1,668 research outputs found

    Modeling the Impacts of Climate Change on Ecosystem Services in Boreal Forests

    Get PDF
    With the increasing effects of climate change, a rapid development of effective approaches and tools are needed to maintain forest biodiversity and ecosystem functions. The response, or lack thereof, of forest managers to climate change and its impacts on ecosystem services will have broad ramifications. Here we give an overview of approaches used to predict impacts of climate change and management scenarios for a range of ecosystem services provided by the boreal forest, including timber supply, carbon sequestration, bioenergy provision, and habitat for wildlife and biodiversity. We provide examples of research in the field and summarize the outstanding challenges

    Managing for the unexpected: Building resilient forest landscapes to cope with global change

    Get PDF
    Natural disturbances exacerbated by novel climate regimes are increasing worldwide, threatening the ability of forest ecosystems to mitigate global warming through car-bon sequestration and to provide other key ecosystem services. One way to cope with unknown disturbance events is to promote the ecological resilience of the forest by increasing both functional trait and structural diversity and by fostering functional connectivity of the landscape to ensure a rapid and efficient self- reorganization of the system. We investigated how expected and unexpected variations in climate and biotic disturbances affect ecological resilience and carbon storage in a forested region in southeastern Canada. Using a process- based forest landscape model (LANDIS-II), we simulated ecosystem responses to climate change and insect outbreaks under dif-ferent forest policy scenarios—including a novel approach based on functional diver-sification and network analysis—and tested how the potentially most damaging insect pests interact with changes in forest composition and structure due to changing cli-mate and management. We found that climate warming, lengthening the vegetation season, will increase forest productivity and carbon storage, but unexpected impacts of drought and insect outbreaks will drastically reduce such variables. Generalist, non- native insects feeding on hardwood are the most damaging biotic agents for our region, and their monitoring and early detection should be a priority for forest au-thorities. Higher forest diversity driven by climate-smart management and fostered by climate change that promotes warm-adapted species, might increase disturbance severity. However, alternative forest policy scenarios led to a higher functional and structural diversity as well as functional connectivity—and thus to higher ecological resilience—than conventional management. Our results demonstrate that adopting a landscape-scale perspective by planning interventions strategically in space and adopting a functional trait approach to diversify forests is promising for enhancing ecological resilience under unexpected global change stressors.MM received funding from the Swiss National Science Foundation (grant n.175101) and the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie framework (grant n.891671, REINFORCE project). NA was supported by a Juan de la Cierva fellowship of the Spanish Ministry of Science and Innovation (FCJ2020-046387-I). This work has also been supported by funding to NA and MM from the Canada Research Chair in Forest Resilience to Global Changes attributed to CM. MJF acknowledges the support of the Canada Research Chair in Spatial Ecology

    Effects Of Disturbance On Jack Pine- (pinus Banksiana Lamb.) Dominated Ecosystems In Northern Lower Michigan: Forest Management, Wildfires, And Climate Change

    Get PDF
    Jack pine-dominated forests in northern Lower Michigan were historically characterized by a frequent, severe fire regime that produced a patchwork of dense stands interspersed with open barrens. This structure also provided breeding habitat for Kirtland’s warblers, a migratory songbird. Fire suppression management caused forests to become older and reduced Kirtland’s warbler habitat, resulting in severe population losses. Kirtland’s warblers were designated as endangered, and subsequent habitat management has produced homogeneous forests that lack historical structural and compositional diversity. Moreover, future climate may increasingly complicate forest and fire management moving forward. In a landscape defined by disturbance, novel disturbances or changes to the established regime may cause profound change. To investigate effects of disturbance attributable to forest management we interpolated historical survey data to determine the age structure of forests prior to significant Euro-American settlement. We compared current and historical age distributions and found that Kirtland’s warbler habitat management has significantly altered the age structure of the forests, resulting in younger, more homogeneous stands. Naturally-produced structural variability has also been affected by Kirtland’s warbler management. Living forest remnants (stringers) are common following wildfires but are often harvested for timber, and their effects on post-fire plant community composition and structure have not been examined. Our field-based project found that stingers affect post-fire landscape structure, plant community composition, and sapling age distributions, and as such should be preserved or emulated in landscape management. Populated fire-prone areas must adapt wildfire management to future fire regimes considering global climate change. Jack pine barrens were historically common on the landscape but have been drastically reduced due in large part to Kirtland’s warbler habitat management. We used LANDIS-II to model fire severity and barrens distributions under various predictions of future climate. We found that climate change caused increased fire severity and number, but reduced cover of barrens. Further, our model predicted large-scale losses of currently dominant species, perhaps signaling the development of novel ecosystems under extreme climate scenarios. As a whole, these projects provide context for applying historical variability and structure to future management decisions to maintain the unique character of this highly managed landscape

    Restoration of Forested Ecosystems on the Monongahela National Forest, West Virginia

    Get PDF
    The focus of resource management on National Forests is slowly changing to restoration of ecosystems and habitats. In West Virginia, the revised Land and Resource Management Plan for the Monongahela National Forest (MNF) guides resource management on the MNF. The MNF revised Forest Plan restructured management areas and goals toward restoration of red spruce dominated forests and oak and oak-pine forests in two separate management prescriptions that cover approximately 48% of the MNF. Incorporating ecosystem restoration in forest management may be guided by goals and objectives based on known previous conditions and the range of natural variability of those conditions. The research presented here addresses: 1) the historical distribution and site-species relationships of tree species through the analysis of witness trees from the MNF, 2) stand dynamics of oak-dominated forest types in response to three disturbances, and 3) landscape patterns resulting after simulated restoration actions in high-elevation red spruce-dominated forest types.;A database of witness trees taken from land grants or deeds of what was to become the MNF was analyzed for species patterns of occurrence at the time of European settlement. Across the study area, white oak was the most frequent witness tree, followed by sugar maple, American beech, and American chestnut, however none of these were evenly distributed. Red spruce, hemlock, birch, American beech, magnolia, basswood, sugar maple, ash, northern red oak, and black cherry were all associated with higher elevations. Moderate elevations supported maple, pine, white pine, American chestnut, chestnut oak, and scarlet oak. Low elevation sites with high moisture were more likely to support black walnut, white oak, elm, and sycamore.;Three disturbance factors thought to influence the development of seedling and sapling layers of oak dominated hardwood forests were applied alone and in combination on experimental plots in a second-growth forest in eastern West Virginia. In all, eight treatments were applied: Fire, Fence, Gap, Control, Fire+Fence, Fire+Gap, Fence+Gap, and Fire+Gap+Fence. Oak seedlings were not affected by any factor other than time; oak saplings were negatively affected by fire and positively affected by fences. Red and striped maple seedlings and saplings were reduced by fire treatments however sugar maple seedlings and saplings were not. Black birch seedlings increased as fire stimulated germination of the seed bank. Creating gaps alone did not increase the seedling relative abundance or importance value of any of the species assessed here, although gaps when combined with other factors did increase black birch and yellow-poplar seedling relative abundances and sapling importance values.;An existing landscape-sale model (LANDIS-II) was used to create management scenarios that implement possible red spruce restoration actions consistent with the MNF Forest Plan. Three harvest scenarios and one succession only scenario were simulated for 100 years. Harvests for all three scenarios were patch cuts of 1 ha with partial removal of selected species and cohorts. Harvest scenarios modeled were: allowing harvest in all areas (S1), restrict harvest to areas of low to moderate probability of Virginia northern flying squirrel habitat only (S2), and allow harvest in all areas but exclude stands with 30% or greater red spruce 80 years or greater in age (S3); scenario 4 (S4) is succession only. The resulting stands were summarized by age classes and forest types used in the MNF Forest Plan and compared to age class goals. All scenarios resulted in the percentage of 1-19 year age class below the Forest Plan goal; however S3 was the closest at about 2% in the third decade. At year 30, the three harvest scenarios result in greater area in 20-39 year age class compared to succession only. Scenario 3 meets or slightly exceeds the lower limit of the MNF Forest Plan goal for this age class in years 40 through 70. For the 40-79 year age class, S1 and S3 remained well above S2 and the succession-only scenario in years 30 through 90. At the end of the model period, S1, S2, and S4 meet the MNF Forest Plan goal for this age class. During decades three through nine, S1 and S3 resulted in a consistent 40% of the area in the 80-119 year age class. All scenarios result in a landscape with much higher percentages of this age class than the MNF Forest Plan goal. For the last two decades of the model, the succession-only scenario results in greater amounts of area in the oldest age class (120 or greater years) as compared to the harvest scenarios

    La dynamique du paysage forestier boréal mixte en réponse aux feux et à l'aménagement forestier sous l'influence des changements climatiques

    Get PDF
    Le paysage forestier boréal dominé par la forêt mixte est le résultat des interactions complexes des conditions abiotiques, de la succession et des régimes de perturbations, qu’influencent les processus écologiques qui opèrent au niveau du peuplement et à l’échelle du paysage. Les changements climatiques prévus pour les prochains siècles devraient modifier les régimes de perturbations naturelles tels que les incendies de forêt, affectant le flux de bois vers les marchés de produits ligneux. C’est pour cette raison que la gestion des forêts boréales mixtes a suscité une préoccupation généralisée concernant le maintenant de sa biodiversité, sa résilience et sa capacité d’adaptation à conserver les avantages sociaux et économiques qu’elles procurent à la société. Cette préoccupation a conduit à proposer une modification de l'exploitation dite traditionnelle vers une approche d’aménagement forestier écosystémique, qui tente d'imiter les patrons de perturbations naturelles afin de conserver la forêt à l’intérieur des limites historiques de variation. En dépit de tous ces efforts, au cours des dernières décennies dans l'est du Canada, la forêt mixte est passée d'un paysage dominé par la forêt mature vers un paysage fragmenté avec une quantité croissante de peuplements à prédominance de feuillus. Toutefois, notre compréhension des variations spatiotemporelles des paysages forestiers et des caractéristiques des peuplements issus après feu et après récolte demeure insuffisante. L'objectif de cette thèse était de caractériser les changements à moyen terme des mosaïques de forêts mixtes de l'est du Canada et d'améliorer notre connaissance des relations entre ces changements et les variations attendues des feux de forêt sous l’effet des changements climatiques ainsi que du régime de perturbations anthropiques. La première étape pour atteindre cet objectif a été de comprendre la dynamique historique du paysage dans un gradient nord-sud de forêts mixtes de l’est du Canada. Pour cette raison, le chapitre 2 présente une étude historique de l’hétérogénéité du paysage forestier, mesuré en termes de composition et configuration du paysage ainsi que leur interaction avec les feux de forêt historiques dans un paysage aménagé. En utilisant les images Landsat de 1985 à 2013, la cartographie et des mesures spatiales nous avions suivi l’évolution de la composition dans le temps des forêts selon 4 classes : résineux, résineux mixtes à dominance résineuse, mixte à dominance feuillue et feuillus. Cette étude montre que la composition résineuse a dominé la mosaïque en 1985 et représentait un tiers de la superficie de l'étude. De plus, la classe résineuse a enregistré la plus forte diminution avec un taux de 1,7% par an par rapport aux autres couvertures forestières. Les mesures indiquent que les forêts résineuses matures, qui dominaient auparavant le paysage dans l'est du Canada, ont été principalement transformées par les pratiques forestières en un paysage plus hétérogène et fragmenté. Le chapitre 3 détaille le modèle de paysage forestier LANDIS-II utilisé pour évaluer les relations entre les feux de forêt et l’aménagement forestier sous scénarios de réchauffement climatique futur (RCP 2.6,RCP 4.5 et RCP 8.5), via la biomasse forestière (AGB) et la productivité primaire nette (ANPP). Les projections du modèle ont démontré que les régimes de perturbation sont les variables les plus significatives qui déterminent les variations de l'AGB et de l'ANPP. L’aménagement forestier apparait comme le facteur le plus important des variations observées dans les forêts du sud du gradient comparativement au nord, probablement parce que cette région présente des forêts plus âgées et avec une composition d’intérêt commercial pour respecter la possibilité forestière. À l’opposé, les forêts du nord du gradient présentaient un effet mixte du changement climatique et de l’aménagement forestier sur l'AGB et l'ANPP, probablement parce qu'un grand nombre de zones propices à la récolte avaient déjà été brulées, limitant ainsi la quantité du territoire disponible pour la récolte. En général, bien que l'on s'attende à une augmentation des superficies brulées en raison du changement climatique, l'intensification de l’aménagement forestier semble être le principal facteur de l'augmentation des feuillus et des peuplements mixtes et de la diminution des peuplements résineux, ainsi que de la diminution de la AGB et ANPP, principalement dans les forêts du sud. Le chapitre 4 détaille l'utilisation de LANDIS-II pour modéliser les trajectoires de succession de la gestion post-feu et post-aménagement suite aux scénarios de changement climatique. L’évolution de l’AGB post-perturbations nous a permis de constater que, contrairement aux perturbations causées par les feux, l’aménagement forestier a modifié les voies de succession conduisant à des changements de composition allant de forêts à prédominance de feuillus à une forêt mixte favorisant la prévalence d'essences de feuillus, même après 300 ans. Cette tendance est exacerbée par les scénarios de changement climatique, qui donneront un avantage aux forêts dominées par des espèces intolérantes à l'ombre, en particulier dans les écorégions où elles sont peu présentes (forêts mixtes centrales et septentrionales de la zone d’étude). De plus, ces pratiques d’aménagement conduisent à des indices de formes de forêt plus sinueuses au niveau spatial du paysage, indiquant une augmentation de la fragmentation. Les résultats obtenus mettent en évidence l'échec des pratiques d’aménagement actuelles à imiter la succession naturelle après feu et compromettent le maintien des biens et des services de ces écosystèmes. Les changements climatiques prévus pour le prochain siècle devraient modifier les régimes de perturbations naturelles (tels que les feux de forêt). En outre, il existe des activités d’aménagement telles que la récupération du bois à des fins industrielles qui perturbent les forêts pour satisfaire la demande croissante de produits ligneux. Nos résultats suggèrent que l'approvisionnement en bois à long terme serait menacé dans l'est du Canada. Par conséquent, certaines stratégies devraient être mises en oeuvre pour adapter l’aménagement des forêts aux changements climatiques attendus et à maintenir l'avenir des forêts

    A toolkit modeling approach for sustainable forest management planning: Achieving balance between science and local needs

    Get PDF
    To assist forest managers in balancing an increasing diversity of resource objectives, we developed a toolkit modeling approach for sustainable forest management (SFM). The approach inserts a meta-modeling strategy into a collaborative modeling framework grounded in adaptive management philosophy that facilitates participation among stakeholders, decision makers, and local domain experts in the meta-model building process. The modeling team works iteratively with each of these groups to define osential questions, identify data resources, and then determine whether available tools can be applied or adapted, or whether new tools can be rapidly created to fit the need. The desired goal of the process is a linked series of domain-specific models (tools) that balances generalized "top-down" models (i.e., scientific models developed without input from the local system) with case-specific customized "bottom-up" models that are driven primarily by local needs. Information flow between models is organized according to vertical (i.e., between scale) and horizontal (i.e., within scale) dimensions. We illustrate our approach within a 2.1 million hectare forest planning district in central Labrador, a forested landscape where social hnd ecological values receive a higher priority than economic values. However, the focus of this paper is on the process of how SFM modeling tools and concepts can be rapidly assembled and applied in new locations, balancing efficient transfer of science with adaptation to local needs. We use the Labrador case study to illustrate strengths and challenges uniquely associated with a meta-modeling approach to integrated modeling as it fits within the broader collaborative modeling framework. Principle advantages of the approach include the scientific rigor introduced by peer-reviewed models, combined with the adaptability of meta-modeling. A key challenge is the limited transparency of scientific models to different participatory groups. This challenge can be overcome by frequent and substantive two-way communication among different groups at appropriate times in the model-building process, combined with strong leadership that includes strategic choices when assembling the modeling team. The toolkit approach holds promise for extending beyond case studies, without compromising the bottom-up flow of needs and information, to inform SFM planning using the best available science

    The European Forestry Dynamics Model: Concept, design and results of first case studies

    Get PDF
    The European Forestry Dynamics Model (EFDM) is a joint effort between the European Commission Joint Research Centre and partners in the EU Member States for the development of a forestry dynamics model. The model is expected to project the state of Europe’s forests given different climatic, economic and management scenarios. EFDM was designed as a flexible system to facilitate the different types of data input that are available from the diverse National Forest Inventories. The model captures different typologies such as site productivity, ownership and the probability of natural disturbances. Specifically, EFDM is able to process detailed national-level input data such as National Forest Inventories (NFI) outputs, as well as related national-level expertise in social and economic domains. In this way, the system supports effective utilization of the collaborative expertise in the parameterization of scenarios. This document is intended as a general introduction to the EFDM. Experiences gained from the EFDM test applications by five NFI teams (Austria, Finland, France, Portugal and Sweden) are also summarized in this report.JRC.H.3-Forest Resources and Climat

    The Future of Maine\u27s Forests Under alternative Socioeconomic, Climate and Conservation Pathways

    Get PDF
    Maine is a historically important timber supply region in North America and understanding the potential change in forestlands and their product industries affected by climate change and various socio-economic conditions can better improve the forest healthy and sustain a sustainable product industry. A statistical harvest choice model for the state of Maine was developed in chapter 1. It was estimated using a multinomial logit model of two products, under varying management intensities, and ownership classifications across varying market conditions. Results indicate that stumpage prices have a significant effect on forest landowners\u27 harvest decisions and that the expansion of conservation land will have a relatively small impact on Maine’s timber supply. In chapter 2, five shared socioeconomic narrative pathways were developed to explore the consequence of changes in Maine’s social-economic elements to the future of the forest sector. Quantitative assumptions were combined with the stand-level harvest choice model to estimate a possible range of outcomes for the carbon stock and timber supply from 2020-2100. Results indicate a wide variation in timber harvest and carbon stock across all pathways, with the largest variation driven by changes in stumpage prices. In nearly all cases, Maine’s forest and carbon stock are estimated to expand over the next 80 years. In chapter 3, four greenhouse gas emission scenarios estimated using the HadGEM2 and CCSM4 climate models were used to quantify the impact of climate change on Maine’s forests through 2100. The forest landscape model LANDIS-II with PnET-Succession extension was used to project changes in aboveground biomass (AGB) and carbon (AGC) resulting from climate change, and the normalized and calibrated forest yield curves were then linked with the stand-level harvest choice model to quantify impacts to timber supply. Our simulation results demonstrated that forest AGB and AGC were most driven by continued recovery dynamics. In addition, climate change also has a net positive impact on growth and biomass accrual. As a result, Maine’s forest, carbon, and timber stocks are all expected to increase through 2100 under all climate change scenarios. In chapter 4, the SSPs framework was combined with the landscape model and timber economic model to explore the physical impacts of climate change as well as policies and socio-economic change on Maine’s forest sector. We found that Maine’s forests would become a large reservoir of carbon if current trends continued. Further, we estimated that socio-economic changes contribute to larger variations in forest supply and carbon stocks than climate change. Finally, new forest conservation policies may need to be implemented for a future where high GHG emissions and high socioeconomic challenges to mitigation scenarios, which could otherwise result in losses in forest carbon
    • …
    corecore