52,847 research outputs found

    Type-Directed Program Transformations for the Working Functional Programmer

    Get PDF
    We present preliminary research on Deuce+, a set of tools integrating plain text editing with structural manipulation that brings the power of expressive and extensible type-directed program transformations to everyday, working programmers without a background in computer science or mathematical theory. Deuce+ comprises three components: (i) a novel set of type-directed program transformations, (ii) support for syntax constraints for specifying "code style sheets" as a means of flexibly ensuring the consistency of both the concrete and abstract syntax of the output of program transformations, and (iii) a domain-specific language for specifying program transformations that can operate at a high level on the abstract (and/or concrete) syntax tree of a program and interface with syntax constraints to expose end-user options and alleviate tedious and potentially mutually inconsistent style choices. Currently, Deuce+ is in the design phase of development, and discovering the right usability choices for the system is of the highest priority

    Towards an Expressive and Scalable Framework for expressing Join Point Models

    Get PDF
    Join point models are one of the key features in aspectoriented programming languages and tools. They provide\ud software engineers means to pinpoint the exact locations in programs (join points) to weave in advices. Our experience in modularizing concerns in a large embedded system showed that existing join point models and their underlying program representations are not expressive enough. This prevents the selection of some join points of our interest. In this paper, we motivate the need for more fine-grained join point models within more expressive source code representations. We propose a new program representation called a program graph, over which more fine-grained join point models can be defined. In addition, we present a simple language to manipulate program graphs to perform source code transformations. This language thus can be used for specifying complex weaving algorithms over program graphs

    Generating attribute grammar-based bidirectional transformations from rewrite rules

    Get PDF
    Higher order attribute grammars provide a convenient means for specifying uni-directional transformations, but they provide no direct support for bidirectional transformations. In this paper we show how rewrite rules (with non-linear right hand sides) that specify a forward/get transformation can be inverted to specify a partial backward/put transformation. These inverted rewrite rules can then be extended with additional rules based on characteristics of the source language grammar and forward transformations to create, under certain circumstances, a total backward transformation. Finally, these rules are used to generate attribute grammar specifications implementing both transformations.This work is partly funded by the following projects: European Regional Development Fund (ERDF) through the program COMPETE, project reference FCOMP-01-0124-FEDER-020532, by the North Portugal Regional Operational Programme (ON.2 - O Novo Norte); under the National Strategic Reference Framework (NSRF), through the ERDF, project reference RL3 SENSING NORTE-07-0124-FEDER-000058; by the Portuguese Government through FCT (Foundation for Science and Technology); by the U.S. National Science Foundation (NSF) award No. 0905581 and 1047961; and by the FLAD/NSF program Portugal-U.S. Research Networks 2011

    Specifying and Executing Optimizations for Parallel Programs

    Full text link
    Compiler optimizations, usually expressed as rewrites on program graphs, are a core part of all modern compilers. However, even production compilers have bugs, and these bugs are difficult to detect and resolve. The problem only becomes more complex when compiling parallel programs; from the choice of graph representation to the possibility of race conditions, optimization designers have a range of factors to consider that do not appear when dealing with single-threaded programs. In this paper we present PTRANS, a domain-specific language for formal specification of compiler transformations, and describe its executable semantics. The fundamental approach of PTRANS is to describe program transformations as rewrites on control flow graphs with temporal logic side conditions. The syntax of PTRANS allows cleaner, more comprehensible specification of program optimizations; its executable semantics allows these specifications to act as prototypes for the optimizations themselves, so that candidate optimizations can be tested and refined before going on to include them in a compiler. We demonstrate the use of PTRANS to state, test, and refine the specification of a redundant store elimination optimization on parallel programs.Comment: In Proceedings GRAPHITE 2014, arXiv:1407.767

    A domain-specific aspect language for transforming MATLAB programs

    Get PDF
    Aspect-oriented programming provides powerful ways to augment programs with information out of the scope of the base language while avoiding harming code readability and thus portability. MATLAB is a popular modeling/programming language that will strongly benefit of aspect-oriented programming features. For instance, MATLAB programmers could use aspects to provide information such as restrictions on allowed data types and/or values, monitoring specific aspects of the execution such as the effective dataset sizes or if a given variable ever assumes a specific value, without ā€œpollutingā€ the code with ā€œcheck codeā€. This paper describes the main concepts of a domain-specific aspect language (DSAL) for specifying transformations of MATLAB programs in view of supporting optimizations by facilitating the experimentation of alternative implementations. This DSAL specifies aspect modules structured in three sections: intersections equivalent to AspectJ poincuts, actions equivalent to AspectJ advice, and conditions that control triggering of actions. Support for aspect composition strategies and aspect parameterization of tokens from the base program are also supported. We believe the described features complement and enhance MATLAB programming in substantial and valuable ways

    EAA483 - (BM) PENGURUSAN BINAAN. NOVEMBER 2005

    Get PDF
    pp16Reasoning about program control-flow paths is an important functionality of a number of recent program matching languages and associated searching and transformation tools. Temporal logic provides a well-defined means of expressing properties of control-flow paths in programs, and indeed an extension of the temporal logic CTL has been applied to the problem of specifying and verifying the transformations commonly performed by optimizing compilers. Nevertheless, in developing the Coccinelle program transformation tool for performing Linux collateral evolutions in systems code, we have found that existing variants of CTL do not adequately support rules that transform subterms other than the ones matching an entire formula. Being able to transform any of the subterms of a matched term seems essential in the domain targeted by Coccinelle. In this paper, we propose an extension to CTL named CTL-VW (CTL with variables and witnesses) that is a suitable basis for the semantics and implementation of the Coccinelle's program matching language. Our extension to CTL includes existential quantification over program fragments, which allows metavariables in the program matching language to range over different values within different control-flow paths, and a notion of witnesses that record such existential bindings for use in the subsequent program transformation process. We formalize CTL-VW and describe its use in the context of Coccinelle. We then assess the performance of the approach in practice, using a transformation rule that fixes several reference count bugs in Linux cod

    Program transformations using temporal logic side conditions

    Get PDF
    This paper describes an approach to program optimisation based on transformations, where temporal logic is used to specify side conditions, and strategies are created which expand the repertoire of transformations and provide a suitable level of abstraction. We demonstrate the power of this approach by developing a set of optimisations using our transformation language and showing how the transformations can be converted into a form which makes it easier to apply them, while maintaining trust in the resulting optimising steps. The approach is illustrated through a transformational case study where we apply several optimisations to a small program

    Specification and Construction of Control Flow Semantics

    Get PDF
    In this paper we propose a visual language CFSL for specifying control flow semantics of programming languages. We also present a translation from CFSL to graph production systems (GPS) for flow graph construction; that is, any CFSL specification, say for a language L, gives rise to a GPS that constructs from any L-program (represented as an abstract syntax graph) the corresponding flow graph. The specification language is rich enough to capture complex language constructs, including all of Java

    Graph Algorithm Animation with Grrr

    Get PDF
    We discuss geometric positioning, highlighting of visited nodes and user defined highlighting that form the algorithm animation facilities in the Grrr graph rewriting programming language. The main purpose of animation was initially for the debugging and profiling of Grrr code, but recently it has been extended for the purpose of teaching algorithms to undergraduate students. The animation is restricted to graph based algorithms such as graph drawing, list manipulation or more traditional graph theory. The visual nature of the Grrr system allows much animation to be gained for free, with no extra user effort beyond the coding of the algorithm, but we also discuss user defined animations, where custom algorithm visualisations can be explicitly defined for teaching and demonstration purposes
    • ā€¦
    corecore