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recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL Descartes

https://core.ac.uk/display/52194938?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00840882


 

 

 

1 

Machining of complex shaped parts with guidance curves 

 

Laurent Tapie 
*,a,b

 , Bernardin Mawussi 
a,b

, Walter Rubio
c
, Benoît Furet

d
 

*
 Corresponding author, laurent.tapie@univ-paris13.fr, Tel: +331 58 07 67 25, Fax: +33 1 58 07 67 25 

a
Unité de Recherches Biomatériaux Innovants et Interfaces – URB2i ; 1 Rue Maurice Arnoux; 92120 Montrouge, 

France 

b 
IUT de Saint Denis, Université Paris 13; Place du 8 mai 1945 ; 93206 Saint Denis Cedex, France 

c 
ICA (Institut Clement Ader) ; 135 Avenue de Rangueil ; 31077 Toulouse, France 

d 
IRCyN, Ecole Centrale de Nantes ; 1 rue de la Noë ; 44321 Nantes Cedex 3, France 

Nowadays, High Speed Machining (HSM) is usually used for production of hardened material parts with 
complex shapes such as dies and moulds. In such parts, toolpaths generated for bottom machining feature 
with the conventional parallel plane strategy induced many feed rate reductions especially when boundaries 
of the feature have a lot of curvatures and are not parallel. Several machining experiments on hardened 
material lead to the conclusion that a tool path implying stable cutting conditions might guarantee a better 
part surface integrity. To ensure this stability, the shape machined must be decomposed when conventional 
strategies are not suitable.  In this paper, an experimental approachbased on High Speed Performance 
simulationis conducted on a master bottom machining feature in order to highlight the influence of the 
curvatures towards a suitable decomposition of machining area. The decomposition is achieved through the 
construction of intermediate curves between the closed boundaries of the feature. These intermediate curves 
are used as guidance curve for the toolpaths generation with an alternative machining strategy called 
“guidance curve strategy”. For the construction of intermediate curves, key parametersreflecting the 
influence of their proximity with each closed boundary and the influence of the curvatures of this latterare 
introduced. Based on the results, a method for defining guidance curves in 4 steps is proposed. 
 

Keywords: CAM, machining strategies, guidance curves, complex shaped parts 

1 Introduction 

High Speed Machining (HSM) production of hardened material parts with complex shapes such as dies and 

mouldsis an economical process. Indeed part production is faster for better quality and longer fatigue life for the parts, 

butthecutting process induces the use of specific machining technics and technologies[1][2].Moreover tasks carried out 

during the preparationstep are mainly based on Computer-Aided Machining (CAM) software thatprovide several 

machining strategies[3][4]. Selection of these strategies is a very complex task. Indeed, several parameters in different 

fields (quality, cost, geometry ...) should be consideredduringmachining strategy selection and toolpaths generation. 

Besides commercial CAM solutions with relevant assistance modules for machining strategies selection are scant[5][6].  

HSM cutting characteristicsstand forone of the main topics difficult to integrate in CAM software. Unfortunately, 

HSM cutting phenomenonhas a direct influence on part surface integrity[7].Importance of integrating the characteristics 

and impacts of the HSM in tool paths generation istherefore criticalfor complex shaped parts[8]. The correlation 

between part‟s topology (shape, size and local curvature of mould and die features for example), cutting tool types, 

cutting parameters (depths of cut, cutting speed, feedrate) and machining strategies (machining direction, sweeping 

direction)has been underlinedin several works[9][10]. Some studies on surface integrity after hard milling of mould and 

die (hardened steel)highlight the links between part surface residual stress, effective cutting speed,effectivefeedrate and 

contact area of tool/part[11][12][13].Parameters defining machining strategies are also relevant factors for obtaining 

surface integrity. The residual normal stresses along feed and stepover directions increased with the radial depth of cut 

and feed rate increase[14].For the works presented in this paper only the topology of the parts, the cutting conditions 

and the machining strategy were retained in the experimental study. 

A tool path implying stable cutting conditionsmight guarantee a better part surface integrity.To ensure this stability, 

the shape machined must be decomposed when conventional strategies are not suitable. In this paper, experiments are 

carried out in order to analyse the influence of the decomposition. Machining performance simulated during the 

decomposition processis evaluated towards feed rate reductions (main criteria), machining time and tool path lengths. A 

bottom feature extracted from complex forging dies is the shape considered because it cannot be machined easily with 

conventional machining strategies such as parallel planes.First, the experimental setups including a module for High 

Speed Performance evaluation are presented. Then, the decomposition method is detailed through the construction of 

the intermediate curves and machining areas.Finally, the analysis of the results leads to the proposal of a first definition 

of guidance curves. 
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2 Experimental setup 

2.1 Experimental machining feature 

The machining featurestudied in this work is atypical forging die machining feature called “bottom feature”. 

According to the definition developed in previous works[15][16], a bottom feature is generally in contact with two 

flanks in order to form a cavity(Fig. 1(a), (b)). In general, such cavitycomes out in other cavities on each 

openedboundary. Due toitsown basic geometryand the topology of its relationship with flanks, a bottom feature may 

induce more or less complex machining tool paths.  

The master bottom feature presentedin this paper(Fig. 1(c))is in contact with flanks along two edges very curved and 

non-parallel in order to study their influence on the machining tool paths. Besides, the topology of this master bottom 

featureis much curved. 

 

Fig. 1 Bottom featuresand experimental machining feature 

2.2 Guidance curve machining strategy 

Traditionally, a machining assistant uses standard 3-axes parallel planes strategy widely available in CAM software 

for the machining of bottom features[17][18]. A key characteristic of this machining strategy at the finishing stage is 

that the parallel planes contain the tool axis, which also defines the machining feed direction (Fig. 2(a)). The basic 

direction of the parallel planes is defined from the opened sides of the bottom feature. This basic direction can be 

adjusted according to topological information defined in the bottom machining feature model[15][16]. 

 

Fig. 2 Parallel planes tool path analysis 
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Analysis and simulation of the tool paths generated for the feature presented in Fig. 2show that the feed rate set 

point is not reached on the whole surface of the bottom feature (Fig. 2(b)). Three types of feed rate reductions can be 

distinguished. Feed rate reductions induced by small curvature radii defined in the CAD model of the feature (type 1). 

This type of feed rate reduction can be deleted only if the geometry of the feature is modified in the CAD model. Feed 

rate reductions closed to opened boundaries of the bottom feature (type 2) can be avoided if the tool paths are extended 

over the boundaries. Flank features induced feed rate reductions (type 3) because their intersections with the bottom 

feature are not straight and parallel lines. This type of feed rate reductions, which mainly correspond to tool 

entrance/exit, can be partially avoided by choosing another machining strategy which is more closed to the topology of 

the bottom feature. Machining strategies must be chosen appropriately in order to avoid feed rate reductions and tool 

entrances/exits because they have an impact on roughness and the part surface integrity (local crack, local hardness 

variations). Parallel plane strategy used for the example presented in Figure 1 is relevant for the central area of the 

bottom feature whereasalong the limits of flank featuresit is not relevant according to feed rate analysis.  

An alternative machining strategy should be chosen or developed for processing these constraints induced by the 

flank features, which have a particular topology.In this paper, an alternative strategy, called “guidance curve” strategy, 

is studied. This work is carried out on tool paths computation using the guidance curves strategy implemented on the 

CAM software CATIA® V5. The implementation of this strategy requires first the definition of two guidance curves 

(Fig. 3) and then the generation of tool paths by morphing between these two guides curves. 

 

Fig. 3 Guidance curves strategy 

2.3 High Speed Performance evaluation 

Machining time and geometrical allowance of parts are the main components of High Speed Performance (HSP). In 

this work HSP is evaluated by the tool paths analysis: ISO block extracted from the machining program sent to the 

machine tool are analysed according to its length and the mean value of the simulated feed rate reached compared with 

the set point. The HSP is evaluated using the “performance viewer” module (Fig. 4.a.). The feed rate simulation 

principle is detailed on Fig. 4.b. The feed rate simulator implementation is based on a controlled jerk kinematical model 

and a discontinuity crossing kinematical model of the couple machine tool & NCU[19][20]. The performance viewer 

outputs are a ISO block length classification (histogram), a ISO block simulated feed rate classification (histogram), the 

simulated machining time and a map of the simulated feed rate on the whole toolpath. 

For this work, the feed rate simulation is implemented with the parameters of MIKRON UCP 710 machine tool 

associated to a Siemens 840D NCU. The characteristics of the NCU are: X-Y-Z-axis maximal feed rate is 30 m/min, X-

axis maximal acceleration is 2.5 m/s
2
, Y-axis maximal acceleration is 3m/s

2
, Z-axis maximal feed rate is 2 m/s

2
, X-Y –

axis maximal jerk is 5 m/s
3
 and Z-axis maximal jerk is 50 m/s

3
. The following cutting conditions are adopted: 4mm ball 

end mill cutting tool, machining deviation fixed to 0.01mm, cusp height fixed to 0.01mm, and the machining area 

sweeping set to upward. Tool path feed rate simulations are done for 2, 4 and 6 m/min set point. 

 

 

 

Guide 1

(Boundary 1)

Guide 2

(Boundary 2)
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Fig. 4 Performance Viewer 

3 Construction of machiningarea 

The wholearea between the two boundaries of the bottom feature is the first machining area to be evaluated.This 

initial area is the result of the design of the shape and the different curvatures of the boundaries will spread on tool 

paths.The insertion of intermediate curves between the two boundaries can limit this propagation while usingit as a 

basis for analysing the influence of curvatures. The association of the intermediate curves and the two boundaries 

results in the decomposition of the initial zone into multiple machining areas. 

3.1 Single machining area 

A preliminary decomposition in a single machining area defined between the guides 1 and 2 of the master „bottom 

feature‟ is experimented (Fig. 3). 

Analysis of the tool paths generated shows a very limited number (less than 1% of the total number) of short length 

machining sequences (Fig. 5(b) compared to parallel planes strategy (about 40% of the total number of trajectories, Fig. 

5 (a)). Yet, the HSP cannot really be considered better since the number of entrance/exit in part material is significantly 

reduced, but the machining time is higher (579s.) compared to the for parallel planes strategy (418s). 
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Fig. 5 Trajectories length classification 

Besides, significant feed rate reductions appear on the central area of the bottom feature (Fig. 6). These reductions 

derive from the combination of two topological constraints: the bottom feature topology (small radii of curvature) as it 

was underlined for the parallel planes strategy (reduction type 1) and the two guide‟s topology. Indeed, significant feed 

rate reductions are induced by spreading of small curvature radii of the two guides (red colour in Fig. 6). The guidance 

curve strategy removes tool entrance/exit paths along boundaries of the bottom feature but it spreads some local cutting 

problems on the central area. 

 

Fig. 6 Feed rate simulation for guidance curves strategy 

To reduce these spreading influences, approach adopted in this work consists in decomposing the bottom feature 

area in several sub-areas. Limits, position and size of each sub-area should be defined in order to combine advantages of 

guidance curves and parallel planes strategies. After the decomposition, each new machining area is a portion of the 

initial machining feature limited by two curves from which one at least is different from the boundaries of the bottom 

feature. Several alternative guidance curves are experimented in order to define the machining area limits, position and 

size. 

3.2 Construction of intermediate curves 

Curves limiting the sub-areas are generated between the two boundaries of the bottom feature in an iterative way.To 

initialise the iteration process, the curve CInt_1 is generated between the two boundaries B1 and B2 which are the 

boundaries of the bottom feature. This initialisationstepprincipleis illustrated in (Fig. 7.a.). The two initial boundaries B1 

and B2 are discretized. The discretization is based on the generation of parallel planes spacing by a step P (PLminFig. 

7.a.). Each plane direction is perpendicular to the machining direction of the bottom feature given by topological 

decomposition explained in [15][16]. In this work the machining direction was found parallel to the length “L140” in 

Fig. 1. Then the intersecting points, Ptm1 and Ptm2 inFig. 7.a., are generated between the two boundaries B1 and B2. 

According to principle presented to the equation (1), for a given value for K, intermediates points Ptm_Int_1 are generated 

in all planes PLmbetweenPtm1 and Ptm2. K is a factor introduced in order to represent the topological influence of each 

boundaryB1 or B2 on the generation of intermediate curves CInt_1 (Fig. 7.a.). 

𝑃𝑡𝑚1𝑃𝑡𝑚 _𝐼𝑛𝑡 _1
                             = 𝐾 × 𝑃𝑡𝑚1𝑃𝑡𝑚2

                     ,   𝐾 ∈  0, 1  (1)  

Finally the intermediate curve CInt_1 is created as a 5-degree B-spline curve controlled by points Ptm_Int_1 , 5-degree 

B-Spline model implemented in CATIA® V5. 
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Then, iteration process is based on the generalization of the initialization process for two curves Ca and Cb, which 

are not intersected (Fig. 7.b.). Each point Ptm_Int_j defining the intermediate curve is computed using the following 

equation 2. 

𝑃𝑡𝑚𝑎𝑃𝑡𝑚 _𝐼𝑛𝑡 _𝑗
                             = 𝐾 × 𝑃𝑡𝑚𝑎𝑃𝑡𝑚𝑏

                     ,   𝐾 ∈  0, 1  (2)  

Where: 

Ptma and Ptmb are intersection points of PLm with the two curves Ca and Cb. 

PLm is one of the discretization planes spacing by a step P and perpendicular to the machiningdirection of the bottom 

feature. 

For a given value for K, points Ptm_Int_j are generated in all planes PLm. The intermediate curve CInt_j is created as a 5-

degree B-spline curve controlled by points Ptm_Int_j, 5-degree B-Spline model implemented in CATIA® V5.K is a factor 

introduced in order to represent the topological influence of each curve Ca or Cb on the generation of intermediate 

curves CInt_j. 

 

Fig. 7 Intermediate curve building principle 

Then, a net of intermediate curves is generated according to the principle presented below.Each curve CInt_j (j>1) is 

generated between CInt_j-1 and B1 or B2. The iterative process stops when the current intermediate curve CInt_j and B1 or 

B2 are intersecting, i.e. CInt_j B1 or B2 ≠ {}. The last curve saved is CInt_j-1. Thus, the net of curves generated is {B1, 

CInt_1, ..., CInt_j-1, B2}. For the example presented in Fig. 8 (a), the iterative process is applied from B1 to B2, CInt_10 

intersects B2 (Fig. 8 (b)), thus CInt_9 is the last curve generated in the net. 

 

B1

B2

CInt_3

B2

CInt_10

(a)

(b)

Net {B1, CInt_1, CInt_2, CInt_3, 

CInt_4, CInt_5, CInt_6, CInt_7, 

CInt_8, CInt_9, B2}

CInt_j
CInt_2 CInt_1
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Fig. 8 Curves net building principle for K=0.25 and P=5mm 

The Composed machining area is defined as the association of elementary machining areas covering the global 

machining area of the bottom feature. Each elementary machining area is limited by two consecutive curves of the net 

generated. 

3.3 Construction of multiplemachining area 

3.3.1 Boundary directionmachining area 

The first type of decompositionis carried out with two nets of intermediate curves: from boundary 1 (B1) to 

boundary 2 (B2) and from boundary 2 to boundary 1. For K=0.25 nine intermediate curves from B1 to B2are generated 

and illustrated in Fig. 9. Based on these intermediate curves, the machining area between B1 and B2 is decomposed in an 

iterative way: MA1 = {B1, CInt_1} U {CInt_1, B2}, MA2 = {B1, CInt_1} U {CInt_1, CInt_2} U {CInt_2, B2}, and for j=3 to 9 MAj 

= {B1, CInt_1} U {CInt_1, CInt_2} U … U {CInt_i-1, CInt_i} U … U {CInt_j, B2}. Machining simulation of these nine 

decomposed areas allows analysing the spreading of boundary 1‟s topology constraints. 

 

Fig. 9 Composed machining areas (K=0.25) 

The spreading influence is analysed for K=0.75 and the decomposition process is carried out also in the second 

direction from B2 to B1. All the machining areas decompositiontype 1 experimented are presented in Table. 1. 

 
Curves net characteristics Number of 

elementary 
machining areas P 

Building 
direction  

K 
CInt 

number 

5mm 

Boundary 1 to 
Boundary 2 

0.25 9 
2,3, 4, 5, 6, 7, 8, 

9, 10 

0.75 1 2 

Boundary 2 to 
Boundary 1 

0.25 9 
2,3, 4, 5, 6, 7, 8, 

9, 10 

0.75 1 2 

Table. 1 Composed machining areas type 1 

3.3.2 Median curve machining area 

The second type of decomposition is carried out with a pre-decomposition into two machining areas at the 

initialisation step. A median curve (Cmed) is generated according to the intermediate curve principle with K=0.5. This 

value is chosen in order to expect the same influence of the two boundaries in each pre-decomposed machining area. 

Intermediate curves‟ net are generated in each two pre-decomposed area: in one hand from B1 and B2 to the median 
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n
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B1

Curves net built

{B1, CInt_1, CInt_2, CInt_3, CInt_4, 

CInt_5, CInt_6, CInt_7, CInt_8, 

CInt_9, B2}

Machining areas

MA1 = {B1, CInt_1} U {CInt_1, B2}

MA5 = {B1, CInt_1} U {CInt_1, CInt_2} U {CInt_2, CInt_3} U 

{CInt_3, CInt_4} U {CInt_4, CInt_5} U {CInt_5, B2}

MA2 = {B1, CInt_1} U {CInt_1, CInt_2} U {CInt_2, B2}

MA3 = {B1, CInt_1} U {CInt_1, CInt_2} U {CInt_2, 

CInt_3} U {CInt_3, B2}

MA4 = {B1, CInt_1} U {CInt_1, CInt_2} U {CInt_2, 

CInt_3} U {CInt_3, CInt_4} U {CInt_4, B2}

MA6 = {B1, CInt_1} U {CInt_1, CInt_2} U {CInt_2, CInt_3} U 

{CInt_3, CInt_4} U {CInt_4, CInt_5} U {CInt_5, CInt_6} U 

{CInt_6, B2} MA9 = {B1, CInt_1} U {CInt_1, CInt_2} U {CInt_2, CInt_3} U 

{CInt_3, CInt_4} U {CInt_4, CInt_5} U {CInt_5, CInt_6} 

U{CInt_6, CInt_7} U  {CInt_7, CInt_8} U {CInt_8, CInt_9} U  

{CInt_9, B2}

MA7 = {B1, CInt_1} U {CInt_1, CInt_2} U {CInt_2, CInt_3} 

U {CInt_3, CInt_4} U {CInt_4, CInt_5} U {CInt_5, CInt_6} 

U{CInt_6, CInt_7} U  {CInt_7, B2}

MA8 = {B1, CInt_1} U {CInt_1, CInt_2} U {CInt_2, CInt_3} U 

{CInt_3, CInt_4} U {CInt_4, CInt_5} U {CInt_5, CInt_6} 

U{CInt_6, CInt_7} U  {CInt_7, CInt_8} U {CInt_8, B2}

CInt_8 CInt_7
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curve, and in the other hand from the median curve (Cmed) to B1 and B2 (Fig. 10). The composed machining areas are 

built based on the same principle presented previously. For K=0.5, six elementary machining areas are generated, three 

areas from the median curve Cmed to B1 and three other areas from Cmed to B2 (illustrated in Fig. 10). 

 

Fig. 10 Composed machining areas (K=0.5) 

All the composed machining areas generated are presented in Table. 2. The number of intermediate curves and their 

position with respect to the boundaries are defined with: K=0.25, K=0.5 and K=0.75. Besides the number of control 

points used to generate intermediate curves is also defined through different step values: P=5mm, P=10mm and 

P=20mm between two consecutive control points. 

 
Curves net characteristics Number of 

elementary 
machining 

areas 
P Building direction K 

CInt 
number 

5mm, 
10mm, 
20mm 

Boundary 1 to 
Cmed and 

Boundary 2 to 
Cmed 

0.25 13 
2, 4, 6, 8, 10, 

12, 14 

0.5 5 2, 4, 6 

0.75 3 2, 4 

Cmed to Boundary 
1 and Cmed to 
Boundary 2 

0.25 13 
2, 4, 6, 8, 10, 

12, 14 

0.5 5 2, 4, 6 

0.75 3 2, 4 

Table. 2 Composed machining areas built on curves net with median 

4 Results and discussion 

4.1 Analysis of boundary direction machining area 

For the machining area createdwith K=0.75 (illustrated in Fig. 11 (b))according tothe building direction Boundary 1 

to Boundary 2, the machining time is equal than those of the single machining area (between boundaries 1 and 2 

illustrated in Fig. 11 (a))and toolpath lengths are higher than those of the single machining area.As might be expected, 

the decomposition of the bottom surface in two elementary machining areas (Fig. 11 (b))involvessome limiting feed rate 

reductions around the intermediate curve compared with the single machining area (Fig. 11 (a)). This observation is 

reinforced by the classification of blocks according to the feed rate. The number of short tool paths does not change but 

their feed ratesremainas low as for the single machining area. The addition of intermediate curves seems relevant to 

limit only feed rate reductions. 

Cmed
CInt_1.1

CInt_1.2

CInt_2.1

CInt_2.2

B1

B2

MA1 = {Cmed, B1} U {Cmed, B2}

Curves nets=
{Cmed, CInt_1.2, CInt_2.2, B2}

{Cmed, CInt_1.1, CInt_2.1, B1}

Machining areas built

MA2 = {Cmed, CInt_1.1} U {CInt_1.1, B1} U {Cmed, CInt_1.2} U {CInt_1.2, B2}

MA3 = {Cmed, CInt_1.1} U {CInt_1.1, CInt_2.1} U {CInt_2.1, B1} U {Cmed, 

CInt_1.2} U {CInt_1.2, CInt_2.2} U {CInt_2.2, B2} 

Construction 

direction from 

Cmed to B1

Construction 

direction from 

Cmed to B2
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Fig. 11 Feed rate simulations for single machining area and composed machining area MA1(K0,75) 

When the initial area is decomposed in 2 elementary areas with K=0.25 (MA1equivalent to K=0.75 in the direction 

from boundary 2 to boundary 1), machining time, tool paths length and block‟s number in each feed rate class are 

equivalent. Some feed rate reductions are localized around the intermediate curve compared with the single machining 

area as it is previously observed. 

For the composed machining areas obtained for K=0.25, machining time and tool path length remain higher than 

those of the single machining area. As might be expected, values of these two criteria increase with the number of 

elementary machining areas, i.e. the addition of intermediate curves implies increase of machining time and tool path 

length. Yet, addition of intermediate curves limits feed rate reductions compared with the single machining area. In this 

case, remaining feed rate reductions are reflected towards the second boundary in the construction direction of 

intermediate curves. Fig. 12 shows the comparison between machining areas MA1 and MA9. The reflection of feed rate 

reductions towards boundary 2 is clearly visible (area 2 in Fig.13 (a) and (b)) for the decomposition MA9 (10 elementary 

machining areas). Feed rate reductions appearing in the first elementary machining area (area 1 between B1 and CInt1in 

Fig.13 (a) and (b); require the construction of additional intermediate curves between B1 and CInt1for the building 

direction B1 to B2. Improvement made by this construction of additional curves is observed when the construction 

direction changes from B2 to B1(area 1 between B2 and CInt1 in Fig.13 (c)). 

 

Fig. 12 Feed rate simulations for composed machining areas MA1 and MA9 

The generation of elementary areas by construction of intermediate curves between the two boundaries B1 and B2 

reflects feed rate reductions towards the second boundary according to the construction direction. The first elementary 
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area generated integrating the first boundary is to large to give the same result as that observed close to the second 

boundary. For this reason, the construction of intermediate curves in the two directions must be combined. This 

combination requires the division of the single machining area (between B1 and B2) into two areas with a main 

intermediate curve. The shape and the position of this main intermediate curve have to be defined. 

The comparison between 2 elementary areas generated for K=0.25 (MA1) or K=0.75 shows that the machining time 

and the number of feed rate reductions are not affected by the position of the intermediate curve with respect to the 

boundaries. Yet, curves limiting elementary machining areas will generate feed rate reductions. 

Addition of several intermediate curves implies that machining time increases (until 20% for K=0.25) whereas feed 

rate reductions are very limited. This observation can be explained by the evolution of curvature radii (from small to 

soft radii) on the limits of the elementary machining areas. The number of intermediate curves might be maximized to 

limit feed rate reductions but this maximization will increase the machining time. The number of intermediate curves 

and their proximity to the boundaries must be analysed to find the better balance between feed rate reductions (parts 

geometrical and mechanical requirements) and machining time (productivity). 

4.2 Analysis of median curve machining area 

In the first step of these experiments, elementary areas are generated for a given value for K, by addition of 

intermediate curves from median curve to respectively B1 and B2. As it might beexpected, feed rate reductions are 

reflected towards each boundary andthe machining time increases with the number of intermediate curves. 

When construction directions of intermediate curves are inverted (from each boundary to median curve), the 

machining areas created limit the feed rate reductions in the elementary areas closed to the boundaries. The number of 

elementary machining areas increases with the machining time but it does not affect feed rate reductions. 

A first conclusion can be made: the construction of intermediate curves gives best results from the median curve to 

the each boundary for the limitation of feed rate reductions. The number of intermediate curves increases with the 

machining time as it was previously observed in the first experiments. 

Feed rate simulations for a decomposition of the single area into 4 elementary areas are presented in Fig. 13. The 

comparison of these three simulations highlights a better limitation of feed rate reductions when elementary areas are 

positioned more close to the boundaries for K=0.75 (Fig. 13(c)). In these three cases, the machining time remains 

equivalent. The size of the first elementary machining area for K=0.75 (Fig. 13(c)) is greater than for K=0.5 (Fig. 

13(b)),itself being greater than for K=0.25 (Fig. 13(a)). 

 

Fig. 13 Feed rate simulations for composed machining areas with 4 elementary areas 

Feed rate simulation for the decomposition of the single machining area into 4 elementary areas for K=0.75 (Fig. 14 

(a)) is compared to the one realized for the decomposition into 14 elementary areas for K=0.25 (Fig. 14 (b)). For each 

one of these simulations, several elementary machining areas are localized close to the boundaries. The number of 

elementary machining areas in the central area is greater for K=0.25 than for K=0.75. When consider feed rate 

reductions, results are equivalent for the two decompositions. Yet, the machining time is greater for K=0.25. 
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Fig. 14 Feed rate simulations formore than 4 elementary areas 

A second conclusion can be made: to limit feed rate reductions for a same number of elementary machining areas 

and a same (or equivalent) machining time, it is necessary to localize elementary machining areas close to the 

boundaries. The number of elementary machining areas, i.e. the number of intermediate curves close to boundaries 

increases with the machining time without any significant change for feed rate reductions. According to experiments 

carried out, the decomposition of the single machining area into 4 elementary areas isthe most relevant with a value for 

K close to 0.75. 

As last conclusion concerning the intermediate curve smoothing, the variation of the step P does not have a 

significant influence on the results already observed. However, it is advisable to retain its smallest value than possible 

which can be set to 5 mm. 

4.3 Definition of guidance curves 

Analysis of the experiments performed shows that the appropriate solution for the „bottom machining‟ feature 

proposed in this work is to decompose the single machining area of the bottom machining feature in 4 elementary areas 

generated with 3 intermediate curves. The first intermediate curve is the median curve (Cmed) generated between the 

boundaries with K=0.5 according to the principle presented in this paper. The two others intermediate curves (CInt_1 and 

CInt_2) are generated with K=0.75 between the median curve (Cmed) and each boundary (B1 and B2). Based on the 

experiments, a first definition of guidance curves can be proposed in four steps for a given cavity: 

Step 1: Generate the median curve Cmed between the boundaries B1 and B2 with K=0.5. This median curve separates 

the initial machining area into two sub-areas. 

Step 2: Determine the appropriate step P for smoothingintermediate curves. Indeed, the discretization of the two 

guidance curves with the initial step set to 5 mm can lead to very few points or no points when the radius of 

curvature is very small. The projection of the inflection points of the two guidance curves on a line parallel to the 

machining direction makes it possible to set the suitable value of the step or to adapt it along the machining 

direction. 

Step 3: For each sub-area limited by two guidance curves which correspond to the median curve and one boundary 

B1 or B2, generate intermediate curves with K equal to 0.75, starting from the guidance curve which smallest radius 

of curvature is greatest. A line as a guidance curve is still considered as the starting curve and when the two 

guidance curves are lines, it is not necessary to generate intermediate curves. 

Step 4: Generate and simulate tool paths for all machining areas created. The value of K can be increased or 

decreased slightly to see if there is improvement. 

The first method proposed to define the guide curves provides assistance for machining specialists. The method will 

be generalized based on further experiments being conducted. This generalization will be communicated later. 

5 Conclusion 

The machining of complex shapes is often based on two conventional strategies: parallel plane and Z level. Tool 

paths generated with these conventional strategies for a bottom machining featurehave many feed rate reductions 

especiallywhen both boundaries have a lot ofcurvatures and are not parallel.Experimental approach presented in this 

paper is aimed to highlight the influence of the curvatures towards a suitable decomposition of the machining area 
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limited by both boundaries.It also introduces one of theuncommon methods of implementation of the curve guidance 

machining strategy available in CAD/CAM software. 

The bottom featureusually present in the cavities of complex shapediesis part of the experimental setup. Difficulties 

of generating tool paths often encountered with this machining feature were first analysed towards parallel planes 

strategy before the decomposition of the machining area. Feed rate reductions highlighted in the scope of the first 

analysis are completed by the high performance evaluation which is carried out by means of the computation of tool 

paths‟ length for each ISO block extracted from the machining program and sent to the machine tool. Other components 

of high performance as the machining time and the geometrical allowance are also evaluated but they are not presented 

because their variations are not significant.Application of the approach to other types of open machiningfeatures (non-

closed boundary) is trivial when the two limit curves are identified and extracted. 

The decomposition of the machining area is achieved through the construction of intermediate curves between the 

two boundaries. At first, a series of points, proportionally spaced from both boundaries are created before they are 

approximated to create each curve.The ratio of the distances between points and a givenboundary reflects the influence 

of its curvatureson the intermediate curve.The ratio of the distances is the first key parameter of the proposed 

approach.To prevent the spread of the influence of the curvatures of one boundary to the other boundary, the median 

curve was finally created. It shares the machining area in two portions before the decomposition. 

Machining areas evaluated are constructed by combining intermediate curves created before. Results were analysed 

at several levels. First, it was shown that increasing the number of intermediate curves tends to limit the feedrate 

reductions while also increasing the machining time.Then, it was noted that the introduction of the median curve leads 

to a significant decrease in feed rate reductions when the intermediate curves are constructed from this curve to the 

boundaries.Finally, the observations show that the positioning of the machining areas (intermediate curves) closest to 

the boundaries gives better results and the variation of the curves smoothing step P has not a significant influence on the 

results. Based on the results, a method of defining guidance curves in 4 steps was proposed. The generalization of the 

method as well as additional experiments will be communicated. 
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