8 research outputs found

    Rescuing the End-user systems from Vulnerable Applications using Virtualization Techniques

    Full text link
    In systems owned by normal end-users, many times security attacks are mounted by sneaking in malicious applications or exploiting existing software vulnerabilities through security non-conforming actions of users. Virtualization approaches can address this problem by providing a quarantine environment for applications, malicious devices, and device drivers, which are mostly used as entry points for security attacks. However, the existing methods to provide quarantine environments using virtualization are not transparent to the user, both in terms of application interface transparency and file system transparency. Further, software configuration level solutions like remote desktops and remote application access mechanisms combined with shared file systems do not meet the user transparency and security requirements. We propose qOS, a VM-based solution combined with certain OS extensions to meet the security requirements of end-point systems owned by normal users, in a transparent and efficient manner. We demonstrate the efficacy of qOS by empirically evaluating the prototype implementation in the Linux+KVM system in terms of efficiency, security, and user transparency.Comment: 14 pages, 9 figure

    Securing the software-defined networking control plane by using control and data dependency techniques

    Get PDF
    Software-defined networking (SDN) fundamentally changes how network and security practitioners design, implement, and manage their networks. SDN decouples the decision-making about traffic forwarding (i.e., the control plane) from the traffic being forwarded (i.e., the data plane). SDN also allows for network applications, or apps, to programmatically control network forwarding behavior and policy through a logically centralized control plane orchestrated by a set of SDN controllers. As a result of logical centralization, SDN controllers act as network operating systems in the coordination of shared data plane resources and comprehensive security policy implementation. SDN can support network security through the provision of security services and the assurances of policy enforcement. However, SDNā€™s programmability means that a networkā€™s security considerations are different from those of traditional networks. For instance, an adversary who manipulates the programmable control plane can leverage significant control over the data planeā€™s behavior. In this dissertation, we demonstrate that the security posture of SDN can be enhanced using control and data dependency techniques that track information flow and enable understanding of application composability, control and data plane decoupling, and control plane insight. We support that statement through investigation of the various ways in which an attacker can use control flow and data flow dependencies to influence the SDN control plane under different threat models. We systematically explore and evaluate the SDN security posture through a combination of runtime, pre-runtime, and post-runtime contributions in both attack development and defense designs. We begin with the development a conceptual accountability framework for SDN. We analyze the extent to which various entities within SDN are accountable to each other, what they are accountable for, mechanisms for assurance about accountability, standards by which accountability is judged, and the consequences of breaching accountability. We discover significant research gaps in SDNā€™s accountability that impact SDNā€™s security posture. In particular, the results of applying the accountability framework showed that more control plane attribution is necessary at different layers of abstraction, and that insight motivated the remaining work in this dissertation. Next, we explore the influence of apps in the SDN control planeā€™s secure operation. We find that existing access control protections that limit what apps can do, such as role-based access controls, prove to be insufficient for preventing malicious apps from damaging control plane operations. The reason is SDNā€™s reliance on shared network state. We analyze SDNā€™s shared state model to discover that benign apps can be tricked into acting as ā€œconfused deputiesā€; malicious apps can poison the state used by benign apps, and that leads the benign apps to make decisions that negatively affect the network. That violates an implicit (but unenforced) integrity policy that governs the networkā€™s security. Because of the strong interdependencies among apps that result from SDNā€™s shared state model, we show that apps can be easily co-opted as ā€œgadgets,ā€ and that allows an attacker who minimally controls one app to make changes to the network state beyond his or her originally granted permissions. We use a data provenance approach to track the lineage of the network state objects by assigning attribution to the set of processes and agents responsible for each control plane object. We design the ProvSDN tool to track API requests from apps as they access the shared network stateā€™s objects, and to check requests against a predefined integrity policy to ensure that low-integrity apps cannot poison high-integrity apps. ProvSDN acts as both a reference monitor and an information flow control enforcement mechanism. Motivated by the strong inter-app dependencies, we investigate whether implicit data plane dependencies affect the control planeā€™s secure operation too. We find that data plane hosts typically have an outsized effect on the generation of the network state in reactive-based control plane designs. We also find that SDNā€™s event-based design, and the apps that subscribe to events, can induce dependencies that originate in the data plane and that eventually change forwarding behaviors. That combination gives attackers that are residing on data plane hosts significant opportunities to influence control plane decisions without having to compromise the SDN controller or apps. We design the EventScope tool to automatically identify where such vulnerabilities occur. EventScope clusters appsā€™ event usage to decide in which cases unhandled events should be handled, statically analyzes controller and app code to understand how events affect control plane execution, and identifies valid control flow paths in which a data plane attacker can reach vulnerable code to cause unintended data plane changes. We use EventScope to discover 14 new vulnerabilities, and we develop exploits that show how such vulnerabilities could allow an attacker to bypass an intended network (i.e., data plane) access control policy. This research direction is critical for SDN security evaluation because such vulnerabilities could be induced by host-based malware campaigns. Finally, although there are classes of vulnerabilities that can be removed prior to deployment, it is inevitable that other classes of attacks will occur that cannot be accounted for ahead of time. In those cases, a network or security practitioner would need to have the right amount of after-the-fact insight to diagnose the root causes of such attacks without being inundated with too much informa- tion. Challenges remain in 1) the modeling of apps and objects, which can lead to overestimation or underestimation of causal dependencies; and 2) the omission of a data plane model that causally links control and data plane activities. We design the PicoSDN tool to mitigate causal dependency modeling challenges, to account for a data plane model through the use of the data plane topology to link activities in the provenance graph, and to account for network semantics to appropriately query and summarize the control planeā€™s history. We show how prior work can hinder investigations and analysis in SDN-based attacks and demonstrate how PicoSDN can track SDN control plane attacks.Ope

    Evidence-based Accountability Audits for Cloud Computing

    Get PDF
    Cloud computing is known for its on-demand service provisioning and has now become mainstream. Many businesses as well as individuals are using cloud services on a daily basis. There is a big variety of services that ranges from the provision of computing resources to services such as productivity suites and social networks. The nature of these services varies heavily in terms of what kind of information is being out-sourced to the cloud provider. Often, that data is sensitive, for instance when PII is being shared by an individual. Also, businesses that move (parts of) their processes to the cloud are actively participating in a major paradigm shift from having data on-premise to transfering data to a third-party provider. However, many new challenges come along with this trend, which are closely tied to the loss of control over data. When moving to the cloud, direct control over geographical storage location, who has access to it and how it is shared and processed is given up. Because of this loss of control, cloud customers have to trust cloud providers that they treat their data in an appropriate and responsible way. Cloud audits can be used to check how data has been processed in the cloud (i.e., by whom, for what purpose) and whether or not this happened in compliance with what has been defined in agreed-upon privacy and data storage, usage and maintenance (i.e., data handling) policies. This way, a cloud customer can regain some of the control he has given up by moving to the cloud. In this thesis, accountability audits are presented as a way to strengthen trust in cloud computing by providing assurance about the processing of data in the cloud according to data handling and privacy policies. In cloud accountability audits, various distributed evidence sources need to be considered. The research presented in this thesis discusses the use of various heterogeous evidence sources on all cloud layers. This way, a complete picture of the actual data handling practices that is based on hard facts can be presented to the cloud consumer. Furthermore, this strengthens transparency of data processing in the cloud, which can lead to improved trust in cloud providers, if they choose to adopt these mechanisms in order to assure their customers that their data is being handled according to their expectations. The system presented in this thesis enables continuous auditing of a cloud provider's adherence to data handling policies in an automated way that shortens audit intervals and that is based on evidence that is produced by cloud subsystems. An important aspect of many cloud offerings is the combination of multiple distinct cloud services that are offered by independent providers. Data is thereby freuqently exchanged between the cloud providers. This also includes trans-border flows of data, where one provider may be required to adhere to more strict data protection requirements than the others. The system presented in this thesis addresses such scenarios by enabling the collection of evidence at providers and evaluating it during audits. Securing evidence quickly becomes a challenge in the system design, when information that is needed for the audit is deemed sensitive or confidential. This means that securing the evidence at-rest as well as in-transit is of utmost importance, in order not to introduce a new liability by building an insecure data heap. This research presents the identification of security and privacy protection requirements alongside proposed solutions that enable the development of an architecture for secure, automated, policy-driven and evidence-based accountability audits

    Blockchain-enabled cybersecurity provision for scalable heterogeneous network: A comprehensive survey

    Get PDF
    Blockchain-enabled cybersecurity system to ensure and strengthen decentralized digital transaction is gradually gaining popularity in the digital era for various areas like finance, transportation, healthcare, education, and supply chain management. Blockchain interactions in the heterogeneous network have fascinated more attention due to the authentication of their digital application exchanges. However, the exponential development of storage space capabilities across the blockchain-based heterogeneous network has become an important issue in preventing blockchain distribution and the extension of blockchain nodes. There is the biggest challenge of data integrity and scalability, including significant computing complexity and inapplicable latency on regional network diversity, operating system diversity, bandwidth diversity, node diversity, etc., for decision-making of data transactions across blockchain-based heterogeneous networks. Data security and privacy have also become the main concerns across the heterogeneous network to build smart IoT ecosystems. To address these issues, todayā€™s researchers have explored the potential solutions of the capability of heterogeneous network devices to perform data transactions where the system stimulates their integration reliably and securely with blockchain. The key goal of this paper is to conduct a state-of-the-art and comprehensive survey on cybersecurity enhancement using blockchain in the heterogeneous network. This paper proposes a full-fledged taxonomy to identify the main obstacles, research gaps, future research directions, effective solutions, and most relevant blockchain-enabled cybersecurity systems. In addition, Blockchain based heterogeneous network framework with cybersecurity is proposed in this paper to meet the goal of maintaining optimal performance data transactions among organizations. Overall, this paper provides an in-depth description based on the critical analysis to overcome the existing work gaps for future research where it presents a potential cybersecurity design with key requirements of blockchain across a heterogeneous network

    HProve: A Hypervisor Level Provenance System to Reconstruct Attack Story Caused by Kernel Malware

    No full text

    Multidisciplinary perspectives on Artificial Intelligence and the law

    Get PDF
    This open access book presents an interdisciplinary, multi-authored, edited collection of chapters on Artificial Intelligence (ā€˜AIā€™) and the Law. AI technology has come to play a central role in the modern data economy. Through a combination of increased computing power, the growing availability of data and the advancement of algorithms, AI has now become an umbrella term for some of the most transformational technological breakthroughs of this age. The importance of AI stems from both the opportunities that it offers and the challenges that it entails. While AI applications hold the promise of economic growth and efficiency gains, they also create significant risks and uncertainty. The potential and perils of AI have thus come to dominate modern discussions of technology and ethics ā€“ and although AI was initially allowed to largely develop without guidelines or rules, few would deny that the law is set to play a fundamental role in shaping the future of AI. As the debate over AI is far from over, the need for rigorous analysis has never been greater. This book thus brings together contributors from different fields and backgrounds to explore how the law might provide answers to some of the most pressing questions raised by AI. An outcome of the CatĆ³lica Research Centre for the Future of Law and its interdisciplinary working group on Law and Artificial Intelligence, it includes contributions by leading scholars in the fields of technology, ethics and the law.info:eu-repo/semantics/publishedVersio

    Mobile Phones as Cognitive Systems

    Get PDF

    Proceedings of the 21st Conference on Formal Methods in Computer-Aided Design ā€“ FMCAD 2021

    Get PDF
    The Conference on Formal Methods in Computer-Aided Design (FMCAD) is an annual conference on the theory and applications of formal methods in hardware and system verification. FMCAD provides a leading forum to researchers in academia and industry for presenting and discussing groundbreaking methods, technologies, theoretical results, and tools for reasoning formally about computing systems. FMCAD covers formal aspects of computer-aided system design including verification, specification, synthesis, and testing
    corecore