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Abstract. We discuss geometric positioning, highlighting of visited nodes and
user defined highlighting that form the algorithm animation facilities in the Grrr
graph rewriting programming language. The main purpose of animation was
initially for the debugging and profiling of Grrr code, but recently it has been
extended for the purpose of teaching algorithms to undergraduate students. The
animation is restricted to graph based algorithms such as graph drawing, list
manipulation or more traditional graph theory. The visual nature of the Grrr
system allows much animation to be gained for free, with no extra user effort
beyond the coding of the algorithm, but we also discuss user defined anima-
tions, where custom algorithm visualisations can be explicitly defined for
teaching and demonstration purposes.

1   Introduction

Grrr is a visual graph rewriting programming language [16,17]. It is general purpose,
allowing the implementation of complex graph algorithms and has a visual view of
graphs. We believe these factors make it a good system in which to code graph algo-
rithm animation. Much of the work described here was initially designed as debugging
tools for the initial Spider language and later Grrr language, but their wider applica-
bility has encouraged us to extend the ideas and develop more general animation tech-
niques.
We describe three algorithm animation techniques in this paper. The first technique is
that of user defined emphasis, which has always been in our system in a limited fash-
ion, as the programmer can use built in transformations to highlight chosen nodes and
subgraphs of the host graph. Second, tools for animation have resulted from the recent
graph drawing variation, Grrr, which allows nodes to be positioned at a geometric
point. The movement of the node on the screen can be followed for better under-
standing of the progress of the algorithm. Third, we have recently implemented the
automatic highlighting of subgraphs that have been matched in the host graph. This
means that sections of the host graph that have been visited are shown.
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The animation of node movement and the highlighting of matched subgraphs come
for ’free’, in that they can be used without any user input except specifying that anima-
tion is required. The user highlighting is for custom animation and requires a pro-
grammer to ensure that the correct section of the host graph is highlighted during the
progress of the algorithm. The node movement animation can also be used to produce
custom animation by the programmer specifying the preferred location of nodes for
best comprehension. The three techniques given here can be combined as desired.

We do not claim any originality for our animation methods, but to our knowledge
this is the first time a graph rewriting language has been associated with algorithm
animation. We believe our system is very suited to animation because of its visual
emphasis, and because the design has resulted in semantics which are useful for ani-
mation. The visual nature of the programs in Grrr means there is no ’impedance mis-
match’ that might occur when defining a textual program for visual execution.

Grrr allows the execution of rewriting to be viewed on the screen as it happens.
This step view of rewriting is an important part of the animation process as it allows
highlights and movement to be shown as the algorithm progresses. The user can also
step through a program manually, taking their own time to observe the execution.

Another feature of Grrr that helps with algorithm animation is the ability to hide
subsections of the host graph so that only the data structures that are being manipu-
lated or which are relevant to the user can be seen, and so the housekeeping under-
neath can be hidden to avoid confusion.

Algorithm animation in Grrr has two main roles: firstly, the original intended role
was to aid the debugging of programs written in Grrr, so that graph match highlighting
can indicate where the rewrites are operating, or showing node movement can indicate
the way nodes are manipulated in graph drawing. The second role is that of an educa-
tional nature to visualise algorithms in order to teach them, the standard motivation
behind algorithm animation systems.

The algorithm animation in Grrr is entirely restricted to graph highlighting and
movement, whereas many dedicated animation systems have facilities for more ab-
stract representation, using extra graphics and shading to aid visualisation [2,3,12,20].
This type of animation is not easy to define with the graph rewriting described in this
paper. However, we note that several systems allow similar types of animation to the
graph oriented approach provided in Grrr, e.g. [6,9,10,13], so we feel we are justified
in restricting our system. We must note that most animation systems are primarily
designed for teaching algorithms, but studies have thrown doubt over the usefulness of
algorithm animation as a learning tool [8,19].

2   Programming with Graph Rewrites

Grrr is a graph rewriting programming language. It computes by rewriting a host
graph according to user defined transformations. A key advantage to this approach is
the combination of computational completeness and visual view of both the graph
being rewritten and the transformations that rewrite the graph. This combination,
along with features such as serial rewriting and serial trigger initiation make Grrr a



potentially useful system for inherently visual, but complex tasks such as graph draw-
ing and algorithm animation.

Previous graph rewriting languages include GOOD [15], Progres [18], Dactl
/MONSTR [7,1] and ∆-grammar programming [11], each of which has a unique inter-
pretation of programming with graph rewrites. These graph rewriting languages vary
in several important aspects: the type of host graph that is to be rewritten may be any
graph, or it may be restricted by disallowing duplicate nodes or arcs, or indeed may
have some underlying hierarchical structure; the graph may be rewritten in a serial or
parallel manner; the transformations may be initiated in a number of ways; the trans-
formations may be applied in serial or parallel; and there are alternative ways that the
user can specify the transformations. Typically, the systems have general program-
ming features, but are aimed at specific applications.

Grrr is a development of the Spider graph rewriting programming language. Spider
is a prototype system for database programming. Modified, it forms the basis of Grrr,
a general purpose programming language, which we are using to explore the notions
of visual graph drawing. Graph drawing has been seen in graph rewriting systems
previously [4,21]. Our current project is attempting to demonstrate that programming
a wide range of graph drawing algorithms is feasible in a graph rewriting visual lan-
guage. To achieve this we are in the process of producing hierarchical, force directed
and planar graph drawing algorithms in Grrr. We note that Grrr is still under develop-
ment and future changes both to the semantics and implementation are likely.

Grrr features serial trigger initiation in a two graph rewrite specification method,
the difference between the LHS and RHS in a rewrite indicate the changes to be made
to the host graph. The rewrites are contained in transformations. When a transforma-
tion is called the LHS graphs are tested against the host graph in the top down method
until one matches, that is they are tested in order of presentation in the transformation.
We use this approach rather than alternatives such as ’best fit’ (i.e. classifying LHS by
how specific they are) because of its success in analogous textual rule based systems
such as logic and functional languages. There is also the problem of interpreting best
fit in a graph based system.

The transformations are called by trigger nodes (shown with a rectangular shape) in
the host graph, and only one trigger is initiated at a time. This is achieved by a newest
first execution order for the triggers in the graph. Only one LHS graph is matched at a
time, and the rewriting occurs in a serial manner using a deterministic subgraph
matching strategy that relies on the nodes and arcs in the graph having an internal
ordering. The serial nature of Grrr aids algorithm animation as a parallel rewriting or
trigger initiation strategy could hide that the progress of the algorithm.

The data graph (that is the part of the host graph that holds application data, usually
shown with round nodes) can be distinguished from the part of the graph that holds
associated information (that is, information derived from the data graph and informa-
tion concerning execution, usually shown with oval nodes). A node type specified in a
rewrite will only match with that node type in the host graph.

Grrr allows arbitrary graphs to rewritten. To avoid ambiguity when deleting or
adding primitives, duplicate labels which appear in the LHS or RHS must be identified
by the user. The identifier is an integer superscripted to the node label.



Current modifications to the rewriting process include attractor nodes, negatives,
once only nodes and single match rewrites. For example, Fig. 2 shows a transforma-
tion with a single match rewrite, indicated by a shaded background. The LHS of this
rewrite will match once and only once when the associated trigger node is called.
After matching, the single match rewrite will be ignored when further calls of the
particular trigger node are made.

Fig. 2 also shows the use of negative primitives in LHS graphs. Here, the second
rewrite contains a negative node and arc, indicated by the primitives having thick
outlines (not to be confused with the highlighting of nodes in the host graph). For this
LHS to match, the positive part of the graph must match, and there must be no corre-
sponding match of all the LHS including the negatives.

Fig. 1 illustrates the use of attractor nodes, with the RHS of the second rewrite
having the attractor node ’Minus’, indicated by a shaded background. Attractor nodes
pick up any dangling arcs after a rewrite has been performed. Normally such dangling
arcs are deleted from the host graph.

Not shown in the examples is the use of once only nodes in LHS graphs. Here a
node can be specified to be a once only node, and such a node will match no more
than once with each corresponding node in the host graph. This allows for simple
iteration through a graph.

To perform mathematical calculations and to express geometric operations in Grrr,
there are many built in transformations. Many of the built ins are atomic, however
others have been added for efficiency reasons.

Often the progress of Grrr programs is expressed in terms of number of steps. Each
step is an execution of a trigger node, and can be considered much like the execution
of a single instruction in a traditional textual programming language.

3   Illustrations of Use

Here we give all or part of three programs to illustrate the varied nature of the anima-
tion in Grrr. The transformations that make up the programs contain highlights in
order to distinguish between nodes with different semantic meanings, which should
not be confused with the highlights shown in the host graphs, which are purely for
animation purposes.

There are three ways of including animation in Grrr programs: by indicating via a
menu option that the matched part of the host graph should be highlighted, by indicat-
ing via a menu option that any node movement should be animated, and by adding a
built in trigger to highlight a chosen node.

The automatic highlighting of matched subgraphs is a useful tool in debugging Grrr
programs as it indicates that the desired part of the host graph has been matched by a
LHS graph. However, it can also be used for other sorts of animation by indicating
which part of the host graph has been visited as shown in the shortest path example,
Section 3.2. When nodes and arcs are highlighted, the line thickness increase and the
colour changes from black to purple. There is an element of arbitrariness to this, and
the specification of highlights can be changed.



Animation of node movement is a result of recent work in adding geometric trig-
gers to Grrr, and as with highlighting matched subgraphs it is a feature that can be
used for either debugging or within a custom animation. When producing graph
drawing algorithms, such as the force directed algorithm given in Section 3.1, it is
very useful to observe the process of the algorithm for evaluating the success of the
approach and confirming the correctness of the implementation. However, in terms of
animation, the bubble sorting example given in Section 3.3 shows how geometric
operations can be added to a purely graph theoretic algorithm in order to clarify the
approach. In terms of visualisation, nodes that are moved are shown changing position
on the screen.

The notion of adding triggers that change the appearance of nodes is entirely cus-
tom animation directed. The built in triggers include those to simply highlight the
nodes. However there are more flexible commands to change the colour of nodes, and
clear all highlights in the host graph.

3.1   Force Directed Graph Drawing

The animation of graph drawing algorithms requires no extra work by the user. The
movement of nodes from one position to another can be shown by selecting a menu
option. The fine tuning of algorithms is made easier because the immediate effect of
altering parameters, or other changes to the drawing process can be seen. Also, the
way poor drawings occur can be observed, so allowing changes to cope with situations
such as subgraphs getting in to local minima or rogue nodes being misplaced.



Fig. 1. The transformation ’TestDistance’. This brings connected nodes closer together.
The distance they are moved together is greater when the nodes start further apart. The built in
’Closer’ transformation moves both argument nodes an identical distance towards each other.
The distance is calculated from the distance they are apart (found using the ’NodeSeparation’
built in trigger) and the number of iterations that has taken place. The calculations are per-
formed by the ’Divide’ and ’Minus’ built ins. The user defined transformation ’MinDistance’
simply returns a constant number 90 in this implementation which can be used by ’Minus’ which
will in turn return a number that can then be used by ’Divide’.

As an example, we show part of a force directed graph drawing algorithm, it is dif-
ficult to show the actual animation in a research paper, but we hope that it is clear that
changing various aspects of this algorithm are quite easy, even when the algorithm has
been partially executed. The parameters for node movement can be altered both in the
transformation definition and in the host graph. The function used for deriving the
amount of node movement can also be altered from the very simple calculation given
here into a more complex formula that may have a beneficial effect on layout.



Fig. 2. The transformation ’Separate’. This finds the nodes that are closer than a set
distance from a node and then moves them apart a constant distance. ’BBox’ is a built in trans-
formation that returns the nodes within the specified rectangle, ’OverlapBox’ is also built in and
returns the rectangle containing the specified nodes (or single node as in this case). The nodes
within the rectangle are then separated with the built in ’Further’ transformation that moves both
argument nodes an identical distance from each other

The method treats arcs as springs between nodes, attracting them together, whist
unconnected nodes are repelled. The algorithm presented here first iterates through the
connected node pairs, bringing them closer, and then it iterates through all node pairs
separating the nodes which are within a set distance of each other. This process is
repeated a number of times, with the distance that the nodes are attracted reducing on
each iteration. Our version of the force directed approach is a simple variant on those
described in [5,14].

The two built in transformations that move nodes are ’Closer’ and ’Further’, which
attract and repel node pairs respectively. They are used in the two transformations
from the program, shown in Fig. 1 and Fig. 2. The start host graph is shown in Fig. 3
and the final host graph is shown in Fig. 4.



Fig. 3. At the start of execution. There will be 5 iterations of first closing the nodes
connected by arcs and then separating nodes that are too close

Fig. 4. At the end of execution

3.2   Shortest Path

This algorithm makes use of the highlighting to indicate the success of a graph search.
In this case we are finding a shortest path between two nodes in an unweighted graph,
so a simple depth first search will suffice. This is a version of an algorithm given in
[17], hence we only show the major alteration, Fig. 5 which changes the algorithm by
maintaining the structure of the graph and highlighting the path found, rather than
deleting the nodes not participating in the path. This algorithm is a good example of
using the match highlighting feature for animation purposes. Fig. 6 shows the host
graph at the start of execution. Fig. 7 shows the host graph at the end of execution.



The search method can be clearly seen when the graph is stepped through in a slow
manner, as only the matched nodes are visible, the path is added after the search has
found the ’arg2’ node.

Fig. 5. The transformation ’GetThePath’. This is called after the path has been found,
and traverses back along the search tree until the root (the ’arg1’ node) is found

Fig. 6. The host graph at the start of execution. The program is searching for a path
between the two round nodes connected to the trigger by ’arg1’ and ’arg2’ arcs. The search is
from the ’arg1’ node to the ’arg2’ node



Fig. 7. The host graph at the end of execution. The black nodes indicate the nodes vis-
ited which are not in the path, the thick lined nodes indicate the nodes in the path, and the un-
changed nodes are those that have not been visited. The algorithm finds only one shortest path
of possible candidates, hence the path given was chosen over the alternative (using the black
nodes) by the Grrr node ordering system which ensures the matching process is deterministic.
The animation uses different colours when appearing on the screen, but we are limited to a
black and white display for this paper

3.3   Bubble Sort

Here we give an example of a purely custom visualisation task. This is the sort of
algorithm animation that is a useful teaching aid. Sorting is not an ideal task to per-
form with Grrr, as the relative lack of complexity of the data structure that is manipu-
lated makes it less suited to our form of graph rewriting. The housekeeping concerned
with list iteration, for example, dealing with all cases of nodes with or without prede-
cessors or successors, means that transformations often have many rewrites, one for
each case. We show all the transformations in this program to indicate some of the
difficulties of producing this sort of custom visualisation task.

The program sorts a list represented by a set of nodes connected by arcs. Bubble
sorting performs several iterations through a list, swapping the position of neighbour-
ing list members that are in the wrong position until an iteration swaps no more mem-
bers. The algorithm animation here is that of indicating the pair of nodes that are being
tested and demonstrating swaps via the physical moving of the positions of swapped
nodes. Both node highlighting and swapping is defined explicitly in the program.

The full bubble sort program is shown in Fig. 8, Fig. 9 and Fig. 10. Some illustra-
tive stages in execution are shown in Fig. 11, Fig. 12 and Fig. 13.



Fig. 8. The transformation ’BubbleSort’. This is the top level transformation in the pro-
gram and performs the tasks of iterating through the list, calling the transformation ’Swap’,
which swaps the pairs and ’HighlightPair’ which indicates which pair of nodes are being
swapped



Fig. 9. The transformation ’Swap’. It has to deal with three cases: where is a node to
either side of the swapped pair, where there are nodes at either end, and where the pair is alone.
It calls two built in transformations: ’NodeSeparation’ which finds the distance between the
nodes, and ’Closer’ which moves each node closer to the other by that distance, so animating the
swap by node movement.



Fig. 10. The transformation ’HighlightPair’. The first rewrite clears the current highlight
and is not called again because it is once only. The second rewrite highlights the indicated two
nodes and removes the ’HighlightPair’ trigger. The final rewrite is present to deal with the case
that the chosen node does not have a following node in the list. Here the trigger is deleted with
nothing highlighted

Fig. 11. At the start of the ’BubbleSort’ program

Fig. 12. The host graph at step 76 in the rewriting process. This is the middle of the
second iteration through the list. The next few steps will exchange both the graph theoretic and
geometric positions of two highlighted nodes. The ’swapped’ node indicates that a swap has
already been performed on this iteration. The ’HighlightPairs’ trigger will be executed after the
swap and highlight the next pair to be tested

Fig. 13. The host graph after the program has finished on step 166. The list is sorted



4   Conclusions and Further Work

The animation techniques presented here are not new, however the graph rewriting
method used to create them is novel and the animation is easy to achieve, as in many
cases it requires no extra effort from the programmer. We see this as an application
area that plays on the strengths of graph rewriting programming languages, as they are
the only current systems which combine a visual view of graph data structures and
computational completeness, so potentially allowing all possible graph based algo-
rithms to be animated. Indeed, such animation is a great debugging aid when pro-
gramming with Grrr.

The algorithm animation capabilities presented here fall into two main visualisation
techniques: animating node movement, and highlighting visited or chosen subgraphs.
The methods used for producing animations can be partitioned into those that can be
used on existing algorithms, such as showing the node movement in graph drawing, or
displaying visited nodes and those which are defined by the user, such as placing
nodes for illustration and selecting specific nodes to be highlighted. The techniques
described here can be combined as wished.

There are many possible areas of future work concerned with improving the usabil-
ity of this programming language for the task of algorithm animation. The first im-
portant requirement for development of graph based algorithms is graph editing. The
current Grrr editor is proving tricky to use for the high volume graph production re-
quired for animation. Further flexibility in cutting and pasting, and general user inter-
face improvements are required.

 The definition of node movement and highlighting in transformations is currently
explicit, that is, the nodes are moved and highlighted by built in transformations. One
can envisage an implicit method for defining node movement, where a difference in
position of a node from the LHS to a RHS would mean the node was moved in the
host graph. Implicit highlighting is also possible, where a node highlight in a RHS
would be reflected by the corresponding node being highlighted in the host graph.

Node movement could be made easier by allowing a movement path to be defined
by an arc. The node might follow the bends in the arc so as to produce more sophisti-
cated user defined animation.

Because many of the built in transformations do not change the structure of the
graph, it can be difficult at times to ensure that they are called in the right order. For
example, the current position of a node should be found before that node is moved.
Hence we are considering adding some method for specifying the order of trigger
node execution in RHS graphs.
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