate polynomials with variable v and
non-negative coefficients, i.e., poly(v) := {

∑d
i=0 aiv

i | d ∈ N0 ∧ ai ∈ N0}.
Furthermore, let poly(v1 , . . . , vn) be the class of multivariate polynomials
with n variables vj and non-negative coefficients, i.e., poly(v1 , . . . , vn) :=

{
∑d

i=0

∑|Di|
j=1 aij

∏n
l=1 vl

dijl | d∈N0 ∧ aij ∈N0 ∧ (dij1, . . . , dijn)∈Dn
i } where

Dn
i := {(dl | l ∈ {1, . . . , n}) | dl ∈ N0 ∧

∑n
l=1 dl = i}. Based on this we can

define the following useful classes of functions:
A negligible function ǫ(k) is a function where the inverse of any polyno-

mial is asymptotically an upper bound, i.e., ∀d>0 ∃k0 ∀k>k0 : ǫ(k) < 1/kd.
I denote this by ǫ(k) <∞ 1/poly(k). If ǫ(k) cannot be upper bounded in such
a way, I say ǫ(k) is not negligible and I denote this by ǫ(k) 6<∞ 1/poly(k).

3.1 Terminology 25

A non-negligible function f(k) is a function which asymptotically can
be lower bounded by the inverse of some polynomial, i.e., ∃d > 0 ∃k0 ∀k >
k0 : f(k) ≥ 1/kd. I denote this by f(k) ≥∞ 1/poly(k).3 If f(k) cannot be
lower bounded in such a way I say f(k) is not non-negligible and denote
this by f(k) 6≥∞ 1/poly(k).

Non-negligible functions are — when seen as a class — closed under
multivariate polynomial composition, i.e., ∀n ∈ N ∀i ∈ {1, . . . , n} ∀p ∈
poly(v1 , . . . , vn)\{0poly} ∀fi ≥∞ 1/poly(k) : p(f1, . . . , fn) ≥∞ 1/poly(k)
where 0poly denotes the null polynomial. This holds also for negligible func-
tions if there is no non-zero constant term in the polynomial, i.e., we select
only elements from the class poly(v1 , . . . , vn) where a01 is zero. For not
negligible and not non-negligible functions this holds solely for univariate
polynomial composition. Finally, the addition (multiplication) of a non-
negligible and a not negligible function is a non-negligible (not negligible)
function. Similarly, the addition of a negligible and a not non-negligible
function is a not non-negligible function. The multiplication of a negligible
and a not non-negligible function is a not non-negligible function or even a
negligible function if the not non-negligible function can be upper bounded
by some polynomial.

3.1.3 Computational Model

The computational model is based on the class TM of probabilistic Turing
machines on the binary alphabet {0, 1}. The runtime of a Turing machine
M is measured by the number of simple Turing steps from the initial state
with given inputs until the machine reaches a final state. This is denoted by
RunTime(M(inputs)). The complexity of a Turing machine is expressed as
a function of the bit-length of the inputs encoded on its input tape and de-
fined as the maximum runtime for any input of a given bit-length. To make
the definition of the probability spaces more explicit, I model a probabilistic
Turing machine always as a deterministic machine with the random coins
given as an explicit input C chosen from the uniform distribution of infinite
binary strings U . However, I do not consider the randomness when calcu-
lating the length of the inputs. The important class of polynomial-time
Turing machines is the class of machines with polynomial complexity:

{A | A ∈ TM;

∀d1; ∃d2; ∀k;

∀inputs ∈ {0, 1}k
d1

; ∀C ∈ {0, 1}∞;

: RunTime(A(C, inputs)) < kd2}

3Note that not negligible is not the same as non-negligible, there are functions which
are neither negligible nor non-negligible!

26 Exploring the Mathematical Foundations

When I use the term efficient in the context of algorithms or compu-
tation I mean a Turing machine with polynomial complexity. By a hard
problem I mean the absence of any efficient algorithm (asymptotically)
solving that problem.

In some situations, e.g., in a reduction, a machine M has access to some
other machines O1, . . . ,On and can query them as oracles. I denote this
by MO1,...,On . This means that the machine M can write the input tapes of
all Oi, run them on that input, and read the corresponding output tapes.
However, M does not get access to the internal structure or state of the
oracle.

3.1.4 Indistinguishability

Let two families of random variables X :=(Xk | k ∈ N) and Y :=(Yk | k ∈ N)
be defined over some discrete domain D. They are said to be computa-
tionally indistinguishable iff there is no efficient distinguishing algorithm
D which can distinguish the two asymptotically, i.e., |Prob[D(1k,Xk) = 1]−

Prob[D(1k,Yk) = 1]| is a negligible function in k. This is denoted by X
c
≈Y .

X and Y are statistically indistinguishable iff the statistical differ-
ence ∆(X ,Y)(k):=

∑
d∈D |Prob[Xk = d]−Prob[Yk = d]| is a negligible func-

tion. This is written as X
s
≈Y .

3.1.5 Algebraic Structures

The following terms are related to the algebraic structures underlying an
assumption.

Finite cyclic group G: A group is an algebraic structure with a set G of
group elements and a binary group operation ∗ : G×G→ G such that
the following conditions hold:

• the group operation is associative, i.e., a ∗ (b ∗ c) = (a ∗ b) ∗ c for all
a, b, c ∈ G,

• there is an identity element 1 ∈ G such that a ∗ 1 = a = 1 ∗ a for all
a ∈ G, and

• for each a ∈ G there is an inverse a−1 ∈ G such that a ∗ a−1 = 1 =
a−1 ∗ a.

The group order is the cardinality of the set G and is denoted by |G|.

In the following, I write group operations always multiplicatively by juxtapo-
sition of group elements; Nonetheless, note that the following results apply
— with the appropriate adaption of notation — also to additive groups such
as elliptic curves. The exponentiation ax for a ∈ G and x ∈ N0 is then

defined as usual as

x times︷ ︸︸ ︷
a · · · a. The discrete logarithm of a given b ∈ G with

3.1 Terminology 27

respect to a specified base a ∈ G is the smallest x ∈ N0 such that ax = b or
undefined if no such x exists. The order of a group element b ∈ G is the
least positive integer x such that bx = 1 or ∞ if no such x exists.

A group G is finite if |G| is finite. A group G is cyclic if there is a generator
g ∈ G, such that ∀b ∈ G ∃!x ∈ Z|G| : gx = b. The order of all elements
in a finite cyclic group G divides |G|. In particular, there are exactly ϕ(d)
elements of order d (where d is any divisor of |G|). This means that there
exactly ϕ(|G|) elements of maximal order, i.e., generators.

All considered assumptions are based on finite cyclic groups. For brevity,
however, I omit the “finite cyclic” in the sequel and refer to them simply as
“groups”.

For more information on the relevant abstract algebra I refer you to the
book of Lidl and Niederreiter (1997).

Algorithmically, the following is noteworthy: Finding generators can be done
efficiently when the factorization of |G| is known; it is possible to perform
exponentiations in O(log (|G|)) group operations; and computing inverses
can be done in O(log (|G|)) group operations under the condition that |G|
is known. For the corresponding algorithms and further algorithms for ab-
stract or concrete groups I refer you to the books of Bach and Shallit (1996)
and Menezes, van Oorschot, and Vanstone (1997).

Structure instance SI :A tuple (G, g1, . . . , gn) containing a group G as
first element followed by a sequence of one or more generators gi. This
represents the structure underlying a particular problem. We can assume
that the structure instance SI (though not necessarily properties thereof
such as the order or the factorization of the order) is publicly known.

As a convention I abbreviate g1 to g if there is only a single generator
associated with a given structure instance.

3.1.6 Problems

The following two terms characterize a particular problem underlying an
assumption.

Problem family P: A family of abstract relations indexed by their un-
derlying structure instance SI . An example is the family of Diffie-Hellman
problems which relate two (secret) numbers x and y, the two (public) val-
ues gx and gy, and the value gxy where all exponentiations are computed
using the generator g specified in SI . I define a problem family by explicitly
describing its problem instances as shown in the next paragraph.

Problem instance PI : A list of concrete parameters fully describing a
particular instance of a problem family, i.e., a description of the structure
instance SI and a tuple (priv , publ , sol) where priv is the tuple of values kept

28 Exploring the Mathematical Foundations

secret from adversaries, publ is the tuple of information publicly known
on that problem and sol is the set of possible solutions4 of that problem
instance. When not explicitly stated, we can assume that priv consists
always of elements from Z|G|, publ consists of elements from G, and sol is
either a set of elements from Z|G| or from G.

If we take the aforementioned Diffie-Hellman problem for subgroups of Z∗
p

of order q with p and q prime as an example, a problem instance PI DH is
defined by a tuple

(((Z∗
p/q, p, q), (g)), ((x, y), (gx , gy), {(gxy)}))

where Z∗
p/q denotes the parameterized description of the group and its op-

eration, and p, q are the corresponding group parameters. (More details on
the group description and parameter are given below when group samplers
are introduced.)

This presentation achieves a certain uniformity of description and allows
a generic definition of types of problems, i.e., whether it is a decisional or
computational variant of a problem. While this might not be obvious right
now, it should become clear at the latest in Section 3.2 below when I give
the explicit definition of the different problem families with Parameter 1 and
the precise definition of problem types with Parameter 2.

For convenience, I define PI SI , PI publ , PI priv and PI sol to be the projec-
tion of a problem instance PI to its structure instance, public, private and
solution part, respectively. Picking up again above example, this means
PI DH

SI := ((Z∗
p/q, p, q), (g)), PI DH

priv := (x, y), PI DH
publ := (gx, gy), and

PI DH
sol := {gxy}, respectively.

3.1.7 Samplers

In the following, I describe different probabilistic polynomial-time algo-
rithms I use to randomly select (sample) various parameters. Note that
these samplers cannot be assumed to be publicly known, i.e., to sample
from the corresponding domains adversaries have to construct their own
sampling algorithms from publicly known information.

Group sampler SGG : A function which, when given a security parameter k
as input, randomly selects a group G and returns a corresponding group in-
dex. I assume that a group sampler selects groups only of similar nature and
type, i.e., there is a general description of a Turing machine which, based
on a group index as parameter, implements at least the group operation
and the equality test, and specifies how the group elements are represented.

4The solutions might not be unique, e.g., multiple solution tuples match a given public
value in the case of the Representation Problem (See Section 3.2, Parameter 1).

3.1 Terminology 29

An example are the groups pioneered by Schnorr (1991) in his identifica-
tion and signature schemes and also used in the Digital Signature Standard
(DSS) (National Institute of Standards and Technology (NIST) 2000), i.e.,
unique subgroups of Z∗

p of order q with p and q prime. The group index
would be (p, q) and the description of the necessary algorithms would be
taken, e.g., from Menezes et al. (1997). Note that, in this example, the
group index allows the derivation of the group order and the factorization
thereof. However, it cannot be assumed that the group index — the only
information besides the description of the Turing machine which will be al-
ways publicly known about the group — allows to derive such knowledge on
the group order in general.

The set of groups possibly returned by a group sampler, i.e., [SGG], is called
in the sequel a group family G and is required to be infinite. To make
the specific group family G more explicit in the sampler I often label the
sampler accordingly as SGG , e.g., for above example the sampler would be
named SGZ∗

p/q
.

Furthermore, the set of possible groups G returned by SGG for a given
fixed security parameter k, i.e., [SGG(1k)], is called group siblings GSG(k).
This represents the groups of a given family G with approximately the same
“security”. I assume that the group operation and equality test for the
groups in GSG(k) can be computed efficiently (in k); yet the underlying
problem is supposedly asymptotically hard.

Slightly restricting the class of samplers, I require that the number of groups
in GSG(k) is super-polynomial in k and the order |G| of all G ∈ GSG(k) is
approximately the same. In particular, I assume that the order can be
bounded in the security parameter, i.e., ∃d1, d2 > 0 ∀k > 1 ∀G ∈ GSG(k) :

kd1 ≤ log (|G|) ≤ kd2 .5 For Schnorr signatures, in the example given above,
a group sampler might choose the random primes p and q with |q| ≈ 2k and
p = rq + 1 for an integer r sufficiently large to make DL hard to compute
in security parameter k. See Menezes et al. (1997) and Odlyzko (2000b)
for the state-of-the-art algorithms for computing discrete logarithms and
Lenstra and Verheul (2001) for a methodology on how to choose parameters
(as a function of the security parameter k), illustrated concretely for group
families such as Z∗

p or elliptic curves.

Generator sampler Sg: A function which, when given a description of
a group G for a fixed group family, randomly selects a generator g ∈ G.

5This restriction is mainly for easier treatment in various reductions and is not a
hindrance in practical applications: On the one hand, the upper bound is tight (larger
groups cannot have efficient group operations). On the other hand, the common approach
in choosing a safe group order, e.g., as proposed by Lenstra and Verheul (2001), will relate
the group order closely to the negligible probability of guessing a random element correctly,
and hence result in exponential order.

30 Exploring the Mathematical Foundations

I assume that Sg has always access somehow, e.g., via an oracle, to the
factorization of the group order. This information is required by the sampler
as the group index might not be sufficient to find generators efficiently. This
covers the situation where an honest party chooses the group as well as the
generator but keeps the factorization of the group order secret. However, it
also implies that the factorization of the order should in general be public
when the adversary chooses the generators.

Note that the number of generators is ϕ(|G|) and, due to requirements
on group orders mentioned above, always super-polynomial in the security
parameter k: Given the lower bound ∀n ≥ 5 : ϕ(n) > n/(6 log (log (n)))
(Fact 2.102, Menezes et al. 1997) and our size restrictions on |G| we have
asymptotically the following relation: ϕ(|G|)/|G| > 1/O(log k) > 1/k.

Problem instance sampler SPIP : A function indexed by a problem fam-
ily P which, when given a description of a structure instance SI as input,
randomly selects a problem instance PI . Similarly to Sg, I assume that
SPIP gets always access to the factorization of the group order. Further-
more, SPIP gets also access to the discrete logarithms among the different
generators in SI . This is required for some problem families, e.g., IE and
RP(n).6 In most cases and in all examples considered here, this corresponds
to randomly selecting priv and deriving publ and sol from it. For example,
a problem instance sampler SPIDH for the Diffie-Hellman problem family
would return a tuple (SI , ((x, y), (gx, gy), {(gxy)})) with x and y randomly
picked from Z|G| and g taken from SI . When the specific problem family P
is not relevant or clear from the context I abbreviate SPIP to SPI .

Note that the running time of the samplers is always polynomially
bounded in the security parameter k.7

If not stated explicitly we can always assume a uniform distribution
of the sampled elements in the corresponding domains, as done in most
cases of cryptographic applications. The rare exceptions are cases such as
the c-DLSE assumption (Patel and Sundaram 1998; Gennaro 2000), an as-
sumption on the difficulty of taking discrete logarithms when the random
exponents are taken only from a small set, i.e., Z2c with c = ω(log log |G|)
instead of Z|G|, or the Diffie-Hellman Indistinguishability (DHI) assump-
tions introduced by Canetti (1997). The difficulty of these assumptions is

6As a practical consequence, it means that for such problem families either this informa-
tion has to be public, e.g., the group index should allow the derivation of the factorization
of the order, or the group and generators are chosen by the same party which samples the
problem instance.

7For SG this holds trivially as we required samplers to be polynomial-time in their
inputs. The input of Sg are the outputs of a single call of a machine (SG) polynomially
bounded by k and, therefore, can be polynomially upper bounded in k. As the class
of polynomials is closed under polynomial composition this holds also for Sg and, using
similar reasoning, also for SPI .

3.2 Classifying Discrete Log-Based Assumptions 31

not necessarily their individual specification, e.g., c-DLSE could be defined
by suitably restricting the domain of the sol part of a DL problem instance.
The deeper problem is that proving relations among these and other as-
sumptions seems to require very specific tools, e.g., for randomization and
analysis of resulting success probabilities, and are difficult to generalize as
desirable for a classification as presented here. However, it might be worth-
while to investigate in future work whether these cases can be addressed by
treating the sampling probability distribution as an explicit parameter of
the classification. To make this extension promising, one would have to first
find a suitable categorization of sampling probability distributions which:
(1) captures the assumptions currently not addressed, and (2) offers tools
assisting in proving reductions in a generalizable fashion.

3.2 Classifying Discrete Log-Based Assumptions

In defining assumptions, a cryptographer has various degrees of freedom
related to the concrete mathematical formulation of the assumption, e.g.,
what kind of attackers are considered or over what values the probability
spaces are defined.

To shed some light in these degrees of freedom I classify intractability
assumptions for problems related to DL and relevant to many cryptographic
applications. I identify the following orthogonal parameters. Additionally, I
give for each of these parameters in a corresponding sublist different values
which can produce significantly different assumptions.

1. Problem family: The following problem families are useful (and
often used) for cryptographic applications. As mentioned in Sec-
tion 3.1.6 I define the problem family (or more precisely their problem
instances) by a structure instance SI (described abstractly by G and
gi’s) and a tuple (priv , publ , sol):

DL (Discrete Logarithm):

PIDL := ((G, g), ((x), (gx), {(x)})).

DH (Diffie-Hellman):

PIDH := ((G, g), ((x, y), (gx , gy), {(gxy)}))

GDH(n) (Generalized Diffie-Hellman for n ≥ 2):

PIGDH(n) := ((G, g), ((xi |i ∈ {1, . . . , n}),

(g
Q

i∈I xi | I ⊂ {1, . . . , n}), {(g
Qn

i=1 xi)})),

32 Exploring the Mathematical Foundations

where n is a fixed parameter.8

SE (Square-Exponent):

PI SE := ((G, g), ((x), (gx), {(gx2
)})).

IE (Inverse-Exponent):

PI IE := ((G, g), ((x), (gx), {(gx−1
)})).

Note that for elements x′ ∈ Z|G| \ Z∗
|G| the value x−1 is not

defined. Therefore, PI IE
priv (= (x)) has to contain an element

of Z∗
|G|, contrary to the previously mentioned problem families

where priv consists of elements from Z|G|.

RP(n) (Representation Problem for n ≥ 2):

PI RP(n) := ((G, g1, . . . , gn), ((xi | i ∈ {1, . . . , n}), (

n∏

i=1

gxi
i),

{(x′
i | i ∈ {1, . . . , n}) | (x

′
i ∈ Z|G|) ∧ (

n∏

i=1

g
x′

i
i =

n∏

i=1

gxi
i)})),

where n is a fixed parameter.9

IAE (Inverted Additive Exponent Problem):

PI IAE := ((G, g), ((x, y), (g1/x , g1/y), {(g1/(x+y))})).

Similar to IE, PI IAE
priv (= (x, y)) consists of elements fromZ∗

|G|. Additionally, it has to hold that x + y ∈ Z∗
|G|.

2. Problem type: Each problem can be formulated in three variants.

C (Computational): For a given problem instance PI an algorithm A

succeeds if and only if it can solve PI , i.e., A(. . . ,PI publ) ∈ PI sol .
For the Diffie-Hellman problem family this means that A gets gx

and gy as input and the task is to compute gxy.

There is a small twist in the meaning of A(. . . ,PI publ) ∈ PI sol :
As |G| is not necessarily known, A might not be able to repre-
sent elements of Z|G| required in the solution set uniquely in their
“principal” representation as elements of {0, . . . , |G|−1}. There-
fore, we allow A in these cases to return elements of Z and we
implicitly reduce them mod|G|.

8A slightly generalized form GDH(n(k)) would allow n to be a function in k. However,
this function can grow at most logarithmically (otherwise the tuple would be of super-
polynomial size!)

9Similar to GDH(n) one can also define here a slightly generalized form RP(n(k)). In
this case, one can allow n(k) to grow even polynomially.

3.2 Classifying Discrete Log-Based Assumptions 33

D (Decisional): For a given problem instance PI 0, a random problem
instance PI 1 chosen with the same structure instance using the
corresponding problem instance sampler and a random bit b, the
algorithm A succeeds if and only if it can decide whether a given
solution chosen randomly from the solution set of one of the two
problem instances corresponds to the given problem instance, i.e.,
A(. . . ,PI publ , sol c)) = b where sol c

R← PI b
sol .10 For the Diffie-

Hellman problem family this means that A gets gx, gy and gc

(where c is either xy or x′y′ for x′, y′ ∈R Z|G|) as input and the
task is to decide whether gc is gxy or not.

M (Matching): For two given problem instances PI 0 and PI 1 and a
random bit b, the algorithm A succeeds if and only if it can cor-
rectly associate the given solutions with their corresponding prob-
lem instances, i.e., A(. . . ,PI 0

publ ,PI 1
publ , sol b, sol b̄) = b where

sol0
R← PI 0

sol and sol1
R← PI 1

sol . For the Diffie-Hellman prob-
lem family this means that A gets gx0 , gy0 , gx1 , gy1 , gxbyb and
gxb̄yb̄ as input and the task is to predict b.

Initially, only computational assumptions, which follow naturally from
informal security requirements, were considered in cryptography. For
example, a key exchange protocol should prevent the complete recov-
ery of the key which is usually the solution part of an assumption.
However, the later formalization of security requirements, in particu-
lar semantic security (Goldwasser and Micali 1984), requires often the
indistinguishability of random variables. Taking again the example of
a key exchange protocol, it was realized that if you do not want to make
strong requirements on the particular use of exchanged keys but allow
the modular and transparent composition of key exchange protocols
with other protocols, e.g., for secure sessions, it is essential that an ex-
changed key is indistinguishable from random keys, i.e., not even par-
tial information on the key is leaked. While this does not necessarily
imply decisional assumptions, such assumptions might be indispens-
able for efficient systems: There is an efficient encryption scheme se-
cure against adaptive adversaries under the Decisional Diffie-Hellman
assumption (Cramer and Shoup 1998). Nonetheless, no system is
known today which achieves the same security under a similar com-

10This definition differs subtly from most other definitions of decisional problems: Here
the distribution of the challenge sol c is for b = 1, i.e., the random “wrong” challenge,
according to the distribution of sol induced by SPI whereas most others consider it to be
a (uniformly chosen) random element of G. Taking DIE or DDH with groups where the
order has small factors these distributions are quite different! Conceptually, the definition
here seems more reasonable, e.g., in a key exchange protocol you distinguish a key from an
arbitrary key, not an arbitrary random value. It also addresses nicely the case of samplers
with non-uniform distributions.

34 Exploring the Mathematical Foundations

putational assumption in the standard model.11 Finally, the match-
ing variant was introduced by Frankel, Tsiounis, and Yung (1996)
where it showed to be a useful tool to construct fair off-line cash.
Handschuh, Tsiounis, and Yung (1999) later showed that the match-
ing and the decisional variants of Diffie-Hellman are equivalent, a proof
which is adaptable also to other problem families.

3. Group family: Various group families are used in cryptographic ap-
plications. The following list contains some of the more common ones.
For brevity I do not mention the specific parameter choice as a func-
tion of k. I refer you to, e.g., Lenstra and Verheul (2001), for concrete
proposals:Z∗

p: The multiplicative groups of integers modulo a prime p with group
order ϕ(p) having at least one large prime factor. The group index
is p.Z∗

p/q: The subgroups of Z∗
p of prime order q. The group index is the

tuple (p, q).Z∗
n: The multiplicative groups of integers modulo a product n of two

(or more) large primes p and q with p − 1 and q − 1 containing
at least one large prime factor. The group index is n.12QR ∗

n: The subgroups of Z∗
n formed by the quadratic residues with n

product of two large safe13 primes. The group index is n.

Ea,b/Fp : The elliptic curves over Fp with p and |Ea,b| prime with group
index (a, b, p).

The concrete choice of a group family has significant practical impact
on aspects such as computation or bandwidth efficiency or suitability
for a particular hardware but discussing this goes beyond the scope
of this document, namely comparing assumptions. In this scope, it is
mostly sufficient to classify simple and abstract properties of the cho-
sen family and the public knowledge about a given group. I established
the following two general criteria:

(a) The factorization of the group order contains

lprim: large prime factors (at least one). Formally, it has to hold
that (with P being the set of prime numbers):

∀d>0∃k0 ∀k>k0 ∀G∈GSG(k) ∃p∈P∃r∈N : |G|=pr∧p>kd,

11There are efficient schemes known in the random oracle
model (Bellare and Rogaway 1993), e.g., OAEP (Bellare and Rogaway 1995a;
Boneh 2001; Shoup 2001; Fujisaki et al. 2001). However, this model is strictly weaker
than the standard model and has a number of caveats (Canetti et al. 1998).

12This means that the order of the group is secret if we assume factoring n is hard.
13A prime p is a safe prime when p − 1 = 2p′ and p′ ∈ P.

3.2 Classifying Discrete Log-Based Assumptions 35

nsprim: no small prime factor. Formally, the following has to
hold:

∀d>0∃k0 ∀k>k0 ∀G∈GSG(k) �p∈P∃r∈N : |G|=pr∧p<kd,

prim: only a single and large prime factor.

Note that this is a strict hierarchy and later values imply earlier
ones. There would also be an obvious fourth value, namely the or-
der contains no large factor. However, in such cases no reasonable
DL based assumption seems possible (Pohlig and Hellman 1978;
Pollard 1978).

(b) The group order is publicly

o: unknown,

o: known,

fct: known including its complete14 factorization.

I assume any such public knowledge to be encoded in the de-
scription returned by a group sampler SG. Note that in prac-
tice the group order is never completely unknown: at least an
efficiently computable upper bound B(|G|) can always be de-
rived, e.g., from the bit-length of the representation of group
elements. This can be exploited, e.g., in achieving random self-
reducibility15 (Blum and Micali 1984) for DDH even in the case
where the order is not known (Boneh 1998).

The cryptographic application will determine which of above proper-
ties hold, e.g., a verifiable group generation will quite likely result in
a publicly known factorization.

Furthermore, note that the group families given above implicitly fix
the properties of the group order factorization (Z∗

p: lprim; Z∗
p/q: prim;Z∗

n: lprim; QR ∗
n: nsprim; Ea,b/Fp : prim), and the public knowledge

about it (Z∗
p: o; Z∗

p/q: fct; Z∗
n: o; QR ∗

n: o; Ea,b/Fp : fct).

4. Computational capability of adversary: Potential algorithms
solving a problem have to be computationally limited for number-
theoretic assumptions to be meaningful (otherwise we could never
assume their nonexistence). Here, I only consider probabilistic
polynomial-time algorithms (called adversaries in the following).
The adversary can be of

14If the order is known then small prime factors can always be computed. Insofar the
case here extends the knowledge about the factorization also to large prime factors.

15Informally, a problem is random self-reducible if solving any problem instance can be
reduced to solving the problem on a random instance, i.e., when given an instance x we can
efficiently randomize it to a random instance xR and can efficiently derive (derandomize)
the solution for x from the solution returned by an oracle call on xR.

36 Exploring the Mathematical Foundations

u (Uniform complexity): There is a single probabilistic Turing ma-
chine A which for any given finite input returns a (not necessar-
ily correct) answer in polynomial time in its input length. As
the complexity of Turing machines is measured in the bit-length
of the inputs the inputs should be neither negligible nor super-
polynomial in the security parameter k, otherwise the algorithm
might not be able to write out the complete desired output or
might become too powerful. To address this issue one normally
passes an additional input 1k to A to lower bound the complexity
and makes sure that the other inputs can be polynomially upper
bounded in k. In all cases considered here, the inputs in the as-
sumptions are already proportional to the security parameters,
see remarks on the size of groups and on the runtime of samplers
in Section 3.1.7. Therefore we can safely omit 1k in the inputs of
A.

n (Non-uniform complexity): There is an (infinite) family of Tur-
ing machines (Ak | k ∈ N) with description size and running
time of Ak bounded by a polynomial in the security parameter
k.16 Equivalent alternatives are a (single) Turing Machine with
polynomial running time and an additional (not necessarily com-
putable) family of auxiliary inputs polynomially bounded by the
security parameter, or families of circuits with the number of
gates polynomially bounded by the security parameter,17 respec-
tively.

Uniform assumptions are (in many cases strictly) weaker than corre-
sponding non-uniform assumptions as any uniform algorithm is also a
non-uniform one. Furthermore, all uniform black-box reductions map
to the non-uniform case (but not necessarily vice-versa!) and hence-
forth most uniform proofs should map to their non-uniform counter-
part. This makes uniform assumptions preferable over non-uniform
assumptions (e.g., honest users are normally uniform and weaker as-
sumptions are always preferable over stronger ones). However, uni-
form assumptions also assume uniform adversaries which is a weaker
adversary model than the model considering non-uniform adversaries.
Furthermore, there are proofs which only work in a non-uniform model.

Further, potentially interesting yet currently ignored, attacker capa-
bilities would be bounds on space instead of (or in addition) to time.
Adaptive adversaries do not seem of concern for pure assumptions.

16The remarks on input length and runtime mentioned above for uniform complexity
also apply here.

17In the case of circuits the bound on the running time automatically follows and does
not have to be explicitly restricted.

3.2 Classifying Discrete Log-Based Assumptions 37

Ideally, one would consider larger, i.e., less restricted, classes of adver-
saries than the strictly polynomial-time one following from the defini-
tion from Section 3.1.3. It would seem more natural, e.g., to require
polynomial behavior only on inputs valid for a given assumption or to
allow algorithms, e.g., Las Vegas algorithms, with no a-priori bound on
the runtime.18 Unfortunately, such classes are difficult to define prop-
erly and even harder to work with. However, as for each adversary
of these classes, there seems to be a closely related (yet not necessar-
ily black-box constructible) strictly polynomial-time adversary with
similar success probability, this restriction seems of limited practical
relevance.

5. “Algebraic knowledge”: A second parameter describing the adver-
sary’s computational capabilities relates to the adversary’s knowledge
on the group family. It can be one of the following:

σ (Generic): This means that the adversary does not know anything
about the structure (representation) of the underlying algebraic
group. More precisely this means that all group elements are
represented using an encoding function σ(·) drawn randomly
from the set ΣG,g of bijective19 functions Z|G| → G. Group op-
erations can only be performed via the addition and inversion20

oracles σ(x + y) ← σ+(σ(x), σ(y)) and σ(−x) ← σ−(x) respec-
tively, which the adversary receives as a black box (Shoup 1997;
Nechaev 1994) together with σ(1), the generator.

If I use σ in the following, I always mean the (not further speci-
fied) random encoding used for generic algorithms with a group
G and generator g implied by the context. In particular, by Aσ I
refer to a generic algorithm. To prevent clutter in the presenta-
tion, I do not explicitly encode group elements passed as inputs to
such generic algorithms. However, they should all be considered
suitable encoded with σ.

(marked by absence of σ) (Specific): In this case the adversary
can also exploit special properties (e.g., the encoding) of the un-
derlying group.

18However, we would have to restrict the considerations to polynomial time runs when
measuring the success probability of adversaries.

19Others, e.g., Babai and Szemerédi (1984) and Boneh and Lipton (1996), considered
the more general case where elements are not necessarily unique and there is a separate
equality oracle. However, that model is too weak to cover some important algorithms,
e.g., Pohlig and Hellman (1978), which are intuitively “generic”. Furthermore, the im-
possibility results mentioned later still hold when transfered to the more general case.

20Computing inverses is usually efficient only when the group order is known. However,
note that all impossibility results — the main use of generic adversaries — considered
later hold naturally also without the inversion oracle.

38 Exploring the Mathematical Foundations

This separation is interesting for the following reasons:

• Tight lower bounds on the complexity of some DL-based as-
sumptions can lead to provably hard assumptions in the generic
model (Shoup 1997; Maurer and Wolf 1998b). No such results
are known in the standard model. However, similar to the ran-
dom oracle model (Bellare and Rogaway 1993) the generic model
is idealized and related pitfalls lure when used in a broader con-
text than simple assumptions (Fischlin 2000).

• A number of algorithms computing discrete logarithms are
generic in their nature. Two prominent ones are Pohlig-
Hellman (1978) and Pollard-ρ (1978) paired with Shanks Baby-
Step Giant-Step optimization. Furthermore, most reductions are
generic.

• However, exploiting some structure in the group can lead to faster
algorithms, e.g., for finite fields there is the class of index-calculus
methods and in particular the generalized number field sieve
(GNFS) (Gordon 1993b; Schirokauer 1993) with sub-exponential
expected running time.

• Nonetheless, for many group families, e.g., elliptic curves, no spe-
cific algorithms are known which compute the discrete logarithms
better than the generic algorithms mentioned above.

Note that a generic adversary can always be transformed to a specific
adversary but not necessarily vice-versa. Therefore, a reduction be-
tween two generic assumptions is also a reduction between the specific
counterparts of the two assumptions. However, proofs of the hardness
of generic assumptions or the non-existence of relations among them
do not imply their specific counterparts!

6. “Granularity of probability space”: Depending on what part of
the structure instance is a-priori fixed (i.e., the assumption has to
hold for all such parameters) or not (i.e., the parameters are part of
the probability space underlying an assumption) we can distinguish
among the following situations:

l (Low-granular): The group family (e.g., prime order subgroups ofZ∗
p) is fixed but not the specific structure instance (e.g., param-

eters p, q and generators gi for the example group family given
above).

m (Medium-granular): The group (e.g., p and q) but not the gener-
ators gi are fixed.

h (High-granular): The group as well as the generators gi are fixed.

3.2 Classifying Discrete Log-Based Assumptions 39

An assumption defines a family of probability spaces Di, where the
index i is the tuple of k and, depending on granularity, group and
generator, i.e., all parameters with an all-quantifier in the assump-
tion statement. Each probability space Di is defined over problem
instances, random coins for the adversary, and, again depending on
granularity, groups and generators. Note that for a given k there are
always only polynomially many Di. In the sequel I use the term prob-
ability space instance (PSI) for a single probability space Di.

7. Success probability: This parameter gives an (asymptotic) upper
bound on how large a success probability we tolerate from an adver-
sary. The success probability is measured over the family of probabil-
ity space instances Di. Violation of an assumption means that there
exists an algorithm A whose success probability α(k) reaches or ex-
ceeds this bound for infinitely many k in respect to at least one of the
corresponding probability space instances Di.

The upper bound and the corresponding adversary can be classified in
the following types:

1 (Perfect): The strict upper bound on the success probability is 1.
Therefore, a perfect adversary algorithm A with success probabil-
ity α(k) has to solve the complete probability mass of infinitely
many Di, i.e., α(k) 6<∞ 1.

(1−1/poly(k)) (Strong): The bound is defined by the error probabil-
ity which has to be non-negligible. Therefore, a strong adversary
algorithm A has to be successful for infinitely many Di with over-
whelming probability., i.e., if α(k) is the success probability of A

then 1− α(k) 6≥∞ 1/poly(k).

ǫ (Invariant): The strict upper bound is a fixed and given constant
0 < ǫ < 1. Therefore, the success probability α(k) of an invariant
adversary algorithm A has to be larger than ǫ for infinitely many
Di, i.e., α(k) 6<∞ ǫ.

1/poly(k) (Weak): All non-negligible functions are upper bounds,
i.e., only negligible success probabilities are tolerated. Therefore,
a weak adversary algorithm A has to be successful with a not
negligible fraction of the probability mass ofDi for infinitely many
Di, i.e., if α(k) is the success probability of A then α(k) 6<∞

1/poly(k).

An assumption requiring the nonexistence of perfect adversaries cor-
responds to worst-case complexity, i.e., if the assumption holds then
there are at least a few hard instances. However, what is a-priori re-
quired in most cases in cryptography is a stronger assumption requiring

40 Exploring the Mathematical Foundations

the nonexistence of even weak adversaries, i.e., if the assumption holds
then most problem instances are hard.

The classification given above is certainly not exhaustive. The explo-
ration of new problem families, e.g., related to arbitrary multivariate func-
tions in the exponents as investigated by Kiltz (2001), might require addi-
tional values for the existing parameters. This can be done without much
impact on the classification itself and other results. However, the need for
a new dimension such as adding probability distributions as a separate pa-
rameter (see Section 3.1.7) would be of much larger impact. Nevertheless,
from the current experience, above classification seems quite satisfactory.

3.3 Defining Assumptions

Using the parameters and corresponding values defined in the previous sec-
tion, we can define intractability assumptions in a compact and precise way.

The notation for a given assumption is

$s-$tPa(c:$c; g:$g; f:$G)

where for each parameter there is a placeholder $X which is instantiated
by the labels corresponding to the value of that parameter in the given
assumption. The placeholders and values (with − denoting that this value
can be absent in the notation and has the same meaning as a corresponding
wild card) are as follows:

• $s: The algorithm’s success probability ($s ∈ {1, (1− 1/poly(k)), ǫ,
1/poly(k)}).

• $t: The problem type ($t ∈ {C,D,M}).

• $P: The problem family ($P ∈ {DL,DH,GDH(n),SE, IE,RP(n),
IAE}).

• $a: The algebraic knowledge of the algorithm ($a ∈ {σ,−}).

• $c: The algorithm’s complexity ($c ∈ {u, n}).

• $g: The granularity of the probability space ($g ∈ {h,m, l}).

• $G: The group family ($G ∈ {lprim,nsprim,prim,−}× {o, o, fct,−}×
{Z∗

p,Z∗
p/q,Z∗

n,QR ∗
n, Ea,b/Fp ,−}).21

21The parameters for G are not completely orthogonal in the sense that some combina-
tions do not exist, e.g., (prim, ·,QR∗

n), and some result in nonsensical assumptions, e.g.,
(·, fct,Z∗

n). Nonetheless, the assumptions still can be defined and insofar this is not really
of concern here.

3.3 Defining Assumptions 41

This is best illustrated in an example: The term

1/poly(k)-DDHσ(c:u; g:h; f:prim)

denotes the decisional (D) Diffie-Hellman (DH) assumption in prime-order
groups (f:prim) with weak success probability (1/poly(k)), limited to generic
algorithms (σ) of uniform complexity (c:u), and with high granularity (g:h).

To refer to classes of assumptions I use wild cards (∗) and sets ({· · · })
of parameter values, e.g.,

{(1−1/poly(k)),ǫ,1/poly(k)}-CDHσ(c:u; g:h; f:∗)

denotes the class of computational (C) Diffie-Hellman (DH) assump-
tions with uniform complexity (c:u), limited to generic algorithms (σ),
with high-granular probability space (g:h), with some error ({(1 −
1/poly(k)), ǫ, 1/poly(k)}) and based on an arbitrary group family (f:∗).

Let us turn now to the meaning of an assumption described by above
notation: By stating that an assumption $s-$tPa(c:$c; g:$g; f:$G) holds,
we believe that asymptotically no algorithm of complexity $c and algebraic
knowledge $a can solve (random) problem instances of a problem family $P
with problem type $t chosen from groups in $G with sufficient (as specified
by $s) success probability where the probability space is defined according
to granularity $g.

The precise and formal definitions follow naturally and quite mechan-
ically. In defining an assumption we always require a bound k0 for the
asymptotic behavior which says that beyond that bound no adversary will
be successful. As further “ingredients” there are polynomials defined by
their maximal degree d1, d2 and d3 which bind the error probability, time
and description of programs, respectively. Finally, we require a machine
(or family thereof) A (Ai) trying to solve the problem, and various quanti-
fiers specifying (using the various samplers) the required parameters for a
problem instance PI to solve.

Finally, I denote the class of uniform complexity adversaries by UPTM
and the corresponding class of generic adversaries by UPTMσ. The class
of non-uniform complexity and generic non-uniform complexity adversaries
is denoted similarly by NPTM and NPTMσ, respectively.

To illustrate the formal details of assumptions and to provide a feel for
the various parameters I offer three sets of examples. In each set I vary
one of the parameters, namely: (1) the computational complexity, (2) the
less obvious and often overlooked granularity parameter, and (3) the success
probability. The complete details on how to derive the formal assumption
statement from the parameters can be found in Appendix A:

1. Weak computational DL assumptions in the generic model, a group
order with at least one large prime factor and the two variants of

42 Exploring the Mathematical Foundations

complexity measures (see Parameter 4). Remember that PIDL :=
(SI , ((x), (gx), {(x)})), PIDL

publ := (gx) and PIDL
sol := {(x)}. Fur-

ther, let SGG be a group sampler of some group family G where the
groups have an order with at least one large prime factor.

(a) Assumption 1/poly(k)-CDLσ(c:u; g:h; f:lprim), i.e., the uniform
complexity variant:

∀Aσ ∈ UPTMσ;
∀d1 > 0; ∃k0; ∀k > k0;
∀G ∈ [SGG(1k)];
∀g ∈ [Sg(G)];
SI ← (G, g);

Prob[Aσ(C,SI ,PI DL
publ) ∈ PIDL

sol ::

σ R← ΣG,g;
PIDL ← SPIDL(SI);
C R← U

] < 1/kd1 .

(b) Same setting as above except now with a non-uniform adversary
(1/poly(k)-CDLσ(c:n; g:h; f:lprim)):

∀(Aσ
i | i ∈ N) ∈ NPTMσ;

∀d1 > 0; ∃k0; ∀k > k0;
∀G ∈ [SGG(1k)];
∀g ∈ [Sg(G)];
SI ← (G, g);

Prob[Aσ
k(C,SI ,PI DL

publ) ∈ PIDL
sol ::

σ R← ΣG,g;
PIDL ← SPIDL(SI);
C R← U

] < 1/kd1 .

2. Weak decisional DH assumption variants for prime order sub-
groups of Z∗

p with varying granularity. Recall that PIDH :=

(SI , ((x, y), (gx, gy), {(gxy)})), PI DH
publ := (gx, gy) and PI DH

sol :=
{(gxy)}.

(a) Assumption 1/poly(k)-DDH(c:u; g:h; f:Z∗
p/q), i.e., with high

granularity:

3.3 Defining Assumptions 43

∀A ∈ UPTM;
∀d1 > 0; ∃k0; ∀k > k0;
∀G ∈ [SGZ∗

p/q
(1k)];

∀g ∈ [Sg(G)];
SI ← (G, g);

(|Prob[A(C,SI ,PIDH/0
publ , solDH/c) = b ::

b R← {0, 1};
PIDH/0 ← SPIDH(SI);
PIDH/1 ← SPIDH(SI);

solDH/c
R← PIDH/b

sol ;

C R← U
]−1/2 | · 2) < 1/kd1 .

(b) As above except now with medium granularity
(1/poly(k)-DDH(c:u; g:m; f:Z∗

p/q)):

∀A ∈ UPTM;
∀d1 > 0; ∃k0; ∀k > k0;
∀G ∈ [SGZ∗

p/q
(1k)];

(|Prob[A(C,SI ,PIDH/0
publ , solDH/c) = b ::

g ← Sg(G);
SI ← (G, g);
b R← {0, 1};
PIDH/0 ← SPIDH(SI);
PIDH/1 ← SPIDH(SI);

solDH/c
R← PIDH/b

sol ;

C R← U
]−1/2 | · 2) < 1/kd1 .

(c) As above except now with low granularity
(1/poly(k)-DDH(c:u; g:l; f:Z∗

p/q)):

44 Exploring the Mathematical Foundations

∀A ∈ UPTM;
∀d1 > 0; ∃k0; ∀k > k0;

(|Prob[A(C,SI ,PI DH/0
publ , solDH/c) = b ::

G← SGZ∗
p/q

(1k);

g ← Sg(G);
SI ← (G, g);
b R← {0, 1};
PIDH/0 ← SPIDH(SI);
PIDH/1 ← SPIDH(SI);

solDH/c
R← PIDH/b

sol ;

C R← U
]−1/2 | · 2) < 1/kd1 .

3. Matching IE assumptions in QR ∗
n with varying success probability.

Recall that PI IE := (SI , ((x), (gx), {(gx−1
)})), PI IE

publ := (gx) and
PI IE

sol := {(gx−1
)}.

(a) Assumption 1/poly(k)-MIE(c:u; g:h; f:QR ∗
n), i.e., the variant with

weak success probability:

∀A ∈ UPTM;
∀d1 > 0; ∃k0; ∀k > k0;
∀G ∈ [SGQR∗

n
(1k)];

∀g ∈ [Sg(G)];
SI ← (G, g);

(|Prob[A(C,SI ,PI IE/0
publ ,PI IE/1

publ , sol IE/b, sol IE/b̄) = b ::

b R← {0, 1};
PI IE/0 ← SPI IE(SI);
PI IE/1 ← SPI IE(SI);

sol IE/0
R← PIDH/0

sol ;

sol IE/1
R← PIDH/1

sol ;

C R← U
]−1/2 | · 2) < 1/kd1 .

(b) Same setting as above except now with invariant success proba-
bility ǫ (ǫ-MIE(c:u; g:h; f:QR ∗

n)):

3.3 Defining Assumptions 45

∀A ∈ UPTM;
∃k0; ∀k > k0;
∀G ∈ [SGQR∗

n
(1k)];

∀g ∈ [Sg(G)];
SI ← (G, g);

(|Prob[A(C,SI ,PI IE/0
publ ,PI IE/1

publ , sol IE/b, sol IE/b̄) = b ::

b R← {0, 1};
PI IE/0 ← SPI IE(SI);
PI IE/1 ← SPI IE(SI);

sol IE/0
R← PIDH/0

sol ;

sol IE/1
R← PIDH/1

sol ;

C R← U ;

]−1/2 | · 2) < ǫ.

(c) Same setting as above except now with strong success probability
((1−1/poly(k))-MIE(c:u; g:h; f:QR ∗

n)):

∀A ∈ UPTM;
∃d1 > 0; ∃k0; ∀k > k0;
∀G ∈ [SGQR∗

n
(1k)];

∀g ∈ [Sg(G)];
SI ← (G, g);

(|Prob[A(C,SI ,PI IE/0
publ ,PI IE/1

publ , sol IE/b, sol IE/b̄) = b ::

b R← {0, 1};
PI IE/0 ← SPI IE(SI);
PI IE/1 ← SPI IE(SI);

sol IE/0
R← PIDH/0

sol ;

sol IE/1
R← PIDH/1

sol ;

C R← U
]−1/2 | · 2) < (1− 1/kd1).

(d) Same setting as above except with no tolerated error, i.e., perfect
success probability (1-MIE(c:u; g:h; f:QR ∗

n)):

46 Exploring the Mathematical Foundations

∀A ∈ UPTM;
∃k0; ∀k > k0;
∀G ∈ [SGQR∗

n
(1k)];

∀g ∈ [Sg(G)];
SI ← (G, g);

(|Prob[A(C,SI ,PI IE/0
publ ,PI IE/1

publ , sol IE/b, sol IE/b̄) = b ::

b R← {0, 1};
PI IE/0 ← SPI IE(SI);
PI IE/1 ← SPI IE(SI);

sol IE/0
R← PIDH/0

sol ;

sol IE/1
R← PIDH/1

sol ;

C R← U
]−1/2 | · 2) < 1.

To express relations among assumptions, I use the following operators
where P and Q are assumptions as previously defined:

P =⇒ Q means that if assumption P holds, so does assumption Q , i.e., P
(Q) is a stronger (weaker) assumption than Q (P). Vice-versa, it also
means that if there is a polynomially-bounded algorithm AQ breaking
assumption Q then there is also another polynomially-bounded algo-
rithm AP which breaks assumption P . Usually, this is shown in a

black-box reduction where AP , or more precisely A
AQ

P , breaks as-
sumption P with oracle access to AQ . As a special case for invariant
assumptions, I mean with ǫ-P =⇒ ǫ-Q that it should hold that
∀ǫ′∈]0, 1[∃ǫ′′∈]0, 1[: ǫ′′-P =⇒ ǫ′-Q .

P ⇐⇒ Q means that P =⇒ Q and Q =⇒ P , i.e., P and Q are
assumptions of the same (polynomial) complexity.

P
α′≥fα(t,α,|G|,...); t′≤ft(t,α,|G|,...)
======================⇒ Q is used to specify the quality of the re-

duction, i.e., the concrete security. It means that if assumption Q
can be broken in time t and with success probability α, we can break
P in time t′ and with success probability α′ bounded by functions ft

and fα, respectively. To measure time, I consider group operations
and equality tests having unit-cost each and oracle calls having cost t.
Obviously, the cost of group operations, the runtime and the success
probability of the oracle, and the size of the groups are not constant
but functions depending on the security parameter k, e.g., α should be
written more precisely as α(k). However, for better readability I omit
this and all asymptotic aspects in the presentation. For the identical
reason, I also cautiously use the O(·) notation even if we slightly lose
precision.

3.4 Granularity 47

Let me illustrate this with the following result from
Maurer and Wolf (1996):

ǫ-CDH(c:u; g:h; f:o)
α′= α3; t′= 3t+O(log (|G|)2)
==================⇒ ǫ-CSE(c:u; g:h; f:o)

This means that with three calls to an oracle breaking
ǫ-CSE(c:u; g:h; f:o) and additional O(log (|G|)2) group operations
we can achieve a success probability of at least α3 in breaking
ǫ-CDH(c:u; g:h; f:o) where t and α are the runtime and the success
probability of the oracle, respectively.

For simple assumptions, above is interpreted without syntactical conditions
on P and Q , i.e., they may be arbitrary assumptions. If a relation refers to
assumption classes, i.e., they contain some parameters which are not fully
specified and contain wild cards or sets, there is the following syntactical
constraint: The parameters which are not fully specified have to be equal
for both assumptions P and Q . The meaning is as follows: The relation
P OP Q holds for any assumption P ′ and Q ′ we can instantiate from P and
Q by fixing all not fully specified parameters to any matching value with
the additional condition that these values are identical for P ′ and Q ′. To
give an example,

∗-CDH∗(c:∗; g:{h,m}; f:o) =⇒ ∗-CSE∗(c:∗; g:{h,m}; f:o)

illustrates that the result from Maurer and Wolf mentioned above can be
generalized (Sadeghi and Steiner 2001) to high and medium granularity with
arbitrary success probability, complexity and algebraic knowledge.

Furthermore, if I am referring to oracle-assumptions, i.e., assumptions
where we give adversaries access to auxiliary oracles, I indicate it by listing
the oracles at the end of the list in the assumption term. For example,
the assumption 1/poly(k)-CDLσ(c:u; g:h; f:lprim;O1-CDL(c:u; g:h; f:lprim)) cor-
responds to the first assumption statement given in the example list above
except that now the adversary also gets access to an oracle breaking the
1-CDL(c:u; g:h; f:lprim) assumption.

3.4 Granularity

It would go beyond the scope (and space) of this thesis to discuss all pre-
viously identified parameters; see Sadeghi and Steiner (2002) for more in-
formation. However, since this aspect was previously largely overlooked,
I briefly focus on granularity, state its practical and theoretical relevance,
and prove a theorem on the relation of assumptions with varying granularity
required in the sequel.

48 Exploring the Mathematical Foundations

The practical relevance of granularity was alluded to already in the in-
troduction of this Chapter. As shown below, assumptions with lower granu-
larity are weaker, and are as a consequence more desirable. However, which
of the granularity variants is appropriate in cryptographic protocols depends
on how and by whom the structure instance is chosen. Without presuppos-
ing special properties of this process, we are forced to use a high-granular
assumption. Nonetheless, in the following situations we can resort to a less
granular and, therefore, weaker assumption: The security requirements of
the cryptographic system guarantee that it is in the best (and only) interest
of the generating party of the structure instance to choose them properly;
the structure instance is chosen by a mutually trusted third party; or the
structure instance is chosen in a verifiable random process.22 Also, at most
in these cases we can reasonably assume a group family with the group order
and its factorization to be hidden from the public and the adversary. As
a consequence, it would seem strange to base a cryptographic system on a
high-granularity assumption with unknown order factorization: either the
system parameters are chosen by an honest party and we could resort to
a weaker assumption with lower granularity, or the knowledge of the order
and its factorization has to be assumed to be known to the adversary. Fur-
thermore, care has to be taken for DL-related high- and medium-granularity
assumptions in Z∗

p and its subgroups. Unless we further constrain the set
of valid groups with (expensive) tests as outlined by Gordon (1993a), we
require, for a given security parameter, considerably larger groups than for
the low granular counterpart of the assumptions.

From a theoretical point of view, investigating granularity also uncovers
some surprising results. Extending the results of Wolf (1999) to the problem
family IE, Sadeghi and Steiner (2001) prove statements on relations between
IE, DH and SE for both computational and decisional variants in the setting
of Wolf (1999) which corresponds to the high-granular case. They then
consider medium granularity (with other parameters unchanged) and show
the impact: They prove that the decisional IE and SE assumptions are
equivalent for medium granularity whereas this is provably not possible for
their high-granular variants, at least not in the generic model. They also
show that reductions between computational IE, SE and DH can offer much
better concrete security for medium granularity than their high-granular
analogues.

As informally mentioned above, assumptions with lower granularity are
weaker than assumption of higher granularity. Formally, this is stated and
proven in the following theorem:

22This can be done either through a joint generation using random coins
(Cachin et al. 2000) or using heuristics such as the one used for DSS key generation
(National Institute of Standards and Technology (NIST) 2000).

3.4 Granularity 49

Theorem 3.1

∗-∗∗∗(c:∗; g:h; f:∗) =⇒ ∗-∗∗∗(c:∗; g:m; f:∗) =⇒ ∗-∗∗∗(c:∗; g:l; f:∗)

2

Proof. Assume we are given an adversary A breaking a low-granularity
assumption for some group and problem family, some problem type, compu-
tational complexity, arbitrary algebraic knowledge and success probability.
Furthermore, we are given an input I corresponding to an assumption of
high- or medium-granularity but otherwise identical parameters.

The reduction is simple: Just call A on this input I and return the
result. To see that this achieves the desired attack on the medium- or high-
granularity assumption, you have to note first that inputs to an adversary
breaking a high- or medium-granularity assumption are also valid inputs
to a low-granularity adversary. Therefore, this reduction is a legitimate
attacker from a runtime perspective exactly in the case where the oracle
itself is a legitimate attacker. Furthermore, the probability space instances
defined by a high- or medium-granularity assumption always partition the
probability space instances of a low-granularity assumption. Therefore, it
it is clear that for a perfect adversary A the reduction breaks certainly the
high- or medium granularity probability space instances which are part of
the low-granularity probability space instances which A breaks. As there
are by definition of A infinitely many such low-granularity probability space
instances and for a given k there are only a finite number of probability
space instances it automatically follows that for the perfect case the high-
and medium granularity assumption is broken, too. By a counting argument
this also easily extends to the case of strong, invariant and weak adversaries,
i.e., at least some of the high- or medium granularity probability space
instances which are part of the low-granularity probability space instances
broken by A are broken with the necessary success probability as well.

By an identical argument it follows that a high-granularity assumption
can be reduced to the corresponding medium-granularity assumption. This
concludes the theorem.

Remark 3.1. Note that the inverse of above result, a low-granular assump-
tion implies the corresponding high-granular one, does not hold in general:
There are always super-polynomially many of the higher-granularity proba-
bility space instances contained in a given lower-granularity instance. There-
fore, there might be situations where infinitely many high-granularity prob-
ability space instances — and henceforth the corresponding high-granularity
assumption — are broken, yet they form only a negligible subset of the en-
closing lower-granularity probability space instances and the low-granularity
assumption can still hold.

50 Exploring the Mathematical Foundations

However, if for a given granularity there exists a random self-
reduction (Blum and Micali 1984), then the inverse reduction exists also
from that granularity to all higher granularities. As random self-reductions
are known for all mentioned problem families and problem types in
their medium granularity variant, this equates the medium- and high-
granularity cases. Unfortunately, no random self-reduction is yet known
for low-granularity assumptions and achieving such “full” random self-
reducibility seems very difficult in general (if not impossible) in number-
theoretic settings (Boneh 2000) contrary to, e.g., lattice settings used
by Ajtai and Dwork (1997). ◦

3.5 Decisional Generalized Diffie-Hellman

The Decisional Generalized Diffie-Hellman Problem (DGDH(n)) was intro-
duced by Steiner, Tsudik and Waidner (1996, 2000) and is a natural ex-
tension of the 2-party Decisional Diffie-Hellman assumption (DDH), first
explored in a cryptographic context by Brands (1993), to an n-party case.
The concrete form of the problem was already introduced in Section 3.2.
However, for your convenience I shortly and informally repeat the problem

statement: Given all partial GDH keys {g
Q

βi=1 xi | β ∈ In\{1
n}} and a

value gc, the task is to decide whether gc is g
Q

xi or a random element of
G. As we will see in Chapter 4, there is a large class of DH-based group-key
protocols where the protocol flows consist of subsets of partial GDH keys.
For these protocols, DGDH(n) is the natural assumption to base the secu-
rity upon. However, DGDH(n) is not a standard assumption. Preferably,
we could rely on a standard assumption such as DDH. DDH is used in
many contexts (Boneh 1998) and assumed to hold for many cyclic groups,
e.g., Shoup (1997) showed that no polynomial algorithm can solve DDH
in the generic model if the group order contains only large prime factors.
Luckily, Theorem 3.2 equates the two assumptions. The theorem is taken
from Steiner, Tsudik, and Waidner (2000), adapted and generalized to the
classification and notation introduced by Sadeghi and Steiner (2001) and
explained in Section 3.2. Furthermore, the theorem is extended with the
concrete security of the reduction:

Theorem 3.2

1/poly(k)-DDH(c:∗; g:∗; f:o)
α′=α/O(n); t′=t+O(2n log (|G|))
=====================⇒

1/poly(k)-DGDH(n)(c:∗; g:∗; f:o)
2

Before proving this theorem, let us first lower bound ϕ(|G|)
|G| , the proportion of

group elements having maximal order, for group orders containing no small

3.5 Decisional Generalized Diffie-Hellman 51

prime factors.

Lemma 3.1 Let SGG be a group sampler generating a family G of groups
whose orders contain no small prime factors. Let GSG(k) be the corresponding
group siblings. Furthermore, let f : N 7→ G be a function such that f(k) ∈

GSG(k) and ∀G′ ∈ GSG(k)
ϕ(|G′|)
|G′| ≥

ϕ(|f(k)|)
|f(k)| , i.e., f selects for each security

parameter k among the group siblings a group with maximal order. Then it
follows

1−
ϕ(|f(k)|)

|f(k)|
<∞ 1/poly(k)

. 2

Proof. Let G := f(k), let
∏m

i=1 pei
i := |G| be the prime factorization of G’s

order, and let p :=min(p1, · · · , pm) be the smallest prime factor of |G|. Then
it follows that |G| ≥ pm and log |G| ≥ m log p and thus m ≤ log |G|/ log p ≤
log |G| for log p ≥ 1 (i.e., for p ≥ 2). Moreover, as discussed in Section 3.1.7,
we can assume that the group order can be upper bounded in the security
parameter, i.e., |G| ≤ 2kd

for k > 1 and some d > 0. It follows m ≤ log |G| ≤
kd. Hence we can write

ϕ(|G|)

|G|
=

m∏

i=1

(1−
1

pi
) ≥ (1−

1

p
)m ≥ (1−

1

p
)k

d
.

The group order |G| is assumed to contain no small prime factor. It follows
from the definition of the corresponding group families f:nsprim (see Section
3.2, Parameter 3) that for any real constant c > 0 there exists a k0 such
that for all k > k0, 1/p < 1/kc and thus

ϕ(|G|)

|G|
) ≥ (1−

1

p
)k

d
≥∞ (1−

1

kc
)k

d
.

For c > d and k ∈ N the relation (1 − 1/kc)k
d
≥ 1 − 1/kc−d holds (see

Sadeghi and Steiner (2002) for a proof of this relation). Since c is arbitrary,
for all c > d we have c′ := c − d > 0 and thus for all c′ > 0 the relations
ϕ(|G|)
|G| ≥∞ 1 − 1/kc′ and 1 − ϕ(|G|)

|G| <∞ 1/kc′ hold. It follows that for all

c′ > 0 there exists k0 such that for all k > k0 we have 1 − ϕ(|G|)
|G| < 1/kc′ ,

i.e., 1− ϕ(|G|)
|G| <∞ 1/poly(k). This completes the proof.

Equipped with this lemma, we are now ready to proceed with the proof
of Theorem 3.2.
Proof. Let us address the theorem first for uniform-complexity and low-

granularity. Assume there is a polynomial-time Turing machine ADGDH(n)

52 Exploring the Mathematical Foundations

breaking DGDH(n), i.e., ADGDH(n) distinguishes the following two distribu-
tions with not negligible success probability αDGDH(n)(k):

GDH
(0)
k,n := { {(β, g

Q
βi=1 xi) | β ∈ In\{1

n}} ∪ {(1n, gz)}

:: G← SG(1k); g ← Sg(G); (x1, . . . , xn) R← Zn
|G|; z ← x1 · · · xn},

GDH
(1)
k,n := { {(β, g

Q
βi=1 xi) | β ∈ In\{1

n}} ∪ {(1n, gz)}

:: G← SG(1k); g ← Sg(G); (x1, . . . , xn) R← Zn
|G|; z

R← Z|G|}.

The definition of the decisional problem type in Section 3.2 (see in particular
Footnote 10) actually requires a slightly different and more involved random

element for GDH
(1)
k,n: g

Q
zi for n random exponents zi ∈ Z|G| instead of gz

for z ∈ Z|G| as mentioned here. However, above formulation is simpler to
work with and makes the proof easier to understand. It is not difficult
to see that the following proof can also be suitably adjusted to match the
definition as required by Section 3.2. Also, note that the distributions gz and
g
Q

zi are statistically indistinguishable for the case where the group order
has no small prime factor: In such cases, the proportion of elements in G
which are relatively prime to |G| is ϕ|G|/|G|. Therefore, for the considered
group families zi ∈R Z|G| is relatively prime with overwhelming probability
(see Lemma 3.1.) Furthermore, gz1 is almost certainly a generator and
consequently gz1z2 a random element from G. Given that n is fixed it follows
also that gz1···zn a random element from G with overwhelming probability.

We can prove the theorem by showing that we can construct a Tur-
ing machine ADDH with oracle access to ADGDH(n) which solves DDH, i.e.,
it distinguishes the following two distributions with not negligible success
probability αDDH(k) ≥ αDGDH(n)(k)/(2(n − 1)− 1):

DDH
(0)
k := { (gx1 , gx2 , gz)

:: G← SG(1k); g ← Sg(G); (x1, x2)
R← Z2

|G|; z := x1x2},

DDH
(1)
k := { (gx1 , gx2 , gz)

:: G← SG(1k); g ← Sg(G); (x1, x2)
R← Z2

|G|; z
R← Z|G|}.

The proof is based on a hybrid argument
(Goldwasser and Micali 1984; Goldreich 1998): We define a polyno-
mial sequence of random variables, the hybrids, such that the extremes

correspond to the views to distinguish, e.g., in our case GDH
(0)
k,n and

GDH
(1)
k,n, and each hybrid differs from its neighbors only by an instance of

the distinguishing problem we like to reduce to, e.g., in our case DDH n
k(0)

and DDH n
k(1). It follows that if there is an algorithm which can distinguish

the two extremes with success probability α(k), the same algorithm also
must distinguish at least one pair of neighboring hybrids with a success
probability of at least α(k)/(m − 1) where m is the number of hybrids.

3.5 Decisional Generalized Diffie-Hellman 53

The hybrid argument used in the following proof is slightly involved as
it is inductive. It is based on the following observation:

Let GDH k,n(x1, . . . , xn) be a DGDH(n) instance with secret ex-
ponents x1, . . . , xn and (implicitly) group G and generator g. Let
GDH Key

k,n (x1, . . . , xn) be the key from GDH k,n(x1, . . . , xn), i.e., the element

with label (first component) 1n, and let GDH Public
k,n (x1, . . . , xn) be the pub-

licly known part, i.e. GDH k,n(x1, . . . , xn) \GDH Key
k,n (x1, . . . , xn). Then the

following equality (ignoring a necessary but trivial adjustments of labels)
holds for 2 < i ≤ n:

GDH Public
k,i (x1, . . . , xi) =

GDH Public
k,i−1 (x1, x3, x4, . . . , xi) ∪ GDH Key

k,i−1(x1, x3, x4, . . . , xi) ∪

GDH Public
k,i−1 (x2, x3, x4, . . . , xi) ∪ GDH Key

k,i−1(x2, x3, x4, . . . , xi) ∪

GDH Public
k,i−1 (x1x2, x3, x4, . . . , xi)

This sorts the elements in three groups: the ones which may depend on x1

but not on x2, the ones which may depend on x2 but not on x1, and the ones
which may depend on the product x1x2 but not on x1 and x2 individually.

54 Exploring the Mathematical Foundations

Using this observation, let us define the following four hybrids (again
ignoring a necessary but trivial adjustments of labels):

An := GDH
(1)
k,n

= {GDH Public
k,n−1(x1, x3, . . . , xn) ∪ GDH Key

k,n−1(x1, x3, . . . , xn) ∪

GDH Public
k,n−1(x2, x3, . . . , xn) ∪ GDH Key

k,n−1(x2, x3, . . . , xn) ∪

GDH Public
k,n−1(x1x2, x3, . . . , xn) ∪ (1n, gz)

:: G← SG(1k); g ← Sg(G); (z, x1, . . . , xn) R← Zn+1
|G| }

Bn := {GDH Public
k,n−1(x1, x3, . . . , xn) ∪ GDH Key

k,n−1(x1, x3, . . . , xn) ∪

GDH Public
k,n−1(x2, x3, . . . , xn) ∪ GDH Key

k,n−1(x2, x3, . . . , xn) ∪

GDH Public
k,n−1(c, x3, . . . , xn) ∪ (1n, gz)

:: G← SG(1k); g ← Sg(G); (c, z, x1 , . . . , xn) R← Zn+2
|G| {

Cn := {GDH Public
k,n−1(x1, x3, . . . , xn) ∪ GDH Key

k,n−1(x1, x3, . . . , xn) ∪

GDH Public
k,n−1(x2, x3, . . . , xn) ∪ GDH Key

k,n−1(x2, x3, . . . , xn) ∪

GDH Public
k,n−1(c, x3, . . . , xn) ∪ GDH Key

k,n−1(c, x3, . . . , xn)

:: G← SG(1k); g ← Sg(G); (c, x1, . . . , xn) R← Zn+1
|G| }

Dn := {GDH Public
k,n−1(x1, x3, . . . , xn) ∪ GDH Key

k,n−1(x1, x3, . . . , xn) ∪

GDH Public
k,n−1(x2, x3, . . . , xn) ∪ GDH Key

k,n−1(x2, x3, . . . , xn) ∪

GDH Public
k,n−1(x1x2, x3, . . . , xn) ∪ GDH Key

k,n−1(x1x2, x3, . . . , xn)

:: G← SG(1k); g ← Sg(G); (x1, . . . , xn) R← Zn
|G|}

= GDH
(0)
k,n

Note that An and Bn as well as Cn and Dn differ in essence only in a DDH
(0)
k

tuple (gx1 , gx2 , gx1x2) versus a DDH
(1)
k tuple (gx1 , gx2 , gc). Finally, Bn and

Cn differ only in a GDH
(1)
k,n−1 versus a GDH

(0)
k,n−1 tuple with exponents

c, x3, . . . , xn and keys gcx3···xn and gz, respectively. Given that GDH
(b)
k,2 and

DDH
(b)
k are — ignoring the irrelevant syntactical differences — identical,

the desired equivalence follows almost intuitively by induction on n.
Concretely, I construct ADDH based on a recursive function f(n,ddh) :N ×G3 → 2(In×G) defined as follows:
Let an integer n and a DDH-tuple (gy1 , gy2 , gc) be given as input to f .

Then, f(n,ddh) returns one of 2(n− 1) different hybrids where:

• all hybrids are structurally DGDH instances,

• the extremes correspond to GDH
(0)
k,n and GDH

(1)
k,n, respectively,

3.5 Decisional Generalized Diffie-Hellman 55

• ddh is embedded with equal probability 1/(2(n − 1) − 1) in any two
neighboring hybrids, and

• these neighboring hybrids differ exactly in ddh, i.e., depending whether
ddh was a random or a real DDH tuple we land in one or the other
hybrid.

More precisely, f performs the following steps: If n = 2, simply return the
given DDH-tuple. Otherwise, we toss a coin and proceed as follows:

• With probability 1/(2(n − 1)− 1) we choose x3, . . . , xn and z ran-
domly from Z|G| and return the view

ABn = GDH Public
k,n−1(y1, x3, . . . , xn) ∪ GDH Key

k,n−1(y1, x3, . . . , xn) ∪

GDH Public
k,n−1(y2, x3, . . . , xn) ∪ GDH Key

k,n−1(y2, x3, . . . , xn) ∪

GDH Public
k,n−1(c, x3, . . . , xn) ∪ (1n, gz).

Note that we do not need to know the exponents y1 and y2 to compute
this view, all computations involving these values can be based on gy1 ,
gy2 and gc. Furthermore, observe that depending on c being y1y2 or a
random value we get a view compatible with the distributions An and
Bn, respectively.

• With probability 1/(2(n − 1)− 1) we choose x3, . . . , xn randomly fromZ|G| and return the view

CDn = GDH Public
k,n−1(y1, x3, . . . , xn) ∪ GDH Key

k,n−1(y1, x3, . . . , xn) ∪

GDH Public
k,n−1(y2, x3, . . . , xn) ∪ GDH Key

k,n−1(y2, x3, . . . , xn) ∪

GDH Public
k,n−1(c, x3, . . . , xn) ∪ (1n, gcx3···xn).

Observe that depending on c being y1y2 or a random value we get a
view compatible with the distributions Dn and Cn, respectively.

• With probability 1 − 2/(2(n − 1)− 1) we call f recursively as
ADn−1(x

′
1 . . . , x′

n−1) ← f(n − 1, (gy1 , gy2 , gc)) to get a DGDH(n-1)-
view. Then we choose randomly x1 and x2 from Z|G| and return the
view

BCn = GDH Public
k,n−1(x1, x

′
2 . . . , x′

n−1) ∪ GDH Key
k,n−1(x1, x

′
2 . . . , x′

n−1) ∪

GDH Public
k,n−1(x2, x

′
2 . . . , x′

n−1) ∪ GDH Key
k,n−1(x2, x

′
2 . . . , x′

n−1) ∪

GDH Public
k,n−1(x′

1 . . . , x′
n−1) ∪ GDH Key

k,n−1(x
′
1 . . . , x′

n−1).

If ADn−1(x
′
1 . . . , x′

n−1) is an An−1 or a Dn−1 view, then this view is
compatible with the distribution Bn or Cn, respectively.

56 Exploring the Mathematical Foundations

This concludes the description of f .
The overall construction is now straightforward: ADDH maps the

given DDH-tuple to a DGDH(n)-tuple using f(·), calls ADGDH(n) on this
DGDH(n)-tuple, and returns the resulting bit. A final technicality is the
fact that the correct and random DDH tuples are embedded in different
“directions” in ABn and CDn, respectively. The interpretation of the result
has to be adapted accordingly by remembering in f(·) whether we embed-
ded the DDH tuple into ABn or into CDn, and by inverting the result from
ADGDH(n) in the former case. As the sum of distinguishing gaps between
neighboring hybrids must be at least as much as the distinguishing gap
between the extreme hybrids, above construction yields with the cost of a
single oracle call ADGDH(n) and O(2n) exponentiations a distinguishing suc-
cess probability αDDH(k) ≥ αDGDH(n)(k)/(2(n − 1) − 1). For n constant
or growing at most logarithmically in k, this results in a polynomial-time
algorithm. Furthermore, the resulting success probability is not negligible
as αDGDH(n)(k) is by definition not negligible and the polynomial combi-
nation of a not negligible function with itself is again not negligible. This
concludes the proof for uniform-complexity and low-granularity. Clearly,
this reduction applies also to non-uniform adversaries, as uniform black-box
reductions automatically yield non-uniform reductions. As nothing relies on
properties of low granularity, e.g., no randomizations or assumptions on the
the probability space instances, the reduction applies also to medium and
high granularity.

Remark 3.2. The factor 2n in the reduction cost gives a pretty bad effi-
ciency but is unavoidable due to the size of a GDH(n) instance. However, in
practice the number #pkey of partial keys visible to an adversary is small
(usually, O(n2) in group key agreement protocols). By suitably ignoring
partial keys which are not in the adversary’s view, we can improve to a
time complexity of at most t + O(n #pkey log (|G|)) with the same success
probability. To achieve this we can add an additional input to the recursive
function f which lists the indices of the desired partial keys. The number of
exponentiations in a given recursion step corresponds to the size of this list.
Furthermore, the size of the list passed to any further recursion is at most
the size of the current list. As the index list has size #pkey initially and
there are n − 2 recursion steps we get a maximum number O(n #pkey) of
exponentiations and the desired complexity. As a consequence, the theorem
would hold even if n is a function polynomial in the security parameter k as
long as #pkey can be bounded by a polynomial in k.

Remark 3.3. By sampling random elements from Z|G| in the reduction we
exploited that the group order is known. While the group order might not
always be publicly known, there is always a publicly known upper bound
B(|G|) on the group order as mentioned in Section 3.2 during the discussion

3.5 Decisional Generalized Diffie-Hellman 57

of Parameter 3. If we now consider the two probability ensembles

X ∗
k := {gx∗

:: G← SG(1k) ∧ g ← Sg(G) ∧ x∗ R← Z2kB(|G|)}

and
Xk := {gx :: G← SG(1k) ∧ g ← Sg(G) ∧ x R← Z|G|},

we can prove that they are statistically indistinguishable. First, observe
that we compute in the exponents implicitly modulo |G|. Therefore, it is
sufficient to consider the ensembles

Y ∗
k := {x∗ (mod |G|) :: G← SG(1k) ∧ x∗ R← Z2kB(|G|)}

and
Yk := {x :: G← SG(1k) ∧ x R← Z|G|}.

Investigating their statistical difference , we can derive the following inequal-
ities:

∆(Y ∗,Y)(k) :=
∑

y∈Z|G|

|Prob[Y ∗
k =y]−Prob[Yk =y]|

=
∑

y∈Z|G|

|Prob[Y ∗
k =y]−

1

|G|
|

≤
∑

y∈Z|G|

(maxy∈Z|G|
(Prob[Y ∗

k =y])−miny∈Z|G|
(Prob[Y ∗

k =y]))

= |G| (maxy∈Z|G|
(Prob[Y ∗

k =y])−miny∈Z|G|
(Prob[Y ∗

k =y]))

= |G| (
⌈2kB(|G|)/|G|⌉

2kB(|G|)
−
⌊2kB(|G|)/|G|⌋

2kB(|G|)
)

=
|G|

2kB(|G|)

≤
1

2k

Clearly, from this it follows that Y and Y ∗ (and indirectly X and X ∗)
are statistically indistinguishable. The statistical indistinguishability holds
also for suitably adjusted random ensembles covering exponentiations with
multiple exponents x1, . . . , xn as statistical indistinguishability is closed un-
der polynomial composition. Given that the behavior of the oracle machine
ADGDH(n) cannot significantly differ on input distributions which are statis-
tically indistinguishable from the correct ones — otherwise we would have a
computational and, therefore, also statistical distinguisher — it is sufficient
to sample random exponents from Z2kB(|G|) to make the reduction work

58 Exploring the Mathematical Foundations

also for arbitrary group families.23 This leads to the following more general
theorem:

Theorem 3.3

1/poly(k)-DDH(c:∗; g:∗; f:∗)
α′=α/O(n); t′=t+O(2n(k+log (B(|G|))))
==========================⇒

1/poly(k)-DGDH(n)(c:∗; g:∗; f:∗)
2

◦

The previous relations considered only weak adversaries, i.e., relatively
strong assumptions. However, we can weaken the assumptions by equating
weak and strong adversaries and, therefore, by requiring only the nonexis-
tence of oracles which have to solve virtually all problem instances.

Stadler (1996) and, independently, Naor and Reingold (1997) were the
first to give a reduction from weak to strong DDH, i.e., a self-corrector for
DDH. Their proof showed a randomized reduction (Blum and Micali 1984)
based on the random self-reducibility of DDH for prime-order subgroups
of Z∗

p with known order and high granularity. Boneh (1998) extended this
result to general groups where the group order has no small prime factor
and is publicly known only by an upper bound B(|G|).

The following Lemma is an adaption of their work to the presented frame-
work and medium granularity. The proof will also give a number of (neces-
sary) details not discussed in above papers.

Lemma 3.2

(1−1/poly(k))-DDH(c:∗; g:m; f:nsprim)
α′≥1−1/2k ; t′=(k/α2)(t+O(k+log (B(|G|))))
============================⇒

1/poly(k)-DDH(c:∗; g:m; f:nsprim)
2

Proof. Let a DDH instance ((G, g), (gx, gy , gz)) and an adversary ADDH

breaking medium granularity DDH with not negligible probability α(k) be
given.

23A similar argument (but without proof) is given by Boneh (1998) for random self-
reducing DDH with unknown order. He proposes to sample from ZB(|G|)2. However,

as in virtually all practical cases B(|G|) is considerable larger than 2k, this results in a
much more expensive reduction. Let us consider the following (common) example: The
computation is done in subgroups of Z∗

p with prime order q and an obvious upper bound
on the group order is p. For concreteness, let us use the group parameters suggested by
Lenstra and Verheul (2001) for security parameter k = 80, i.e., p and q having approxi-
mately 1460 and 142 bits, respectively. While my method requires exponentiation with
exponents of 1540 bits, Boneh’s method would require exponentiation with exponents of
2920 bits, i.e., a huge difference!

3.5 Decisional Generalized Diffie-Hellman 59

The first step is to random self-reduce the DDH instance: For this we
choose elements a, a1, a2, a3 from Z2kB(|G|) and compute X ← (gx)aa1gaa2 ,
Y ← (gy)agaa3 and Z ← (gz)aa1(gx)aa1a3(gy)aa2ga2a3 . As G has no small
prime factors ga is a generator with overwhelming probability (this follows
from Lemma 3.1.) If we now set h := ga, x′ := a1x + a2, y′ := y + a3 and
z′ := a1z + a1a3x + a2y + a2a3 then X = hx′

, Y = hy′
and Z = hz′ . There

are two cases to consider:

• If x, y, z is a valid DDH triple (in respect to g), i.e., z = xy, then
X,Y,Z forms also a valid DDH triple (in respect to h) as x′y′ = z′.
Furthermore, the distribution h,X, Y, Z is statistically indistinguish-
able from a uniformly chosen generator in G and a corresponding ran-
dom valid DDH triple due to Remark 3.3 and a2 and a3 acting as
one-time pads.

• If x, y, z is a not a valid DDH triple (in respect to g), i.e., z = xy + c
for some non-zero c ∈ Z|G|, then Z can be written as hx′y′

ha1c. As hc

is a generator with overwhelming probability ha1c is a one-time pad
and the distribution h,X, Y, Z is statistically indistinguishable from a
uniformly chosen generator in G and a corresponding random triple
from G3.

In the second step, we can use this random self-reducibility with stan-
dard amplification techniques to construct a machine which boosts with
O(k/α(k)2) oracle calls24 the success probability to 1− 1/2k:

In the first phase of the amplification, we approximate α(k) by some α̃.
This is achieved by repeatedly sampling two generators and a corresponding
valid and invalid DDH triple, querying the oracle on both DDH instances
and summing up the number of 1’s returned in ET and EF , respectively. Let
n be the number of rounds so far and α̃ := |ET −EF |/n. Further let pT (pF)
be the probability of 1 returned in case of a valid (invalid) DDH triple. This
loop is repeated until with overwhelming probability α̃/2 ≤ α(k) ≤ 3α̃/2.
For this we compute each round the Chernoff bound

Prob[|
Σn

i=1Xi

n
− p| > δ] < 2e

− nδ2

2p(1−p)

by setting δ to α̃/4, Σn
i=1Xi to ET (EF), and p to pT (pF) until 2e

− n(α̃/4)2

2pT (1−pT)

is less than 2−k.25 To derive an upper bound on the number n of iterations

24None of Stadler (1996), Naor and Reingold (1997), or Boneh (1998) describe the de-
tails of the amplification. Boneh (1998) briefly sketches the technique and he as well as
Naor and Reingold (1997) give numbers for the required oracle calls. However, while their
numbers (O(k2/α(k)) and O(k/α(k)), respectively) are better than the one given here,
their papers lack any analysis on how they arrived at these numbers. Furthermore, it
seems quite surprising that they could avoid the Chernoff bound and its δ2 which almost
certainly will result in the number of oracle calls being a function of α(k)2.

25This assumes that k is known. While this might not always be the case, we can always
derive an upper bound from the inputs!

60 Exploring the Mathematical Foundations

required by this phase we consider the worst case scenario in above configu-
ration of the Chernoff bound given by α(k) = 3α̃/2, which minimizes δ, and

p = 0.5, which maximizes 2e
− nδ2

2p(1−p) . Then it holds that

n ≤
k ln(2) + ln(2)

2(α(k)
6)2

=
O(k)

α(k)2
.

In the second phase of the amplification, we call the oracle n times —
where n is same as the one computed above — on a random self-reduced
version of the given DDH problem instance and sum up the number of 1’s
returned in E?. If |E? − ET | ≤ α̃/2 we return 1, otherwise 0. It is easy to
see — using the Chernoff bound — that we return the correct answer with
probability at least 1− 2k .

This approach does not directly lead to an algorithm which is polyno-
mial time according to my definition in Section 3.1.3: The first phase of
the amplification is guaranteed to be polynomial only for the (by definition
infinitely many) kj’s where the success probability α(k) of the given weak
adversary can be lower bounded by the inverse of some polynomial p(·), but
not necessarily for the other kj ’s. However, let us define a family of algo-
rithms indexed by a polynomial pi(·) which perform above self-correction
but abort the first phase of the amplification when more than k pi(k)2

steps are performed. Clearly, all elements of this family have a runtime
of O(k pi(k)2(t + O(k + log (B(|G|))) and, therefore, are strictly polynomial
time. Furthermore, there are elements of this family, namely all elements
where pi(· · ·) is asymptotically larger than the bounding polynomial p(·)
of the adversary’s success probability, which fulfill the criteria of a strong
adversary. In particular, they do this for exactly the same kj ’s where the
criteria is fulfilled for the given weak adversary. As this holds for both uni-
form and non-uniform adversaries, the Lemma follows. However, note that
this is only an existential argument. The algorithms are not constructive
as none of the success probability α(k), the bounding polynomial p(·) or
the related points kj’s are either a-priori known or can be approximated by
querying the oracle in strict polynomial time!

Remark 3.4. The random self-reducibility holds only for group families
where the group order contains no small prime factor. However, if the group
order is known, we can extend the result to group families with arbitrary
order and achieve slightly improved efficiency, i.e.,

Lemma 3.3

(1−1/poly(k))-DDH(c:∗; g:m; f:o)
α′≥1−1/2k ; t′=(k/α2)(t+O(log (|G|)))
========================⇒

1/poly(k)-DDH(c:∗; g:m; f:o).
2

3.5 Decisional Generalized Diffie-Hellman 61

Proof. By Lemma 3.2 this holds for group families where the group order
contains no small prime factor. The improved efficiency stems from the
public knowledge of the group order which allows us cheaper randomizations.
For the the remaining group families, this lemma holds as for all such families
the group order contains by definition at least one small prime factor. Due
to this there is a trivial polynomial-time statistical test based on the order
of the group elements. Therefore, no such DDH assumption can hold for
these group families and the implication follows trivially.

Remark 3.5. As it is easy to adapt above random self-reducibility to high-
granularity — just omit the randomization of the generator with a — above
self-corrector works also for high granularity. Unfortunately — and oppo-
site to what is implicitly claimed by Boneh (1998) — above self-corrector
does not directly extend to low granularity as the “classical” random self-
reducibility mentioned above does not apply to the low granularity case and
no other approach of amplifying low-granularity oracles is known so far. ◦

Combining Lemma 3.3 with Theorems 3.1 and 3.2 immediately yields the
following corollary which serves as the basis of the security of the protocols
presented later:

Corollary 3.1

(1−1/poly(k))-DDH(c:∗; g:m; f:o)
α′≥1−1/2k ; t′=(O(n2k/α2)(t+O(2n log (|G|)))
=============================⇒

1/poly(k)-DGDH(n)(c:∗; g:l; f:o)
2

Remark 3.6. As there is no low-granularity self-corrector (see Remark 3.5)
we can rely on a strong assumption only in their medium or high granular-
ity variant. However, note that the requirement of increased group size in
medium granularity due to weak groups (Gordon 1993a) (see Section 3.4)
does not apply to the protocols proposed later as the group choice is guar-
anteed to be random. ◦

We can also combine the previous results with the following Theorem by
Shoup (1997) that DDH is provably hard in the generic model:

Theorem 3.4

true =⇒ 1/poly(k)-DDHσ(c:∗; g:h; f:nsprim)

2

This trivially leads to the following corollary:

62 Exploring the Mathematical Foundations

Corollary 3.2

true =⇒ 1/poly(k)-DGDH(n)σ(c:∗; g:l; f:nsprim)

2

This raises our confidence that under a suitable choice of the algebraic group,
namely that the group order does not contain any small primes, this is a
good assumption to base the security of a protocol upon.

Further confidence can also be drawn from the following results:
Boneh and Venkatesan (1996), Gonzalez Vasco and Shparlinski (2000),
Shparlinski (2000) and Boneh and Shparlinski (2001) investigate the
bit-security of DH and narrow the gap between the decisional and the
computational variant; Canetti et al. (2000) show desirable statistical
properties of DDH triples; and Coppersmith and Shparlinski (2000) prove
the difficulty of approximating DH and DL by polynomials or algebraic
functions.

3.6 Key Derivation

From an abstraction point of view, we would like that keys returned from a
key-exchange are random k-bit strings rather than protocol-dependent keys
of special form and properties.

Therefore, there must be a way to derive a random bit-
string from a Generalized-Diffie-Hellman key. This can be achieved
with the help of (pairwise independent) universal hash func-
tions (UHF) (Carter and Wegman 1979). A (pairwise independent) uni-
versal hash function family UHF is defined as follows:

Definition 3.1 Let UHF := ({hi : {0, 1}n(k)→{0, 1}mn(k)|i∈Z2ln(k)} | k∈N) be a family of function ensembles with n, mn and ln being functions
mapping natural numbers to natural numbers. Then UHF is a (pairwise
independent) universal hash function family if

Prob[(hY (x) = a) ∧ (hY (x′) = a′) :: Y R← {0, 1}ln(k)] = 2−2mn(k)

for all k ∈ N, x ∈ {0, 1}n(k), x′ ∈ {0, 1}n(k) \ {x}, and for all a, a′ ∈
{0, 1}mn(k). 3

To derive a bit string from a Generalized-Diffie-Hellman key we take the
following two steps:

First, we construct a suitable universal hash function family UHFG,k

from groups to bit strings: We take an arbitrary family of injective
polynomial-time mappings26 (Fk : G(k) → {0, 1}nk | k ∈ N) with G(k)

26Such a mapping must trivially exist as we compute ultimately on bit strings and,
therefore, as we have to represent group elements as bit strings.

3.6 Key Derivation 63

the union of all group elements of the group siblings GSG(k) and for some
nk. Then we compose it element-wise for each k ∈ N with an arbitrary uni-
versal hash function family27 for which mn(k) = k and ∀k ∈ N : n(k) ≥ nk

holds. As the probability statement for a universal hash function has to
hold for all pairs x, x′ (i.e., the probability space is only over the function
indices, not the elements from the domain) this property is retained by this
composition due to the injective nature of Fk.

Secondly, we choose a random element h of UHFG,k and apply it on the
Generalized-Diffie-Hellman key to derive a k-bit string.

The security of this approach is shown in the following lemma:

Lemma 3.4

1/poly(k)-DGDH(n)(c:∗; g:∗; f:nsprim) ∧ ∀G ∈ GSG(k) : |G| ≥ 23k

α′≥α−2−k ; t′=t
===========⇒

(h(g
Q

xi),GDH Public
k,n (x1, . . . , xn), h)

c
≈ (K,GDH Public

k,n (x1, . . . , xn), h)

where h ∈R UHFG,k, h denotes a description of the function h, (xi) ∈R Zn
|G|,

and K ∈R {0, 1}
k. 2

Before proving this lemma, let me introduce a definition from in-
formation theory: The Renyi entropy (of order two) R(X) of
a random variable X on some discrete domain S is defined as
−log(

∑
x∈S Prob[X = x]2). Furthermore, we require the following lemma

from H̊astad, Impagliazzo, Levin, and Luby (1999):28

Lemma 3.5 (Entropy Smoothing Lemma) Let n(k), mn(k), en(k) and
ln(k) be functions N → N with the constraints mn(k) ≤ mn(k) + 2en(k) ≤
n(k). Let UHF := ({hi : {0, 1}n(k) → {0, 1}mn(k)|i ∈Z2ln(k)} | k ∈ N) be a
family of universal hash function ensembles. Furthermore, let X be a family
of random variables indexed by k ∈ N and defined on domain {0, 1}n(k) with
arbitrary distribution and R(Xk) being at least mn(k) + 2en(k). Finally, let
Y and Z be two families of random variables with uniform distribution on
domain {0, 1}ln(k) and {0, 1}mn(k), respectively. Then it holds that

∆(<hY (X),Y >, <Z ,Y>)(k) ≤ 2−(en(k)+1)

where < X ,Y > denotes the concatenation of the random variables X and
Y . 2

Based on this we can prove Lemma 3.4 as follows:

Proof. Let GDH k,n ← GDH
(0)
k,n, h

R← UHFG,k, z R← Z|G|, and K R← {0, 1}k

27For constructions of universal hash functions which are efficient and appropriate in
this context see, e.g., (Schweinberger and Shoup 2000).

28The lemma is slightly extended from its original formulation (H̊astad et al. 1999) to
cover the asymptotic environment as required in our context.

64 Exploring the Mathematical Foundations

be families of random variables (implicitly) indexed by k. Furthermore, let
us refer to G and g as the random variables defining the underlying structure
instance implicitly induced by GDH k,n.

Given that gz is a uniformly distributed random element, the Renyi
entropy of it is log (|G|). Hence, we can set en(k) := (R(Xk)−mn(k))/2 = k
(note that mn(k) = k by construction of UHFG,k and R(Xk) = log (|G|) ≥
3k by the corresponding precondition of Lemma 3.4). Applying lemma 3.5
we derive that the statistical difference of (h(gz), h) and (K, h) is at most
2−(k+1) and, therefore, negligible. Furthermore, given that gz is independent
of GDH Public

k,n and that statistical indistinguishability implies computational
indistinguishability it also holds that

(GDH Public
k,n , h(gz), h)

c
≈ (GDH Public

k,n ,K, h).

Furthermore, by Theorem 3.2 and the statistical indistinguishability of
(gz :: z R←Z|G|) and (g

Q
zi :: (z1, . . . , zn) R←Z|G|

n) for groups with no small
prime factor (see proof of Theorem 3.2) it has to hold that

(GDH Public
k,n , h(GDH Key

k,n), h)
c
≈ (GDH Public

k,n , h(gz), h)

and by transitivity

(GDH Public
k,n , h(GDH Key

k,n), h)
c
≈ (GDH Public

k,n ,K, h),

our desired result.

Remark 3.7. A slightly better variant of key derivation could be based on
Shoup’s hedge (Shoup 2000): Compute the key as h(gx1,...,xn)⊕H(gx1,...,xn)
where H is a random oracle. It follows that in addition to the security in
the standard model based on DGDH(n) the derived key is also secure in the
random oracle model (Bellare and Rogaway 1993) based on CGDH(n).

Unfortunately, there is no known reduction from CDH to CGDH(n). The
best we can do is to self-correct for medium and high granularity a weak
CGDH(n) oracle to a corresponding strong oracle deploying the techniques
developed to self-correct CDH (Maurer and Wolf 1996; Shoup 1997).29 The
weakest possible assumption, (1−1/poly(k))-CGDH(n)(c:∗; g:m; f:nsprim),
is rather non-standard and is certain to hold only in the random oracle
model. This model requires “magical” properties not realizable in gen-
eral (Canetti, Goldreich, and Halevi 1998). Therefore, the hedge seems to
provide only limited benefit when considering general group families.

However, a noticeable exception are the multiplicative groups of integers
modulo a product n of two large primes p and q with p = q = 3 (mod 4),

29Self-correcting ∗-CGDH(n)(c:∗; g:∗; f:∗) is non-trivial as to amplify in the naive way
would require solving ∗-DGDH(n)(c:∗; g:∗; f:∗)!

3.6 Key Derivation 65

i.e., p and q are Blum integers, and p− 1 and q − 1 contain no small prime
factor. In such groups, we can reduce the (well-known and often-used) fac-
toring problem to the computational variant of GDH(n) (Shmuely 1985;
Biham, Boneh, and Reingold 1999) and both the decisional variant of DH
and the factoring problem – and consequently decisional and computational
GDH(n)— are assumed to be hard. Therefore, it certainly seems to be a
good idea to apply above hedge when such groups are used and the factor-
ization of the group order is guaranteed to be secret. ◦

66 Exploring the Mathematical Foundations

Chapter 4

CLIQUES

In this Chapter, I present CLIQUES, a complete family of protocols for
key management in dynamic peer groups, namely, initial key agreement,
key refresh and membership change. I analyze properties and efficiency of
these protocols and give arguments for their security. The protocols assume
a model with authenticated channels and are secure under the Decisional
Diffie-Hellman assumption.

E
QUIPPED with the requirements and desirable properties of group key
agreement as well as the necessary mathematical foundations presented

in the previous two chapters, we are now ready to look at concrete group
key agreement protocols. In this chapter, I present CLIQUES, a complete
family of protocols for key management in dynamic peer groups, namely, ini-
tial key agreement, key refresh and membership change, i.e., single-member
and subgroup operations for joining and leaving a group.

For all protocols we assume a model where all communication channels
are authenticated but not private. This means that a receiver of a mes-
sage can be sure of the identity of the originator and the integrity of that
message. Therefore, an adversary may not, in any way, directly interfere
with it. However, an adversary still can eavesdrop on arbitrary communica-
tion between honest parties. He also can misbehave when directly involved
in a protocol run. Finally, he can (potentially adaptively) corrupt honest
parties to cheat disguised under their identity. The assumption that chan-
nels are authenticated is rarely realistic in practice. However, adapting1

the compiler techniques from Bellare, Canetti, and Krawczyk (1998) to the
PKI model presented in Chapter 2, it is possible to automatically construct

1The PKI model considered here is weaker (and more realistic) than the one implicitly
defined in Bellare et al. (1998). This difference requires that the MT-authenticators from
Bellare et al. (1998) need to include both involved identities and not only as done in their
original form.

67

68 CLIQUES

Figure 4.1 Notational conventions used throughout Chapter 4

n number of protocol participants (group members)
i, j, r,m, d, c indices of group members

Mi i-th group member; i ∈ {1, . . . , n}
M∗ all group members
G cyclic algebraic group
|G| order of G (must not contain small prime factors)

g exponentiation base; generator of G
xi, x̂i secret exponents ∈R Z|G| generated by Mi∏

(S) product of all elements in sequence S
Kn group key shared among n members

protocols also secure in unauthenticated networks. This allows us to obtain
a very modular and clean approach to the design of secure protocols.

The organization of the remainder of this chapter is as follows. In Sec-
tion 4.1 I define a class of protocols that I call natural extensions of the
two-party Diffie-Hellman key exchange and prove the security of all proto-
cols in this class in a network with authenticated channels, provided the
two-party Decisional Diffie-Hellman problem is hard. This result allows us
to craft a number of efficient protocols without having to be concerned about
their individual security. In particular in Section 4.2, I present two new pro-
tocols, each optimal with respect to certain aspects of protocol efficiency.
Subsequently in Section 4.3, we consider a number of different scenarios of
group membership changes and introduce protocols which enable addition
and exclusion of group members as well as refreshing of the keys. Altogether,
the protocols described below form a complete key management suite geared
specifically for DPGs. However, it should be noted from the outset that re-
lated policy questions such as access control decisions are not treated: They
are, due to the policy independence of the proposed protocols, orthogonal
issues. In Section 4.4 I compare the work presented here with related work
and conclude in Section 4.5.

4.1 Generic n-Party Diffie-Hellman Key Agree-
ment

The Diffie-Hellman key exchange protocol (Diffie and Hellman 1976),
depicted in Figure 4.2 (see also Figure 4.1 for some notational conven-
tions used in this chapter), is the basis for most key agreement protocols
in the two-party case. Furthermore, under the Decisional Diffie-Hellman
assumption this protocol is secure in a model with authenticated channels

4.1 Generic n-Party Diffie-Hellman Key Agreement 69

Figure 4.2 Two-party Diffie-Hellman key-exchange

M1 M2

x1
R← Z|G|

−
gx1

−−−−−−−−−−→

x2
R← Z|G|

←−
gx2

−−−−−−−−−−

K2 ← (gx2)x1 K2 ← (gx1)x2

(Bellare et al. 1998).2

All key agreement protocols presented later belong to a large class of pro-
tocols which can be seen as natural extensions of two-party Diffie-Hellman
key exchange to the n-party case.

Scheme 4.1 (Class of natural n-party extensions of the Diffie-
Hellman key exchange)

Let there be n participating group members3 M1, . . . ,Mn. As in the
two-party case, all participants agree a priori on a cyclic group G. Let g be
a generator of G.

For each key exchange, each member, Mi, chooses randomly a value
xi ∈ Z|G|. The group key will be Kn = gx1···xn . In the two-party case, K2

is computed by exchanging gx1 and gx2 , and computing K2 = (gx1)x2 =
(gx2)x1 . To solve the n-party case, a certain subset of the partial GDH

keys (g
Q

βi=1 xi | β ∈ In\{1
n}) is exchanged between the participants (and,

therefore, exposed to the adversary). This set has to include for all i the
value gx1···xi−1xi+1···xn . If Mi receives that value, it can easily compute Kn

as (gx1···xi−1xi+1···xn)xi .
Furthermore, we require that all protocols of this class have following

properties:

1. All communication is over authenticated channels.

2. The system parameters are generated by a trusted party Gen using
some generation algorithm genG. In particular, genG determines an

2More precisely, the protocol is secure against static adversaries. Further precaution
has to be taken to be secure against (strong) adaptive attacks (Shoup 1999).

3Note that the notation Mi and the corresponding index i of protocol participants are
not “real” identifiers. They are only aliases which give some ordering among the protocol
participants and can be used to synchronize and coordinate the protocol. The ordering is
arbitrary and specific to a single protocol run only. In particular, it does not presuppose
any fixed and static ordering among protocol participants.

70 CLIQUES

(algebraic) group G based on a (trusted) group sampler SGG for a
group family G where no group G has a group order |G| containing any
small prime factors. Furthermore, genG also fixes a generator g using
a generator sampler Sg. Finally, the trusted party Gen distributes the
system parameters, including the group order |G| and its factorization,
reliably to all potential group members.

3. The protocol ensures that no flow ever contains gx1···xn , the group key
Kn, or values derived from it. Furthermore, each member Mi keeps the
secret exponent xi securely and uses it solely to compute, as necessary,
partial GDH keys and the group key.

4. The protocol ensures that each message contains identifiers indicating
the particular group, session, and corresponding group membership
view of the sender. Furthermore, messages have to be typed, e.g.,
to uniquely determine their exact position in the protocol. For AKA
operations (see Section 4.3), we additionally require an identifier to
the particular AKA epoch.

5. All participants verify that received messages have the proper format
and contain valid4 elements of G of maximal order, i.e., generators,
and reject any other message.

3

As we see in the following theorem, all protocols in this class have the
same security properties.

Theorem 4.1 All protocols in the class of natural n-party ex-
tensions of the Diffie-Hellman key exchange are secure authen-
ticated key-agreements protocols assuming that the assumption
(1−1/poly(k))-DDH(c:∗; g:m; f:fct,nsprim) holds. In particular, the
protocols are contributory and ensure semantic security and freshness of the
group key. They also provide implicit and mutual group key authentication.
Furthermore, the protocols provide PFS and are resistant to KKA. 2

Proof (sketch).5 It is clear that the security of protocols in this class is closely
related to the Generalized Diffie-Hellman problem which we investigated in
Section 3.5. More precisely, let us look at the different properties mentioned
in the theorem in turn:

Due to property 3, the protocol does not leak information on the group
key other than some related partial GDH keys. Therefore, the key se-
crecy depends solely on a suitable variant of the Generalized Diffie-Hellman

4We assume that, in addition to the group operations mentioned in Section 3.1.5, group
membership tests can be performed efficiently.

5Note that the following security argumentation matches past practice in proving se-
curity for group key protocols. However, to better contrast it to the formal proof in
Chapter 5 I call the argumentation here only a proof sketch.

4.1 Generic n-Party Diffie-Hellman Key Agreement 71

assumption. Property 2 allows us to rely on a low-granularity assump-
tion. Therefore, the validity of the low-granular DGDH assumption with
weak success probability, i.e., 1/poly(k)-DGDH(n)(c:∗; g:l; f:fct,nsprim), is
sufficient to guarantee key secrecy.6 Note that by relying on a decisional
assumption we ensure the semantic security of the session key.7 Corol-
lary 3.2 tells us that this assumption is true in the generic model. The
assumption is not necessarily true in the specific (non-generic) model.
However, we can weaken this assumption further: Taking Lemma 3.1,
we require only that the medium-granular, strong DDH assumption, i.e.,
(1−1/poly(k))-DDH(c:∗; g:m; f:fct,nsprim), holds.

Due to Properties 1 and 4, all (honest) participants who successfully
terminate the protocol for a given session will agree on a common session
key and a common group membership view. Together with the key secrecy
discussed above, we achieve implicit mutual group key authentication.

The protocols are contributory key-agreement protocols due to Proper-
ties 4 and 5, and the difficulty of taking discrete logarithms which is implied
by above DDH assumption. The difficulty of taking discrete logarithms is re-
quired to make it hard to recover the secret contribution of individual mem-
bers and to ensure that the protocol is contributory. Property 5 is required
to counter attacks, e.g., a small subgroups attack (Lim and Lee 1997). Such
an attack could violate key freshness in the presence of dishonest insiders,
a property required by a key-agreement protocol, as the key could become
predictable and would not be fresh. Note that the restriction that transmit-
ted group elements must have maximal order is of no harm even as protocol
participants choose their exponents uniformly from ZG. The probability
that a random element of G does not have maximal order is 1− ϕ(|G|)/|G|
and is negligible for the groups considered here (see Lemma 3.1.) Therefore,
no protocol failures should happen in practice due to an honest participant
choosing “bad” exponents such that some transmitted partial GDH keys do
not have maximal order.

A priori we do not have any long-term keys. However, implementing au-
thenticated channels with the compiler techniques mentioned above involves
long-term keys. Reasonably assuming that the choice of the long-term keys
is independent from the choice of the secret exponents, an adversary gain-
ing access to these long-term keys cannot learn anything new about past
messages; we already assume the content of these messages to be known.
Furthermore, sessions terminated before the exposure of the long-term key

6This makes it clear why I required the restriction on the group family G: No DGDH
assumption can hold if there are groups for which the group order contains some small
prime factors.

7Using a key derivation based on cryptographic hash functions we could resort to a
(weaker) computational assumption at the cost of having to resort to the (very strong)
random oracle model. See Remark 3.7 for an approach which combines the benefits of the
standard and the random oracle model.

72 CLIQUES

were protected by the compiler which prevented active attacks on them.
Therefore, an adversary can attack past sessions only passively. As the ad-
versary does not learn anything new, above argumentation regarding the
key secrecy still holds. Furthermore, all other security properties mentioned
in the theorem are inherently immune to passive attacks. This means that
the protocols also guarantees PFS.

Finally, if we consider different protocol runs, it is clear that, due to
the contributory nature of the protocols and the random choice of secret
contributions by honest participants, the keys of different sessions are inde-
pendent. Therefore, the loss of a key of one session does not endanger any
other sessions and we get security against KKA.

Remark 4.1. We also could allow an arbitrary group member to generate
the system parameters. However, since initially none of them could be
trusted, we would have to resort to a high-granularity assumption and all
group members would have to verify that the system parameters are in fact
members of the desired group family. See Section 3.4 for more information
on this issue and other alternatives, e.g., a joint generation.

Remark 4.2. Note that the protocols in above class yield only implicit group
key authentication since not all group members will necessarily be convinced
about the active presence of all other group members.

However, if we extend above protocols such that after the successful es-
tablishment of the key each member notifies all other members about this
fact, we can achieve explicit group key authentication. If everybody contacts
everybody, we get in addition complete group key agreement. However, if
this is not required, the notification can be indirect and is probably best
performed in two round: first, everybody sends a message to a dedicated
member; second and after the receipt of all these messages, the dedicated
member broadcasts this event to all group members. Of course, the com-
munication has to be over authenticated channels (Property 1). However,
besides the identification information required to fulfill Property 4, the no-
tification messages can be “empty”.

Such a strategy implicitly also provides key confirmation even though
the notification messages are not directly linked to the key! Key confir-
mation is usually defined only vaguely and informally, e.g., as “evidence
that a key is possessed by some party” (Menezes et al. 1997). The only rea-
sonably formal characterization is a proof of knowledge (Feige et al. 1987;
Tompa and Woll 1987; Bellare and Goldreich 1993). In a key confirmation
protocol, the prover is implicitly trusted by the verifier. If the authentic-
ity of messages from the prover is guaranteed, e.g., as in our case due to
the authenticated channels, a simpler variant, namely a proof of knowl-
edge with honest provers, is sufficient. This basically means that the
knowledge extractor, who has access to the prover’s machine, will know the

4.2 CLIQUES: Initial Key Agreement 73

“program” of the prover and understand its internal state. In our case, we
can trivially construct a knowledge extractor from the notification proto-
col. The receipt of a notification message of some particular group member
shows that this party, the prover, has computed the group key and we can
just read it from the provers working tape. Note that in the light of the dis-
cussion on the semantic security of session keys, we require a zero-knowledge
(Goldwasser et al. 1989) variant of a proof of knowledge. Nonetheless, this
is clearly fulfilled in our case as no information on the key is contained in the
notification flows. (By contrast, many “classical” key confirmation protocols
often violate the semantic security of session keys by the inappropriate use
of these keys in the protocol flows!)

Remark 4.3. For proper group key authentication and session association,
the proof relies crucially on Property 4, the inclusion of identifiers for the
group, session, and corresponding group membership view in each message.
In a naive implementation these identifiers would grow linearly in the num-
ber of sessions and the size of the group, and might become rather big.
However, by using collision-resistant hash functions we can securely com-
press identifiers and reduce this overhead to be essentially constant (the
growth of the hash-function’s output length required by an increasing secu-
rity parameter should be irrelevant in practice). ◦

Hereafter, the above result allows us to construct a number of specific
protocols belonging to the class of natural n-party extension of DH without
worrying too much about their individual security. For clarity, I omit in
the remainder of this chapter identifiers contained in messages and the tests
performed by receivers as required by Properties 4 and 5. However, when
implementing the protocols in practice, they are clearly necessary and also
correspondingly made explicit later in the formal treatment in Chapter 5.
Furthermore, I assume that the system setup is performed consistent with
Property 2 and communication is over authenticated channels (Property 1).
The remaining Property 3 (no leakage on the group key other than the
partial GDH keys) should be obvious in the following protocols.

4.2 CLIQUES: Initial Key Agreement

The cornerstone of the CLIQUES protocol suite is formed by two IKA proto-
cols called IKA.1 and IKA.2. (They were referred to as GDH.2 and GDH.3,
respectively, in Steiner, Tsudik, and Waidner (1996).)

4.2.1 IKA.1

The first IKA protocol (IKA.1) is depicted in Figure 4.3 and illustrated in
Figure 4.4 by an example protocol run for a group with four members. It
consists of an upflow and a downflow stage.

74 CLIQUES

Figure 4.3 Group Key Agreement: IKA.1

Mi Mi+1

−
(g
Q

(xm|m∈{1,...,i}\{j})| j ∈ {1, . . . , i}), g
Q

(xm|m∈{1,...,i})

−−→

Stage 1 (Upflow): round i; i ∈ {1, . . . , n− 1}

M∗ Mn

←−−−−
(g
Q

(xm|m∈{1,...,n}\{j})| j ∈ {1, . . . , n})
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Stage 2 (Broadcast): round n

Figure 4.4 Example of IKA.1. (The dotted line denotes a broadcast. The g
in the first message could be omitted, but allows a more unified description.)

M1 M2 M3 M4

x1
R← Z|G|

−
g, gx1

−−−−−→

x2
R← Z|G|

−
gx2 , gx1 , gx1x2

−−−−−−−−−−−→

x3
R← Z|G|

−
gx2x3 , gx1x3 , gx1x2 , gx1x2x3

−−−−−−−−−−−−−−−−−−−−−→

x4
R← Z|G|

←−−−−−−−−−
gx2x3x4 , gx1x3x4 , gx1x2x4 , gx1x2x3

−−−−−−−−−−−−−−− −−−−−−−− −

K4 ←
(gx2x3x4)x1

K4 ←
(gx1x3x4)x2

K4 ←
(gx1x2x4)x3

K4 ←
(gx1x2x3)x4

4.2 CLIQUES: Initial Key Agreement 75

The purpose of the upflow stage is to collect contributions from all group
members, one per round. In round i (i ∈ {1, . . . , n−1}), Mi unicasts Mi+1 a
collection of i+1 values. Of these, i are intermediate and one is cardinal. The
cardinal value CRDi is simply the generator raised to all secret exponents
generated so far:

CRDi := g
Q

(xm|m∈{1,...,i})

Let INTi,j denote the j-th intermediate value in round i. It is always of the
following form (i.e., CRDi with the j-th exponent missing):

INTi,j := g
Q

(xm|m∈{1,...,i}\{j}) for j ∈ {1, . . . , i}

Mi’s computations upon the receipt of the upflow message can now be de-
scribed as follows:

1. generate private exponent xi
R← Z|G|

2. set INTi,j = (INTi−1,j)
xi for all j ∈ {1, . . . , i− 1}

3. set INTi,i = CRDi−1

4. set CRDi = (CRDi−1)
xi

In total, Mi composes i intermediate values (each with (i − 1) exponents)
and a cardinal value containing i exponents.

In round (n − 1), when the upflow reaches Mn, the cardinal value be-
comes gx1···xn−1 . Mn is thus the first group member to compute the key Kn.
Also, as the final part of the upflow stage, Mn computes the last batch of
intermediate values. In the second stage Mn broadcasts the intermediate
values to all group members.

The highest-indexed group member Mn plays a special role by having to
broadcast the last round of intermediate values. However, this special role
does not afford Mn any added rights or privileges. The reason IKA.1 broad-
casts the last flow, instead of unicasting n−1 shares individually (potentially
saving some bandwidth), will become apparent later in Section 4.3 when I
discuss AKA operations: This allows us to achieve policy independence on
group controllership. Furthermore and depending on the underlying group
communication system (see Section 2.2.3), a broadcast can give us natural
synchronization and causal ordering of the termination of the protocol.

We now consider the performance characteristics of IKA.1 based on the
measures discussed in Section 2.4. The computation of exponentiations in
G is by far the dominant computational cost factor. Therefore, we can take
into account the number of required exponentiations as the only measure for
the computational cost. As the size of the messages depends on the particu-
lar choice of the algebraic group G, its encoding and the additional overhead
of group and session identifiers, I will not be able to give concrete commu-
nication costs. The overhead can always be kept constant (see Remark 4.3)

76 CLIQUES

in the number of group members and the elements of G, i.e., the partial
GDH keys, are the only non-linear size aspect of a message. Therefore, I
will just count the number of transmitted elements of G to measure the
cumulative message size. From this, you can then easily derive the concrete
bandwidth requirement once the concrete parameters, such as the group
G and its encoding, are known. This results in the following measures for
IKA.1:

rounds n
unicast messages n− 1

broadcast messages 1

cumulative message size n(n+3)
2 − 1

exponentiations per Mi (i + 1) for i < n, n for i = n

exponentiations on critical path n(n+1)
2

Some remarks on these characteristics:
The number of required messages, n, is optimal in a network model

which provides broadcasts. IKA.1 is also optimal in that respect in a
network model which does not provide broadcasts (and in which case we
can implement the broadcast as n − 1 unicasts and we require a total
2(n − 1) unicast messages.) For the proof of these properties I refer you
to Becker and Wille (1998) who systematically analyze the communication
complexity of contributory group key agreement protocols.

The computational cost of the critical path is quadratic in the number
of participants. This is certainly a potential problem for the scalability of
IKA.1 to large groups. However, I argued that DPGs are relatively small
so the negative effect should be limited. Furthermore, in the case where
this cost dominates the overall duration of the protocol, e.g., delays due to
networking are much smaller, and becomes problematic, we can apply the
following optimization: Instead of having each group member perform all
exponentiations and accumulate the corresponding results before sending
the complete message, we can interleave the computation and the communi-
cation in a pipeline fashion, i.e., forward the individual partial GDH keys of
a message as soon as they are computed. This will optimize the critical path
and cut down the cost to 2n−1 exponentiations, i.e., linear cost! Of course,
pipelining increases the number of messages and corresponding communica-
tion costs and, potentially, this outweighs that gain. The optimal strategy
might be to pipeline with coarser granularity, i.e., several partial GDH keys
per message instead of one only, and to choose the granularity according to
the ratio of computation and communication costs.

4.2.2 IKA.2

In certain environments, it is crucial to minimize the amount of computation
performed by each group member. This is particularly the case in large

4.2 CLIQUES: Initial Key Agreement 77

Figure 4.5 Group Key Agreement: IKA.2

Mi Mi+1

−
g
Q

(xm|m∈{1,...,i})

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Stage 1 (Upflow): Round i; i ∈ {1, . . . , n− 2}

M∗ Mn−1

←−−−−−−−−
g
Q

(xm|m∈{1,...,n−1})

−−−−−−−−−−−−−−−−−−−−−−

Stage 2 (Broadcast): Round n− 1

Mi Mn

−−−−−−−−−
g

Q
(xm|m∈{1,...,n−1})

xi

−−−−−−−−−−−−−−−−−−−−−−→

Stage 3 (Response): Round n

M∗ Mn

←−−−
(g

Q
(xm|m∈{1,...,n})

xj | j ∈ {1, . . . , n})
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Stage 4 (Broadcast): Round n + 1

78 CLIQUES

Figure 4.6 Example of IKA.2

M1 M2 M3 M4

x1
R← Z|G|

−−−−
gx1

−−−−−−−−→

x2
R← Z|G|

−−−−
gx1x2

−−−−−−−−→

comp. x−1

1 comp. x−1

2 x3
R← Z|G|

←−−−−−−−−−
gx1x2x3

−−− −−−−−−−− − −−−
gx1x2x3

−−−−−−→

−−−−−−−−−−−−−−−−−−−−−−−−−
gx2x3

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

−−−−−−−−−−−−−−−
gx1x3

−−−−−−−−−−−−−−−−−−−→

−−−−
gx1x2

−−−−−−−−→

x4
R← Z|G|

←−−−−−−−−−
gx2x3x4 , gx1x3x4 , gx1x2x4 , gx1x2x3

−−−−−−−−−−−−−−− −−−−−−−− −

K4 ←
(gx2x3x4)x1

K4 ←
(gx1x3x4)x2

K4 ←
(gx1x2x4)x3

K4 ←
(gx1x2x3)x4

groups or groups involving low-power entities such as smart cards or PDAs.
Since IKA.1 requires a total of (i + 1) exponentiations of every Mi, the
computational burden increases as the group size grows. The same is true
for message sizes.

In order to address these concerns, I present a very different protocol,
IKA.2 (see Figure 4.5). IKA.2 consists of four stages. In the first stage
IKA.2 collects contributions from all group members similar to the up-
flow stage in IKA.1. After processing the upflow message Mn−1 obtains
g
Q

(xm|m∈{1,...,n−1}) and broadcasts this value in the second stage to all other
participants. At this time, every Mi (i 6= n) factors out its own exponent
and forwards the result to Mn. In the final stage, Mn collects all inputs
from the previous stage, raises every one of them to the power of xn and
broadcasts the resulting n − 1 values to the rest of the group. Every Mi

now has a value of the form g
Q

(xm|m∈{1,...,n}\{i}) and can easily generate the
intended group key Kn. IKA.2 is illustrated in Figure 4.6 by an example
protocol run for a group with four members.

Note that factoring out xi requires computing its inverse — x−1
i

(mod |G|). This is always possible if the group order is known and we
choose the group G as a group of prime order. In the groups mentioned
above, namely groups where the group order does not contain any small
prime factor, not all elements of Z|G| do have an inverse. However, the

4.3 CLIQUES: Auxiliary Key Agreement 79

probability to pick such a non-invertible element is negligible (this follows
from Lemma 3.1) and, therefore, not a problem.

The performance characteristics of IKA.2 are summarized in the follow-
ing table:

rounds n + 1
unicast messages 2n− 3

broadcast messages 2
cumulative message size 3n− 2
exponentiations8 per Mi 4 for i ∈ {1, . . . , n− 2},

2 for i = (n−1), n for i = n
exponentiations on critical path 2n + 1

IKA.2 has two appealing features:

• Constant message sizes and close to optimal cumulative message size
minimize the network bandwidth requirements. A lower bound on the
cumulative message size is 2(n−1) as can easily be seen from a similar
argumentation as used in achieving the lower bounds on the number
of messages in (Becker and Wille 1998). No other contributory group
key agreement protocol is known yet to reach that lower bound or even
improve over IKA.2.

• Constant (and small) number of exponentiations for each Mi (except
for Mn with n exponentiations required) limit computation require-
ments. The total number of exponentiations (5n−6) is only a constant
factor away from being optimal; clearly, there have to be at least 2n
exponentiations.9

One notable drawback of IKA.2 is that, in Stage 3 (n-th round), n−1 unicast
messages are sent to Mn. This might lead to congestion at Mn.

4.3 CLIQUES: Auxiliary Key Agreement

Both IKA protocols operate in two phases: a gathering phase whereby

Mn collects contributions from all participants to compute (g
x1··· xn

xi |i ∈

8The computation of x−1
i (in Z∗

|G|) in Stage 2 is counted as an exponentiation (in G).
The costs are not necessarily identical but the cost of the latter is certainly an upper
bound to the cost of the former. Furthermore, note that the computation of the inverse
is not on the critical path as it can already be done in parallel to stage 1 and 2. However,
factoring out the exponent needs, besides the computation of the inverse, an additional
exponentiation which is on the critical path.

9In a contributory agreement protocol, each participant has to contribute the own
secret key share — in our case, using an exponentiation — at least once to provide the
required input for the key computation of other parties and a second time to derive the
actual key.

80 CLIQUES

{1, . . . , n}) and a final broadcast phase. The following AKA operations
take advantage of the keying information (i.e., partial keys) collected in the
gathering phase of the most recent IKA protocol run. This information
is incrementally updated and re-distributed to the new incarnation of the
group. In particular, any member who caches the most recent message of
the final broadcast round can initiate an AKA operation. Any member can
take over the role of group controller at no cost and whenever the situation
requires it, e.g., when the former group controller abruptly disappears due
to a crash or network partition. This way, these protocols achieve complete
policy independence.

Since the final broadcast phase is exactly the same for both IKA.1 and
IKA.2 we note that the AKA operations described below work with both
IKA protocols. This results in the flexibility to choose an IKA protocol that
suits a particular DPG setting.

In the following, we look first at the concrete protocols for the different
AKA operations. Afterwards in Section 4.3.7, we will investigate the security
of these protocols.

4.3.1 Member Addition

The member addition protocol is shown in Figure 4.7 and illustrated by an
example in Figure 4.8. As mentioned above I assumed that the current group
controller Mc (c ∈ {1, . . . , n}) remembers the contents of the broadcast
message that was sent in the last round in the IKA protocol of Figure 4.3.10

In effect, Mc extends Stage 1 of IKA.1 by one round: it generates a
new and random exponent x̂c and creates a new upflow message. x̂cxc

is used in place of xc to prevent the new member and outsiders from
learning the old group key. The broadcast in the second round is then
identical in its structure10 to the final broadcast flow in the IKA pro-
tocols and allows all group members to compute the new group key:

Knew = gxc
Q

(xm|m∈{1,...,n+1}).
Additionally, Mc replaces xc by x̂cxc mod |G| as its own contribution for
further AKA operations. This is the reason for not blinding partial GDH
keys which do not contain Mc’s old contribution xc, i.e., g

Q
(xm|m∈{1,...,n}\{c}).

While blinding all partial GDH keys would have simplified the protocol de-
scription in Figure 4.7, we save with the current protocol one exponentiation
and protect past session keys even when (the new) xc would be lost later.

The performance characteristics of the member addition protocol are
summarized in the following table:

10This is only the case for the very first member addition; subsequent member additions
as well as other AKA operations require the current controller to save the most recent
broadcast message from the AKA operation of the preceding epoch.

4.3 CLIQUES: Auxiliary Key Agreement 81

Figure 4.7 Member Addition (The new member is Mn+1)

Mc Mn+1

−

(gxc
Q

(xm|m∈{1,...,n}\{j})| j ∈ {1, . . . , n} \ {c}),

g
Q

(xm|m∈{1,...,n}\{c}), gxc
Q

(xm|m∈{1,...,n})

−−→

Upflow: round 1 (xc ← xcx̂c)

M∗ Mn+1

←−

(gxc
Q

(xm|m∈{1,...,n+1}\{j})| j ∈ {1, . . . , n + 1} \ {c}),

g
Q

(xm|m∈{1,...,n+1}\{c})

−−

Broadcast: round 2

To prevent too much clutter in the presentation of this figure, I list in the flows
the partial GDH keys containing bxcxc before the corresponding (single) partial GDH key
which does not contain this exponent. However, I assume that here as well as for the
AKA protocols presented later the partial GDH keys are sorted according to the same
order relation on members as in the corresponding IKA flows.

Figure 4.8 Example of member addition. M2 is the current group con-
troller, Kold is gx1x2x3 and M4 is the new member.

M1 M2 M3 M4

x̂2
R← Z|G|

−−−−
gx2x2x3, gx1x3, gx1x2x2, gx1x2x2x3

−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

x4
R← Z|G|

←−−−−−−−
gx2x2x3x4, gx1x3x4, gx1x2x2x4 , gx1x2x2x3

−−−−−−−−−−−−−−−−− −−−−−−−

Knew ←
(gx2x2x3x4)x1

Knew ←
(gx1x3x4)x2x2

x2 ← x̂2x2

Knew ←
(gx1x2x2x4)x3

Knew ←
(gx1x2x2x3)x4

82 CLIQUES

rounds 2
unicast messages 1

broadcast messages 1
cumulative message size 2(n + 1)
exponentiations per Mi 1 for i ∈ {1, . . . , n} \ {c},

n + 1 for i ∈ {c, n + 1}
exponentiations on critical path 2n + 1

The number of rounds and messages are clearly optimal. The total number
of exponentiations (3n + 1) is close to optimal for protocols from the class
of n-party extensions of DH: 2(n + 1) exponentiations are inevitable as the
new member has to contribute his share, and all members have to compute
the new key.

Note that the computational cost of the critical path can be reduced
to n + 1 if Mc precomputes11 his message in anticipation of a membership
addition or other AKA operations (as will become clear later, the group
controller always performs the same computation as the first step in all the
AKA operations.)

4.3.2 Mass Join

Distinct from both member and group addition is the issue of mass join.
Mass join is necessary in cases when multiple new members need to be
brought into an existing group.

It is, of course, always possible to add multiple members by consecutive
runs of a single-member addition protocol. However, this would be inefficient
since, for each new member, every existing member would have to compute
a new group key only to throw it away thereafter. To be more specific, if n′

new members were to be added in this fashion, the cost would be:

• 2n′ rounds.

• Included in the above are n′ rounds of broadcast.

• n′ exponentiations by every “old” group member.

The overhead is clearly very high.
A better approach is to chain the member addition protocol as shown in

Figure 4.9. The idea is to capitalize on the fact that multiple, but disparate,
new members need to join the group and chain a sequence of upflow messages
to traverse all new members in a certain order. This allows us to incur only
one broadcast round and postpone it until the very last step, i.e., the last new
member being mass-joined performs the broadcast. The savings, compared

11Pipelining could reduce the costs here only to n + 2 exponentiations and would not
bring any gain in addition to precomputation. Thus, pipelining would not merit its addi-
tional cost and complication.

4.3 CLIQUES: Auxiliary Key Agreement 83

Figure 4.9 Mass Join (The new members are Mn+1 to Mn+n′)

Mn+i Mn+i+1

−

(gxc
Q

(xm|m∈{1,...,n+i−1}\{j})| j ∈ {1, . . . , n+i−1} \ {c}),

g
Q

(xm|m∈{1,...,n+i−1}\{c}), gxc
Q

(xm|m∈{1,...,n+i−1})

−−−→

Upflow: round i (1≤ i≤n′)
(if (i=1) {Mn+i−1 :=Mc ; xc←xcx̂c })

M∗ Mn+n′

←−−

(gxc
Q

(xm|m∈{1,...,n+n′}\{j})| j ∈ {1, . . . , n + n′} \ {c}),

g
Q

(xm|m∈{1,...,n+n′}\{c})

−−−

Broadcast: round n′ + 1

with the naive approach, amount to n′ − 1 broadcast rounds. The cost of
adding n′ new members is summarized as follows:

rounds n′ + 1
unicast messages n′

broadcast messages 1

cumulative message size (n′2 + 2nn′ + 3n′ + 2n)/2
exponentiations per Mi 1 for i ∈ {1, . . . , n} \ {c},

(i + 1) for i ∈ {n + 1, . . . n + n′}
(n + 2) for i = c

exponentiations on critical path (n′2 + 2nn′ + n′ + 2n)/2

4.3.3 Group Fusion

Group fusion, as defined in Section 2.3.2, occurs whenever two groups merge
to form a super-group. The only real difference with respect to mass join
is that group fusion assumes preexisting relationships within both groups.
Thus, if we ignore the preexisting relationships we can treat group fusion as
either:

(1) Special case of mass join as in Figure 4.9, or

84 CLIQUES

(2) Creation of a new super-group via a fresh IKA, e.g., IKA.1 (Figure 4.3)
or IKA.2 (Figure 4.5).

Unfortunately, in both cases the resulting protocols are quite costly, in par-
ticular, in their round complexity. The obvious question is whether we could
exploit the preexisting relationships within the two (sub-)groups, i.e., the
two sets of partial GDH keys already distributed among the members of
these groups, to gain efficiency. However, there does not seem to be any
way to reasonably combine partial GDH keys corresponding to two different
groups without leaving the class of natural n-party extension of DH (and
losing the security properties shown in the Theorems 4.1 and 4.2.) There-
fore, we can exploit the existing relationships within at most one (as done
in Case (1) above) but not of both groups simultaneously. This leaves us
with above two solutions and the decision whether to use (1) or (2) would
be heuristic- or policy-driven on a case-by-case basis.

Tree-Based Group Fusion

Leaving the class of natural n-party extension of DH, more efficient, or at
least more elegant, solutions geared specifically towards group fusion are
possible. I briefly sketch one possible approach to group fusion below.

The idea is to use a technique fashioned after the one developed by
Becker and Wille (1998) for initial key agreement. In brief, suppose that
two groups M1 and M2 currently using group keys K1 and K2, respec-
tively, would like to form a super-group. To do so, the two groups exchange
their respective key residues: gK1 and gK2 and compute a new super-group
key K12 = gK1K2. The actual exchange can be undertaken by the group
controllers. Note that this type of fusion is very fast since it can in principle
be accomplished in one round of broadcast.

However, there is one glaring problem with above protocol: It does not
provide semantic security for old keys as gK1 and gK2 are public. One
probably can solve this problem by using h(Kn), instead of Kn, as session
key with h being a random oracle (Bellare and Rogaway 1993). However, in
this case we are leaving the standard model and we can achieve only weaker
security results.

Furthermore, if we consider subsequent AKA operations it becomes clear
that combining natural n-party extension of DH such as CLIQUES with this
tree-based approach does not match well. Reverting to the original group
structure is easy since each group can simply fall back to using K1 and
K2 at any time thus effectively reversing the fusion. However, any other
group split seems to require two complete and inefficient IKA operations
and confirms the decision to use above mentioned approaches.

4.3 CLIQUES: Auxiliary Key Agreement 85

Figure 4.10 Member Exclusion (The excluded member is Md)

Mc M∗

−

(gxc
Q

(xm|m∈{1,...,n}\{j})| j ∈ {1, . . . , n} \ {c, d}),

g
Q

(xm|m∈{1,...,n}\{c})

−−→

Broadcast: round 1 (xc ← xcx̂c)

4.3.4 Member Exclusion

The member exclusion protocol is illustrated in Figure 4.10. In it, Mc ef-
fectively “re-runs” the last round of the IKA: As in member addition, it
generates a new exponent x̂c and constructs a new broadcast message —
with x̂cxc instead of xc — using the most recently received broadcast mes-
sage. (Note that the last broadcast message can be from an IKA or any
AKA, depending which was the latest to take place.) Mc then broadcasts
the message to the remaining members of the group. The private exponents
of the other group members remain unchanged.

Let Md be the member to be excluded from the group. We assume, for
the moment, that d 6= c. Since the following sub-key:

gxc
Q

(xm|m∈{1,...,n}\{d})

is conspicuously absent from the set of broadcasted sub-keys, the newly
excluded Md is unable to compute the new group key:

Knew = gxc
Q

(xm|m∈{1,...,n}).
A notable side-effect is that the excluded member’s contribution xd is still
factored into the new key. Nonetheless, this in no way undermines the
secrecy of the new key. In the event that the current group controller Mc

has to be excluded, any other Mi can assume its role, assuming it stored the
last broadcast message.

The cost of excluding a member is summarized as follows:

rounds 1
unicast messages 0

broadcast messages 1
cumulative message size n− 1
exponentiations per Mi 1 for i ∈ {1, . . . , n} \ {c, d},

(n− 1) for i = c
exponentiations on critical path n− 1

Note that the use of precomputation can cut the cost of the critical path to
a single exponentiation! Furthermore, the number of rounds, messages and

86 CLIQUES

exponentiations is optimal. This holds as we are required to add a new ex-
ponent which has above computation and communication as a consequence.
Note that the idea of directly reusing the partial GDH key from the old
session key, which just contains the exponents of the current members, does
not work despite its appeal of potentially not requiring any communication
at all: The excluded member can always compute this value from the old
session key and his own contribution.

4.3.5 Subgroup Exclusion

In most cases, subgroup exclusion is even simpler than single member exclu-
sion. The protocol for mass leave is almost identical to that in Figure 4.10.
The only difference is that the group controller computes and broadcasts
fewer sub-keys; only those which correspond to the remaining members.
Therefore, the cost of the protocol, when compared to the cost of mem-
ber exclusion tabulated above, is even slightly cheaper (we can replace in
the table above all terms −1 by −n′ where n′ is the number of excluded
members.)

A slightly different scenario is that of group division when a monolithic
group needs to be split into two or more smaller groups. The obvious way of
addressing this is to select for each of the subgroups a subgroup controller
which runs the group exclusion protocol within its subgroup by broadcasting
only those sub-keys corresponding to subgroup members.

In contrast to its counterpart (group fusion), I argue that group fission
does not warrant any special treatment, i.e., a mechanism distinct from
those illustrated thus far. The chief reason is that, in this case, the obvious
solution works perfectly well.

4.3.6 Key Refresh

There are two main reasons for the group key refresh operation:

• limit exposure due to loss of group session keys, or

• limit the amount of ciphertext available to cryptanalysis for a given
group session key.

This makes it important for the key refresh protocol not to violate key
independence. (For example, this rules out using a straight-forward method
of generating a new key as a result of applying a one-way hash function to
the old key.) Additionally, note that the loss of a member’s key share (xi)
can result in the disclosure of all the session keys to which the member has
contributed with this share. Therefore, not only session keys, but also the
individual key shares must be refreshed periodically.

4.3 CLIQUES: Auxiliary Key Agreement 87

Figure 4.11 Key Refresh

Mr M∗

−

(gxr
Q

(xm|m∈{1,...,n}\{j})| j ∈ {1, . . . , n}) \ {r},

g
Q

(xm|m∈{1,...,n+1}\{r})

−−→

Broadcast: round 1 (xr ← xrx̂r)

This leads to the following key refresh protocol: The member Mr

which is the least recent to have refreshed its key share12 generates a new
share (exponent) x̂r and “re-runs” the broadcast round as shown in Fig-
ure 4.11. All members then compute as usual the refreshed group key:

Knew = gxr
Q

(xm|m∈{1,...,n}).
This procedure guarantees key independence between different session

keys and, due to the least-recently-refreshed policy, limits the damage of
leaked key share to at most n epochs. We also note that this one-round
protocol encourages precomputation and can be piggy-backed easily and at
almost no cost on a group broadcast which is a likely operation assuming that
the established group key is used to protect intra group communication. The
cost of a key refresh, which is clearly optimal in all respects, is summarized
as follows:

rounds 1
unicast messages 0

broadcast messages 1
cumulative message size n
exponentiations per Mi 1 for i ∈ {1, . . . , n} \ {r},

n for i = r
exponentiations on critical path n

4.3.7 Security Considerations for AKA Operations

The security of the AKA operations is shown in the following theorem:

Theorem 4.2 The CLIQUES AKA protocols are secure authen-
ticated key-agreement protocols assuming that the assumption
(1−1/poly(k))-DDH(c:∗; g:m; f:fct,nsprim) holds. In particular, they
are contributory and ensure semantic security as well as freshness of

12Of course, other policies on the choice of Mr are possible, too.

88 CLIQUES

the group key. Additionally, they provide implicit and mutual group key
authentication. Furthermore, the protocols provide key independence, PFS
and are resistant to KKA. 2

Proof (sketch). In order to demonstrate the security of the AKA protocols,
we need to consider a snapshot in a life of a group, i.e., the lifespan and
security of a particular short-term key.

The following sets are defined:

• C = {M1, . . . ,Mc} denotes all current group members with current
key shares x1, . . . , xc.

• P = {Mc+1, . . . ,Mp} denotes all past (excluded before) group mem-
bers with last key shares xc+1, . . . , xp.

• F = {Mp+1, . . . ,Mf} denotes all future (subsequently added) group
members with xp+1, . . . , xf as their first contributed key shares.

Note that the term future is used relative to the specific session key.
The main security property we have to investigate is key independence.

Key secrecy is then immediately implied by key independence. The remain-
ing security properties follow from the various properties required by natural
n-party extensions of DH (see Scheme 4.1) based on the same argumenta-
tion as used in Theorem 4.1. However, some remarks on key freshness are
appropriate: key freshness can be deduced by the trust in the current group
controller to refresh his key share and the freshness of the current epoch.
The freshness of the current epoch in turn can be deduced from the secure
linking of the epoch history (Property 4 of Scheme 4.1) and the freshness
assurance obtained in the initial key agreement.

The issue at hand for key independence is the ability of all past and
future members to compute the current key:

K = gx1···xcxc+1···xp .
To simplify our discussion, I collapse all members of P and F into a single
powerful adversary (Eve). (This is especially fitting since P and F are not
necessarily disjoint.) The result is that Eve = P ∪ F and she possesses
(xj |Mj ∈ Eve). Furthermore, we also can collapse conceptually all current
members into a single entity as they are inherently trusted for this particular
session and, therefore, behave honestly. Finally and without loss of gener-
ality, we can assume that Mc was group controller for both the operation
leading to the current and to the following state.13

Let us first consider the case where Eve attacks only passively, i.e., in
periods of legal membership in the group she follows the protocol to the

13Both group controllers must be in the current group and, therefore, are by definition
honest. The fact that the current group controller could be excluded on the following
round does not change this.

4.3 CLIQUES: Auxiliary Key Agreement 89

letter and otherwise she just eavesdrops. We can thus rewrite the key as:
K = gB(

Q
(E))

where B is a constant known to Eve, and E = (x1, . . . , xc−1, xc) are the secret
exponents (contributions) of current group members. Note that the group
controller’s current exponent xc is independent from both its past exponent
x

′

c = xc/x̂c
′

and its future exponent x
′′

c = xc∗x̂c
′′

. This holds as the blinding

factors x̂c
′

and x̂c
′′

were both chosen randomly and the multiplication in Z∗
|G|

forms for the used groups G a statistically indistinguishable one-time pad
(this follows from Lemma 3.1.)

In Eve’s view, the only expressions containing xc are in the upflows and
the broadcast round of either the member addition or member exclusion
protocol leading to the current key. This can be upper-bounded by:

{g
B

x1···xc−1xcQ
(xi|Mi∈I) | I ⊂ C ∧ I 6= {} } .

If we assume that Eve can invert B (and if this assumption is wrong, Eve’s
task is certainly not easier), Eve can factor out B in all values above and
Eve’s view is equivalent to

{g
x1···xc−1xcQ

(xi|Mi∈I) | I ⊂ C ∧ I 6= {} } .
However, this corresponds exactly to the view of some protocol belonging
to the class of natural n-party extensions of DH and, using the same
argumentation as in Theorem 4.1, it follows that the secrecy of the key is
guaranteed in this case.

Let us now consider an Eve which tries active attacks. Due to the prop-
erties of authenticated channels, Eve cannot affect the current session and
can only gain advantage over a passive adversary by trying to “plant” an
attack during her memberships in past epochs by not following the pro-
tocol. Assume now that any group member proceeds with a membership
change only when the previous epoch terminated successfully, i.e., an agree-
ment on a common key, and all receivers in the current epoch performed
the tests required by Property 5 of Scheme 4.1, i.e., they verified that all
partial keys contained in a message are indeed elements of G and are of max-
imal order. Then it is clear that the current key K has still the structure
mentioned above and no attacks such as the small subgroup attack from
Lim and Lee (1997) are possible. Furthermore, due to the fact that the ex-
ponent xc is random and the group order has no small prime factors, the key
K will be statistically indistinguishable from a random group element (this
follows from Lemma 3.1). Therefore, the key secrecy is also maintained in
this case.

Similarly to the IKA case, the inclusion of all required identifiers should
also prevent any attack on AKA protocols in respect to key authentication.
Furthermore, the case discussed above clearly also covers the case of the
loss of past session keys and, therefore, the resulting protocol is also secure
against KKA. PFS will be retained with similar reasoning as for IKA.

90 CLIQUES

Remark 4.4. The key secrecy is maintained even in the presence of active
attacks of dishonest excluded members in past epochs. However, there will
be a priori a common agreement on the group key in the current epoch
only if there was already one in the previous epoch. A dishonest excluded
member could always, in particular as group controller, have disrupted the
protocol in the past epoch so that no common key was shared then. To
counter this (if this is a real concern) we would have to add some key confir-
mation flows. Unfortunately, in this case the simple approach of Remark 4.2
is not sufficient as even with an honest prover we are not sure now that he
knows the same key as the verifier. However, if we use the following tech-
nique to efficiently implement the notification protocol from Remark 4.2
over unauthenticated channels, we also implicitly verify a common agree-
ment on the session key in the current epoch: For this technique, we use
the computed GDH key not as the session key but only as “meta-key”. Us-
ing the meta-key (solely) as a seed to a pseudo-random number generator
(Blum et al. 1986; Gennaro 2000), we compute the “real” session key and
the notification messages by partitioning the output of the pseudo-random
number generator into m + 1 chunks (where m is the number of required
notification messages) of length proportional to the security parameter. The
properties of the pseudo-random number generator guarantee, on the one
hand, the unpredictability of the confirmation messages, while still tightly
associating them to the sender’s meta-key, and, on the other hand, the inde-
pendence of the confirmation messages to the session key such that semantic
security is not endangered. Furthermore, the key agreement protocol guar-
antees that the meta-key is uniquely associated with the session, epoch and
corresponding group views. This means that we can also satisfy Property 4
of Scheme 4.1 without including explicit identifiers. ◦

4.4 Related Work

This section puts CLIQUES in context with related work. Primarily, the
comparison is with other contributory key agreement protocols. However, at
the end of this section I broaden the scope and briefly consider other group
establishment protocols, e.g., key transport, as well.

4.4.1 Contributory Key Agreement

The earliest attempt to provide contributory key agreement and to extend
DH to groups is due to Ingemarsson, Tang, and Wong (1982). The protocol
in Figure 4.12 (called ING) requires synchronous startup and executes in
(n − 1) rounds. The members must be arranged in a logical ring. In a
given round, every participant raises the previously-received intermediate
key value to the power of its own exponent and forwards the result to the

4.4 Related Work 91

Figure 4.12 ING Protocol

Mi M(i+1)mod n

−
gx(i−l+1)mod n··· xi

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Round l; l ∈ {1, . . . , n− 1}

next participant. After (n − 1) rounds every group member computes the
same key Kn.

We note that this protocol falls into the class of natural n-party exten-
sions to DH as defined in Scheme 4.1 (assuming the protocol is suitably
enriched with the properties mentioned in Scheme 4.1). It is, thus, suitable
for use as an IKA protocol. However, the protocol is considerably less ef-
ficient in terms of communication than CLIQUES while having the same
computational complexity than IKA.1. Furthermore, the limited amount
of partial GDH keys, in particular such which contain the contribution of
most group members, accumulated at the end of the protocol by any group
member makes it difficult to use ING as a foundation for efficient auxiliary
key agreement protocols.

Another DH extension geared towards teleconferencing was proposed by
Steer, Strawczynski, Diffie, and Wiener (1990). This protocol (referred to
as STR) requires all members to have broadcasting facilities and takes n
rounds to complete. In some ways, STR is similar to IKA.1. Both take
the same number of rounds and involve asymmetric operation. Also, both
accumulate keying material by traversing group members one per round.
However, the group key in STR has a very different structure:

Kn = gxngxn−1g ...x3gx1x2

.
Therefore, STR does not fall into class of natural n-party extensions of DH
and we cannot apply Theorem 4.1 to prove its security. To get a reasonable
degree of security, e.g., semantic security in the standard model based on a
common assumption such as DDH, it seems this requires groups G where the
order does not contain any small factors and where there is a bijective map-
ping f from G to Z|G| to transform keys to appropriately distributed secret
exponents. However, the mapping f(x) := x (mod |G|), as implicitly de-
fined by STR, is certainly not bijective. While there is an efficient mapping
for all prime-order subgroups of Z∗

p where p is a safe prime (Chaum 1991),
it is not clear if such efficient mappings exist also for the other groups ap-
plicable to natural n-party extensions of DH. Hence, the exponentiations
in the standard CLIQUES protocols could be considerably faster, e.g., by

92 CLIQUES

the use of elliptic curves or subgroups of Z∗
p with much smaller order such

as the ones used in DSS, than exponentiations in a secure version of STR.
Steer et al. (1990) do not consider AKA operations. However, see below for
some work which extends STR (IKA) with corresponding auxiliary opera-
tions.

One notable result is due to Burmester and Desmedt (1995). They con-
struct a very efficient protocol (BD) which executes in only three rounds:

1. Each Mi generates its random exponent xi and broadcasts zi = gxi .

2. Each Mi computes and broadcasts Xi = (zi+1/zi−1)
xi .

3. Each Mi can now compute14 the following group key:
Kn = znxi

i−1 ·X
n−1
i ·Xn−2

i+1 · · ·Xi−2 mod p.

The key defined by BD is different from all protocols discussed thus far,
namely Kn = gx1x2+x2x3+···+xnx1 . Nonetheless, the protocol is proven secure
provided the DH problem is intractable. However, they prove only the
difficulty of a complete break, i.e., the recovery of the complete session key.
It is not clear if this proof can be extended, at least in the standard model
and not in the random oracle model, to semantic security as required in
most practical applications.

Some important assumptions underly the BD protocol:

1. The ability of each Mi to broadcast to the rest of the group.

2. The ability to of each Mi to receive n− 1 messages in a single round.

3. The ability of the system to handle n simultaneous broadcasts.

While the BD (IKA) protocol is efficient, I claim that it is also not well-suited
for dynamic groups. On the one hand, above assumptions, in particular as-
sumption 3, are quite strong and easily lead to congestion in the network.
Of course, one could serialize the simultaneous broadcasts but then the re-
sulting round complexity would exceed the CLIQUES protocols roughly by
a factor of two and the main benefit of BD would be lost. On the other
hand, we also have to consider the AKA operations for BD. While addition
looks trivial at first sight, closer inspection reveals that all group members
have to refresh their shares to prevent leaking too much information or serve
as exponentiation oracles. This means that in fact AKA operation get as
expensive in terms of communication and computation as the BD IKA, in
fact, the only reasonable choice is to use BD IKA as-is for AKA protocols.
In practice DPGs tend to start only with a very small number of initial
members (if not even a single one) and grow mostly through AKA opera-
tions. Therefore, IKA operations are far less relevant than AKA operations.

14All indexes are modulo n.

4.4 Related Work 93

Thus, the cost savings of BD IKA when compared to IKA.1 and IKA.2 are
very quickly amortized and exceeded by the costs of their much less efficient
AKA operations. In addition, Burmester and Desmedt (1995) proposed a
variant of their protocol targeted at unauthenticated networks. However,
as shown by Just and Vaudenay (1996) there is a (repairable) problem with
the key authentication in this variant.

Becker and Wille (1998) systematically analyze the communication com-
plexity of initial key agreement for contributory group key agreement proto-
cols. They prove lower bounds for various measures and, e.g., confirm that
IKA.1 is optimal in respect to the number of messages. Additionally, they
describe a novel protocol, 2d-octopus, which reaches the lower bound for
simple rounds15 (d = ⌈log2 n⌉). Their main idea is to arrange the parties on
a d-dimensional hypercube, i.e., each party is connected to d other parties.
The protocol proceeds through d rounds, 1 . . . d. In the j-th round, each
participant performs a two-party DH with its peer on the j-th dimension,
using the key of the j−1-th round as its secret exponent. The exponents
of the 0-th rounds are chosen at random by each party. For illustration
purposes I show the resulting key for a group of 8 parties:

K8 = g(g(g(x1x2)g(x3x4))g(g(x5x6)g(x7x8))).
While adding new members and in particular groups is easy with 2d-octopus,
it fails completely in terms of member exclusion. Splitting the group on the
d-th dimension into two halves seems the only efficient exclusion procedure.

More recently, Kim, Perrig, and Tsudik (2000) presented a protocol
suite, TGDH, using tree-based keys similar to the 2d-octopus protocol. By
basing all IKA and AKA protocols on key trees, these protocols overcome
the problem on splitting groups mentioned in Section 4.3.3 in the sketch of
tree-based group fusion protocol. TGDH improves the efficiency of join and
merge when compared to the equivalent CLIQUES operations. Regarding
computation costs, TGDH cuts down the critical path to O(log (n)) expo-
nentiations. The use of precomputation and pipelining as well as the po-
tentially cheaper exponentiation — TGDH faces the same limitation on the
choice of the algebraic group as STR — can narrow the gap for the CLIQUES
protocols. Nonetheless, due to the logarithmic growth factor, TGDH will
eventually exceed CLIQUES in efficiency as groups get large. Regarding
communication costs, TGDH provides a considerably more round-efficient
merge operation than the merge-by-mass-join method of CLIQUES in the
case when both of the merging groups are larger than O(log (n)). How-
ever, all these benefits are somewhat comprised by the fact that the security
argument relies on the random oracle model.

The same authors later reconsider in Kim et al. (2001) STR as a basis
for AKA operations. While the computational costs are inferior to TGDH
and comparable to CLIQUES when considering all mentioned optimizations

15Simple rounds are rounds where each member sends and receives at most one message.

94 CLIQUES

— join and merge will be cheaper and exclusion will be more expensive —
the protocols improve the communication cost of all AKA operations to a
constant number of rounds. If we assume Moore’s Law to hold on, exponen-
tiations will become cheaper and cheaper over time16 and, eventually, the
cost of latency, which is lower bounded by the speed of light, will dominate
the cost of computation in determining the runtime of the discussed pro-
tocols. Therefore, the STR-based protocols proposed in Kim et al. (2001)
seem to be the currently most efficient group key agreement protocol suite
when one does not require: (1) a formal security proof in the standard model
— the security argument in Kim et al. (2001) relies on the fact that their
protocols is a special case of TGDH which was proven informally and in
the random oracle model only — and (2) the flexibility in the choice of the
algebraic group — the issue of the bijective mapping mentioned for STR
and TGDH also applies here — provided by CLIQUES.

Finally, Tzeng (2000) and Tzeng and Tzeng (2000) propose contribu-
tory key agreement schemes based on some form of verifiable secret sharing.
However, it does not seem that the schemes do have any performance advan-
tages over CLIQUES. Furthermore, the protocols do not achieve semantic
security and their claim that their protocols provide fair (unbiased) session
keys seems wrong as the protocols are clearly susceptible to problems such as
the ones identified by Gennaro, Jarecki, Krawczyk, and Rabin (1999) unless
we assume an (unrealistic) synchronous model with no rushing adversaries.

4.4.2 Key Transport

The focus in my work was on contributory key agreement, not key trans-
port. As discussed in Chapter 2 contributory key agreement has a number
of advantages over (centralized) key transport. However, there is one main
drawback with contributory schemes. Due to the contributory nature and
perfect key independence, the natural n-party extension of DH inevitably
require exponentiations linear in the number of participants for AKA oper-
ations; of course, this does not scale well to very large groups. This is not a
fundamental problem for DPGs as they tend to be reasonably small (< 100).
Furthermore, as mentioned above the importance of the computational cost
will probably vanish over time when compared to costs due to latency.

However, in situations where the security, fault-tolerance and flexibility
requirements are less stringent and scalability and computation efficiency is
the main issue, key distribution protocols might be more favorable.

Early key transport proposals (Harney and Muckenhirn 1997;
Gong 1997) were all based on a fixed group controller and did not

16While we do have to increase the size of the underlying algebraic groups with the
increase of the available computational resources, the required increase in size is only
roughly logarithmically in the gain of computational power even when considering addi-
tional factors such as algorithmic progress (Odlyzko 2000a; Lenstra and Verheul 2001).

4.5 Summary 95

address scalability or dynamics in group membership to a large extent.
Subsequent work (Ballardie 1996; Mittra 1997) addressed scalability by
splitting up the group into a hierarchy of subgroups controlled by subgroup
controllers. These protocols improve overall efficiency but their support for
the dynamics of group is either rather limited or has costly side effects, e.g.,
Iolus (Mittra 1997) requires intermediary subgroup controllers to relay all
messages and perform key translation.

Tree-based group rekeying systems, commonly called Logical Key Hier-
archy (LKH), independently proposed by Wallner, Harder, and Agee (1997)
and Wong, Gouda, and Lam (1998), achieve all AKA operations in
2 rounds and bring down the communication and storage costs
down to O(log(n)). Optimized variants (McGrew and Sherman 1998;
Canetti, Garay, Itkis, Micciancio, Naor, and Pinkas 1999) reduce the com-
munication overhead by half and their security can be proven using
standard cryptographic assumptions. Due to their communication and
computation efficiency, these protocols scale very well to large groups.
Their main drawback is their reliance on a fixed group controller.
Caronni, Waldvogel, Sun, Weiler, and Plattner (1999) overcome this by dis-
tributing the role of group controller over all members. Unfortunately, as
they note themselves their protocols are vulnerable to collusions by excluded
members. Another approach to increase safety of the tree-based group rekey-
ing schemes is described in Rodeh, Birman, and Dolev (2002). Finally, fur-
ther smaller optimizations for LKH protocols, e.g., applying the idea from
Setia, Koussih, and Jajodia (2000) to bundle rekey operations in periodic
operations, are presented by Perrig, Song, and Tygar (2001).

4.4.3 Other

Further related work we can find in the context of distributed and fault-
tolerant computing (Birman 1996; Reiter et al. 1994). Protocol suites and
toolkits such as Rampart (Reiter 1996; Reiter 1994) aim at achieving high
fault-tolerance, even in the presence of malicious (i.e., byzantine) faults in-
side a group. This level of fault-tolerance and the underlying model of vir-
tual synchronous process groups might be required for securely and reliably
replicating services (Reiter and Birman 1994) of great importance. How-
ever, these systems are very expensive as they rely on reliable and atomic
multicasts secure against byzantine faults, e.g., Cachin et al. (2001).

4.5 Summary

In summary, this chapter presented the CLIQUES protocol family for IKA
and AKA operations based on the Diffie-Hellman key exchange. The pro-
tocols match virtually all requirements identified in Chapter 2 and achieve
secure key agreement in the context of dynamic peer groups. The protocols

96 CLIQUES

are very flexible and, except for the group merge operation, quite efficient.
It remains an open question whether one can find more efficient group merge
operations in the class of natural n-party extension of DH (or prove there
non-existence.)

However and more importantly, while the argumentation for the security
of the protocols represent the practice of proving security for group key
protocols in the past, the proofs are not very formal. This aspect is the focus
of the remaining investigations and brought to more formal foundations in
the next chapter.

Chapter 5

Formal Model and Proofs

In this chapter, I put the security argumentation of the previous chapter
into a formal setting. To achieve this, I define a general formal model
for group key establishment protocols. I then give a detailed and rigorous
proof for one of the previously presented protocols, the initial key agreement
IKA.1. In particular, I show that under the Decisional Diffie-Hellman
assumption and the addition of a confirmation flow this protocol is secure
even in the presence of strong adaptive adversaries.

K
EY-ESTABLISHMENT protocols have a long history of new protocols
improving over past work in various aspects such as efficiency, features

or security. However, this history is also paved with numerous flaws in
many protocols which got only discovered later. Most of these flaws are
due to an ad-hoc security analysis and due to overlooking various attacks.
Building the protocol with systematic design (Bird et al. 1993) and following
prudent design and engineering principles (Anderson and Needham 1995;
Abadi and Needham 1996) can greatly reduce this risk. However, only a
sound underlying formal model and rigorous security proofs can give real
assurance of security.1

This was recognized in early stages and lead to work on the formalization
of cryptographic protocols and key establishment in particular. Most of this
work can be traced back to a model introduced by Dolev and Yao (1983).

1Obviously, not only the security of the protocol but also many other aspects are critical
for the overall security: The correctness of the requirement analysis and the specifications,
the robustness of the implementation and its faithfulness to the specifications, the appro-
priateness of the deployment (configuration), the security of the (operating) systems, the
appropriate education of users, . . . So one might argue (Schneier 1999) that provable se-
curity does not really matter as most security breaches in practice are not directly related
to flaws in the protocols themselves. However, there are still a considerable number of
attacks which would never have occurred with appropriate security proofs and it seems
only prudent to strive for the best achievable security for each of these orthogonal aspects.

97

98 Formal Model and Proofs

The fundamental idea of the Dolev-Yao model is to assume perfect crypto-
graphy (e.g., the encryption E(m) of a message m hides unconditionally
all information on m) and to abstract it with a term algebra with can-
cellation rules (e.g., the decryption of an encryption leads again to the
original message: D(E(m)) = m). Various approaches based on this idea
were explored: ad-hoc constructions (Millen et al. 1987; Meadows 1992;
Meadows 1996), belief logics (Burrows et al. 1990; Gong et al. 1990;
Syverson and van Oorschot 1994), explorations of finite-state mod-
els (Lowe 1996) or inductive proofs in predicate or process calculi
(Kemmerer 1989; Lowe 1996; Abadi and Gordon 1997; Bolignano 1996;
Paulson 1997). They allow for various trade-offs between ease-of-use,
efficiency and completeness. See Gritzalis et al. (1999) and Millen (1998)
for an overview of these techniques.

Dolev-Yao’s way of abstracting cryptography is appealing by present-
ing a simple and discrete model with no need to reason about number-
theory and complexity-theoretic (probabilistic) settings. Unfortunately, an
attacker can also try to exploit the low-level “ingredients” of the crypto-
graphic primitives and their interference with the high-level protocol. As
shown by Pfitzmann, Schunter, and Waidner (2000) we cannot rely on the
classical security definitions used in the cryptographer community, e.g., se-
mantic security or security against chosen-ciphertext attacks for encryp-
tions. It is possible to concoct protocols which are secure in the Dolev-Yao
model and, nonetheless, realizations with primitives provably secure in the
above-mentioned cryptographic sense can still lead to a completely insecure
protocol. Work to bridge this gap and to define robust cryptographic def-
initions or primitives which securely realize the Dolev-Yao abstraction is
still in a premature state, e.g., only limited additional properties such as ho-
momorphic or multiplicative properties (Even, Goldreich, and Shamir 1986;
Pereira and Quisquater 2000) or weaker (non-adaptive and passive) attack-
ers (Abadi and Rogaway 2002) were considered.

Only few researchers have worked on formalizing authentication and
key-exchange protocols with no cryptographic abstractions. This work
was pioneered by Bellare and Rogaway (1994, 1995b) for shared-key
cryptography and extended by Blake-Wilson and Menezes (1998) to public-
key cryptography. Shoup (1999) pointed out serious (yet salvageable)
problems and limitations in the Bellare-Rogaway model2 and, extending
prior work by Bellare, Canetti, and Krawczyk (1998), proposed a model
based on the ideal-host paradigm. The ideal-host paradigm allows to
clearly layer protocols, e.g., to build secure sessions on top of a key ex-
change protocol. The model of Shoup can be considered as the cur-

2Most notably, the Bellare-Rogaway model captures adaptive adversaries only after
suitably extending the model with perfect forward secrecy (Shoup 1999, Section 15.5 &
15.6) and there is no composition theorem to allow the use of session keys in an arbitrary
context.

99

rent state-of-the-art and has been applied also to variations, such as au-
thenticated key-exchange relying only on passwords as long-term secrets
(Boyko, MacKenzie, and Patel 2000). Nonetheless, the model of Shoup is
still relatively ad-hoc and lacks the underpinning of a clear and formal (meta-
)model of communication, computation, and adversaries for general reactive
protocols such as the model from Pfitzmann and Waidner (2001).

Aspects of group communication are so far mainly neglected. Only
little past work on formalizing group key establishment protocols ex-
ists and it is either limited in scope (Mayer and Yung 1999) (key distri-
bution only, no key agreement and no consideration of group dynam-
ics) or still work-in-progress (Meadows 2000; Pereira and Quisquater 2001);
the latter two also suffer from the aforementioned fundamental prob-
lems of the Dolev-Yao model. Independent of the following work,
Bresson, Chevassut, Pointcheval, and Quisquater (2001) proposed very re-
cently a formal definition of initial key agreement based on the formal-
ization tradition of Bellare and Rogaway (1994) and prove the security of
protocols very similar to the ones given here. This work was also extended
to auxiliary protocols in Bresson, Chevassut, and Pointcheval (2001). (See
below for a short comparison of this approach with the one cho-
sen here.) Finally, the formal specification of some requirements
for a concrete group key establishment protocol suite is proposed in
Meadows, Syverson, and Cervesato (2001).

In the following, I give a precise definition of group key establishment
in the simulatability-based model of Pfitzmann and Waidner (2001): Es-
sentially, I specify an ideal system for group key establishment where a
single, non-corruptible party TH, called trusted host, serves all parties.
Whenever a group wants to establish a new key, TH chooses a random
key and distributes it to all group members, provided they are all non-
corrupted. Depending on when a member becomes corrupted, TH gives
the random key to the adversary A or lets A even choose the keys for the
non-corrupted parties. I assume an asynchronous network completely con-
trolled by the adversary. The definition of the ideal system covers most
informal security notions discussed in Section 2.1 and 2.2 like key authenti-
cation and forward secrecy. It also covers auxiliary protocols. Furthermore,
these properties persist under arbitrary composition with higher-level pro-
tocols (Pfitzmann and Waidner 2001). A real system for group key estab-
lishment is a system where parties have to agree on a key without the help
of such a “magic” non-corruptible trusted party. It is considered secure if
whatever happens to the honest users in this real system, with some adver-
sary A, could happen to the same honest users in the ideal system, with
some other adversary A′.

This form of specification is quite natural and intuitive. Furthermore,
the robustness of the specification under arbitrary composition allows us to
tolerate any (potentially unexpected) use of session keys and, e.g., makes

100 Formal Model and Proofs

it quite natural to specify and design modular secure channels for groups.3

These desirable properties are the major distinctions of the specification
style used here when compared with the more ad-hoc manner4 of specifica-
tions following the tradition of Bellare and Rogaway (1994).

Above translates also into advantages of the model of group key estab-
lishment presented here over the model of Bresson et al. (2001). Further
advantages are (1) the generality of the model which is applicable to ar-
bitrary group key agreement and distribution protocols (and not limited
to Diffie-Hellman-based protocols only), (2) the tolerance of stronger adap-
tive adversaries which on corruption receive all state (and not only long-
term keys as assumed in Bresson et al. (2001)), and (3) the security of
auxiliary operations which provides security also against misbehaving ex-
cluded members, i.e., insiders to a particular group session history (whereas
Bresson et al. (2001) consider only security against outsiders). The proto-
cols proven secure in Bresson et al. (2001) are quite similar to the proto-
cols proven here. In particular, they are also based on the CLIQUES IKA
(IKA.1) and AKA protocols. They mainly differ in providing — by ap-
propriate use of signatures — security directly in unauthenticated networks
instead of using a modular approach with compilers (see Chapter 4) as cho-
sen here.

The organization of the remainder of this chapter is as follows. In Sec-
tion 5.1, I briefly recapitulate the model of Pfitzmann and Waidner (2001).
In Section 5.2, I give the details of the formal model, i.e., the ideal system
with a trusted host, for secure authenticated group key establishment and
discuss the different properties. Subsequently in Section 5.3, I formalize
the protocol IKA.1 presented in Section 4.2.1 and I also derive a second
protocol to handle adaptive corruptions. Equipped with these definitions, I
analyze the security of the two proposed concrete protocols in Section 5.4.
In particular, I prove them secure against static and adaptive adversaries,
respectively. In this process, I also investigate the concrete security of the
interactive version of the DGDH problem discussed in Section 3.5.

3For session-keys used in the implementation of a secure channel a slightly weaker
definition might be sufficient (Shoup 1999; Canetti and Krawczyk 2001a). However, I
believe that the entirety of properties offered by a group key establishment protocol is
simpler to capture in a trusted-host style definition, in particular when one considers the
design of surrounding group-oriented applications other than secure channels.

4One might well argue that the problems and limitations in the Bellare-Rogaway
model which required various changes and modifications (Blake-Wilson et al. 1997;
Blake-Wilson and Menezes 1999; Shoup 1999; Bellare et al. 2000) are due to the ad-hoc
manner of specification.

5.1 Basic Definitions and Notation 101

Figure 5.1 Ports and buffers

Receiving

machine

Sending

machine

Scheduler for

buffer p
~

p!

p !

p?

Buffer p

~

p ?

p
×
!

p
×
?

1

5.1 Basic Definitions and Notation

Our definitions and proofs are based on the notion of stan-
dard cryptographic systems with adaptive corruptions as defined in
Pfitzmann and Waidner (2001), Section 3.2. We briefly recapitulate this
model, omitting all details not needed here.

5.1.1 System Model and Simulatability

The systems are parametrized with a security parameter, k ∈ N, and
depend on the number of participants, n ∈ N. Let M := {1, . . . , n}.

The main component of a system is a set of protocol machines,
{M1, . . . ,Mn,Gen} for real systems and {TH} for ideal systems. Intuitively,
Mu serves user u. Machine Gen is incorruptible; it is used for reliably gener-
ating and distributing initial parameters used by all machines (in our case a
cyclic group and generator for the Diffie-Hellman setting and a correspond-
ing universal hash function to map GDH keys to bit strings).

The machines are probabilistic state-transition machines (where the
state-transition functions are realized by arbitrary probabilistic Turing ma-
chines.) Each machine can communicate with other machines via ports.
Output (input) ports are written as p! (p?), and Ports(M) denotes the
set of all ports of a machine M. Messages are transported from p! to p?
over a connection represented by a buffer machine p̃. A buffer p̃ stores all
messages received from p! at px? and waits for inputs on its clock port p⊳?.
Each input i ∈ N triggers p̃ to put the i-th stored message on px! (or no
message if it contains less than i messages) to be forwarded to p?. Ports
and buffers are illustrated in Figure 5.1.

A structure is a pair (M ,S), where M is a set of machines and S , the
specified ports, is a subset of the free ports5 of the union of M and all the
buffer machines needed for connections used or clocked by machines in M .

5Free ports of a set of machines are all input (output) ports p? (p!) where the corre-
sponding output (input) port p! (p?) is not associated to any machine in the set.

102 Formal Model and Proofs

S models the service interfaces offered or required by M . The remaining free
ports will be available to the adversary and model unavoidable or tolerable
adversary control and information flow to and from the adversary. This
is often required — even in an ideal system — to achieve realistic models
without further unwanted restriction, e.g., for a practical key establishment
protocol there is normally no harm when the adversary learns who runs the
protocol with whom. Nonetheless, without modeling this information flow
in a trusted host, a faithful implementation of that trusted host would have
to be based on a (costly) anonymous network.

A structure describes (known) components and their interaction with
the (unknown) environment. However, to obtain a whole runnable system
we have to specify the environment, too. Therefore, the structure (M ,S) is
complemented to a configuration by adding an arbitrary user machine
H, which abstracts higher-layer protocols and ultimately the end user, and
an adversary machine A. H connects to ports in S and A to the rest, and
they may interact. We will describe the specified ports not directly but by
their complements, S c, i.e., by listing the ports that H should have. Finally,
a system Sys is a set of structures.

The machines in a configuration are scheduled sequentially: In principle
only buffers have clock input ports, like p⊳? for buffer p̃. The currently active
machine Ms can schedule any buffer p̃ for which it owns p⊳!, and if p̃ can
actually deliver a message, this schedules the receiving machine Mr. If Ms

tries to schedule multiple buffers at a time then only one is taken, and if no
buffer is scheduled (or the scheduled one cannot deliver a message) then a
designated master scheduler is scheduled; usually, the adversary A plays
that role. A configuration is a runnable system, i.e., one gets a probability
space of runs and views of individual machines in these runs.

Simulatability essentially means that whatever can happen to certain
users in the real system can also happen to the same users in the ideal system:
for each configuration (M ,S ,H,A) there is a configuration ({TH},S ,H,A′)
such that the views of H in the two configurations are indistinguishable
(Yao 1982). Simulatability is abbreviated by “≥sec.” As by definition only
good things can happen in the ideal system, simulatability guarantees that
no bad things can happen in the real world.

5.1.2 Standard Cryptographic Systems

In a standard cryptographic system with static adversaries, Sys is a
set of structures (MH,SH), one for each set H ⊂ M of non-corrupted
users. The structures (MH,SH) are derived from an intended structure
(M ∗,S ∗), where M ∗ = {M∗

1, . . . ,M
∗
n}, S ∗c = {inu !, inu

⊳!, outu? | u ∈ M}
and {inu?, outu !, outu

⊳!} ⊆ Ports(M∗
u). Each SH is the subset of S ∗ where

5.1 Basic Definitions and Notation 103

u only ranges over H.6 The derivation depends on a channel model:
Each connection (i.e., buffer) of (M ∗,S ∗) is labeled as “secure” (private
and authentic), “authenticated” (only authentic), or “insecure” (neither
authentic or private.) In the derivation all output ports of authenticated
connections are duplicated; thus A connects to them and can read all mes-
sages. All insecure connections are routed through A, i.e., the ports are
renamed so that both become free and thus connected to A. The reliability
of a connection is implicitly determined by the definition of specified ports:
If the clock output port corresponding to a buffer is a specified port, we
have a reliable, otherwise an unreliable channel.

For adaptive adversaries,7 the derivation makes some addi-
tional modifications: The specified ports are extended8 by ports
{corruptu !, corruptu

⊳! | u ∈ M} used for corruption requests.9 Fur-
thermore, each Mu gets three additional ports corInu?, corOutu ! and
corOutu

⊳! for communication with A after corruption: If Mu receives (do)
on corruptu? in state σ it encodes σ in some standard way and outputs
(state, σ) at corOutu ! (i.e., reveals everything it knows to A). From then on
it is taken over by A and operates in transparent mode: Whenever Mu

receives an input m on a port p? 6= corInu?, it outputs (p,m) at corOutu !.
Whenever it receives an input (p,m) on corInu? for which p! is a port of
Mu, it outputs m at that port. Over time any subset of {M1, . . . ,Mn} can
become corrupted.10

5.1.3 Notation

Variables are written in italics (like var), constants and algorithm identifiers
in straight font (like const and algo), and sets of users in calligraphic font (like
M). For a set set ⊆ N and i ≤ |set |, let set [i] denote the i-th element with
respect to the standard order < on N and idx(set , elem) the index of elem in
set if present and −1 otherwise, i.e., idx(set , set [i]) = i for i ∈ {1, . . . , |set |}.

Machines are specified by defining their state variables and transitions.
The variable state of Mi is written as Mi .state , or, if clear from the context
such as in a transition rule, as state only. To simplify notation, we allow
arrays that range over an infinite index set, like (ai)i∈N , but always initialize
them everywhere with the same value (e.g., undef for “undefined”). Thus,
they can be efficiently represented by polynomial-time machines.

6Consequently, for each set H one trusted host THH is defined.
7For a more concise presentation and without loss of generality, I slightly deviate from

Pfitzmann and Waidner (2001): I use a separate structure for each set H ⊂ M also for
the adaptive case even though a single structure for M would have sufficed.

8If those names are already occupied they can be renamed arbitrarily.
9Those must be made via specified ports as the service will change at the corresponding

ports inu? and outu ! also in the ideal system.
10In terms of Pfitzmann and Waidner (2001): our adversary structure is ACC =

2{M1,...,Mn}.

104 Formal Model and Proofs

Transitions are described using a simple language similar to the one
proposed in Garland and Lynch (2000). Most of the notation should be
clear without further explanations. Each transition starts with “transition
p?(m)” where p? is an input port and m an abstract message, i.e., a mes-
sage template with free variables. Optional parameters in m are denoted
by [. . .] and their presence can be queried using the predicate present(·).
An “enabled if: cond” (where cond is an arbitrary boolean expression
on machine-internal state variables) specifies the condition under which the
transition is enabled. If the (optional) enabled if: is absent, the tran-
sition is always enabled. When a message msg arrives at a port p? and
all transitions on this port are disabled, the message is silently (and at no
computational cost11 for the corresponding machine) discarded. Otherwise,
we first increment the message counter p?.cntr associated with the given
input port p?. This counter keeps track of the number of activations on a
port (and indirectly the computational cost of a machine) and is initialized
to zero. If the message msg matches the template m of any enabled transi-
tion on this port, the corresponding transition is executed. Without loss of
generality, we further require from the specification that at any given time
at most one enabled transition matches any given message. The final states
of a machine are implicitly defined as the situations when no transition is
enabled anymore.

5.2 Ideal System for Group Key Establishment

The following scheme specifies the trusted host for an ideal system for group
key establishment.

Scheme 5.1 (Ideal System for Group Key Establishment Sysgke,ideal
n,tb,ct)

Let n, tb ∈ N and ct ∈ {static, adaptive} be given, and let M := {1, . . . ,
n}. Here, n denotes the number of intended participants, tb a bound on the
number of activations per port — this is required to make TH polynomial
— and ct the type of corruptions to be tolerated. An ideal system for secure
group key establishment is then defined as

Sysgke,ideal
n,tb,ct = {({THH},SH) | H ⊆M}.

Here H denotes the set of a priori uncorrupted participants. Let A :=M\H.

11Recall that the condition cond of enabled if: depends only on machine-internal
state variables. This allows the computation to be done on state-changes and requires
no computation on message arrival. For example, if the condition also would depend on
the message, a real-time evaluation (and, hence, computation costs) would be required on
message arrival. This would make such a construct unsuitable for the context discussed
here, i.e., specifying how ports can be disabled such that messages on these ports do not
incur any computational costs. Nevertheless, as such broader conditions are useful in
other cases, there is a second similar construct “ignore if: cond” where cond may also
depend on variables of the message.

5.2 Ideal System for Group Key Establishment 105

Figure 5.2 Trusted host and its message types. Parts related to adaptive
adversaries are in gray. Dashed lines indicate who schedules a connection.

init, new,

key,

initial-

ized
do

initialized,

finish,arbitrary

init,new,arbitrary

in
sim,u

?

out
sim,u

!

H

A

TH
H

in
u
? out

u
!

(Master

scheduler)

corrupt
u
?

� � �

corOut
sim,u

!

state

�

�

�

An overview of THH is given in Figure 5.2. The ports of THH

are {inu?, outu !, outu
⊳!, corruptu?, insim,u?, outsim,u !, outsim,u

⊳!, corOutsim,u !,
corOutsim,u

⊳! | u ∈ H}. The specified ports are as described in Section 5.1.2
for standard cryptographic systems, i.e., S ∗

H
c = {inu !, inu

⊳!, outu? | u ∈ H}
and S c

H = S ∗
H

c ∪ {corruptu !, corruptu
⊳! | u ∈ H}.

The message formats exchanged over the ports are shown in Table 5.1.
Common parameters are as follows: u ∈ M identifies a user, grp ⊆ M is
the set of group members, sid ∈ SID is a session identifier (relative to a
group grp), and key ∈ {0, 1}k is an exchanged session key. The domain of
session identifiers, SID, can be arbitrary as long as the representations of
elements can be polynomially bounded in k (otherwise resulting machines
might not be polynomial anymore.)

The state of THH is given by the variables shown in Table 5.2. The
state-transition function is defined by the following rules; the message types
are also summarized in Figure 5.2.

Initialization. Assume an honest u ∈ M, i.e., one with u ∈ H and
THH.stateu,u 6= corrupted. H triggers initialization of u by entering init

at inu?. In a real system, Mu will now set system parameters, generate long-
term keys, etc., and possibly send public keys to other machines. In the ideal
system THH just records that u has triggered initialization by the state wait.
Any subsequent input init is ignored. The adversary immediately learns that
u is initializing. (In most real systems initialization requires interaction with
other machines, which is visible to the adversary.)

transition inu? (init)

enabled if: (stateu,u = undef) ∧ (inu?.cntr < tb);
stateu,u ← wait;
output: outsim,u ! (init), outsim,u

⊳! (1);

106 Formal Model and Proofs

Table 5.1 The message types and parameters handled by THH

Port Type Parameters Meaning

At specified ports SH to user u ∈ H

inu? init Initialize user u.

outu ! initialized v User v initialized from user
u’s point of view.

inu? new sid ,grp,[sid ’,grp’] Initialize a new session,
extending a previous one
if optional parameters are
present.

outu ! key sid ,grp,key Return newly agreed key.

corruptu? do Corrupt user u!

outu ! arbitrary arbitrary Possible outputs after cor-
ruptions

At adversary ports

outsim,u ! init User u is initializing.

insim,u? initialized v ∈M User u should consider user
v as initialized.

outsim,u ! new sid ,grp,[sid ’,grp’] User u has initialized a new
session.

insim,u? finish sid ,grp,[keyu,sim] Complete session for user
u. If present and allowed,
assign keyu,sim to user u.

corOutsim,u ! state state State of corrupted party.

outsim,u ! arbitrary arbitrary Corrupted party u sent a
message.

insim,u? arbitrary arbitrary Send message to (cor-
rupted) party u.

5.2 Ideal System for Group Key Establishment 107

Table 5.2 Variables in THH

Name Domain Meaning Init.

(stateu,v)u,v∈M {undef,wait,
init,
corrupted}

Long-term
states as
seen by user
u

undef

(sesu,sid,grp)u∈M,sid∈SID,grp⊆M {undef, init,
finished}

State of
sessions as
seen by user
u

undef

(keyu,sid,grp)u∈M,sid∈SID,grp⊆M {0, 1}k ∪
{undef}

Session keys
still in
negotiation

undef

(prevu,sid,grp)u∈M,sid∈SID,grp⊆M (sid ′ ∈ SID,
grp′ ⊆M)

Dependency
graph of
sessions

(0, {})

(p?.cntr)p∈{inu,corruptu,insim,u | u∈H} N Activation
counters

0

end transition

By entering (initialized, v) at insim,u? the adversary triggers that an honest
user u learns that user v , potentially u itself, has been initialized. Note that
this can happen even before u has been initialized itself.

This transition is only enabled when user u is not corrupted and the
port’s transition bound is not exceeded. The first condition is necessary
to disambiguate between this (“honest”-mode) transition and transparent
mode after a corruption, i.e., the last two transitions below. The second
condition helps making the machine polynomial-time. Both conditions are
also part of the enable condition of all other “honest”-mode transitions.

transition insim,u? (initialized, v)

enabled if: (stateu,u 6= corrupted) ∧ (insim,u?.cntr < tb);
ignore if: ((statev,v = undef) ∧ (v 6∈ A)) ∨ ((u = v) ∧ (stateu,u 6= wait));
stateu,v ← init;
output: outu ! (initialized, v), outu

⊳! (1);

end transition

Group key establishment. To start a group key establishment for user
u, H enters (new, sid , grp, [sid ′, grp ′]) at inu?. User u has to be a mem-

108 Formal Model and Proofs

ber of the intended group and has to believe that all group members are
initialized. Furthermore, the pair (sid , grp) has to be fresh, i.e., never
used by u before (THH.sesu,sid ,grp = undef); otherwise the command is
ignored. The optional parameter (sid ′, grp ′) points to a previous group
key establishment to which the current one is auxiliary. If (sid ′, grp′) is
present, it is required that either u 6∈ grp ′ (i.e., this member is added),
or the old establishment has terminated and the previous group key was
delivered (THH.sesu,sid ′,grp′ = finished). The pair (sid ′, grp ′) is recorded in
THH.prevu,sid,grp. In the real system, Mu would now start the protocol.
THH just records this fact (THH.sesu,sid ,grp ← init). The adversary imme-
diately learns over port outsim,u? that u has started an establishment with
parameters sid , grp, [sid ′, grp ′].

transition inu? (new, sid , grp, [sid ′, grp ′])

enabled if: (stateu,u 6= corrupted) ∧ (inu?.cntr < tb);
ignore if: (u 6∈ grp) ∨ (|grp| < 2) ∨ (∃v ∈ grp : stateu,v 6= init) ∨

(sesu,sid,grp 6= undef) ∨
(present(sid ′, grp ′) ∧ (u ∈ grp′) ∧ (sesu,sid ′,grp′ 6= finished));

sesu,sid,grp ← init;
if present(sid ′, grp ′) then

prevu,sid,grp ← (sid ′, grp ′);
end if ;
output: outsim,u ! (new, sid , grp, [sid ′, grp ′]), outsim,u

⊳! (1);

end transition

The adversary decides to finish the protocol for u by entering (finish, sid ,
grp, [keyu,sim]) at insim,u?. This input is allowed only once for each honest
u ∈ grp. Its effect depends on the presence of dishonest users in grp:

• If a group member is dishonest (a priori not in H or adaptively cor-
rupted) then the adversary can propose12 a key which THH takes and
stores in THH.keyu,sid ,grp. Thus, we do not require anything in this
case.

• The same happens if two honest group members do not agree on the
details of the previous group epoch. This consistency condition is very
weak; e.g., we do not require that the old group was non-corrupted, or

12It is essential that passing a key is optional. Otherwise, no protocol providing PFS
could be proven secure against adaptive corruptions: Consider a key establishment among
two honest users u and v such that u finishes the protocol first and then gets corrupted
before v can finish. Such a situation is unavoidable in our asynchronous systems. Since
in the real world u and v would have agreed on a common key (u was corrupted only
after the session establishment!), the simulator has to model this also in the ideal world.
However, this cannot be simulated as we cannot provide THH with the correct key to
finish v ’s session: u’s key was generated secretly by THH and not leaked on corruption (it
was previously deleted inside THH to make PFS possible.)

5.2 Ideal System for Group Key Establishment 109

that all non-corrupted members obtained the same key. Thus, some
protocols for auxiliary key establishment might satisfy only accord-
ingly restricted definitions. However, most of these protocols should be
adaptable for the current model by adding explicit key-confirmation.
Note that protocols secure against adaptive adversaries most likely
require (implicitly) such a key-confirmation phase anyway.

• Otherwise, the system will produce a good key, i.e., one chosen ran-
domly from {0, 1}k . Thus if u is the first group member for which
the adversary inputs “finish” (i.e., THH.sesv,sid ,grp 6= finished for all
v ∈ grp), then THH selects a good key and stores it for all group
members v in THH.keyv,sid ,grp .

The selected key THH.keyu,sid,grp is output to u, deleted internally
(THH.keyu,sid,grp ← undef) (this models forward secrecy), and the key es-
tablishment is finished for u (THH.sesu,sid,grp ← finished).

transition insim,u? (finish, sid , grp, [keyu,sim])

enabled if: (stateu,u 6= corrupted) ∧ (insim,u?.cntr < tb);
ignore if: (sesu,sid ,grp 6= init);
if present(keyu,sim) ∧

((∃v ∈ grp : statev,v = corrupted ∨ v ∈ A) ∨
(∃v0, v1 ∈ grp : (sesv0,sid,grp 6= undef) ∧ (sesv1,sid ,grp 6= undef) ∧

(prev v0,sid,grp 6= prev v1,sid ,grp))) then

Corrupted or inconsistent session so . . .
keyu,sid ,grp ← keyu,sim;# . . . use session key provided by adversary

else if (∀ v ∈ grp : sesv,sid ,grp 6= finished) then
First to finish (ideal) session
key R← {0, 1}k ; # Generate new (random) session key . . .
for all v ∈ grp do

keyv,sid ,grp ← key ; # . . . and assign it to all parties
end for;

end if ;
output: outu ! (key, sid , grp, keyu,sid,grp), outu

⊳! (1);# Give key to
user . . .
keyu,sid ,grp ← undef; # . . . and delete it locally to enable forward secrecy
sesu,sid ,grp ← finished;

end transition

Corruptions. Corruptions are handled as sketched in Section 5.1.2. A
priori, the users in H are uncorrupted. If ct = static, any inputs on port
corruptu? are ignored. If ct = adaptive then H can corrupt user u ∈ H at
any time by entering do at corruptu?. (We do not pose any limitation on
the number of users that can be corrupted.) In this case, THH extracts

110 Formal Model and Proofs

all data corresponding to u with a call to encode state(u) and sends them
to A. More precisely, encode state(u) maps to ({(u, v, stateu,v) | v ∈M},
{(sid , grp, sesu,sid,grp, keyu,sid ,grp, prevu,sid,grp) | sid ∈ SID ∧ grp ⊆M ∧
sesu,sid,grp 6= undef}).

The main part are all group keys that are already determined but
not yet output to u (and thus not deleted). THH records u’s corruption
(THH.stateu,u ← corrupted), and from now on operates in transparent mode
in respects to ports inu? (routed to outsim,u !) and insim,u? (routed to outu !).
Note that the transparent mode of the trusted host is slightly different to
the transparent mode of standard systems as described in Section 5.1.2. For
THH, the messages should not contain any port indicator: on the one hand,
it is always implicitly clear from which input port a message comes or to
which output port it has to go, and, on the other hand, explicit port indi-
cators would make the construction of simulators difficult if not impossible.

transition corruptu? (do)

enabled if: (ct = adaptive ∧ stateu,u 6= corrupted);
stateu,u ← corrupted;
output: corOutsim,u ! (state, encode state(u)), corOutsim,u

⊳! (1);

end transition

transition inu? (any msg)

enabled if: (stateu,u = corrupted); # Transparent mode
output: outsim,u ! (any msg), outsim,u

⊳! (1);

end transition

transition insim,u? (any msg)

enabled if: (stateu,u = corrupted); # Transparent mode
output: outu ! (any msg), outu

⊳! (1);

end transition
3

Let us briefly discuss, why the ideal system defined by Scheme 5.1
matches the notion and properties of a secure group key establishment as
informally introduced in Chapter 2. This match as well as the preservation
of integrity and confidentiality properties by simulation-based proofs allows
us to deduce from a proof Sysgke,real ≥sec Sysgke,ideal

n,tb,ct (with Sysgke,real any

real-world protocol) that Sysgke,real inherits all properties from the ideal sys-
tem and, therefore, is a secure group key establishment protocol. There are
three questions to answer on the model: (1) does it provide an appropriate
service, (2) does it capture necessary security properties, and (3) does it
support the required group dynamics?

5.2 Ideal System for Group Key Establishment 111

Service. It is obvious that the model provides the service “establishment
of a common session key.” Furthermore, the provided service is as gen-
eral as possible. To capture all types of key establishment protocols, e.g.,
(centralized) key transport protocol as well as (distributed) key agreement
protocols, the service is independent of particularities of protocols. In par-
ticular, it provides a uniformly distributed bit string as key which is the most
general abstraction of a key. This is in sharp contrast, e.g., to the model
provided by Bresson, Chevassut, Pointcheval, and Quisquater (2001) which
is highly customized towards Diffie-Hellman-based key agreement protocols.

Security Properties. The primary security property to consider is key
secrecy . For uncorrupted sessions — we cannot expect any secrecy for cor-
rupted sessions — the session key is generated randomly and secretly by
THH. Furthermore, the adversary will not learn any information on the
key other than what is leaked by the users of the key-establishment proto-
col.13 This is the strongest secrecy requirement imaginable and also implies
the semantic security of the session key. The freshness of the group key
is guaranteed as well since THH generates the session keys randomly and
independently from each other.

Except for corruptions, THH returns a session key only to legitimate
members of a group. Therefore, the ideal system provides implicit key au-
thentication. Additionally, the ideal system ensures that all honest group
members successfully establishing an uncorrupted session agree on the same
key and know the involved identities. This holds for the following rea-
sons: (1) THH enforces the uniqueness of a session as identified by the
pair (sid , grp), (2) this identifier implies a common agreement on the group
membership of a session, and (3) THH provides all parties with the same
key. As a consequence, the ideal system also offers mutual group key au-
thentication. Note that the ideal system does not ensure explicit group key
authentication or guarantee complete group key agreement. However, this
can be easily achieved with following change in transition insim,u? (finish,
sid , grp, [keyu,sim]): replace the condition ignore if: (sesu,sid ,grp 6= init)
by ignore if: (�v ∈ grp : statev,v = corrupted ∨ v ∈ A) ∧ (∃v ∈ grp :
(sesv,sid ,grp = undef)), i.e., ensure that for uncorrupted sessions a finish mes-
sage is handled only when everybody has initialized the session. In fact, as
will be easy to verify, the protocol-variant presented later which is proven
secure against adaptive adversaries turn out to be secure also in such a re-
stricted model and, therefore, is a complete group key agreement protocol
offering explicit group key authentication.

The ideal system captures both PFS and KKA. PFS is addressed by
allowing participants to be corrupted: This leaks as part of the state, on the

13This leakage is modeled as flows from H to A and is unavoidable when we allow
arbitrary modular composition with other protocols.

112 Formal Model and Proofs

one hand, all their long-term keys as well as the keys and state of ongoing
session but, on the other hand, no session keys from completed sessions.
The possibility of KKA is inherent in the model as H can leak arbitrary
information to A.

The model does not cover the special properties of (contributory) key
agreement protocols, e.g., the guarantee of key freshness even in sessions
with dishonest group members. While these properties are very useful
in achieving flexible group key establishment protocols for dynamic peer
groups, their security value per se is of only secondary importance and often
not required. Therefore, these aspects are not captured in the main model
for the sake of a broader model, i.e., one which captures key establishment in
general. If desired, however, the model could be extended accordingly, e.g.,
by adding a restriction on the freshness of the key passed by the simulator
in finish.

Dynamic groups. If we omit all the optional arguments [sid ′, grp′] in
Scheme 5.1 we obtain the basic notion of group key establishment. In terms
of Section 2.2, this corresponds to initial key agreement. As mentioned
in that section, we also need to transform one or more existing groups
(sid1, grp1), (sid2, grp2), . . . into a new group (sid , grp), i.e., we require AKA
operations.

A group can grow by adding a subset grp2 to a group (sid1, grp1) via
input (new, sid , grp1 ∪ grp2, sid1, grp1). If |grp2| = 1, we have member ad-
dition, otherwise mass join. Note, however, that the current ideal system
cannot directly express the transformation of two groups (sid1, grp1) and
(sid2, grp2) into (sid , grp ← grp1 ∪ grp2), i.e., group fusion.

A group can also shrink by excluding a member u from a group
(sid ′, grp′) via input (new, sid , grp ′ \ {u}, sid ′, grp′). In similar ways, we
can also perform mass leave and group division.

Finally, note that the model ensures for all AKA operations key inde-
pendence since THH generates independent and random session keys. As
there are no constraints on the membership in the new group grp ′ related
to the previous group grp, we also obtain policy independence.

Intuitively, member exclusion is a problematic operation: If the to-be-
excluded group member u was corrupted in a previous epoch (sid ′, grp ′), we
do not have any guarantee about the outcome of that epoch, the resulting
keys might be arbitrary14 and unlikely to be of much help for forming a
new group. However, in the case of adaptive adversaries, corruption of u
might have happened only after the formation of (sid ′, grp ′). Therefore, the
remaining members might benefit from reusing the consistent result from

14Note that for such corrupted epochs neither a successful explicit group key confir-
mation nor the (apparent) correct functioning of services depending on the group key
guarantee consistency!

5.3 Real System for Group Key Establishment 113

(new, sid ′, grp ′). Of course, protocols have to deal with potential inconsis-
tencies of prior sessions, e.g., by adding explicit key-confirmation as previ-
ously mentioned when describing the transition new. Furthermore, even in
the case of excluding statically corrupted group members, one should keep
in mind that corruption does not necessarily mean destructive interference
with the protocol. Therefore, an (optimistic) approach of AKA protocols
makes sense. If implied checks indicate inconsistency of the prior epoch,15

the protocol can always resort to an IKA.
In general it seems more difficult to prove security of AKA protocols

in a model with adaptive corruptions, and actually we can prove our AKA
protocols in the static model only. The reason is that, on the one hand,
in order to utilize the result of previous protocol runs the machines have
to store some information from those runs. On the other hand, we require
that if a group (sid ′, grp ′) was honest at the time all users completed the
protocol then the secrets for that run will never be given to the adversary,
even if all members of grp′ are corrupted afterwards. This would require a
forward-secure state at group members, a property currently not provided
by any group key protocol.16 This is a useful property per se, but also
practically needed in simulatability proofs: The information A has observed
fully determines the correct key key ′ for run (sid ′, grp ′) (e.g., A sees all
gxi , which determine the correct key key ′ = gx1...xn). If no member of grp′

is corrupted then THH outputs a random key key ′′ instead of key ′. Now
assume A corrupts some u ∈ grp ′. If the state of Mu contains enough secrets
to let A check whether a certain key is correct, we are in trouble: we must
consider the case where H gets all information from A to do this test. In the
real system the key received from the system will pass this test, while in the
ideal system this will most likely not be the case. Thus the views of H will be
different. This problem is typically avoided by deleting all information from
all Mu regarding (sid ′, grp ′) that would allow to test correctness before any
user outputs the key. However, this more or less seems to exclude efficient
AKA protocols.

5.3 Real System for Group Key Establishment

We now consider the security of concrete group key establishment or, more
precisely, group key agreement protocols. While some group key agreement
protocols from the literature turn out to be secure in a simulatability sense,
none does so against adaptive corruptions. We show how to extend them

15Such detection of inconsistencies might actually also serve as an additional deterrence
for users to misbehave.

16Note that Bresson et al. (2001) prove the security of their AKA protocol only against
weakly adaptive adversaries which do not get session-specific state. Due to that they do
not have to solve above-mentioned problem.

114 Formal Model and Proofs

Figure 5.3 Sketch of the real system. Derived parts are shown in gray.
Scheduling is shown only for newly introduced ports.

init, new key,

initial-

ized

do

H

A

GenM
u

aut
v,u

d
?

aut
G,v

!

M
v

aut
v,G

!aut
v,u

!

in
u
? out

u
!

corrupt
u
?

(Master

scheduler)

� � �

� �

aut
G,v

d
?

aut
v,G

d
?

cor{Out,In}
u

param

paramR

to achieve adaptive security. Both of the following protocols presuppose
authenticated connections.

As the basis of the real system, we take the protocol IKA.1 presented
in Section 4.2.1. (IKA.2 and any other protocol belonging to the family of
natural DH extensions should work in exactly the same way.)

For the non-adaptive case (ct = static) the protocol is identical to IKA.1
from Section 4.2.1 with two exceptions: (1) we explicitly use identifiers in
messages and perform tests on their receipt as outlined in Section 4.1, and
(2) instead of taking the Group Diffie-Hellman key directly, we derive a key
using a universal hash-function h similar to Shoup (1999): This is required
to get uniformly distributed random bit-strings as keys as mandated by the
model, i.e., the ideal system.

For adaptive security (ct = adaptive), we ensure that all secrets have
been erased before the first key is output (following Shoup (1999) for the
2-party case). As long as we use the authenticated channels only, without
additional signatures, this means a synchronization based on confirmation
messages between all pairs of participants.

Scheme 5.2 (Real System for Group Key Establishment Sysgke,ika1
n,tb,ct)

Let n ∈ N be the number of intended participants andM := {1, . . . , n}.
Similar to the trusted host, we parameterize the protocol with tb, the max-
imum number of transitions per port, and ct ∈ {adaptive, static} depending
on whether it has to deal with adaptive adversaries or not. The system
Sysgke,ika1

n,tb,ct — see Figure 5.3 for an overview — is defined by the following in-
tended structure (M ∗,S ∗) and channel model. The actual system is derived

5.3 Real System for Group Key Establishment 115

as a standard cryptographic system as defined in Section 5.1.2.
The specified ports S ∗ are the same as in the ideal system, i.e., those

connecting user machines M to H in Figure 5.3. The intended machines are
M ∗ = {M∗

u | u ∈ M} ∪ {Gen}. Their ports are ports(M∗
u) := {inu?, outu !,

outu
⊳!} ∪ {autv ,u?, autu,v ! | v ∈ {G} ∪M \ {u}} and ports(Gen) := {autu,G?,

autG,u ! | u ∈ M}. All system-internal connections are labeled “authenti-
cated”. (Connections to H are secure.)

The machine Gen generates and distributes the system parameters.
These parameters are generated using the generation algorithm genG. On
input 1k, this algorithm outputs a tuple (G, g, h) where G is a suitable cyclic
group of order |G|,17 g a generator of G and h a random element of a family
UHFG,k of universal hash functions (Carter and Wegman 1979) with do-
main G and range {0, 1}k . Suitable means that the group operations are
efficiently computable, |G| ≥ 23k and the Decisional Diffie-Hellman problem
is assumed to be hard. For example, according to Lemma 3.4, |G| should not
contain any small prime factors. (See Chapter 3, in particular Sections 3.5
and 3.6, for more information on the Decisional Diffie-Hellman problem and
universal hash functions.)

The machine Gen is incorruptible, i.e., it always correct. It contains vari-
ables state ∈ {undef, init} and (G, g, h). Its single state-transition function
is:

transition autu,G? (param)

enabled if: (autu,G?.cntr < tb);
if (state = undef) then

(G, g, h) ← genG(1k);
state ← init;

end if
output: autG,u ! (paramR, G, g, h);

end transition

A machine M∗
u implements the group key establishment service for the

corresponding user u. It contains the variables shown in Table 5.3. Its
state-transition function is shown below.

transition inu? (init) # Trigger initialization

enabled if: (stateu = undef) ∧ (inu?.cntr < tb);
stateu ← wait;
output: autu,G! (param);

end transition

17The group order |G| and its factorization is assumed to be public. However, for
simplicity this is not explicitly coded it into genG’s return.

116 Formal Model and Proofs

Table 5.3 Variables in M∗
u

Name Domain Meaning Init.

(statev)v∈M {undef,wait, init,
corrupted}

Long-term states
as seen by M∗

u.
undef

(G, g, h) Range of
genG(1k)

Global parame-
ters.

—

(sessid ,grp)sid∈SID,grp⊆M {undef, upflow,
downflow,
confirm, finished}

State of a (poten-
tial) session.

undef

(Csid ,grp)sid∈SID,grp⊆M {I | I ⊆ M} Records received
session confirma-
tions

∅

(keysid ,grp)sid∈SID,grp⊆M {0, 1}k ∪ {undef} Group key of a
session.

undef

(xsid ,grp)sid∈SID,grp⊆M Z|G| ∪ {undef} Individual secret
key of a session.

undef

(autv ,u?.cntr)v∈{G}∪H\{u} N Activation coun-
ters

0

transition autG,u? (paramR, G′, g′, h′) # Get system parameters

enabled if: (stateu = wait);
stateu ← init;
(G, g, h) ← (G′, g′, h′);
output: outu ! (initialized, u); outu

⊳! (1);
for all v ∈M \ {u} do

output: autu,v ! (initialized);
end for

end transition

transition autv ,u? (initialized) # Notification for other machines

enabled if: (stateu 6= corrupted) ∧ (autv ,u?.cntr < tb);
statev ← init;
output: outu ! (initialized, v), outu

⊳! (1);

end transition

transition inu? (new, sid , grp) # Start new session

enabled if: (stateu 6= corrupted) ∧ (inu?.cntr < tb);
ignore if:

(u 6∈ grp)∨ (|grp| < 2)∨ (∃v ∈ grp : statev 6= init)∨ (sessid ,grp 6= undef);

xsid ,grp
R← Z|G|;

5.3 Real System for Group Key Establishment 117

sessid ,grp ← upflow;
if (u = grp[1]) then # u is the first member

m′
1 ← g;

m′
2 ← gxsid ,grp

output: autu,grp[2]! (up, sid , grp, (m′
1,m

′
2));

sessid ,grp ← downflow;
end if

end transition

transition autv ,u? (up, sid , grp,msg) # Upflow message arrives

enabled if: (stateu 6= corrupted) ∧ (autv ,u?.cntr < tb);
ignore if: (sessid ,grp 6= upflow) ∨ (v 6= grp[idx(grp, u)−1]) ∨

(msg is not (m1, . . . ,midx(grp,u)) with mi ∈ G having maximal order);
i← idx(grp, u); # u’s position in the group
m′

1 ← mi;
for 1 ≤ j ≤ min(i, |grp| − 1) do

m′
j+1 ← m

xsid,grp

j

end for
if (i < |grp|) then

output: autu,grp[i+1]! (up, sid , grp, (m′
1, . . . ,m

′
i+1));

sessid ,grp ← downflow;
else # i = |grp|, i.e., u is the last member

keysid ,grp ← h((m|grp|)
xsid,grp);

if (ct = static) then # For the static case we are done
sessid ,grp ← finished;
output: outu ! (key, sid , grp, key sid ,grp), outu

⊳! (1);
else # For the adaptive case wait first for the confirmation flows

sessid ,grp ← confirm;
Csid ,grp ← {u};
xsid ,grp = undef; # Erase secret exponent

end if
for all v′ ∈ grp \ {u} do # “Broadcast” to the group members

output: autu,v ′ ! (down, sid , grp, (m′
1, . . . ,m

′
i));

end for
end if

end transition

transition autv ,u? (down, sid , grp,msg) # Downflow message arrives

enabled if: (stateu 6= corrupted) ∧ (autv ,u?.cntr < tb);
ignore if: (sessid ,grp 6= downflow) ∨ (v 6= grp[|grp|]) ∨

(msg is not (m1, . . . ,m|grp|) with mi ∈ G having maximal order);
i← idx(grp, u); # u’s position in the group
keysid ,grp ← h((m|grp|+1−i)

xsid ,grp);
if (ct = static) then # For the static case we are done

118 Formal Model and Proofs

sessid ,grp = finished;
output: outu ! (key, sid , grp, keysid ,grp), outu

⊳! (1);
else # For the adaptive case, start confirmation

sessid ,grp ← confirm;
Csid ,grp ← Csid ,grp ∪ {u, v};
xsid ,grp = undef; # Erase secret exponent
for all v′ ∈ grp\{u} do # “Broadcast” confirmation to group members

output: autu,v ! (confirm, sid , grp);
end for
if (Csid ,grp = grp) then # We got down after all confirm . . .

sessid ,grp = finished; # . . . so we are done: Give key to user . . .
output: outu ! (key, sid , grp, keysid ,grp), outu

⊳! (1);
keysid ,grp ← undef; # . . . and delete it locally

end if
end if

end transition

transition autv ,u? (confirm, sid , grp) # Confirmation message arrives

enabled if: (ct = adaptive) ∧ (stateu 6= corrupted) ∧ (autv ,u?.cntr < tb);
ignore if: (v 6∈ grp \ Csid ,grp) ∨ (sessid ,grp 6∈ {downflow, confirm});
Csid ,grp ← Csid ,grp ∪ {v};
if (Csid ,grp = grp)∧(sessid ,grp = confirm) then # All confirm received . . .

sessid ,grp ← finished; # . . . so we are done: Give key to user . . .
output: outu ! (key, sid , grp, keysid ,grp), outu

⊳! (1);
keysid ,grp ← undef; # . . . and delete it locally

end if

end transition
3

The derivation of the actual system from the intended structure is now
made as defined in Section 5.1.2. For example, the ports autu,v ! are dupli-
cated and passed to the adversary on port autdu,v !. Similarly, a corruption
switches a machine into transparent mode. The corresponding complete
specification of the real system can be found in Appendix B.

Remark: In Chapter 4, I argued that a nice feature of CLIQUES is the
provision of policy independence, e.g., it is not enshrined in the protocol who
is the group controller. Above modeling now forces implicitly a particular
policy, i.e., the use of the standard order ≤ in N. However, this is only
to keep the formalization of the protocol simple. It should be clear from
the following proof that an arbitrary epoch-specific total order on group
members (which could even be constructed “on-the-fly”) is sufficient.

5.4 Security of Real System 119

5.4 Security of Real System

Theorem 5.1 (Security of Scheme 5.2) For all n ∈ N and ct ∈
{static, adaptive}

Sysgke,ika1
n,tb,ct ≥sec Sysgke,ideal

n,tb,ct

2

We prove Theorem 5.1 in several steps:
First, we define an interactive version of the n-party Diffie-Hellman deci-

sion problem, and show that it is hard provided the ordinary Diffie-Hellman
decision problem is hard. We do this by defining two (computationally

indistinguishable) machines, GDH
(0)
n,mxkey and GDH

(1)
n,mxkey . The former com-

putes keys as in the real protocol while the latter is idealized: It works

like GDH
(0)
n,mxkey , but instead of producing the correct key as h(gx1...xn) it

produces some random bit string of the appropriate length.
Next, we rewrite the real system such that all partial Diffie-Hellman

keys of all machines Mu are computed by a hypothetical joint submachine

GDH
(0)
n,mxkey . Thus, we separate the computational indistinguishability as-

pects from others like state keeping (e.g., to show the sufficiency of con-
firmation messages in handling adaptive adversaries.) By the composition
theorem from Pfitzmann and Waidner (2001), we can replace this subma-

chine by GDH
(1)
n,mxkey .

Finally, we show that the resulting system is perfectly indistinguishable
from the trusted host together with a suitable simulator.

5.4.1 Interactive Generalized Diffie-Hellman Problem

As mentioned in the introduction of this section, our goal is to abstract
the computation of keys and, indirectly, the underlying number-theoretic
problem in a clean way. This is achieved with the following machine and its
two modes of operation determined by the parameter b:

Scheme 5.3 (Generalized Diffie-Hellman Machine GDH
(b)
n,mxkey)

The machines GDH
(b)
n,mxkey , for b ∈ {0, 1}, are constructed as follows: n

is the maximum number of members in any session, mxkey is the maximum

number of sessions. GDH
(b)
n,mxkey has ports {ingdh?, outgdh!, outgdh

⊳!}, where
in each transition triggered at ingdh? exactly one output is sent to outgdh!
which is immediately scheduled. As a convention we will call such self-
clocked request-reply pairs remote procedure calls (RPC) and replies
to message type mt will always have message type mtR.

A machine GDH
(b)
n,mxkey handles the messages shown in Table 5.4 and

contains the variables shown in Table 5.5. The state transition functions
are defined in following rules:

120 Formal Model and Proofs

Table 5.4 The message types and parameters handled by GDH
(b)
n,mxkey .

Port Type Parameters Meaning

ingdh? init — Get system pa-
rameters

outgdh! initR G, g, h Reply to above

ingdh? getView n′ Get GDH partial
keys of a new ses-
sion

outgdh! getViewR i, {(β,g
Q

βj=1xi,j
)|β∈Ini \{1

ni}} Reply to above, i
is the session refer-
ence identifier

ingdh? getKey i Get key of session
i

outgdh! getKeyR zi Reply to above

ingdh? getSecret i Get secret expo-
nents of session i

outgdh! getSecretR (xi,1, . . . , xi,ni) Reply to above

Table 5.5 Variables in GDH
(b)
n,mxkey

Name Domain Meaning Init.

(G, g, h) Range of genG(1k) System parameters

i N Session counter 0

(ci)i∈N {undef, init, finished,
corrupted }

Session status undef

(ni)i∈N N Number of session par-
ticipants

(xi,j)i,j∈N Z|G| Secret exponents

(zi)i∈N G Session keys

ingdh?.cntr N Activation counter 0

5.4 Security of Real System 121

transition ingdh? (init)

enabled if: (i = 0);
(G, g, h) R← genG(1k);
i← 1;
output: outgdh! (initR, G, g, h), outgdh

⊳! (1);

end transition

transition ingdh? (getView, n′)

enabled if: (1 ≤ i ≤ mxkey); # Initialized & maxima not exceeded
ignore if: ¬(2 ≤ n′ ≤ n); # Illegal number of participants
ci ← init;
ni ← n′;
(xi,1, . . . , xi,ni)

R← Zni

|G|;
if b = 0 then # Depending on type of machine . . .

zi ← h(gxi,1···xi,ni); # . . . set real key . . .
else

zi
R← {0, 1}k ; # . . . or random key.

end if
output: outgdh! (getViewR, i, {(β, g

Q
βj=1 xi,j

) | β ∈ Ini \{1
ni}}), outgdh

⊳!
(1);
i← i + 1;

end transition

transition ingdh? (getKey, i)

ignore if: (ci 6= init); # Session not yet initialized or already terminated
ci ← finished;
output: outgdh! (getKeyR, zi), outgdh

⊳! (1);

end transition

transition ingdh? (getSecret, i)

ignore if: (ci 6= init); # Session not yet initialized or already terminated
ci ← corrupted;
output: outgdh! (getSecretR, (xi,1, . . . , xi,ni)), outgdh

⊳! (1);

end transition
3

Let me briefly motivate the transitions. The meaning of the init message
should be clear: It causes the initialization of the machine and the genera-
tion of the system parameters. Using a getView message, a caller can then
instantiate a particular instance of a GDH problem and retrieve all corre-
sponding partial GDH keys. We will use this later to generate the messages
exchanged in a session of the key establishment protocol. The purpose of
getKey is to provide a key corresponding to the partial GDH keys returned
by getView. Depending on the bit b, this will result in the correctly derived

122 Formal Model and Proofs

key or an independent random bit-string of the appropriate length, respec-
tively. Therefore, we can satisfy our goal of decoupling the actual session
key from the messages in a key establishment session by setting b = 1. How-
ever, in sessions with dishonest group members, e.g., due to a corruption,
this strategy will not work. In these cases, the protocol messages might
contain elements of the group G other than the partial GDH keys. Even
worse, we also cannot use the “fake” session key provided by getKey. The
dishonest members, i.e., the adversary, can correctly derive the “real” ses-
sion key from the GDH partial keys and the secret exponents. Therefore,
the adversary would immediately detect the difference. This explains the
existence of getSecret. It provides us with all secret exponents and allows
us to also handle corrupted sessions. Finally, note that for each session only
either getSecret or getKey can be called successfully!

As we will show in the following lemma, views from the two machines

GDH
(b)
n,mxkey are indistinguishable if the DGDH(n) assumption (and indi-

rectly the DDH assumption) holds. Note that this does not immediately
follow from the DGDH(n) assumption: The interactivity, in particular cor-
ruptions (modeled by calls to getSecret), requires special attention.

Lemma 5.1 For any n ≥ 2 and mxkey and any polynomial-time machine
A it holds that

(1−1/poly(k))-DDH(c:∗; g:m; f:fct,nsprim)
α′≥1−1/2k ; t′≤(t+O(mxkey 2nk3))(O(n2k)/α2)
==============================⇒

view (0) c
≈ view (1)

where view (b) denotes the view of A while interacting with GDH
(b)
n,mxkey . 2

Proof. Assume that there is an interactive machine DA which can
distinguish view (0) from view (1) with non-negligible advantage δ :=
Prob[DA(view (b)) = b :: b R← {0, 1}] − 0.5.

Without loss of generality, we can assume that A always uses n′ = n: We
can always transform outputs for n into outputs for an n′ < n by virtually
combining xn′ , xn′+1, . . . , xn into a single value

∏n
j=n′ xj, i.e., we delete from

{(β, g
Q

βj=1 xi,j | β ∈ In′ \ {1n′
}}) all pairs where not all values βj for j =

n′, . . . , n are equal, and for the remaining ones we replace β by β1 . . . βn′ .
In the output generated on input getSecret, we replace xn′ by

∏n
j=n′ xj and

omit all xi with i > n′. It is easy to see that everything is consistent
and correctly distributed (

∏n
j=n′ xj is statistically indistinguishable from a

uniformly chosen x ∈ Z|G|; this follows from Lemma 3.1.)
Now the lemma follows from a hybrid argument: Let us define mxkey +1

hybrid machines GDH
{i}
n,mxkey . The machine GDH

{i}
n,mxkey is built and be-

haves like GDH
(1)
n,mxkey but flips the bit GDH

{i}
n,mxkey .b to 0 before handling

5.4 Security of Real System 123

the i-th getView request. Clearly, the extreme hybrids GDH
{1}
n,mxkey and

GDH
{mxkey+1}
n,mxkey are identical to GDH

(0)
n,mxkey and GDH

(1)
n,mxkey , respectively. Let

δi be DA’s advantage of distinguishing GDH
{i}
n,mxkey from GDH

{i+1}
n,mxkey .

Using A and DA as a subroutine we can now construct a distinguisher D

which distinguishes GDH
(0)
k,n from GDH

(1)
k,n (see the proof of Theorem 3.2 for

the exact definition of these ensembles of random variables): Given a sample

GDH k,n ← GDH
(b)
k,n, D first picks c R← {1, . . . ,mxkey}. Then it starts and

interacts with A behaving like GDH
{c}
n,mxkey with the following exceptions:18

When it receives an init query, it replaces G and g returned by genG(1k)
with the group and generator associated with GDH k,n; in the c-th getView

query it answers with (getViewR, c,GDH Public
k,n); on valid (i.e., cc 6= init)

input (getKey, c) it returns (getKeyR, c, h(GDH Key
k,n)); and on valid input

(getSecret, c) it simply gives up (it cannot correctly answer that request),
outputs bit b′ R← {0, 1} and halts. Finally, when A terminates with view
viewA it outputs b′ ← DA(viewA) and halts.

Let D{i} denote D with c chosen as i. Further, let badi be the event that
a valid input (getSecret, i) occured, i.e., the event which makes D{i} give
up. Note that the distribution of G, g, h and exponents of DGDH-tuples

produced by D{i} is identical to the equivalent distribution in GDH
(b)
k,n due

to the well-behavior of genG. Therefore, if badi does not happen then D{i}

behaves exactly like A interacting with GDH
{c+b}
n,mxkey .

Let the probability of D in guessing b correctly be written as

Prob[b′ = b] =
∑mxkey

i=1 Prob[c = i] (Prob[b′ = b|badi ∧ c = i]Prob[badi] +

Prob[b′ = b|¬badi ∧ c = i]Prob[¬badi]).

As D{i} simulates A’s environment perfectly up to a possible occurrence
of badi, the probability of badi is the same for D{i} as for views of A when
operating in reality. Additionally, views of A from the i-th and the i + 1-
th hybrids conditioned on the occurrence of badi are identical in reality
(without giving up) because the only difference, zi, is not output. So DA

has to guess (as does D{i}), i.e.,

Prob[DA(view
GDH

{i+b}
n,mxkey

) = b|badi] = 0.5 = Prob[D{i}(GDH k,n) = b|badi].

If badi does not occur, then D{i} perfectly simulates GDH
{i+b}
n,mxkey so

Prob[DA(view
GDH

{i+b}
n,mxkey

) = b|¬badi] = Prob[D{i}(GDH k,n) = b|¬badi].

18Note that the changes apply only for cases where the require: condition is fulfilled,
otherwise the requests are rejected as usual.

124 Formal Model and Proofs

Figure 5.4 Semi-real system. (Clocking of new components GDH Mux and

GDH
(0)
n,mxkey is RPC-style.)

M'
u Gen'M'

v

GDH_Mux

 init, getView,

getKey,getSecret

exp,

getKey,

getSecret,

corrupt

in
gdh

? out
gdh

!

in
gdhM,u

?

paramR

� � �

expR,

getKeyR,

getSecretR,

corruptR

initR, getViewR,

getKeyR,getSecretR

param

H

A

� � �

in
gdhM,G

?

aut
X,Y

(d)

out
gdhM,u

! out
gdhM,G

!

GDH
(0)

n,mxkey

By combining the previous two equations it follows that

Prob[DA(view
GDH

{i+b}
n,mxkey

) = b] = Prob[D{i}(GDH k,n) = b]

and by this and the first equation it has to hold that

Prob[b′ = b] =
1

mxkey

mxkey∑

i=1

Prob[DA(view
GDH

{i+b}
n,mxkey

) = b]

= 1/2 +
1

mxkey

mxkey∑

i=1

δi.

Using the equality
∑mxkey

i=1 δi = δ and the hypothesis that the advan-
tage δ of DA is non-negligible, leads to an immediate contradiction of the
1/poly(k)-DGDH(n)(c:∗; g:l; f:fct,nsprim) assumption. The lemma then fol-
lows immediately from this contradiction and the Lemmas 3.1 and 3.2.

5.4.2 Real System Rewritten with Interactive Diffie-
Hellman Machine

We now rewrite the real system so that it uses GDH
(0)
n,mxkey . We do this

via a multiplexer GDH Mux which maps group names, indices u, etc., of
the individual modified machines M′

u to the simple sequence numbers of

GDH
(0)
n,mxkey , and distributes the parts of views to the machines as they

5.4 Security of Real System 125

need them. Essentially, this rewriting shows that the real system only uses

Diffie-Hellman keys in the proper way captured in GDH
(0)
n,mxkey , i.e., never

outputting both a key and a secret, and that active attacks (where the
machines raise adversary-chosen elements to secret powers) do not make a
difference. The situation is summarized in Figure 5.4. More precisely, the
system is defined as follows:

Scheme 5.4 (Semi-real system Sysgke,ika1,sr
n,tb,ct)

The structures of the semi-real system Sysgke,ika1,sr
n,tb,ct contain machines M′

u

for all u ∈ H, Gen′, GDH Mux, and GDH
(0)
n,mxkey , where mxkey can be upper

bounded according to the runtime of M′
u, i.e., tb, as n ∗ tb.19

M′
u and Gen′ are identical to the corresponding Mu and Gen from scheme

Sysgke,ika1
n,tb,ct except that all operations on Diffie-Hellman keys are offloaded

to GDH Mux (see Figure 5.7 for the message interface of GDH Mux to-
wards these machines). Gen′ gets additional ports {ingdhM,G!, ingdhM,G

⊳!,
outgdhM,G?}. It uses them to get the system parameters by replacing the
call to genG with a remote procedure call to param at GDH Mux. M′

u has
the same variables as Mu. They also have the same meaning except that
the domain of M′

u.xsid ,grp is extended with a distinct value exists and the
domain of M′

u.keysid ,grp by G. M′
u has additional ports {ingdhM,u !, ingdhM,u

⊳!,
outgdhM,u?} to communicate with GDH Mux via remote procedure calls. The
cryptographic actions are changed as defined in Table 5.6. Additionally, on
input corruptu? (do), M′

u first outputs ingdhM,u ! (corrupt) and waits for the
response corruptR. (And after the corruption, the forwarding only refers to
the original ports of Mu.) The corresponding complete specification of Gen′

and M′
u can be found in Appendix B.

GDH Mux has ports {ingdh!, outgdh?, ingdh
⊳!} ∪ {ingdhM,u?, outgdhM,u !,

outgdhM,u
⊳! | u ∈ M ∪ {G}}. At its “upper” ports, it handles the message

types shown in Table 5.7. All of them are of the remote procedure call type,
i.e., responses are immediately scheduled. The GDH Mux de-multiplexes

requests to and from GDH
(0)
n,mxkey and shields GDH

(0)
n,mxkey from illegal re-

quests, i.e., GDH
(0)
n,mxkey is asked at most one of getSecret and getKey for a

given session, and handles corruptions. In the require:-clauses we collect
the pre-conditions under which GDH Mux will get the desired correct an-

swers from GDH
(0)
n,mxkey ; we will show below that they are always fulfilled in

the overall semi-real system.
The variables of GDH Mux are shown in Table 5.8. Below follows the

state transition functions of GDH Mux. Note that requests to ingdh? are

19This bound is of course overly conservative in practice. To get a considerably improved
concrete security without much loss of generality, one could parameterize the model with
additional bounds on the number of new requests and on the maximum size of a group.
The changes throughout the model and proof would be cumbersome yet straightforward.

126 Formal Model and Proofs

Table 5.6 Changed elementary actions in the semi-real machines M′
u

Elementary action Replaced by

xsid ,grp
R← Z|G| xsid ,grp ← exists.

m∗ ← mxsid,grp Output ingdhM,u ! (exp, sid , grp, m) and use
the answer as m∗.

keysid ,grp ← h(mxsid,grp) keysid ,grp ← m, i.e., delay key computation.

Output keysid ,grp

(when passing key to H)
Output ingdhM,u ! (getKey, sid , grp, keysid ,grp),
i.e., perform delayed key computation, and
use the answer as keysid ,grp .

Output keysid ,grp

(during corruption)
If keysid ,grp 6= undef (key computed but not
yet erased) output ingdhM,u ! (getKey, sid , grp,
keysid ,grp) and use the answer as keysid ,grp.

Output xsid ,grp

(during corruption)
If xsid ,grp = exists (secret generated but not
yet erased) output ingdhM,u ! (getSecret, sid ,
grp) and use the answer as xsid ,grp.

Table 5.7 Messages at “Upper” ports of GDH Mux where u ranges overM.

Port Type Parameters Meaning

ingdhM,G? param — Get system parameters

outgdhM,G! paramR G, g, h Reply to above

ingdhM,u? corrupt — Corruption

outgdhM,u ! corruptR — Reply to above

ingdhM,u? exp sid , grp, γ Exponentiate γ with secret for u
in this session. Limited to the
computation of partial keys!

outgdhM,u ! expR γxu Reply to above

ingdhM,u? getKey sid , grp, γ Get derived key matching final
partial key γ

outgdhM,u ! getKeyR K Reply to above

ingdhM,u? getSecret sid , grp Get secret of this session (to hand
it over during corruption)

outgdhM,u ! getSecretR xu Reply to above

5.4 Security of Real System 127

Table 5.8 Variables in GDH Mux

Variables Domain Meaning Init.

(isid ,grp)sid∈SID,grp⊆M N Index used
for this
session with
GDH

(b)
n,mxkey

undef

(corru)u∈M {true, false} Corrupted
machine?

true iff u
∈M\H

(sesu,sid,grp)u∈M,sid∈SID,grp⊆M {undef,
finished,
corrupted}

Session
status
related to u

undef

(keysid ,grp)sid∈SID,grp⊆M {0, 1}k ∪
{undef}

Session key
from
GDH

(b)
n,mxkey

undef

(view sid ,grp)sid∈SID,grp⊆M As output by

GDH
(b)
n,mxkey

View of a
session

undef

(secrets sid ,grp)sid∈SID,grp⊆M As output by

GDH
(b)
n,mxkey

Secrets of a
session

undef

(ingdhM,u?.cntr)u∈∈M∪{G}} N Activation 0

outgdh?.cntr counters

128 Formal Model and Proofs

remote procedure calls immediately answered by GDH
(b)
n,mxkey . Therefore, we

do not define special wait-states where GDH Mux waits for these answers,
but treat them within the surrounding transitions. We further assume that
the corresponding input port outgdh? is enabled only for a single outstanding
reply. For an n-bit string β and 1 ≤ i ≤ n, let bit(β, i) denote the i-th bit in
β and setbit(β, i) denote that the i-th bit in β is set to one. Furthermore,
let “β :: predicate(β)” means “all β such that predicate predicate holds”.

transition ingdhM,G? (param)

output: ingdh! (init), ingdh
⊳! (1);

input: outgdh? (initR, G, g, h);
output: outgdhM,G! (paramR, G, g, h), outgdhM,G

⊳! (1);

end transition

transition ingdhM,u? (exp, sid , grp, γ)

require: (u ∈ grp) ∧ ((isid ,grp = undef)
∨ ((∃v ∈ grp : sesv,sid ,grp =corrupted) ∧ (keysid ,grp = undef))
∨ ((∀v ∈ grp : sesv,sid ,grp 6=corrupted) ∧ (∃β : (β, γ)∈view sid ,grp ∧
bit(β, idx(grp, u)) = 0 ∧ setbit(β, idx(grp, u)) 6= 1|grp|)));
#
#
#

A legitimate caller and either session is completely undefined or ses-
sion is corrupted but key is not yet divulged or session is uncorrupted
and query is for one of “our” partial keys.

if (isid ,grp = undef) then # New session
output: ingdh! (getView, |grp|), ingdh

⊳! (1);
input: outgdh? (getViewR, i, view);
isid ,grp ← i; viewsid ,grp ← view
for all (v :: corr v = true) do sesv ,sid,grp ← corrupted; end for

end if
if (∀v ∈ grp : sesv,sid ,grp 6= corrupted) then # Session uncorrupted

β′←setbit(β, idx(grp, u)) :: (β, γ)∈view sid ,grp;# Index of exponentiation
output: outgdhM,u ! (expR, γ′ :: (β′, γ′) ∈ viewsid ,grp), outgdhM,u

⊳! (1);
else # Group contains a corrupted participant

if (secrets sid ,grp = undef) then # Secrets not yet known
output: ingdh! (getSecret, isid ,grp), ingdh

⊳! (1);
input: outgdh? (getSecretR, secrets);
secretssid ,grp ← secrets ;

end if
output: outgdhM,u ! (expR, γsecretssid,grp,idx(grp,u)); outgdhM,u

⊳! (1);
end if

end transition

transition ingdhM,u? (getKey, sid , grp, γ)

5.4 Security of Real System 129

require: (u ∈ grp) ∧ (isid ,grp 6= undef) ∧ (sesu,sid ,grp 6=finished) ∧
(((∃β : (β, γ)∈view sid ,grp) ∧ (setbit(β, idx(grp, u)) = 1|grp|)) ∨
((keysid ,grp = undef) ∧ (∃v ∈ grp : sesv,sid ,grp =corrupted)));

#
#
#

A legitimate caller of an initialized but unfinished session either ask-
ing for a correct key or being corrupted without somebody having
asked for the ideal key before

if keysid ,grp 6= undef then # (Ideal) key already defined. . .
. . . so just return this key
sesu,sid ,grp ← finished;
output: outgdhM,u ! (getKeyR, keysid ,grp), outgdhM,u

⊳! (1);
else # (Ideal) key does not yet exist and . . .

if (∀v ∈ grp : sesv,sid ,grp 6= corrupted) then # . . . uncorrupted session
output: ingdh! (getKey, isid ,grp), ingdh

⊳! (1);
input: outgdh? (getKeyR, key);
keysid ,grp ← key ;
sesu,sid,grp ← finished; # Mark only uncorrupted sessions as finished!
output: outgdhM,u ! (getKeyR, keysid ,grp), outgdhM,u

⊳! (1);
else # Group contains corrupted participants and (ideal) key undefined

if (secretssid ,grp = undef) then # Secrets not yet known
output: ingdh! (getSecret, isid ,grp), ingdh

⊳! (1);
input: outgdh? (getSecretR, secrets);
secrets sid ,grp ← secrets ;

end if
output: outgdhM,u ! (getKeyR, h(γsecretssid,grp,idx(grp,u))), outgdhM,u

⊳! (1);
end if

end if

end transition

transition ingdhM,u? (corrupt)

corru ← true;
for all (sid , grp :: (u ∈ grp) ∧ (isid ,grp 6= undef) ∧ (sesu,sid,grp 6= finished))
do

sesu,sid ,grp ← corrupted; # Mark only locally unfinished sessions
end for
output: outgdhM,u ! (corruptR), outgdhM,u

⊳! (1);

end transition

transition ingdhM,u? (getSecret, sid , grp)

require: (u ∈ grp) ∧ (isid ,grp 6= undef) ∧ (sesu,sid,grp = corrupted) ∧
(keysid ,grp = undef);
#
#

A legitimate caller of a started session and we are corrupted but the
key has not been exposed

if (secrets sid ,grp = undef) then # Secrets not yet known
output: ingdh! (getSecret, isid ,grp), ingdh

⊳! (1);

130 Formal Model and Proofs

input: outgdh? (getSecretR, secrets);
secretssid ,grp ← secrets ;

end if
output: outgdhM,u ! (getSecretR, secrets sid ,grp,idx(grp,u)), outgdhM,u

⊳! (1);

end transition 3

The following lemma shows that we safely replace the real system by the
semi-real system.

Lemma 5.2
Sysgke,ika1

n,tb,ct ≥sec Sysgke,ika1,sr
n,tb,ct

2

Proof. Our goal is to show that the input-output behavior of the two systems
is identical.

The biggest difference, of course, is the different number of machines in
both systems. However, the existence of the sub-machines GDH Mux and

GDH
(0)
n,mxkey is hidden. The self-clocking and the use of secure connections

for remote procedure calls in Sysgke,ika1,sr
n,tb,ct ensures that the system control

the scheduling for the whole duration of information flows through (honest)
machines from H to A (and vice versa) and makes these flows externally vis-

ible as single atomic actions identical to Sysgke,ika1
n,tb,ct . This is also not violated

by corruptions since the transparent mode does not leak any information on
the existence of sub-machines.

Furthermore, it is easy to see that we mainly have to focus on the de-
terministic aspects. The only probabilistic actions of honest machines are
the generation of the parameters and of the secret exponents, and they are
chosen in both systems randomly as well as independently from the same
distribution. The fact that the exponents are chosen in Sysgke,ika1,sr

n,tb,ct by a

submachine and also not at the same points in time as in Sysgke,ika1
n,tb,ct does

not matter. As argued above, the submachine is hidden. Additionally,
the behavior of honest machines does not directly depend on these random
choices. Due to this and the following argumentation on the deterministic
behavior, externally visible events which are causally related to the gener-
ation of secret exponents are consistent with their corresponding events in
Sysgke,ika1

n,tb,ct .

To see that the deterministic behavior in Sysgke,ika1,sr
n,tb,ct is consistent with

Sysgke,ika1
n,tb,ct , you should first observe that the external interface including en-

abled if: and ignore if: conditions is identical in both systems by construc-
tion. The next and most crucial step is to understand the require:-clauses
in GDH Mux. They ensure that, independent of the behavior of a calling
M′

u:

5.4 Security of Real System 131

1. GDH
(0)
n,mxkey is consistently called, e.g., for each session at most one of

getSecret and getKey is sent to GDH
(0)
n,mxkey ; and

2. all partial GDH keys and session keys returned to a caller of getKey

and exp are consistent with the provided γ’s and previously delivered
related values.20

However, these condition as well as the behavior of GDH Mux should also
not be too strict. They certainly have to ensure that:

3. calls by an uncorrupted M′
u, in particular to getKey, do not block on

a require: condition;

4. GDH Mux provides an ideal key, i.e., one retrieved via getKey from

GDH
(0)
n,mxkey , for sessions where no group member is corrupted at the

point of the first getKey;21 and

5. “corrupted” keys, i.e., keys where the provided γ does not match the
expected value, are always computed correctly using exponentiations
to the given base γ.

If these conditions are fulfilled, clearly, an uncorrupted M′
u performs (in

conjunction with GDH Mux) the same state updates and behaves (as visible
externally) identical to the corresponding Mu. This holds also for corrup-
tions since GDH Mux provides the necessary information contained by Mu

but lacking in M′
u, i.e., exponents or keys which are not yet deleted.

This leaves us, finally, with the task of verifying that all of above con-

ditions are fulfilled by GDH Mux and GDH
(0)
n,mxkey . Foremost, observe that

GDH Mux.isid ,grp uniquely relates sessions from M′
u (using the parameters

(sid , grp)) with GDH instances provided by GDH
(0)
n,mxkey and identified by i.

Furthermore, the tests (u ∈ grp) ensure that only legitimate users of session
are serviced. Let us address now the different conditions in turn.

Condition 1: The validity of this condition holds for the following reasons.

Since honest machines always call Gen′ before calling GDH Mux, GDH
(0)
n,mxkey

is appropriately initialized before GDH Mux calls it. Additionally, GDH Mux

requests GDH instances correctly on demand. Furthermore, a call to getKey

is remembered in keysid ,grp. This caching as well as the similar caching of

secret exponents ensures that GDH
(0)
n,mxkey is asked only once per session for

20This does not necessarily mean that the session key must be identical to the key
correctly derived from the GDH key corresponding to γ. It only requires that everybody
asking for the session key and providing the same γ for a particular session will receive
the same session key. This is not important here but will be crucial when constructing
the simulator.

21Again, this is not directly relevant here but crucial when constructing the simulator.

132 Formal Model and Proofs

either of them. Furthermore, the conditions (keysid ,grp = undef) and the
protocol flow guarantee that getSecret is never called after a call to getKey.
Similarly, getSecret is only called for corrupted sessions, a case in which
getKey is never called (note that sessions cannot be “uncorrupted”).

Condition 2: This condition is trivially true since: (1) GDH
(0)
n,mxkey com-

putes all keys based on real GDH partial keys and the correct key derivation,
and (2) GDH Mux tests for “incorrect” γ’s, which cannot be found in the
set of partial GDH keys, and computes the required value itself. (Note that
this can only happen in case of a corruption and therefore calling getSecret

is OK.)

Condition 3: Regarding this condition, note that honest machines M′
u

pass always properly formated parameters. We first show that GDH Mux

will not block on any require: condition for uncorrupted sessions. exp is
called by each machine at least once before getKey is called a single time.
Furthermore, the parameters are always correct and consistent with the

GDH partial keys obtained by GDH
(0)
n,mxkey due to the honesty of machines

and by construction of the protocol. This ensures that all exponentiations
can be served from the GDH partial keys and, on calls to getKey, the session
is initialized but not terminated.

Similarly, for sessions where some group members are corrupted before-

hand, e.g., due to static corruptions, GDH
(0)
n,mxkey is never asked for getKey.

Therefore, keysid ,grp remains undefined and exponentiations and key deriva-
tions do not block when the base γ does not match the partial GDH keys.
This covers the case of static corruption (ct = static).

To cover the case of adaptive corruptions (ct = adaptive), it is sufficient
to consider the following scenario: an uncorrupted group starts a session
and later during the session a group member M′

u gets corrupted. First, note
that dishonest machines never call GDH Mux after encode state(). Then,
observe that, due to the confirmation flows, at the point of the first call to
getKey no other member will call exp anymore for the same session. Let us
now consider the following two possible cases:

• In the first case, the session gets first corrupted before the first call
to getKey. In this case, GDH Mux marks the session as corrupted

and can safely retrieve the secret exponents GDH
(0)
n,mxkey by calling

getSecret and serve (potentially inconsistent) queries to exp, getKey,
and getSecret. (Note that getSecret or getKey might be called during
corruption of M′

u or subsequent corruptions of other machines.)

• In the second case, the session gets corrupted only after the first call to
getKey. Then, all exponents got previously deleted in all (then honest)
machines M′

u. Furthermore, M′
u will call neither exp nor getSecret

5.4 Security of Real System 133

Figure 5.5 Simulator

� � �

H
in

u
! out

v
?

TH
H

A

aut
X,Y

(d)

Sim
H

in
sim,v

?out
sim,u

!

� � �

M"
u

out
sim,u

? in
sim,u

!

Gen'

corOut
sim,u

?

M"
v

GDH_Mux'

� � �

corOut
sim,u

!

GDH
(1)

n,mxkey

anymore. Since keysid ,grp is cached and since, due to the confirmation
flows, there exists an agreement among all machines on the γ required
as input to getKey, GDH Mux can serve all subsequent getKey queries.

Conditions 4 and 5: The fulfillment of these conditions should be im-
mediately clear from the require: condition for getKey messages and the
corresponding ways to derive the key.

5.4.3 Replacing GDH
(0)
n,mxkey by GDH

(1)
n,mxkey

In the next step, we replace GDH
(0)
n,mxkey by GDH

(1)
n,mxkey . The rest of the

system remains as in Figure 5.4. We call the resulting semi-ideal system
Sysgke,ika1,si

n,tb,ct . The composition theorem from Pfitzmann and Waidner (2001)
and Lemma 5.1 immediately imply the following result:

Lemma 5.3
Sysgke,ika1,sr

n,tb,ct ≥sec Sysgke,ika1,si
n,tb,ct

2

5.4.4 Security of the System with GDH
(1)
n,mxkey with Respect to

the Ideal System

We now define as a final step the simulator as a variant of the previous
system.

134 Formal Model and Proofs

Scheme 5.5 (Simulator for Scheme 5.2)
The overall structure of the simulator SimH is shown in Figure 5.5.
The submachine Gen′ of SimH is identical to its counterpart in the semi-

real and semi-ideal systems. Each submachine M′′
u of SimH has the same

ports as its semi-real counterpart M′
u, except that its ports are connected

to THH and correspondingly renamed, i.e., inu? becomes outsim,u?, outu ! be-
comes insim,u !, and corruptu? becomes corOutu? for all u ∈M. Furthermore,
the domain of the variable keysid ,grp is extended to the value ideal, a value

which is distinct from {0, 1}k , G and undef and has an empty transport
encoding. M′′

u also has the same state-transition function as M′
u except for

this renaming and the following changes:

• the message type key is everywhere replaced by finish. Note that a mes-
sage of type finish with a parameter ideal as third parameter will result,
due to above mentioned encoding properties, in a two-parameter mes-
sage only (allowing THH to choose an ideal key).

• M′′
u expects a message (state, state) instead of (do) on port

corOutsim,u?. This corruption message is also passed to ingdhM,u !.

Submachine GDH Mux′ is identical to GDH Mux except

• The domain of the variable keysid ,grp is extended to the value ideal.

• Instead of calling getKey to GDH
(1)
n,mxkey in transition getKey it defines

keysid ,grp always as ideal: This will result in a finish message with
no key and allow THH to choose the key as desired in the absence
of corrupted parties. (Note that due to the program logic no call to
getKey from encode state() during a corruption will ever return ideal,
so no adversary will be confused by an unexpected value ideal.)

• It expects the (ideal) state state of the corrupted party as a parameter
of message corrupt, extracts all session keys from state and assigns
them to the corresponding variable GDH Mux′.keysid ,grp.

The corresponding complete specification can be found in Appendix B. 3

As the following lemma shows, the semi-ideal system is at least as secure
as the ideal system.

Lemma 5.4
Sysgke,ika1,si

n,tb,ct ≥sec Sysgke,ideal
n,tb,ct

2

Proof. The proof of this lemma is quite similar to the proof of Lemma 5.2.
The difference in the structure among the two systems is hidden for the

5.4 Security of Real System 135

same reasons given in that lemma. Similar arguments hold regarding the
probabilistic aspects, except that now the ideal key is generated by THH

and GDH
(1)
n,mxkey , respectively. This leaves the deterministic aspects.

The same argumentation from Lemma 5.2 ensures also here that the
sub-machines M′′

u of SimH interoperate consistently with GDH Mux′, and

GDH
(1)
n,mxkey . The main question to answer is whether the interposition of

THH does not result in observable differences of behavior. It is easy to
verify, that the messages exchanged on the connections between THH and
uncorrupted sub-machines in SimH match the required message format. For
corrupted sub-machines, the logic of the specification ensures that the cor-
responding “virtual sub-machine” in THH is switched to transparent mode
at the same time, too. Furthermore, it should be clear that THH and SimH

keep session-specific state and the corruption status of users in lock-step.
This means for most cases, THH will safely route messages forth and back
between M′′

u and the corresponding user u. The only real question is whether
a finish is accepted by THH and results in appropriate assignment of session
keys. However, this is ensured mainly due to the fulfillment of the Condi-
tions 2, 4 and 5 mentioned and shown to hold in the proof of Lemma 5.2.
For sessions which are already corrupted before the first getKey occurs, the
“real” session key derived from the GDH keys are passed by GDH Mux′ to
M′′

u. Furthermore, as the session is corrupted THH will accept this key in
a finish message. For sessions which get corrupted only after the first call
to getKey, we are forced to finish the session with an ideal key. This works
for following reasons: (1) no traces of the “real” session key exist anymore,
(2) the corresponding session key returned by GDH Mux′ to M′′

u on a call
to getKey will have the value ideal, and (3) the sending of a finish message
with key ideal results, as noted in the description of the simulator, in a finish

message with no third parameter as required by THH to accept that session
and to generate the concrete ideal key itself.

Proof. (of Theorem 5.1) The result follows immediately from
Lemmas 5.2, 5.3 and 5.4, and the fact that “≥sec” is transitive
(Pfitzmann and Waidner 2001). Applying Remark 3.2 to Theorem 5.1
(the number numpkey of different partial keys visible to an adversary in
Scheme 5.2 is (n(n− 1)/2)− 1) and observing that only Lemma 5.3 involves
computational security, we achieve the following overall concrete security:
Given a distinguisher which breaks Scheme 5.2 in time t and with success
probability ǫ, we can break (1−1/poly(k))-DDH(c:∗; g:m; f:fct,nsprim) with
a time complexity of at most (t + O(mxkey n3 k3))(O(n2k)/ǫ2) and with
overwhelming success probability.

136 Formal Model and Proofs

Chapter 6

Conclusion and Outlook

In this final chapter I summarize my thesis. Furthermore, I give an outlook
on open problems and possible research directions.

I
N this thesis, I investigated the problem of key establishment in dy-
namic peer groups. Specifically, I considered the different services —

namely, initial key agreement, key refresh and membership change opera-
tions — and the various required and desirable properties thereof. I pre-
sented CLIQUES, a family of protocols which provide all the services men-
tioned above and which are optimal or close to optimal in a number of met-
rics. The main drawback of the protocols are their relatively large round
complexity for group merge operations. This deficiency is overcome in the
STR protocols proposed in Kim et al. (2001) although at the cost of a con-
siderably less rigorous proof and a reliance on the random oracle model
(Bellare and Rogaway 1993). It is an interesting open question whether we
can prove the STR protocols (or variations thereof) in the standard model
while retaining the good round complexity.

By providing the first formal model of the required group key estab-
lishment services and a thorough investigation in the underlying crypto-
graphic assumptions, I achieved the first formal proofs of group key estab-
lishment protocols. In particular, I proved that two variants of the ini-
tial key agreement operation of CLIQUES are secure against static and
adaptive adversaries, respectively. These proofs hold only in a network
with authenticated channels. However, using the compiler techniques from
Bellare, Canetti, and Krawczyk (1998) it is possible to automatically con-
struct protocols also secure in unauthenticated networks. This way we get
a very modular and clean approach to the design of secure protocols. One
drawback with this approach is that the resulting protocols are not optimal
in their performance, i.e., the compiler adds a certain overhead of additional

137

138 Conclusion and Outlook

messages which do not seem necessary. More efficient implementations based
directly on digital signatures seem achievable as well, e.g., by applying opti-
mizations similar to Canetti and Krawczyk (2001b) to the initial agreement
and using the techniques from Bresson et al. (2001) for the authentication
of auxiliary protocols, but require a corresponding careful analysis. Clearly,
there are ample opportunities for future research.

The formal model also covers the auxiliary protocols. I only showed
informally that CLIQUES AKA protocols are secure in the static model.
However, the formal proof can be done by applying the same techniques
as used in the proof of the CLIQUES IKA protocol. However, it seems to
be an open research problem to find (efficient) AKA protocols which are
secure against strong-adaptive1 adversaries. The model is general enough
to also cover key transport protocols. Therefore, it would be worthwhile
to investigate the formal security of state-of-the-art group key transport
protocol such as the tree-based scheme from Canetti et al. (1999) to further
validate the model and to also get some provably secure group key transport
protocols.

One of the advantages of the proposed formal model is the composition
theorem which is part of the underlying computation and communication
meta-model. An obvious application of the model for group key establish-
ment and the composition theorem is in the modular definition of group
services which rely on a group key exchange such as secure group commu-
nication. Proceeding on this way there is hope that one day there will be a
modular and complete group communication system which is provably se-
cure in its entirety, a thought which currently is beyond any imagination us-
ing past approaches. However, besides the provision of the necessary models
and protocols for the other services of a group communication system there
is one other gap to bridge. Reality is only (but inevitably) partially cap-
tured by the computation and communication meta-model. Therefore, one
also has to carefully identify and analyze the remaining abstractions in this
model, e.g., the absence of time or certain implicit properties of communi-
cation, and to consider how these abstractions can be securely implemented
based on real hardware, operating systems and programming languages. For
first steps in this directions I refer you to Adelsbach and Steiner (2002).

Finally, the classification of cryptographic assumptions related to dis-
crete logarithms has its independent merits: It can serve as the basis of a
standardization of results related to such assumptions and encourages their
generalization to the most broadest case possible. Ideally, this could culmi-
nate in a large tool box which covers all known results and which supports
cryptographic protocol designers in finding an assumption which is directly

1In a model with a weaker corruption model (Bresson, Chevassut, and Pointcheval 2001)
where on corruption only long-term keys, but no short-term information such as random
exponents, are leaked, CLIQUES AKA can withstand adaptive adversaries.

139

appropriate for their cryptographic applications, and in, potentially auto-
matically, deriving the weakest possible equivalent assumption.

140 Conclusion and Outlook

Bibliography

Abadi, Mart́ın and Andrew D. Gordon. 1997. “Reasoning about cryp-
tographic protocols in the spi calculus.” CONCUR’97: Concurrency
Theory, Volume 1243 of Lecture Notes in Computer Science. Springer-
Verlag, Berlin Germany, 59–73.

Abadi, Mart́ın and Roger Needham. 1996. “Prudent Engineering Practice
for Cryptographic Protocols.” IEEE Transactions on Software Engi-
neering 22 (1): 6–15 (January).

Abadi, Mart́ın and Phillip Rogaway. 2002. “Reconciling two views of
cryptography (The computational soundness of formal encryption).”
Journal of Cryptology 15 (2): 103–127.

Adams, Carlisle, Mike Burmester, Yvo Desmedt, Mike Reiter, and Philip
Zimmermann. 2000, November. “Which PKI (Public Key Infrastruc-
ture) is the right one?” Edited by Sushil Jajodia, Proceedings of the 7th
ACM Conference on Computer and Communications Security. Athens,
Greece: ACM Press, 98–101. Panel session.

Adelsbach, André. 1999, November. “Urheberschaftsbeweise mittels Wa-
termarking und Registrierung.” Diplomarbeit, Fachbereich 14, Infor-
matik, der Universität des Saarlandes, Saarbrücken.

Adelsbach, André and Ahmad-Reza Sadeghi. 2001. “Zero-Knowledge
Watermark Detection and Proof of Ownership.” Edited by Ira S.
Moskowitz, Information Hiding—4th International Workshop, IHW
2001, Volume 2137 of Lecture Notes in Computer Science. Pittsburgh,
PA, USA: Springer-Verlag, Berlin Germany, 273–288.

Adelsbach, André and Michael Steiner (Editors). 2002, February. “Crypo-
graphic Semantics for Algebraic Model.” Deliverable D08, EU Project
IST-1999-11583 Malicious- and Accidental-Fault Tolerance for Internet
Applications (MAFTIA).

Adelsbach, André, Birgit Pfitzmann, and Ahmad-Reza Sadeghi. 2000, Oc-
tober. “Proving Ownership of Digital Content.” Edited by Andreas
Pfitzmann, Information Hiding—3rd International Workshop, IH’99,
Volume 1768 of Lecture Notes in Computer Science. Dresden, Ger-
many: Springer-Verlag, Berlin Germany, 126–141.

141

142 Bibliography

Agarwal, Deborah A., Olivier Chevassut, Mary R. Thompson, and Gene
Tsudik. 2001, July. “An Integrated Solution for Secure Group Com-
munication in Wide-Area Networks.” 2001 IEEE Symposium on Com-
puters and Communications.

Ajtai, Miklós and Cynthia Dwork. 1997, May. “A Public-Key Cryptosystem
with Worst-Case/Average-Case Equivalence.” Proceedings of the 29th
Annual Symposium on Theory Of Computing (STOC). El Paso, TX,
USA: ACM Press, 284–293.

Amir, Yair and Jonathan Stanton. 1998. “The Spread Wide Area Group
Communication System.” Technical report CNDS 98-4, The Center for
Networking and Distributed Systems, John Hopkins University.

Amir, Yair, Giuseppe Ateniese, Damian Hasse, Yongdae Kim, Cristina
Nita-Rotaru, Theo Schlossnagle, John Schultz, Jonathan Stanton,
and Gene Tsudik. 2000, April. “Secure Group Communication
in Asynchronous Networks with Failures: Integration and Experi-
ments.” 20th International Conference on Distributed Computing Sys-
tems (ICDCS’2000). IEEE Computer Society Press.

Anderson, Ross J. 2001. Security Engineering — A Guide to Building
Dependable Distributed Systems. John Wiley & Sons.

Anderson, Ross and Roger Needham. 1995. “Robustness principles for pub-
lic key protocols.” Edited by Don Coppersmith, Advances in Cryptology
– CRYPTO ’95, Volume 963 of Lecture Notes in Computer Science.
International Association for Cryptologic Research: Springer-Verlag,
Berlin Germany.

Asokan, N. and Philip Ginzboorg. 2000. “Key-Agreement in Ad-hoc Net-
works.” Computer Communications 23 (17): 1627–1637 (November).

Asokan, N., Hervé Debar, Michael Steiner, and Michael Waidner. 1999.
“Authenticating Public Terminals.” Computer Networks 31 (8): 861–
870 (May).

Ateniese, Giuseppe, Michael Steiner, and Gene Tsudik. 2000. “New Mul-
tiparty Authentication Services and Key Agreement Protocols.” IEEE
Journal on Selected Areas in Communications 18 (4): 628–639 (April).

Babai, Laszlo and Endre Szemerédi. 1984. “On the complexity of matrix
group problems.” Proceedings of the 25th Symposium on Foundations of
Computer Science (FOCS). IEEE Computer Society Press, 229–240.

Bach, Eric and Jeffrey Shallit. 1996. Algorithmic Number Theory — Ef-
ficient Algorithms. Volume I. Cambridge, USA: MIT Press. ISBN:
0-262-02405-5.

Ballardie, Anthony. 1996, May. “Scalable Multicast Key Distribution.”
Internet request for comment RFC 1949, Internet Engineering Task
Force.

Bibliography 143

Becker, Klaus and Uta Wille. 1998, November. “Communication Complex-
ity of Group Key Distribution.” Proceedings of the 5th ACM Conference
on Computer and Communications Security. San Francisco, California:
ACM Press, 1–6.

Bellare, Mihir and Oded Goldreich. 1993. “On Defining Proofs of Knowl-
edge.” Edited by E.F. Brickell, Advances in Cryptology – CRYPTO ’92,
Volume 740 of Lecture Notes in Computer Science. International Asso-
ciation for Cryptologic Research: Springer-Verlag, Berlin Germany.

Bellare, Mihir and Phillip Rogaway. 1993, November. “Random Oracles
are Practical: A Paradigm for Designing Efficient Protocols.” Edited by
Victoria Ashby, Proceedings of the 1st ACM Conference on Computer
and Communications Security. Fairfax, Virginia: ACM Press, 62–73.

. 1994. “Entity Authentication and Key Distribution.” Edited
by Douglas R. Stinson, Advances in Cryptology – CRYPTO ’93, Vol-
ume 773 of Lecture Notes in Computer Science. International Associa-
tion for Cryptologic Research: Springer-Verlag, Berlin Germany, 232–
249.

. 1995a. “Optimal Asymmetric Encryption — How to
encrypt with RSA.” Edited by A. De Santis, Advances in
Cryptology – EUROCRYPT ’94, Volume 950 of Lecture Notes
in Computer Science. International Association for Crypto-
logic Research: Springer-Verlag, Berlin Germany, 92–111. Fi-
nal (revised) version appeared November 19, 1995. Available from
http://www-cse.ucsd.edu/users/mihir/papers/oaep.html.

. 1995b, May. “Provably Secure Session Key Distribution — The
Three Party Case.” Proceedings of the 27th Annual Symposium on
Theory of Computing (STOC). ACM Press, 57–66.

Bellare, Mihir, Ran Canetti, and Hugo Krawczyk. 1998, May. “A modular
approach to the design and analysis of authentication and key exchange
protocols.” Proceedings of the 30th Annual Symposium on Theory Of
Computing (STOC). Dallas, TX, USA: ACM Press, 419–428.

Bellare, Mihir, David Pointcheval, and Phillip Rogaway. 2000. “Au-
thenticated Key Exchange Secure Against Dictionary Attacks.” In
Preneel 2000, 139–155. Appeared also as Cryptology ePrint Archive
Report 2000/014, 28 April, 2000.

Bengio, Samy, Gilles Brassard, Yvo G. Desmedt, Claude Goutier, and Jean-
Jacques Quisquater. 1991. “Secure Implementation of Identification
Systems.” Journal of Cryptology 4 (3): 175–183.

Biham, Eli, Dan Boneh, and Omer Reingold. 1999. “Breaking General-
ized Diffie-Hellman modulo a composite is no easier than factoring.”

http://www-cse.ucsd.edu/users/mihir/papers/oaep.html

144 Bibliography

Information Processing Letters 70:83–87. Also appeared in Theory of
Cryptography Library, Record 97-14, 1997.

Bird, Ray, Inder Gopal, Amir Herzberg, Phil Janson, Shay Kutten, Refik
Molva, and Moti Yung. 1993. “Systematic design of a family of attack-
resistant authentication protocols.” IEEE Journal on Selected Areas in
Communications 11 (5): 679–693 (June).

Birman, Kenneth. 1996. Building secure and reliable network applications.
Manning Publications Co. ISBN 1-884777-29-5.

Blake-Wilson, Simon and Alfred Menezes. 1998. “Entity Authentication
and Authenticated Key Transport Protocols Emplyoing Asymmetric
Techniques.” Edited by Bruce Christianson, Bruno Crispo, Mark Lo-
mas, and Michael Roe, Security Protocols—5th International Workshop,
Volume 1361 of Lecture Notes in Computer Science. Springer-Verlag,
Berlin Germany, 137–158.

. 1999. “Authenticated Diffie-Hellman key agreement protocols.”
Fifth Annual Workshop on Selected Areas in Cryptography (SAC ’98),
Volume 1556 of Lecture Notes in Computer Science. Springer-Verlag,
Berlin Germany, 339–361.

Blake-Wilson, Simon, Don Johnson, and Alfred Menezes. 1997, December.
“Key agreement protocols and their security analysis.” Cryptography
and condig (IMA’97), Volume 1355 of Lecture Notes in Computer Sci-
ence. 30–45.

Blum, Manuel. 1982. “Coin Flipping by Telephone: A Protocol for Solving
Impossible Problems.” Proceedings of the 24th IEEE Computer Con-
ference. 133–137. See also ACM SIGACT News, Vol. 15, No. 1, 1983.

Blum, Manuel and Silvio Micali. 1984. “How to Generate Cryptograph-
ically Strong Sequences of Pseudo-Random Bits.” SIAM Journal on
Computing 13 (4): 850–864 (November).

Blum, Lenore, Manuel Blum, and Michael Shub. 1986. “A Simple Un-
predictable Pseudo-Random Number Generator.” SIAM Journal on
Computing 15 (2): 364–383 (May).

Bolignano, Dominique. 1996, March. “An Approach to the Formal Verifi-
cation of Cryptographic Protocols.” Edited by Clifford Neuman, Pro-
ceedings of the 3rd ACM Conference on Computer and Communications
Security. New Delhi, India: ACM Press, 106–118.

Boneh, Dan. 1998. “The Decision Diffie-Hellman problem.” Third In-
ternational Algorithmic Number Theory Symposium (ANTS-III), Vol-
ume 1423 of Lecture Notes in Computer Science. Springer-Verlag, Berlin
Germany, 48–63.

. 2000, October. Personal Communication.

Bibliography 145

. 2001. “Simplified OAEP for the RSA and Rabin functions.” In
Kilian 2001, 275–291.

Boneh, Dan and Richard J. Lipton. 1996. “Algorithms for black box fields
and their application to cryptography.” In Koblitz 1996, 283–297.

Boneh, Dan and Igor Shparlinski. 2001. “Hard Core Bits for the Elliptic
Curve Diffie-Hellman Secret.” In Kilian 2001, 201–212.

Boneh, Dan and Ramarathnam Venkatesan. 1996. “Hardness of computing
the most significant bits of secret keys in Diffie-Hellman and related
schemes.” In Koblitz 1996, 129–142.

Boyko, Victor, Philip MacKenzie, and Sarvar Patel. 2000. “Provably Se-
cure Password-Authenticated Key Exchange Using Diffie-Hellman.” In
Preneel 2000, 156–171.

Brands, Stefan. 1993, March. “An Efficient Off-line Electronic Cash System
Based On The Representation Problem.” Technical Report CS-R9323,
Centrum voor Wiskunde en Informatica.

. 1994. “Untraceable Off-line Cash in Wallet with Observers.”
Edited by Douglas R. Stinson, Advances in Cryptology – CRYPTO ’93,
Volume 773 of Lecture Notes in Computer Science. International As-
sociation for Cryptologic Research: Springer-Verlag, Berlin Germany,
302–318.

Bresson, Emmanuel, Olivier Chevassut, and David Pointcheval. 2001.
“Provably authenticated group Diffie-Hellman key exchange — the dy-
namic case.” Edited by Colin Boyd, Advances in Cryptology – ASIA-
CRYPT ’2001, Lecture Notes in Computer Science. International As-
sociation for Cryptologic Research Gold Coast, Australia: Springer-
Verlag, Berlin Germany, 290–309.

Bresson, Emmanuel, Olivier Chevassut, David Pointcheval, and Jean-
Jacques Quisquater. 2001, November. “Provably Authenticated Group
Diffie-Hellman Key Exchange.” Edited by Pierangela Samarati, Pro-
ceedings of the 8th ACM Conference on Computer and Communications
Security. Philadelphia, PA, USA: ACM Press, 255–264.

Briscoe, Bob. 1999, November. “MARKS: Zero side-effect multicast key
management using arbitrarily revealed key sequences.” First Interna-
tional Workshop on Networked Group Communication. 301–320.

Burmester, Mike. 1994. “On the risk of opening distributed keys.” Edited
by Yvo G. Desmedt, Advances in Cryptology – CRYPTO ’94, Vol-
ume 839 of Lecture Notes in Computer Science. International Associa-
tion for Cryptologic Research: Springer-Verlag, Berlin Germany, 308–
317.

Burmester, Mike and Yvo Desmedt. 1995. “A Secure and Efficient Con-
ference Key Distribution System.” Edited by A. De Santis, Advances

146 Bibliography

in Cryptology – EUROCRYPT ’94, Volume 950 of Lecture Notes in
Computer Science. International Association for Cryptologic Research:
Springer-Verlag, Berlin Germany, 275–286. Final version of proceed-
ings.

Burrows, Michael, Mart́ın Abadi, and Roger Needham. 1990. “A Logic
of Authentication.” ACM Transactions on Computer Systems 8 (1):
18–36 (February).

Cachin, Christian, Klaus Kursawe, and Victor Shoup. 2000, July. “Ran-
dom Oracles in Constantinople: Practical Asynchronous Byzantine
Agreement using Cryptography.” Proceedings of the 19th Annual ACM
Symposium on Principles of Distributed Computing. ACM Portland,
Oregon. Full version appeared as Cryptology ePrint Archive Report
2000/034 (2000/7/7).

Cachin, Christian, Klaus Kursawe, Frank Petzold, and Victor Shoup.
2001. “Secure and Efficient Asynchronous Broadcast Protocols.” In
Kilian 2001, 524–541.

Camenisch, Jan, Ueli Maurer, and Markus Stadler. 1996, September. “Dig-
ital Payment Systems with Passive Anonymity-Revoking Trustees.”
Edited by E. Bertino, H. Kurth, G. Martella, and E. Montolivo, Pro-
ceedings of the Fourth European Symposium on Research in Computer
Security (ESORICS), Volume 1146 of Lecture Notes in Computer Sci-
ence. Rome, Italy: Springer-Verlag, Berlin Germany, 33–43.

Canetti, Ran. 1997. “Towards realizing random oracles: Hash functions
that hide all partial information.” Edited by Burton S. Kaliski, Jr., Ad-
vances in Cryptology – CRYPTO ’97, Volume 1294 of Lecture Notes in
Computer Science. International Association for Cryptologic Research:
Springer-Verlag, Berlin Germany, 455–469.

Canetti, Ran and Hugo Krawczyk. 2001a, May. “Analysis of Key-
Exchange Protocols and Their Use for Building Secure Channels.” Re-
port 2001/040, Cryptology ePrint Archive.

. 2001b. “Analysis of Key-Exchange Protocols and Their Use for
Building Secure Channels.” In Pfitzmann 2001, 451–472.

Canetti, Ran, John Friedlander, Sergei Konyagin, Michael Larsen, Daniel
Lieman, and Igor Shparlinski. 2000. “On the statistical properties
of Diffie-Hellman distributions.” Israel Journal of Mathemathics 120
(March): 23–46.

Canetti, Ran, Juan Garay, Gene Itkis, Daniele Micciancio, Moni Naor,
and Benny Pinkas. 1999, March. “Multicast Security: A Taxonomy
and Some Efficient Constructions.” INFOCOMM’99. 708–716.

Canetti, Ran, Oded Goldreich, and Shai Halevi. 1998, May. “The Ran-
dom Oracle Methodology, Revisited.” Proceedings of the 30th Annual

Bibliography 147

Symposium on Theory Of Computing (STOC). Dallas, TX, USA: ACM
Press, 209–218.

Caronni, Germano, Marcel Waldvogel, Dan Sun, Nathalie Weiler, and
Berhardt Plattner. 1999. “The VersaKey Framework: Versatile Group
Key Management.” IEEE Journal on Selected Areas in Communica-
tions 17 (9): 1614–1631 (September).

Carter, L. Lawrence and Mark N. Wegman. 1979. “Universal Classes of
Hash Functions.” Journal of Computer and System Sciences 18:143–
154.

Chang, Isabella, Robert Engel, Dilip Kandlur, Dimitrios Pendarakis, and
Debanjan Saha. 1999, March. “Key Management for Secure Internet
Multicast using Boolean Function Minimization Techniques.” Proceed-
ings IEEE Infocomm’99, Volume 2. 689–698.

Chaum, David. 1991. “Zero-Knowledge Undeniable Signatures.” Edited
by I.B. Damgard, Advances in Cryptology – EUROCRYPT ’90, Vol-
ume 473 of Lecture Notes in Computer Science. International Associa-
tion for Cryptologic Research: Springer-Verlag, Berlin Germany, 458–
464.

Clark, John A. and Jeremy L. Jacob. 1997, November. “A survey of
authentication protocol literature.” Version 1.0, University of York,
Department of Computer Science.

Coppersmith, Don and Igor Shparlinski. 2000. “On Polynomial Approx-
imation of the Discrete Logarithm and the Diffie-Hellman Mapping.”
Journal of Cryptology 13 (3): 339–360 (March).

Cramer, Ronald and Victor Shoup. 1998. “A Practical Public Key Cryp-
tosystem Provably Secure against Adaptive Chosen Ciphertext Attack.”
Edited by Hugo Krawczyk, Advances in Cryptology – CRYPTO ’98,
Volume 1462 of Lecture Notes in Computer Science. International As-
sociation for Cryptologic Research: Springer-Verlag, Berlin Germany,
13–25.

Davida, George, Yair Frankel, Yiannis Tsiounis, and Moti Yung. 1997,
February. “Anonymity Control in E-Cash Systems.” Proceedings of the
First Conference on Financial Cryptography (FC ’97), Volume 1318 of
Lecture Notes in Computer Science. International Financial Crypto-
graphy Association (IFCA) Anguilla, British West Indies: Springer-
Verlag, Berlin Germany, 1–16.

Diffie, Whitfield and Martin Hellman. 1976. “New Directions in Crypto-
graphy.” IEEE Transactions on Information Theory IT-22 (6): 644–654
(November).

Dolev, Danny and Andrew C. Yao. 1983. “On the Security of Public Key

148 Bibliography

Protocols.” IEEE Transactions on Information Theory 29 (2): 198–
208.

Ellison, Carl and Bruce Schneier. 2000. “Ten Risks of PKI: What You’re
Not Being Told About Public Key Infrastructure.” Computer Security
Journal 16 (1): 1–7.

Even, Shimon, Oded Goldreich, and Adi Shamir. 1986. “On the secu-
rity of Ping-Pong Protocols when implemented using RSA.” Edited by
Hugh C. Williams, Advances in Cryptology – CRYPTO ’85, Volume 218
of Lecture Notes in Computer Science. International Association for
Cryptologic Research: Springer-Verlag, Berlin Germany, 58–72.

Feige, Uriel, Amos Fiat, and Adi Shamir. 1987, May. “Zero-Knowledge
Proofs of Identity.” Proceedings of the 19th Annual Symposium on
Theory of Computing (STOC). New York, NY USA: ACM Press, 210–
217.

Fischlin, Marc. 2000. “A Note on Security Proofs in the Generic Model.”
In Okamoto 2000, 458–469.

Frankel, Yair, Yiannis Tsiounis, and Moti Yung. 1996. ““Indirect Discourse
Proofs”: Achieving Fair Off-Line Cash (FOLC).” Edited by K. Kim
and T. Matsumoto, Advances in Cryptology – ASIACRYPT ’96, Vol-
ume 1163 of Lecture Notes in Computer Science. Springer-Verlag, Berlin
Germany, 286–300.

Freier, Alan O., Philip Kariton, and Paul C. Kocher. 1996. “The SSL
Protocol: Version 3.0.” Internet draft, Netscape Communications.

Fujisaki, Eiichiro, Tatsuaki Okamoto, David Pointcheval, and Jacques
Stern. 2001. “RSA—OAEP is secure under the RSA Assumption.”
In Kilian 2001, 260–274.

Garland, Stephen J. and Nancy A. Lynch. 2000. “Using I/O Automata for
Developing Distributed Systems.” In Foundations of Component-Based
Systems, edited by Gary T. Leavens and Murali Sitaraman, 285–312.
Cambridge University Press.

Gennaro, Rosario. 2000. “An Improved Pseudo-random Generator Based
on Discrete Log.” Edited by Mihir Bellare, Advances in Cryptology –
CRYPTO ’2000, Volume 1880 of Lecture Notes in Computer Science.
International Association for Cryptologic Research: Springer-Verlag,
Berlin Germany, 469–481.

Gennaro, Rosario, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. 1999.
“Secure Distributed Key Generation for Discrete-Log Based Cryptosys-
tems.” Edited by Jacques Stern, Advances in Cryptology – EURO-
CRYPT ’99, Volume 1599 of Lecture Notes in Computer Science. Inter-
national Association for Cryptologic Research: Springer-Verlag, Berlin
Germany, 295–310.

Bibliography 149

Goldreich, Oded. 1998, February. Foundations of Cryptography (Frag-
ments of a Book). Manuscript. Version 2.03, available from
http://www.wisdom.weizmann.ac.il/~oded/frag.html.

Goldwasser, Shafi and Silvio Micali. 1984. “Probabilistic Encryption.”
Journal of Computer Security 28:270–299.

Goldwasser, Shafi, Silvio Micali, and Charles Rackoff. 1989. “The Knowl-
edge Complexity of Interactive Proof Systems.” SIAM Journal on Com-
puting 18 (1): 186–208.

Gong, Li. 1997. “Enclaves: Enabling Secure Collaboration over the In-
ternet.” IEEE Journal on Selected Areas in Communications, pp. 567–
575.

Gong, Li, Roger Needham, and Raphael Yahalom. 1990, May. “Reason-
ing about Belief in Cryptographic Protocols.” Proceedings of the IEEE
Symposium on Research in Security and Privacy. IEEE Computer Soci-
ety, Technical Committee on Security and Privacy Oakland, CA: IEEE
Computer Society Press, 234–248.

Gonzalez Vasco, Maria I. and Igor Shparlinski. 2000. “On the security of
Diffie-Hellman bits.” Workshop on Cryptography and Computational
Number Theory Singapore 1999. Birkhäuser.

Gordon, Daniel M. 1993a. “Designing and Detecting Trapdoors for Discrete
Log Cryptosystems.” Edited by E.F. Brickell, Advances in Cryptology
– CRYPTO ’92, Volume 740 of Lecture Notes in Computer Science.
International Association for Cryptologic Research: Springer-Verlag,
Berlin Germany, 66–75.

1993b. “Discrete logarithms in GF(p) using the number field sieve.”
SIAM Journal on Discrete Mathematics 6 (1): 124–138.

Gritzalis, Stefanos, Diomidis Spinellis, and Panagiotis Georgiadis. 1999.
“Security Protocols over Open Networks and Distributed Systems: For-
mal Methods for their Analysis, Design, and Verification.” Computer
Communications 22 (8): 695–707 (May).

Günther, C.G. 1990. “An identity-based key-exchange protocol.” Edited by
J-J. Quisquater and J. Vandewalle, Advances in Cryptology – EURO-
CRYPT ’89, Volume 434 of Lecture Notes in Computer Science. Inter-
national Association for Cryptologic Research: Springer-Verlag, Berlin
Germany, 29–37.

Handschuh, Helena, Yiannis Tsiounis, and Moti Yung. 1999, March. “De-
cision oracles are equivalent to matching oracles.” Edited by H. Imai
and Z. Zheng, International Workshop on Practice and Theory in Pub-
lic Key Cryptography ’99 (PKC ’99), Volume 1560 of Lecture Notes
in Computer Science. Kamakura, Japan: Springer-Verlag, Berlin Ger-
many.

http://www.wisdom.weizmann.ac.il/~oded/frag.html

150 Bibliography

Harney, Hugh and Carl Muckenhirn. 1997, July. “Group Key Manage-
ment Protocol (GKMP) Architecture.” Internet request for comment
RFC 2094, Internet Engineering Task Force.

H̊astad, Johan, Russell Impagliazzo, Leonid Levin, and Michael Luby. 1999.
“A Pseudorandom generator from any one-way function.” SIAM Jour-
nal on Computing 28 (4): 1364–1396. A preliminary version appeared
in 21rst STOC, 1989.

Hutchinson, Andrew. 1995. “Group Security in Distributed Systems.”
Ph.D. diss., Philosophische Fakultät II der Universität Zürich, Zurich,
Switzerland.

Ingemarsson, Ingemar, Donald T. Tang, and C. K. Wong. 1982. “A Con-
ference Key Distribution System.” IEEE Transactions on Information
Theory 28 (5): 714–720 (September).

Janson, Phil, Gene Tsudik, and Moti Yung. 1997, April. “Scalability and
Flexibility in Authentication Services: The KryptoKnight Approach.”
IEEE INFOCOM’97. Tokyo, Japan.

Just, Michael K. 1994, August. “Methods of Multi-Party Cryptographic
Key Establishment.” Master’s thesis, Carleton University, Computer
Science Department, Caleton University, Ottawa, Ontario.

Just, Mike and Serge Vaudenay. 1996. “Authenticated Multi-Party Key
Agreement.” Edited by K. Kim and T. Matsumoto, Advances in Cryp-
tology – ASIACRYPT ’96, Volume 1163 of Lecture Notes in Computer
Science. Springer-Verlag, Berlin Germany, 36–49.

Katz, Jonathan, Rafail Ostrovsky, and Moti Yung. 2001. “Efficient
Password-Authenticated Key Exchange Using Human-Memorable Pass-
words.” In Pfitzmann 2001, 473–492.

Kemmerer, Richard A. 1989. “Analyzing Encryption Protocols Using For-
mal Verification Techniques.” IEEE Journal on Selected Areas in Com-
munications 7 (4): 448–457 (May).

Kilian, Joe, ed. 2001. Advances in Cryptology – CRYPTO ’2001. Vol-
ume 2139 of Lecture Notes in Computer Science. International Associ-
ation for Cryptologic Research: Springer-Verlag, Berlin Germany.

Kiltz, Eike. 2001. “A Tool Box of Cryptographic Functions related to
the Diffie-Hellman Function.” Advances in Cryptology – INDOCRYPT
’2001, Volume 2247 of Lecture Notes in Computer Science. Springer-
Verlag, Berlin Germany, 339–350.

Kim, Yongdae, Daniele Mazzochi, and Gene Tsudik.
2002, May. Admission Control in Peer Groups.
http://www-users.cs.umn.edu/~kyd/publications.html.

http://www-users.cs.umn.edu/~kyd/publications.html

Bibliography 151

Kim, Yongdae, Adrian Perrig, and Gene Tsudik. 2000, November. “Simple
and fault-tolerant key agreement for dynamic collaborative groups.”
Edited by Sushil Jajodia, Proceedings of the 7th ACM Conference on
Computer and Communications Security. Athens, Greece: ACM Press,
235–244.

. 2001. “Communication-Efficient Group Key Agreement.” Infor-
mation Systems Security, Proceedings of the 17th International Infor-
mation Security Conference IFIP SEC’01.

Koblitz, Neal, ed. 1996. Advances in Cryptology – CRYPTO ’96. Vol-
ume 1109 of Lecture Notes in Computer Science. International Associ-
ation for Cryptologic Research: Springer-Verlag, Berlin Germany.

Kohl, John T. and B. Clifford Neuman. 1993. “The Kerberos Network
Authentication Service (V5).” Internet request for comment RFC 1510,
Internet Engineering Task Force.

Kohlas, Reto and Ueli Maurer. 2000a, January. “Confidence Valuation in
a Public-Key Infrastructure based on Uncertain Evidence.” Edited by
H. Imai and Y Zheng, International Workshop on Practice and Theory
in Public Key Cryptography ’2000 (PKC ’2000), Volume 1751 of Lecture
Notes in Computer Science. Melbourne, Australia: Springer-Verlag,
Berlin Germany, 93–112.

. 2000b. “Reasoning About Public-Key Certification: On Bindings
Between Entities and Public Keys.” IEEE Journal on Selected Areas
in Communications 18 (4): 551–560 (April).

Kohnfelder, Loren M. 1978. “Towards a practical public-key cryptosys-
tem.” B.Sc thesis, MIT Departement of Electrical Engineering.

Lenstra, Arjen K. and Eric R. Verheul. 2001. “Selecting Cryptographic
Key Sizes.” Journal of Cryptology 14 (4): 255–293.

Lidl, Rudolf and Harald Niederreiter. 1997, January. Finite Fields. Second
edition. Encyclopedia of Mathematics and its Applications. Cambridge
University Press.

Lim, Chae Hoon and Pil Joong Lee. 1997. “A Key Recovery Attack on
Discrete Log-based Schemes Using a Prime Order Subgroup.” Edited
by Burton S. Kaliski, Jr., Advances in Cryptology – CRYPTO ’97, Vol-
ume 1294 of Lecture Notes in Computer Science. International As-
sociation for Cryptologic Research: Springer-Verlag, Berlin Germany,
249–263.

Lindell, Yehuda. 2001. “Parallel Coin-Tossing and Constant-Round Secure
Two-Party Computation.” In Kilian 2001, 171–189.

Lowe, Gavin. 1996. “Breaking and fixing the Needham-Schroeder public-
key protocol using FDR.” Tools and Algorithms for the Construction

152 Bibliography

and Analysis of Systems (TACAS), Volume 1055 of Lecture Notes in
Computer Science. Springer-Verlag, Berlin Germany, 147–166.

. 1997. “A Hierarchy of Authentication Specifications.” 10th IEEE
Computer Security Foundations Workshop. IEEE Computer Society
Press, 31–43.

MacKenzie, Philip. 2001, July. “On the Security of the SPEKE Password-
Authenticated Key Exchange Protocol.” Report 2001/057, Cryptology
ePrint Archive.

Maurer, Ueli M. and Stefan Wolf. 1996. “Diffie-Hellman Oracles.” In
Koblitz 1996, 268–282.

. 1998a, August. “Diffie-Hellman, Decision Diffie-Hellman, and
Discrete Logarithms.” IEEE Symposium on Information Theory. Cam-
bridge, USA, 327.

. 1998b. “Lower bounds on generic algorithms in groups.” Edited
by Kaisa Nyberg, Advances in Cryptology – EUROCRYPT ’98, Vol-
ume 1403 of Lecture Notes in Computer Science. International As-
sociation for Cryptologic Research: Springer-Verlag, Berlin Germany,
72–84.

. 1999. “Unconditionally Secure Key Agreement and the Intrinsic
Conditional Information.” IEEE Transactions on Information Theory
45 (2): 499–514.

Mayer, Alain and Moti Yung. 1999, November. “Secure Protocol Trans-
formation via “Expansion”: From Two-party to Multi-party.” Edited
by Gene Tsudik, Proceedings of the 6th ACM Conference on Computer
and Communications Security. Singapore: ACM Press, 83–92.

McCurley, Kevin S. 1990. “The Discrete Logarithm Problem.” Edited by
Carl Pomerance, Cryptology and Computational Number Theory, Vol-
ume 42 of Proceedings of Symposia in Applied Mathematics. American
Mathematical Society Providence, 49–74.

McGrew, David A. and Alan T. Sherman. 1998, May. Key Establishment in
Large Dynamic Groups Using One-Way Function Trees. Manuscript.

Meadows, Catherine. 1992. “Applying Formal Methods to the Analysis
of a Key Management Protocol.” Journal of Computer Security 1 (1):
5–35.

. 1996. “The NRL Protocol Analyzer: An Overview.” Journal of
Logic Programming 26 (2): 113–131.

. 2000, July. “Extending Formal Cryptographic Proto-
col Analysis Techniques for Group Protocols and Low-Level
Cryptographic Primitives.” Edited by Pierpaolo Degano,
Workshop on Issues in the Theory of Security (WITS’00).

Bibliography 153

University of Geneva, Switzerland. Electronic proceedings:
http://www.dsi.unive.it/IFIPWG1_7/WITS2000/programme-new.html.

Meadows, Cathering, Paul Syverson, and Iliano Cervesato. 2001, Novem-
ber. “Formalizing GDOI Group Key Management Requirements in
NPATRL.” Edited by Pierangela Samarati, Proceedings of the 8th ACM
Conference on Computer and Communications Security. Philadelphia,
PA, USA: ACM Press, 235–244.

Medvinsky, Ari and Matthew Hur. 1999, October. “Addition of Kerberos
Cipher Suites to Transport Layer Security (TLS).” Internet request for
comment RFC 2712, Internet Engineering Task Force.

Menezes, Alfred J., Paul C. van Oorschot, and Scott A. Vanstone. 1997.
Handbook of Applied Cryptography. CRC Press series on discrete math-
ematics and its applications. CRC Press. ISBN 0-8493-8523-7.

Millen, Jonathan K. 1998, November. Authentication Protocol
Verification and Analysis. Tutorial given at ACM Computer
and Communication Security symposium. Slides available from
http://www2.csl.sri.com/~millen/ccs5tut98/index.htm.

Millen, Jonathan K., Sidney C. Clark, and Sheryl B. Freedman. 1987.
“The Interrogator: Protocol Security Analysis.” IEEE Transactions on
Software Engineering 13 (2): 274–288 (February).

Mittra, S. 1997, September. “Iolus: A Framework for Scalable Secure
Multicasting.” ACM SIGCOMM’97. 277–288.

Molva, Refik, Gene Tsudik, Els Van Herreweghen, and Stefano Zatti. 1992,
November. “KryptoKnight Authentication and Key Distribution Sys-
tem.” Edited by Y. Deswarte, G. Eizenberg, and J.-J. Quisquater,
Proceedings of the Second European Symposium on Research in Com-
puter Security (ESORICS), Volume 648 of Lecture Notes in Computer
Science. Toulouse, France: Springer-Verlag, Berlin Germany, 155–174.

Moser, L. E., P. M. Melliar-Smith, D. A. Agarwal, R. K. Budhia, and
C. A. Lingley-Papadopoulos. 1996. “Totem: A Fault-Tolerant Multicast
Group Communication System.” Communications of the ACM 39 (4):
54–63 (April).

Naor, Moni and Omer Reingold. 1997. “Number-Theoretic Constructions
of Efficient Pseudo-Random Functions.” Proceedings of the 38th Sym-
posium on Foundations of Computer Science (FOCS). IEEE Computer
Society Press, 458–467.

National Institute of Standards and Technology (NIST). 1999, October.
Data Encryption Standard (DES). Federal Information Processing
Standards Publication (FIPS PUB) 46-3.

http://www.dsi.unive.it/IFIPWG1_7/WITS2000/programme-new.html
http://www2.csl.sri.com/~millen/ccs5tut98/index.htm

154 Bibliography

. 2000, January. The Digital Signature Standard (DSS). Federal
Information Processing Standards Publication (FIPS PUB) 186-2. up-
dated 2001-10-05.

Nechaev, V. I. 1994. “Complexity of a determinate algorithm for the
discrete logarithm.” Mathematical Notes 55 (2): 165–172. Translated
from Matematicheskie Zametki, 55(2):91–101, 1994.

Odlyzko, Andrew. 2000a. “Cryptographic Abundance and Pervasive Com-
puting.” iMP Magazine, June.

. 2000b. “Discrete logarithms: The past and the future.” Designs,
Codes and Cryptography 19:129–145.

Okamoto, T., ed. 2000. Advances in Cryptology – ASIACRYPT ’2000. Vol-
ume 1976 of Lecture Notes in Computer Science. International Associ-
ation for Cryptologic Research, Kyoto, Japan: Springer-Verlag, Berlin
Germany.

Patel, Sarvar and Ganapathy S. Sundaram. 1998. “An Efficient Dis-
crete Log Pseudo Random Generator.” Edited by Hugo Krawczyk,
Advances in Cryptology – CRYPTO ’98, Volume 1462 of Lecture Notes
in Computer Science. International Association for Cryptologic Re-
search: Springer-Verlag, Berlin Germany, 304–317.

Paulson, Lawrence C. 1997. “Proving Properties of Security Protocols
by Induction.” 10th IEEE Computer Security Foundations Workshop.
IEEE Computer Society Press, 70–83.

Pereira, Olivier and Jean-Jacques Quisquater. 2000, July. “On the
Perfect Encryption Assumption.” Edited by Pierpaolo Degano,
Workshop on Issues in the Theory of Security (WITS’00).
University of Geneva, Switzerland. Electronic proceedings:
http://www.dsi.unive.it/IFIPWG1_7/WITS2000/programme-new.html.

. 2001, June. “Security Analysis of the Cliques Protocols Suites.”
14th IEEE Computer Security Foundations Workshop. IEEE Computer
Society Press.

Perrig, Adrian, Dawn Song, and Doug Tygar. 2001, May. “ELK, a New
Protocol for Efficient Large-Group Key Distribution.” Proceedings of
the IEEE Symposium on Research in Security and Privacy. IEEE Com-
puter Society, Technical Committee on Security and Privacy Oakland,
CA: IEEE Computer Society Press, 247–262.

Pfitzmann, Birgit, ed. 2001. Advances in Cryptology – EUROCRYPT
’2001. Volume 2045 of Lecture Notes in Computer Science. Innsbruck,
Austria: Springer-Verlag, Berlin Germany.

Pfitzmann, Birgit and Ahmad-Reza Sadeghi. 2000. “Anonymous Finger-
printing with Direct Non-Repudiation.” In Okamoto 2000, 401–414.

http://www.dsi.unive.it/IFIPWG1_7/WITS2000/programme-new.html

Bibliography 155

Pfitzmann, Birgit and Michael Waidner. 2001, May. “A Model for
Asynchronous Reactive Systems and its Application to Secure Mes-
sage Transmission.” Proceedings of the IEEE Symposium on Research
in Security and Privacy. IEEE Computer Society, Technical Committee
on Security and Privacy Oakland, CA: IEEE Computer Society Press,
184–200.

Pfitzmann, Andreas, Birgit Pfitzmann, Matthias Schunter, and Michael
Waidner. 1997. “Trusting Mobile User Devices and Security Modules.”
IEEE Computer 30 (2): 61–68 (February).

Pfitzmann, Birgit, Matthias Schunter, and Michael Waidner. 2000. “Cryp-
tographic Security of Reactive Systems.” Electronic Notes in Theoret-
ical Computer Science (ENTCS), vol. 32. Workshop on Secure Archi-
tectures and Information Flow, Royal Holloway, University of London,
December 1 - 3, 1999.

Pfitzmann, Birgit, Michael Steiner, and Michael Waidner. 2002. “A Formal
Model for Multi-party Group Key Agreement.” Technical Report RZ
3383 (# 93419), IBM Research.

Pfleeger, Charles. 1997. Security in computing. 2nd Edition. Prentice Hall
International.

Pohlig, Stephen C. and Martin E. Hellman. 1978. “An improved algo-
rithm for computing logarithms over GF(p) and its cryptographic sig-
nificance.” IEEE Transactions on Information Theory 24:106–110.

Pollard, J. M. 1978. “Monte Carlo methods for index computation mod
p.” Mathematics of Computation 32:918–924.

Preneel, Bart, ed. 2000. Advances in Cryptology – EUROCRYPT ’2000.
Volume 1807 of Lecture Notes in Computer Science. Brugge, Belgium:
Springer-Verlag, Berlin Germany.

Reiter, Michael K. 1994, May. “A Secure Group Membership Protocol.”
Proceedings of the IEEE Symposium on Research in Security and Pri-
vacy. IEEE Computer Society, Technical Committee on Security and
Privacy Oakland, CA: IEEE Computer Society Press, 176–189.

1996. “Distributing Trust with the Rampart Toolkit.” Communi-
cations of the ACM 39 (4): 71–74 (April).

Reiter, Michael K. and Kenneth P. Birman. 1994. “How to Securely Repli-
cate Services.” ACM Transactions on Programming Languages and
Systems 16 (3): 986–1009 (May).

Reiter, Michael, Kenneth Birman, and Robbert van Renesse. 1994. “A
Security Architecture for Fault-Tolerant Systems.” ACM Transactions
on Computer Systems 12 (4): 340–371 (November).

156 Bibliography

Rivest, Ron L., Adi Shamir, and Leonard M. Adleman. 1978. “A Method
for Obtaining Digital Signatures and Public-Key Cryptosystems.” Com-
munications of the ACM 21 (2): 120–126 (February).

Rodeh, Ohad, Kenneth P. Birman, and Danny Dolev. 2002. “Using AVL
trees for fault-tolerant group key management.” International Journal
of Information Security 1 (2): 84–99.

Roscoe, A. W. 1996, June. “Intensional specifications of security proto-
cols.” 9th IEEE Computer Security Foundations Workshop. Kenmare,
Co. Kerry, Ireland: IEEE Computer Society Press, 28–38.

Sadeghi, Ahmad-Reza and Michael Steiner. 2001. “Assumptions Related
to Discrete Logarithms: Why Subtleties Make a Real Difference.” In
Pfitzmann 2001, 243–260.

. 2002, August. “Assumptions Related to Discrete Logarithms:
Why Subtleties Make a Real Difference.” Report 2002/126, Cryptology
ePrint Archive.

Schirokauer, Oliver. 1993. “Discrete logarithms and local units.” Philo-
sophical Transactions of the Royal Society of London A 345:409–423.

Schneier, Bruce. 1999, February. Snake Oil. Crypto-Gram Newsletter.
http://www.counterpane.com/crypto-gram-9902.html.

Schnorr, Claus P. 1991. “Efficient Signature Generation by Smart Cards.”
Journal of Cryptology 4 (3): 161–174.

Schweinberger, Thomas and Victor Shoup. 2000, March.
“ACE: The Advanced Cryptographic Engine.” Techni-
cal Report, IBM Research. Submission to IEEE P1363a
(http://grouper.ieee.org/groups/1363/).

Setia, Sanjeev, Samir Koussih, and Sushil Jajodia. 2000, May. “Kronos: A
Scalable Group Re-keying Approach for Secure Multicast.” Proceedings
of the IEEE Symposium on Research in Security and Privacy. IEEE
Computer Society, Technical Committee on Security and Privacy Oak-
land, CA: IEEE Computer Society Press, 215–228.

Shmuely, Zahava. 1985, February. “Composite Diffie-Hellman Public-Key
Generating Systems are Hard to Break.” Computer science technical
report 356, Israel Institute of Technology (Technion).

Shoup, Victor. 1997. “Lower Bounds for Discrete Logarithms and Related
Problems.” Edited by Walter Fumy, Advances in Cryptology – EURO-
CRYPT ’97, Volume 1233 of Lecture Notes in Computer Science. Inter-
national Association for Cryptologic Research: Springer-Verlag, Berlin
Germany, 256–266.

. 1999, April. “On Formal Models for Secure Key Ex-
change.” Research report RZ 3120 (#93166), IBM Research. A

http://www.counterpane.com/crypto-gram-9902.html
http://grouper.ieee.org/groups/1363/

Bibliography 157

revised version 4, dated November 15, 1999, is available from
http://www.shoup.net/papers/.

. 2000. “Using Hash Functions as a Hedge against Chosen Ciphertext
Attacks.” In Preneel 2000, 275–288.

. 2001. “OAEP Reconsidered.” In Kilian 2001, 239–259.

Shparlinski, Igor E. 2000, May. “Security of Polynomial Transforma-
tions of the Diffie–Hellman Key.” Report 2000/023, Cryptology ePrint
Archive.

Smith, Jean E. and Fred W. Weingarten, eds. 1997, May. Research Chal-
lenges for the Next Generation Internet. Computing Research Associ-
ation. Report from the Workshop on Research Directions for the Next
Generation Internet.

Stadler, Markus. 1996. “Publicly Verifiable Secret Sharing.” Edited by Ueli
Maurer, Advances in Cryptology – EUROCRYPT ’96, Volume 1070
of Lecture Notes in Computer Science. International Association for
Cryptologic Research: Springer-Verlag, Berlin Germany, 190–199.

Steer, David G., Leo Strawczynski, Whitfield Diffie, and Michael J. Wiener.
1990. “A Secure Audio Teleconference System.” Edited by Shafi Gold-
wasser, Advances in Cryptology – CRYPTO ’88, Volume 403 of Lecture
Notes in Computer Science. International Association for Cryptologic
Research Santa Barbara, CA, USA: Springer-Verlag, Berlin Germany,
520–528.

Steiner, Michael, Peter Buhler, Thomas Eirich, and Michael Waidner. 2001.
“Secure Password-Based Cipher Suite for TLS.” ACM Transactions on
Information and System Security 4 (2): 134–157 (May).

Steiner, Michael, Gene Tsudik, and Michael Waidner. 1996, March.
“Diffie-Hellman Key Distribution Extended to Groups.” Edited by
Clifford Neuman, Proceedings of the 3rd ACM Conference on Com-
puter and Communications Security. New Delhi, India: ACM
Press, 31–37. Appeared as revised and extended journal version
as (Steiner, Tsudik, and Waidner 2000).

. 1998, May. “CLIQUES: A New Approach to Group Key
Agreement.” 18th International Conference on Distributed Comput-
ing Systems (ICDCS’98). Amsterdam: IEEE Computer Society Press,
380–387. Appeared as heavily revised and extended journal version
in (Steiner, Tsudik, and Waidner 2000).

. 2000. “Key Agreement in Dynamic Peer Groups.” IEEE Transac-
tions on Parallel and Distributed Systems 11 (8): 769–780 (August).

Syverson, Paul and Paul C. van Oorschot. 1994, May. “On Unifying Some
Cryptographic Protocol Logics.” Proceedings of the IEEE Symposium

http://www.shoup.net/papers/

158 Bibliography

on Research in Security and Privacy. IEEE Computer Society, Techni-
cal Committee on Security and Privacy Oakland, CA: IEEE Computer
Society Press, 14–28.

Tompa, Martin and Heather Woll. 1987. “Random self-reducibility and
zero knowledge proofs of possession of information.” Proceedings of the
28th Symposium on Foundations of Computer Science (FOCS). IEEE
Computer Society Press, 472–482.

Tzeng, Wen-Guey. 2000, January. “A Practical and Secure-Fault-Tolerant
Conference-Key Agreement Protocol.” Edited by H. Imai and Y Zheng,
International Workshop on Practice and Theory in Public Key Crypto-
graphy ’2000 (PKC ’2000), Volume 1751 of Lecture Notes in Computer
Science. Melbourne, Australia: Springer-Verlag, Berlin Germany, 1–
13.

Tzeng, Wen-Guey and Zhi-Jia Tzeng. 2000. “Round-Efficient Conference-
Key Agreement Protocols with Provable Security.” In Okamoto 2000,
614–628.

Wallner, Debbby M., Eric J. Harder, and Ryan C. Agee. 1997, June. Key
Management for Multicast: Issues and Architecture. Internet-Draft
draft-wallner-key-arch-00.txt.

Wolf, Stefan. 1999. “Information-Theoretically and Computionally Secure
Key Agreement in Cryptography.” Ph.D. diss., ETH Zürich.

Wong, Chung Kei, Mohamed G. Gouda, and Simon S. Lam. 1998. “Secure
Group Communications Using Key Graphs.” Proceedings of the ACM
SIGCOMM ’98 conference on Applications, technologies, architectures,
and protocols for computer communication. 68–79. Appeared in ACM
SIGCOMM Computer Communication Review, Vol. 28, No. 4 (Oct.
1998).

Yacobi, Yacov and Zahava Shmuely. 1990. “On key distribution systems.”
Edited by Giles Brassard, Advances in Cryptology – CRYPTO ’89, Vol-
ume 435 of Lecture Notes in Computer Science. International Asso-
ciation for Cryptologic Research Santa Barbara, CA, USA: Springer-
Verlag, Berlin Germany, 344–355.

Yao, Andrew C. 1982. “Theory and Applications of Trapdoor Functions.”
Proceedings of the 23rd Symposium on Foundations of Computer Sci-
ence (FOCS). IEEE Computer Society Press, 80–91.

Index

Symbols

::, 123
C, see problem type, computa-

tional
DH, see problem family, DH
DL, see problem family, DL
D, see problem type, decisional
Ea,b/Fp , see group family
GDH(n), see problem family,

GDH(n)
GSG(k), see group sibling
IAE, see problem family, IAE
IE, see problem family, IE
M, see problem type, matchingZ∗

p/q, see group family

RP(n), see problem family, RP(n)Z∗
n, see group family

SE, see problem family, SE
SG, see group sampler
SPI , see problem instance sam-

plerQR ∗
n, see group family

Sg, see generator samplerZ∗
p, see group family
←, see assignment
R←, see assignment, see random

variable
∈R, see assignment
∗, see wild card
1n, 24
G, see group
PI , see problem instance
SI , see structure Instance
Sys , see system
S , see port, specified

A, see adversary machine
Gen, 67, see protocol machine (ini-

tial parameters), 112
H, see user machine
TH, see trusted host
p̃, see buffer
genG, 67, see system parameters,

generation algorithm, 112
p⊳?, see port, clock
p!, see port, output
p?, see port, input
p?.cntr , see message counter
In, 24
ports c, see port, complement
M∗

u, 113
Mu, see protocol machine (user u)
Ports(M), 98
bit(·), 123
present(·), 101
setbit(·), 123
≥sec, 100
<∞ 1/poly(k), see negligible
≥∞ 1/poly(k), see non-negligible
6<∞ 1/poly(k), see negligible
6≥∞ 1/poly(k), see non-negligible
<∞ , 24
≥∞ , 24
6<∞ , 24
6≥∞ , 24
g, see group, generator
k, see security parameter
G, see group family
P, see problem family
U , see uniform distribution of in-

finite binary strings
PI SI , see problem instance

159

160 INDEX

PI priv , see problem instance
PI publ , see problem instance
PI sol , see problem instance
c
≈ , see indistinguishability, com-

putational
s
≈ , see indistinguishability, statis-

tical
(. . .), see sequence
(. . . :: . . .), see random variable
(. . . | . . .), see sequence
∆(X ,Y)(k), see statistical differ-

ence
ΣG,g, see encoding function
gx, see exponentiation
log, 24
poly(v1 , . . . , vn), see polyno-

mial,multivariate
poly(v), see polynomial,univariate
σ(·), see encoding function
RunTime, see Turing ma-

chine,runtime
{. . . :: . . .}, see random variable,

ensemble
{. . . | . . .}, see set
{. . .}, see set
|G|, see group order
σ, see algebraic knowledge
h, see granularity, high
A, 102
H, 100
ǫ, see success probability, invari-

ant
fct, see group family
o, see group family
lprim, see group family
l, see granularity, low
m, see granularity, medium
nsprim, see group family
n, see complexity, non-uniform
:=, see assignment
1, see success probability, perfect
prim, see group family
[·], see random variable

(1−1/poly(k)), see success proba-
bility, strong

enabled if: cond , 101
ignore if: cond , 101
transition p?(m), 101
o, see group family
u, see complexity, uniform
1/poly(k), see success probability,

weak

A

access control
backward, 18
forward, 18

adversary, 11, 35
generic, 37
specific, 37

adversary machine, 99
AKA, see key agreement, auxil-

iary
algebraic knowledge, 36
amplification, 58
assignment, 23
associative, 26
authentication, 8

entity, 9
key, see key authentication

B

black-box reduction, 45
buffer, 99

C

certification authority, 8
channel

authenticated, 65, 67, 100
insecure, 100
mode, 100
reliable, 100
secure, 100
unreliable, 100

CLIQUES, 65, 71–88
collusion attack, 13

INDEX 161

communication cost, 20, 73
compiler, 65
complete group key agreement, 70
complexity, 35

cumulative message size, 20
expensive operations, 20
message, 20
non-uniform, 36
round, 20
uniform, 35

computational cost, 19, 73
configuration, 99
critical path, 20
cryptographic assumption, 31–47

parameter, 31–39

D

DH, see Diffie-Hellman
Diffie-Hellman (DH), 21
Diffie-Hellman key exchange pro-

tocol, 66
natural n-party extension, 67

Discrete Logarithm (DL), 21, 26
distinguisher, 26
distribution center, 8
DL, see Discrete Logarithm
DL-based assumption, see crypto-

graphic assumption
DPG, see Dynamic Peer Groups
Dynamic Peer Groups (DPG), 2

E

efficient, 25
encoding function, 37
epoch, 16
epoch key, see session key
explicit group key authentication,

70
exponentiation, 26

G

GDH, see Generalized Diffie-
Hellman

Generalized Diffie-Hellman
(GDH), 21, 49–61

generator, see group, generator
sampler, 29

generic model, see algebraic
knowledge

granularity, 22, 38, 47–49
high, 38
low, 38
medium, 38

group, 26
admission control, 15
cyclic, 26
division, 19, 84, 110
element, 26

maximal order, 27, 50, 68
order, 26

family, 29, 33
finite, 26
fission, 19, 84
fusion, 18, 81–82, 110
generator, 26
identity element, 26
inverse, 26
operation, 26
order, 26

factorization, 34
rejoining, 18
sampler, 28
sibling, 29

group communication system
reliable, 14

H

hybrid, 51
hybrid argument, 51, 120

I

IAE, see Inverted-Additive Expo-
nent

ideal system, 97
identification, see authentication,

entity

162 INDEX

identifier
compression, 71
epoch, 68
group, 68
group membership view, 68
session, 68

IE, see Inverse Exponent
IKA, see key agreement, initial
IKA.1, 71–74, 111
IKA.2, 74–77
indistinguishability

computational, 26
statistical, 26

Inverse Exponent (IE), 21
Inverted-Additive Exponent

(IAE), 21

K

key agreement, 12, 68, 85, 109
auxiliary (AKA), 16, 77–88
complete group, 14, 109
contributory, 14, 68, 85, 109
initial (IKA), 16, 71–77, 109

key authentication
direct, 13
explicit, 11, 109
implicit, 11, 68, 86, 108
indirect, 13
mutual, 11
mutual group, 13, 68, 86, 109
simple group, 13
unilateral, 11

key confirmation, 11, 70
key derivation, 61–63
key distribution, 14
key establishment protocol, 8
key freshness, 10, 68, 85, 108
key independence, 16, 86, 110
key refresh, 19, 84–85
key secrecy, 10, 68, 108
key transport, 12
KKA, see known-key attack
knowledge extractor, 70

known-key attack (KKA), 12, 68,
86, 109

L

liveness, 11
long-term key, 7

M

mass
join, 18, 80–81, 109
leave, 19, 84, 110

master scheduler, 100
Matching Diffie-Hellman, 21
member

addition, 18, 78–80, 109
exclusion, 18, 83–84, 110

message counter, 101
message type, 68
multicast, 20

N

negligible, 24
not, 24

non-negligible, 24
not, 25

O

oracle, 25

P

partial GDH key, 49
perfect forward secrecy (PFS), 12,

68, 86, 109
PFS, see perfect forward secrecy
pipeline, 74
PKI, see public-key infrastructure
policy independence, 15, 73, 78,

110, 116
polynomial

multivariate, 24
univariate, 24

polynomial security, 10
port

INDEX 163

clock, 99
complement, 99
free, 99
input, 98
output, 98
specified, 99

probability, 24
probability space, 23
probability space instance (PSI),

38
problem

family, 27, 31
DH, 31
DL, 31
GDH(n), 31
IAE, 32
IE, 31
RP(n), 32
SE, 31

hard, 25
instance, 27

sampler, 30
type, 32

computational, 32
decisional, 32
matching, 33

proof of knowledge, 70
honest prover, 70

protocol machines, 98
pseudo-random number generator,

88
PSI, see probability space instance
public-key infrastructure (PKI), 8

R

random self-reducibility, 35, 57
random variable, 23

ensemble, 23
randomized reduction, 57
real system, 97
registration authority, 8
remote procedure call (RPC), 117
Renyi entropy, 62

Representation Problem (RP), 21
RP, see Representation Problem
RPC, see remote procedure call

S

sampler
generator, see generator sam-

pler
group, see group sampler
problem instance, see problem

instance sampler
SE, see Square Exponent
secrecy

backward, 18
forward, 18

security parameter, 98
security parameter k, 24
self-corrector, 57
self-reduction

random, see random self-
reducibility, 58

semantic security, 33
semantic security, 10, 68, 85, 108
sequence, 23
serial operations, see critical path
session, 8, 16
session key, 8, 16
set, 23
simulatability, 100
Square Exponent (SE), 21
standard cryptographic system,

100
state-transition machines, proba-

bilistic, 98
statistical difference, 26
structure, 99
structure instance

SI , 27
success probability, 38

invariant, 39
perfect, 39
strong, 39
weak, 39

164 INDEX

system, 99
system parameters, 67

generation algorithm, 67, 112

T

transparent mode, 101
trusted host, 97
Turing machine, 25, 35, 98

polynomial-time, 25
runtime, 25

U

UHF, see universal hash function
unicast, 20
uniform distribution of infinite bi-

nary strings, 25
universal hash function (UHF), 61
user machine, 99

W

wild card, 40

Appendix A

Deriving Formal
Assumptions from the
Parameters

The “mechanics” of deriving the formal assumption statement from its short
form $s-$tPa(c:$c; g:$g; f:$G) — as described in Section 3.3 the $X’s are
placeholders of the parameters defined in Section 3.2 — is as follows:

1. Group and problem family: Just fix the group, generator and
problem instance sampler SGG , Sg, and SPIP corresponding to group
family $G and problem family $P, respectively. In the context of
generic relations, $G does normally not fix a particular group family
and sampler but gives just some specific constraints on group families,
e.g., groups with large prime factors indicated by “lprim”. In such a
case SGG denotes an arbitrary sampler for an arbitrary group family
fulfilling the given constraints on the group family and the constraints
on samplers given in Section 3.1.7.1

2. Problem type: Prepare the assumption formula $F as the probabil-
ity statement $P defined as “Prob[”. $Ppred .“ :: ”. $Pdef .“]”. The .
denotes the string-concatenation operator and the variables $Ppred and
$Pdef are the probability predicate and the probability space instance
definition, respectively. They are defined depending on the problem
type $t as follows (where SPIP is the problem sampler fixed in item 1
above and where the source of SI is explained in item 3 below):

• $t = C: Initialize $Pdef to “PI ← SPIP(SI);” (the problem in-
stance to solve) and add “C R← U ;” (the random coins for the
adversary) to it. Define $Ppred as “A(C,SI ,PI publ) ∈ PI sol”.

1In practice, only the later application of this relation using specific assumptions im-
plied by a cryptographic systems will determine the concrete choices of group family and
sampler.

165

166 Deriving Formal Assumptions from the Parameters

• $t = D: Initialize $Pdef to the concatenation of “b R← {0, 1};”
(the random bit used as challenge), “PI 0 ← SPIP(SI);” and
“PI 1 ← SPIP(SI);” (the real problem instance and an auxiliary
problem instance for the random public part), “sol c

R← PI b
sol ;”

(one possible solution), and “C R← U ;”. $Ppred is defined as
“A(C,SI ,PI publ , sol c) = b”. Additionally, the probability state-
ment $P is normalized to “2 · |Prob[$Ppred :: $Pdef]− 0.5|”.

• $t = M: Initialize $Pdef to the concatenation of “b R← {0, 1};”
(the random bit used as challenge), “PI 0 ← SPIP(SI);”
and “PI 1 ← SPIP(SI);” (the two problem instances to
match), “sol 0

R← PI 0
sol” and “sol 1

R← PI 1
sol” (two cor-

responding solutions), and “C R← U ;”. $Ppred is defined
as “A(C,SI ,PI 0

publ ,PI 1
publ , sol b, sol b̄) = b”. Additionally,

the probability statement $P is normalized as above to “2 ·
|Prob[$Ppred :: $Pdef]− 0.5|”.

3. Granularity: Depending on the granularity value $g do the following
(where SGG and Sg are the group and generator sampler fixed in
item 1):

• $g = l: Prepend “G ← SGG(1k);”, “gi ← Sg(G);” (for as many
i ∈ N as required by the problem family, e.g., one generator for
DL and n generators for RP(n)), and “SI ← (G, g1, . . .);” to
$Pdef .

• $g = m: Prepend “∀G ∈ [SGG(1k)]; to $F. Prepend “g ←
Sg(G);” and “SI ← (G, g1, . . .);” to $Pdef .

• $g = h: Prepend “∀G ∈ [SGG(1k)];”, “∀gi ∈ [Sg(G)];”, and
“SI ← (G, g1, . . .);” to $F.

4. Computational complexity and algebraic knowledge: Depend-
ing on the computational complexity $c do the following:

• $c = u: Prefix $F with “∀A ∈ UPTM;”, “∃k0;”, and “∀k > k0;”.

• $c = n: Prefix $F with “∀(Ai | i ∈ N) ∈ NPTM;”, “∃k0;”, and
“∀k > k0;”. In $Ppred replace “A” by “Ak”.

If the considered assumption is in the generic model ($a = σ) then
replace everywhere “A”, UPTM and NPTM by “Aσ”, UPTMσ and
NPTMσ, respectively. Furthermore, append “σ R← ΣG,g;” (the choice
of the random encoding function) to $Pdef .

5. Success probability: Depending on the success probability $s do the
following to finish the formal assumption statement:

• $s = 1: Append “< 1” to $F, i.e., immediately after $P.

167

• $s = (1−1/poly(k)): Append “∃d1;” immediately after the all-
quantifier on adversary algorithms in $F. Append “< (1−1/kd1)”
to $F.

• $s = ǫ: Append “< ǫ” to $F.

• $s = 1/poly(k): Append “∀d1;” immediately after the all-
quantifier on adversary algorithms in $F. Append “< 1/kd1”
to $F.

Evaluating $F by expanding the variables , i.e., $P, $Ppred and $Pdef , and
applying the string-concatenation operator gives now the desired precise
formal assumption statement.

168 Deriving Formal Assumptions from the Parameters

Appendix B

Detailed Specification of
Models and Protocols

This appendix contains the complete and detailed specification of the ma-
chines defined in Chapter 5. In particular, it contains explicitly the struc-
tures derived from the intended structures in the main text as described in
Section 5.1.2 and thus the full details of their behavior during and after cor-
ruption. Furthermore, it explicitly spells out all machines in the semi-real
system and the simulator whereas the main text described a number of them
only implicitly by giving the differences to previously defined machines.

Scheme 5.1 (Ideal System for Group Key Establishment Sysgke,ideal
n,tb,ct)

An overview of the ideal host THH, the connectivity and exchanged
messages is given in Figure B.1. The message types and parameters are
described in the Tables B.1. The variables of THH are described in the
Table B.2. The transitions of THH are defined as follows:

transition inu? (init)

enabled if: (stateu,u = undef) ∧ (inu?.cntr < tb);
stateu,u ← wait;
output: outsim,u ! (init), outsim,u

⊳! (1);

end transition

transition insim,u? (initialized, v)

enabled if: (stateu,u 6= corrupted) ∧ (insim,u?.cntr < tb);
ignore if: ((statev,v = undef) ∧ (v 6∈ A)) ∨ ((u = v) ∧ (stateu,u 6= wait));
stateu,v ← init;
output: outu ! (initialized, v), outu

⊳! (1);

end transition

169

170 Detailed Specification of Models and Protocols

Table B.1 The message types and parameters handled by THH

Port Type Parameters Meaning

At specified ports SH to user u ∈ H

inu? init Initialize user u.

outu ! initialized v User v initialized from user
u’s point of view.

inu? new sid ,grp,[sid ’,grp’] Initialize a new session,
extending a previous one
if optional parameters are
present.

outu ! key sid ,grp,key Return newly agreed key.

corruptu? do Corrupt user u!

outu ! arbitrary arbitrary Possible outputs after cor-
ruptions

At adversary ports

outsim,u ! init User u is initializing.

insim,u? initialized v ∈M User u should consider user
v as initialized.

outsim,u ! new sid ,grp,[sid ’,grp’] User u has initialized a new
session.

insim,u? finish sid ,grp,[keyu,sim] Complete session for user
u. If present and allowed,
assign keyu,sim to user u.

corOutsim,u ! state state State of corrupted party.

outsim,u ! arbitrary arbitrary Corrupted party u sent a
message.

insim,u? arbitrary arbitrary Send message to (cor-
rupted) party u.

171

Figure B.1 Trusted host and its message types. Parts related to adaptive
adversaries are in gray. Dashed lines indicate who schedules a connection.

init, new,

key,

initial-

ized
do

initialized,

finish,arbitrary

init,new,arbitrary

in
sim,u

?

out
sim,u

!

H

A

TH
H

in
u
? out

u
!

(Master

scheduler)

corrupt
u
?

� � �

corOut
sim,u

!

state

�

�

�

Table B.2 Variables of THH

Name Domain Meaning Init.

(stateu,v)u,v∈M {undef,wait,
init,
corrupted}

Long-term
states as
seen by user
u

undef

(sesu,sid,grp)u∈M,sid∈SID,grp⊆M {undef, init,
finished}

State of
sessions as
seen by user
u

undef

(keyu,sid,grp)u∈M,sid∈SID,grp⊆M {0, 1}k ∪
{undef}

Session keys
still in
negotiation

undef

(prevu,sid,grp)u∈M,sid∈SID,grp⊆M (sid ′ ∈ SID,
grp′ ⊆M)

Dependency
graph of
sessions

(0, {})

(p?.cntr)p∈{inu,corruptu,insim,u | u∈H} N Activation
counters

0

172 Detailed Specification of Models and Protocols

transition inu? (new, sid , grp, [sid ′, grp ′])

enabled if: (stateu,u 6= corrupted) ∧ (inu?.cntr < tb);
ignore if: (u 6∈ grp) ∨ (|grp| < 2) ∨ (∃v ∈ grp : stateu,v 6= init) ∨

(sesu,sid,grp 6= undef) ∨
(present(sid ′, grp ′) ∧ (u ∈ grp′) ∧ (sesu,sid ′,grp′ 6= finished));

sesu,sid,grp ← init;
if present(sid ′, grp ′) then

prevu,sid,grp ← (sid ′, grp ′);
end if ;
output: outsim,u ! (new, sid , grp, [sid ′, grp ′]), outsim,u

⊳! (1);

end transition

transition insim,u? (finish, sid , grp, [keyu,sim])

enabled if: (stateu,u 6= corrupted) ∧ (insim,u?.cntr < tb);
ignore if: (sesu,sid,grp 6= init);
if present(keyu,sim) ∧

((∃v ∈ grp : statev,v = corrupted ∨ v ∈ A) ∨
(∃v0, v1 ∈ grp : (sesv0,sid ,grp 6= undef) ∧ (sesv1,sid,grp 6= undef) ∧

(prev v0,sid ,grp 6= prev v1,sid ,grp))) then

Corrupted or inconsistent session so . . .
keyu,sid,grp ← keyu,sim;# . . . use session key provided by adversary

else if (∀ v ∈ grp : sesv,sid ,grp 6= finished) then
First to finish (ideal) session
key R← {0, 1}k ; # Generate new (random) session key . . .
for all v ∈ grp do

keyv,sid ,grp ← key; # . . . and assign it to all parties
end for;

end if ;
output: outu ! (key, sid , grp, keyu,sid ,grp), outu

⊳! (1);# Give key to
user . . .
keyu,sid,grp ← undef; # . . . and delete it locally to enable forward secrecy
sesu,sid,grp ← finished;

end transition

transition corruptu? (do)

enabled if: (ct = adaptive ∧ stateu,u 6= corrupted);
stateu,u ← corrupted;
output: corOutsim,u ! (state, encode state(u)), corOutsim,u

⊳! (1);

end transition

function : encode state(u)

return:({(u, v, stateu,v) | v ∈M}, {(sid , grp, sesu,sid,grp, keyu,sid ,grp,
prevu,sid ,grp) | sid ∈ SID ∧ grp ⊆M∧ sesu,sid ,grp 6= undef});

173

end function

transition inu? (any msg)

enabled if: (stateu,u = corrupted); # Transparent mode
output: outsim,u ! (any msg), outsim,u

⊳! (1);

end transition

transition insim,u? (any msg)

enabled if: (stateu,u = corrupted); # Transparent mode
output: outu ! (any msg), outu

⊳! (1);

end transition
2

174 Detailed Specification of Models and Protocols

Figure B.2 Sketch of the real system. Derived parts are shown in gray.
Scheduling is shown only for newly introduced ports.

init, new key,

initial-

ized

do

H

A

GenM
u

aut
v,u

d
?

aut
G,v

!

M
v

aut
v,G

!aut
v,u

!

in
u
? out

u
!

corrupt
u
?

(Master

scheduler)

� � �

� �

aut
G,v

d
?

aut
v,G

d
?

cor{Out,In}
u

param

paramR

Scheme 5.2 (Real System for Group Key Establishment Sysgke,ika1
n,tb,ct)

An overview of the real system with its machines, their connectivity
and exchanged messages is given in Figure B.2. The message types and
parameters are described in the Tables B.1 and B.3. The variables of the
machines are described in the Table B.4. The transitions of the machines
are defined as follows, machine by machine:

Machine Gen

transition autu,G? (param)

enabled if: (autu,G?.cntr < tb);
if (state = undef) then

(G, g, h) ← genG(1k);
state ← init;

end if
output: autG,u ! (paramR, G, g, h);
output: autdG,u ! (paramR, G, g, h);

end transition

Machine Mu

transition inu? (init) # Trigger initialization

enabled if: (stateu = undef) ∧ (inu?.cntr < tb);
stateu ← wait;

175

Table B.3 The message types and parameters handled by Gen and Mu.
(See Table B.1 for remaining messages, i.e., the “upper” interface (specified
ports) of Mu.)

Port Type Parameters Meaning

autu,G? param — Get system parameters.

autG,u ! paramR (G, g, h) ∈ genG(1k) Reply to above.

Port Type Parameters Meaning

autv ,u? initialized — Notification that
M∗

v is initialized.

autv ,u? up sid , grp, (mi ∈ G)0≤i≤idx(grp,v) Upflow.

autv ,u? down sid , grp, (mi ∈ G)0≤i<|grp| Downflow (broad-
cast).

autv ,u? confirm sid , grp Confirmation.

For all messages on ports autv,u ! there is an additional identical message on autdv,u !,
i.e., the copy to the eavesdropping A. However, to prevent clutter these messages are
omitted from this and similar later tables.

output: autu,G! (param);
output: autdu,G! (param);

end transition

transition autG,u? (paramR, G′, g′, h′) # Get system parameters

enabled if: (stateu = wait);
stateu ← init;
(G, g, h)← (G′, g′, h′);
output: outu ! (initialized, u); outu

⊳! (1);
for all v ∈M \ {u} do

output: autu,v ! (initialized);
output: autdu,v ! (initialized);

end for

end transition

transition autv ,u? (initialized) # Notification for other machines

enabled if: (stateu 6= corrupted) ∧ (autv ,u?.cntr < tb);
statev ← init;
output: outu ! (initialized, v), outu

⊳! (1);

end transition

176 Detailed Specification of Models and Protocols

Table B.4 Variables in Gen and Mu

Name Domain Meaning Init.

state {undef, init} Initialized?. undef

(G, g, h) Range of genG(1k) Global parameters. —

(autv ,G?.cntr)v∈H N Activation counters 0

Name Domain Meaning Init.

(statev)v∈M {undef,wait, init,
corrupted}

Long-term states
as seen by M∗

u.
undef

(G, g, h) Range of
genG(1k)

Global parame-
ters.

—

(sessid ,grp)sid∈SID,grp⊆M {undef, upflow,
downflow,
confirm, finished}

State of a (poten-
tial) session.

undef

(Csid ,grp)sid∈SID,grp⊆M {I | I ⊆ M} Records received
session confirma-
tions

∅

(keysid ,grp)sid∈SID,grp⊆M {0, 1}k ∪ {undef} Group key of a
session.

undef

(xsid ,grp)sid∈SID,grp⊆M Z|G| ∪ {undef} Individual secret
key of a session.

undef

(autv ,u?.cntr)v∈{G}∪H\{u} N Activation coun-
ters

0

177

transition inu? (new, sid , grp) # Start new session

enabled if: (stateu 6= corrupted) ∧ (inu?.cntr < tb);
ignore if:

(u 6∈ grp)∨ (|grp| < 2)∨ (∃v ∈ grp : statev 6= init)∨ (sessid ,grp 6= undef);

xsid ,grp
R← Z|G|;

sessid ,grp ← upflow;
if (u = grp[1]) then # u is the first member

m′
1 ← g;

m′
2 ← gxsid ,grp

output: autu,grp[2]! (up, sid , grp, (m′
1,m

′
2));

output: autd
u,grp[2]! (up, sid , grp, (m′

1,m
′
2));

sessid ,grp ← downflow;
end if

end transition

transition autv ,u? (up, sid , grp,msg) # Upflow message arrives

enabled if: (stateu 6= corrupted) ∧ (autv ,u?.cntr < tb);
ignore if: (sessid ,grp 6= upflow) ∨ (v 6= grp[idx(grp, u)−1]) ∨

(msg is not (m1, . . . ,midx(grp,u)) with mi ∈ G having maximal order);
i← idx(grp, u); # u’s position in the group
m′

1 ← mi;
for 1 ≤ j ≤ min(i, |grp| − 1) do

m′
j+1 ← m

xsid,grp

j

end for
if (i < |grp|) then

output: autu,grp[i+1]! (up, sid , grp, (m′
1, . . . ,m

′
i+1));

output: autd
u,grp[i+1]! (up, sid , grp, (m′

1, . . . ,m
′
i+1));

sessid ,grp ← downflow;
else # i = |grp|, i.e., u is the last member

keysid ,grp ← h((m|grp|)
xsid,grp);

if (ct = static) then # For the static case we are done
sessid ,grp ← finished;
output: outu ! (key, sid , grp, key sid ,grp), outu

⊳! (1);
else # For the adaptive case wait first for the confirmation flows

sessid ,grp ← confirm;
Csid ,grp ← {u};
xsid ,grp = undef; # Erase secret exponent

end if
for all v′ ∈ grp \ {u} do # “Broadcast” to the group members

output: autu,v ′ ! (down, sid , grp, (m′
1, . . . ,m

′
i));

output: autdu,v ′ ! (down, sid , grp, (m′
1, . . . ,m

′
i));

end for
end if

end transition

178 Detailed Specification of Models and Protocols

transition autv ,u? (down, sid , grp,msg) # Downflow message arrives

enabled if: (stateu 6= corrupted) ∧ (autv ,u?.cntr < tb);
ignore if: (sessid ,grp 6= downflow) ∨ (v 6= grp[|grp|]) ∨

(msg is not (m1, . . . ,m|grp|) with mi ∈ G having maximal order);
i← idx(grp, u); # u’s position in the group
keysid ,grp ← h((m|grp|+1−i)

xsid,grp);
if (ct = static) then # For the static case we are done

sessid ,grp = finished;
output: outu ! (key, sid , grp, keysid ,grp), outu

⊳! (1);
else # For the adaptive case, start confirmation

sessid ,grp ← confirm;
Csid ,grp ← Csid ,grp ∪ {u, v};
xsid ,grp = undef; # Erase secret exponent
for all v′ ∈ grp\{u} do # “Broadcast” confirmation to group members

output: autu,v ! (confirm, sid , grp);
output: autdu,v ! (confirm, sid , grp);

end for
if (Csid ,grp = grp) then # We got down after all confirm . . .

sessid ,grp = finished; # . . . so we are done: Give key to user . . .
output: outu ! (key, sid , grp, keysid ,grp), outu

⊳! (1);
keysid ,grp ← undef; # . . . and delete it locally

end if
end if

end transition

transition autv ,u? (confirm, sid , grp) # Confirmation message arrives

enabled if: (ct = adaptive) ∧ (stateu 6= corrupted) ∧ (autv ,u?.cntr < tb);
ignore if: (v 6∈ grp \ Csid ,grp) ∨ (sessid ,grp 6∈ {downflow, confirm});
Csid ,grp ← Csid ,grp ∪ {v};
if (Csid ,grp = grp)∧(sessid ,grp = confirm) then # All confirm received . . .

sessid ,grp ← finished; # . . . so we are done: Give key to user . . .
output: outu ! (key, sid , grp, keysid ,grp), outu

⊳! (1);
keysid ,grp ← undef; # . . . and delete it locally

end if

end transition

transition corruptu? (do) # We get corrupted

enabled if: (ct = adaptive ∧ (stateu 6= corrupted) ∧ stateu 6= corrupted)
stateu ← corrupted;
output: corOutu ! (state, encode state()), corOutu

⊳! (1);

end transition

179

function : encode state()

return:((G, g, h), {(v, statev) | v∈M}, {(sid , grp, sessid ,grp , Csid ,grp,
xsid ,grp, keysid ,grp) | sid ∈ SID ∧ grp ⊆M∧ sessid ,grp 6= undef});

end function

transition port? (any msg) # Transparent mode

enabled if: (stateu = corrupted) ∧ (port ∈ {inu?} ∪ {autv ,u? | v ∈ M ∪
{G}});
output: corOutu ! (port , any msg), corOutu

⊳! (1);

end transition

transition corInu? (port , any msg) # Transparent mode

enabled if: (stateu = corrupted)
ignore if: (port 6∈ {outu !, outu

⊳!} ∪ {autu,v !|v ∈M∪ {G}});
output: port (any msg);

end transition
2

180 Detailed Specification of Models and Protocols

Figure B.3 Semi-real system. (Clocking of new components GDH Mux and

GDH
(0)
n,mxkey is RPC-style.)

M'
u Gen'M'

v

GDH_Mux

 init, getView,

getKey,getSecret

exp,

getKey,

getSecret,

corrupt

in
gdh

? out
gdh

!

in
gdhM,u

?

paramR

� � �

expR,

getKeyR,

getSecretR,

corruptR

initR, getViewR,

getKeyR,getSecretR

param

H

A

� � �

in
gdhM,G

?

aut
X,Y

(d)

out
gdhM,u

! out
gdhM,G

!

GDH
(0)

n,mxkey

Scheme 5.4 (Semi-real system Sysgke,ika1,sr
n,tb,ct)

An overview of the semi-real system with its machines, their connectivity
and the exchanged messages is given in Figure B.3. The message types and
parameters are described in the Tables B.1, B.3 and B.5. The variables of
the machines are described in the Tables B.6 and B.7. The transitions of
the machines are defined as follows, machine by machine:

Machine Gen′

transition autu,G? (param)

enabled if: (autu,G?.cntr < tb);
if (state = undef) then

output: ingdhM,G! (param), ingdhM,G
⊳! (1);

input: outgdhM,G? (paramR, G′, g′, h′);
(G, g, h) ← (G′, g′, h′);
state ← init;

end if
output: autG,u ! (paramR, G, g, h);
output: autdG,u ! (paramR, G, g, h);

end transition

181

Table B.5 The message types and parameters handled by GDH Mux and

GDH
(b)
n,mxkey . (See Table B.1 (specified ports) and Table B.3 for the remaining

message types and parameters handled in the semi-real system.)

Port Type Parameters Meaning

ingdhM,G? param — Get system parameters

outgdhM,G! paramR G, g, h Reply to above

ingdhM,u? corrupt — Corruption

outgdhM,u ! corruptR — Reply to above

ingdhM,u? exp sid , grp, γ Exponentiate γ with secret for u
in this session. Limited to the
computation of partial keys!

outgdhM,u ! expR γxu Reply to above

ingdhM,u? getKey sid , grp, γ Get derived key matching final
partial key γ

outgdhM,u ! getKeyR K Reply to above

ingdhM,u? getSecret sid , grp Get secret of this session (to hand
it over during corruption)

outgdhM,u ! getSecretR xu Reply to above

Port Type Parameters Meaning

ingdh? init — Get system pa-
rameters

outgdh! initR G, g, h Reply to above

ingdh? getView n′ Get GDH partial
keys of a new ses-
sion

outgdh! getViewR i, {(β,g
Q

βj=1xi,j
)|β∈Ini \{1

ni}} Reply to above, i
is the session refer-
ence identifier

ingdh? getKey i Get key of session
i

outgdh! getKeyR zi Reply to above

ingdh? getSecret i Get secret expo-
nents of session i

outgdh! getSecretR (xi,1, . . . , xi,ni) Reply to above

182 Detailed Specification of Models and Protocols

Table B.6 Variables in Gen′ and M′
u

Name Domain Meaning Init.

state {undef, init} Initialized?. undef

(G, g, h) Range of genG(1k) Global parameters. —

(autv ,G?.cntr)v∈H N Activation counters 0

Name Domain Meaning Init.

(statev)v∈M {undef,wait, init,
corrupted}

Long-term states
as seen by M′

u.
undef

(G, g, h) Range of
genG(1k)

Global parame-
ters.

—

(sessid ,grp)sid∈SID,grp⊆M {undef, upflow,
downflow,
confirm, finished}

State of a (poten-
tial) session.

undef

(Csid ,grp)sid∈SID,grp⊆M {I | I ⊆ M} Records received
session confirma-
tions

∅

(keysid ,grp)sid∈SID,grp⊆M {0, 1}k ∪G ∪
{undef}

Group key of a
session.

undef

(xsid ,grp)sid∈SID,grp⊆M Z|G| ∪ {undef,
exists}

Individual secret
key of a session.

undef

(autv ,u?.cntr)v∈{G}∪H\{u} N Activation coun-
ters

0

183

Table B.7 Variables in GDH Mux and GDH
(b)
n,mxkey

Variables Domain Meaning Init.

(isid ,grp)sid∈SID,grp⊆M N Index used
for this
session with
GDH

(b)
n,mxkey

undef

(corru)u∈M {true, false} Corrupted
machine?

true iff u
∈M\H

(sesu,sid,grp)u∈M,sid∈SID,grp⊆M {undef,
finished,
corrupted}

Session
status
related to u

undef

(keysid ,grp)sid∈SID,grp⊆M {0, 1}k ∪
{undef}

Session key
from
GDH

(b)
n,mxkey

undef

(view sid ,grp)sid∈SID,grp⊆M As output by

GDH
(b)
n,mxkey

View of a
session

undef

(secrets sid ,grp)sid∈SID,grp⊆M As output by

GDH
(b)
n,mxkey

Secrets of a
session

undef

(ingdhM,u?.cntr)u∈∈M∪{G}} N Activation 0

outgdh?.cntr counters

Name Domain Meaning Init.

(G, g, h) Range of genG(1k) System parameters

i N Session counter 0

(ci)i∈N {undef, init, finished,
corrupted }

Session status undef

(ni)i∈N N Number of session par-
ticipants

(xi,j)i,j∈N Z|G| Secret exponents

(zi)i∈N G Session keys

ingdh?.cntr N Activation counter 0

184 Detailed Specification of Models and Protocols

Machine M′
u

transition inu? (init) # Trigger initialization

enabled if: (stateu = undef) ∧ (inu?.cntr < tb);
stateu ← wait;
output: autu,G! (param);
output: autdu,G! (param);

end transition

transition autG,u? (paramR, G′, g′, h′) # Get system parameters

enabled if: (stateu = wait);
stateu ← init;
(G, g, h) ← (G′, g′, h′);
output: outu ! (initialized, u); outu

⊳! (1);
for all v ∈M \ {u} do

output: autu,v ! (initialized);
output: autdu,v ! (initialized);

end for

end transition

transition autv ,u? (initialized) # Notification for other machines

enabled if: (stateu 6= corrupted) ∧ (autv ,u?.cntr < tb);
statev ← init;
output: outu ! (initialized, v), outu

⊳! (1);

end transition

transition inu? (new, sid , grp) # Start new session

enabled if: (stateu 6= corrupted) ∧ (inu?.cntr < tb);
ignore if:

(u 6∈ grp)∨ (|grp| < 2)∨ (∃v ∈ grp : statev 6= init)∨ (sessid ,grp 6= undef);
xsid ,grp ← exists;# Just remember that exponent did not get erased yet
sessid ,grp ← upflow;
if (u = grp[1]) then # u is the first member

m′
1 ← g;

output: ingdhM,u ! (exp, sid , grp, g), ingdhM,u
⊳! (1);

input: outgdhM,u? (expR, gxsid ,grp);
m′

2 ← gxsid,grp ;
output: autu,grp[2]! (up, sid , grp, (m′

1,m
′
2));

output: autd
u,grp[2]! (up, sid , grp, (m′

1,m
′
2));

sessid ,grp ← downflow;
end if

end transition

185

transition autv ,u? (up, sid , grp,msg) # Upflow message arrives

enabled if: (stateu 6= corrupted) ∧ (autv ,u?.cntr < tb);
ignore if: (sessid ,grp 6= upflow) ∨ (v 6= grp[idx(grp, u)−1]) ∨

(msg is not (m1, . . . ,midx(grp,u)) with mi ∈ G having maximal order);
i← idx(grp, u); # u’s position in the group
m′

1 ← mi;
for 1 ≤ j ≤ min(i, |grp| − 1) do

output: ingdhM,u ! (exp, sid , grp, mj), ingdhM,u
⊳! (1);

input: outgdhM,u? (expR, m
xsid,grp

j);

m′
j+1 ← m

xsid,grp

j ;
end for
if (i < |grp|) then

output: autu,grp[i+1]! (up, sid , grp, (m′
1, . . . ,m

′
i+1));

output: autd
u,grp[i+1]! (up, sid , grp, (m′

1, . . . ,m
′
i+1));

sessid ,grp ← downflow;
else # i = |grp|, i.e., u is the last member

keysid ,grp ← m|grp|; # Just remember the pre-key
if (ct = static) then # For the static case we are done

sessid ,grp ← finished;
output: ingdhM,u ! (getKey, sid , grp, keysid ,grp), ingdhM,u

⊳! (1);
input: outgdhM,u? (getKeyR, key);
keysid ,grp ← key ;
output: outu ! (key, sid , grp, key sid ,grp), outu

⊳! (1);
else # For the adaptive case wait first for the confirmation flows

sessid ,grp ← confirm;
Csid ,grp ← {u};
xsid ,grp = undef; # Erase secret exponent

end if
for all v′ ∈ grp \ {u} do # “Broadcast” to the group members

output: autu,v ′ ! (down, sid , grp, (m′
1, . . . ,m

′
i));

output: autdu,v ′ ! (down, sid , grp, (m′
1, . . . ,m

′
i));

end for
end if

end transition

transition autv ,u? (down, sid , grp,msg) # Downflow message arrives

enabled if: (stateu 6= corrupted) ∧ (autv ,u?.cntr < tb);
ignore if: (sessid ,grp 6= downflow) ∨ (v 6= grp[|grp|]) ∨

(msg is not (m1, . . . ,m|grp|) with mi ∈ G having maximal order);
i← idx(grp, u); # u’s position in the group
keysid ,grp ← m|grp|+1−i; # Just remember the pre-key
if (ct = static) then # For the static case we are done

sessid ,grp = finished;

186 Detailed Specification of Models and Protocols

output: ingdhM,u ! (getKey, sid , grp, keysid ,grp), ingdhM,u
⊳! (1);

input: outgdhM,u? (getKeyR, key);
keysid ,grp ← key ;
output: outu ! (key, sid , grp, keysid ,grp), outu

⊳! (1);
else # For the adaptive case, start confirmation

sessid ,grp ← confirm;
Csid ,grp ← Csid ,grp ∪ {u, v};
xsid ,grp = undef; # Erase secret exponent
for all v′ ∈ grp\{u} do # “Broadcast” confirmation to group members

output: autu,v ! (confirm, sid , grp);
output: autdu,v ! (confirm, sid , grp);

end for
if (Csid ,grp = grp) then # We got down after all confirm . . .

sessid ,grp = finished; # . . . so we are done: Give key to user . . .
output: ingdhM,u ! (getKey, sid , grp, keysid ,grp), ingdhM,u

⊳! (1);
input: outgdhM,u? (getKeyR, key);
keysid ,grp ← key ;
output: outu ! (key, sid , grp, keysid ,grp), outu

⊳! (1);
keysid ,grp ← undef; # . . . and delete it locally

end if
end if

end transition

transition autv ,u? (confirm, sid , grp) # Confirmation message arrives

enabled if: (ct = adaptive) ∧ (stateu 6= corrupted) ∧ (autv ,u?.cntr < tb);
ignore if: (v 6∈ grp \ Csid ,grp) ∨ (sessid ,grp 6∈ {downflow, confirm});
Csid ,grp ← Csid ,grp ∪ {v};
if (Csid ,grp = grp)∧(sessid ,grp = confirm) then # All confirm received . . .

sessid ,grp ← finished; # . . . so we are done: Give key to user . . .
output: ingdhM,u ! (getKey, sid , grp, keysid ,grp), ingdhM,u

⊳! (1);
input: outgdhM,u? (getKeyR, key);
keysid ,grp ← key ;
output: outu ! (key, sid , grp, keysid ,grp), outu

⊳! (1);
keysid ,grp ← undef; # . . . and delete it locally

end if

end transition

transition corruptu? (do) # We get corrupted

enabled if: (ct = adaptive ∧ (stateu 6= corrupted) ∧ stateu 6= corrupted)
output: ingdhM,u ! (corrupt), ingdhM,u

⊳! (1);
input: outgdhM,u? (corruptR);
stateu ← corrupted;
output: corOutu ! (state, encode state()), corOutu

⊳! (1);

end transition

187

function : encode state()

for all (keysid ,grp :: keysid ,grp 6= undef) do # Perform delayed key com-
putation

output: ingdhM,u ! (getKey, sid , grp, keysid ,grp), ingdhM,u
⊳! (1);

input: outgdhM,u? (getKeyR, key);
keysid ,grp ← key ;

end for
for all (xsid ,grp :: xsid ,grp = exists) do # Get real exponents

output: ingdhM,u ! (getSecret, sid , grp), ingdhM,u
⊳! (1);

input: outgdhM,u? (getSecretR, secret);
xsid ,grp ← secret ;

end for
return:((G, g, h), {(v, statev) | v∈M}, {(sid , grp, sessid ,grp , Csid ,grp,

xsid ,grp, keysid ,grp) | sid ∈ SID ∧ grp ⊆M∧ sessid ,grp 6= undef});

end function

transition port? (any msg) # Transparent mode

enabled if: (stateu = corrupted) ∧ (port ∈ {inu?} ∪ {autv ,u? | v ∈ M ∪
{G}});
output: corOutu ! (port , any msg), corOutu

⊳! (1);

end transition

transition corInu? (port , any msg) # Transparent mode

enabled if: (stateu = corrupted)
ignore if: (port 6∈ {outu !, outu

⊳!} ∪ {autu,v !|v ∈M∪ {G}});
output: port (any msg);

end transition

Machine GDH Mux

transition ingdhM,G? (param)

output: ingdh! (init), ingdh
⊳! (1);

input: outgdh? (initR, G, g, h);
output: outgdhM,G! (paramR, G, g, h), outgdhM,G

⊳! (1);

end transition

188 Detailed Specification of Models and Protocols

transition ingdhM,u? (exp, sid , grp, γ)

require: (u ∈ grp) ∧ ((isid ,grp = undef)
∨ ((∃v ∈ grp : sesv,sid ,grp =corrupted) ∧ (keysid ,grp = undef))
∨ ((∀v ∈ grp : sesv,sid ,grp 6=corrupted) ∧ (∃β : (β, γ)∈view sid ,grp ∧
bit(β, idx(grp, u)) = 0 ∧ setbit(β, idx(grp, u)) 6= 1|grp|)));
#
#
#

A legitimate caller and either session is completely undefined or ses-
sion is corrupted but key is not yet divulged or session is uncorrupted
and query is for one of “our” partial keys.

if (isid ,grp = undef) then # New session
output: ingdh! (getView, |grp|), ingdh

⊳! (1);
input: outgdh? (getViewR, i, view);
isid ,grp ← i; viewsid ,grp ← view
for all (v :: corr v = true) do sesv ,sid,grp ← corrupted; end for

end if
if (∀v ∈ grp : sesv,sid ,grp 6= corrupted) then # Session uncorrupted

β′←setbit(β, idx(grp, u)) :: (β, γ)∈view sid ,grp;# Index of exponentiation
output: outgdhM,u ! (expR, γ′ :: (β′, γ′) ∈ viewsid ,grp), outgdhM,u

⊳! (1);
else # Group contains a corrupted participant

if (secrets sid ,grp = undef) then # Secrets not yet known
output: ingdh! (getSecret, isid ,grp), ingdh

⊳! (1);
input: outgdh? (getSecretR, secrets);
secretssid ,grp ← secrets ;

end if
output: outgdhM,u ! (expR, γsecretssid,grp,idx(grp,u)); outgdhM,u

⊳! (1);
end if

end transition

transition ingdhM,u? (getKey, sid , grp, γ)

require: (u ∈ grp) ∧ (isid ,grp 6= undef) ∧ (sesu,sid,grp 6=finished) ∧
(((∃β : (β, γ)∈view sid ,grp) ∧ (setbit(β, idx(grp, u)) = 1|grp|)) ∨
((keysid ,grp = undef) ∧ (∃v ∈ grp : sesv,sid ,grp =corrupted)));

#
#
#

A legitimate caller of an initialized but unfinished session either ask-
ing for a correct key or being corrupted without somebody having
asked for the ideal key before

if keysid ,grp 6= undef then # (Ideal) key already defined. . .
. . . so just return this key
sesu,sid,grp ← finished;
output: outgdhM,u ! (getKeyR, keysid ,grp), outgdhM,u

⊳! (1);
else # (Ideal) key does not yet exist and . . .

if (∀v ∈ grp : sesv,sid ,grp 6= corrupted) then # . . . uncorrupted session
output: ingdh! (getKey, isid ,grp), ingdh

⊳! (1);
input: outgdh? (getKeyR, key);
keysid ,grp ← key ;
sesu,sid,grp ← finished; # Mark only uncorrupted sessions as finished!

189

output: outgdhM,u ! (getKeyR, keysid ,grp), outgdhM,u
⊳! (1);

else # Group contains corrupted participants and (ideal) key undefined
if (secretssid ,grp = undef) then # Secrets not yet known

output: ingdh! (getSecret, isid ,grp), ingdh
⊳! (1);

input: outgdh? (getSecretR, secrets);
secrets sid ,grp ← secrets ;

end if
output: outgdhM,u ! (getKeyR, h(γsecretssid,grp,idx(grp,u))), outgdhM,u

⊳! (1);
end if

end if

end transition

transition ingdhM,u? (corrupt)

corru ← true;
for all (sid , grp :: (u ∈ grp) ∧ (isid ,grp 6= undef) ∧ (sesu,sid,grp 6= finished))
do

sesu,sid ,grp ← corrupted; # Mark only locally unfinished sessions
end for
output: outgdhM,u ! (corruptR), outgdhM,u

⊳! (1);

end transition

transition ingdhM,u? (getSecret, sid , grp)

require: (u ∈ grp) ∧ (isid ,grp 6= undef) ∧ (sesu,sid,grp = corrupted) ∧
(keysid ,grp = undef);
#
#

A legitimate caller of a started session and we are corrupted but the
key has not been exposed

if (secrets sid ,grp = undef) then # Secrets not yet known
output: ingdh! (getSecret, isid ,grp), ingdh

⊳! (1);
input: outgdh? (getSecretR, secrets);
secrets sid ,grp ← secrets ;

end if
output: outgdhM,u ! (getSecretR, secretssid ,grp,idx(grp,u)), outgdhM,u

⊳! (1);

end transition

Machine GDH
(b=0)
n,mxkey

transition ingdh? (init)

enabled if: (i = 0);
(G, g, h) R← genG(1k);
i← 1;
output: outgdh! (initR, G, g, h), outgdh

⊳! (1);

end transition

190 Detailed Specification of Models and Protocols

transition ingdh? (getView, n′)

enabled if: (1 ≤ i ≤ mxkey); # Initialized & maxima not exceeded
ignore if: ¬(2 ≤ n′ ≤ n); # Illegal number of participants
ci ← init;
ni ← n′;
(xi,1, . . . , xi,ni)

R← Zni

|G|;
if b = 0 then # Depending on type of machine . . .

zi ← h(gxi,1···xi,ni); # . . . set real key . . .
else

zi
R← {0, 1}k ; # . . . or random key.

end if
output: outgdh! (getViewR, i, {(β, g

Q
βj=1 xi,j

) | β ∈ Ini \{1
ni}}), outgdh

⊳!
(1);
i← i + 1;

end transition

transition ingdh? (getKey, i)

ignore if: (ci 6= init); # Session not yet initialized or already terminated
ci ← finished;
output: outgdh! (getKeyR, zi), outgdh

⊳! (1);

end transition

transition ingdh? (getSecret, i)

ignore if: (ci 6= init); # Session not yet initialized or already terminated
ci ← corrupted;
output: outgdh! (getSecretR, (xi,1, . . . , xi,ni)), outgdh

⊳! (1);

end transition 2

191

Scheme 5.4’ (Semi-ideal system Sysgke,ika1,si
n,tb,ct)

The same as Sysgke,ika1,sr
n,tb,ct except with GDH

(b=0)
n,mxkey replaced by

GDH
(b=1)
n,mxkey .

2

192 Detailed Specification of Models and Protocols

Figure B.4 Simulator

� � �

H
in

u
! out

v
?

TH
H

A

aut
X,Y

(d)

Sim
H

in
sim,v

?out
sim,u

!

� � �

M"
u

out
sim,u

? in
sim,u

!

Gen'

corOut
sim,u

?

M"
v

GDH_Mux'

� � �

corOut
sim,u

!

GDH
(1)

n,mxkey

Scheme 5.5 (Simulator for Scheme 5.2)
An overview of the simulator with its sub-machines and the overall con-

nectivity is given in the grey box in Figure B.4. Gen′ and GDH
(1)
n,mxkey are

identical to their counterparts in the semi-ideal system and are not repeated
here.

The message types and parameters of GDH Mux′ are described in Ta-
ble B.9. The message types and parameters of M′′

u are described in the
Tables B.8 and B.3. Note that contrary to Mu and M′

u (and contrary to the
corresponding remark in the caption of Table B.3) the “upper” interface of
M′′

u corresponds to the messages at the adversary ports in Table B.1, not the
specified ports. Furthermore, do not let you confuse by the implied renam-
ing of “upper” interface ports since the usual in? ports (e.g., inu?) became
now out? ports (e.g, outsim,u?) and vice versa. The variables of the machines
M′′

u and GDH Mux′ are described in the Table B.10. The transitions of the
machines are defined as follows, machine by machine:

Machine Gen′

See page 180 for the definition of the machine.

Machine M′′
u

transition outsim,u? (init) # Trigger initialization

enabled if: (stateu = undef) ∧ (inu?.cntr < tb);
stateu ← wait;
output: autu,G! (param);

193

Table B.8 The message types and parameters handled on “upper” interface
of M′′

u. (See Table B.3 for remaining messages.)

Port Type Parameters Meaning

outsim,u? init User u is initializing.

insim,u ! initialized v ∈M User u should consider
user v as initialized.

outsim,u? new sid ,grp,[sid ’,grp’] User u has initialized a new
session.

insim,u ! finish sid ,grp,[keyu,sim] Let THH complete the
session for user u. If
present and allowed, assign
keyu,sim to user u.

corOutsim,u? state state THH’s state of corrupted
party.

outsim,u? arbitrary arbitrary Corrupted party u sent a
message.

insim,u ! arbitrary arbitrary Send message to (cor-
rupted) party u.

Table B.9 The message types and parameters handled by GDH Mux′

Port Type Parameters Meaning

ingdhM,G? param — Get system parameters

outgdhM,G! paramR G, g, h Reply to above

ingdhM,u? corrupt state Corruption

outgdhM,u ! corruptR — Reply to above

ingdhM,u? exp sid , grp, γ Exponentiate γ with secret for u
in this session. Limited to the
computation of partial keys!

outgdhM,u ! expR γxu Reply to above

ingdhM,u? getKey sid , grp, γ Get derived key matching final
partial key γ

outgdhM,u ! getKeyR K Reply to above

ingdhM,u? getSecret sid , grp Get secret of this session (to hand
it over during corruption)

outgdhM,u ! getSecretR xu Reply to above

194 Detailed Specification of Models and Protocols

Table B.10 Variables in M′′
u and GDH Mux′

Name Domain Meaning Init.

(statev)v∈M {undef,wait, init,
corrupted}

Long-term states
as seen by M′′

u.
undef

(G, g, h) Range of
genG(1k)

Global parame-
ters.

—

(sessid ,grp)sid∈SID,grp⊆M {undef, upflow,
downflow,
confirm, finished}

State of a (poten-
tial) session.

undef

(Csid ,grp)sid∈SID,grp⊆M {I | I ⊆ M} Records received
session confirma-
tions

∅

(keysid ,grp)sid∈SID,grp⊆M {0, 1}k ∪G ∪
{undef, ideal}

Group key of a
session.

undef

(xsid ,grp)sid∈SID,grp⊆M Z|G| ∪ {undef,
exists}

Individual secret
key of a session.

undef

(autv ,u?.cntr)v∈{G}∪H\{u} N Activation coun-
ters

0

Variables Domain Meaning Init.

(isid ,grp)sid∈SID,grp⊆M N Index used
for this
session with
GDH

(b)
n,mxkey

undef

(corru)u∈M {true, false} Corrupted
machine?

true iff u
∈M\H

(sesu,sid ,grp)u∈M,sid∈SID,grp⊆M {undef,
finished,
corrupted}

Session
status
related to u

undef

(keysid ,grp)sid∈SID,grp⊆M {0, 1}k ∪
{undef, ideal}

Session key
from
GDH

(b)
n,mxkey

undef

(view sid ,grp)sid∈SID,grp⊆M As output by

GDH
(b)
n,mxkey

View of a
session

undef

(secrets sid ,grp)sid∈SID,grp⊆M As output by

GDH
(b)
n,mxkey

Secrets of a
session

undef

(ingdhM,u?.cntr)u∈∈M∪{G}} N Activation 0

outgdh?.cntr counters

195

output: autdu,G! (param);

end transition

transition autG,u? (paramR, G′, g′, h′) # Get system parameters

enabled if: (stateu = wait);
stateu ← init;
(G, g, h)← (G′, g′, h′);
output: insim,u ! (initialized, u); insim,u

⊳! (1);
for all v ∈M \ {u} do

output: autu,v ! (initialized);
output: autdu,v ! (initialized);

end for

end transition

transition autv ,u? (initialized) # Notification for other machines

enabled if: (stateu 6= corrupted) ∧ (autv ,u?.cntr < tb);
statev ← init;
output: insim,u ! (initialized, v), insim,u

⊳! (1);

end transition

transition outsim,u? (new, sid , grp) # Start new session

enabled if: (stateu 6= corrupted) ∧ (inu?.cntr < tb);
ignore if:

(u 6∈ grp)∨ (|grp| < 2)∨ (∃v ∈ grp : statev 6= init)∨ (sessid ,grp 6= undef);
xsid ,grp ← exists;# Just remember that exponent did not get erased yet
sessid ,grp ← upflow;
if (u = grp[1]) then # u is the first member

m′
1 ← g;

output: ingdhM,u ! (exp, sid , grp, g), ingdhM,u
⊳! (1);

input: outgdhM,u? (expR, gxsid ,grp);
m′

2 ← gxsid ,grp ;
output: autu,grp[2]! (up, sid , grp, (m′

1,m
′
2));

output: autd
u,grp[2]! (up, sid , grp, (m′

1,m
′
2));

sessid ,grp ← downflow;
end if

end transition

transition autv ,u? (up, sid , grp,msg) # Upflow message arrives

enabled if: (stateu 6= corrupted) ∧ (autv ,u?.cntr < tb);
ignore if: (sessid ,grp 6= upflow) ∨ (v 6= grp[idx(grp, u)−1]) ∨

(msg is not (m1, . . . ,midx(grp,u)) with mi ∈ G having maximal order);
i← idx(grp, u); # u’s position in the group
m′

1 ← mi;
for 1 ≤ j ≤ min(i, |grp| − 1) do

196 Detailed Specification of Models and Protocols

output: ingdhM,u ! (exp, sid , grp, mj), ingdhM,u
⊳! (1);

input: outgdhM,u? (expR, m
xsid,grp

j);

m′
j+1 ← m

xsid,grp

j ;
end for
if (i < |grp|) then

output: autu,grp[i+1]! (up, sid , grp, (m′
1, . . . ,m

′
i+1));

output: autd
u,grp[i+1]! (up, sid , grp, (m′

1, . . . ,m
′
i+1));

sessid ,grp ← downflow;
else # i = |grp|, i.e., u is the last member

keysid ,grp ← m|grp|; # Just remember the pre-key
if (ct = static) then # For the static case we are done

sessid ,grp ← finished;
output: ingdhM,u ! (getKey, sid , grp, keysid ,grp), ingdhM,u

⊳! (1);
input: outgdhM,u? (getKeyR, key);
keysid ,grp ← key ;
output: insim,u ! (finish, sid , grp, keysid ,grp), insim,u

⊳! (1);
else # For the adaptive case wait first for the confirmation flows

sessid ,grp ← confirm;
Csid ,grp ← {u};
xsid ,grp = undef; # Erase secret exponent

end if
for all v′ ∈ grp \ {u} do # “Broadcast” to the group members

output: autu,v ′ ! (down, sid , grp, (m′
1, . . . ,m

′
i));

output: autdu,v ′ ! (down, sid , grp, (m′
1, . . . ,m

′
i));

end for
end if

end transition

transition autv ,u? (down, sid , grp,msg) # Downflow message arrives

enabled if: (stateu 6= corrupted) ∧ (autv ,u?.cntr < tb);
ignore if: (sessid ,grp 6= downflow) ∨ (v 6= grp[|grp|]) ∨

(msg is not (m1, . . . ,m|grp|) with mi ∈ G having maximal order);
i← idx(grp, u); # u’s position in the group
keysid ,grp ← m|grp|+1−i; # Just remember the pre-key
if (ct = static) then # For the static case we are done

sessid ,grp = finished;
output: ingdhM,u ! (getKey, sid , grp, keysid ,grp), ingdhM,u

⊳! (1);
input: outgdhM,u? (getKeyR, key);
keysid ,grp ← key ;
output: insim,u ! (finish, sid , grp, keysid ,grp), insim,u

⊳! (1);
else # For the adaptive case, start confirmation

sessid ,grp ← confirm;
Csid ,grp ← Csid ,grp ∪ {u, v};

197

xsid ,grp = undef; # Erase secret exponent
for all v′ ∈ grp\{u} do # “Broadcast” confirmation to group members

output: autu,v ! (confirm, sid , grp);
output: autdu,v ! (confirm, sid , grp);

end for
if (Csid ,grp = grp) then # We got down after all confirm . . .

sessid ,grp = finished; # . . . so we are done: Give key to user . . .
output: ingdhM,u ! (getKey, sid , grp, keysid ,grp), ingdhM,u

⊳! (1);
input: outgdhM,u? (getKeyR, key);
keysid ,grp ← key ;
output: insim,u ! (finish, sid , grp, keysid ,grp), insim,u

⊳! (1);
keysid ,grp ← undef; # . . . and delete it locally

end if
end if

end transition

transition autv ,u? (confirm, sid , grp) # Confirmation message arrives

enabled if: (ct = adaptive) ∧ (stateu 6= corrupted) ∧ (autv ,u?.cntr < tb);
ignore if: (v 6∈ grp \ Csid ,grp) ∨ (sessid ,grp 6∈ {downflow, confirm});
Csid,grp ← Csid ,grp ∪ {v};
if (Csid ,grp = grp)∧(ses sid ,grp = confirm) then # All confirm received . . .

sessid ,grp ← finished; # . . . so we are done: Give key to user . . .
output: ingdhM,u ! (getKey, sid , grp, keysid ,grp), ingdhM,u

⊳! (1);
input: outgdhM,u? (getKeyR, key);
keysid ,grp ← key ;
output: insim,u ! (finish, sid , grp, keysid ,grp), insim,u

⊳! (1);
keysid ,grp ← undef; # . . . and delete it locally

end if

end transition

transition corOutsim,u? (state, stateTH) # We get corrupted

enabled if: (ct = adaptive ∧ (stateu 6= corrupted) ∧ stateu 6= corrupted)
output: ingdhM,u ! (corrupt, stateTH), ingdhM,u

⊳! (1);
input: outgdhM,u? (corruptR);
stateu ← corrupted;
output: corOutu ! (state, encode state()), corOutu

⊳! (1);

end transition

function : encode state()

for all (keysid ,grp :: keysid ,grp 6= undef) do # Perform delayed key com-
putation

output: ingdhM,u ! (getKey, sid , grp, keysid ,grp), ingdhM,u
⊳! (1);

input: outgdhM,u? (getKeyR, key);
keysid ,grp ← key ;

198 Detailed Specification of Models and Protocols

end for
for all (xsid ,grp :: xsid ,grp = exists) do # Get real exponents

output: ingdhM,u ! (getSecret, sid , grp), ingdhM,u
⊳! (1);

input: outgdhM,u? (getSecretR, secret);
xsid ,grp ← secret ;

end for
return:((G, g, h), {(v, statev) | v∈M}, {(sid , grp, sessid ,grp, Csid ,grp,

xsid ,grp, keysid ,grp) | sid ∈ SID ∧ grp ⊆M∧ sessid ,grp 6= undef});

end function

transition port? (any msg) # Transparent mode

enabled if: (stateu = corrupted) ∧ (port ∈ {outsim,u?} ∪ {autv ,u? | v ∈
M∪ {G}});
output: corOutu ! (port , any msg), corOutu

⊳! (1);

end transition

transition corInu? (port , any msg) # Transparent mode

enabled if: (stateu = corrupted)
ignore if: (port 6∈ {outu !, outu

⊳!} ∪ {autu,v !|v ∈M∪ {G}});
if (port = outu !) then

port ←insim,u !;# Rename port to reflect name change in simulator
else if (port = outu

⊳!) then
port ←insim,u

⊳!;# Rename port to reflect name change in simulator
end if
output: port (any msg);

end transition

Machine GDH Mux′

transition ingdhM,G? (param)

output: ingdh! (init), ingdh
⊳! (1);

input: outgdh? (initR, G, g, h);
output: outgdhM,G! (paramR, G, g, h), outgdhM,G

⊳! (1);

end transition

transition ingdhM,u? (exp, sid , grp, γ)

require: (u ∈ grp) ∧ ((isid ,grp = undef)
∨ ((∃v ∈ grp : sesv,sid ,grp =corrupted) ∧ (keysid ,grp = undef))
∨ ((∀v ∈ grp : sesv,sid ,grp 6=corrupted) ∧ (∃β : (β, γ)∈view sid ,grp ∧
bit(β, idx(grp, u)) = 0 ∧ setbit(β, idx(grp, u)) 6= 1|grp|)));
#
#
#

A legitimate caller and either session is completely undefined or ses-
sion is corrupted but key is not yet divulged or session is uncorrupted
and query is for one of “our” partial keys.

199

if (isid ,grp = undef) then # New session
output: ingdh! (getView, |grp|), ingdh

⊳! (1);
input: outgdh? (getViewR, i, view);
isid ,grp ← i; view sid ,grp ← view
for all (v :: corr v = true) do sesv ,sid ,grp ← corrupted; end for

end if
if (∀v ∈ grp : sesv,sid ,grp 6= corrupted) then # Session uncorrupted

β′←setbit(β, idx(grp, u)) :: (β, γ)∈view sid ,grp;# Index of exponentiation
output: outgdhM,u ! (expR, γ′ :: (β′, γ′) ∈ view sid ,grp), outgdhM,u

⊳! (1);
else # Group contains a corrupted participant

if (secrets sid ,grp = undef) then # Secrets not yet known
output: ingdh! (getSecret, isid ,grp), ingdh

⊳! (1);
input: outgdh? (getSecretR, secrets);
secrets sid ,grp ← secrets ;

end if
output: outgdhM,u ! (expR, γsecretssid,grp,idx(grp,u)); outgdhM,u

⊳! (1);
end if

end transition

transition ingdhM,u? (getKey, sid , grp, γ)

require: (u ∈ grp) ∧ (isid ,grp 6= undef) ∧ (sesu,sid ,grp 6=finished) ∧
(((∃β : (β, γ)∈view sid ,grp) ∧ (setbit(β, idx(grp, u)) = 1|grp|)) ∨
((keysid ,grp = undef) ∧ (∃v ∈ grp : sesv,sid ,grp =corrupted)));

#
#
#

A legitimate caller of an initialized but unfinished session either ask-
ing for a correct key or being corrupted without somebody having
asked for the ideal key before

if keysid ,grp 6= undef then # (Ideal) key already defined. . .
. . . so just return this key
sesu,sid ,grp ← finished;
output: outgdhM,u ! (getKeyR, keysid ,grp), outgdhM,u

⊳! (1);
else # (Ideal) key does not yet exist and . . .

if (∀v ∈ grp : sesv,sid ,grp 6= corrupted) then # . . . uncorrupted session
keysid ,grp ← ideal;
sesu,sid,grp ← finished; # Mark only uncorrupted sessions as finished!
output: outgdhM,u ! (getKeyR, keysid ,grp), outgdhM,u

⊳! (1);
else # Group contains corrupted participants and (ideal) key undefined

if (secretssid ,grp = undef) then # Secrets not yet known
output: ingdh! (getSecret, isid ,grp), ingdh

⊳! (1);
input: outgdh? (getSecretR, secrets);
secrets sid ,grp ← secrets ;

end if
output: outgdhM,u ! (getKeyR, h(γsecretssid,grp,idx(grp,u))), outgdhM,u

⊳! (1);
end if

end if

200 Detailed Specification of Models and Protocols

end transition

transition ingdhM,u? (corrupt, stateTH)

for all (sid ′, grp ′, sesu,sid ′,grp′ , keyu,sid ′,grp′ , prevu,sid ′,grp′) ∈ stateTH do
if (keyu,sid ′,grp′ 6= undef) then

keysid ′,grp′ ←keyu,sid ′,grp′ ;
end if

end for
corru ← true;
for all (sid , grp :: (u ∈ grp) ∧ (isid ,grp 6= undef) ∧ (sesu,sid ,grp 6= finished))
do

sesu,sid,grp ← corrupted; # Mark only locally unfinished sessions
end for
output: outgdhM,u ! (corruptR), outgdhM,u

⊳! (1);

end transition

transition ingdhM,u? (getSecret, sid , grp)

require: (u ∈ grp) ∧ (isid ,grp 6= undef) ∧ (sesu,sid ,grp = corrupted) ∧
(keysid ,grp = undef);
#
#

A legitimate caller of a started session and we are corrupted but the
key has not been exposed

if (secrets sid ,grp = undef) then # Secrets not yet known
output: ingdh! (getSecret, isid ,grp), ingdh

⊳! (1);
input: outgdh? (getSecretR, secrets);
secretssid ,grp ← secrets ;

end if
output: outgdhM,u ! (getSecretR, secrets sid ,grp,idx(grp,u)), outgdhM,u

⊳! (1);

end transition

Machine GDH
(b=1)
n,mxkey

See page 189 for the definition of the machine.
2

	Introduction and Overview
	Outline
	Results

	Dimensions of Key Agreement
	Key Establishment in the Two-Party Case
	Service and Security Properties
	Adversary Model
	Types

	Key Establishment for Groups
	Basic Service and Additional Security Properties
	Types
	Fault-Tolerance
	Management of Groups

	Handling the Dynamics of Groups
	Initial Key Agreement (IKA)
	Auxiliary Key Agreement (AKA) Operations

	Measures

	Exploring the Mathematical Foundations
	Terminology
	General Notational Conventions
	Asymptotics
	Computational Model
	Indistinguishability
	Algebraic Structures
	Problems
	Samplers

	Classifying Discrete Log-Based Assumptions
	Defining Assumptions
	Granularity
	Decisional Generalized Diffie-Hellman
	Key Derivation

	CLIQUES
	Generic n-Party Diffie-Hellman Key Agreement
	CLIQUES: Initial Key Agreement
	IKA.1
	IKA.2

	CLIQUES: Auxiliary Key Agreement
	Member Addition
	Mass Join
	Group Fusion
	Member Exclusion
	Subgroup Exclusion
	Key Refresh
	Security Considerations for AKA Operations

	Related Work
	Contributory Key Agreement
	Key Transport
	Other

	Summary

	Formal Model and Proofs
	Basic Definitions and Notation
	System Model and Simulatability
	Standard Cryptographic Systems
	Notation

	Ideal System for Group Key Establishment
	Real System for Group Key Establishment
	Security of Real System
	Interactive Generalized Diffie-Hellman Problem
	Real System Rewritten with Interactive Diffie-Hellman Machine
	Replacing GDHn,mxkey(0) by GDHn,mxkey(1)
	Security with Respect to the Ideal System

	Conclusion and Outlook
	Bibliography
	Index
	Deriving Formal Assumptions from the Parameters
	Detailed Specification of Models and Protocols
	Scheme 5.1 Sysgke,idealn,tb,ct
	Scheme 5.2 Sysgke,ika1n,tb,ct
	Scheme 5.4 Sysgke,ika1,srn,tb,ct
	Scheme 5.4' Sysgke,ika1,sin,tb,ct
	Scheme 5.5 Sysgke,ika1,simuln,tb,ct

