
A Domain-Specific Aspect Language
for Transforming MATLAB Programs*

João M. P. Cardoso
Dep. Engenharia Informática

Faculdade de Engenharia (FEUP)
Universidade do Porto, Porto, Portugal

jmpc@acm.org

Pedro C. Diniz
Dep. Engenharia Informática

UTL/IST/INESC-ID
Lisboa, Portugal

pedro.diniz@ist.utl.pt

Miguel P. Monteiro
Dep. Informática

Universidade Nova de Lisboa
Monte de Caparica, Portugal

mmonteiro@di.fct.unl.pt

João M. Fernandes, João Saraiva
Dep. Informática / CCTC
Universidade do Minho

 Braga, Portugal
{jmf,jas}@di.uminho.pt

ABSTRACT

Aspect-oriented programming provides powerful ways to augment

programs with information out of the scope of the base language

while avoiding harming code readability and thus portability.

MATLAB is a popular modeling/programming language that will

strongly benefit of aspect-oriented programming features. For

instance, MATLAB programmers could use aspects to provide

information such as restrictions on allowed data types and/or val-

ues, monitoring specific aspects of the execution such as the effec-

tive dataset sizes or if a given variable ever assumes a specific

value, without “polluting” the code with “check code”. This paper

describes the main concepts of a domain-specific aspect language

(DSAL) for specifying transformations of MATLAB programs in

view of supporting optimizations by facilitating the experimenta-

tion of alternative implementations. This DSAL specifies aspect

modules structured in three sections: intersections equivalent to

AspectJ poincuts, actions equivalent to AspectJ advice, and con-

ditions that control triggering of actions. Support for aspect com-

position strategies and aspect parameterization of tokens from the

base program are also supported. We believe the described fea-

tures complement and enhance MATLAB programming in sub-

stantial and valuable ways.

Keywords

Aspect-Oriented Programming, Strategic Programming, Domain-

Specific Languages, MATLAB.

1. INTRODUCTION

MATLAB [1] is an interpreted, imperative programming language

mainly based on matrix-shaped double precision data types and

operations on them. It is widely used in scientific computing,

control systems, signal processing, image processing, system en-

gineering and simulation. MATLAB relies heavily on matrix data

types and provides some base parametric primitive data types such

as integer and fixed-point variables. However, the flexibility of its

interpretative nature also hinders performance, forcing program-

mers to develop reference versions of the program functionality in

languages such as C/C++, especially when targeting embedded

systems. When doing so, programmers effectively freeze impor-

tant decisions relating to specific data types and program structure

thereby forsaking most of MATLAB’s flexibility. These unwar-

ranted specializations are exacerbated by changing program re-

quirements (e.g., power vs. performance) or target architecture

features (e.g., CPU vs. GPU).

Available MATLAB features and packages help programmers to

focus on problem solving and allow high expressiveness when

dealing with matrix computations, thus contributing to enhanced

productivity. However, when it comes to evaluate specific features

such as exploiting non-uniform fixed-point representations, moni-

toring certain variables during a timing window, or to include

handlers to watch specific behaviors, the programmer is over-

whelmed by cumbersome, error-prone and tedious tasks. Each

time these kinds of features are necessary, invasive changes on the

original code are required, as well as the insertion of new code

related to non-core concerns. This problem is felt in other imple-

mentation issues as well, since MATLAB can be regarded as a

specification rather than an implementation language.

In previous work [2], we proposed aspect-oriented features to

MATLAB to support monitoring of variable values, testing the

use of alternative implementations, handling of specific condi-

tions and specifying data types. Our current efforts focus on aug-

menting the MATLAB programming methodology by using a

DSAL with more powerful aspect-oriented concepts. Those con-

cepts will allow the exploration of specific features within the

system’s design and implementation space, debugging and moni-

toring, and specification of programmers’s knowledge about an

algorithm not directly captured in the MATLAB program struc-

ture. In our approach, a single version of the specification can be

used throughout the entire development cycle rather than main-

taining multiple versions, as is presently the case. We believe this

separation helps the development, simulation, exploration and

implementation phases.

In this paper we address some of the issues resulting from the

inflexibility of existing programming languages, using an aspect-

oriented approach. We propose aspect modules expressed in a

domain-specific language based on the key concepts of joinpoint

selection (select) composition (apply) and conditional binding
* This work has been partially supported by FCT (Portuguese Science

Foundation) under grant (POCTI, PTDC/EIA/70271/2006).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55634212?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

(when), through which programmers providing to a compiler/run-

time system additional knowledge about program facets that are

otherwise hard or impossible to derive from the original program.

A simple use case of the aspects supported relates to variable

shapes and base types, which can be specified through aspects for

specific points of the program and/or depending on specific varia-

ble values or execution points. The approach also allows the spe-

cification of source-level program transformations such as loop

unrolling or function inlining applied on specific input values or

sizes of variables. We also propose an abstract strategy mechan-

ism that enables programmers to explore the optimization space

by applying a series of program transformations subject to values

resulting from the specific aspect execution. For instance, one can

derive a simple strategy that will transform a given section of the

code only when the shape of an input variable has a specific value

or the size of one of its dimension exceeds a given value.

The original base program is free of language enhancements and

sources remain legal MATLAB. The proposed DSAL enables

programmers to retain the obvious advantages of a single source

program representation while allowing the implementations to

explore a wide range of specific solutions at reduced program-

ming and maintenance costs.

The rest of the paper is organized as follows. Section 2 describes

the main concepts and language features of our approach. Section

3 briefly discusses implementation issues. Section 4 compares our

approach to related work. Finally, we conclude in section 5.

2. ASPECT CONCEPTS AND DESIGN

Figure 1(a) illustrates the structure of an aspect module and its

code sections, as the main component of the DSAL, and Figure

1(b) shows an example of an aspect. Each aspect module can have

several select-apply-when sections – all are considered when ex-

ecuting that aspect. Aspects may have input arguments and return

output information. Supported inputs and outputs include parame-

ters to specialize an aspect, clauses to constrain the scope of an

aspect intersection to a set of intersections previously specified by

another aspect, and variables. The aspect programmer can specify

the order with which aspects are to execute. Different sequences

can be structured as strategies.

aspect <name>

 (input: ...

 output: ...)?

 (select: ... end

 apply: ... end

 (when: ... end)?)+

end <name>

aspect warning_too_big

 select:

 all reads <var a1> in {sum, A}

 apply:

 insert { if <a1.name> >= 10000 warning

('<a1.name> too big! %f', <a1.name>);

end }:: execute before

end warning_too_big

(a) the structure of an

aspect module.
(b) example of an aspect module.

Figure 1. Aspect module, the main component of the language.

Figure 2(b) shows the resulting code of applying the aspect in

Figure 1(b) to the MATLAB code in Figure 2(a). A more generic

aspect module is illustrated in Figure 3 and gives the same result

as the aspect in Figure 1(b), if applied as warn-

ing_too_big({sum,A}, 10000); to the MATLAB code in Figure

2(a).

We now describe our approach concepts, which includes joinpoint

selections, advice-like actions, conditions, and strategies.

...

for j = 1:1:N

 sum = sum +

 A(j) *

 B(j+N);

end

outa(i) = sum;

…

… for j = 1:1:N

 if sum>=10000 warning ('sum too big! %f',sum);

end

 if A(j)>=10000 warning ('A(j) too big! %f',A(j));

end

 sum = sum + A(j) * B(j+N);

end

if sum>=10000 warning ('sum too big! %f',sum);

end

outa(i) = sum; …

(a) piece of

MATLAB code.

(b) MATLAB code with logging code

(underlined and in italic).

Figure 2. Code inserted for logging if certain variables exceed

a value.

aspect warning_too_big

 input: <var *>, <const c1>

 select:

 all reads <var a1> in {<var *>}

 apply:

insert { if <a1.name> >= <c1.value> warning ('<a1.name> too big!

%f', <a1.name>); end }:: execute before

end warning_too_big

Figure 3. A parameterized aspect component.

2.1 The Joinpoint Model
Our focus is on maximizing configurability, which takes prece-

dence over long-term maintainability. Thus, the proposed join-

point model covers virtually any point in the code of a program.

Unlike in many AOP approaches including AspectJ [3], joinpoints

are not restricted to method invocations, object instantiations, and

variable accesses. Joinpoints can be identified by a name related

to an identifier (of a variable or function), a broader characteristic

(e.g., all variables, all reads of certain variables, all invocations

of a function), or by an intersection pattern. Figure 1(b) illustrates

an aspect component that intersects MATLAB code in all the read

operations of variables sum and A. Figure 3 illustrates an aspect

with the same functionality but able to receive a set of variables

for intersection.

In addition, one can use annotation-like tags embedded in

MATLAB comments to specify joinpoints. This approach uses the

convention that such tags must start with ‘%@’, e.g., %@here1,

%@loop1. The keyword “%” is the beginning of a comment line

in MATLAB and consequently the resulting annotated MATLAB

code remains legal MATLAB.

Intersections include a scheme to define intersection patterns by

allowing lexical matching and exact/approximate syntactic match-

ing. Figure 4 shows an example of a pattern matching specifica-

tion of a corresponding intersection.

2.2 Actions as Advice
Actions equivalent to AspectJ advice are associated with one or

more joinpoints and can be of three usual kinds with respect to the

action: insert, replace, and remove. Regarding the position at a

particular joinpoint, the action is activated (i.e., if enabled by its

trigger, the corresponding action is executed). We support the

three usual types: “around” (over a joinpoint, i.e., the action rep-

laces the code associated to that joinpoint), “before” (action is

executed before the code in that joinpoint), and “after” (action is

executed after the code in that joinpoint). Recall that this join-

point can be either a high-level construct or a single occurrence of

a variable identifier.

...

for i=1:1:100

 A(i) = B(i) + 1;

end

...

select: {

 for <var a1> = 1:1: <const integer c1>

 <body>

 end

} :: position innermost

apply: insert {

 for <a1.name> = 1:2:<c1.value>

 <body>

 <body(replace <a1.name>

 with <a1.name>.”+1”)>

 end } :: execute around

when: static {

 if <c1.value> % 2 == 0 }

(a) MATLAB base code.

...

for i=1:2:100

 A(i) = B(i) + 1;

 A(i+1) = B(i+1) + 1;

end

...

(c) resulting code after

weaving base and aspect

(b) aspect module with intersection

pattern.

Figure 4. Example of an intersection mechanism, using pattern

matching, and an action controlled by a static condition.

2.3 Triggering Conditions
Conditions are enablers/disablers of the execution of actions.

Actions without conditions are always executed. Figure 4 and

Figure 5 present examples of static and dynamic conditions, re-

spectively. In each case, the condition evaluates if the upper

bound of the iteration range is a multiple of 2. In the static condi-

tion, the action (i.e., code transformation) is executed only if this

condition evaluates to true. The dynamic condition instructs the

weaver to include the original intersected code in the output code

and the modified code according to the action, with one or the

other being selected depending on the evaluation of the condition.

when:

 dynamic {

 if <a2.name> %

 2 == 0

}

... if N % 2 == 0

 for i=1:2:N

 A(i) = B(i) + 1;

 A(i+1) = B(i+1) + 1;

 end

else % if pattern is not matched

 for i=1:1:N

 A(i) = B(i) + 1;

 end

end ...

(a) dynamic condition. (b) example of code after weaving.

Figure 5. A dynamic condition and the result (considering the

MATLAB code of Figure 4(a)).

2.4 Aspect Strategies
As aspect components are declarative in nature, we allow pro-

grammers to specify a specific sequence for the application of

aspects through a strategy. For example, the aspect strategy “A:

aspect1 → aspect2 → aspect3” (Figure 6(a)) means that the

weaver must first execute aspect1, then aspect2, and finally as-

pect3. Each aspect from the sequence may modify code and new

modifications may follow previous modifications. Although find-

ing the appropriate and correct strategy is an interesting research

topic, in this work we focus on the programming support for as-

pect strategies.

We use an imperative-like style for specifying aspect strategies.

Mechanisms are provided to perform typical control flow. This

strategic programming must deal with the following issues:

� recursive application of an aspect while a given condition

holds (e.g., an aspect to unroll loops (based on a pattern) can

be invoked recursively in the nested loop structure until no

further modification occurs),

� execution of different sequences in paths enabled by condi-

tions,

� use of loops to repeat sequences of aspects, and

� passing data between aspects.

Aspect strategies define possible flows of aspects and are defined

in aspect management units (see examples in Figure 6). For each

call of an aspect, information can be returned to the aspect man-

agement unit. This returned information may consist of a set of

aspect attributes for each intersection of the aspect in a given call.

apply: A

strategy A

 aspect1;

 aspect2;

 aspect3;

end A

apply: B

strategy B

 do

 a1=aspect1;

 while(a1.modified);

end B

(a) strategy for a se-

quence of aspects.

(b) an aspect repeated while a condition

holds

Figure 6. Examples of aspect strategies.

The scope for intersection of an aspect can be a set of regions of

code given by the intersection of a previous aspect. This is speci-

fied by inputting to an aspect the intersection region as occurred

in a previous aspect, as illustrated in the following example:

 a1=aspect1 → aspect2(a1.intersection)

The two examples from Figure 6 illustrate strategies used by the

aspect management unit. Example (a) illustrates an aspect strategy

for defining a sequence of 3 aspects. Example (2) illustrates an

aspect strategy where an aspect is repeated while a certain condi-

tion holds.

2.5 Reference Variables
The intersection subsection (select) of aspect modules can define

variables to be used in the other two sections (apply and when).

With this, base code can be modified/specialized assigning differ-

ent values to variables present in the code, e.g, a segment of code

<body> can use a variable defined as <var> outside the code in

the <body> and the reference <var> can be used to modify the

name of the variable referred by <var>, or to substitute the name

of the variable referred by <var> with the same name concate-

nated to “+1” as illustrated in Figure 4. These variables have

attributes that can be used in the action and condition sections of

the aspects. Attributes are identified by the name of the variable

followed by ‘.’ and the attribute name (e.g., “a.name” for the vari-

able <var a>).

One important feature of these variables is that they can be re-

ferred in actions that can modify other inner variables. The code

insert{p1(replace <c1.value> with “100”)} in which “p1” identi-

fies a code pattern is an example. In this case, code related to

pattern “p1” is inserted in joinpoints specified by the select sec-

tion of the aspect, and constant “c1” in the pattern is replaced by

“100”.

Reference variables are also a mechanism to manage differences

in the actions performed by the same aspect module. For instance,

they can transpose different values for the same pattern based on

the program location where that pattern intersects.

2.6 Generalization of Aspects
Aspect generalization, in the sense of parameterization, is sup-

ported as in some cases one needs not repeat a specific aspect over

and over for every “instance” of the original program where we

would like the specific action to take effect. To address this issue,

we include a few simple mechanisms for aspect parameterization

and naming akin to procedure definition and arguments. For in-

stance, it is possible to indicate the application of a specific aspect

(loopTransf(var = j; factor=3)) by invoking it in the aspect code

or by embedding it with the annotation %@apply::loopTransf(var

= j; factor=3). This replaces the already defined “loopTransf”

aspect with its “factor” parameter bound to the value 3. Unless

otherwise stated in the argument list, all other aspects of the trans-

formation remain as defined in the (possibly unique) definition of

aspect “loopTransf”. These include the location, which is for this

particular transformation the entire loop construct and/or variables

to be affected. This instantiation ability also requires that the defi-

nition of the aspect exists in the aspect code accompanying the

MATLAB code or in a separate aspect repository.

The use of parameterized aspects and their instantiation may

prove to be key when generating higher-level aspects, thus help-

ing to structure in a very compact and easily maintained form a

whole range of transformations. These in turn will enable the

definition of design-space-exploration strategies.

As with any declarative mechanism, it is conceivable, although

not desirable, that aspects give rise to conflicts. One example is to

declare the type of a given variable as integer while a second as-

pect declares the range of values for the same variable to be in the

real or floating-point domains. The compilation tool will execute

the aspects being the final code the one after the sequence of as-

pects in the strategy.

2.7 Inner Aspects
Inner aspects are aspects that run for each intersection of the (out-

er) aspect that encloses them. This notion allows to test other

intersection points that can use information defined by a specific

intersection of the outer aspect. Figure 7 presents more elaborate

examples based on the notion of inner aspects. These insert code

in a function to print the number of iterations of each innermost

loop with a pre-defined pattern. For each such loop, one needs to

insert a statement responsible for the counting, a statement that

initializes the counting variable to zero, and a statement that prints

the value to the standard output. A generic and reusable way to do

this is through inner aspects that are executed depending on the

conditions of the enclosing aspect.

3. IMPLEMENTATION ISSUES

Figure 7 outlines the system implementation. Aspect modules,

strategies, and MATLAB code are specified in separate source

files. A front-end parses the input MATLAB code and converts

the obtained abstract-syntax tree into a specific IR (intermediate

representation). The tool used is TOM [4], a high-level program

rewriting framework that can be used to manipulate/transform an

intermediate representation of the input MATLAB program. TOM

accepts the definition of rules and rewriting strategies [5] and

includes a pattern matching engine.

1. function r=f1(...)

2. ...

3. for j = 1:1:N1

4. sum = sum + A(j);

5. end

6. ...

7. for j = 1:1:N2

8. A(j) = A(j)/sum;

9. end

10. …

11. end

(a) piece of MATLAB code.

aspect top()

// locate innermost loops with a given pattern

selection: { for <var> = 1:1:<const integer c1> <body b1> end } ::

position innermost, <b1> // use of the loop body joinpoint identified

by b1

action: insert { <this.name+this.id> = <this.name+this.id> + 1; }

 :: execute before // before the loop body

 inner aspect a1()

 selection: {function *} // function header

 apply: insert {<super.name+super.id> = 0;}:: execute after

 end a1

 inner aspect a2()

 selection: {function ... <key k1> in {end}} :: position <k1>

 apply: insert {

 sprintf('loop executed %d', <super.name+ super.id>);

 } :: execute before

 end a2

end top

(b) inner aspects.

1. function r=f1(...)

2. top_1 = 0;

3. top_2 = 1;

4. ...

5. for j = 1:1:N1

6. top_1 = top_1 + 1;

7. sum = sum + A(j);

8. end

9. ...

10. for j = 1:1:N2

11. top_2 = top_2 + 1;

12. A(j) = A(j)/sum;

13. end

14. …

15. sprintf('loop executed %d', top_1);

16. sprintf('loop executed %d', top_2);

17. end

(c) Code after weaving.

Figure 7. The use of inner aspects.

Tags embedded in MATLAB code to define specific joinpoints

(e.g., %@here) are processed and embedded in the adopted IR

and passed in this form by the MATLAB compiler front-end to

the other tools in the compilation flow.

Data types and shapes are made available as symbol tables to the

tools in the compilation flow. A transformation engine plays the

role of aspect weaver, receiving the IR as input and generating a

modified IR that includes the features specified by the aspect

modules. The weaver is being implemented using the paradigm of

strategic programming as provided by TOM. It determines the

sequences of aspects to execute based on the aspect strategies.

Other concerns, such as monitoring and code transformations, are

also composed with the IR of the original MATLAB program

through the weaver, which yields a modified IR made available to

the subsequent tools in the development process. This modified

IR can include, e.g., representations of additional code.

Code generators in this flow include the MATLAB and C genera-

tors. Each is important for different aspects of the approach. Gen-

eration of code also takes advantage of the TOM [4] code rewrit-

ing capabilities. Ongoing work focuses on developing an opti-

mized C generator from MATLAB descriptions. We intend the C

generator to use certain aspects to produce more efficient code

(e.g., with respect to memory usage or to execution time).

Front-End

(MATLAB to IR)

Weaver

Back-End

(IR to MATLAB)

Back-End

(IR to C)

MATLAB

Program

Aspect

Modules

Aspect

Strategies

MATLAB

Program
C Program

Strategies

Management Unit

(SMU)

IR + Data Types and Shapes

Figure 8. Environment under development.

4. RELATED WORK

In [6], Irwin et al. present AML, a system for sparse matrix com-

putation that deals with crosscutting concerns (such as execution

time and data representation), using aspect-oriented programming

principles [7]. AML allows the programmer to write annotations

that represent properties of sparse matrices separately from the

main functionality. Thus, readability and maintainability of the

behavioral code is not (negatively) affected by non-functional

aspects. The AML system seems to have a satisfactory result,

since the authors report that their code in AML has similar speed

than a standard version, yet it is smaller and less complex. They

propose an aspect, called “data representation” that is relevant for

our work. This aspect defines 5 axes for representing data: ele-

ment type, dimension, representation, ordering, and orientation.

Aslam et al [8] describe AspectMatlab, a new language that ex-

tends MATLAB with aspect-oriented features. The design of As-

pectMatlab is inspired on AspectJ, adapted to the specific features

of MATLAB. The authors focus on describing the technical issues

arising in the context of a weakly typed language and the static

analysis techniques used to derive information needed for com-

posing aspects on the remaining parts of the system without com-

promising performance of the generated system. The primary

difference between AspectMatlab and the approach described here

is that we maintain MATLAB sources separate from aspect-

specific constructs, while AspectMatlab merges them into a single

specification. While AspectMatlab offers a tighter integration

between the “base” code and aspects, our approach was designed

to minimize dependencies between the MATLAB original sources

and aspects. Keeping aspects separate from plain MATLAB code

provides additional guarantees of such independence. Both ap-

proaches need to deal with the future evolution of the base lan-

guage, an issue that is particularly relevant in the case of proprie-

tary languages as in the case of MATLAB. Evolution issues can

be more flexibly handled when a strict separation between a

MATLAB base and aspects is maintained.

Our proposal differs from these in that although type refinement

may help compilers to produce better code, the aspects we pro-

pose are intended to help developers to model and to explore dif-

ferent implementations of a given MATLAB specification without

the need to change the original code for each individual candidate

optimization, thus avoiding the need to manage multiple versions

of the base code. We also believe that most of the proposed as-

pects are unsuitable to be embedded in the original specification

as annotations. First, that would make the code less legible and

less maintainable. Second, this would still require multiple code

versions when exploring different data types for a given variable.

Third, some of the rules are intended to be applied globally, not

just to a specific function. In our approach, explorations can be

performed with the same specifications by employing different

aspect rules as we use a declarative type of aspect that can be

applied local and globally.

5. CONCLUSION

This paper presents an approach for specifying transformations of

MATLAB programs in an aspect-oriented style, with a focus on

optimization concerns. We describe a set of features for a domain-

specific language to program strategies, organized as aspect mod-

ules. From the studies conducted so far, the features proposed

help developers to explore a number of concerns without “pollut-

ing” the original code and avoiding the need for multiple versions

of the base program. Keeping a strict separation between

MATLAB behavior and the new aspect-oriented features (e.g.,

data type assignments) contributes to improved maintenance,

readability, and reuse of both base programs and aspects.

Work in progress includes studies about additional aspect-

oriented features, development of the weaver, experiments on the

implementation of the transformation engine, and the implementa-

tion of the main concepts in our compiler framework.

REFERENCES
[1] The Mathworks Inc., http://www.mathworks.com

[2] J. M. P. Cardoso, J.. Fernandes, and M. Monteiro, “Adding Aspect-

Oriented Features to MATLAB,” in SPLAT!2006, at AOSD, 2006.

[3] J. D. Gradecki and N. Lesiecki, Mastering AspectJ: Aspect-Oriented

Programming in Java, Wiley, 2003.

[4] P. Brauner, R. Kopetz, P.-E. Moreau and A. Reilles, “Tom: Piggy-

backing Rewriting on Java,” RTA'07, LNCS 4533, Springer,

pp. 36-47, 2007.

[5] E. Balland, P.-E. Moreau, and A. Reilles, “Rewriting Strategies in

Java,” ENTCS 219, pp. 97-111, 2008.

[6] J. Irwin, J.-M. Loingtier, J. Gilbert, G. Kiczales, J. Lamping, A.

Mendhekar and T. Shpeisman, “Aspect-Oriented Programming of

Sparse Matrix Code,” ISCOPE’97, Springer, pp. 249-256, 1997.

[7] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, Lopes, C.,

Loingtier, J.-M., Irwin, J. “Aspect Oriented Programming,”

ECOOP’97, 1997.

[8] T. Aslam, J. Doherty, A. Dubrau and L. Hendren, “AspectMatlab:

An Aspect-Oriented Scientific Programming Language,” Sable

Tech. Report No. sable-2009-03, McGill University, 2009.

