3,011 research outputs found

    Topological model for machining of parts with complex shapes

    Get PDF
    Complex shapes are widely used to design products in several industries such as aeronautics, automotive and domestic appliances. Several variations of their curvatures and orientations generate difficulties during their manufacturing or the machining of dies used in moulding, injection and forging. Analysis of several parts highlights two levels of difficulties between three types of shapes: prismatic parts with simple geometrical shapes, aeronautic structure parts composed of several shallow pockets and forging dies composed of several deep cavities which often contain protrusions. This paper mainly concerns High Speed Machining (HSM) of these dies which represent the highest complexity level because of the shapes' geometry and their topology. Five axes HSM is generally required for such complex shaped parts but 3 axes machining can be sufficient for dies. Evolutions in HSM CAM software and machine tools lead to an important increase in time for machining preparation. Analysis stages of the CAD model particularly induce this time increase which is required for a wise choice of cutting tools and machining strategies. Assistance modules for prismatic parts machining features identification in CAD models are widely implemented in CAM software. In spite of the last CAM evolutions, these kinds of CAM modules are undeveloped for aeronautical structure parts and forging dies. Development of new CAM modules for the extraction of relevant machining areas as well as the definition of the topological relations between these areas must make it possible for the machining assistant to reduce the machining preparation time. In this paper, a model developed for the description of complex shape parts topology is presented. It is based on machining areas extracted for the construction of geometrical features starting from CAD models of the parts. As topology is described in order to assist machining assistant during machining process generation, the difficulties associated with tasks he carried out are analyzed at first. The topological model presented after is based on the basic geometrical features extracted. Topological relations which represent the framework of the model are defined between the basic geometrical features which are gathered afterwards in macro-features. Approach used for the identification of these macro-features is also presented in this paper. Detailed application on the construction of the topological model of forging dies is presented in the last part of the paper

    Machining of complex-shaped parts with guidance curves

    Get PDF
    Nowadays, high-speed machining is usually used for production of hardened material parts with complex shapes such as dies and molds. In such parts, tool paths generated for bottom machining feature with the conventional parallel plane strategy induced many feed rate reductions, especially when boundaries of the feature have a lot of curvatures and are not parallel. Several machining experiments on hardened material lead to the conclusion that a tool path implying stable cutting conditions might guarantee a better part surface integrity. To ensure this stability, the shape machined must be decomposed when conventional strategies are not suitable. In this paper, an experimental approach based on high-speed performance simulation is conducted on a master bottom machining feature in order to highlight the influence of the curvatures towards a suitable decomposition of machining area. The decomposition is achieved through the construction of intermediate curves between the closed boundaries of the feature. These intermediate curves are used as guidance curve for the tool paths generation with an alternative machining strategy called "guidance curve strategy". For the construction of intermediate curves, key parameters reflecting the influence of their proximity with each closed boundary and the influence of the curvatures of this latter are introduced. Based on the results, a method for defining guidance curves in four steps is proposed

    Nonterrestrial utilization of materials: Automated space manufacturing facility

    Get PDF
    Four areas related to the nonterrestrial use of materials are included: (1) material resources needed for feedstock in an orbital manufacturing facility, (2) required initial components of a nonterrestrial manufacturing facility, (3) growth and productive capability of such a facility, and (4) automation and robotics requirements of the facility

    Materials for Advanced Turbine Engines

    Get PDF
    An attempt was made to improve methods for producing powder metallurgy aircraft gas turbine engine parts from the nickel base superalloy known as Rene 95. The parts produced were the high pressure turbine aft shaft for the CF6-50 engine and the stages 5 through 9 compressor disk forgings for the CFM56/F101 engines. A 50% cost reduction was achieved as compared to conventional cast and wrought processing practices. An integrated effort involving several powder producers and a major forging source were included

    Near net shape manufacturing of metal : a review of approaches and their evolutions

    Get PDF
    In the last thirty years the concept of manufacturability has been applied to many different processes in numerous industries. This has resulted in the emergence of several different "Design for Manufacturing" methodologies which have in common the aim of reducing productions costs through the application of general manufacturing rules. Near net shape technologies have expanded these concepts, targeting mainly primary shaping process, such as casting or forging. The desired outcomes of manufacturability analysis for near-net-shape (NNS) processes are cost and lead/time reduction through minimization of process steps (in particular cutting and finishing operations) and raw material saving. Product quality improvement, variability reduction and component design functionality enhancement are also achievable through NNS optimization. Process parameters, product design and material selection are the changing variables in a manufacturing chain that interact in complex, non-linear ways. Consequently modeling and simulation play important roles in the investigation of alternative approaches. However defining the manufacturing capability of different processes is also a “moving target” because the various NNS technologies are constantly improving and evolving so there is challenge in accurately reflecting their requirements and capabilities. In the last decade, for example, CAD, CNC technologies and innovation in materials have impacted enormously on the development of NNS technologies. This paper reviews the different methods reported for NNS manufacturability assessment and examines how they can make an impact on cost, quality and process variability in the context of a specific production volume. The discussion identifies a lack of structured approaches, poor connection with process optimization methodologies and a lack of empirical models as gaps in the reported approaches

    using design geometrical features to develop an analytical cost estimation method for axisymmetric components in open die forging

    Get PDF
    Abstract Hot forging is an industrial process where a metal piece is formed through a series of dies which permanently change the shape of the part. Open-die forging is a particular type of hot forging in which the used dies are generally flat and the part to be formed has a simple shape. Manufacturing cost estimation is a well-debated topic, especially for traditional manufacturing technologies. However, only few models are available in scientific literature for the open-die forging process. This lack is due to the complexity of the process, characterized by a low level of automation and a high degree of expertise required to develop the process. The paper proposes an analytical model for the cost estimation of axisymmetric components realized using open die-forging. The model uses as input the geometrical features of the part (e.g. dimensions, shape, material and tolerances), and gives as output: (i) the time required for the process development, (ii) the amount of material needed for the part processing and, (iii) the forging machine size/type, from the cutting of the billet to the piece deformation. Two cylindrical discs have been analysed for validating the proposed cost estimation model. The case studies show that the cost models give an accurate result in terms of cost breakdown, allowing the designer a quick calculation of process costs

    Intelligent systems in manufacturing: current developments and future prospects

    Get PDF
    Global competition and rapidly changing customer requirements are demanding increasing changes in manufacturing environments. Enterprises are required to constantly redesign their products and continuously reconfigure their manufacturing systems. Traditional approaches to manufacturing systems do not fully satisfy this new situation. Many authors have proposed that artificial intelligence will bring the flexibility and efficiency needed by manufacturing systems. This paper is a review of artificial intelligence techniques used in manufacturing systems. The paper first defines the components of a simplified intelligent manufacturing systems (IMS), the different Artificial Intelligence (AI) techniques to be considered and then shows how these AI techniques are used for the components of IMS

    Tooling technology for bulk forming of micro components

    Get PDF
    corecore