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ABSTRACT 

Aspect-oriented programming provides powerful ways to augment 

programs with information out of the scope of the base language 

while avoiding harming code readability and thus portability. 

MATLAB is a popular modeling/programming language that will 

strongly benefit of aspect-oriented programming features. For 

instance, MATLAB programmers could use aspects to provide 

information such as restrictions on allowed data types and/or val-

ues, monitoring specific aspects of the execution such as the effec-

tive dataset sizes or if a given variable ever assumes a specific 

value, without “polluting” the code with “check code”. This paper 

describes the main concepts of a domain-specific aspect language 

(DSAL) for specifying transformations of MATLAB programs in 

view of supporting optimizations by facilitating the experimenta-

tion of alternative implementations. This DSAL specifies aspect 

modules structured in three sections: intersections equivalent to 

AspectJ poincuts, actions equivalent to AspectJ advice, and con-

ditions that control triggering of actions. Support for aspect com-

position strategies and aspect parameterization of tokens from the 

base program are also supported. We believe the described fea-

tures complement and enhance MATLAB programming in sub-

stantial and valuable ways. 
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1. INTRODUCTION 

MATLAB [1] is an interpreted, imperative programming language 

mainly based on matrix-shaped double precision data types and 

operations on them. It is widely used in scientific computing, 

control systems, signal processing, image processing, system en-

gineering and simulation. MATLAB relies heavily on matrix data 

types and provides some base parametric primitive data types such 

as integer and fixed-point variables. However, the flexibility of its 

interpretative nature also hinders performance, forcing program-

mers to develop reference versions of the program functionality in 

languages such as C/C++, especially when targeting embedded 

systems. When doing so, programmers effectively freeze impor-

tant decisions relating to specific data types and program structure 

thereby forsaking most of MATLAB’s flexibility. These unwar-

ranted specializations are exacerbated by changing program re-

quirements (e.g., power vs. performance) or target architecture 

features (e.g., CPU vs. GPU). 

Available MATLAB features and packages help programmers to 

focus on problem solving and allow high expressiveness when 

dealing with matrix computations, thus contributing to enhanced 

productivity. However, when it comes to evaluate specific features 

such as exploiting non-uniform fixed-point representations, moni-

toring certain variables during a timing window, or to include 

handlers to watch specific behaviors, the programmer is over-

whelmed by cumbersome, error-prone and tedious tasks. Each 

time these kinds of features are necessary, invasive changes on the 

original code are required, as well as the insertion of new code 

related to non-core concerns. This problem is felt in other imple-

mentation issues as well, since MATLAB can be regarded as a 

specification rather than an implementation language. 

In previous work [2], we proposed aspect-oriented features to 

MATLAB to support monitoring of variable values, testing the 

use of alternative implementations, handling of specific condi-

tions and specifying data types. Our current efforts focus on aug-

menting the MATLAB programming methodology by using a 

DSAL with more powerful aspect-oriented concepts. Those con-

cepts will allow the exploration of specific features within the 

system’s design and implementation space, debugging and moni-

toring, and specification of programmers’s knowledge about an 

algorithm not directly captured in the MATLAB program struc-

ture. In our approach, a single version of the specification can be 

used throughout the entire development cycle rather than main-

taining multiple versions, as is presently the case. We believe this 

separation helps the development, simulation, exploration and 

implementation phases. 

In this paper we address some of the issues resulting from the 

inflexibility of existing programming languages, using an aspect-

oriented approach. We propose aspect modules expressed in a 

domain-specific language based on the key concepts of joinpoint 

selection (select) composition (apply) and conditional binding 
* This work has been partially supported by FCT (Portuguese Science 

Foundation) under grant (POCTI, PTDC/EIA/70271/2006). 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55634212?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


(when), through which programmers providing to a compiler/run-

time system additional knowledge about program facets that are 

otherwise hard or impossible to derive from the original program. 

A simple use case of the aspects supported relates to variable 

shapes and base types, which can be specified through aspects for 

specific points of the program and/or depending on specific varia-

ble values or execution points. The approach also allows the spe-

cification of source-level program transformations such as loop 

unrolling or function inlining applied on specific input values or 

sizes of variables. We also propose an abstract strategy mechan-

ism that enables programmers to explore the optimization space 

by applying a series of program transformations subject to values 

resulting from the specific aspect execution. For instance, one can 

derive a simple strategy that will transform a given section of the 

code only when the shape of an input variable has a specific value 

or the size of one of its dimension exceeds a given value. 

The original base program is free of language enhancements and 

sources remain legal MATLAB. The proposed DSAL enables 

programmers to retain the obvious advantages of a single source 

program representation while allowing the implementations to 

explore a wide range of specific solutions at reduced program-

ming and maintenance costs. 

The rest of the paper is organized as follows. Section 2 describes 

the main concepts and language features of our approach. Section 

3 briefly discusses implementation issues. Section 4 compares our 

approach to related work. Finally, we conclude in section 5. 

2. ASPECT CONCEPTS AND DESIGN 

Figure 1(a) illustrates the structure of an aspect module and its 

code sections, as the main component of the DSAL, and Figure 

1(b) shows an example of an aspect. Each aspect module can have 

several select-apply-when sections – all are considered when ex-

ecuting that aspect. Aspects may have input arguments and return 

output information. Supported inputs and outputs include parame-

ters to specialize an aspect, clauses to constrain the scope of an 

aspect intersection to a set of intersections previously specified by 

another aspect, and variables. The aspect programmer can specify 

the order with which aspects are to execute. Different sequences 

can be structured as strategies. 

aspect <name> 
 

   (input: ... 

   output: ...)? 
 

   (select: ... end 

   apply: ... end 

   (when: ... end)?)+ 
 

end <name> 

aspect warning_too_big 
 

   select:  

      all reads <var a1> in {sum, A} 
 

   apply:  

 insert { if <a1.name> >= 10000 warning 

('<a1.name> too big! %f', <a1.name>); 

end }:: execute before 
 

end warning_too_big 

(a) the structure of an 

aspect module. 
(b) example of an aspect module. 

Figure 1. Aspect module, the main component of the language. 

Figure 2(b) shows the resulting code of applying the aspect in 

Figure 1(b) to the MATLAB code in Figure 2(a). A more generic 

aspect module is illustrated in Figure 3 and gives the same result 

as the aspect in Figure 1(b), if applied as warn-

ing_too_big({sum,A}, 10000); to the MATLAB code in Figure 

2(a). 

We now describe our approach concepts, which includes joinpoint 

selections, advice-like actions, conditions, and strategies. 

... 

for j = 1:1:N 

   sum = sum +  

               A(j) *  

               B(j+N);   

end 

outa(i) = sum; 

… 

… for j = 1:1:N 

   if sum>=10000 warning ('sum too big! %f',sum); 

end 

   if A(j)>=10000 warning ('A(j) too big! %f',A(j)); 

end 

   sum = sum + A(j) * B(j+N);  

end 

if sum>=10000 warning ('sum too big! %f',sum); 

end 

outa(i) = sum; … 

(a) piece of 

MATLAB code. 

(b) MATLAB code with logging code 

(underlined and in italic). 

Figure 2. Code inserted for logging if certain variables exceed 

a value. 

aspect warning_too_big 

    input: <var *>, <const c1>  

    select: 

         all reads <var a1> in {<var *>} 

    apply: 

insert { if <a1.name> >= <c1.value> warning ('<a1.name> too big! 

%f', <a1.name>); end }:: execute before 

end warning_too_big 

Figure 3. A parameterized aspect component. 

2.1 The Joinpoint Model 
Our focus is on maximizing configurability, which takes prece-

dence over long-term maintainability. Thus, the proposed join-

point model covers virtually any point in the code of a program. 

Unlike in many AOP approaches including AspectJ [3], joinpoints 

are not restricted to method invocations, object instantiations, and 

variable accesses. Joinpoints can be identified by a name related 

to an identifier (of a variable or function), a broader characteristic 

(e.g., all variables, all reads of certain variables, all invocations 

of a function), or by an intersection pattern. Figure 1(b) illustrates 

an aspect component that intersects MATLAB code in all the read 

operations of variables sum and A. Figure 3 illustrates an aspect 

with the same functionality but able to receive a set of variables 

for intersection. 

In addition, one can use annotation-like tags embedded in 

MATLAB comments to specify joinpoints. This approach uses the 

convention that such tags must start with ‘%@’, e.g., %@here1, 

%@loop1. The keyword “%” is the beginning of a comment line 

in MATLAB and consequently the resulting annotated MATLAB 

code remains legal MATLAB. 

Intersections include a scheme to define intersection patterns by 

allowing lexical matching and exact/approximate syntactic match-

ing. Figure 4 shows an example of a pattern matching specifica-

tion of a corresponding intersection.  

2.2 Actions as Advice 
Actions equivalent to AspectJ advice are associated with one or 

more joinpoints and can be of three usual kinds with respect to the 

action: insert, replace, and remove. Regarding the position at a 

particular joinpoint, the action is activated (i.e., if enabled by its 

trigger, the corresponding action is executed). We support the 

three usual types: “around” (over a joinpoint, i.e., the action rep-

laces the code associated to that joinpoint), “before” (action is 

executed before the code in that joinpoint), and “after” (action is 

executed after the code in that joinpoint). Recall that this join-



point can be either a high-level construct or a single occurrence of 

a variable identifier. 

... 

for i=1:1:100 

   A(i) = B(i) + 1; 

end 

... 

select: {  

 for <var a1> = 1:1: <const integer c1>  

  <body> 

    end 

} :: position innermost 

apply: insert { 

 for <a1.name> = 1:2:<c1.value> 

  <body> 

  <body(replace <a1.name> 

   with <a1.name>.”+1”)> 

 end } :: execute around 

when: static { 

 if <c1.value> % 2  == 0 } 

(a) MATLAB base code. 

... 

for i=1:2:100 

 A(i) = B(i) + 1; 

 A(i+1) = B(i+1) + 1; 

end 

... 

(c) resulting code after 

weaving base and aspect 

(b) aspect module with intersection 

pattern. 

Figure 4. Example of an intersection mechanism, using pattern 

matching, and an action controlled by a static condition. 

2.3 Triggering Conditions 
Conditions are enablers/disablers of the execution of actions. 

Actions without conditions are always executed. Figure 4 and 

Figure 5 present examples of static and dynamic conditions, re-

spectively. In each case, the condition evaluates if the upper 

bound of the iteration range is a multiple of 2. In the static condi-

tion, the action (i.e., code transformation) is executed only if this 

condition evaluates to true. The dynamic condition instructs the 

weaver to include the original intersected code in the output code 

and the modified code according to the action, with one or the 

other being selected depending on the evaluation of the condition. 

when: 

    dynamic { 

        if <a2.name> % 

        2  == 0 

} 

 

... if N % 2 == 0 

  for i=1:2:N 

    A(i) = B(i) + 1; 

    A(i+1) = B(i+1) + 1; 

  end 

else % if pattern is not matched 

  for i=1:1:N 

     A(i) = B(i) + 1; 

  end 

end ... 

(a) dynamic condition. (b) example of code after weaving. 

Figure 5. A dynamic condition and the result (considering the 

MATLAB code of Figure 4(a)). 

2.4 Aspect Strategies 
As aspect components are declarative in nature, we allow pro-

grammers to specify a specific sequence for the application of 

aspects through a strategy. For example, the aspect strategy “A: 

aspect1 → aspect2 → aspect3” (Figure 6(a)) means that the 

weaver must first execute aspect1, then aspect2, and finally as-

pect3. Each aspect from the sequence may modify code and new 

modifications may follow previous modifications. Although find-

ing the appropriate and correct strategy is an interesting research 

topic, in this work we focus on the programming support for as-

pect strategies. 

We use an imperative-like style for specifying aspect strategies. 

Mechanisms are provided to perform typical control flow. This 

strategic programming must deal with the following issues: 

� recursive application of an aspect while a given condition 

holds (e.g., an aspect to unroll loops (based on a pattern) can 

be invoked recursively in the nested loop structure until no 

further modification occurs), 

� execution of different sequences in paths enabled by condi-

tions,  

� use of loops to repeat sequences of aspects, and 

� passing data between aspects. 

Aspect strategies define possible flows of aspects and are defined 

in aspect management units (see examples in Figure 6). For each 

call of an aspect, information can be returned to the aspect man-

agement unit. This returned information may consist of a set of 

aspect attributes for each intersection of the aspect in a given call. 

apply: A 

strategy A 

 aspect1; 

 aspect2; 

 aspect3; 

end A 

apply: B 

strategy B 

 do 

  a1=aspect1; 

 while(a1.modified); 

end B 

(a) strategy for a se-

quence of aspects. 

(b) an aspect repeated while a condition 

holds 

Figure 6. Examples of aspect strategies. 

The scope for intersection of an aspect can be a set of regions of 

code given by the intersection of a previous aspect. This is speci-

fied by inputting to an aspect the intersection region as occurred 

in a previous aspect, as illustrated in the following example:

 a1=aspect1 → aspect2(a1.intersection) 

The two examples from Figure 6 illustrate strategies used by the 

aspect management unit. Example (a) illustrates an aspect strategy 

for defining a sequence of 3 aspects. Example (2) illustrates an 

aspect strategy where an aspect is repeated while a certain condi-

tion holds. 

2.5 Reference Variables 
The intersection subsection (select) of aspect modules can define 

variables to be used in the other two sections (apply and when). 

With this, base code can be modified/specialized assigning differ-

ent values to variables present in the code, e.g, a segment of code 

<body> can use a variable defined as <var> outside the code in 

the <body> and the reference <var> can be used to modify the 

name of the variable referred by <var>, or to substitute the name 

of the variable referred by <var> with the same name concate-

nated to “+1” as illustrated in Figure 4. These variables have 

attributes that can be used in the action and condition sections of 

the aspects. Attributes are identified by the name of the variable 

followed by ‘.’ and the attribute name (e.g., “a.name” for the vari-

able <var a>). 

One important feature of these variables is that they can be re-

ferred in actions that can modify other inner variables. The code 

insert{p1(replace <c1.value> with “100”)} in which “p1” identi-

fies a code pattern is an example. In this case, code related to 

pattern “p1” is inserted in joinpoints specified by the select sec-

tion of the aspect, and constant “c1” in the pattern is replaced by 

“100”. 

Reference variables are also a mechanism to manage differences 

in the actions performed by the same aspect module. For instance, 



they can transpose different values for the same pattern based on 

the program location where that pattern intersects. 

2.6 Generalization of Aspects 
Aspect generalization, in the sense of parameterization, is sup-

ported as in some cases one needs not repeat a specific aspect over 

and over for every “instance” of the original program where we 

would like the specific action to take effect. To address this issue, 

we include a few simple mechanisms for aspect parameterization 

and naming akin to procedure definition and arguments. For in-

stance, it is possible to indicate the application of a specific aspect 

(loopTransf(var = j; factor=3)) by invoking it in the aspect code 

or by embedding it with the annotation %@apply::loopTransf(var 

= j; factor=3). This replaces the already defined “loopTransf” 

aspect with its “factor” parameter bound to the value 3. Unless 

otherwise stated in the argument list, all other aspects of the trans-

formation remain as defined in the (possibly unique) definition of 

aspect “loopTransf”. These include the location, which is for this 

particular transformation the entire loop construct and/or variables 

to be affected. This instantiation ability also requires that the defi-

nition of the aspect exists in the aspect code accompanying the 

MATLAB code or in a separate aspect repository. 

The use of parameterized aspects and their instantiation may 

prove to be key when generating higher-level aspects, thus help-

ing to structure in a very compact and easily maintained form a 

whole range of transformations. These in turn will enable the 

definition of design-space-exploration strategies. 

As with any declarative mechanism, it is conceivable, although 

not desirable, that aspects give rise to conflicts. One example is to 

declare the type of a given variable as integer while a second as-

pect declares the range of values for the same variable to be in the 

real or floating-point domains. The compilation tool will execute 

the aspects being the final code the one after the sequence of as-

pects in the strategy. 

2.7 Inner Aspects 
Inner aspects are aspects that run for each intersection of the (out-

er) aspect that encloses them. This notion allows to test other 

intersection points that can use information defined by a specific 

intersection of the outer aspect. Figure 7 presents more elaborate 

examples based on the notion of inner aspects. These insert code 

in a function to print the number of iterations of each innermost 

loop with a pre-defined pattern. For each such loop, one needs to 

insert a statement responsible for the counting, a statement that 

initializes the counting variable to zero, and a statement that prints 

the value to the standard output. A generic and reusable way to do 

this is through inner aspects that are executed depending on the 

conditions of the enclosing aspect. 

3. IMPLEMENTATION ISSUES 

Figure 7 outlines the system implementation. Aspect modules, 

strategies, and MATLAB code are specified in separate source 

files. A front-end parses the input MATLAB code and converts 

the obtained abstract-syntax tree into a specific IR (intermediate 

representation). The tool used is TOM [4], a high-level program 

rewriting framework that can be used to manipulate/transform an 

intermediate representation of the input MATLAB program. TOM 

accepts the definition of rules and rewriting strategies [5] and 

includes a pattern matching engine. 

1. function r=f1(...) 

2. ... 

3. for j = 1:1:N1 

4.    sum = sum + A(j);   

5. end 

6. ... 

7. for j = 1:1:N2 

8.    A(j) = A(j)/sum;   

9. end 

10. … 

11. end 

(a) piece of MATLAB code. 

aspect top() 

// locate innermost loops with a given pattern 

selection: { for <var> = 1:1:<const integer c1> <body b1> end } :: 

position innermost, <b1> // use of the loop body joinpoint identified 

by b1 

action: insert { <this.name+this.id> = <this.name+this.id> + 1; } 

 :: execute before // before the loop body  

  inner aspect a1() 

 selection: {function *} // function header  

 apply: insert {<super.name+super.id> = 0;}:: execute after 

  end a1 

  inner aspect a2() 

 selection: {function ... <key k1> in {end}} :: position <k1> 

 apply: insert { 

  sprintf('loop executed %d', <super.name+ super.id>); 

 } :: execute before 

  end a2 

end top 

(b) inner aspects. 

1. function r=f1(...) 

2.   top_1 = 0; 

3.   top_2 = 1; 

4.   ... 

5.   for j = 1:1:N1 

6.      top_1 = top_1 + 1; 

7.      sum = sum + A(j);   

8.   end 

9.   ... 

10.   for j = 1:1:N2 

11.      top_2 = top_2 + 1; 

12.      A(j) = A(j)/sum;   

13.   end 

14.   … 

15.   sprintf('loop executed %d', top_1);  

16.   sprintf('loop executed %d', top_2); 

17. end 

(c) Code after weaving. 

Figure 7. The use of inner aspects. 

Tags embedded in MATLAB code to define specific joinpoints 

(e.g., %@here) are processed and embedded in the adopted IR 

and passed in this form by the MATLAB compiler front-end to 

the other tools in the compilation flow. 

Data types and shapes are made available as symbol tables to the 

tools in the compilation flow. A transformation engine plays the 

role of aspect weaver, receiving the IR as input and generating a 

modified IR that includes the features specified by the aspect 

modules. The weaver is being implemented using the paradigm of 

strategic programming as provided by TOM. It determines the 

sequences of aspects to execute based on the aspect strategies. 

Other concerns, such as monitoring and code transformations, are 

also composed with the IR of the original MATLAB program 



through the weaver, which yields a modified IR made available to 

the subsequent tools in the development process. This modified 

IR can include, e.g., representations of additional code.  

Code generators in this flow include the MATLAB and C genera-

tors. Each is important for different aspects of the approach. Gen-

eration of code also takes advantage of the TOM [4] code rewrit-

ing capabilities. Ongoing work focuses on developing an opti-

mized C generator from MATLAB descriptions. We intend the C 

generator to use certain aspects to produce more efficient code 

(e.g., with respect to memory usage or to execution time). 

Front-End 

(MATLAB to IR)

Weaver

Back-End 

(IR to MATLAB)

Back-End 

(IR to C)

MATLAB 

Program

Aspect 

Modules

Aspect 

Strategies

MATLAB 

Program
C Program

Strategies 

Management Unit 

(SMU)

IR + Data Types and Shapes

 

Figure 8. Environment under development. 

4. RELATED WORK 

In [6], Irwin et al. present AML, a system for sparse matrix com-

putation that deals with crosscutting concerns (such as execution 

time and data representation), using aspect-oriented programming 

principles [7]. AML allows the programmer to write annotations 

that represent properties of sparse matrices separately from the 

main functionality. Thus, readability and maintainability of the 

behavioral code is not (negatively) affected by non-functional 

aspects. The AML system seems to have a satisfactory result, 

since the authors report that their code in AML has similar speed 

than a standard version, yet it is smaller and less complex. They 

propose an aspect, called “data representation” that is relevant for 

our work. This aspect defines 5 axes for representing data: ele-

ment type, dimension, representation, ordering, and orientation. 

Aslam et al [8] describe AspectMatlab, a new language that ex-

tends MATLAB with aspect-oriented features. The design of As-

pectMatlab is inspired on AspectJ, adapted to the specific features 

of MATLAB. The authors focus on describing the technical issues 

arising in the context of a weakly typed language and the static 

analysis techniques used to derive information needed for com-

posing aspects on the remaining parts of the system without com-

promising performance of the generated system. The primary 

difference between AspectMatlab and the approach described here 

is that we maintain MATLAB sources separate from aspect-

specific constructs, while AspectMatlab merges them into a single 

specification. While AspectMatlab offers a tighter integration 

between the “base” code and aspects, our approach was designed 

to minimize dependencies between the MATLAB original sources 

and aspects. Keeping aspects separate from plain MATLAB code 

provides additional guarantees of such independence. Both ap-

proaches need to deal with the future evolution of the base lan-

guage, an issue that is particularly relevant in the case of proprie-

tary languages as in the case of MATLAB. Evolution issues can 

be more flexibly handled when a strict separation between a 

MATLAB base and aspects is maintained. 

Our proposal differs from these in that although type refinement 

may help compilers to produce better code, the aspects we pro-

pose are intended to help developers to model and to explore dif-

ferent implementations of a given MATLAB specification without 

the need to change the original code for each individual candidate 

optimization, thus avoiding the need to manage multiple versions 

of the base code. We also believe that most of the proposed as-

pects are unsuitable to be embedded in the original specification 

as annotations. First, that would make the code less legible and 

less maintainable. Second, this would still require multiple code 

versions when exploring different data types for a given variable. 

Third, some of the rules are intended to be applied globally, not 

just to a specific function. In our approach, explorations can be 

performed with the same specifications by employing different 

aspect rules as we use a declarative type of aspect that can be 

applied local and globally. 

5. CONCLUSION 

This paper presents an approach for specifying transformations of 

MATLAB programs in an aspect-oriented style, with a focus on 

optimization concerns. We describe a set of features for a domain-

specific language to program strategies, organized as aspect mod-

ules. From the studies conducted so far, the features proposed 

help developers to explore a number of concerns without “pollut-

ing” the original code and avoiding the need for multiple versions 

of the base program. Keeping a strict separation between 

MATLAB behavior and the new aspect-oriented features (e.g., 

data type assignments) contributes to improved maintenance, 

readability, and reuse of both base programs and aspects. 

Work in progress includes studies about additional aspect-

oriented features, development of the weaver, experiments on the 

implementation of the transformation engine, and the implementa-

tion of the main concepts in our compiler framework. 
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