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Abstract 

In the last thirty years the concept of manufacturability has been applied to many different processes in 

numerous industries. This has resulted in the emergence of several different “Design for Manufacturing” 

methodologies which have in common the aim of reducing productions costs through the application of 

general manufacturing rules. Near net shape technologies have expanded these concepts, targeting mainly 

primary shaping process, such as casting or forging. The desired outcomes of manufacturability analysis for 

near-net-shape (NNS) processes are cost and lead/time reduction through minimization of process steps (in 

particular cutting and finishing operations) and raw material saving. Product quality improvement, variability 

reduction and component design functionality enhancement are also achievable through NNS optimization.  

Process parameters, product design and material selection are the changing variables in a manufacturing 

chain that interact in complex, non-linear ways. Consequently modeling and simulation play important roles 

in the investigation of alternative approaches. However defining the manufacturing capability of different 

processes is also a “moving target” because the various NNS technologies are constantly improving and 

evolving so there is challenge in accurately reflecting their requirements and capabilities. In the last decade, 

for example, CAD, CNC technologies and innovation in materials have impacted enormously on the 

development of NNS technologies. This paper reviews the different methods reported for NNS 

manufacturability assessment and examines how they can make an impact on cost, quality and process 

variability in the context of a specific production volume. The discussion identifies a lack of structured 

approaches, poor connection with process optimization methodologies and a lack of empirical models as 

gaps in the reported approaches. 
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Introduction 

Manufacturing industry is constantly challenged to evolve in response to changing markets and social needs. 

Although for many years the reduction of costs was the only goal the growing demand for lower impacts on 
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the environment has also started to drive manufacturing to improve processes in terms of their sustainability 

and waste. Consequently the social (rather than economic) demand for the efficient use of resources is 

emerging as a business opportunity where highly efficient operations in terms of energy and materials will 

also meet regulations and enable access to high value markets. 

Given this context changing manufacturing methods is frequently a necessity rather than simply an 

opportunity to improve profits. The continuous investigation of cost reduction and production improvement 

technologies has led to the emergence of a generic class of manufacturing technologies known as Near Net 

Shape (NNS) that can be the key to lean, green enterprises. 

 

Figure 1: Annual publication volume of academic papers reporting NNS investigation classified by materials (1985-
2015) [Table 1]. 
 

Essential NNS processes aim to create semi-finished products that are as close as possible to the desired final 

geometry and technological characteristics (e.g. surface finish, hardness, etc). Thus the objective of NNS is 

the elimination, or reduction, of finishing steps (e.g. machining operations, heat treatments, etc) and the 

minimization of raw material usage (e.g. reductions in scrap and wastage). NNS technologies can be seen as 

a component of a Lean manufacturing approach where variations in the overall manufacturing process, part 

design and material choices are driven by the desire to reduce waste. Indeed a virtuous circle of impacts can 

result from reductions in material waste for example: 
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 Reduction of machining steps or the merging of several individuals components in a single part can 

result in a shorter process chains that both lower variability and, consequently, increased quality.  

 Reductions in fabrication and assembly operations reduce the opportunity for errors and so results in 

lower scrappage rates. 

 

Figure 2: Annual publication volume of academic papers reporting NNS investigation categorized by research 
method (1985-2015) [Table 1]. 
 

In other words it is clear to any manufacturing engineer that the reduction of lead-times and waste through 

appropriate technologies produce many collateral advantages beyond the basic savings. NNS as a distinct 

subject has its roots in the “Design for Manufacturing” (DFM) work of Boothroyd and Dewurst [1] in the 

1980s. Their pioneering work on a systematic approach to “Design For Assembly” (DFA), directly 

influenced subsequent approaches to the improvement of process efficiency. For example Ishii et al. [2] 

developed a ‘Design For Injection Molding’ (DFIM) system which was directly implemented in CAD 

system. The knowledge based system was able to screen drawings associated with mechanical components 

and apply DFIM rules to make suggestions to tailor their shapes for injection molding. Many other authors 

have reported the implementation of similar DFM codes in CAD/CAE system. Following Tateno [3], Hwang 

and Stoehr [4], Mathur et al. [5], Doege and Thalemann [6] and other pioneering studies, Altan and Miller 

[7] was the first to clearly define the aims and boundaries of NNS design. He first discusses the conceptual 

design stage where “A feasible part/process design is not achieved until a balance is achieved among 
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functional requirements, production volume, part geometry, process capabilities, material properties, tooling 

requirements, equipment requirements and other factors”. Many alternatives need to be explored in this 

phase, responding to every “what-if” question. But, he suggests, it is at the detailed design stage, ‘design for 

manufacturability’ needs to be evaluate. Altan and Miller [7] define three possible forms of 

manufacturability evaluation. 

1) The modifications, or evolution, of a design after the specific combination of material and 

manufacturing of material and manufacturing process is defined. 

2) The evaluation of several potential candidate process/material combinations when the component 

design is fixed. 

3) The re-design of a part for a new manufacturing process. 

However importantly the authors asserts all these scenarios can be interpreted as “requiring a process which 

will start with an initial representation of the design and then transform it, if necessary, into a another part 

which meets all of the functional requirements and can also be produced” [7]. This insight is fundament to 

all NNS methodologies reported in the literature surveyed by this paper surveys. The resulting summary 

charts the evolution of NNS concepts across the last 25 years. The overall objective is to define streams, or 

patterns, in the research and identify the principal and most effective approaches to the investigation of NNS 

processes. 

Table 1: Articles searching and selection strategy 

Search words  Refined by Time 
span 

Articles 
number 

Search 
Engine All fields Subject Areas Topic 

Near Net Shape AND Manufacturing Engineering, 
Material 
Science, 
Design 

  

All 
years 

6006 

Scopus 
(Elsevier) Near Net Shape AND Manufacturing 

Process, Process 
Technology, Material 
Processing, Design 

550 

Keywords/ Title/ Abstract All fields       
 

  

Near Net Shape  Process 
Engineering, 
Design 

  

All 
years 

249 

Scopus 
(Elsevier) 

Near Net Shape  Material 
Engineering, 
Design 

  269 

Near Net Shape   Design 
Engineering, 
Design 

  105 

Keywords/ Title/ Abstract Refined by: Abstract Verification 

Near Net Shape AND Manufacturing 
AND (Material OR Process OR Design) 

All fields 
Material, Design, 
Process, Processing 
Technology All 

years 

135 Scopus 
(Elsevier, 
Google 
Scholar) All fields 

Material, Design, 

Process, Processing 

Technology, Metal 

82 



Scoping the Literature Review  

Table 1 details the searching strategies for the selection of NNS papers included in this survey. A number of 

different search terms and screening approach were employed. A broad search was followed by a process of 

abstract verification that allowed the scope to be limited to papers and articles related to metal manufacturing 

processes. 

Figure 1 illustrates the rate and focus of NNS research reported over the last thirty years. Since the 

peak of NNS research activity (between 1995 and 2005) the variety of materials under investigation has 

dramatically increased. The cost of composites and ceramic components appears to have motivated much of 

this recent work. Similarly industries that use titanium, or complex metal alloys, have provided easiest 

justifications of NNS approaches and allowed the subsequent spread of successful applications to other, less 

costly, materials. Only a few NNS investigation relating to exotic materials, such as rhenium or amorphous 

alloys, have been published. Given the high costs of such metals it is likely that commercial confidentiality 

has restricted dissemination of this work. 

 

Figure 3: Papers distribution by Applications 
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Review Synthesis 

In this section the articles have been categorized in terms of the research methodologies applied (i.e. 

experimental, analytical, review meta-analysis, etc.). Figure 2 shows how the approaches adopted by 

researchers have varied over the years and demonstrates the predominance of the empirical approach.  

Figure 3 details the distribution of papers in terms of the industry sectors: aero-space/aero-nautical, 

multisector application (gears, spline shaft, connecting rods, magnets production), automotive, 

electronic/robotic, nuclear/energy, academic research, military and others (mold fabrication, heavy industry, 

ingots production, ecologic productions, biomedical). Figure 4 shows the percentage of NNS papers 

associated specific processes: forging (hot, cold, precision, closed-die forging, including hot extrusion and 

indirect extrusion), forming (including flow forming, hydroforming, semi-solid metal casting, semi-solid 

metal extrusion, rolling and strip casting), casting (sand, investment, centrifugal, high and low pressure 

casting), additive layer manufacturing (ALM) processes (including blown powder and metal bed 

technologies), powder technologies (including hot isostatic pressing, Metal Injection Molding).  

The following sections review contributions to the development of the research methodologies reported in 

Figure 2. For each category of contribution considered (i.e. Analytical, DFM Methodology etc) the process 

described in one, or more, of the papers belonging to that group is illustrate schematically to show the 

researcher’s approach. 

Figure 4: Percentage of NNS papers by Manufacturing Process. 
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Theoretical – Analytical  

The following papers report analytical models of NNS processes. Chitkara and Bhutta [8] develop an upper-

bound model for predicting forming loads in splined shaft forging (relative to their reduction ratio) and 

compares the results with experimental trials. Similarly, upper-bound models have been developed for 

forging of spur gears Chitkara and Bhutta [9] and crown gears Chitkara and Kim [10]. In a slightly different 

approach, Chitkara and Kim [11] use upper-bound and velocity field (i.e. various forging rate) for predicting 

loads in forging of gear coupling. Netto et al. [12] deploy a turbulent fluid flow, heat transfer and 

solidification model, investigating the strip casting dynamic and nozzle shape optimization. Kwak and 

Doumanidis [13] introduce a closed loop controller for optimizing material deposition in thermally scanned 

welding, extendable to other welding technologies. Jeon and Kim [14] compare two different analytic 

methods for simulating hot isostatic pressing and verifying them through a combination of FEM and 

previous experimental trials reported in the literature. Tomov and Gagov [15] (Figure 5) optimize the 

preform design of spur gears. The authors model, analytically, both the preliminary open die forgings 

operations and the final precision forging, correlating all manufacturing steps with preform dimensioning.  

 

Figure 5: Schematization of Tomov and Gagov [15] procedure for analytical optimization of forging process. 



 

Figure 6: Schematization of the Castro et al. [16] Genetic Algorithm for optimizing closed hot die forging process in 

terms of preform shape and process temperature. 

 

Castro et al. [16] (Figure 6) apply a genetic algorithm optimization to a numerical model, simulating a hot 

upset forging process. The evolutionary strategy provides process parameters and preform design 

optimization (described by a polynomial function). This approach is notable for its linking of process and 

resource optimization with process parameters and product design. 

Theoretical – Numerical 

The following papers report numerical models of NNS processes The maturing of this category of NNS 

investigation into a practical tools that could support Multiphysics models can be seen in the work of Hwang 

and Stoehr [4] who develop a solidification model for casting processes that included turbulent viscosity, 

surface tension and marker reduction scheme of molten metal, combining Lagrangian and Eulerian approach. 



Similar complexity of modeling is used in simulating isothermal forging process, Morita et al. [17] for 

optimize die design and preform positioning of turbine blade. Comparing to the classic forging process, the 

authors observe the superior properties of isothermal forged component (in terms of defects, mechanical and 

material properties and decreasing machining allowance). Li [18] uses finite elements for modeling the 

electromagnetic recirculation process during casting. Takemasu et al. [19] investigate precision forging 

process of connecting rod. Using material flow simulation, the authors optimized the preform design in this 

application (volumes definition and the effectiveness of die filling process are critical in precision forming). 

Initially they optimized the component by parts, dividing the rod in regions, before subsequently proposing a 

new preform design. Mamalis et al. [20] compare implicit and explicit approaches to modeling precision die 

forging. They concluded that implicit code results are more accurate, although that computational cost is 

higher. Okada et al. [21] deploy numerical models for forging of semisolid alloys and validates them with 

experimental results. The aim is to characterize the Al-Al3Ni flow and deformation in semisolid state 

forging. Kim et al. [22] investigate numerically a centrifugal casting investment process (or centrifuging 

casting) of turbocharger rotors (TiAl alloy). Simulation provides information about mold filling, which, 

correlate well with experimental trials and can be used to resolve production problems such as the 

incomplete filling of dies. Park et al. [23] develop a bi-dimensional finite element model for characterize 

multistage forging of automotive parts (joint). The numerical model’s aim is to develop a reliable forming 

process chain as well as to establish process parameters and stress analysis for a correct process design. Yuan 

et al. [24] (Figure 7) deploy a model for simulating hot isostatic pressing of axial-symmetric components. 

The tool design has been tested for obtaining dimensional proprieties of component and again experimental 

trials show good agreement between predicted and real geometries. 

DFM Methodologies  

The following papers report ‘Design for X’ methodologies relevant to NNS processes. Chu et al. [25] deploy 

a skeleton-based design analysis to extract topological information from a 3D model (Euler characteristics 

and connectivity). In this way, product features information are digitalized and computed through a 

dedicated algorithm. Using a heuristic knowledge base database, product design feasibility can be analyzed 

for different casting and forming technologies. De Sam Lazaro et al. [26] develop a feature recognition 

program for sheet metal parts.  



Figure 7: Yuan et al. [24] numerical investigation scheme for evaluating hot isostic pressing final shape prediction 

through FEM. 

Program rules are able to represent sheet features and so represent a simple design as a digital object. This 

allows a knowledge base system to be configured, adapting DFM rules for this specific case. Using this 

program, multi stage forging of sheet component can be also evaluated and to provide feeback to the 

designer. Caporalli et al. [27] (Figure 8) report a CAD/FEM based Expert System that enables process design 

optimization for manufacturing by a precision hot forging process. Starting from a part design, the system 

applies dedicated NNS rules (e.g. minimizing machining allowances, selection of parting line, radii, drafts 

and fillets selection) and modifies the part design. After this forging sequence (to check the design’s 

preforms) is created using either the job’s similarity with previous routes or generated, according to selected 

criteria and matched to material, size and geometry of the part. Lastly, a die design is generated, considering 

preforms geometry, thermal expansion, and the use of standardized tools and inserts. Yin et al. [28] present a 

virtual prototyping approach for evaluating the feasibility of mold casting. Framework evaluates geometric 

mouldability of the component by recognizing and evaluating undercut features. The algorithm is capable of 

recognizing undercut features and giving multiple interpretations based on volume decomposition. The 

component volume is decomposed into cells in order to evaluate parting directions and feasibility. Konak et 

al. [29] estimate shrinkage in hot isostatic pressing using a neural net approach to create a predictive model 



based on industrial data (regression analysis). Medellin et al. [30] develop a decomposition and optimization 

procedure (Octotree) from a 3D model, which provides a subdivision of component into different sizes of 

cube. After stability analysis, an assembly sequence is generated and a robotic cell used to construct the 

component by collocating and binding the singular cubic volumes. Final component needs to be post-

machined in order to obtain curve surfaces. Löwer et al. [31] review and deploy strategy for substituting 

conventional material (metal and plastic) and process. They identify and assess the technical, ecological and 

economic feasibility of this approach and use a systematic approach for matching technical requirements 

with biological characteristics. 

 

Figure 8: Caporalli et al. [27] Expert System flowchart with application to process design components. 

NNS Reviews  

The following papers review NNS processes methodologies and models: Doege and Thalemann [6] approach 

NNS by reviewing metal forming technologies for several applications (including squeeze casting and 

rolling). Existing technologies substitution (mainly machining) are explained and justified by the possibility 

of obtaining ready-to-install products. Kudo [32] surveys and summarizes previous industrial approaches and 

frameworks for quality control, comparing them with NNS approach. The author provides both general 

models and examples in forming and forging environments. Interaction between process controls (equipment 

and process parameters), workforce and the process chain workflow’s design is detailed. Altan and Miller [7] 



review previous “design-for-forging” (hot, cold, warm and sheet forging) and “design-for-manufacturing” 

approaches. In the latter the author summarizes “design-for-net-shape-methodologies” and application, 

giving fundamental guidelines and definitions. Moriguchi [33] discusses the impact of cold forging 

(particularly injection forging) on production of gears and drive train components, including impact of CAE 

on process output. Similarly, Siegert et al. [34] summarize approaches for precision forming of aluminum 

and steel. The authors review die design and process parameter optimization (using FEM) for hot forging of 

connecting rods and helical gears. Similarly, Yoshimura and Tanaka [35] review precision forging methods 

for similar materials and details their possible applications. Kruth et al. [36] discuss possible future 

applications of additive layer manufacturing techniques in manufacturing production, presenting them as 

NNS processes. Doege and Bohnsack [37] evaluate the impact of innovative equipment and device 

optimization (particularly closing devices) on hot forging performances (e.g. reduction of forging loads). 

Dean [38] summarizes the benefit of several innovative forming technologies (i.e orbital, precision and 

closed die-forging) on spur and helical gears. The author reviews the impacts of these new technologies on 

final product properties and manufacturing chains. Mac Donald and Hashmi [39] review the impact of bulge-

forming on tubes production, including process simulation and optimization. Mudge and Wald [40] 

synthesize possible application for freeform technology, including repairing, cladding and components 

manufacturing. Yamamoto et al. [41] investigate the potential of the Armstrong process, which provides 

titanium powders for sintering process. Mechanical properties and final densities obtained by the authors in 

previous experiments are compared as well as those reported for different powder forming technologies. 

Empirical – Experimental  

The following papers detail experimental investigations into NNS processes: a number of authors have 

reported investigations into the potential of semi-solid metal casting (SSMC) process for NNS applications: 

Witulski et al. [42] compare semi-solid metal casting and isothermal forging capabilities for aluminum 

alloys, mainly in terms of productivity and defects avoidance. Kang et al. [43] (Figure 9) examine different 

reheating methods for the semi-solid casting of aluminum components, comparing the resulting 

microstructure, mechanical and surface proprieties. Kapranos et al. [44] optimize a thixoforming die for 

minimizing defects in the production of end plates for electric motors.  



 

Figure 9: Schematic representation of Kang et al. [43] experimental paper on aluminum carter squeeze casting (old 
process, material, product design and new NNS tested process and material; investigation aims; NNS variables 
developments and comparison levels between new and old NNS process). 
 

Yin et al. [45] develop and test horizontal-type induction heating for SSMC. Mechanical properties have 

been evaluated varying process parameters for a novel reheating method. Investigating rheocasting, Curle 

[46] report the results of microstructural analysis of Aluminum alloys produced by a number of different 

processes. Similarly other authors have reported material characteristics for several applications, 

characterizing materials behavior, or targeting material properties, through new or existent processes. Gupta 

and Ling [47] investigate Al-Si alloy properties (mechanical, thermal and fractural behavior) and 

microstructure arising from production of ingots using a disintegrated melt deposition technique. Material 

properties are also reported during the an investigation of the investment casting of automotive components 



(turbocharger and exhaust valves), in which Sung and Kim [48] analyze the resulting TiAl microstructure (a-

case formation) and fluidity.  

 

Figure 10: Schematic representation of Dirba et al. [49] experimental paper on magnet forging (old process, material, 
product design and new NNS tested processes and product designs; investigation motives and targets, NNS variables 
developments; comparison levels between old and NNS process). 
 

For hot rolling, Arribas et al. [50] investigate dynamic and static recrystallization (dependent on grain size 

and deformation conditions during the process) as well as particles/precipitates inclusion of Ti alloys. Köhl 

et al. [51] develop a variant of MIM (Metal Injection Molding) for producing highly porous NiTi medical 

implants. Microstructure and mechanical properties control are performed using space-holders techniques 

(i.e. testing different material powders, injected with the metal and after chemically removed). Qi et al. [52] 

study heat treatment effects on microstructure and mechanical properties during a laser deposition process of 



Inconel alloys. Rapid manufacturing (a.k.a. additive layer manufacturing) has also been investigated by other 

authors, mainly treating them as NNS process for defined components geometries or materials. Lewis et al. 

[53] summarize the trials for direct light fabrication technology, including final components properties. 

Milewski et al. [54] use a 5-axis powder deposition to produce complex geometries from 316 stainless steel 

direct light fabrication (selective laser melting).  

Investigating the production of NNS Inconel turbine components, Qi et al. [55] deploy a ‘Design of 

Experiments’ approach for systematically assessing the process parameters in laser net shape manufacturing 

(melting blown powder technology). Janney et al. [56] investigate a powder forging process (Gelcast) for 

producing tool steel and ceramic machinable green parts. Krishna et al. [57] experiment with LENS system 

(freeform fabrication) for NiTi alloys, displaying final mechanical and microstructural properties. Taminger 

and Hafley [58] investigate Electron Beam Forming process for aerospace components. Working with 

forming and forging processes, Hartley [59] investigates hot extrusion for lithium alloys, for aerospace 

application. The author tested different working condition and assessed the savings for the final machining 

step. Also Dirba et al. [49] (Figure 10) use similar technology with low deformable alloys (Nd-Fe-B) for 

magnets production. Magnetic proprieties have been investigated as well as temperature stability and 

mechanical characteristics with the aim of enabling material waste reduction. Similar investigation has been 

conducted by Hinz et al. [60] for radially oriented magnets. Shi et al. [61] demonstrate the advantages of 

isothermal closed die forging for impeller production, using FEM analysis and experimental trials. Julien and 

Després [62] develop a novel low pressure metal injection molding (LMIM), process that is economic for 

low batch sizes. They report the application of the process to production of aerospace turbine blades and 

investigate the microstructure obtained. Working on strip casting, Liang et al. [63] investigate edge 

containment for Zn-10Al alloy. Bewlay et al. [64] develop roll forming for engine disk, comparing its 

microstructure, mechanical properties and material wastage with conventional hot forging process (Figure 

11). Park et al. [65] investigate the machining of turbine blades and report the experimental optimization for 

tool positioning in the context of NNS production.  

Empirical – Case study 

The following papers report empirical results for NNS processes based on experimental investigations. 

Onodera and Sawai [66] (Figure 12) illustrate two example of NNS applications in automotive industry ( for 



spline shaft and joint productions), and introduce a general production scheme (inspired by Ishikawa tree’s 

schematization) that supports quality control functions. 

Figure 11: Schematic representation of Bewlay et al. [64] experimental paper on engine disk roll forging (old process, 
material, product design and new NNS tested process and product designs, investigation motives and Targets, NNS 
variables developments, comparison levels between old and NNS process). 
 

Maegaard [67] illustrates the difference in process design (die and punch) and final quality for cold forging 

and backward extrusion, in the context of small batch production. Hirt et al [68] investigate potentiality of 

thixoforming for automotive components weight reduction, developing simulation and production 

optimization (process parameters). Quality, reliability and potential production volume of components are 

investigated in an industrial environment (where production is assisted by robotic device). Many authors 

introduce rapid prototyping processes as near net shape application, for example Schlienger et al. [69] for 



LENS, Milewski et al. [70] and Lewis and Schlienger [71] for Laser Deposition and Bak [72] for direct 

metal casting. Blackwell and Wisbey [73] compare final properties (mechanical properties and 

microstructure) using different LENS laser types and power compositions. Similarly, Kottman et al. [74] 

assess the feasibility of laser hot wire application for aerospace components (titanium). LaSalle and Zedalis 

[75] explain capabilities of Metal Injection Molding for high production volume and low weight component. 

Groenbaek and Birker [76] discuss the design about dies containers and the way in which die life-life 

increases impact on productivity. Dahlman and Escursell [77] introduce a tool cooling system for turning 

operation, which results in an increase in productivity. Douglas and Kuhlmann [78] illustrate some sensible 

improvement in material waste and quality, using precision forging processes. Cai et al. [79] test different die 

design and lubrication for the precision forging of gears. They examine the influences of different designs on 

metal flow and load requirements through experiments and finite element simulation. Friction factor has 

been evaluated experimentally and numerically during all stages of forging process. Friction distribution is 

shown to have a strong influence on the process of die filling. Klug et al. [80] synthetize different 

technologies (forging, forming and casting) for economic production titanium components and its impact on 

manufacturing of military equipment.  

 

Figure 12: Onodera and Sawai [66] Ishikawa diagram for cold forging and results of its application 



Figure 13: Schematic representation of Kang et al. [43] experimental paper (old process, material, product design and 
new NNS tested process, investigation motives and Targets, NNS variables developments and comparison levels). 
 
Behrens et al. [81] and Vilotić et al. [82] both investigate the impact of precision (crankshafts, rods and 

gears) and cold forging (roller bearings and cardan joints), respectively for the production of automotive 

components. Cominotti and Gentili [83] (Figure 13) have compared flow forming and classical machining 

for a shaft production. The authors illustrate the different process chains (including technological advantages 

and disadvantages) and detail their impact on the different aspects of cost. A differential cost analysis is 

presented that considers flow forming as economic alternative to classic machining. 



Empirical – Quantitative 

The following papers report quantitative relationships and data generated by NNS process case studies. 

Tateno [84] investigate the differential processes capabilities for casting and forging process in the case of 

large size part production. Its investigation compares different materials and technological output, generated 

by different processes. Bhatkal and Hannibal [85] describes one of the few differential cost analysis and 

production capabilities mapping, for comparing MIM and Investment casting. Information about several 

components have been gathered using a technical cost modeling approach. A complete economic evaluation 

has been made in both cases and its sensitivity has been mapped by varying design and process parameters. 

Campbell [86] evaluate casting potentialities for several processes (sand casting, lost foam, lost wax, high 

pressure and low pressure/gravity casting). The dimensional variability of parts was investigated in relation 

to process variables, production dimensions and material. The author has been able to rank casting process 

regarding their potential dimensional accuracy (depending on casting dimensions). Table 2 summarizes the 

quantitative approaches methodologies and results. 

Table 2: Quantitative approaches: investigated variables, tools, investigated effects, impact on NNS and conclusions. 

 
Campbell (2000)

 

Tateno et al. (1985)
 

Bhatkal et al. (1999)
 

IŶ
ǀĞ

Ɛƚ
ŝŐ

Ăƚ
ĞĚ

 
VĂ

ƌŝĂ
ďů

ĞƐ
 

MĂƚĞƌŝĂůƐ Zinc, Magnesium, Aluminum alloy, Cast 

Iron, Steel Alloy 
Steel, Cast Iron Pure Nickel 

PƌŽĐĞƐƐĞƐ 
Casting processes (pressure die, low 

pressure/gravity die, high and low tech 

sand casting, lost foam, lost wax)  

Open die Forging, Sand Casting, 

Ingot manufacturing chain 

Metal Injection Molding (MIM), 

Investment Casting 

PƌŽĚƵĐƚ 
DĞƐŝŐŶƐ 

Nominal casting sizes (10-1000 mm) 

Large sizes component (nuclear 

and chemical pressure vessels, 

rotor shafts, water turbine 

runners) 

Lightweight (120 gr) and low 

thickness (3 mm) components 

TŽŽůƐ 
Cause- effect matrix, Statistical Survey 

(variability dependency on casting 

length 

Forging/casting processes 

chains evolution, process 

capability mapping, process 

defects mapping 

TCM (Technical cost modelling), 

Differential cost analysis, process 

mapping 

IŶǀĞƐƚŝŐĂƚĞĚ  
EĨĨĞĐƚƐ 

Dimensional variability (mm, %), Casting 

accuracy (mm,%)  

Quality improvements, Process 

chains (casting and forging) 

modification impact on 

equipment, tools and process 

parameters  

Process costs (Direct/Indirect) 

modelling, Cost sensitivity to 

production volume, process 

variables and part weight, 

Differential impact (%) of voices of 

cost 

IŵƉĂĐƚ ŽŶ NNS 
ƚĞĐŚŶŽůŽŐǇ 

Categorizing casting productions on 

accuracy and dimensional variability 

(evaluating and quantifying impact 

factors)  

Identify best casting and forging 

processes relating to big size 

components production 

At equivalent (or satisfactory) 

levels of processes' performances, 

differential costa analysis need to 

be structured for being a 

comprehensive and adaptive 

decision tool 

MĂŝŶ 
CŽŶĐůƵƐŝŽŶƐ 

Lost wax is the most accurate only for 

small sizes castings. Pressure die and 

high quality sand have greatest 

reproducibility for all dimensions and 

materials) 

Pointing out progress made in 

mega parts production, 

including technical details for 

casting and forging (process 

chains and parameters) and 

managerial aspects (R&D) 

MIM in convenient over 

investment casting only for a very 

high production volume (million 

pieces magnitude) for the specific 

product requirements 



Discussion 

Although they deal with many different NNS technologies, the discussed papers can be classified into five 

distinct classes (Table 3). Altan and Miller [7] observed that part design, material and process play 

fundamental roles in NNS technology, taxonomy in the tables has been defined as process innovation, 

process design, product design, material characterization, differential. 

Process Innovation 

The “Process Innovation” papers introduce a new process [36, 39, 56, 69] or illustrate its capabilities and 

main variables for a defined range of products [33, 35, 38, 61, 75, 76, 80–82] and materials [36, 53, 54, 56, 

80]. The process innovation’s classification is dominated by work on forging/forming [33, 35, 38, 39, 61, 76, 

81, 82] and additive layer manufacturing [36, 40, 53, 54, 69] processes, although a few articles investigate 

novel powder technologies [56, 75] and casting [80] processes. The majority of the papers in this category 

present case studies [35, 38, 54, 76, 80–82] and reviews [33, 36, 39, 40], although some experimental 

investigation are reported for powder technologies [56, 75] and additive layer manufacturing [53, 69]. The 

applications motivating work in this area are the forging of gears [33, 38, 76], similar high performance 

automotive components [35, 81, 82] (i.e. bearings, cardan shafts, rods) and impellers [61, 75]. Tool design 

[35], particularly die-design for forging [33, 38, 76], and new process configuration [39] is also frequently 

investigated by authors. Process parameters and variables for new processes are determined by several 

authors [36, 38, 39, 56, 82], again mainly for forging processes and powder technologies. 

Process Design 

“Process design” papers aim to into establish [8–11, 14, 20, 55, 58, 68], optimize [12, 22, 34, 44] or enhance 

[18, 43, 49] process capabilities in terms of technological quality [8, 11, 18, 43, 44, 49, 68], geometric 

capabilities [9, 10, 14, 20, 55], workable material [12, 34, 58] or waste reduction. Investigations are mainly 

empirical (experimental and case studies) and analytical [8–12, 14]. The empirical ones focus on forming, 

particularly on enhancing and optimizing Semi Solid Metal Casting (SSMC) processes in term of the 

technological quality [43, 44, 68] or for additive layer manufacturing processes establish workable materials 

[58] or geometric capabilities [55]. Analytical papers are focused on determining achievable geometries [9, 

10, 14] and technological quality [8, 11] as well as optimizing workable materials [12] in forging process 

applications. Analytical analysis on material optimization have also been conducted for powder technologies 



[8–12, 14]. Much of the work on numerical analysis enhance and optimize the quality of casting, particularly 

investment casting [18, 22], and also defining the component shapes achievable by forging [20].  

Product Design 

“Product design” papers aim to evaluate, modify and establish the influence of product design on process 

performances [19, 29], feasibility [25, 26, 28], design [15, 28, 30] and final product quality [29]. DFM 

methodologies are mainly used in this category [15, 19, 25, 26, 28–30], it is interesting to notice that only 

two papers have investigated forging with different methodologies, one numerically (i.e. regarding cost 

performances improvement [19]) and the other analytically (i.e. regarding process design [15]). DFM 

methodologies have also been applied for determining the feasibility of forming [25, 26] and casting 

processes [28]. The approach is a powerful one and processes chains and process parameters have been 

designed using DFM methodologies for casting [28], forming and additive layer manufacturing [30]. DFM 

methodologies have been used for predicting the final product quality (i.e. shrinkage) and performances (i.e. 

quantify ideal shape modifications) in powder technologies (HIP) [29]. 

Material Characterization 

“Material characterization” papers define metal properties in connection with a new process [62, 74] (e.g. 

Low pressure Metal Injection Molding, LMIM, and laser hot wire process, ALM process) or existing process 

[21, 22, 41, 46, 50, 52, 57, 73] or products. Microstructure [41, 46, 50, 52, 57, 62, 73, 74] mechanical 

properties [52, 57, 62, 73], plastic flow/behavior [21] and other material processing parameters (e.g. fluidity, 

strain curve) [22, 41, 50] are commonly investigated material properties. Titanium [22, 41, 46, 50, 73, 74] is 

the most investigates material, because of its excellent mechanical proprieties, versatility and high cost but it 

is not the only focus and other papers investigate specific alloys such as: Aluminum-Titanium [21], Nickel-

Titanium [57] and Inconel alloys [52, 57]. The majority of the articles is experimental [46, 50, 52, 57, 62, 74] 

or case study [73, 74], although it is surprising to note that only one use a Design of Experiments approach 

[52]. Two papers investigate titanium behavior for centrifugal casting [22] and semi-solid metal casting [21] 

with numerical models. Forming [50], particularly SSMC [21, 46], additive layer manufacturing and powder 

technologies processes are the most investigated for material characterization.  



Table 3: Overview of the NNS research: Process innovation, Process Design, Product Design, Material Characterization, Differential Analysis, Applied framework 

Stream Process Innovation Process Design Product Design Material 
Characterization 

Differential analysis Applied Framework 

Construct 
variants 

Process analysis, Process 
definition 

Process Characterization, 
Process Modeling, 
Process Optimization 

Adaptive design, 
Design For X, 
Parametric Design, 
Design Analysis, 
Virtual Prototyping 

Microstructure analysis, 
Microstructure 
development 

Experimental analysis, 
Differential cost analysis 

Expert System, 
Framework, Flowchart, 
Algorithm 

Description Introducing a new process 
or describing its 
capabilities and main 
variables for a defined 
range of product and 
materials 

Establish, optimize or 
enhance process 
capabilities in terms of 
technological quality, 
geometric capability, 
workable material and 
waste reduction 

Evaluate/modify/establ
ish influence of product 
design on process 
performances/feasibilit
y/ design and final 
product quality  

Material properties 
(microstructure, 
mechanical, plastic 
behavior ...) definition in 
connection with a 
developed or existent 
process/product. 

Compare different 
processes and/or product 
designs and/or materials 
by considering economic 
and/ or technological 
output  
(product quality/ 
conformity/ proprieties) 

Introducing general 
models or dedicated 
procedures in order to 
act on manufacturing 
variables (process, 
product design, material) 
and obtaining resources 
saving  

Key 
Concepts 

Process capabilities 
mapping, Process 
variables, Innovative 
process configuration and 
equipment (e.g. new die 
design)  

Experimental 
characterization, Design 
of Experiments, Process 
Modeling (FEM, 
Analytic),  

Geometric modeling, 
Geometric feasibility, 
Process feasibility, 
Preform design 

Formability, Mechanical 
properties, Fluidity, 
Recrystallization, 
Product quality 

Process comparison, 
Economic evaluation, 
Economic model,  

General Model, 
Systematic Approach, 
Multi-subject approach, 
Adaptive frame 

Papers 
number 

24  
(29% of the total) 

29  
(35% of the total) 

7  
(9% of the total) 

11  
(13% of the total) 

7  
(9% of the total) 

6  
(7% of the total) 

Main Works Schlienger et al.[69]; LaSalle 
& Zedalis [75]; Groenbaek & 
Birker [76]; Lewis et al. [53]; 
Milewski et al. [54]; Klug et 
al. [80]; Behrens et al. [81]; 
Vilotić et al. [82]; Dean [38]; 
Moriguchi [33]; Kruth et al. 
[36]; Yoshimura & Tanaka 
[35]; Mac Donald & Hashmi 
[39]; Mudge & Wald [40]; 
Janney et al.[56]; Shi et al. 
[61] 

Li [18]; Hirt et al. [68]; Kim 
et al. [22]; Chitkara & 
Bhutta [8]; Chitkara & Kim 
[10]; Chitkara and Bhutta 
[9]; Chitkara & Kim [11]; 
Netto et al. [12]; Jeon & 
Kim [14]; Siegert et al. 
[34]; Kapranos et al. [44]; 
Kang et al. [43]; Qi et 
al.[55]; Taminger & Hafley 
[58]; Dirba et al.[49]; 
Mamalis et al. [20] 

Takemasu et al. [19]; 
Tomov & Gagov [15]; 
Chu et al.[25]; De Sam 
Lazaro et al. [26]; Yin et 
al. [28]; Konak et al. [29]; 
Medellin et al. [30] 

Blackwell & Wisbey [73]; 
Kottman et al. [74]; Okada 
et al. [21]; Yamamoto et al. 
[41]; Curle [46]; Kim et al. 
[22]; Arribas et al.[50]; Qi 
et al. [52]; Krishna et al. 
[57]; Julien & Després [62] 

Tateno [3]; Bhatkal & 
Hannibal [85]; Cominotti & 
Gentili [83]; Witulski et al. 
[42]; Morita et al.[17]; 
Campbell [86]; Bewlay et 
al. [64] 

Onodera & Sawai [66]; 
Castro et al.[16]; Altan & 
Miller [7]; Caporalli et al. 
[27]; Löwer et al. [31]; 
Kudo [32] 



Differential Analysis  

In the category “Differential analysis”, papers compare different processes [17, 42, 85] or different 

processes with different product designs [64, 86] or even different combinations of processes, product 

designs and materials [83, 84]. Authors use comparison criteria which include process economics [83, 84] 

and technological output evaluations [17, 42, 64, 85, 86]. The technological output evaluation considers 

product quality, product conformity and the generic proprieties (e.g. part weight, vibrational characteristics). 

The latter are final product characteristics which are not described as quality or conformity requirements (i.e. 

depending on the specific product application). Three paper use quantitative approach [84–86], comparing 

different casting processes [86], casting and powder technologies (MIM) [85] as well as casting and forging 

[84]. Isothermal forging has been used as benchmark for comparison of several processes: experimentally for 

roll forging [64] and semi-solid metal casting (SSMC) [42] and numerically for closed die forging [17]. The 

only case study reports an economic comparison between flow forming and friction welding/machining [83]. 

Applied framework  

“Applied framework” papers introduce general models [7, 31, 32] or adaptive procedures [16, 27, 66] for 

determining manufacturing variables (process, product design, material) in order to obtain resources saving 

[7, 16, 31, 32], quality enhancing [66] or process design optimization (i.e. process parameters selection) [7, 

16, 27]. The majority of the papers analyze process and product variable combinations [16, 32, 66], but only 

one consider the combination of process, product and material [31]. Two of them are taking in consideration 

only process variation [7, 27]. Main application of work in the class is the forging process [7, 16, 27, 66], 

although two articles include casting [31] and forming [32] in their frameworks. Resource saving is the main 

motivation (i.e. raw material usage reduction [7, 16, 31]), because of its high impact on forging cost. DFM 

methodologies [27, 31] and reviews [7, 32] have been used for constructing the frameworks, although the 

following report different approaches: an Ishikawa diagram for cold forging [66] is constructed through a 

case study and one analytical approach use a Genetic Algorithms [16] for developing a preform design 

methodology.  



Closing Remarks 

Near net shape manufacturing is a multi-disciplinary task and consequently approaches are varied and often 

driven by the nature of the specific application. The literature reflects how NNS philosophies have evolved 

over the years to include almost all the main manufacturing techniques. So although initially the phrase was 

only used in reference to plastic deformation processes, NNS concepts have now been extended to casting 

and powder technologies and are implicit in the justification of many specialist forming processes (e.g. flow 

forming, hydroforming, SSMC) [21, 39, 42–44, 46, 68, 83], powder technologies (HIP, MIM) [62, 85] and 

additive layer manufacturing systems [36, 40, 52–55, 57, 58, 69, 73, 74] . Indeed today the term NNS is 

frequently used to convey the generic capabilities of manufacturing technologies and distinguish them from 

systems that aim to deliver finished components. The literature also highlights that NNS has been associated 

with the creation of advantageous process and material combination for particular designs whose form has 

been manually tailored for that purpose. Interestingly there appears to be a lack of general frameworks or 

CAM/CAD tools to support the general process of ‘Design for NNS’ (i.e the reported tools [2, 25–27] are 

largely focused on support of specific processes such as casting, closed die forging and injection molding). 

Similarly the general interactions between material, design and process are only rarely, formally investigated 

(even although this is an area of work suggested by many authors) [7, 32]. 

The literature demonstrates that innovative NNS systems are still emerging but although researchers 

frequently report new technologies the impact of these contributions on cost and the overall workflow in a 

manufacturing process is only rarely discussed [32, 66, 83]. Perhaps a competitive analysis might be 

undertaken for a number of candidate processes (usually no more than two) but the scope of such analysis is 

often limited by the lack of flexibility in a component’s material and design. A comparative cost analysis is a 

fundamental instrument for justifying every investigation into the desirability of NNS technologies. The few 

differential cost analysis reported in the literature are mainly case study [83, 85], where only different 

process alternatives have been evaluated (i.e. without considering alternate materials or designs). There 

appear to be no reports of work connecting systematic methodologies for process (e.g. Swift) and material 

(e.g. Ashby) selection. 



Conclusion 

This review has identified and categorized the reported work on Near Net Shape manufacturing over the last 

thirty years. The process of creating a structured summary of the field has resulting in the identification of 

several knowledge gaps and trends in the academic literature. It is clear that the NNS approach has evolved 

from being a generic term to a specific family of processes and technologies. The early sections showed that 

the total literature (relating to all various aspects of NNS manufacturing) is now extensive and consequently 

the scope of this paper has been restricted to metals. So further work is needed apply to a systematic 

literature review methodology to the processes for materials which fell outside the scope of this paper (e.g. 

ceramic and composites) This additional breadth would help to better define the common approaches and, 

perhaps, more clearly identify the generic NNS research opportunities and limitations. However the authors 

believe that, even given the necessary limitations of this paper, the attempt to completely summarize the 

NNS manufacturing approach for the first time is a useful contribution that will focus and stimulate further 

work in this important area. 
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