© 2020 Benjamin E. Ujcich

SECURING THE SOFTWARE-DEFINED NETWORKING CONTROL PLANE
BY USING CONTROL AND DATA DEPENDENCY TECHNIQUES

BY

BENJAMIN E. UJCICH

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical and Computer Engineering
in the Graduate College of the
University of Illinois at Urbana-Champaign, 2020

Urbana, Illinois

Doctoral Committee:

Professor William H. Sanders, Chair
Assistant Professor Adam Bates
Professor Carl A. Gunter

Professor Ravishankar K. Iyer

ABSTRACT

Software-defined networking (SDN) fundamentally changes how network and security practition-
ers design, implement, and manage their networks. SDN decouples the decision-making about
traffic forwarding (i.e., the control plane) from the traffic being forwarded (i.e., the data plane).
SDN also allows for network applications, or apps, to programmatically control network forward-
ing behavior and policy through a logically centralized control plane orchestrated by a set of SDN
controllers. As a result of logical centralization, SDN controllers act as network operating systems in
the coordination of shared data plane resources and comprehensive security policy implementation.

SDN can support network security through the provision of security services and the assurances
of policy enforcement. However, SDN’s programmability means that a network’s security consider-
ations are different from those of traditional networks. For instance, an adversary who manipulates
the programmable control plane can leverage significant control over the data plane’s behavior.

In this dissertation, we demonstrate that the security posture of SDN can be enhanced using
control and data dependency techniques that track information flow and enable understanding of
application composability, control and data plane decoupling, and control plane insight. We support
that statement through investigation of the various ways in which an attacker can use control flow
and data flow dependencies to influence the SDN control plane under different threat models. We
systematically explore and evaluate the SDN security posture through a combination of runtime,
pre-runtime, and post-runtime contributions in both attack development and defense designs.

We begin with the development a conceptual accountability framework for SDN. We analyze
the extent to which various entities within SDN are accountable to each other, what they are ac-
countable for, mechanisms for assurance about accountability, standards by which accountability is
judged, and the consequences of breaching accountability. We discover significant research gaps in
SDN’s accountability that impact SDN’s security posture. In particular, the results of applying the
accountability framework showed that more control plane attribution is necessary at different layers
of abstraction, and that insight motivated the remaining work in this dissertation.

Next, we explore the influence of apps in the SDN control plane’s secure operation. We find that
existing access control protections that limit what apps can do, such as role-based access controls,

prove to be insufficient for preventing malicious apps from damaging control plane operations. The

ii

reason is SDN’s reliance on shared network state. We analyze SDN’s shared state model to discover
that benign apps can be tricked into acting as “confused deputies”; malicious apps can poison the
state used by benign apps, and that leads the benign apps to make decisions that negatively affect
the network. That violates an implicit (but unenforced) integrity policy that governs the network’s
security. Because of the strong interdependencies among apps that result from SDN’s shared state
model, we show that apps can be easily co-opted as “gadgets,” and that allows an attacker who min-
imally controls one app to make changes to the network state beyond his or her originally granted
permissions. We use a data provenance approach to track the lineage of the network state objects by
assigning attribution to the set of processes and agents responsible for each control plane object. We
design the PROVSDN tool to track API requests from apps as they access the shared network state’s
objects, and to check requests against a predefined integrity policy to ensure that low-integrity apps
cannot poison high-integrity apps. PROVSDN acts as both a reference monitor and an information
flow control enforcement mechanism.

Motivated by the strong inter-app dependencies, we investigate whether implicit data plane de-
pendencies affect the control plane’s secure operation too. We find that data plane hosts typically
have an outsized effect on the generation of the network state in reactive-based control plane de-
signs. We also find that SDN’s event-based design, and the apps that subscribe to events, can induce
dependencies that originate in the data plane and that eventually change forwarding behaviors. That
combination gives attackers that are residing on data plane hosts significant opportunities to influ-
ence control plane decisions without having to compromise the SDN controller or apps. We design
the EVENTSCOPE tool to automatically identify where such vulnerabilities occur. EVENTSCOPE clus-
ters apps” event usage to decide in which cases unhandled events should be handled, statically ana-
lyzes controller and app code to understand how events affect control plane execution, and identifies
valid control flow paths in which a data plane attacker can reach vulnerable code to cause unintended
data plane changes. We use EVENTSCOPE to discover 14 new vulnerabilities, and we develop exploits
that show how such vulnerabilities could allow an attacker to bypass an intended network (i.e., data
plane) access control policy. This research direction is critical for SDN security evaluation because
such vulnerabilities could be induced by host-based malware campaigns.

Finally, although there are classes of vulnerabilities that can be removed prior to deployment, it
is inevitable that other classes of attacks will occur that cannot be accounted for ahead of time. In
those cases, a network or security practitioner would need to have the right amount of after-the-fact
insight to diagnose the root causes of such attacks without being inundated with too much informa-
tion. Challenges remain in 1) the modeling of apps and objects, which can lead to overestimation
or underestimation of causal dependencies; and 2) the omission of a data plane model that causally
links control and data plane activities. We design the P1coSDN tool to mitigate causal dependency

modeling challenges, to account for a data plane model through the use of the data plane topology to

iii

link activities in the provenance graph, and to account for network semantics to appropriately query
and summarize the control plane’s history. We show how prior work can hinder investigations and

analysis in SDN-based attacks and demonstrate how P1coSDN can track SDN control plane attacks.

iv

To my parents, for their love and support.

ACKNOWLEDGMENTS

First, I would like to thank my Ph.D. co-advisors, Prof. William H. Sanders and Prof. Adam Bates,
for their tireless support, guidance, and advice in helping to plan the research direction of this dis-
sertation. Both gave me the freedom to pursue my research interests, the environment to become
an independent researcher, and the space to discuss any questions about research, careers, and life.
I am grateful to Prof. Ravishankar K. Iyer and Prof. Carl A. Gunter for their advice as Ph.D. com-
mittee members. I would also like to thank Prof. Andrew Miller, Prof. Klara Nahrstedt, Prof. Tarek
E Abdelzaher, Prof. Romit Roy Choudhury, Prof. Indranil Gupta, Prof. David M. Nicol, and Prof.
Michael Bailey for their research discussions throughout my time at Illinois.

Much of this dissertation’s work came about from three summer internships at MIT Lincoln Lab-
oratory in Lexington, Massachusetts, which included external collaborators from MIT Lincoln Lab-
oratory, Northeastern University, and Princeton University. I am indebted to Samuel Jero, Richard
Skowyra, Steven R. Gomez, Hamed Okhravi, Anne Edmundson, Bryan C. Ward, Nathan H. Burow,
Prof. Cristina Nita-Rotaru, James Landry, and Roger I. Khazan for their help, discussions, support,
and friendship. Those significant and long-lasting collaborations throughout those summers and
during the intervening academic years were instrumental in shaping this dissertation’s research di-
rection. I am forever thankful for my external colleagues who encouraged me in challenging times
to persevere and to make this dissertation’s research contributions the best that they could be.

I have been blessed to have had a wonderful group of friends and colleagues at Illinois with whom
I have had many discussions about research and about life in general. In the Performability Engi-
neering Research Group (PERFORM), I would like to thank Uttam Thakore, Mohammad Noured-
dine, Carmen Cheh, Ahmed Fawaz, Michael Rausch, Atul Bohara, Ronald Wright, Varun Badrinath
Krishna, David Huang, Brett Feddersen, Ken Keefe and Gabriel Weaver. In the Secure & Trans-
parent Systems Laboratory (STS), I would like to thank Wajih Ul Hassan, Pubali Datta, Riccardo
Paccagnella, Dawei Wang, Noor Michael, Akul Goyal, Sneha Gaur, Saad Hussain, and Jai Pandey.
I would additionally like to thank Qi Wang, Arjun Athreya, Subho Banerjee, Saurabh Jha, Yoga
Varatharajah, Hui Lin, Homa Alemzadeh, Zane Ma, Joshua Reynolds, Deepak Kumar, Paul Murley,
Seoung-kyun (Simon) Kim, Kartik Palani, and Elizabeth Reed.

Many of the research directions that I pursued during my time at Illinois were inspired by practi-

vi

tioners who shared insights on various operational challenges. Debbie Fligor and Wayland Morgan
in Technology Services at Illinois provided me with a better understanding of the networking, se-
curity, and privacy challenges of large enterprise environments. I would also like to thank David
Grogan at the University of Illinois System’s Ethics and Compliance Office for his discussions about
the university system’s approaches to data protection.

I am particularly grateful to Jenny Applequist, Jan Progen, and Jamie Hutchinson for their ed-
itorial assistance with this dissertation and related publications. I am appreciative of the wonder-
ful support staft at Illinois, including Dawn Cheek-Wooten, Kelli Anderson, Linda Morris, Erica
Kennedy, and Amy Irle, for their assistance with any question or need in the Coordinated Science
Laboratory and Information Trust Institute. I am also indebted to Mandy Wisehart and Kathy Atch-
ley (at Illinois), and Sue Haslett (at Carnegie Mellon University) for their incredible help with the
preparation of my faculty and industry applications.

My research journey was inspired early on by several people during my time as an undergraduate
and high school student. Prof. Kuang-Ching Wang and Prof. Harlan Russell at Clemson University
encouraged me in my research pursuits and in the then-nascent SDN architecture. Dan Schmiedt
and Brian Parker at Clemson University allowed me to observe the operational challenges of run-
ning a university network, which inspired my research interest in the operational challenges of net-
work debugging, troubleshooting, and security. Several summer internships with great colleagues
at the GENI Project Office at Raytheon BBN Technologies exposed me to various networking re-
search activities being performed across the country. Prof. Varavut Limpasuvan at Coastal Carolina
University inspired my interest as a high school student in the value and enjoyment of research.

Finally, I would like to thank my parents. I am grateful for their time spent listening to my chal-
lenges and successes throughout the dissertation process, and I am thankful for their unconditional
and endless love.

This dissertation is based upon work supported by the Army Research Office under Award No.
Wo911NF-13-1-0086; by the Air Force Research Laboratory and the Air Force Office of Scientific Re-
search under agreement number FA8750-11-2-0084; by the Department of Defense under Air Force
Contract No. FA8721-05-C-0002; by the Assistant Secretary of Defense for Research and Engineer-
ing under Air Force Contract No. FA8702-15-D-0001; by the National Science Foundation under
Grant Nos. CNS-1657534 and CNS-1750024; by the Maryland Procurement Office under Contract
No. H98230-18-D-0007; by generous support from MIT Lincoln Laboratory; and by generous sup-
port from the Roy J. Carver Fellowship provided by the Roy J. Carver Charitable Trust. Any opin-
ions, findings, and conclusions or recommendations expressed in this dissertation are those of the

author and do not necessarily reflect the views of the sponsoring organization.

vii

TABLE OF CONTENTS

LISTOF TABLES e e e e e e e e e e e e e X
LISTOF FIGURES e e e e e e e e e e e e e Xi
LIST OF ALGORITHMS e e e e e Xii
LIST OF ABBREVIATIONS e e e e e s e xiii
CHAPTER 1 INTRODUCTION e e e e e e 1
L1 OVeIVIEW . . o o ot s s e e e e e e e e e e e 1
1.2 Contributions e 3
1.3 Organization 6
CHAPTER 2 BACKGROUND e e e e e e i 7
21 SDN Architecture e 7
2.2 SDN Architecture Attacks e 13
2.3 SDN Architecture Defenses o o i i i i i e e 19
CHAPTER 3 ACCOUNTABILITY IN SOFTWARE-DEFINED NETWORKING 27
3.1 Introduction o e 27
3.2 Designing an Accountable SDN Architecture 29
3.3 Case Study: Accountable SDN Applications 34
3.4 Conclusion e e 36
CHAPTER 4 CONTROL PLANE CROSS-APPPOISONING 37
41 Introduction e 37
4.2 ThreatModel e 40
43 Challenges e 41
4.4 Cross-AppPoisoning L 42
4.5 Cross-App Poisoning Case Study: Security-Mode ONOS 46
4.6 Information Flow Control Policies i .. 53
4.7 PROVSDN e 54
4.8 DiScussion e e 60
4.9 Related Work e 63
410 Conclusion e 64

viii

CHAPTER 5 CONTROL PLANE EVENT-BASED VULNERABILITIES 65

5.0 Introduction e e 65
5.2 Challenges 69
5.3 EVENTSCOPE OVErview v v v it e e e e e e e e e e e e s e e 71
5.4 EventUse Analysis 73
5.5 EventFlow Analysis. 79
5.6 Implementation 85
5.7 ONOS Vulnerability Evaluation Results 86
5.8 DiScUSSION e e e e e e 94
5.9 Related Work e 96
510 Conclusion e 98
CHAPTER 6 CONTROL PLANE CAUSAL ANALYSIS 99
6.1 Introduction e e 99
6.2 Challenges 101
6.3 P1coSDN Provenance Model 106
6.4 P1coSDN Threat Model e 112
6.5 PICOSDN Design e 112
6.6 Implementation 120
6.7 Evaluation e 121
6.8 DiscusSION e e e e 126
6.9 Related Work e 127
6.10 Conclusion e 128
CHAPTER 7 CONCLUSIONS e e 129
71 Reviewof Contributions e 129
72 Overall Takeaways e e 130
73 FutureResearch e 133
APPENDIX A PUBLICATIONS RELATED TO THE DISSERTATION 135
APPENDIX B PROVSDN e e e e e e e 137
B Security-Mode ONOS Details 137
B.2 Selected Code for Reactive Forwarding App 139
B.3 W3CPROV-DM Representations, 139
B.4 Implementing PROVSDN on Other Controllers. 139
APPENDIX C EVENTSCOPE ittt e e e e e e e e e e e e e 143
C.a ONOS Application Structure i 143
C.2 ONOSEvent Flow Graph Example 147
C.3 Number of Clusters and DetectionRate 147
REFERENCES e 149

ix

2.1
2.2

3.1

4.1
4.2

5.1

6.1
6.2
6.3

Ba
B.2

LIST OF TABLES

Known Attacks on the SDN Architecture.
Runtime Defenses for the SDN Architecture.

Summary of Design Considerations and Properties for SDN Accountability.

Static Analysis Results of CAP Gadgets for Security-Mode ONOS Apps.
PROVSDN Micro-Benchmark Latencies.

Event Listener Vulnerabilities Based on Event Flow Graph Analysis and Event
Use Filtering (1=10.90). e

Nodes in the P1coOSDN Provenance Graph Model.
Edges (Relations) in the PIcoOSDN Provenance Graph Model.
List of PICOSDN Hooks. e e e

Partial RBAC Model for Security-Mode ONOS and Included ONOS Apps.
SDN Shared Control Plane State Semantics Using W3C PROV-DM.

21

107
120

138
141

2.1
2.2

4.1
4.2
4.3
4.4
4.5
4.6
4.7

5.1
5.2
5.3
5-4
5.5
5.6
5.7
5.8

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

B.a

Ca

C3

LIST OF FIGURES

SDN architecture overview and app interactions via service APIs and event callbacks. 8

SDN architecture with event listeners and event dispatchers. 1
Example of a cross-app information flow graph G. 45
Cross-app information flow graph Gonos. - -« v v v v v v v v i e oo 48
App to object accessibility (via shortest paths) in Gonos. - - . . .« o o oL 49
Object to app accessibility (via shortest paths) in Gonos. - - -+« « « o o v oo oL 49
PROVSDN architecture showing an app callingthe NBAPL. 55
Provenance graphs generated from example CAP attack. 58
Flow start latency macrobenchmarks. 59
Cross-plane attack example. e 69
EVENTSCOPE architecture overview. 72
ONOSeventusematrixX. v i it e e e e e e e e e 77
Dendrogram representation of ONOS network event type similarity among apps. . 78
Event flow graph of fwd’s packet processor. 82
Component analysis performanceresults. 85
Partial event flow graph showing vulnerable code paths used in CVE-2018-12691. . 89
Partial event flow graph showing vulnerable code paths used in CVE-2019-11189.. . 92
Topology of the CVE-2018-12691 attack scenario. 102
Data, process, and agency provenance of the CVE-2018-12691 attack scenario. ... 103
Data partitioning models for flowrules. 109
Comparison of execution partitioningmodels. 110
Dataplanemodel. L m
P1coSDN architecture overview with example workflow. 112
P1coSDN latency performanceresults.. 122
Relevant features of the host migration attack’s graph. 124
Relevant features of the graph from the cross-app attack. 126
Selected reactive forwardingappcode. o o L. 140
Abbreviated code structure of an example ONOS network application. 144
Event flow graph of ONOS with core service components and several apps. 145
ONOS apps’ candidate and valid vulnerabilities as a function of clustering

threshold 7. o e 147

xi

4.1

5.1
5.2
5.3

6.1
6.2
6.3

6.4
6.5

LIST OF ALGORITHMS

Cross-App Information Flow Graph Generation 44
Candidate Vulnerability Generation 74
Event Flow Graph Generation 81
Vulnerability Validation 84
DataPlane Model e 115
Common Ancestry Trace 116
Iterative Backward-Forward Trace 117
Network Activity Summarization 18
Network Identifier Evolution i e 119

xii

API
ARP
AS
AST
BDDP
BGP
CAP
CVE
DAG
DHCP
DoS
DPID
HMAC
ICMP
IDS
IFC

IP

IPC
IPv4
LLDP

MAC

LIST OF ABBREVIATIONS

Application programming interface
Address Resolution Protocol
Autonomous system

Abstract syntax tree

Broadcast Domain Discovery Protocol
Border Gateway Protocol

Cross-app poisoning

Common Vulnerabilities and Exposures
Directed acyclic graph

Dynamic Host Configuration Protocol
Denial of service

Datapath identifier

Hash-based message authentication code
Internet Control Message Protocol
Intrusion detection system

Information flow control

Internet Protocol

Inter-process communication

Internet Protocol version 4

Link-layer Discovery Protocol

Media access control

xiii

MLS
NB API
NOS
ODL
ONOS
OSGi
OVS
PROV-DM
RBAC
REST
ROP
SAT

SB API
SMT
SDN

STRIDE

TCAM
TCB

TCP
TOCTTOU
VLAN

W3C

Multi-level security

Northbound application programming interface
Network operating system

OpenDaylight

Open Network Operating System

Open Services Gateway initiative

Open vSwitch

W3C Provenance Data Model

Role-based access control

Representational state transfer

Return-oriented programming

Boolean satisfiability problem

Southbound application programming interface
Satisfiability modulo theories problem

Software-defined networking

Spoofing, Tampering, Repudiation, Information Disclosure, Denial of Service, and

Elevation of Privilege

Ternary content-addressable memory
Trusted computing base
Transmission Control Protocol
Time-of-check-to-time-of-use
Virtual local area network

World Wide Web Consortium

Xiv

CHAPTER 1

INTRODUCTION

1.1 Overview

Software-defined networking (SDN) is an emerging paradigm that provides flexible design of and
control over computer networks. SDN has seen rapid commercialization to date, having been in-
corporated into a variety of application domains spanning industrial utilities, cloud computing, and
telecommunication providers, among others [1]. As a result, it has been estimated that the market
value of SDN will total more than $12 billion by 2022 [2]. In contrast to traditional legacy networks,
SDN decouples the decision-making of traffic forwarding (i.e., the control plane) from the traffic
being forwarded (i.e., the data plane), logically centralizes the decision-making into an SDN con-
troller composed of software processes, and exposes a set of network abstractions and API services
to allow for development of network applications that extend the control plane’s functionality [1].

Given that the SDN architecture’s centralization allows a network operator to “see” all network ac-
tivities [3], SDN has been proposed as a network security service that augments the functionality of
existing host-based security services. For instance, SDN’s flexibility in defining network forwarding
rules allows for the implementation of fine-grained network security policies [4, 5]. In contrast to
separate middleboxes (e.g., firewalls) that operate independently of the network’s forwarding devices
(e.g., switches and routers), the same network security functionality can be composed as network
applications that react to network state changes and ensure that the proper network access control
policies for hosts are enforced.

While SDN can implement network security services to further secure hosts on networks, the se-
curity of SDN, too, must be understood in order to systematically evaluate the overall SDN security
posture relative to that of legacy networks. The SDN architecture introduces several new security
considerations, such as attacks on controllers, the lack of trust between network applications and
controllers, and the lack of trusted forensics tools for control plane insight [6]. Those issues, among
others, have become more pronounced as simple SDN controllers have grown into complex and
full-fledged programmable network operating systems.

Much like traditional desktop operating systems, network operating systems are responsible for

the coordination and security of resources shared among applications and users. For networks,

the shared resources are the network’s control plane and the network’s various abstractions. SDN
controllers operating as network operating systems, such as OpenDaylight (ODL) and the Open
Network Operating System (ONOS), typically provide 1) a set of network abstractions for reasoning
about network objects; 2) a set of core services and API calls that allow network applications to inter-
act with a shared SDN control plane state, which comprises topological information and forwarding
rule behavior; and 3) an event-based notification system that dispatches events to interested network
applications and core services upon control plane state changes.

Given that the most popular SDN controllers have been designed as network operating systems,
we consider the traditional challenges of secure operating system design as applied to the SDN
context. That approach allows us to evaluate the security of SDN and the overall SDN security
posture. We want to understand the unique characteristics of SDN that pose new challenges in the
design of secure network operating systems, and we focus in particular on control plane insight and
information flow within the control plane because of the control plane’s systemic effect on network
operations. Taking SDN characteristics into account, we formulate three research questions about
SDN control plane security vis-a-vis operating system design, as follows.

First, to what extent does the SDN design of composable network applications impact over-
all SDN security properties? We compare SDN to different domains for which operating sys-
tems have been designed and deployed. For instance, mobile operating systems, such as An-
droid, can allow applications to operate relatively independently as sandboxes and to communi-
cate through well-defined inter-process communication (IPC) [7]. In contrast, the SDN archi-
tecture inherently focuses on the network as a single shared resource,’ and most security solu-
tions to date have focused on authorization, permissions, and access control over that shared re-
source [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21]. In network operating systems, network applications
share information through the use of API calls to core services, and these calls generate or use data
that comprise the shared SDN control plane state. That inter-app communication mechanism via
the shared state creates security challenges based on the potential for information flow from lower-
integrity network applications to higher integrity network applications.

Second, to what extent does the SDN design of control and data plane decoupling impact overall
SDN security properties? Compared to legacy networks, a touted benefit of SDN is its decoupling
of the control and data planes into separate concerns and abstractions [1]. One consequence of
that design decision is that the design allows for the centralization of decision-making within the
controller and for the use of “dumb” forwarding devices (i.e., switches and routers) to implement the

forwarding. Although control planes can be proactively configured, reactive control planes make

"Network “slicing” is possible through the use of network hypervisors, such as FlowVisor [8], that are positioned
above an SDN controller or network operating system. However, network hypervisors suffer from scalability chal-
lenges [9] and have been largely supplanted by SDN controllers that account for multi-tenant operators and virtual
networks.

decisions based on data plane information; for instance, control plane decisions can be made based
on data from incoming packets that were generated by network hosts. Control plane decisions made
from untrusted sources, such as spoofed packets, can have systemic effects in the control and data
planes [22]. Thus, the apparent decoupling of planes belies the implicit information flow, which has
far-reaching and unintended network security ramifications.

Third, what design considerations are necessary for greater control plane insight? For instance,
to guarantee coverage over all control plane activities in order to take preventative actions against
undesired behavior, mechanisms such as reference monitors [23] should ensure that interposition
over calls and events to enforce policy is possible. However, current SDN controllers and network
operating system designs do not provide a central location that can interpose over all such activi-
ties. Furthermore, given a shared-state design, the modeling of network abstractions and controller
processes significantly affects the ability to reason about past activities for troubleshooting, root
cause analysis, and attack understanding. However, current SDN controllers provide neither effi-
cient mechanisms for accurate and precise tracking and understanding of causal dependencies, nor

the precise agency representations necessary for attribution.

1.2 Contributions
It is our thesis that:

The security posture of a software-defined network can be enhanced using control and
data dependency techniques that track information flow and enable understanding of ap-

plication composability, control and data plane decoupling, and control plane insight.

This dissertation explores SDN control plane security with a focus on the design of secure network
operating systems. Our goal is to study the security and accountability” of the control plane as
a primary objective, and we use control and data dependency techniques to solve the associated
research questions. In particular, we leverage data provenance, or the metadata about how data
were used and generated, as a core methodology in our exploration. Data provenance is frequently
represented graphically: nodes represent data objects, system activities, and system principals; and
edges represent relations among such objects, activities, and principals. The resulting graphical
structure is amenable to causal dependency reasoning. We also leverage static analysis to aid in the
identification of security-relevant control and data flows within the control plane’s core services and

network applications.

*Accountability, as used in this dissertation, refers to attribution mechanisms that enhance “non-repudiation, deter-
rence, fault isolation, intrusion detection and prevention, and after-action recovery and legal action” [24].

Throughout the dissertation, we use the ONOS SDN controller [25] as a running case study.
ONOS is an open-source SDN controller developed in part by the Open Networking Foundation’s
Open Networking Lab and supported as a Linux Foundation project. The ONOS code base is freely
available online [26], which has allowed us to examine and extend its source code. ONOS also
incorporates an extensive API and event-based notification system among its core services’ compo-
nents and network applications. The ONOS code base also provides numerous network applications
for analysis, and they serve as an underlying dataset for evaluating the efficacy of our various ap-
proaches.

Our specific contributions in this dissertation are the following:

C1 We applied a conceptual framework of accountability to SDN to identify the agents, system

entities, processes, and standards involved in network accountability assurance.

C2 We illustrated the need for accountability through a practical case study scenario of SDN net-

work applications.

C3 We identified the information flow control (IFC) integrity problem in SDN, i.e., cross-app poi-
soning (CAP). We demonstrated that malicious apps can utilize a lack of information flow

protections to poison the control plane’s state and escalate privilege.

C4 We systematically identified CAP attack vulnerabilities, given a specified RBAC policy, by mod-

eling the SDN control plane’s allowed information flows.

Cs We designed a defense against CAP attacks, PROVSDN, that uses data provenance for detection

and prevention of CAP attacks by enforcing IFC policies online in real-time.
C6 We implemented and evaluated CAP attacks and PRovSDN with the ONOS controller.

C7 We designed an automated approach for analyzing SDN control plane event use by applications
that identifies likely missing event handling and checks whether this lack of event handling,

in combination with activities of other apps, can cause data-plane effects.

C8 We created the event flow graph data structure, which allows for succinct identification of
(a) event dispatching, event listening, and API use among SDN components, as well as (b) a

context in which vulnerabilities can be realized.
C9 We implemented our vulnerability discovery tool, EVENTSCOPE, in Java and Python.
Cio We discovered and validated 14 new vulnerabilities in ONOS that escalate data plane access.

C11 We designed an approach to the dependency explosion problem for SDN attack provenance

that utilizes event listeners as units of execution.

C12 We designed an approach to the incomplete dependency problem for SDN attack provenance

that incorporates a data plane model and tracking of network identifiers.

C13 We designed and implemented P1coSDN, which we use with ONOS to evaluate SDN attacks

and to demonstrate PICOSDN’s causal analysis benefits.
C14 We evaluated the performance and security of PIcoSDN using recent SDN attacks.

In combination, data provenance and static analysis provide insight into an SDN control plane’s
control and data flows prior to, during, and after runtime to ensure security properties and to
strengthen the overall SDN security posture. Thus, we consider our research contributions on data

provenance and static analysis temporally:

« Runtime: We used data provenance to build a graphical model of the lineage of objects com-
prising the shared SDN control plane state as that state changes over time (Cs and C13). We
used a reference monitor that referenced the provenance graph to enforce control plane infor-
mation flow control (IFC). The IFC was based on an integrity policy of interest that prevented
high-integrity network applications from being corrupted by low-integrity network applica-

tions.

o Pre-runtime: We used static analysis to find “gadgets” of data flows that began at permis-
sioned API read calls in network applications and flowed to permissioned API write calls (C4).
Such “gadgets” can be used by low-integrity network applications to influence high-integrity
network applications implicitly through the shared SDN control plane state. We also used
static analysis techniques to study the extent to which information originated in the data plane
(e.g., incoming packets to be processed), traversed API calls and event dispatches within core
services and network applications, and influenced control plane state changes that affected

the data plane (e.g., flow rule installation) (C8).

o Post-runtime: We used data provenance techniques to answer network-relevant questions
for root cause analysis (C14). Key benefits of organizing past network state provenance in
a graphical model include the ability to discard noncausal activities from past history and
the ability to understand the effects of undesired activities on other activities, both of which

simplify a practitioner’s task of root cause analysis after a security attack has occurred.

In addition to a temporal categorization, we can also consider our research contributions from

the attacker’s and the defender’s perspectives:

 Attack development: We investigated a class of integrity-based information flow vulnera-

bilities among network applications, the exploitation of which we call cross-app poisoning,

that act as confused deputies (C3). We demonstrated that such attacks were possible through
the use of a malicious app that instigated a series of cross-app poisoning “gadgets” (C4). We
also investigated the class of information flow attacks that leverage data plane input to cause
changes (via the control plane) to the data plane. We call such attacks cross-plane event-based
attacks (C7). We found 14 new cross-plane event-based vulnerabilities in ONOS network
applications, demonstrated several exploits that bypassed intended security policies, and reg-
istered 8 Common Vulnerabilities and Exposures (CVE) identifiers with MITRE (C10).

o Defense design: We designed provenance-based defense mechanisms and implemented
them by extending the ONOS codebase and writing ONOS network applications to collect
and query provenance data (Cs and C13). We hooked relevant API calls and event dispatches
within core services so that we would be able to interpose on all relevant calls and events.
We designed a provenance model that mitigates challenges in the modeling of the network’s
causal dependencies (C11 and C12). We built additional data provenance analysis tools to

provide after-the-fact root cause analysis insight into collected runtime provenance (C13).

1.3 Organization
The rest of the dissertation is organized as follows:

« Chapter 2 provides background on the SDN architecture’s components, the known security

attacks against the architecture, and the defenses against such attacks.

o Chapter 3 proposes an accountability framework for the SDN architecture and points out gaps

in the existing body of effort to secure the architecture.

o Chapter 4 presents the cross-app poisoning problem and the runtime defense tool PROvSDN

for information flow control.

« Chapter 5 presents the cross-plane event vulnerability problem and the pre-runtime defense

tool EVENTSCOPE for vulnerability discovery.

o Chapter 6 presents the challenges to control and data plane causal analysis and the post-

runtime defense tool PICOSDN for causal analysis.

« Chapter 7 concludes the dissertation and provides overall takeaways and future research di-

rections.

A list of publications related to this dissertation can be found in Appendix A.

CHAPTER 2

BACKGROUND

In this chapter, we introduce the software-defined networking (SDN) architecture. We detail the
architecture’s various components (Section 2.1), which include the controller, network applications,
and forwarding devices. Based on the design of the SDN architecture, we provide a comprehen-
sive overview of the known security-related attacks against the SDN architecture (Section 2.2) and
defenses that improve the SDN architecture’s security posture against such attacks (Section 2.3).
We categorize attacks related to flooding (Section 2.2.1), information leakage (Section 2.2.2), policy
modification (Section 2.2.3), and spoofing (Section 2.2.4). We categorize defenses related to run-
time detection (Section 2.3.1), pre-runtime detection (Section 2.3.2), and post-runtime detection

(Section 2.3.3).

2.1 SDN Architecture

Figure 2.1a shows an overview of the SDN architecture. SDN decouples how traffic decisions are
made (i.e., the control plane) from the traffic being forwarded (i.e., the data plane). Traffic decisions
are made in a logically centralized (but perhaps physically distributed) controller that functions as
the core of a network operating system. Controllers manage network configurations and forwarding
rules in the network’s forwarding devices through the southbound API (e.g., OpenFlow [27]). The
application plane extends the control plane’s management functionalities through the use of net-
work applications (or apps) that can query the network’s current state or set high-level intents that
influence the network’s state. The aforementioned properties regarding plane decoupling, logical
centralization, and programmability distinguish the SDN architecture from traditional networking

architectures [1].

2.1.1 Controllers and the Control Plane

The SDN controller (or simply the controller) acts as a network operating system to coordinate con-

current applications, to provision resources, and to implement security or network policies [1]. Sev-

External External| External

APPLICATION PLANE
app app Apps

Core ¢ |APPLICATION PLANE;

| NB API Internal app

modules

SDN |Core methods| internal app | |
Controller | Data stores | ' i
| SB API | Internal app |

Southbound API
CONTROL PLANE Switch
DATA PLANE

Forwarding Devices

End

End| End Hosts host
host

(a) ARCHITECTURE. SDN separates the data and control planes to logically
centralize network control. The application plane modularly extends the
control plane functionality. Apps can reside either as modules within the
controller or as external processes.

SDN Apps SDN Apps
APPLICATION PLANE | App 1 App2 | .| Appx APPLICATION PLANE
SDN SDN
Controller Flow rule‘ ... | API for shared Controller| [APIfor shared
service data structure n data structure n|

CONTROL CONTROL

PLANE ’Flow rule| [Shared data PLANE Shared data

store structure n structure n @
y A—

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Switch| _|Switch| __|Switch| o [SW '
DATA PLANE DATA PLANE

Forwarding Devices Forwarding Devices

(b) SERVICE API INTERACTIONS. 1: App 1 callsone (c) EVENT CALLBACK INTERACTIONS. 1: A switch
of the host service’s write() methods to insert a new notifies the controller about an event. 2: The event
host. 2: The host service adds the object to its own listener sends the event to the first registered app. 3

data store. 3: App 2 calls one of the host service’s and 4: Additional registered apps receive the event.
read() methods (not shown), and the service 5: The last app optionally returns an event. 6: The
queries the store. 4: The host service returns the event is actuated (e.g., in the data plane).

object to app 2.

Figure 2.1: SDN architecture overview and app interactions via service APIs and event callbacks.

eral controller frameworks exist, such as Floodlight [28], Ryu [29], the Open Network Operating
System (ONOS) [25], and OpenDaylight (ODL) [30]. Special-purpose controllers for secure envi-

ronments include SE-Floodlight [15], Rosemary [14], and Security-Mode ONOS [19]. Controllers
are written in general-purpose programming languages such as Java [15, 19, 25, 28, 30], Python [29],
and C [11, 14, 31]. Apps are typically written in the same language as the controller (i.e., as an internal

module) but can also be language-independent (i.e., as an external module).

2.1.1.1 Core services, core methods, and data stores

Controllers provide core services that maintain the current state of the network and that enable a set
of abstractions for additional functionality through apps. For instance, a controller could maintain
an abstraction about data plane hosts (e.g., a Host class) that reside on the network (see Section 2.1.1.2
for details about network abstractions). For such host objects, the controller would provide a host
core service that enables apps to update information about hosts or retrieve information about hosts.
For instance, the ONOS controller provides core services related to hosts, network topology, flow
rules, forwarding devices, topology links, topology paths, network configurations, network statis-
tics, and packets [32].

Core services maintain data stores that store representations of the network’s state. For distributed
controllers that use more than one instance for high availability or fault tolerance, data stores can ei-
ther be strongly consistent (i.e., network partitions may hinder availability) or eventually consistent
(i.e., network partitions will not hinder availability but may induce temporary state inconsistencies
across instances). For instance, the ONOS controller uses the Raft protocol for maintaining strongly
consistent state [33].

Core services interact with their respective data stores through core methods. Apps and forward-
ing devices interact with the controller’s core services through application program interfaces (APIs).
(See Section 2.1.1.3 for details about APIs.) Changes to objects within data stores may trigger the fir-

ing of event dispatches to event listeners. (See Section 2.1.1.4 for details about events.)

2.1.1.2 Network abstraction model

Controllers expose abstractions of network objects and processes. For instance, the ONOS controller
includes abstractions for Host objects that represent end hosts, and for Device objects that represent
forwarding devices. Those abstractions are built on top of information learned or programmed from
lower levels. In ONOS, the host location provider (i.e., a core service) builds Host objects based upon
information learned from Packet objects’ header information. As a result, apps that are interested
in changes to hosts can reason about such changes at the level of a host abstraction rather than a
packet abstraction. That reduces the amount of redundant functionality that would otherwise need

to be implemented across various apps.

2.1.1.3 API model

Controllers communicate via application program interfaces (APIs). The northbound API allows
network applications to query controllers for network state abstractions or set intents about net-
work policy. The southbound API allows controllers to set low-level forwarding rules in forwarding
devices (e.g., switches and routers) and to query about network state. The eastbound/westbound
API allows controllers to communicate among themselves or with other SDN systems to exchange
distributed state.

Northbound API (controller < app) With service API calls, an app can read from or write to
one of the controller’s data stores via a corresponding service and the service’s public API methods.
As shown in Figure 2.1b, apps use the host service’s read() and write() methods to interact with the
underlying host data store.

There is no standard controller-to-application interface among all controller frameworks, and
each framework may establish different boundaries between the core functionalities and extensible
apps. Apps can be implemented in two ways: as internal modules within the controller (represented
by the dashed box in Figure 2.1a) or as separate external processes decoupled from the controller. For
example, the ONOS controller uses the OSGi framework in Java to manage internal app modules
and states. ONOS, ODL, and Floodlight, among others, include a RESTful API for external apps.

Southbound API (controller <> forwarding device) SDN controllers also interact with network
forwarding devices to disseminate rules and to collect data plane statistics. One popular stan-
dard protocol between controllers and forwarding devices is OpenFlow [27]. OpenFlow configures
switches’ forwarding behavior through flow tables, such that each flow table consists of flow entries
that match attributes of incoming data plane packets and assigns data plane forwarding actions. The
protocol includes messages for sending data plane packets to and from the controller (i.e., PacketIn
and PacketOut), to modify forwarding behavior (i.e., FlowMod), and to request and receive flow en-
try statistics (i.e., StatsRequest and StatsReply), among others. Other southbound API protocols
include NETCONTPF [34], ForCES [35], and P4 [36].

Eastbound/Westbound API (controller <> controller) For distributed or federated SDN archi-
tectures, controller instances can share relevant state and state changes with each other through an
eastbound/westbound API. The underlying consensus protocol for distributed controller instances
(e.g., Raft in ONOS [25]) can be viewed as the eastbound/westbound API.

10

SDN Controller Core APPLICATION PLANE
Controller Event Dispatchers (Reactive Event-Based Network Applications)
(Northbound API)

Core Service q Core Services

Events
Northbound API - App Internal
Data Store () EL (event kind X) Methods
Events \| Core Data Stores EL (event kind Y)

App Internal
Data Store

Network
Events (in)\| Southbound API

OpenFlow Messages
Event
CONTROL PLANE e Vg @ _____ EL | Listener
DATA PLANE pata piane \ N
Connections “~ Data Plane
‘/—/'\ . : Host

— S 4
Forwarding
Device

Figure 2.2: SDN architecture with event listeners and event dispatchers. Apps subscribe to event
dispatchers and implement event listeners. Network, data store, and service updates generate
events.

2.1.1.4 Event model

In addition to API requests, controllers also implement an event system. With event callbacks, an
app registers itself with the controller to receive events of interest as they occur. In the example
shown in Figure 2.1¢, all apps have registered to receive data plane events from a data plane event
listener. Subsequent events may be generated as a result of the first event.

Most SDN implementations are event-driven systems that model data plane changes as asyn-
chronous events; such changes might include, for example, the processing of an incoming data plane
packet, the discovery of new network topology links, or changes in forwarding device states. Events
have different kinds depending on the abstraction they describe (e.g., hosts, packets, or links), and
each event kind may have different event types that further describe the functional nature of the
event (e.g., host added or host removed).

Events are sent from event dispatchers and received through event listeners. Figure 2.2 shows a rep-
resentative example of an event dispatcher that distributes events to event listeners. For instance,
the controller may dispatch a network link event to all apps that are interested in network link state
changes (i.e., all apps that have registered link event listeners). An app that cares about new network
links can use such an event to make decisions about what functionality to perform (e.g., recalcula-
tion of bandwidth for QoS guarantees). Such an app can also gather information about what the
control plane’s state looks like in the present (i.e., perform API read calls), request changes to the

control plane (i.e., perform API write calls), or notify other apps and core services asynchronously

11

(i.e., perform event dispatching). That process is replicated by other apps and core services that reg-
ister event listeners and react to events, and the combination of such interactions forms the basis
(and complexity) of the event-driven SDN architecture.

In the ONOS controller, apps can access the control plane’s state through API read calls (e.g., Host-
Service.getHosts()) or by registering to receive asynchronous events (e.g., listening for HostEvent
events). API write calls can trigger event dispatches. ONOS uses a special listener for data plane
packet events, the PacketProcessor, that allows components to receive or generate data plane pack-
ets through the southbound API.

2.1.2 Apps and the Application Plane

The SDN architecture enables third-party and independent developers to write network applications,
or apps. For instance, HP Enterprise’s HPE Virtual Application Networks (VAN) SDN Controller
includes an “app store” [37]. The ONOS controller includes a set of reference apps within its core
repository [38] as well as a set of sample apps [39]. Such apps enable functionalities such as traffic
engineering (e.g., forwarding, routing, and IP address assignment with DHCP), security (e.g., fire-
wall and data plane access control), integration (e.g., OpenStack integration with SDN), monitoring
(e.g., telemetry), and general-purpose utilities (e.g., network garbage collection) [38].

As noted earlier, apps can use the controller’s API calls and event system to receive updates upon
state changes or request the current state. Appendix C.1 provides the skeleton code for a repre-
sentative internal module app for the ONOS controller. Apps include activation and deactivation

methods, event listeners, and API calls.

2.1.3 Forwarding Devices and the Data Plane

The SDN architecture implements the data plane by using a set of forwarding devices. In contrast
to traditional networking architectures that separate the network into different areas of concern
(e.g., Layer 2 forwarding for local networks and Layer 3 routing for wide-area networks), SDN mod-
els such switches and routers as generic forwarding devices. Each forwarding device contains a set
of forwarding tables (or flow tables). Each forwarding table contains a set of forwarding rules (or flow
rules) that dictate how packets are matched and forwarded. Each forwarding rule contains a set of
match fields upon which incoming packets are matched (e.g., IPv4 source and destination prefixes)
and a corresponding set of actions that can be taken (e.g., drop, forward, or rate-limit).

As SDN centralizes the control plane decision-making in the controller, forwarding devices do
not need to make decisions themselves about how to forward traffic. In contrast to traditional net-

working architectures, each forwarding device can send relevant network configuration packets to

12

the controller that will make a decision. For example, a controller may send Link-layer Discovery
Protocol (LLDP) or Broadcast Domain Discovery Protocol (BDDP) packets into the data plane to
learn the network’s topology and link information. Based on that information, the controller may
instantiate new forwarding rules and use a southbound API protocol (e.g., OpenFlow) to do so.

As aresult of such flexibility in decision-making, forwarding devices can operate much like Layer
2 reactive forwarding switches, Layer 3 routers, or middleboxes such as stateful firewalls. Pro-
grammable data planes such as P4 [36] allow for additional flexibility on arbitrary match fields and
actions.

Forwarding devices may be implemented in hardware or software. Hardware-based forward-
ing devices may use ternary content addressable memory (TCAM) to store forwarding tables and
forwarding rules for line-rate lookup speeds [27]. Open vSwitch [40] is a popular software-based
forwarding device implementation found in network virtualization. Mininet [41] is a network emu-
lator that uses Open vSwitch. OpenFlow-based forwarding devices are uniquely identified through
a 64-bit datapath identifier (DPID) that consists of a 48-bit MAC address and a 16-bit implementor-
dependent identifier [42] such as a VLAN number.

2.2 SDN Architecture Attacks

The “softwarization” of programmable networks introduces new and varied threats relative to tra-
ditional networking architectures. Based on the SDN architecture presented in Section 2.1, we now
consider the potential vulnerabilities that the SDN architecture introduces.

Kreutz et al. [6] identify seven threat vectors in the SDN architecture: forged or faked traffic
flows, switch vulnerabilities, control plane communication vulnerabilities, controller vulnerabili-
ties, trust between controller and management applications, administrative host vulnerabilities, and
lack of trusted forensics tools. Hizver [73] proposes a taxonomy for the SDN architecture’s security
threats by categorizing threat sources, attacker actions, and threat targets. Benton et al. [74] identify
OpenFlow-based SDN architecture vulnerabilities. KI6ti e al. [75] use the STRIDE methodology to
identify OpenFlow-based SDN architecture vulnerabilities.

Several surveys investigate the SDN architecture’s security. Scott-Hayward et al. [76] categorize
SDN security attacks and solutions according to unauthorized access, data leakage, data modifi-
cation, malicious/compromised apps, denial of service, configuration issues, and system-level SDN
issues. Martin et al. [77] survey SDN threats based on assets, users, and risks. Khan et al. [78] survey
SDN topology-based threats. Sattolo et al. [79] survey SDN poisoning attacks based on outcomes,
layers, and requirements. Yoon et al. [80] survey SDN attacks and categorize them based on one

of the following attack locations: control plane remote attacks, control plane local attacks, control

13

Table 2.1: Known Attacks on the SDN Architecture.

Attack Primitive Attacker Target
What How TI F AMC

el
=
©
2
Q
7]
Y
=
=

Attack Name

Data dependency chaining [43]
Cross-plane event vulnerability [44]

Data dependencies
Data dependencies

Buffered packet hijacking [45] Packet spoofing
Crossfire table overflow [46] Flow table capacity
App fingerprinting [47] Fingerprinting
Topology freezing [48] LLDP spoofing
Reverse loop [48] LLDP spoofing
Babble [49] Packet spoofing
Event flooding [50] Event flooding
Cross-app poisoning [51] Confused deputy

Flow reconfiguration [52] Covert timing , S
Switch identification [52] Covert timing ,S
Out-of-band forwarding [52] Covert storage ,S
Path reconnaissance [53] CP paths
Table-miss striking [54] Switch table-miss
Counter manipulation [54] Switch counter
Port probing [55] Race condition
Port amnesia [55] State reset
Virtual switch vulnerabilities [56] ROP
Packet injection [57] Packet injection
Persona hijacking [58] Multiple protocols
Flow poisoning [58] Race condition
DP saturation [59, 60] Buffer saturation
Flow reconnaissance [61] Flow reconnaissance
DP intrusion [17] Packet spoofing
Information leakage [17] CP or DP host
Rule manipulation [17, 62] Flow manipulation ,S
Attacking other apps [17] App deactivation
Phantom storm [63] Packet spoofing
Controller fingerprinting [64, 65, 66] Fingerprinting
CP timing [67] Covert timing
Host location hijacking [22, 55] ARP spoofing
. . LLDP injection
Link fabrication [22, 68] LLDP relay
SDN rootkits [69] Malicious app

Flow table capacity inference [70]
Incorrect forwarding [71]

Flow table capacity
Flow manipulation

Packet manipulation [71] Packet spoofing
Malicious weight adjustment [71] Group table
Malicious administrator [13] CP configuration
SDN fingerprinting [72] Fingerprinting

g wvwn~g-~<gY~”~Y— "My~ »nrn—-moy~Kwr~gYYdMm === Mmm~<"—'T™H~odYd
L RO LI C e @ Jasiasiiasiiasiiasiiasiie Je gue e giasiiaviiasiiasiiasiiasiiaviiasiiasiiasiiasiiaviasifavits giasiiasiiasiiaviiasiiasiicglaniian
HXQIAXX XKL RXXRCRQX XX XXXXXXXXYXXYX XX XS
XHXHXXKXXKAXXQ AKX XRUX XXX XXX XXXXXS
A NEaTh U NI NI NI N U N N N NS N N N U U U U N SR TR TR a0 N U N N N USSR NI RS N N N N
XXX K KKK KX KEXKEXKKXRKKXRKKXKXYXX XXX X XS
XXXXXXERXXXRXEXXXXXXXRXXXXXXQYUXXXXXXXXXXXXX
XQRUX X XX QX XXXLYXXXXXXXXXEXXXXXXXXXEIXXQXXS
XA XCRUAUU XX XXX XKRHXXHXXXXILUAUX X XXX XXX
UHXXXXXXKXXKXXXXXXXXILAU XU XXX X XXX XX

Dynamic flow tunneling [11] Flow combination

Key to attack primitives: F = flooding, I = information leakage, P = policy modification, S = spoofing.

Key to from: H = hosts, A = apps, S = forwarding devices (i.e., switches), C = controller configuration.

Key to attacker targets: T = topology, I = identity, F = forwarding rules, A = apps, M = switch memory, C = controller.
Key to other abbreviations: CP = control plane, DP = data plane, C/S = covert/side, MA = misattribution.

Key to symbols: ¥/ = yes, X = no.

14

channel attacks, and data plane attacks.

We provide an overview of the known attacks against the SDN architecture found in the literature
to date. Table 2.1 summarizes the known attacks. We focus on the attack primitive that each attack
uses, how such a primitive manifests itself, where the attack is launched from, what the intended
targets of the attack are, and whether such attacks attempt to use covert channels or misattribute
the attack source. Those particular categories for analysis were chosen because they relate to the
SDN architecture’s information flow, accountability, and attribution challenges. We organize the at-
tack primitives into flooding (Section 2.2.1), information leakage (Section 2.2.2), policy modification
(Section 2.2.3), and spoofing (Section 2.2.4).

We note that certain attack primitives may overlap. For instance, a spoofing attack may induce
an unintended policy modification. In such cases, we classify an attack in its own primitive unless it
could be considered a subset of another attack primitive. For instance, a spoofing attack is classified
as a spoofing attack if its goal is not to induce a policy modification attack. For scoping reasons,
we do not include attacks in which data plane hosts attack other hosts through the network, unless

specific and unique characteristics of the SDN architecture are involved.

2.21 Flooding

Flooding attacks allow an attacker to disrupt the normal operation of the SDN network by causing
a degradation or denial of an intended service level. Flooding can cause a system failure when the

rate of input to be processed exceeds the processing capacity [24].

Data-plane-to-control-plane saturation Flooding attacks in one component of the SDN archi-
tecture can cause systemic effects elsewhere [81]. For instance, flooding in the data plane can cause
the control plane to stop functioning correctly, which in turn can cause further data plane denial
of service. Shin et al. [60] and Ambrosin et al. [59] describe the challenges of data plane satura-
tion attacks in which data plane hosts cause control plane denial of service through incomplete
TCP handshakes (e.g., SYN flooding) that exhaust available TCAM memory in forwarding devices.
Smyth et al. [63] describe the “phantom storm” attack, which floods the control and data planes with
spurious packets. In that attack, a malicious data plane host uses ARP cache poisoning to send a
spoofed IP address into the network. Benign data plane hosts reply, but given that the target host
does not exist, the controller broadcasts and floods the data plane with additional packets for each
reply. Xu et al. [46] propose the crossfire table-overflow attack in which colluding data plane hosts
exhaust multiple forwarding tables intermittently.

Control plane reflection attacks use data plane packets as input to trigger expensive control plane

decisions. Zhang et al. [54] propose the table-miss striking and counter manipulation attacks. Table-

15

miss striking attacks use targeted packets to determine which match header fields in packets are
sensitive to causing such packets to be redirected to the controller (i.e., which packets were a “miss”
when matched against a forwarding device’s forwarding tables). Counter manipulation attacks use

targeted packets to determine which southbound API messages are sent to the forwarding device.

Distributed controller consistency and event flooding The consistency model assumptions of a
distributed controller are also a significant flooding target. Smyth et al. [50] show that the targeting
of events through event flooding can induce a control plane denial of service when strong consis-
tency guarantees need to be met. Hanmer et al. [49] show that the Raft consensus protocol used
in ONOS is vulnerable to “babble” attacks, which exploit the timing assumptions about Raft and
require expensive recomputations (e.g., network intent recompilation) to be performed in order to

flood the controller’s processing capabilities with spurious events.

2.2.2 Information Leakage

Information leakage attacks allow an attacker to infer information about the SDN network’s state
without being able to access such information directly. Such attacks can occur through side (or
covert) channels that leverage storage or timing information.

Attackers who reside on data plane hosts may not have access to the network’s current state, con-
figuration, and policies. Thus, an attacker may want to know any of the following: 1) whether or
not the host resides on an SDN-controlled network; 2) if the network is SDN-controlled, which
controller is implemented; and 3) if the network is SDN-controlled, which apps are installed. Such

answers allow an attacker to exploit implementation-specific vulnerabilities.

SDN-controlled network fingerprinting Shin and Gu [72] report that an attacker can infer that
an SDN architecture is in use (i.e., instead of a traditional networking architecture) because reac-
tive SDN control plane configurations require that the first packet of a flow be processed by the
controller. That additional latency is perceptible from the data plane hosts’ perspectives. Bifulco et
al. [66] show the feasibility of such attacks on hardware-based forwarding devices. Sonchack et

al. [67] show that the timing differences can be statistically significant in practice.

Controller fingerprinting Azzouni et al. [65] fingerprint OpenFlow-based SDN controllers
(ODL [30], Floodlight [28], POX [82], Ryu [29], and Beacon [83]) based on timing and packet analy-
sis. Timing-based techniques involve different default values in hard and idle timeouts of flow rules

of different controllers, as well as different execution speeds for packet processing. Packet-based

16

techniques involve different responses to and fields of LLDP and ARP protocol messages for topol-
ogy and host information discovery. Zhang et al. [64] further fingerprint SDN controllers based on
specific match fields in packet headers.

App fingerprinting Cao et al. [47] use encrypted control plane traffic patterns to infer that specific

apps are installed and running in the SDN controller.

Flow rule configuration inference Zhou et al. [70] demonstrate that the flow table capacity in
forwarding devices can be inferred as a result of the limited amount of memory typically available.
Wen et al. [17] note that apps can leak sensitive and confidential information about the network
configuration to hosts. Liu et al. [61] propose flow reconnaissance attacks in which an attacker can
force the instantiation of particular flow rules and observe the resulting timings in order to infer
existing flow rules that may exist in forwarding devices. Cao et al. [53] propose path reconnais-
sance attacks for inferring whether control plane traffic is being sent in-line with data plane traffic.
Thimmaraju et al. [52] propose teleportation attacks related to out-of-band forwarding, switch iden-
tification, and flow reconfiguration. Such attacks use side channels to relay information about the

network’s configuration and to exfiltrate information.

2.2.3 Policy Modification

Policy modification attacks allow an attacker to change the desired policy of the SDN network’s op-
eration into an unintended state. Such policies include the data plane access control policies (i.e., al-
lowing or denying communication among end hosts), the fairness rules about resource allocation
(e.g., network bandwidth capacity), and the control plane access control policies (i.e., allowing or
preventing apps from taking certain actions). Given that one of the major design goals of network
operating systems is to control and enforce policy, policy modification attacks are of significant

concern to the overall SDN security posture.

Policy modificationbyapps Porras et al. [11] show that dynamic flow tunneling attacks can bypass
intended data plane access control if the combination of several flow rules is not considered as a
group. Furthermore, Wen et al. [17] argue that malicious apps can bypass each other’s configurations
to induce such an attack. They describe how malicious apps can manipulate flow rules if they are
given coarse-grained permission to do so and are not detected by other apps. Ropke and Holz [69]
propose the notion of SDN rootkits that are implemented through malicious apps. Such rootkits can
arbitrarily affect the intended network policy and provide an attacker with remote access. Ujcich et

al. [51] demonstrate cross-app poisoning in which apps can influence each other’s actions through a

17

shared state control plane model (see Chapter 4). Cao et al. [45] further show that buffered packets
to be processed by the controller can be manipulated by different apps.

Policy modification by forwarding devices The software processes that execute virtual forward-
ing devices can be used as attack vectors to influence policy. Thimmaraju et al. [56] demonstrate
that virtual forwarding devices such as Open vSwitch [40] are vulnerable to return-oriented pro-
gramming (ROP) attacks. Such attacks can allow an attacker to control the controller process’s host.
They identify the design characteristics of hypervisor co-location, centralized control, unified packet
parsers, and untrusted inputs as key components of the attack surface that can be exploited. Chi et
al. [71] find that malicious forwarding devices can adjust the weight of traffic and incorrectly forward

traffic. Zhang [62] describes how malicious forwarding devices can bypass intended flow rules.

Policy modification by topology modification The modification of the network’s topology can
indirectly change the network’s forwarding policy. Such topology changes arise from changes in
network links or in host location.

For changes in network links, Hong et al. [22] and Alharbi et al. [68] show that unauthenticated
LLDP packets for topology discovery can be abused by data plane hosts. Malicious data plane hosts
can either generate fake LLDP packets based on well-defined specifications of how such packets
should be formulated, or relay LLDP packets in order to create spurious links when seen from the
controller’s perspective. Such fabricated links can either provide an attacker with eavesdropping
capabilities over newly created paths or induce black-hole routing if such links do not actually exist.
Port amnesia attacks [55] leverage the dynamic nature of topology changes to give the controller an
incorrect view of a port when the port goes down. Marin et al. [48] show that the topology freeze
attack can prevent the controller from updating its network state when multiple links share the same
source port, and the reverse loop attack can force the controller to recompute the network’s topology
indefinitely from forged LLDP packets.

For changes in hostlocation, Hong et al. [22] and Skowyra et al. [55] show that data plane hosts can
trick the controller into forwarding traffic from benign host locations to attacker-controlled hosts by
breaking the MAC-to-port mapping that the controller maintains. Port probing attacks [55] leverage
arace condition that exists when a benign host changes its location such that an attacker can attempt
to complete the move before the benign host can complete the move.

Jero et al. [58] show that attacks against network identifiers can influence the network’s topology
and forwarding decisions. Persona hijacking attacks [58] break the mappings between the MAC
address and the port location, between the MAC address and the IP address, and between the IP
address and the hostname. To break the MAC-address-to-port-location binding, the flow poisoning

attack [58] leverages a race condition between a victim host and an attacker host in which stale flow

18

rules temporarily direct data plane traffic to the attacker.

Policy modification by administrators Matsumoto et al. [13] note that the centralization of net-
work policy and control in SDN architectures can create administrative challenges if malicious ad-

ministrators poison the network’s configuration.

Other policy modification Untrusted data plane input can have systemic effects on controller
processes and hosts that execute such processes. Ujcich et al. [44] demonstrate that cross-plane vul-
nerabilities can be identified from missing and unhandled events in the controller (see Chapter 5).
Xiao et al. [43] demonstrate similar vulnerabilities that can execute commands and exfiltrate data

from the controller’s host.

2.2.4 Spoofing

Spoofing attacks allow an attacker to mask a data plane sender’s identity or to masquerade as the
intended data plane recipient [24]. This attack primitive manifests itself in several SDN components.
Chi et al. [71] show that compromised SDN forwarding devices can spoof data plane packets that
they receive. Even if such packets are encrypted, the forwarding device can cause denial of service
through the addition of decryption errors. Wen et al. [17] show that compromised apps can use
the southbound API to request data plane packets (i.e., Packetlns) or to inject data plane packets
(i.e., PacketOuts) arbitrarily, which can induce spoofing by malicious apps. Deng et al. [57] show
that any unmatched packet handled by forwarding devices can be exploited by data plane hosts to

induce false packet processing in the controller.

2.3 SDN Architecture Defenses

We now consider the existing defenses for the SDN architecture against adversarial attacks, and
we organize them according to a software development and deployment lifecycle. Such mitigation
or prevention of attacks through defenses can occur during the network runtime execution (Sec-
tion 2.3.1), during the design and testing phases prior to network runtime execution (Section 2.3.2),
or during the analysis and forensic phases after network runtime execution (Section 2.3.3). Some
overlaps exist between these phases, such as post-runtime analysis that iteratively informs pre-
runtime design considerations.

Although the SDN architecture has been proposed as a way to further enhance the security of

end hosts in the data plane (e.g., via dynamic and modular access control for end hosts [5]), we

19

consider such security defenses only if they have systemic impact on the security properties of the

SDN architecture or if they target an SDN control plane component.

2.3.1 Runtime Defenses

A runtime defense prevents attacks from occurring while the network control plane is executing
code. Such defenses necessarily rely on the current runtime conditions in order to mitigate or pre-
vent attacks (e.g., the determination of an access control decision for an apps API call). Table 2.2
summarizes the runtime defenses for the SDN architecture. We focus on the defense primitives in
which the defenses map to the attack primitives in Section 2.2. We also organize such defenses in
terms of how they are implemented (e.g., access control of APIs), the trusted computing base (TCB)
of the components assumed to be secure and trusted, the components from which attacks can be

launched, and the components that implement the defense.

Access control of APIs Most access control defenses for the SDN architecture are variants of role-
based access control (RBAC). Such defenses implement RBAC in the controller to enforce permis-
sions over the northbound API for app requests. PermOF [10] uses RBAC for a generic SDN ar-
chitecture and enforces RBAC through a shim layer for access control and a kernel service deputy
embedded within the controller. FortNOX [11] extends the NOX controller [31] with signed flow
rules and a set of roles for RBAC enforcement. OperationCheckpoint [12] similarly enforces RBAC
in Floodlight [28] with a set of read, write, and notification permissions related to OpenFlow com-
mands. SE-Floodlight [15] implements a security enforcement kernel layer that mediates flow rule
requests among different roles (i.e., rule chain conflict analysis). ROSEMARY [14] implements a net-
work operating system permissions structure and cites the lack of access control as a challenge for
network operating system security. AEGIS [16] checks that apps’ API use is consistent against a
set of security policy invariants. SDNShield [17] enforces fine-grained RBAC policies as extensions
to controller architectures and implements permission boundary and mutual exclusion policies.
SM-ONOS [19] also enforces RBAC with various role granularities; that approach includes bun-
dles (i.e., app or core service), apps (i.e., administrative apps or user apps), or specifically granted
permissions.

Dynamic and behavior-based RBAC solutions mitigate the challenges of apps whose behavior
may change over time if the apps are compromised by attackers. Controller DAC [18] implements
dynamic access control through the use of an intrusion detection system (IDS) that monitors apps’
past northbound API usage. BEAM [20] updates the access control policies based on the dynamic
nature of the network.

Ujcich et al. [51] note the challenges of RBAC when there are high data dependencies among apps.

20

Table 2.2: Runtime Defenses for the SDN Architecture.

Defense Primitive TCB Attack From Implementation

Defense Name

What How CS AHS EACSH
FireGuard [46] F Rate limiting Vv vV X X X X v X X X
BEAM [20] P Access control of APIs vV Vv X X X v X VX X X X
PrOVSDN [51] P Access control of APIs VX X X Vv Vv X Vv X X X
SPV [84] P Invariant checking vV X X vV X X X v X X X
SWGuard [54] F Rate limiting Vv vivVvXx X X X v X v X
OFMTL-SEC [85] F Invariant checking Vv vVvyvXx XX vV X X vV
(No defense name) [86] P Consensus checking X vV X X X vV X X v X X
PacketChecker [57] P Invariant checking Vv vy X XX vV X X X X
SECUREBINDER [58] P Authentication of messages ¢ v v v X X X vV X X X v
SM-ONOS [19] P Access control of APIs vV Vv X X X v X vV X X X X
LineSwitch [59] F Rate limiting Vv vVvyv X XX vV X X v X
Rule Enforcement [62] P Invariant checking Vv Vv Xy X X X v X v X
SDN-GUARD [87] P Consensus checking X VvV X X X vVv X X v X X
WedgeTail [88] P Consensus checking vV X vV XV X X X vV X X
(No defense name) [89] P Invariant checking Vv vVvivVvivx X — — — — —
Controller DAC [18] P Access control of APIs Vv X X X v X vV X v X X
LegoSDN [90] P Isolation of apps VV XX X viXx VX XXX
SDNShield [17] P Access control of APIs vV Vv X X X v X vV X X X X
SDNShield [17] P Isolation of apps VVX X XxviXx VX X X X
SDNsec [91] I,P Invariant checking Vv X X v X X vV X X v X
Timeout proxy [67] I Padding Vv VvVvy X XX X X v X X
JURY [92] P Consensus checking X vV X xvyv Vv X Xx x
AEGIS [16] P Access control of APIs VvV X X X v X VX X X X
TopoGuard [22] P,S Invariant checking Vv vy X XX vV X X X x
SPHINX [93] P, S Invariant checking vV X Vv VvVvVv X X X X v X X
SE-Floodlight [15] P Access control of APIs vV Vv XX X X v X vV X X X X
(No defense name) [68] P Authentication of messages ¢ X v v ¢V X X vV X X X X
Forwarding Detection [71] P Consensus checking Vv v X Vv X X X v X X X
Weighting Detection [71] P Consensus checking VvV Vv X vXxx X v X XxXx
FlowMon [94] P Consensus checking VXV XV X X — — - ——
FLOODGUARD [95] F Rate limiting vV Vv ivivVvXx X X X vV v X X
ROSEMARY [14] P Access control of APIs vV VX X X v X vV X X X X
ROSEMARY [14] P Isolation of apps V VX X X v X vV X X X X
Fleet [13] P Access control of APIs X vV VX x X v vV X X v X
OperationCheckpoint [12] P Access control of APIs VV XX XxviXx vV X X X X
AVANT-GUARD [60] F Rate limiting vV Vv vV X X X vV X X v X
VeriFlow [96] P,S Invariant checking X vV X X X vVv X X v X X
NetPlumber [97] P,S Invariant checking X vV X X X vV X X v X X
FortNOX [11] P Access control of APIs vV Vv X X X v X vV X X X X
PermOF [10] P Access control of APIs VVX X X v X — — — — —

Key to defense primitives: F = flooding defense, I = information leakage defense, P = policy modification defense,

S = spoofing defense.

Key to TCB: C = controller process, S = forwarding devices (i.e., switches), A = apps.

Key to attack from: H = DP hosts, S = switches and/or SB API, A = apps and/or NB API, C = controller configuration.

Key to implementation: E = controller extension, A = app, C = control plane channel, S = switch, H = host.
Key to symbols: ¥/ = yes, X = no, — = not applicable.

21

PROVSDN [51] uses an information-flow-based approach to enforce information flow control (IFC)
and prevent “confused deputy” attacks in the SDN control plane (see Chapter 4).

Fleet [13] defends against malicious network administrators who attempt to override policy in the
control plane. Fleet implements a switch intelligence layer in the control plane channel between the

controller and forwarding devices.

Consensus checking One class of consensus-based defenses uses information from multiple for-
warding devices to check that data plane traffic is being forwarded as intended. By computing
anomaly scores, FlowMon [94] checks that forwarding device statistics (e.g., port statistics) and
forwarding policies agree with each other. Chi et al. [71] mitigate malicious forwarding device at-
tacks through weighting and forwarding detection. Those detection algorithms use a consensus
of benign forwarding devices to determine whether injected packets are being correctly forwarded
and whether injected packets are being forwarded in the ratio that would be expected relative to
normal packets. WedgeTail [88] checks forwarding device configurations to determine whether or
not packets are being routed according to the intended policy.

Another class of consensus-based defenses checks that controller and app instances are consistent.
JURry [92] validates controller responses for distributed controllers that maintain equivalent network
views. SDN-GUARD [87] mitigates apps’ ability to act as SDN rootkits by reactively checking that
the controller’s and network’s views are consistent with each other. Répke and Holz [86] propose a
similar system that preemptively checks such views for consistency.

A related class of consensus checking involves distributed and fault-tolerant controllers. Insofar
as distributed controller instances provide additional redundancy against availability-based attacks,
controllers such as ONOS [25], ODL [30], Onix [98], DevoFlow [99], and HyperFlow [100] pro-
vide distributed primitives to ensure consensus over the network state. Fault-tolerant controllers
use consensus-checking mechanisms to ensure that the network state consistency across controller
instances is robust against accidental faults or, under certain sets of assumptions, malicious attacks.
SMaRtLight [101] uses a replicated shared data store to maintain the network’ state. Ravana [102]

uses a replicated state machine to process control plane events transactionally.

Authentication of messages Several controller architectures, such as FortNOX [11] and SE-
Floodlight [15], propose authentication of the northbound API during access control to ensure that
apps are authenticated before they perform control plane operations.

TopoGuard [22] and Alharbi et al. [68] defend against spoofed LLDP packets through the use of
controller-signed LLDP packets that use hash-based message authentication codes (HMACs). SE-
CUREBINDER [58] defends against host-based identity attacks through the use of the 802.1x protocol

as a root of trust.

22

Invariant checking One class of invariant-based defenses checks that the data plane is following
the intended control plane policy. NetPlumber [97] checks policy compliance by using a real-time
header space analysis [103] approach. VeriFlow [96] ensures that network properties are not violated
according to a predefined set of invariants (e.g., loop-free forwarding). SPHINX [93] creates a flow
graph view of the network and checks against it for various invariants (e.g., routing rules and path
waypoints). SDNsec [91] and Rule Enforcement Verification [62] use the signing of packets by each
forwarding device along a path to check that packets forwarded in the data plane are following
intended routing polices.

Another class of invariant-based defenses checks that certain control plane actions are seman-
tically valid with regard to normal control plane operation. TopoGuard [22] maintains the state
of forwarding device ports (i.e., if a port is a host, a forwarding device, or any device) and checks
whether certain state transitions are allowed (e.g., a host port should not be sending LLDP pack-
ets). PacketChecker [57] mitigates the packet injection attack by checking an incoming PacketIn
packet against MAC address and forwarding device DPID information; further packets are blocked
through a flow rule instantiation that prevents further sending of packets to the controller. Smyth et
al. [89] propose a statistical anomaly approach to vet new links against a baseline of normal behav-
ior for verified links. SPV [84] checks for fake data plane links though the incremental and periodic
insertion and verification of probing packets. OFMTL-SEC [85] uses a state machine approach in

the data plane to prevent against certain attacks such as ARP spoofing.

Isolation of apps Isolation-based defenses involve the modularization of core services and apps
such that malicious components cannot influence the behavior or service levels of benign com-
ponents. ROSEMARY [14] notes the limitations of monolithic network operating system designs in
which all core services operate in a single kernel and mitigates this threat through the logical divi-
sion of “user-space” and “kernel-space” apps, the monitoring of application resource utilization, and
the separation of apps as isolated processes. SDNShield [17] enforces the isolation of different apps
via thread sandboxing in Java. Such sandboxing ensures control flow isolation (i.e., an untrusted
thread cannot gain trusted privileges), data isolation (i.e., apps cannot reference the controller ker-
nel), and reference monitor remediation (i.e., all system calls must go through a reference monitor).
LegoSDN [90] also isolates apps through sandboxes with the goal of being a fault-tolerant controller

with recovery mechanisms.

Rate limiting Rate limiting defenses involve proxying, caching, and scheduling techniques.
AvANT-GUARD [60] and LineSwitch [59] use variants of proxying for the establishment of TCP
connections in the data plane. AVANT-GUARD implements a connection migration module in for-

warding devices to prevent saturation attacks from reaching the control plane. However, such a

23

buffer can cause a bottleneck through denial of service. LineSwitch mitigates the limitations of
AvANT-GUARD’s defense through the probabilistic proxying of traffic. FLooDGUARD [95] prevents
data-to-control plane saturation by caching packets and using round-robin scheduling to sched-
ule their submission to the controller. SWGuard [54] mitigates control plane reflection attacks by
using a multi-queue scheduler to discriminate among southbound API messages. FireGuard [46]

mitigates collusion among hosts that attempt to cause data plane saturation attacks.

Padding A timeout proxy [67] defends against timing-based reconnaissance attacks by injecting
additional latency into control plane processing. That prevents an attacker from inferring the control

plane’s processing load.

2.3.2 Pre-Runtime Defenses

A pre-runtime defense removes vulnerabilities in the SDN architecture during the design and testing
phases. Such defenses can be either simulated without executing network code (e.g., static analysis),

or executed using a testbed framework (e.g., fuzzing).

Model-based Model-based defenses use a set of invariants to check that a network is operating
according to well-known correctness properties (e.g., the assurance of a loop-free data plane topol-
ogy). Anteater [104] translates network invariant properties and the data plane state into Boolean
satisfiability (SAT) problems. NICE [105] uses model checking and concolic execution against a
set of network correctness properties to find invalid possible controller states. VeriCon [106] ver-
ifies network correctness properties against admissible topology configurations by using an SMT
solver. SDNRacer [107] models the happens-before relationships for data plane configuration up-
dates. Attendre [108] checks for data plane race conditions that may be present between control
plane configuration changes and data plane packet forwarding. CONGUARD [109] checks for con-
trol plane time-of-check-to-time-of-use (TOCTTOU) race conditions and uses a happens-before

model of the control plane’s app lifecycles and event notifications.

Fuzzing-based Fuzzing-based defenses use invalid input to determine whether the SDN archi-
tecture is behaving in an undesired manner. STS [110] uses a delta debugging technique to pro-
duce the minimal causal sequences necessary to reproduce a bug. BEADS [111] automates fuzz test-
ing for OpenFlow-based forwarding devices that do not follow the OpenFlow specification [42].
ATTAIN [81] provides fuzzing capabilities as part of an attack description language within an
OpenFlow-based attack injection framework. DELTA [112] provides a security assessment frame-

work for testing controller implementations against common control plane attacks.

24

Program-analysis-based Program-analysis-based defenses use software program analysis tech-
niques, such as static analysis, to analyze the programmable code to be executed in the network
control plane. SHIELD [113] and INDAGO [114] use static analysis over apps to generate behavioral
profiles of apps’ API calls and to determine which apps misuse those calls. EVENTSCOPE [44] uses
static analysis to summarize event flow and API use among core services and apps and identifies
where unhandled events may cause vulnerabilities (see Chapter 5). SVHunter [43] uses static anal-
ysis to show how data dependencies from data plane input can maliciously influence the controller

and the controller’s host to execute remote code.

Secure-by-construction Secure-by-construction defenses use safe language constructs to remove
certain vulnerabilities by design. Frenetic [115], Pyretic [116], and NetCore [117] use a declarative-
based language to provide composable and modular app functionality. Merlin [118] provides a
language for network resource requests that translates those requests into constraint satisfaction
problems. NetKAT [119] provides a language based on Kleene algebra that ensures composability
and isolation properties. Flowlog [120] consolidates control and data plane abstractions and pro-
vides a limited-expressiveness network programming language that is amenable to verification. Co-
coon [121] provides a language for high-level network intent specification and verifies intents with

a stepwise refinement approach.

2.3.3 Post-Runtime Defenses

A post-runtime defense provides insight into attacks after they have occurred. Such defenses are nec-
essary for auditing and accountability [122] (see Chapter 3), and they may influence design decisions

about what properties should be verified during pre-runtime phases (see Section 2.3.2).

Network debugging and troubleshooting Network debugging tools are used to find the sources
of bugs and errors but can also be used to pinpoint attacks. OFRewind [123] provides recording and
replaying capabilities for OpenFlow-based SDN architectures. OFRewind captures user-specified
subsets of control and data plane traffic during network execution. Users can replay that traffic later
for troubleshooting and debugging purposes. NetSight [124] provides a packet history of how pack-
ets traversed the data plane, along with querying and filtering capabilities. NDB [125] allows users to
set packet backtraces and to set breakpoints for debugging purposes in the data plane. BigBug [126]
clusters concurrency violations of expected network behavior. Net2Text [127] summarizes network
activity using natural language processing techniques. FALcoN [128] provides fault localization for

the control plane based on a baseline of expected behavior.

25

Network forensics and provenance Although network debugging and troubleshooting tools can
provide some insight into attacks after they have taken place, other tools have been developed that
focus on the causal dependencies within the SDN control and data planes. For network-operating-
system-like controllers, FORENGUARD [129] captures data dependencies in the control plane and
stores such dependencies graphically. P1coOSDN (see Chapter 6) similarly captures dependencies
graphically for backward and forward tracing, and also provides a data plane model to show the
data plane’s causal role in reactive control planes. For declarative controllers, network provenance
tools [130, 131, 132] can aid in causal explanations and, under certain conditions, can help determine

how a network configuration should be repaired.

26

CHAPTER 3

ACCOUNTABILITY IN SOFTWARE-DEFINED
NETWORKING

Software-defined networking (SDN) overcomes many limitations of traditional networking archi-
tectures because of its programmable and flexible nature. Security applications, for instance, can
dynamically reprogram a network to respond to ongoing threats in real time. However, the same
flexibility also creates risk, since it can be used against the network. Current SDN architectures po-
tentially allow adversaries to disrupt one or more SDN system components and to hide their actions
in doing so. That makes assurance and reasoning about past network events more difficult, if not
impossible. We argue that an SDN architecture must incorporate various notions of accountability
for achieving systemwide cyber resiliency goals. We analyze accountability based on a conceptual
framework, and we identify how that analysis fits in with the SDN architecture’s entities and pro-
cesses. We further consider a case study in which accountability is necessary for SDN network

applications, and we discuss the limits of current approaches.

3.1 Introduction

Software-defined networking (SDN) has emerged as a new networking architecture that attempts to
overcome some of the limitations of traditional networking. SDN is distinguished by a logically cen-
tralized but physically distributed programmable control plane in which decisions about forwarding
are decoupled from the traffic being forwarded [1]. This flexibility has encouraged SDN adoption in
enterprise, campus, cloud, mobile, and telecommunication networks, among others [1].

At first glance, SDN enhances the ability of security services to protect the network’s end hosts
from threats. The architecture’s global perspective [3] allows the control plane to monitor traffic
flows and abstract such information for network security applications’ use. Further, the architec-
ture’s programmable nature allows administrators or security applications to rapidly reconfigure the
network’s forwarding behavior to adjust to threats in real time.

However, such insight and flexibility are not without costs, as the increased attack surface and
centralized programmatic control could be used against operators and administrators. If we assume
that an attacker has already compromised an SDN system’s components to control network behavior

and that the attacker lies, equivocates, and hides or destroys evidence of such actions [69], how can

27

Table 3.1: Summary of Design Considerations and Properties for SDN Accountability.

Who is accountable to What one is Assurance Standards Effects of
whom accountable for mechanisms breach
« Software process « Forwarding / Data provenance « Legal Deterrence
level topology o Authenticated + Regulatory - Loss of
- Switch-switch « Intent / policy logging « Policy money
- Controller-switch - Network - Tamper-proof « Contractual - Loss of
- Controller- resources - Non- reputa-
application - Constraints repudiable tion
- Controller- - Criteria « Fault tolerance o Resiliency
controller - Instructions - Byzantine fault - Response
o User level « Configuration tolerance - Recovery
- Network « Authorization / - Graphical
administrators access modeling
- Security - Permissions - Blockchains
administrators and roles Roots of trust
- End users - Authentication
« Organizational level and access
- Clients—providers
- Peers

we be assured of past event integrity? Furthermore, how can we trust the provenance of such events,
attribute them to the responsible entities, and take actions against them to hold them responsible
and meet systemwide cyber resiliency goals?

We argue that accountability by design [133, 134] is necessary for SDN. As SDN architectures be-
come increasingly complex distributed network operating systems [25], we see a need for ensur-
ing accountable practices at multiple levels among various entities and stakeholders. Achieving
accountability is not strictly a technical problem—legal, regulatory, and policy frameworks all help
guide accountable systems design—but accountability requires data assurances to correctly identify
responsible entities when taking responsive actions to support resiliency goals.

Our contributions include application of a conceptual framework of accountability [135] to SDN
to identify the agents, system entities, processes, and standards involved in network accountability
assurance. We find that while previous work has considered some of these aspects, no complete
design solution exists today that systematically incorporates all of them. We illustrate the need for

accountability through a practical case study scenario of SDN network applications.

28

3.2 Designing an Accountable SDN Architecture

Accountability is the “security goal that generates the requirement for actions of an entity to be
traced uniquely to that entity” and which supports “nonrepudiation, deterrence, fault isolation,
intrusion detection and prevention, and after-action recovery and legal action” [24]. We borrow
concepts from the public policy domain, in particular the accountability framework for designing
accountable systems proposed by Mashaw [135], to analyze accountability as it applies to SDN archi-
tectures and entities. Table 3.1 summarizes the design considerations and desirable properties for
SDN accountability.

3.2.1 Who Is Accountable to Whom?

We follow Mashaw in describing accountability as relationships between entities. To say “A is ac-
countable to B” means that A behaves according to processes guided by standards by which B can
correctly attribute A’s actions and take responses against A if A deviates from such processes and
standards. (The meanings of processes and standards are explained in detail throughout the remain-
der of Section 3.2.)

We organize those relationships at three levels: software process, user, and organizational ac-

countability.

3.2.1.1 Software process level

SDN software components should keep each other accountable for low-level network state changes
so as to attribute actions to particular software instances for troubleshooting (e.g., fault isolation) or

for forensics. We identify the following accountability-critical classes of inter-process relationships:

Switch-switch Switches should keep each other accountable for their data plane forwarding ac-
tions. In particular, they should ensure that packets traverse the correct switches to enforce isolation

guarantees and forwarding accountability [91].

Controller-switch Controllers should keep switches accountable for their actions to ensure that
network intents are followed. For instance, switches should attest to their current forwarding be-

havior state and report it to controllers.

Controller-application Controllers should keep network applications accountable to ensure that
conflicting policies are mitigated according to a permissions model [15]. To ensure trustworthy net-

work applications [6], it is necessary to hold network applications accountable for actions they take

29

that affect the network state [15]. Application developers and publishers should be held accountable,

too.

Controller-controller In contrast to a single centralized controller, distributed controllers should
provide high availability, scalability, and fault tolerance properties [25]. Distributed controller in-
stances share copies of the network state and may act as clients in reading from a distributed data
store [101, 102]. Given that the network’s intelligence is logically centralized in the controllers, they

should keep each other accountable for network state changes.

3.2.1.2 User level

Network and security administrators should keep each other accountable for decisions that affect
network state, particularly if the administrators have the potential to collude or are assumed to be
individually untrusted [13]. Administrators should keep the network’s end users accountable for

their actions on the network, such as equitably sharing network resources based on policy.

3.2.1.3 Organizational level

Organizations should keep other organizations accountable for network resources when consid-
ering client-provider or peer models. In cloud computing, for instance, a provider should use a
telemetry service to account for network resources used by clients, and clients should be able to
audit providers to ensure that the services requested are being provided in practice [136]. For an
autonomous system (AS), each AS should make other ASes accountable for their Border Gateway
Protocol (BGP) advertisements or for the inter-AS network resources (e.g., bandwidth) they use

related to peering agreements.

3.2.2 What Is One Accountable For?

N {3

An accountable architecture accounts for the system’s “state” and state changes via events or actions

taken by system entities. Here, we identify several notions of state.

Forwarding behavior and topology From the data plane perspective, the network’s state consists
of the forwarding behavior (e.g., flow table entries) and the topology (e.g., ports, links, switches,
hosts). In OpenFlow-based SDNs, the forwarding behavior is defined by flow tables that consist

of flow entries with matching attributes and a set of actions to take for matching packets [42]. The

30

topological information is based on switch configuration [42] and also from auxiliary protocols such
as the Link Layer Discovery Protocol (LLDP) and the Address Resolution Protocol (ARP) [28].

Intent and policy From the application plane perspective, the networks state consists of the
policies implemented by intents. ONOS [25], for instance, defines intents by network resources
(e.g., ports, links), constraints (e.g., bandwidth), criteria (e.g., matching headers), and instructions
(e.g., header modifications, output). Intents contrast with specific protocols like OpenFlow [42] by

abstracting the implementation details.

Configuration From a system administrator’s perspective, each network component requires
configuration. OF-Config [137] configures switches, changes port states, and changes security cer-

tificates, among other functions.

Authorization and access From a security administrator’s perspective, the network requires a
system for authorizing users’ actions based on roles and permissions. Such a system needs to record

state modification, permissions, and authentication and access events, among other records [15].

3.2.3 What Process Assures Accountability Mechanisms?

We now consider four necessary classes of assurance mechanisms, including their uses to date in
SDN and other fields.

Data provenance Arguably, the most important property of data assurances for accountability is
their ability to answer questions about where data came from and why the data came to be [138]. Data
provenance answers these questions by attributing data to their sources in order to support audit
trail generation [139]. Data provenance has been used in database systems [138] and in distributed
systems for identifying which system components took specific actions [140]. Dwaraki et al. [141]
model SDN forwarding state changes through a distributed version control system to answer prove-

nance queries about network state, though the architecture does not assume an adversarial setting.

Authenticated logging While data provenance explains data origins, an adversarial setting re-
quires assurance that the stored data cannot be tampered with. Authenticated data structures
(e.g., Merkle trees) provide a way of implementing tamper-proof logs [142]. Each log entry is associ-
ated with a cryptographic hash, and tampering with previous log entries makes tampering evident.

Among different entities, each entity can digitally sign entries it makes to the log and thus cannot

31

repudiate previous entries it has signed. Porras ef al. [15] extend the Floodlight SDN controller to

include an application audit module for associating logged events with their sources.

Fault tolerance Accountability does not begin only after the system as a whole has already failed.
Many systems are designed to tolerate (or mask) failed components. When some component fails,
the failed component should be held accountable for its actions and for events attributed to it.

Byzantine fault tolerant (BFT) protocols are a practical way to make many systems more robust,
and the security they offer is evaluated by the strength of their guarantees (i.e., the weakness of
their assumptions). PBFT [143], for instance, guarantees that a network of N = 3f + 1 replicas can
tolerate up to f corrupted instances that behave arbitrarily or maliciously. Furthermore, most BET
protocols guarantee liveness and high availability under very weak assumptions about the ability
of the uncorrupted nodes to communicate; they also guarantee consistency even in a completely
asynchronous network.

While the system as a whole should exhibit some degree of fault tolerance (as previously ex-
plored in the SDN context in [101, 102]), the subsytems used to ensure accountability should be es-
pecially fault-tolerant. BFT protocols must typically rely on at least a majority of the nodes to ensure
safety and liveness, though secure network provenance (SNP) can rely on an even weaker assump-
tion [144]. SNP uses a provenance graph to capture events in a distributed system, and minimally
requires only one correct node to have witnessed an event in order to attribute it. Cryptocurren-
cies have recently popularized the use of widely distributed BFT protocols to provide a transparent
and publicly verifiable transaction log known as a “blockchain.” Blockchain updates are relatively

expensive and slow, but this trade-off may be appropriate for accountability-critical information.

Roots of trust By adopting accountability as an explicit design goal, we strive to reduce the
amount of trust in the system. However, no design is perfect, and we believe practical architectures
will still require some “roots of trust” upon which the system’s security relies. Explicit descriptions
of these roots of trust will be essential to evaluating accountability designs. To validate a design, we
must identify the trusted entities and justify their trustworthiness. In the SDN context, for instance,
Jacquin et al. [145] propose a trusted SDN architecture by placing trust in trusted platform modules
(TPMs).

3.2.4 By What Standards Should Accountability Be Judged?

Given that the network infrastructure is a central component of many institutions, and that it can

“see” everything (including sensitive data) [3], an accountable SDN may be necessary in practice for

32

meeting or aiding legal, regulatory, policy, or contractual requirements. In this context, standards
set the accountability requirements that must be met.

Accountability standards are derived through laws, regulations, and policies. In the U.S., for in-
stance, federal laws and regulations set domain-specific accountability standards as they apply to
health records (e.g., HIPAA), educational records (e.g., FERPA), and financial records (e.g., Gramm-
Leach-Bliley Act), among other domains.

We can also apply accountability in the context of other policies, such as network neutrality. The
Council of the European Union recently passed network neutrality regulations for European Union
member states, noting that “a significant number of end-users are affected by traffic management
practices which block or slow down specific applications or services” [146]. Here, accountability
includes customers and regulators who keep network providers accountable for their network man-
agement practices, as the regulation states that “reasonable traffic management measures... should
be transparent, non-discriminatory and proportionate, and should not be based on commercial
considerations” [146]. Accountable designs can help ensure compliance with these regulations and
can support their enforcement.

Outside of established legal regulations, any two parties can decide to enter into contractual ser-
vice level agreements (SLA) regarding network resources, and the agreement’s terms can set the stan-
dards that determine which entities and processes assure accountability and the effects of breaching
the standards.

3.2.5 What Are the Effects of Breaching Standards?

Accountability can provide a natural deterrent against some classes of attacks, and can therefore
have a passive effect of helping parties conform to agreed-upon standards. However, accountability
can also play a more active role in system resiliency by supporting responses that restore the system

to correct function after a failure.

Deterrence An accountable SDN architecture may provide a disincentive to attack the network or
deviate from agreed-upon rules, as such an attack or deviation could be attributed to the responsible
entity [147]. As a result, the responsible entity has something to lose if it had previously pledged
something of value in order to participate [148]. The loss may be monetary, as detailed by an agreed-
upon SLA or smart contract [149]. Alternatively, the loss may be implicit and reputational, such that

other entities choose not to participate with the responsible entity after discovery [148].

Resiliency Such deterrence alone may not provide enough disincentive to stop an attacker from

attacking a network, and in such cases, intrusion tolerance designed to meet system resiliency goals

33

is necessary. The resiliency process is often defined as comprising detection, response, and recovery
phases. Accountability clearly plays a role in detection, but it also provides essential information for
effective responses.

Each entity may audit other entities to identify misbehavior and attribute it to the responsible
entity. Upon detection, an entity may report to other entities to indicate that they should take some
response action. For instance, a misbehaving entity might be isolated by peer entities so as to allow
for human intervention (e.g., forensic analysis by a security administrator) while still meeting system
service goals. Finally, for recovery, two existing mechanisms for SDN include partial configuration

rollback [150] and elastic controller provisioning [151].

3.3 Case Study: Accountable SDN Applications

We now consider a case study of applying the accountability process to SDN network applications.

3.3.1 Scenario

As controller software has become increasingly complex, there has been a proliferation of available
network applications (apps) that network and security administrators can deploy. HP Enterprise, for
instance, offers an SDN App Store [152] where users can download monitoring, security, optimiza-
tion, orchestration, and visualization tools that coordinate with the HP VAN SDN controller. At the
time of this writing, 35 of the 39 apps are provided for free, and 29 of the 39 apps were developed by
third parties outside of HP Enterprise [152].

A natural security question arises: How can we trust network applications? Furthermore, how
can we attribute actions that they take? Consider a simple example of three systemwide network
applications used by a cloud provider: 1) an intrusion detection system (IDS) app monitoring all
external-bound data plane traffic for intrusions, 2) a quality of service (QoS) app supporting network
SLAs between the cloud provider and its clients, and 3) a firewall app protecting the data plane from
external threats and isolating inter-client traffic.

Suppose the IDS app discovers a potential intrusion with systemic consequences in one of the
client’s resources, and the “discovery” is later determined to be a false positive. While the poten-
tial intrusion is still considered a real threat, the firewall receives the IDS alert and reactively re-
configures the network to block traffic that affects other clients’ network resources. The QoS app
determines it cannot provide any routing paths that support other clients’ SLAs now that particular
routes have been blocked, and the agreed terms from the SLAs are thus breached as a result of a

nonexistent threat.

34

Each app, viewed independently, provided its respective services correctly, yet the actions taken
on behalf of one client negatively affected other clients. Which entities should be held account-
able for breaching the SLAs—the client whose resources caused the alert to be generated, the cloud
provider whose security policies required IDS monitoring, the apps” developers whose software
generated alerts and actuated the responses that breached the SLAs, or a combination thereof?

Porras et al. [15] consider the application coexistence problem as one in which multiple appli-
cations compete to make decisions that affect network behavior. They propose a mediation policy
that includes minimal permissions levels, and they suggest implementing application accountabil-
ity through a security audit service module. While their auditing solution attributes events to the
applications that generated them, we posit that this is only one component in the accountability
process. How the data can be used afterward to provide attribution, how the collected data relate to
each other, and how the data can be used to enforce automatic penalties for the accountable entities

must also be considered.

3.3.2 Analysis

Our framework, described previously in Section 3.2, moves accountability from the view of what
data are collected to a complete end-to-end view of how those data can be used to assign attribution
and drive responsive decisions automatically. We highlight parts of the three-application scenario in

which the conceptual framework of accountability can help in the SDN architecture design process.

Providerand clients The cloud provider is accountable to its clients for providing acceptable levels
of network service (e.g., bandwidth, latency, denial of service protections) as agreed upon contrac-
tually in an SLA. Its clients should be able to audit the provider to ensure that the service is provided
in practice [136]. The provider and clients can agree on culpability when service levels are breached,
and they can codify this logic with smart contracts that include monetary stakes. If a client deter-

mines that service is not being provided, the client can receive monetary compensation [149].

Controllers and apps The three apps are accountable to the SDN controllers for the high-level
intents that they ask the controllers to implement. The SDN controllers are accountable to the apps
for the low-level actions they take in response, as apps may require assurance that certain actions
were taken or to provide evidence if disputes arise later. For instance, if the QoS app cannot change
the network’s routing to meet the SLA because of an action that the firewall app requested, the QoS
app can use evidence of the firewall app’s actions to declare its innocence as the root cause of the
SLA failure. (The firewall app may do the same to declare its innocence as the root cause of failure

vis-a-vis the IDS app.)

35

3.3.3 Remarks

Based on our accountability framework’s considerations, SDN has made some progress in prove-
nance [141], secure auditing [15], fault tolerance [101, 102], roots of trust [145], and resiliency [150,
151]. However, no one design captures all of the elements required for an accountable architecture.
As illustrated in our case study, no solution to date has considered accountability as an end-to-end
process, starting from assured data guarantees, continuing with auditing and detection of breaches,

and ending with automated actions for deterrence and response that support resiliency goals.

3.4 Conclusion

SDN continues to be applied in a multitude of enterprises and domains [1], and its global perspec-
tive [153] can aid in providing detection and response mechanisms for systemwide cyber resiliency.
We argued that the security property of accountability must be considered in the architecture design
so as to support detection assurances that ultimately inform responses. We provided a conceptual
framework analysis of accountability as applied to SDN entities and processes, and we applied sev-
eral notions of accountability in our network application case study. We hope that this study spurs

further interest in incorporating accountable networking by design.

36

CHAPTER 4

CONTROL PLANE CROSS-APP POISONING

Software-defined networking (SDN) continues to grow in popularity because of its programmable
and extensible control plane realized through network applications (apps). However, apps intro-
duce significant security challenges that can systemically disrupt network operations, since apps
must access or modify data in a shared control plane state. If our understanding of how such data
propagate within the control plane is inadequate, apps can co-opt other apps, causing them to poison
the control plane’s integrity.

We present a class of SDN control plane integrity attacks that we call cross-app poisoning (CAP),
in which an unprivileged app manipulates the shared control plane state to trick a privileged app
into taking actions on its behalf. We demonstrate how role-based access control (RBAC) schemes
are insufficient for preventing such attacks because they neither track information flow nor enforce
information flow control (IFC). We also present a defense, PRovSDN, that uses data provenance
to track information flow and serves as an online reference monitor to prevent CAP attacks. We
implement PROVSDN on the ONOS SDN controller and demonstrate that information flow can be

tracked with low-latency overheads.

4.1 Introduction

Software-defined networking (SDN) has emerged as a flexible architecture for programmable net-
works, with deployments spanning from enterprise data centers to cloud computing and virtualized
environments, among others [154]. The rapid growth and potential value' of SDN stems from the
need in industry and the research community for dynamic, agile, and programmable networks.
Driving the popularity of SDN is the use of modular and composable network applications (or apps)
that extend the capabilities of the logically centralized control plane. Networks that would formerly
have required monolithic and proprietary software or complex middlebox deployment can now be
addressed by the larger developer community through the use of application program interfaces

(APIs) and even third-party app stores for practitioners [37].

'A 2016 forecast by the International Data Corporation predicts that the SDN market will be valued up to 12.5 billion
USD by 2020, with network applications accounting for 3.5 billion USD of that market [154].

37

While apps add value in ways that would have been difficult or impractical before, the burgeoning
SDN app ecosystem introduces significant control plane security challenges. The SDN architecture
arguably involves a larger attack surface than traditional networks, because malicious apps can dis-
rupt network operations systemically and significantly [6, 76, 155, 156]. A recent article notes that
“attacks against SDN controllers and the introduction of malicious controller apps are probably the
most severe threats to SDN,” and that the situation is further complicated by dynamic configurations
that make it impossible for “defenders to tell whether the current or past configuration is intended
or correct” [156].

To date, defenses that limit the SDN attack surface have included app sandboxing [14], TLS-
enabled APIs [15, 25, 30], API abuse prevention [16, 18], and role-based access control (RBAC) for
apps [15, 19], among others. Although these mechanisms improve control plane security, we posit
that they are not sufficient for mitigating information flow attacks within the control plane.

In order to function properly, apps necessarily require access to and/or modification of the SDN
control plane state, which includes data stores and control plane messages. This “shared” state design
among apps creates new attack vectors for integrity attacks. For instance, trusted or system-critical
apps may unintentionally use data generated by untrusted or malicious apps [155], leading to a “con-
tused deputy” problem [157]. To date, the SDN security literature has not systematically considered
the class of integrity attacks that leverage information flow within the control plane, leaving SDN
controllers that implement this shared state design vulnerable.

While RBAC-based systems can limit the attack surface by preventing access to shared data struc-
tures based on assignment of permissions to roles and subjects, RBAC alone is not sufficient for
preventing attacks against the integrity of the shared SDN control plane state, because RBAC does
not track how data are used after authorization [158]. Consider the scenario in which an SDN con-
troller provides host and flow rule services among its core functionalities. Suppose an adversary has
compromised a host-tracking app that, as part of the app’s normal functionality, has permission to
write to the host data store, but does not have permission to write flow rules. A second app per-
forming routing has permission to read the host store and also to read and write flow rules. As part
of its functionality, the routing app ensures that all hosts can be routed correctly, and it modifies
flow rules as needed. Now suppose that the adversary modifies a host location in the host data store
to point to a host that it has compromised. The routing app detects this change and rewrites flow
rules to reflect the new location. Without being granted permission, the host-tracking app in this
example has succeeded in effectively bypassing the RBAC-based system by having the routing app
modify the network’s flow rules on the host-tracking app’s behalf.

Overview We analyze information flow within SDN control planes in order to consider the vul-

nerabilities inherent in the SDN architecture’s design, the attack surface that the design introduces,

38

and possible mitigation strategies based on information flow control (IFC) to ensure the control
plane’s integrity. We introduce and formalize a class of information flow attacks in the SDN control
plane that we call cross-app poisoning (CAP), in which a lesser-privileged app can co-opt another
app so that the compromised app takes privileged actions on behalf of the attacking app. We have
modeled the attack surface with a cross-app information flow graph that maps relations among apps
through the shared control plane state and granted permissions.

Using the 64 apps included with the popular ONOS SDN controller [25] as a representative case
study, we generated a least-privilege reference security policy using API-level permissions from the
RBAC-based Security-Mode ONOS variant [19]. With our API-level RBAC policy, we generated
and analyzed a cross-app information flow graph to identify opportunities for CAP attacks based
on the overlapping permissions granted to shared data objects. To validate our results, we generated
data flow graphs of ONOS apps to identify a set of CAP gadgets that can be used to instigate CAP
attacks, and, through a proof-of-concept attack, we demonstrated the existence of this vulnerability
even among a curated set of apps.

To detect and prevent such attacks in real-time according to a desired IFC policy, we introduce
our defense, PROVSDN: an online reference monitor for the SDN control plane that leverages a data
provenance approach to track and record information flow in the control plane across app requests.
PROVSDN intercepts API requests, tracks how the control plane state is subsequently used, and
stores such metadata in a provenance graph that efficiently queries past history while also recording
the control plane’s history. For our implementation, we instrumented ONOS with PRovSDN and
found that PRovSDN can, on average, enforce IFC by imposing an additional 17.9 ms on a new flow

rule instantiation, suggesting that PROVSDN can be practical in security-conscious settings.

Contributions In summary, our main contributions are:

1. Theidentification of the IFC integrity problem in SDN, i.e., cross-app poisoning (CAP). We
demonstrate that malicious apps can utilize a lack of information flow protections to poison

the control plane’s state and escalate privilege.

2. A systematic approach to identification of CAP attack vulnerabilities, given a specified
RBAC policy, by modeling the SDN control plane’s allowed information flows.

3. A defense against CAP attacks, PROVSDN, that uses data provenance for detection and pre-

vention of CAP attacks by enforcing IFC policies online in real-time.

4. Animplementation and evaluation of CAP attacks and PROvVSDN with the ONOS controller.

Organization This chapter is organized as follows. In Section 4.2, we outline the threat model de-

picting our attacker’s capabilities and goals. In Section 4.3, we provide an overview of information

39

flow challenges in the SDN control plane. In Section 4.4, we present our methodology for detect-
ing CAP attacks. In Section 4.5, we show CAP attacks’ existence using Security-Mode ONOS as a
case study. In Section 4.6, we outline IFC policies to counteract CAP attacks. In Section 4.7, we
present the design, implementation, and evaluation of our defense, PROVSDN. In Section 4.8, we
discuss challenges and design trade-offs, and in Section 4.9, we discuss related work. We conclude

in Section 4.10.

4.2 Threat Model

We assume that the SDN controller is trusted and adequately secured but that it may provide services
to, and be co-opted by, malicious SDN apps. We assume that apps may originate from third par-
ties,” such as app stores,” and are thus untrusted and potentially malicious. Although network and
security practitioners will use best practices and due diligence in vetting apps before deployment
(e.g., verifying that an app has been signed by a trusted developer), compiled apps without available
source code are “black boxes” whose behavior the practitioners may not entirely understand and
whose code may be vulnerable to compromise in unexpected ways.

We assume that an attacker controls a malicious app that has least-privileged RBAC permissions.
The attacker’s goal is to cause arbitrary flow rules to be installed so as to affect data plane operations,
despite not having the permission to do so. SDN controllers that do not implement RBAC make it
trivially easy for apps to modify and poison data that other apps use. Lee et al. [112] cite the lack of
access control in SDN controllers as the cause of several types of inter-app attacks, such as internal
storage misuse, application eviction, and event listener unsubscription. Our goal is to understand
these kinds of attacks even after RBAC has been applied, particularly under a conservative least-
privileges model whose privileges are minimally necessary for app functionality.

Not all cross-app information exchanges are malicious in intent, and some may be desirable based
on a given situation. However, current SDN controllers do not allow for the ability to distinguish
between benign and malicious cross-app information exchanges because they do not track control
plane information flow. A successful defender must be able to make this distinction.

We further assume that apps have principal identities and that the controller ensures that one

app cannot forge actions such that they appear to have been taken by another app. That policy can

*For instance, ONOS allows third-party app developers to submit apps to be included in the controller’s repository.
ONOS and its apps are currently used by transport network providers and have been incorporated into commercial
products developed by Huawei and Samsung, among others [159]. As of August 2018, ONOS has also been issued 12
CVE entries, including arbitrary apps being loaded into the controller [160].

*Aruba Networks, a subsidiary of Hewlett-Packard Enterprise, maintains an “SDN app store” for the HP SDN con-
troller [37]. As of August 2018, the app store contained 12 apps from third-party developers and 13 apps from “Aruba
Technology partners.”

40

be enforced using a public key infrastructure (PKI) for authentication [6], and several controllers

(e.g., [15]) already do so.

4.3 Challenges

We provide a brief overview of information flow, the SDN control plane’s information flow chal-

lenges and our main contributions in solving such challenges.

4.3.1 Information Flow Models for Integrity

Information flow concerns the extent to which data propagate throughout a system (i.e., the SDN
control plane) and influence other data. Information flow control (IFC) determines the ability of
data to flow based on policy so as to enforce an “end-to-end” secure design by tracking propaga-
tion [158]. Pasquier et al. [161] provide an overview of classical information flow models. Among
them is one proposed by Biba [162], who proposed a “no read down, no write up” integrity policy.
In that model, subjects are assigned to one of several hierarchical integrity classes. Information can
flow from a sender subject to a receiver subject if the sender’s integrity class is at least as high as that
of the sender, which implies that low-integrity information cannot reach high-integrity subjects.
Myers and Liskov [163] relax the hierarchical assumptions by proposing a system of integrity tags

and labels assigned to subjects.

4.3.2 SDN Control Plane Information Flow Challenges

Given that apps can interact with each other through the shared SDN control plane state, an ideal
SDN controller must be able to capture the resulting information flow and enforce access control
policies based on it. In considering the “network operating system” concept for SDN, we next high-
light how current state-of-the-art SDN controller designs fall short with respect to information flow

and IFC, and how we approach such challenges.

4.3.21 Lack of well-defined application isolation and enforcement as applied to shared control
plane state

Some controllers, such as Rosemary [14], sandbox each app’s resources (e.g., memory and CPU us-

age) and use RBAC to allow apps or prevent them from accessing parts of the SDN control plane

41

state, in a manner analogous to resource sharing and file permissions in operating systems, respec-
tively. However, RBAC is limiting in practice because it does not enforce certain usage of data after
authorization [158]. Apps can bypass RBAC policies if they cleverly influence other apps to take

actions on their behalf as “confused deputies.”

Our contributions We formalize this IFC integrity problem, under the name cross-app poisoning

(CAP), in Section 4.4, and demonstrate its consequences through an attack evaluation in Section 4.5.

4.3.2.2 Lack of insight into information flow within the control plane

A security practitioner might want to understand the control plane’s information flow to evaluate
the extent to which apps’ information sharing should or should not be allowed. However, to date,
there are no SDN controller logging mechanisms that explicitly and easily capture the relationships
among the various ways data have been used or generated. Practitioners must manually reconstruct
and infer possible scenarios by inspecting log files of varying verbosity. That makes it difficult or im-
possible to reason about prior network state [6, 156] or to quickly narrow down and attribute blame
to specific apps when something goes wrong [164]. This lack of insight could mislead practitioners

into incorrect conclusions when they investigate their systems.

Our contributions In Section 4.4, we describe how to use a cross-app information flow graph
to better understand the attack surface. In Section 4.7, we show how data provenance can provide

insight into enforcement and recording of control plane activities.

4.4 Cross-App Poisoning

We now introduce cross-app poisoning (CAP) as the IFC integrity problem for SDN. Informally, a
CAP attack is any attack in which an app that does not have permission to take some action co-opts
apps that do have such permissions by poisoning the other apps’ view of data in the shared control
plane state so that they take unintended or malicious actions on the first app’s behalf.

To systematically identify CAP attacks, we model how apps are allowed to use and generate data
based on how permissions are granted (Sections 4.4.1-4.4.3), and we overlay this model with apps’
actual data flows (Section 4.4.4). While individual examples of CAP attacks have been considered
in the SDN security literature (e.g., [155]), we are (to the best of our knowledge) the first to system-
atically study this class of attacks, which cannot be prevented by the existing defenses in SDN, such
as RBAC or app sandboxing.

42

4.41 RBAC Policy Model

We start with the current state-of-the-art in SDN secure controller design by considering an RBAC
model as a basis for formalizing CAP attacks. Our model for specifying RBAC policies is denoted
by R = (A, R, O, Py, Py, P, mug, mgp, mpo) and consists of:

A set of apps, denoted by A = {ay, ay, . . ., a, }, that comprise the apps in the SDN application

plane.
« A setof roles, denoted by R = {ry,75,...,7,}.

o A set of objects, denoted by O = {0;,0,,...,0.}, that comprise the data in the shared SDN

control plane state.
o A set of read permissions, denoted by Py, that make it possible to access or read from objects.

« A set of write permissions, denoted by Py, that make it possible to write, modify, or delete

objects.
« A union of all permissions, denoted by P = Pg U Py,.
« A mapping of apps to roles, denoted by mgr € A x R.
+ A mapping of roles to permissions, denoted by mgp C R x P.

» A mapping of permissions to objects in the shared SDN control plane state, denoted by mpo C
PxO.

Our RBAC model is flexible enough to be applied to several existing controllers. For instance,
Security-Mode ONOS specifies objects and permissions at the API granularity (e.g., read flow ta-
bles), whereas SDNShield [17] specifies objects at the sub-API granularity (e.g., read flow tables with
a specific IP prefix).

4.4.2 Cross-App Information Flow Graph

Given a model and policies encapsulated in R, we can convert R into a representation by which we
can reason about potential data or information flow across the shared SDN control plane state. A
cross-app information flow graph, denoted by G = (V,), is a directed graph that encapsulates the
relations among apps, objects in the shared SDN control plane state, and the permissions granted
to apps to read and write objects. Our design is influenced by the “take-grant” protection model

proposed by Lipton and Snyder [165].

43

Algorithm 4.1 Cross-App Information Flow Graph Generation
Input: RBAC policy R
Output: cross-app information flow graph G
Initialize:
(A, R, 0, PR, Pw, p, MAR, MRp, mPo) <R
V<AuO
€< {}
1. for each (a;,r;) € myg do
for each (rj,pj) € mpp such that r; = r; do

2:

3 for each (py, o) € mpo such that p; = p; do
4: if py € Pg then

5: &<« &u{(orai)}
6: end if

7: if py € Py then

8: &<« &u{(aiop)}
9: end if
10: end fOl‘

11 end for

12: end for

13: G« (V,€E)

Algorithm 4.1 shows the generation process, which uses a system modeled with an RBAC policy
as input and a cross-app information flow graph as output. The algorithm initializes the compo-
nents from R as well as the graph’s nodes V' as the union of apps A and objects O. Lines 1-3 iterate
through RBAC maps so as to map each app-object pair. Each app-object pair may have zero or
more permissions associated with it. For a read permission (lines 4-5), an edge is added to £ from
the object o to the app a;. For a write permission (lines 6-7), an edge is added to £ from the app a;
to the object ox. Thus, the directions of the cross-app information flow graph’s edges have semantic

meaning based on reads and writes.

4.4.3 Cross-App Attack Vectors

Given a cross-app information flow graph G, we can formally and precisely define CAP attacks in
terms of paths in G. We represent a cross-app attack vector, denoted by C,, as a path in G such that
the path’s starting node is an app, the path’s ending node is an object, the path length is greater
than or equal to 3, and the path length is odd. (A path length of 1 represents what an app already
has permission to do.) Based on the structure of G produced from Algorithm 4.1, the path nodes
alternate between apps and objects. We define C, (G) = (ag,01,a;...,a,-1,0,) | n > 3;nis odd.
Intuitively, we can see that a path between an app and an object in G marks the existence of a

potential attack vector. Any intermediate apps in a given C, path are the apps that app a, can co-opt

44

2 &%

Figure 4.1: Example of a cross-app information flow graph G with a cross-app attack vector

Ci = (a1, 01, a3, 0,). App a; may be able to poison object 0, even though it does not possess
permission p4 to do so; instead, it would use object oy, app a,, and app a,’s permission p4. App a;
cannot poison object 03, since no path exists between them.

using permissions that a, itself does not possess. Similarly, any intermediate objects in a given C,
path are the objects in the shared SDN control plane state used to carry out the attack. For the trivial
case in which systems do not implement any access control, G can be represented as a complete
directed graph in which all apps can read from or write to all objects.

Consider the example cross-app information flow graph in Figure 4.1. Continuing the example
from Section 4.1, suppose that app g, is a host-tracking app that has been compromised by an adver-
sary; o; is the host store; a, is a routing app that has not been compromised; and o, is the flow entry
store. The adversary does not have the ability to directly modify object 0,, because the app does not
have permission to do so; if it did, an edge would exist from a, to 0,. However, the adversary can
poison object o0y, since it is allowed to do so (i.e., by permission p;). Later, the routing app a,, which
has permissions that the adversary seeks (i.e., any edge into 0,), reads from o, and uses information

from o, to write to o,.

4.4.4 Cross-App Poisoning Gadgets

Our methodology in Sections 4.4.1-4.4.3 conservatively captures how apps could influence data
flowing through the shared control plane state, subject to a specified RBAC policy. Put simply, what
are the apps allowed to influence if they can read and write to such shared state? However, such
influences, represented as cross-app attack vectors, may not always exist in practice, since an app’s
source of data from the shared control plane state may not always causally influence what the app
later writes to the control plane.

To account for that, we use static analysis techniques to identify relevant data flows present in
apps that read from a permissioned data source and write to a permissioned data sink. We call such
data flows cross-app poisoning gadgets, as one or more gadgets can be used to build sophisticated
CAP attacks. CAP gadgets require a triggering app to start the chain reaction. We explain our
specific methodology and implement proof-of-concept attacks for the Security-Mode ONOS SDN

controller in Section 4.5.

45

4.5 Cross-App Poisoning Case Study: Security-Mode ONOS

To show how prevalent CAP attacks are in practice, we study the Security-Mode ONOS SDN con-
troller [19, 25]. We chose the ONOS framework because it is a representative example of a popu-
lar, production-quality controller used in industry by telecommunication service providers [159],
among others. The ONOS framework is Java-based with publicly available source code® bundled
with open-sourced apps. Security-Mode ONOS is a variant of the ONOS SDN controller with ad-
ditional support for RBAC.

4.51 CAP Model for Security-Mode ONOS

4.5.1.1 Apps

The v1.10.0 release includes 64 bundled reference apps [38] as part of the ONOS codebase. Each app
is an OSGi bundle that can be loaded into or removed from the controller at runtime as an internal
app. Example apps include a reactive forwarding app (fwd), a routing app (routing), and a DHCP
server (dhcp).

4.5.1.2 Permissions

By default, ONOS runs without any RBAC policies or enforcement; this makes execution of CAP
attacks trivial, because nothing prevents an app from influencing any object in the shared control
plane state. Instead, for the remainder of this chapter, we evaluate Security-Mode ONOS, because it
allows app developers to specify which permissions their apps need, and security practitioners can
write RBAC policies that specify which roles apps have and what permissions each role has. Security-
Mode ONOS includes 56 permissions named with *_READ, *_WRITE, and *_EVENT suffixes. We
incorporate *_READ permissions into P and *_WRITE permissions into Py,. *_EVENT permissions
register and de-register apps from event handlers, so we treat these permissions as equivalent to

both read and write permissions.

4.5.1.3 Objects

ONOS follows the pattern of providing a “service class” (e.g., FlowRuleService) that serves as an
API for apps. Each service class has a respective “manager class” (e.g., FlowRuleManager) that im-

plements the service class. When the manager class is instantiated, it instantiates a respective “store

*Throughout the chapter, we use the ONOS v1.10.0 source code available at [166].

46

class” (e.g., FlowRuleStore) that stores the actual shared control plane state. That state is composed
of “data class” instantiations (e.g., objects of the classes FlowRule and FlowEntry). Each store is pro-
tected by limiting access via the manager class’s methods (e.g., getFlowEntries()), and, when apps
call such methods, Security-Mode ONOS performs permission checks (e.g, “Does the app have
the FLOWRULE_READ permission according to the RBAC policy?”). ONOS also includes manager
classes for the southbound API (e.g., OpenFlowPacketContext).

We let each manager class represent an object in our model, given that a manager class encapsu-
lates the methods and stores that represent access to and storage of the shared control plane state, re-
spectively. As Security-Mode ONOS specifies permissions at the method level of granularity rather
than at the “data class” level of granularity, we map these methods back to the manager classes when
building the RBAC policy in the next section. For instance, an app that calls the getFlowEntries()
method would need the FLOWRULE_READ permission, so our model would show an edge labeled
with that permission from the FlowRuleManager object to the app in the cross-app information

flow graph.

4.5.1.4 RBAC Policy

We assume that a practitioner sets up an RBAC policy of least privilege such that each app has
the minimum set of permissions needed in order to carry out its functionality correctly. The 64
apps included with ONOS do not list the permissions that they would need if they were run with
Security-Mode ONOS. We wrote a script that statically analyzed the ONOS codebase to find in
which methods Security-Mode ONOS checked permissions. From there, we analyzed which apps
used those methods in order to map the permissions that each app would need.

Our result is a security reference policy for ONOS apps that enforces least privilege using RBAC
and is called Ronos. We found that Security-Mode ONOS permissions were enforced on 212 meth-
ods protected across 39 manager classes through the use of 38 of the available 56 permissions. Each
manager class may implement more than one service class, so we included 67 service classes. (See
Table B.1 in Appendix B.1.2 for additional details.)

4.5.1.5 Cross-app information flow graph

Using the security reference policy, we applied Algorithm 4.1 to generate the cross-app information

flow graph Gonos for ONOS with all apps included.” Figure 4.2 shows the complete Gonos with 88

*We imagine that a practitioner would only load some subset of apps into the controller, so apps that have not been
loaded should be removed from Gonos for analysis.

47

Figure 4.2: Cross-app information flow graph Gonos using the 64 apps included with ONOS.
Large points represent apps; small points represent objects in the shared SDN control plane state;
and arrows represent permissions for apps to read from or write to objects.

nodes® and 564 edges. To understand the connectivity of Goyos, we looked at how many objects
each app could directly and indirectly access (Figure 4.3) and how many apps each object could be

accessed by, either directly or indirectly (Figure 4.4).” For both analyses, we removed an app named

®Manager classes whose methods were not called by any app were not included in the cross-app information flow
graph; thus, |[A| + |O| # 88.

” A shortest path in G of length 3, for instance, corresponds to indirect accessibility via 1 app in Figure 4.3 or 1 object
in Figure 4.4.

48

S M

151 mmm Directly
[Via 1l app
101 mmm Via 2 apps

objects accessible by a

*1,0‘,6‘;?0\(’?\\“‘6“@&\?@%@6 @5@‘6“\0‘\‘“ \Q\’b‘\\ %}}5095\ \x\%e ?%00‘ Qf’%ﬂ_ “\Q@’%‘Q\% \xc‘\ be’ ‘\qt T e}\@%\%«-"«“a&ﬁ;&\c:@v‘)@/‘-&‘Q.&@Qc"'
Ooh \> Q e ‘0 ‘ N @S £ S <&

6"' RO <\ ‘?‘ 6 R8s \«’9 \\l <\"’ SN a‘“ §°

\0 o‘ NSRS oF R o0 N RS

T S Q«,&* GBS S o

o <@

App a

<‘<* o
o'

N

&

Figure 4.3: App to object accessibility (via shortest paths) in Gonos with 63 apps. Paths begin at a
given app a.

30 A B Directly
B Via 1 object
20 A Bl Via 2 objects

apps accessible by o

< X X X X 2 i
o o & & & & R o
@o@%\ 00‘?,&%@%\@%0 A %\?’%5 "g&‘i&%@%@g&%&g<\'°g0@‘)0@%&%@‘)@%&%0&<\’°%@%&%&%\?’%@%&%&g
P S N S N e S A “\“““\““\‘“‘““\\“‘“e\““\\l\‘“‘““\\“‘““\
RO P L O I O R N N A NN W0y SO0 H (B e B R e S o®
(,3"_0(6»8@(' ‘?‘oco‘\ S 000“ \(\‘— Q\ec’ Q’b(' 06\Q0\° (,06 ‘\Q A Q‘ c\\)‘) \0 N o O QD ¢ Q ’V\ ’b 4 \ \0 Q\ <O
N RO <0 e‘ & S @
@ & EORY @ o RGOS g
* o o o€ o RSN
13 3 o &
@ 3o 02
% «© [}
Q©

Object o

Figure 4.4: Object to app accessibility (via shortest paths) in Gonos with 63 apps. Paths begin at a
given object o.

test from consideration, since it is used for testing ONOS functionality.

49

4.5.2 CAP Gadgets in Security-Mode ONOS

We further refine the results from Figures 4.3 and 4.4 by identifying a set of CAP gadgets in ONOS
apps. Fortunately, all of the apps bundled with the ONOS codebase have publicly available source
code that can be analyzed; while this is not strictly required to identify CAP gadgets, it simplifies
the process. We used static analysis techniques to identify data flows that can be used to build CAP
gadgets to instigate CAP attacks.

4.5.21 Methodology

We used JavaParser [167] to build an abstract syntax tree (AST) representation of each of the 63
ONOS apps, excluding the test app. Using the ASTs as inputs, we wrote a script to determine data
flows within apps’ methods from “sources” to “sinks” of interest through field-sensitive interproce-
dural data flow analysis. Such data flows represent an app’s use of one control plane object to generate
another control plane object. We defined sources as API read calls to permission-protected meth-
ods (i.e., requiring a permission in Pg), and sinks as API write calls to permission-protected meth-
ods (i.e., requiring a permission in Py). We used Pg, Py, and the list of 212 permission-protected
methods found from our earlier analysis. We mapped the permission-protected methods to their
respective permissions so that each source or sink is represented by a permission.

Although we used Java-specific tools to generate ASTs for ONOS apps, other tools such as
CAST [168] for C/C++ or ast [169] for Python exist for controllers and apps in other languages.

4.5.2.2 Results

Table 4.1 shows the resulting cross-app poisoning gadgets, represented as (source, app, sink) tuples.
One can chain gadgets together to form complex cross-app information flows. At a minimum, only
one gadget is needed; any app that can write to a single gadget’s source can launch a CAP attack. We

summarize the behavioral takeaways and their consequences below:

1. Five gadgets use the APP_READ source permission. In inspecting the apps’ code, we found
that the apps use the CoreService’s methods to look up the mapping between the app’s name
(e.g., org.onosproject.fwd) and a unique app ID (e.g, 1d=70), and that the apps then
subsequently use this app ID to take other control plane actions (e.g., deleting all flow rules
with the app ID id=70). If such assumptions about the trustworthiness of the app name and
ID mapping are broken, faulty or malicious apps can cause systemic damage through CAP

attacks even if they have no permission to take such actions themselves.

50

Table 4.1: Static Analysis Results of CAP Gadgets for Security-Mode ONOS Apps.

Source App (acA) Sink (p € Py) Attacker’s capabilities if source data have
(p € Pr) been compromised by attacker

APP_READ openstacknetworking FLOWRULE_WRITE Attacker modifies the app ID to remove all
flows with a given app ID

APP_READ openstacknode CLUSTER_WRITE Attacker modifies the app ID to make an app
run for leader election in a different ONOS
topic (i.e., an app using ONOS’s distributed

primitives)

APP_READ openstacknode GROUP_WRITE Attacker modifies the app ID to associate an
app with a particular group handler

APP_READ routing CONFIG_WRITE Attacker modifies the app ID to misapply a
BGP configuration

APP_READ sdnip CONFIG_WRITE Attacker modifies the app ID to misapply an
SDN-IP encapsulation configuration

DEVICE_READ newoptical RESOURCE_WRITE Attacker misallocates bandwidth resources
based on a connectivity ID

DEVICE_READ vtn DRIVER_WRITE Attacker misconfigures driver setup for a
device (i.e., switch)

DEVICE_READ vtn FLOWRULE_WRITE Attacker misconfigures flow rules based on a
device ID

HOST_READ vtn FLOWRULE_WRITE Attacker misconfigures flow rules based on a
host with a particular MAC address

PACKET_READ fwd FLOWRULE_WRITE Attacker injects or modifies an incoming
packet to poison a flow rule

PACKET_READ learning-switch FLOWRULE_WRITE Attacker injects or modifies an incoming

packet to poison a flow rule

2. Five gadgets use the FLOWRULE_WRITE sink permission. This would be expected, since most

flow rule operations in ONOS are event-driven based on actions in the NB and SB APIs.

3. Some objects are not affected by CAP attacks. We expect objects that are not related to main-

taining network state (e.g., objects for gathering statistics) to be unaffected.

4.5.3 Example Attack: Packet Modification and Flow Rule Insertion for Data
Plane DoS

We now consider a proof-of-concept CAP attack that leverages the reactive forwarding app fwd to
insert corrupted flow rules. We performed the attack using Security-Mode ONOS enabled with
ONOS v1.10.0. (See Appendix B.1.1 for configuration details.)

51

4.5.3.1 Approach

We wrote a triggering app (trigger) to poison the view of the reactive forwarding app (fwd) so as
to cause data plane denial-of-service (DoS). Our approach is similar to the attacks proposed by
Dhawan et al. [93] and Lee and Shin [113] to poison the view of the network, though we assume that
malicious apps, rather than malicious switches or end hosts, cause the poisoning. Our triggering
app minimally requires PACKET_* permissions and does not require FLOWRULE_* permissions. (See

Appendix B.2 for additional details.) The attack works as follows:

1. The triggering app, to register itself with ONOS to receive incoming packets, uses its
PACKET_EVENT permission. Upon receiving particular ARP requests, the app changes the

ARP and Ethernet source addresses to an attacker’s address.

2. The forwarding app also registers for incoming packets. The forwarding app reads the packet

by using the PACKET_READ permission to decide whether to generate flow rules.

3. The forwarding app inserts the flow rule into the control plane using its FLOWRULE_WRITE
permission. As a result, the flow rule becomes associated with the forwarding app because of

fwd’s appId.

4.5.3.2 Results

The flow rule based on corrupted information causes a data plane DoS attack from the victim’s
perspective. Because the forwarding app inserted the flow rule, ONOS identifies fwd as being re-
sponsible for the corresponding flow rule in its flow rule database. Thus, a practitioner investigating
the DoS outage may incorrectly assign full blame to fwd, particularly since trigger is not assumed

to have the ability to insert flow rules.

4.5.4 Remarks

We were able to systematically detect CAP gadgets (as described in Section 4.5.2) because the apps’
source code was available, but this detection may not be an option with closed-source “black box”
apps. Thus, practitioners need further insight into how apps behave in practice once they are acti-
vated within the SDN controller.

It is much easier to bypass RBAC permissions when apps are reading from or writing to many
of the same shared SDN control plane state’s objects. What is needed is a way to track information

flow to capture how data are used after RBAC authorization is granted. By making access control

52

decisions based not only on the accessing app’s role but also on the history of how data were gen-
erated, a practitioner can limit the extent to which apps are able to influence other apps while still

maintaining the flexibility afforded by a shared state design.

4.6 Information Flow Control Policies

We consider information flow control (IFC) policies as they relate to detecting and preventing
CAP attacks. We use a “floating label” approach based on Myers and Liskov’s decentralized IFC
model [163] and on previous IFC policies that use data provenance [161, 170]. In our policy model,
a practitioner labels apps with integrity tags, resulting in each app’s having its own integrity label
composed of a subset of integrity tags. We assume that apps’ label assignments cannot be modified
by any actions that the apps take themselves, but that they can be changed out-of-band by practi-
tioners as needed. Our IFC policy model for shared SDN control plane state integrity, denoted by
Z=(A,T,L,Ch,Re), consists of:

o Asetof apps,® denoted by A = {ay,a,,...,4a,}.
o A set of integrity tags, denoted by T = {11, 7,..., 7/}.

o Integrity labels that map apps to a subset of integrity tags, denoted by L : A - Z?(T'), where
P(T) is the power set of T.

« An enforcement check policy on when to check for violations, denoted by Ch € {READS,
WRITES}.

« A response to perform when information flow is violated, denoted by Re € {BLOCK, WARN,
NONE}.

An appss integrity label that is a superset relative to another app’s integrity label has higher in-
tegrity; that is, if L(a;) 2 L(a;), then a; has integrity at least as high as that of a; for a;,a; € A and
L(a;),L(a;) € Z(T). We define an object’s integrity level, denoted by I(0) for o € O, as the inter-
section of all integrity labels of apps that have helped generate that object. Formally, I(0) = ﬁ L(a;)
for some set of apps Ay = {a1, a,, ..., a,} used in producing o. This means that the object’s ir;tegrity

level is as high as that of the lowest-integrity app that helped generate it.

8For reasons explained in Section 4.7.1, we count switches as “apps.”

53

4.7 PRrRoOVSDN

We now present our defense, PROVSDN. PROVSDN hooks all of the controller’s API interfaces to
collect provenance from apps, builds a provenance graph, and serves as an online reference mon-
itor by checking API requests against the IFC policy Z. This allows us to prevent both known and
unknown CAP attacks based on policy.

4.71 Data Provenance Model

Data provenance refers to the process of tracing and recording the origins of data and their move-
ment. Provenance has been used to understand the flow of data in databases [171, 172, 173, 174, 175],
operating systems [176, 177, 178, 179], mobile phones [180, 181], and browsers [182, 183]. Provenance
can be used not just for IFC but also for information tracing, accountability, transparency, and com-
pliance [184, 185].

We use the W3C PROV data model [184, 186], which defines provenance as a directed acyclic
graph (DAG) that encodes the relationships between three elements (i.e., vertices): entities are data
objects processed by a system, activities are dynamic actions in the system, and agents are the prin-
cipals that control system actions. Relations (i.e., edges) describe the interactions between system
elements. Entities are used or generated by activities; activities are associated with agents; and ac-
tivities may be informed by other activities. An advantage of storing provenance graphically is that
it allows for efficient relational querying [179, 187, 188]. (See Table B.2 in Appendix B.3 for a visual

representation of provenance objects and relations.)

4.7.1.1 Entities

We define entities as the objects from Section 4.6, which include the control plane’s shared data
structures that are being processed or generated by the SDN apps and controller. For ONOS, we de-
fine entities at the “data class” granularity as described in Section 4.5, since that definition captures
fine-grained information about switches, hosts, and the network topology as well as flow rules, pack-
ets being processed, and OpenFlow messages sent or received. PROVSDN can also flexibly specify

additional metadata to collect (e.g, traffic match fields for a flow entry), as needed.

4.71.2 Activities

We define activities as the API calls and callbacks between SDN apps and the controller. For instance,

these calls enable apps to process flow rules and OpenFlow messages.

54

APPLICATION PLANE External _ External| External

app | |_app Apps
_________ @ oo (D@ Northbound APL_______
PROVSDN Core|| |APPLICATION PLANE
Collector NB AP Internal app
Provenance) modules
graph Protected\;/access

Online

| Core methods |

19]]01}U0D NAS

Internal app

reference 'l M paig stores |
IFC policy\in/oj"tor [sBapi || Y Internal app
_________________________________ A e e e e

CONTROL PLANE Switch Switch

DATA PLANE

Forwarding Devices

End End

hOSt End End Hosts hOSt
host

Figure 4.5: PROVSDN architecture showing an app calling the NB API. 1: An app makes a NB API
request. 2: The NB API tentatively retrieves or inserts data related to the request. 3: The collector
processes the call information. 4: The collector writes the provenance data to the provenance
graph. 5: The online reference monitor checks the provenance graph for violations according to the
IFC policy. 6: The IFC policy’s response is returned to the NB API. 7: Depending on the response,
the data may be returned to the app or may be written to the shared SDN control plane state .

4.71.3 Agents

We define agents as the principal identities of the apps, the switches, and the controller.” We treat
switches as principal identities because, like apps that interact with the controller via the NB API,
switches interact with the controller via the SB API. We attribute all activities (i.e., API calls) to the
agents that requested them, effectively identifying all activities of apps and switches that interact
with the shared SDN control plane state.

4.7.2 System Components

Figure 4.5 shows the PROVSDN architecture. We assume that the provenance components are

trusted and adequately secured.

*Internal controller services can interact with the shared SDN control plane state through event updates. We rep-
resent each internal controller service with its own agent; each of those agents performs operations on behalf of the
controller agent.

55

4.7.2.1 Provenance collector

The provenance collector captures the API call information, such as which method was called, who
called it, what data were used, and what data were subsequently generated. The collector also iden-
tifies relations and the agents, activities, and entities involved. From there, the collector converts the
data into a W3C PROV-compliant graph. PROVSDN also collects information from SB API calls,
given that some NB API calls cause packets in the data plane to be sent to the controller. PROVSDN
hooks the SB API functions responsible for sending flow rules and processing incoming packets.
That allows for association of incoming OpenFlow packets with the flow rules that caused them to

be sent to the controller and ensures that the provenance graph correctly represents that association.

4.7.2.2 Online reference monitor

The online reference monitor checks the current provenance graph in real time against the IFC
policy Z. For instance, suppose that the enforcement check policy Ch is READS. First, when data
cross the API boundary for read requests, we consider that to be the equivalent to an attempt by a
requesting app 4, to read object 0. Next, we determine Ay by checking for the existence of paths
from o to Va € A. We check the policy Z against 1) the label of the requesting app L(a,) and 2) the
labels of the apps that the object previously encountered, or (nﬁ L(a;). Finally, we apply the response
Re, which can block the read request, warn the practitionerl that the read request occurred, or do
nothing. If a policy is violated and the response Re in the policy Z is BLOCK, the relationship is
removed'® and the action is disallowed. Otherwise, the relationship is permanently added to the

provenance graph.

4.72.3 Provenance graph

PrROVSDN’s provenance graph database enables online policy checking via the reference monitor,

as well as offline investigation of previous events for network forensics.

4.7.3 Implementation

We implemented PROVSDN with ONOS v1.10.0. We describe our implementation details below.

“To maintain an audit record, the relationship can remain in the provenance graph but be marked as not existing
for the purpose of online graph queries.

56

4.731 NB API

We found that the ONOS NB API was not well-defined and thus was subject to questions about
whether apps could bypass provenance collection. To fix that, we used Doxygen [189] to identify
all publicly accessible classes in ONOS by counting the number of references in the codebase to
each of these classes; any class referenced by more than three other classes was deemed to be part
of the NB API and properly exposed to SDN apps. Our static analysis identified 63 classes with 721
methods that we used as ONOS’s NB API (e.g., switch, host, link, and flow rule management). It
also identified 194 classes with 1,405 methods that are internal to ONOS and should not be part of
the NB API (e.g., distributed storage primitives, and raw OpenFlow message handlers).

To prevent apps from bypassing provenance collection, we enforce internal method checking
(step 2 of Figure 4.5). If an internal method call originates in another internal method, it is allowed;
if it originates in an app, it is blocked. This forces apps to use the NB API through methods that

capture provenance.

4.7.3.2 Provenance capture

The choice of programming language is important to ensure that access to controller internals is
possible only through instrumented API calls. (See Appendix B.4 for the challenges of implementing
provenance on other controllers.) We found Java to work well in this regard by enforcing private or
public access modifiers. By default, Java’s controls are insufficient, because it is possible to override
the declared access modifiers by using the Reflection API. Fortunately, static analysis can detect

reflection use if apps are checked prior to being loaded.

4.73.3 Processing and storage

We implemented the PROVSDN provenance collector and online reference monitor in approxi-
mately 1,350 lines of Java code. We embedded approximately 420 provenance hooks throughout the
ONOS codebase to call PROVSDN’s provenance collector. Upon initialization, the collector imports
the IFC policy 7 that the online reference monitor references when new provenance relations have
been added. We stored provenance data in an internal JGraphT [190] graph structure for optimized

graph search (i.e., path existence) performance.

4.7.4 Attack Evaluation

We evaluated PROovSDN’s IFC capabilities using the attack described in Section 4.5.3. We prevent
information flow from the triggering app (trigger) to the reactive forwarding app (fwd) by assigning

57

PacketContext
type = Packetln

was
Associated

; PacketContext

was
Associated
With

used

trigger:attack

wasGeneratedBy

PacketContext
type = Packetin

\ was ,
| v Associated ,’ used
'- 2 U With
| e waslnformedBy N ___ e
______ Le—e™ oo |
! fwd:installRule ! , fwd:callback .
L et I Le e e e e e e = =
wasG tedB
R vas® ?n_efa_e_ _ E/ (b) IFC enforced on reads.
<~ ForwardingObjective _:\,

(a) IFC enforced on writes.

Figure 4.6: Provenance graphs generated from example CAP attack described in Section 4.5.
Dashed nodes and edges represent attempted actions blocked (but recorded) by PROVSDN.

different integrity tags to the apps. We set our IFC policy Z as T = {1}, 12}, L(trigger) = {71},
L(fwd) = {7;,7,}, and Re = BLOCK. Since L(fwd) o L(trigger), fwd has higher integrity than trigger
and is prevented from reading data generated by trigger. Packets sent from trigger and read by fwd,
represented as PacketContext entities, have integrity levels I(packet) = {7, }; PROVSDN computes
I(packet) by checking path connectivity between entities and agents.

Figure 4.6 shows parts of the provenance graphs generated from the information flow attempts. If
Ch = WRITES, IFC is enforced during write attempts, resulting in the process shown in Figure 4.6a.
Similarly, if Ch = READS, IFC is enforced during read attempts, resulting in the process shown in
Figure 4.6b. In both scenarios, the desired goal of the attacker (i.e., to insert a corrupted flow rule) is
blocked, albeit at different stages of the processing pipeline (depending on practitioner preference).

Suppose that the attack described in Section 4.5.3 had not been blocked and was allowed to oc-
cur. If the log files were verbose enough, a practitioner analyzing them might eventually be able to
reconstruct the events that occurred. However, PROVSDN’s provenance collection would make the
investigation simpler even if IFC policies were not initially enforced. The practitioner issues a query
to PROVSDN requesting information about the ForwardingObjective flow rule entity and receives
the relevant ancestry (shown in Figure 4.6a). The graphical representation lets the practitioner start

at the ForwardingObjective entity and trace back what data were used in generating the flow rule

58

Table 4.2: PROVSDN Micro-Benchmark Latencies.

Operation Average time per Number of operations Percent of total
operation time
Collect 155.66 us 23067 1.38%
Write 11.15 ps 57 948 0.25%
IFC check 98.50 us 544 0.02%
Internal check 44.67 us 5692 315 98.34%
1.00 B L L L
N BT)/
0.75 . /
= /
8 0.50 A /'
0.25 4 | —-- Baseline
' /' ----- ProvSDN (no IFC)
| /’ —— ProvSDN (with IFC)
0.00 i i i . . i
10 20 30 40 50 60

Flow start latency [ms]

Figure 4.7: Flow start latency macrobenchmarks.

to see that trigger modified the original PacketContext entity. To prevent future occurrences, the

practitioner installs the IFC policy described earlier.

4.7.5 Performance Evaluation

We evaluated PROVSDN’s performance in an emulated environment running Open vSwitch
2.7.0 [40] software switches, which are commonly found in virtualized environments. We gener-
ated data plane packets so that they would be handled by the controller; this made PRovSDN collect,
record, and query provenance. All experiments were performed on a four-core Intel Xeon E7-4850
2.0 GHz CPU with 16 GB of RAM running Ubuntu 16.04.2 LTS.

4.75.1 Macro-benchmarking

Our SDN macro performance metric of interest is flow start latency, which measures the time nec-
essary for a data plane packet that does not match existing flow rules to be handled by the controller
and apps. It represents the delays experienced from the end host perspective in reactive-based SDN

configurations. The controller’s packet handling will trigger several provenance events and checks

59

(e.g., new host event, topology change event, or flow insertion event).

Figure 4.7 shows the resulting latencies for a baseline without PRovSDN, for PRovSDN when
IFC is not enforced, and for PROVSDN with IFC enforced. 30 trials were run for each of the three
scenarios. The average latencies were 11.66 ms, 28.51 ms, and 29.53 ms, respectively. Although
PROVSDN increases the baseline latency for packet handling, as more apps and internal controller
services register to receive events, we note that the higher first-packet latency is amortized over
longer flows, because subsequent packets matched to flow rules in switches do not need to go to
the controller or to apps (or, by extension, to PROVSDN) for processing. Thus, PROvVSDN needs to
operate only on the relatively infrequent control plane state changes rather than on each individual

packet of a flow.

4.7.5.2 Micro-benchmarking

We measured the additional latency overheads imposed by 1) collection of provenance, 2) writing of
provenance to the provenance graph, and 3) performance of IFC checks by querying of the prove-
nance graph. In addition, we measured 4) the latency imposed by enforcing the rule that apps cannot
call internal controller methods (i.e., the latency imposed by checking protected access as shown in
step 2 of Figure 4.5). From Table 4.2, we see that internal method-checking operations impose most
of the additional latency (about 98% of total operations), even though they impose only a small ad-
ditional latency per operation (44.67 us on average). IFC checking is slower but infrequent, because
the queries, in effect, test path connectivity between a source node (i.e., an entity) and destination

nodes (i.e., the system’s agents) in the provenance graph.

4.8 Discussion

Extent to Which Controllers Are Affected by CAP OpenDaylight [30] provides RBAC services
based on the Apache Shiro Java Security Framework’s permissions system, though RBAC services
are not enabled by default. The current authorization scheme can be configured only after the con-
troller starts and is “aimed towards supporting coarse-grained security policies” [191].

Floodlight [28] does not support RBAC and would thus be susceptible to CAP attacks. Floodlight
provides core controller services similar to those of ONOS, such as LinkDiscoveryManager, Topolo-
gyService, and MemoryStorageSource. The MemoryStorageSource data store documentation notes
that “all data is shared and there is no enforcement,” [192] which would make CAP attacks trivial.
SE-Floodlight [15] enforces RBAC but only on permissions for low-level switch operations rather

than for app interactions such as those with which Security-Mode ONOS provides for ONOS.

60

Ryu [29], written in Python, does not support RBAC and would thus be trivially susceptible to

CAP attacks. Python does not enforce public and private access protections.

Finer-Grained RBAC as CAP Mitigation One way to reduce the control plane’s attack surface is
by implementing finer-grained RBAC. SDNShield [17], for instance, includes sub-method permis-
sions such as allowing or denying flow entries based on IP source and destination prefixes. (See Ap-
pendix B.1 for further details on how Security-Mode ONOS implements fine-grained permissions.)
We can represent the finer-grained partitioning of permissions by considering finer-grained objects
0 in our cross-app information flow graph G and finer-grained permissions P in our RBAC model R.
Since the source code for SDNShield was not publicly available, we were not able to evaluate the ex-
tent to which finer-grained RBAC could help mitigate CAP attacks by using SDNShield. However,
we surmise that finer-grained RBAC will still not solve problems such as reliance of system-wide
apps (e.g., a firewall app that protects an entire network) on trustworthy information about many

objects.

Android We compare the SDN network OS architecture with the Android mobile OS architec-
ture, as both architectures include extensible third-party app ecosystems. While Android apps are
sandboxed and communicate with each other through inter-process communication (IPC), SDN
apps read from and write to a common shared control plane state over which access control (in
practice) has been coarsely defined. The situation for SDN is more challenging than that of Android
because Android apps can operate relatively independently of each other, but SDN architectures
require greater coordination among SDN apps to ultimately maintain one main shared resource
(i.e., the data plane) through a limited number of data structures. This required coordination limits
the effectiveness and practicality of sandboxing and IPC for SDN. As a result of the SDN shared-
state design, maliciously generated data from one SDN app have significant repercussions for any

other app that subsequently uses the data, or for the data plane.

Other IFC Mechanisms Stack-based access control (SBAC) [193] and history-based access con-
trol (HBAC) [194] propose IFC for Java-based systems. Jif [195] is a Java extension for enforcing
language-level IFC policies, but it has certain drawbacks. It would require retrofitting of all apps
with IFC policy intents, would require app developers to know how to program IFC policies, and
would not provide a record of information flow for later analysis. Dynamic taint analysis tracks
information from “sources” entering the system to “sinks” leaving the system, but dynamic taint
analysis is not as conducive to IFC because there may be a delay between the occurrence and the
detection of an IFC violation [161]. We opted for data provenance techniques because provenance

provides a historical record of information flow, its collection can be checked in real time, and its

61

collection is agnostic to the controller’s language.

For Android, TaintDroid [196] labels data from privacy-sensitive sources (e.g., GPS, camera, or
microphone) and applies labels as sensitive data propagate through program variables, files, and
inter-process messages. However, TaintDroid does not capture the provenance of such interactions,
and that limits further analysis. IPC Inspection [197], like PROVSDN, uses a low-watermark float-
ing label policy [162] for Android to prevent permission re-delegation. Quire [181] tracks Android’s
IPC calls by annotating each call with apps that have processed the call. Quire is like PRovSDN in
that one of its goals is to prevent confused deputy attacks, but since SDN architectures do not use
IPC to exchange information, PROVSDN requires tracking and enforcement at the NB and SB API
boundaries instead. Weir [198] enforces decentralized IFC for Android through polyinstantiation of
applications and their components to reconcile different security contexts and to avoid label explo-
sion. However, it is not clear whether such an approach would work with the limited data structures
of the SDN shared state design.

For Web browsers, Bauer et al. [199] implemented and formally verified an IFC extension to the
Chromium Web browser that uses lightweight taint tracking to track coarse-grained confidentiality
and integrity labels across DOM elements and browser events. PROVSDN focuses on integrity-based

attacks and collects full provenance metadata to reconstruct previous control plane states.

Limitations PROVSDN’s floating-label-based IFC design cannot prevent availability-based attacks
in which low-integrity apps attempt to write to many objects to poison them so they cannot be read
by high-integrity apps. The “self-revocation problem” in low-watermark systems [197, 200] demotes
an agent’s integrity level if the agent observes low-integrity data and then cannot modify data that it
originally generated. The problem is partially mitigated in PROvVSDN through fixed integrity labels
for agents (i.e., apps) and through implicit label propagation (i.e., floating labels) for data objects. If
availability-based attacks are of interest, PROVSDN can still be useful in identifying such behavior
even without initially enforcing IFC, since PROVSDN will record such object poisoning. The prove-
nance graph can be used to better inform practitioners in making decisions on whether such apps’
behaviors are desirable and whether low-integrity apps should be removed.

PrOVSDN with Security-Mode ONOS does not enforce separation of memory space since
ONOS’s OSGi-based container approach does not enforce this separation. We rely upon Java’s access
modifiers to prevent apps from accessing private data structures. One alternative design approach
would be to transparently separate each app into its own process and bridge API calls to the con-
troller to enforce isolation by means of the underlying operating system, but this would require a

significant redesign of the ONOS architecture. For language-based limitations, see Appendix B.4.

62

4.9 Related Work

SDN Controller Security Wen et al. [17] note four classes of SDN controller attacks: data plane
intrusions, information leakage, rule manipulation, and apps’ attacking of other apps. The authors
propose SDNShield for fine-grained RBAC and app isolation policies to prevent inter-app attacks,
but as shown in the cross-app information flow graph for Security-Mode ONOS in Figure 4.2, an app
sandboxing policy is too restrictive in practice, because apps necessarily rely on information gener-
ated by other apps in order to function correctly. The authors claim that the logs from SDNShield
can be used for offline forensic analysis, but it is unclear whether such logs explicitly show informa-
tion flow and, if so, how they do. With PRovSDN, we allow practitioners to flexibly specify their
intents about each app’s integrity assumptions to enforce a desired IFC policy in real time, and our
provenance-based approach captures a history of information flow by design.

Security-Mode ONOS [19] extends the ONOS controller to include API method-level RBAC en-
forcement. Rosemary [14] isolates applications by running each application as an individual pro-
cess. SE-Floodlight [15] hardens the control plane by enforcing hierarchical RBAC policies and log-
ging events through an auditing subsystem. These systems neither explicitly the track information
flow necessary for detecting CAP attacks nor enforce IFC policies in real time as can be done with
ProvSDN. FRESCO [s] allows for enforcement of hierarchical flow-rule deconfliction to ensure
that non-security applications cannot undo actions taken by security applications; however, this is
limited to the controller-switch interface and provides no protection from CAP attacks.

An orthogonal approach would be to use secure-by-construction controllers that utilize lan-
guages whose type systems guarantee properties such as app composability [115, 116, 117, 119, 201].
In such systems, the controller acts more as a language runtime than as an operating system, and
applications are written in a formal language and composed using logical operators. We consider
such controllers to be sufficiently different from operating-system-like controllers that they are out

of scope.

SDN App Security Malicious apps are arguably one of the most severe threats to SDN security,
as the dynamic configurations available in SDN architectures can make it challenging to determine
whether the network’s state is (or was) correct according to policy [156]. Several efforts [113, 155] have
outlined attacks similar to CAP attacks that affect Floodlight, ONOS, and OpenDaylight, though
they did not consider the case in which apps that do not have permission to take actions co-opt other
apps that do have such permissions. The authors of [113, 155] propose to use permission checking,
static analysis, and dynamic analysis as defenses; PROVSDN goes beyond that approach by enforcing
IFC policies. Other SDN attacks, particularly those that rely upon data plane information to make

control plane decisions, exist in the literature and are too numerous to list here; we refer the reader

63

to Lee et al. [112].

Network Verification and Testing An approach complementary to that of PROVSDN would be to
test whether, and/or formally verify that, controller or application behavior falls within a set of in-
variants. VeriFlow [96] and NetPlumber [97], like PROVSDN, perform real-time invariant checks,
but they implicitly assume a monolithic controller and do not capture the history of information
flow that PRoOvSDN does. NICE [105] verifies that an application cannot install flow rules that vi-
olate a set of constraints, but does not consider controller-application interactions. DELTA [112],
ATTAIN [81], and BEADS [111] provide SDN testing frameworks but are necessarily incomplete

because of their reliance on fuzzing.

Provenance in SDN Provenance-based approaches are just beginning to emerge in the SDN con-
text. GitFlow [141] tracks network state by committing state changes with a version control system,
but it requires extensive retrofitting of all apps and data plane elements, does not operate in real
time, and does not account for malicious apps. Ujcich et al. [122] consider how provenance can
be used to detect faults from benign application interactions in an offline manner, but do not con-
sider malicious applications or online attack detection. Wu et al. [132] leverage meta-provenance to
facilitate automated repair of a network. Bates ef al. [3] demonstrate a way to improve a previous
approach [144] by using SDN to enforce the monitoring of host-to-host communication. However,
those three efforts considered communications only in the data plane rather than the control plane.

Provenance tracing is of demonstrated value to network forensic efforts. Zhou et al. [144] consider
the task of identifying malicious nodes in a distributed system. Chen et al. [202] diagnose network
problems by reasoning about the differences between two provenance graphs, while in other work

the absence of provenance relationships has been used to explain network behaviors [131].

4.10 Conclusion

We have demonstrated CAP attacks that allow SDN apps to poison the integrity of the network
view seen by the SDN controller and other SDN apps. CAP attacks take advantage of the lack of IFC
protections within SDN controllers. We show how RBAC solutions to date are inadequate for solv-
ing this problem. Using the Security-Mode ONOS controller as a case study, we also demonstrate
ProvSDN, a provenance-based defense that captures control plane information flow and enforces

online IFC policies for SDN apps that access or modify the SDN control plane.

64

CHAPTER 5

CONTROL PLANE EVENT-BASED
VULNERABILITIES

Software-defined networking (SDN) achieves a programmable control plane through the use of log-
ically centralized, event-driven controllers and through network applications (apps) that extend the
controllers’ functionality. As control plane decisions are often based on the data plane, it is possi-
ble for carefully crafted malicious data plane inputs to direct the control plane towards unwanted
states that bypass network security restrictions (i.e., cross-plane attacks). Unfortunately, because of
the complex interplay among controllers, apps, and data plane inputs, at present it is difficult to
systematically identify and analyze these cross-plane vulnerabilities.

We present EVENTSCOPE, a vulnerability detection tool that automatically analyzes SDN control
plane event usage, discovers candidate vulnerabilities based on missing event-handling routines,
and validates vulnerabilities based on data plane effects. To accurately detect missing event handlers
without ground truth or developer aid, we cluster apps according to similar event usage and mark
inconsistencies as candidates. We create an event flow graph to observe a global view of events and
control flows within the control plane and use it to validate vulnerabilities that affect the data plane.

We applied EVENTScOPE to the ONOS SDN controller and uncovered 14 new vulnerabilities.

5.1 Introduction

Software-defined networking (SDN) has experienced a rapid rise in adoption within data center
providers, telecommunication providers, and other enterprises because of its programmable and
extensible control plane [1]. SDN claims to decouple the network’s decision-making about forward-
ing (i.e., the control plane) from the traffic being forwarded (i.e., the data plane) so as to allow cen-
tralized oversight through an SDN controller and network applications (or apps) in the enforcement
of consistent (security) policies.

All popular modern SDN controllers, including ONOS [25], OpenDaylight [30], Hewlett Packard
Enterprise’s VAN SDN Controller [152], and Floodlight [28], operate as reactive event-driven archi-

tectures that, based on data plane activities, use asynchronous event dispatchers, event listeners, and

65

controller API calls to pass information among controller and app components.' Each app’s event
listeners subscribe to a subset of the possible universe of events. Based on the event, an app may
call API services (e.g., a request to insert a new flow rule) or generate new events (e.g., a notification
that a new host has been seen in the data plane).

SDN’s programmability significantly alters the control plane’s attack surface. The claim of control
and data plane decoupling belies a subtle and serious challenge: control plane decisions are often
made as a result of information collected from an untrustworthy data plane. Prior attacks [22, 55, 93]
have demonstrated specific examples of what we generalize as the class of cross-plane attacks, which
allow attackers to influence control plane decision-making without attacking the controller or apps
directly [80]. For instance, a clever attacker who controls a data plane host can emit packets that are
acted upon by controller and app components, which can result in malicious privilege escalation or
malicious control over flow rule behaviors by a host.

In the context of cross-plane attacks, decisions made based on untrusted data plane input may
cause event handlers to execute unintended code paths, or prevent the execution of intended code
paths, within the controller or apps. The event-driven, composable, and interdependent nature
of controller and app components provides new potential for vulnerabilities based on which apps
handle (or, critically, which apps do not handle) different kinds of events. For instance, apps that
operate as intended in isolation may create conflicting behaviors when used together, and that may
create vulnerable conditions that are not found when apps are used in isolation. As a result, the
security posture of the SDN control plane does not rely on properties of individual controller or
app components, but rather on the system-wide behavior of the components’ event interactions as
a whole.

The vulnerabilities that result from complex event and app interactions are challenging to detect
automatically because such vulnerabilities are a class of logic (or semantic) bugs that require local
and global semantic understanding about events and their use. Logic bugs are of interest to attackers
because such bugs are difficult to identify during software development and can persist for years
before disclosure [203]; existing tools often focus on bugs related to language grammar or resource
use only (e.g., FindBugs [204], PMD [205], and Coverity [206]) or require developers to annotate
code (e.g., KINT [207]), rendering such tools difficult to use in practice [208, 209].

In the absence of developer annotations that specify intended app behavior, the vulnerability
search space can become large [105, 110, 112] [208]. However, by focusing on a narrower scope of
event-related vulnerabilities that involve missing or unhandled events, we can tractably enumerate
those conditions and investigate them. Uncovering such vulnerabilities requires understanding of

how events are used within SDN components, how events are passed between SDN components,

' An SDN controller service or app often consists of multiple functional units, which we call components. A functional
unit ends at an API boundary or event dispatch.

66

and how events’ actions propagate within the control plane to have data plane effects. Given the
event-driven nature of modern SDN architectures, our insight is that event-related bugs that result
from unhandled events are of high interest in SDN security evaluation, particularly if cross-plane
attacks can be used to trigger such vulnerabilities that ultimately lead to data plane consequences
(e.g., flow rule installation).

Although tools have been developed to perform vulnerability discovery in SDNs with fuzz test-
ing [111, 112], concurrency detection [109], and code analysis [113, 114], we are not aware of any tools
that are designed specifically to aid developers and practitioners in the understanding of global event
use and in the identification of unhandled event vulnerabilities at design and testing time. Forensic
SDN tools [51, 129] provide causal explanations of past executions but do not identify vulnerabilities

ahead of time.

Overview We propose a systematic approach for discovering cross-plane event-based vulnerabil-
ities in SDN. We designed a tool, EVENTSCOPE, that aids practitioners and developers in identifying
candidate vulnerabilities and determining whether such vulnerabilities can manifest themselves in
the context of apps currently in use. Rather than discover the existence of “bad” events, our goal is
to identify where the absence of a certain event handler may prevent developer-intended code paths
from executing. We investigate how SDN controllers and apps use events to influence control flow
(i.e., the series of code paths in the control plane that are or are not executed) as well as implicit data
flow (i.e., the propagation of untrusted data plane input that may impact control plane decisions).

Our initial challenge is to identify what events an app should handle. It is complicated because
no ground truth exists for this task, making simple heuristics and supervised learning techniques
difficult to apply. A naive solution would be to require an app to handle all events, but there are
instances in which an app does not need to do so, i.e., the lack of handling of certain events does
not negatively impact the app’s expected operation or cause deleterious data plane effects. Instead,
EVENTSCOPE analyzes how events are handled within apps’” event listeners relative to other apps to
identify potentially missing events.

EVENTSCOPE then uses static analysis to abstract the SDN’s API functionality and event flow into
what we call an event flow graph. This data structure shows the control and data flow beginning
from data plane inputs and ending at data plane outputs (e.g., flow rule installation and removal).
That allows EVENTSCOPE to identify the impact of a given component on other components in the
system.

Using the event flow graph, EVENTScOPE then validates whether potentially missing events can
cause data plane effects in the presence or absence of other apps. Given an app with such a candidate
vulnerability, EVENTSCOPE identifies other apps that handle that app’s missing event and also have

data plane effects to create a context for that vulnerability. Next, EVENTSCOPE represents these code

67

executions as event flow graph paths to determine whether they have data plane effects. Finally,
EVENTSCOPE generates a list of vulnerabilities for analysis by developers and practitioners.

We use the open-source, Java-based ONOS SDN controller [25] as a representative case study.
ONOS is used in production settings by telecommunications providers, and its codebase underlies
proprietary SDN controllers developed by Ciena, Samsung, and Huawei [159]. ONOS’s extensive
event-centered design makes the controller an ideal candidate for study. We analyzed how ONOS’s
core service and app components use events, discovering that many events are not handled even
when components subscribe to those events. Although we focus on ONOS as a case study, we
note that all modern SDN controllers use a similar event-based architecture; thus, EVENTSCOPE’s
methodology is broadly applicable to all such controllers.

We identify 14 new vulnerabilities in ONOS and, for selected cases, we show, through crafted
exploits, how attackers are able to influence control plane behavior from the data plane alone. For
instance, we were able to prevent ONOS’s access control (firewall) app from installing flow rules,
which allows hosts to communicate with each other in spite of access control policies that should
have denied their communication (CVE-2018-12691). Additionally, we were able to leverage ONOS’s
host mobility app to remove the access control app’s existing flow rules (CVE-2019-11189). These
results demonstrate that, in real SDN implementations, instead of apps acting constructively and
composably they often have competing and conflicting behavior. That conflict provides subtle op-

portunities for vulnerabilities to appear.

Contributions Our main contributions are:

1. An automated approach to analyze event use by applications that identifies likely missing
event handling and checks whether this lack of event handling can cause data-plane effects in

combination with other apps.

2. The event flow graph data structure, which allows for succinct identification of (a) event
dispatching, event listening, and API use among SDN components, as well as (b) the context

to realize vulnerabilities.
3. An implementation of our vulnerability discovery tool, EVENTSCOPE, in Java and Python.

4. The discovery and validation of 14 new vulnerabilities in ONOS that escalate data plane

acCcCess.

Organization This chapter is organized as follows. In Section 5.2, we explain the challenges to

event-driven SDN architectures and our mitigations. In Section 5.3, we provide an overview of

68

CONTROL PLANE
SDN Controller

- U
’-\ / Core
Service
SB API (in)
SB API (out)
®

, E —@ \ »f\.lf.)p \
- i Core [App

Attacker DATA PLANE

\
\
‘\
Victim \
Hosts *~

Service

Figure 5.1: Cross-plane attack example. Black arrows denote data plane connections, blue arrows
denote control plane control flow, and red arrows denote intended effect (e.g., increased data plane
access). 1: An attacker emits data plane packets. 2: The controller’s southbound API receives
packets. 3: The controller’s components use the data plane input to make a data plane decision.

4: The controller emits new packets or flow rules into the data plane. 5: The attacker uses the new
packets or flow rules as a step to actuate an attack.

EVENTSCOPE. In Section 5.4, we propose an event use methodology to identify candidate vulnera-
bilities. In Section 5.5, we analyze intra-component and inter-component uses that are abstracted
into event flow graph structures to validate vulnerabilities. In Section 5.6, we discuss implementa-
tion details. In Section 5.7, we demonstrate the effectiveness of our approach by describing vulner-
abilities found in ONOS. In Section 5.8, we discuss the challenges of SDN design and vulnerability

discovery. In Section 5.9, we discuss related work. In Section 5.10, we conclude.

5.2 Challenges

We outline the challenges and mitigation approaches for SDN security that are related to adversarial
data plane input, event-driven apps, and event flow interactions. Although we use the ONOS SDN
controller as a running example, we note that other SDN controllers (e.g., Floodlight [28]) share

similar event-driven features.

5.2.1 Malicious Data Plane Input

By design, the SDN architecture decouples the control and data planes. However, control plane de-

cisions are often made as a result of information gathered from data plane input, allowing attackers

69

to influence control plane behavior even if the controller and app infrastructures are assumed to be
hardened. Cross-plane attacks, such as topology poisoning [22, 55, 93], impact control plane opera-
tions by causing denial-of-service or connectivity-based attacks. Figure 5.1 shows a representative
example of a cross-plane attack that uses malicious data plane input to produce an unintended data
plane effect.

Attackers can infer whether the network is non-SDN or SDN and which controller is being used
in an SDN setting [64, 65]. Defenses to date, such as control plane causality tracking [51, 129], trusted
data plane identities [58], and timing-based link fabrication prevention [55], are useful in preventing
specific classes of attacks but are not designed for vulnerability discovery because they track specific
execution traces as they occur rather than all possible execution traces prior to runtime. Current
SDN vulnerability tools, such as BEADS [111] and DELTA [112], rely on fuzzing techniques that do
not easily capture complex event-based vulnerabilities.

Although controllers that are written in safely typed languages (e.g., Java) can mitigate unchecked
data plane input, type safety does not completely prevent misuse. An attacker can try to leverage
syntactically valid data that may be semantically invalid depending on its use. For instance, the
IPv4 address 255.255.255.255 is syntactically valid, but there may be unintended consequences

if a controller or app component attempts to use it as a host address.

Our mitigation approach EVENTScOPE analyzes how malicious data plane input and cross-plane
attacks can have cascading effects throughout controller components and apps as a result of unhan-
dled event types (Section 5.5). We demonstrate how that analysis allows us to identify ONOS app

vulnerabilities (Section 5.7).

5.2.2 Event-Driven Apps

SDN controller services and apps can subscribe to events of interest with event listeners. However,
not all event types of a particular event kind may be handled. In the absence of well-defined formal
properties (e.g., safety and liveness) that specify what an app’s behavior ought to be, it is not easy to
automatically determine what constitutes “correct” or “incorrect” behavior. As a result, it is difficult
to find bugs that are syntactically correct but semantically incorrect regarding the intended app
behavior, and difficult to determine how that behavior affects the data plane.

Network verification approaches [96, 105] require formal property specifications or do not scale
beyond trivial controllers. CONGUARD [109] and DELTA [112] offer models for reasoning about
the ordering of OpenFlow events, but such events are only one part in a complex, event-driven,
network operating system that must consider additional (and often more sophisticated) network

abstractions.

70

Our mitigation approach EVENTSCOPE uses a clustering approach to infer the intended appli-
cation behavior based on the insight that apps that perform similar functionality are interested in
similar kinds of events and event types (Section 5.4). EVENTSCOPE identifies cases in which a given
app’s event types are absent with respect to similar apps and evaluates whether these absences create

vulnerabilities (Section 5.5.2).

5.2.3 Event Flow Interactions

As apps can originate from different parties [51], assessment of system-wide “correct” behavior is
complex when components closely collaborate and form event-driven dependencies. The event-
driven SDN architecture allows flexible and composable development, with events helping to pro-
vide convenient abstractions and allowing components to subscribe to asynchronous activities of
interest. Prior work [115, 116, 117, 119, 201] has approached controller design by providing formally
specified runtime languages and safe-by-construction controllers, but such approaches do not offer
the extensibility of the operating-system-like controllers used in practice in production.
Understanding how event-driven components in an SDN interact is challenging because events
have both control flow and data flow elements. Events represent control flow because they are pro-
cessed by event listener methods that may call additional methods depending on the event infor-
mation, and they represent data flow because they carry data describing the event (e.g., a host event
contains that host’s details). Although control flow and data flow can be modeled together in pro-
gram dependence graphs [210] or code property graphs [211], analysis is often limited to single pro-
cedures because too many details prevent the analysis from scaling to complex, inter-procedural
event-driven systems. Further, events can be used to influence what code paths are or are not taken

and to trigger additional events.

Our mitigation approach EVENTSCOPE uses the event flow graph to model the key features of an
event-driven SDN system while abstracting away unnecessary control flow details (Section 5.5.1).
The event flow graph shows how triggered events have consequences elsewhere, particularly when

malicious data plane inputs later influence data plane changes.

5.3 EVENTSCOPE Overview

We designed EVENTSCOPE to identify cross-plane event-based vulnerabilities in three phases, as

illustrated in Figure 5.2.

71

EVENT USE ANALYSIS
Candidate Vulnerability
Generator Candidate

'S8 (28} Missing Vulnerabiliti
L0 c? //",_\[‘\Q?Q' ey EYONLTIRES erabilities
e 123
[
Event Use — ,
Matrix Vulnerability

i Vulnerabilities
Event Flow Graph Validator

API and
Event Use

SDN

(and Contexts)
controller Generator

Data Plane In

Event
Flow
. Graph
API definition
ElRathlencis EVENT FLOW ANALYSIS

Figure 5.2: EVENTSCOPE architecture overview.

The first phase, the candidate vulnerability generator, takes the set of SDN apps as input and pro-
duces a list of unhandled event types for each app. In our implementation, we require the apps’ Java
bytecode. As ground truth about which event types apps should handle is not available, EVENTSCOPE
uses a clustering approach that reports event types that are common in the cluster but are not han-
dled in a particular app.

The second phase, the event flow graph generator, takes the apps’ code, the controller’s code, and
a definition of controller API calls as inputs and constructs an event flow graph that records how
events propagate and influence the system. This includes event propagation within the controller as
well as within apps and combinations of apps.

Finally, the event flow graph and the unhandled event types from the first two phases are com-
bined in the third phase, the vulnerability validator, to identify the data plane impacts of unhandled
event types. The output of this phase results in a list of vulnerabilities that can influence the data
plane as a result of unhandled event types.

EVENTSCOPE automates the process and the phases work together, but for illustrative purposes,
we discuss each of EVENTSCOPE’s three phases separately before discussing the results from applying

EvENTScOPE to the ONOS SDN controller. In summary:

« The candidate vulnerability generator (Section 5.4) generates a list of possible vulnerabilities

resulting from unhandled events based on apps’ event use in comparison to that of similar

apps.

« The event flow graph generator (Section 5.5.1) analyzes the use of events between compo-
nents to construct a concise representation of how events are passed and how they affect data

plane operations.

72

o The vulnerability validator (Section 5.5.2) filters and validates the possible missing-event-
handling vulnerabilities from the first component by using the event flow graph to determine
whether the missing event has had data plane impacts, either in isolation or in combination

with other apps.

Inputs Users provide EVENTScoOPE with the controller’s code and apps’ code to be analyzed. In our
implementation, this code is provided as Java bytecode. EVENTSCOPE also requires a definition of
the controller’s northbound (i.e., application) interface, which is simply the set of method signatures
that comprise the northbound APIL.

Outputs EVENTSCOPE produces a list of vulnerabilities related to missing-event handling that can
impact the data-plane and the contexts in which the vulnerabilities occur. Practitioners can inves-

tigate such vulnerabilities to report bugs or to determine if exploits can be realized.

5.4 Event Use Analysis

In this section, we analyze the use of event kinds and event types in SDN app components and
focus on unhandled events as signs of potential vulnerabilities. From that information, EVENTSCOPE

generates a list of candidate vulnerabilities.

5.4.1 Event Use Methodology

Given the lack of ground truth about how apps should handle event types, we approach the problem
of identifying possible unhandled event types by analyzing the similarity of different apps’ uses of
events. EVENTSCOPE clusters similar apps together, and, for each app, marks the unhandled event

types in that app (with respect to that cluster) as a candidate vulnerability.

5.4.1.1 Algorithm

We describe EVENTScOPE’s approach, shown in Algorithm 5.1. We assume a set of apps that con-
tain event listeners, A; a set of event kinds, Ex (e.g., HostEvent in ONOS); a set of event types, Er
(e.g, HOST ADDED in ONOS) that relate to the functional nature of event kinds in Eg; and a
threshold, 7, used to determine the number of app clusters. For intermediate data structures, we

generate an event use matrix, M, that shows how apps use event types; a distance matrix, D, that

73

Algorithm 5.1 Candidate Vulnerability Generation

Input: Apps A, event kinds Ek, event types Er, threshold 7
Output: List of candidate vulnerabilities Vi, event use matrix M

Initialize: M[i][j] < false;Vie A,Vje Er D> Event use matrix Maxg,
D[i][j] < 0;Vie A, Vje A D> Distance matrix Daxa
V<« AUEE«3,Gs < (V,E) > SimRank graph Gg
Ve« o > Candidate vulnerability list V¢

foreacha € A do

1:
2: T « getHandledEventTypes(a)
3: for each t € T do
4: M[a][t] < true
5: E<&u{(at),(ta)}
6: end for
7: end for
8: S < SimRank(Gs, A) > Similarity matrix Saxa
9: foreachie S do
10: for each j € S[i] do
1 D[i][j] < 1-S[i][/j] > Distance = 1- Similarity
12: end for
13: end for
14: C < hierarchicalCluster(D, 7) D> Set of app clusters C
15: foreach c € C do
16: U<~ g > Union of event types within cluster ¢
17: for each a € C do
18: u<uuMal
19: end for
20: foreacha € Cdo
21 d<u~ Ma] D> Set difference d of cluster and app
22: foreach t € d do
23: k < getEventKind(t, Ex, ET)
24: if k is handled by a then
25: Vc.append((a, t))
26: end if
27: end for
28: end for
29: end for

represents the “distances” between apps in terms of how they are related; and a bipartite directed
graph, Gg, that represents the relations between apps and event types.

The algorithm determines the event types that each app uses (lines 1-5). It does so using static
analysis through the generation of a control flow graph (CFG) of the relevant event listener method.
If a given event type is handled (line 2), it is marked in the event use matrix, M, (line 4) and in the
bipartite graph, Gs (line 5). The algorithm then computes the SimRank similarity metric across G

and reduces it to vertices of interest, or A c V, to produce the similarity matrix, S (line 5). It then

74

takes the inverse of the similarity metric to compute the distance metric (lines 7-9), and uses it to
compute app clusters by using a complete-linkage® (i.e., maximum linkage) hierarchical clustering
algorithm (line 10).

After the apps are partitioned into clusters, the algorithm inspects each app relative to its own
cluster (lines 11-20). For each cluster, it generates a union of event types handled by that cluster’s
apps (lines 12-14). For a given app, it computes what event types are not handled by that app’s event
listener with respect to the cluster’s union (line 16). In some cases, the event type will be related to
an event kind that the app does not handle at all, and we do not consider such scenarios to represent
candidate vulnerabilities. When the event type’s kind is handled by the app (line 19), the algorithm

marks the event kind as a candidate vulnerability (line 20).

5.4.1.2 Design decisions

Initially, we applied the Levenshtein distance as our distance metric by treating each row of M as a
bit vector, based on prior work on SDN app API use similarity [114]. However, we found that the
Levenshtein distance did not capture the structural similarities among apps, event kinds, and event
types. Instead, we opted for the SimRank metric, which expresses the idea that “two objects are
similar if they are related to similar objects” [213]. SimRank fits more naturally with our problem of
expressing the similarity of two apps that have relations to similar event types.

As each app includes a self-defined category, we were interested in whether such categories could
describe functional event use similarity. However, we found that the categories are too vague to
be meaningful for similar-event-handling identification, so we opted instead for a distance-based
clustering approach that can be generated even if app categories are not specified. One example of
the problem is that of the forwarding app fwd and the routing app routing in ONOS, which are both
in the traffic engineering category. While we might expect those apps to be similar, since they are in
the same category and share the same high-level objective of making traffic engineering decisions at
different OSI layers, it turns out that the reactive forwarding app responds to new packets to make
its decisions, while the routing app uses the existing network state to make its decisions. Those

functional differences result in use of radically different event kinds and types.

5.4.1.3 Interpretation

Because apps do not provide well-defined semantics about their correct operation, we do not have

ground truth about what event types each app should handle. As a result, we chose to focus on

*Alternatives include single-linkage and average-linkage clustering. We chose complete-linkage clustering because
it 1) maximizes the distance between two elements of different clusters and 2) avoids the problem of grouping dissimilar
elements that single-linkage clustering would entail [212].

75

instances of missing event handling, which we can identify based on knowledge about the complete
set of events. Unfortunately, such instances do not tell us the extent to which such missing events
are intentional or the extent to which missing events’ exploitation can cause unexpected behavior.
While any instance is arguably a concern, we wanted to focus our effort on the instances most likely
to be vulnerabilities. As a result, we chose to cluster apps in order to identify the missing event
handling that stands out as the most “unusual,” with the parameter 7 approximating the unusualness
of missing event handling.

As such, event use analysis can be viewed as a filtering step that attempts to identify the most likely
unhandled event types for candidate vulnerabilities among all potential unhandled event types.
EVENTSCOPE can be configured to be conservative and mark all unhandled event types as potential

bugs; doing so requires setting 7 = 1.0 to generate 1 cluster.

5.4.2 Event Use Results

We evaluated EVENTSCOPE’s event use analysis using ONOS v1.14.0 [26]. In addition to ONOS’s
core services, the ONOS codebase includes third-party apps written by independent developers.
We explain each part of the methodology as applicable to ONOS and its apps.

5.4.2.1 ONOS’s event system

ONOS events implement the Event interface; they include subject () and type () methods that
describe what the event is about (e.g., a Host) and what type the event is, respectively. ONOS events
are used for various subsystems, so we limit our study to network-related events only.”

We found that ONOS contains 95 network event listeners across 45 apps’ event listeners.* Popu-
lar event kinds handled were DeviceEvent (25 instances), NetworkConfigEvent (22 instances), and
HostEvent (18 instances). Overall, we found 45 event types among 11 (network) event kinds.

For each app’s event listeners, we used static analysis on the listeners’ bytecode to generate control
flow graphs (CFGs) of any event handlers (i.e., event () methods) within that app. Within each
method, we considered an event type handled if it results in the call of other functional methods; we
considered an event type to be not handled if it only executed non-functional methods (e.g., logging)

or immediately returned.

Event implementation classes with the prefix org.onosproject.net..

“We note that ONOS core service components also include event listeners for inter-service notifications. We did not
evaluate those listeners’ event uses because we assume that all event types handled by each core service event listener
are the event types necessary for correct functionality.

76

gr 4

painter
ration

teg
I: openstacknetworking
stackvtap

stacknode
: rabbitm

: path
n
|

G
I: kafkain

D: bandwidthm
open
ope

q
I: vtn

M: artemis

€26l cmET g2
PBCLYTOS0
meattta..Uf
$EQuagoonoc
gmwmmmu.ﬁ D.%.
S9E2866 59
oo c ey
mMM o) >
29 o
w.m -
o

=

T:imr

T: fwd
T: mcast
T: mfwd

T: odtn
T: ofagent
T: p4tut

orial

T:
T: pim
T: prox¥§

p

Lra

T: reactive
T: routin

T: scalableglgat

swepN ddy :Aiobaje) ddy

g

ewa
: sdniy

T: segmentroutin

p
9
C

lefabri

gy 7
ng -
p —
-

T: 5|mt)
T: tetopolo
T: virtualb
U: dhcprela
U: m
U: mobility =

U: pce -
ervice =

U: routes

A3IONVHI ADO10dOL 3usnjAbojodoy
a3ilvadn 2o_mmm :JUsAjuoibay

d3IONVHI
a3lvadn

d
9

HSY3IdW3IN
4NQD :Jusang

b

0193y :3uaa3juoibay
1JUODYIOMISN

d3d3LSI9TUNN DIINQD :3uSATBIIUOINIOMISN
d3IAOINTY_SIH4NOD JUSAIDLUODNI0OMISN
d3431SI193d OIINQD :3USAIBLUODYIOMISN
d3day SIdNOD :3USAZBRUODNIOMISN
d31vadn 324NOS :JUsA3ISesi
d3aadyv _32dNOsS JUsAqIsesiy
d3IAOITY MNIS JUSAFISeON

a3dayv ANIS :JusAgiIsesiy

Q3IAOWIY ILNOY JUSAFISEON
d3aaay 31N0Y :JusAdisesip

a31vadn JINIT :JusA3ul]

A3IAOWTY NI JuSAZRUM

d3aay 2ANIT JuUsAIIUN

d31vadn AJV4d31N| JusAgadseliiu]
d3AOINTY FOVI4HILINI :JUsATgadelIalu]
d3aqayv 3OV4ddLN| :jusngadepiaiu]
034 MVYQHLIM ‘JUusA3iuaiu]
NMVYAHLIM JusAgius3u|
ONLLYDOTIVIY :JusAgqjusiu]

d3o54Nd 3usagqiuaiu]

03d TIVISNI :JusA3iusiul

d3ITIVLSNI :3usAguslu|

d3aTIv4d 3usagqusiu]

d3.1vadNn _LSOH :JUSA331SOH

G3AOW3Y LSOH -3usAjlsoH
G3AONW_1SOH :3uUSAd3soH

d3aay 1SOH :3usAJ3soH

d31vadn J1Ny :3JUsAgs|nymo|4
d3IAOINTY 31NY :JUSAISNYMO|4
d3adyv _F1Ny :JUsAI3|NYMO|4
d3IAOWIY 140d 3903 :JUSAIUO-496p3
d3daay 140d 393d3 :3usnjyodsbp3
d31vAadN_Ld0d :3usA3adinegd
d31vadNn S1V1S 140d :jusngasinsg
d3AOINTY 1d0d :1Usngadinag

d3day 140d :3usngadineg

d3Lvdadn 32IA3J _3UsATF3INS(]
d3dN3dSNS 32IAIQ -3UsAgSdIAd
d3IAOITY_3DIAId :JUSAT32INSQ
d3IONVHD ALMIEVIIVAV 3DIA3A 3USAISdIASQ
d3aav 32IA3A AusA3adINeg

Event Kind: Event Type

monitoring,

M

bl

default, G = GUI, I = integration
traffic engineering, and U = utility.)

event () methods. Horizontal dividers represent app categories, and vertical dividers represent

Figure 5.3: ONOS event use matrix, M. Black cells represent event types that are handled by

event kinds. (App category key: D

optical, S = security, T

O =

77

T: proxyar,
Tpofaée?tpg

T: sdnlp
T: roug)
U: dhc p
T: tetopology
D: bandwidthmgr
T: reactive

M: artemis
T: scalablegatevgay
10

U: routeserwce

T: e\L/Fnopen low
dhcprelay

4tutor|al —

M: mband elemetry
T: virtualbng pP—m——m

S: ac

I: vtn

T: vpls

U:_mobilit

T: mcas

I: openstackvtap

I: openstacknetworking
T: segmentrou_ltlng

pi

O: roadm

T: bgprouter

I: openstacknode
ra

T: 5|mplefabr|c

I: rabbitmq

I: kafkaintegration
incubator

M: faultmanagement
O: optical

M: metrics

App Category: App Name

T: fw
G: pathpamter
—
pce
T imr
O: newoptical
T: mfwd

T T T T T

0.0 0.2 0.4 0.6 0.8 1.0
SimRank Distance

Figure 5.4: Dendrogram representation of ONOS network event type similarity among apps, based
on the SimRank distance metric. The dashed vertical line represents a threshold 7 = 0.90 with a
partitioning of 9 clusters.

5.4.2.2 ONOS unhandled event types

Figure 5.3 shows EVENTSCOPE’s generated event use matrix M of the 45 apps included with the
ONOS codebase. Each ONOS app includes a self-defined category, and categories are grouped by
horizontal dividers. Each event kind is grouped by vertical dividers. Figure 5.4 shows the dendro-
gram of the resulting app clusters, based on SimRank distance and complete-linkage clustering.
We empirically chose a threshold (7 = 0.90) that yielded a number of clusters (i.e., 9) similar to the
number of categories of ONOS apps (i.e., 8) based on the assumption that there exist at least as many
categories as there are functional differences among apps. We found that that threshold worked
well in the rest of our evaluation. (See Appendix C.3 for an evaluation of 7 on detection rates.) We

found that setting the threshold too low (i.e., more clusters) created more singleton app clusters,

78

which should be avoided because each cluster’s union of event types becomes the event types the
app handles. However, setting the threshold too high (i.e., fewer clusters) clustered apps with too few
functional similarities. Based on that threshold, we generated 116 candidate vulnerabilities, which

were used as input into the next stage of EVENTScOPE (Section 5.5).

5.5 Event Flow Analysis

Given a list of candidate vulnerabilities, we identify which vulnerabilities are reachable from the
data plane and affect the data plane. To do so, we generate an event flow graph that shows how apps
and the controller use events, and how these usages of events can interact to generate control flow in
the control plane. Using that graph, we then validate our candidate vulnerabilities by analyzing how
they impact subsequent control plane and data plane operations, looking for impacts in the control
plane that can be caused by other data plane events. That results in a list of vulnerabilities with real

impacts on the data plane.

5.5.1 Event Flow Graph Generation

In order to determine reachable candidate vulnerabilities from the data plane that affect the data
plane (via the control plane), EVENTSCOPE uses static analysis to create an event flow graph that

illustrates how events and API calls propagate from the data plane to the controller and apps.

5.5.1.1 Definitions

We formalize a component as a fragment of the SDN codebase that begins at an event listener method
or core service method and ends at an API boundary or event dispatch. An app or core service can
have more than one component if it has more than one event listener. As a result of that defini-
tion, each component serves as an entry point” into control plane functionality. Our objective is to
determine the fragments of controller and app code that are reachable from each entry point.°
Formally, an event flow graph, denoted by G = (V, £), is a directed, multi-edged graph that models
the abstractions for inter-procedural and inter-component control and data flows in the SDN con-

trol plane. Event flow graphs summarize the necessary control and data flows among components

*In traditional static analysis, a program has a well-defined entry point: the main () function. However, since SDN
is event-driven, no main () function exists [129]. To correct for the lack of amain () function and to account for the
event-driven architecture, we use each component as an entry point.

®Lu et al. [214] define that as “splitting” in the component hijacking problem.

79

needed for event flow analysis. Vertices, denoted by V, consist of one of the following types: event lis-
teners (represented as entry point methods), API services (represented as an API interface method
or its implemented concrete method), and representations of data plane input (DPIn) and data plane
output (DPOut). Edges, denoted by &£, are labeled and consist of one of the following types: API read
calls (API_READ), API write calls (API_WRITE), data plane inputs to methods (DP_IN), methods’
output to the data plane (DP_OUT), or passing of an event type (e.g., HOST ADDED event type of
the HostEvent event kind).

EVENTSCOPE uses a two-phase process in which it first examines which events are used within
each app and then considers how these events propagate and cause other events in the context of
multiple apps. As a result, EVENTSCOPE’s event flow graph can represent multiple apps as well as
dependencies among apps. The dependencies among applications for event processing are shown
as edges in the event flow graph. One event that is processed by multiple applications (i.e., event
listeners) is represented as a node with multiple outgoing labeled edges with the respective event

type; each edge is directed towards an event listener of that event kind.

5.5.1.2 Methodology

EVENTSCOPE’s approach is shown in Algorithm s5.2. It initializes the event flow graph’s vertices to
be the set of event listeners and representations for data plane inputs and outputs. It begins with
the set of event listeners as the components of entry points to check (line 1). For each entry point,
it generates a call graph (line 5). Within the call graph, it checks whether calls relate to an API read
(lines 7-10), to an API write (lines 11-14), or to the event dispatcher to generate new events (lines 15-
16). It links the event dispatchers and event listeners together in the event flow graph by using the
event use matrix, M, generated in the prior step (Section 5.4); each event type that is handled by
a particular listener is represented as its own edge, so multi-edges are possible (line 18). Finally, it
identifies core service components that take in data plane input or generate data plane output, and

links those to the data plane input and output vertices (line 19).

5.5.1.3 Results

To show how an event flow graph abstracts useful information for understanding SDN architecture
events, we consider the partial event flow graph from ONOS shown in Figure 5.5. It shows the
forwarding app (fwd) packet processor component as an entry point. (For event flow graphs that
include event dispatch edges, see Figures 5.7 and 5.8 in Section 5.7 and Figure C.2 in Appendix C.2.)
General static analysis tools produce control flow graphs (CFGs) for each procedure or method, as

well as a call graph (CG) for inter-procedural analysis; however, static analysis tools face challenges

8o

Algorithm 5.2 Event Flow Graph Generation
Input: API read methods A,, API write methods A,,, data plane input methods D;, data plane output
methods D,, event listener methods E;, event kinds Ek, event types E, event use matrix M

Output: Event flow graph G
Initialize:)V < E; U {DPIn,DPOut}, £ « &

S« E; D> Stack S of entry points (i.e., components) left to check
C+go > Checked components C
E;j <@ > Components that dispatch events E
1: while S is not empty do
2 e < S.pop() > Entry point method e
3: if e € C then
4 continue D> Skip entry point if already processed
5: end if
6: (¢, ce) < generateCG(e) D> Call graph vertices ¢, and edges c,
7: foreachcec, do
8: if c€ A, then
9: V<Vu { C}
10: E<Eu{(ce)} D> Labeled edge API_READ
1 S.push(c)
12 elseif c € A,, then
13: V< Vu{c}
14: E<—Eu{(ec)} D> Labeled edge API_WRITE
15: S.push(c)
16: else if ¢ is the event dispatch method then
17: E; < E;u{(c)}
18: end if
19: end for
20: C<+<Cue

21: end while
22: £ < linkListenersDispatchers(&, Eg4, E;, Ex, ET, M) > Labeled edges of particular event type ¢ € Et
23: € < linkDataPlane(&, Dy, D,) > Labeled edges DP_IN or DP_QUT

24: G« (V,E)

regarding the understanding of API behavior and the semantics of a given program’s domain [209].
While both CFGs and a CG are necessary for control or data flow analyses, neither type of graph
represents the SDN domain’s semantics of events or API behavior at the right level of abstraction.
We generated an ONOS event flow graph whose components include core services, providers,”
and 45 apps. The ONOS event flow graph’s nodes consists of representations of 143 event listeners,
25 packet processors, 81 API call methods of core services, 1 data plane input node, and 1 data plane
output node. The ONOS event flow graph’s edges consist of representations of 396 API calls, 352

event dispatches, and 21 data plane interactions. Appendix C.2 shows a partial representation of that

"In ONOS, a provider interacts with core services and network protocol implementations [32]. We consider provider
services to be core services.

81

Data Plane In

HostService
getHost(...)

PacketContext
inPacket(...)

PacketContext
isHandled(...)

fwd
ReactiveForwarding
| ReactivePacketProcessor |

PacketContext
send(...)

PacketContext
block(...)

FlowObjectiveService
forward(...)

Data Plane Out

Figure 5.5: Event flow graph of fwd’s packet processor. Blue rectangles represent event listeners and
packet processors, gray ellipses represent API methods, and dashed edges represent API calls.

event flow graph based on 5 sample apps and the core services that they use.

Because ONOS does not specify a precise set of API calls that comprise the northbound API [51],
we used the public method signatures of the *Service and *Provider classes, along with those meth-
ods’ return values, to determine API read and write calls, resulting in 123 API read call methods,
87 API write call methods, 1 method directly related to data plane input, and 44 methods directly
related to data plane output and effects. We identified event dispatching based on direct calls to the
event dispatcher for local events (e.g., post ()) or indirect calls to a store delegate® for distributed

events.

5.5.2 Vulnerability Validation

Now that we have an event flow graph, we can combine it with our candidate vulnerabilities to
understand the extent to which unhandled event types have data plane consequences.

We focus on valid vulnerabilities as those in which the following conditions are met: 1) an app’s
event listener does not handle a particular event type, 2) that event listener can be called as a result of
actions triggered from data plane input, and 3) in handling the other event types, that event listener
can take some subsequent action that affects the data plane (i.e., data plane output). In essence, we
investigate the cases in which such an event handler would otherwise be affected by data plane input
and have an effect on the data plane. Vulnerabilities defined in this way can be expressed as path

connectivity queries in the event flow graph.

80ONOS uses distributed data stores across ONOS instances to store network state information. An instance can
notify other instances of a change to the data store (e.g., a MapEvent event update of a Host object modification in the
host data store). That notification causes each instance to re-dispatch events locally (e.g., a HostEvent event).

82

5.5.2.1 Context

Event handling vulnerabilities do not occur in isolation, but as part of a complex interaction web
involving many other event handlers and apps We need to consider that context when discussing a
given vulnerability. We borrow from Livshits and Lam [215] the intuition that exploitable vulner-
abilities can occur as a result of a multi-stage exploit via an initial data injection and a subsequent
app manipulation. As a result, we define the present context as the set of other apps that 1) handle
the vulnerability’s missing event type in the absence of the vulnerable app’s event handler’s handling
of it, 2) are affected by data plane input, and 3) have data plane effects. We define absent context as
the set of other apps that, like the app in question, do not handle the vulnerability’s missing event
type but can be affected by data plane input and have data plane effects.

The present context lets us determine what the data plane effects are if the unhandled event type is
dispatched. The absent context lets us determine what other apps might have concurrent influence
over data plane effects. We note that context is necessary but not sufficient for exploit generation.
Context is an over-approximation of the set of apps needed to exploit the vulnerability.

We note that exploit generation is nontrivial and that automatic exploit generation [216] is an
ongoing research area. EVENTSCOPE’s output includes “valid” vulnerabilities and contexts that
EVENTSCOPE believes to be reachable from the data plane and to have data plane impacts. While
EVENTSCcOPE’s validation provides strong soundness properties, static analysis is necessarily impre-
cise; manual verification is still recommended. EVENTSCOPE provides precisely the details that need
to be included in a bug report. However, the tool neither provides a guarantee that a bug exists nor
automatically submits bug reports. For the vulnerabilities EVENTSCOPE found, we manually exam-

ined the source code to confirm that the vulnerabilities existed.

5.5.2.2 Methodology

EVENTScoOPE’s approach for vulnerability validation is shown in Algorithm 5.3. It uses the event flow
graph, candidate vulnerabilities, and the event use matrix as inputs. Each candidate vulnerability is
represented as a tuple of the app and unhandled event type (line 1). For each event type, EVENTSCOPE
gets the app’s event listeners (line 2). It performs path connectivity queries over the event flow graph.
If at least one path does not exist that starts from the data plane, goes through one of the app’s event
handlers, and ends in the data plane, then the algorithm does not consider a vulnerability to be
relevant, either because the event listener is not affected by data plane input or because the resulting
path does not have data plane effects (lines 3-4).

The algorithm initializes the present and absent context sets to be empty (line 5). It inspects all of
the other apps in the event flow graph to build the context (line 6). If another app’s event listener is
affected by data plane input and has data plane effects (line 8), it checks whether the missing event

83

Algorithm 5.3 Vulnerability Validation

Input: Event flow graph G, list of candidate vulnerabilities V¢, event use matrix M, apps A
Output: List of vulnerabilities and contexts V

Initialize: V <« @ > Vulnerabilities and contexts list V
1. for each (a,t) € V¢ do D> App a € Aand event type t € Et
2: E; < getEventListeners(a, G) > E; c G’s vertices
3 if —(pathExists(DPIn — e € E; - DPOut,G)) then
4: continue
5: end if
6: Cy <~ D,c_ <~ I > Present context set c,, absent context set c_
7: foreach a; e A\ {a} do > All apps except a
8: E;, < getEventListeners(a;,G) > Ej, ¢ G’s vertices
9: if pathExists(DPIn — e € E;, - DPOut,G) then
10: if t € getHandledEventTypes(E;,, M) then
11 L < cyua;
12 else
13: c_<«c_Ua;
14: end if
15: end if
16: end for
17: V.append((a, t,cs,c-))
18: end for

type is handled by that app (line 9) or not (line 11), and builds the context sets accordingly (lines 10
and 12). It then appends the vulnerability to the vulnerability list (line 13).

5.5.3 Performance Results

We ran EVENTSCOPE using an Intel Core i5-4590 3.30 GHz CPU with 16 GB of memory on ONOS
and its associated apps. Figure 5.6 shows the cumulative distribution functions (CDFs) of the com-
ponent analysis latency (Figure 5.6a) and the number of methods traversed in the call graph gener-
ation (Figure 5.6b); the latency corresponds to the computations of lines 2-17 in Algorithm 5.2, and
the methods traversed correspond to line 5 in Algorithm 5.2.

In total, we analyzed 249 components found within ONOS’s 1.2 million lines of Java, which re-
quired full traversals across 8064 method invocations for call graph generation. We found that the
median per-component analysis time was 1.55 s and the mean per-component analysis time was
3.14 s, or approximately 13 min in total. For call graph generation, we found that each component
required a median traversal of 16 methods and a mean traversal of 32 methods. We also measured
EVENTSCOPE’s peak memory consumption by using time and found that EVENTScCOPE used 1.82

GB of memory.

84

1.00 1.00 1
0.751 0.751
a a
3 0.50- 5 0.50
0.251 0.25 1
0.00 1 ! ! 0.00 ! ! !
0 10 20 0 100 200
Latency [s] Methods traversed
(a) Latency CDF (b) Method traversal CDF

Figure 5.6: Component analysis performance results.

5.6 Implementation

We implemented EVENTSCOPE using a combination of Python and Java. In Python, we used Scikit-
learn [217] to perform hierarchical clustering in the event use analysis. In Java, we used Soot [218]
to generate the control flow graphs and call graphs used for event use analysis and for determining
entry points. Soot creates an intermediate representation in Jimple. We also used JGraphT [190] to
store in-memory representations of event flow graphs and to query path connectivity.

For connectivity queries in lines 3 and 8 in Algorithm 5.3 (i.e., pathExists ()), we used Dijkstra’s
algorithm. The worst-case performance time for each pathExists () query can be optimized [219]
to O(2 (|€] + [V|log|V])), where |€| represents the number of event flow graph edges and |V| repre-
sents the number of event flow graph nodes. In practice, we found that the small number of apps
and events did not pose a challenge for connectivity computations.

Soot operates on Java bytecode, which allows EVENTSCOPE to analyze closed-source Java-based
controllers and apps. Similar program analysis tools, such as angr [220], can operate on closed-
source binary executables. Using bytecode is advantageous, as we can use EVENTSCOPE to generate
event flow graphs without requiring Java source code. Thus, EVENTSCOPE can be useful for prac-
titioners as a code audit tool. Although we did not encounter any apps that used dynamic calls,
such as the Java language’s reflection API, TamiFlex [221] extends Soot to perform static analysis
that accounts for reflection.

Although our implementation generates a list of vulnerabilities for ONOS, EVENTSCOPE is not
specific to ONOS. EVENTScOPE’s analysis and methodology can be applied to any event-driven SDN
controller, which includes popular controllers such as OpenDaylight, HPE VAN, and Floodlight.

85

5.7 ONOS Vulnerability Evaluation Results

EVENTScOPE identified 14 vulnerabilities that satisfy all of the following properties: 1) the vulnerable
event handler features an unhandled event type, which was identified through similarity clustering
analysis; 2) the event handler can be reached from data plane input; and 3) the event handler can
reach a data plane output.

Table 5.1 shows the 14 vulnerabilities, based on app, event kind, and unhandled event types. Ta-
ble 5.1 also provides sample paths in the event flow graph. We found that all vulnerabilities involved
the HostEvent event kind, which indicates that data plane input has the most effect on host infor-
mation in ONOS.

EVENTScOPE’s output included 14 possible vulnerabilities. We manually investigated each vulner-
ability in the source code and determined that all of them could be exploited from the data plane. As
a result, Table 5.1 represents EVENTSCOPE’s complete output with no false positives. EVENTSCOPE’s
final phase essentially filters out missing event handling that cannot be reached from the data plane
or trigger impacts on the data plane; as a result, the output provides strong soundness properties. As
we do not have ground truth about which unhandled event types should be handled, we note that
the event use analysis in Section 5.4.1 should be interpreted as a filter of the unhandled event types
that are most likely to require attention, based on such event types’ absence vis-d-vis a cluster of the
most similar apps. As noted earlier, we chose the clustering threshold that produced a number of
clusters closely matched to the number of ONOS app categories.

We describe exploits for two of the vulnerabilities below in Sections 5.7.1 and 5.7.2, and then, for the
sake of space, briefly discuss the impact of the other vulnerabilities. For the exploits we created, we
used a Mininet [41] SDN network. We wrote our exploit scripts in Python and used the Scapy [222]
network packet library to generate data plane input.

We notified the ONOS Security Response Team of the vulnerabilities and exploits that we discov-
ered through a responsible disclosure process. We explained the vulnerabilities and demonstrated

working exploits.

5.71 Data Plane Access Control Bypass with acl and fwd (CVE-2018-12691)

5.71.1 Summary

We found that an attacker could bypass data plane access control policies by sending semantically
invalid packets into the data plane to corrupt the controller’s view of hosts. That prevented the
access control app, acl, from installing flow deny rules, and that effectively bypassed the desired

access control policy.

86

*ssoua)a[durIod 10§ 219y 169T1-810T-J AD PN[OUT I\ 00}
Hd0DSLNEIAT Y} 9J8ID 0} pUE SINI[IQRISUNA PISBQ-JUAD 2JeSTISIAUT 03 ST P YOTYM A[[enuetl 169TT-§T0T- A D) PIIJAOISIP A[[BULILIO OM JeT]) 9JOU I

a3lvadn 1SOH |ero1nyd £6T91-610T-HAD b1
nQdq «—— () soTnynorjArdde «————— 1ouelsTTISOHTRUISQUT ' TRTIOINIHd
1NnO dd JLR—AM IdV -
«——————— ()P9219919(Q1S0Y «————— IOPTAOIJISOHYTRUISQU] * 4SOy " IopTA0Id d3anOn3Id 1SOH _m__Ou.:H._VQ NmﬂoﬂumHONlm\/U €1
da3aaav 1soH ALIEAM 1AV —
Qv gy ORI C=1g HIdd d3aNOW 1SOH |erioinyyd £6T91-610T-JAD <I
MQdq «—— ()PIBMIOF «—————— I9US1STTISOHYTRUISQUT ‘ moTFusdoudas
1NnO da AL IdV -
«—————— ()Pe10919(2SOY «————— ISPTAOIJISOHTRUISIU] * 1SOY* IopTaoad d3ilvdadn |_|mo_|_ >>O_+COQOCQ>® NOchmﬂONum:/U I
da3aav 1soH ALIR—AM IdV —
Gvan gy O FOIRAUT <o UIdd A3IAOW LSOH Mojjusdoudas zo€91-610T-FAD OI
anpda
«— Avﬁ.HMB.HOH «—————— JIDUS]STTISOHTRUISDIUT "UJA «— AVUWPUOPWQUWOQ
1NnO dd JLI-[AM IdV d3aav 1soH _
Sl gy PTAOTAISCHTTIIONI 450 0P ER0xd O D 0390RAE U= ¥ JIAON LSOH WA TOS9T-6T0T-GAD) 6
@3lvadn LSOH Ajiqgow 66791-610T-FAD 8
InQdq «——— () SOTNYMOTIOAOWST «————— IOUSLSTTISOHYTRUISIUT * £ TTTqOUW
+ho «d LM dY - Ayjiqgow 66791-6102- L
«——————— ()P919919(Q1S0Y «————— ISPTAOIJISOHTRUISQU]T " 1S0Y " IopTA0Id d3inON3TY L1SOH H|Iq 9 dAD
d3IAOWN LSOH ALIR-EAM IdV —
‘avaw ey ORI G0 M40 g3aav LSOH Ajjiqow 66291-6102-GAD 9
m0dd - Q31vaAdNn LSOH uqgjenuia 86C91-610C-JAD ¢
«———— ()d18uTI03TUO|ITR)S «—————— IOUS]STTISOHTRUISQUT " SuqTeniITa
+no 49 LM v - Sugenuia 6791-6107- v
«———— ()Pe10919(2SOY «—————— ISPTAOIJISOHTRUISIUT * 1SOY" IopTaoad d3aNOINFd LSOH Q_ Hl 8029 dAD
da3aaav 1soH ALIEAM I1dV —
avay idv OaeoRdur NI* da 1dd d3INOW 1SOH w:g_m:t; 86T91-610T-JAD ¢
A3INAOWIY LSOH |pe 00£91-6102-AD T
‘sajdurexa ydeid mofj 3uaas 10y g°S pue £'S samSr 999 J3AOW LSOH 1>e 68TT-6102-HAD 1
@3lvadn LSOH P 169TI-810T-AD
19y° suepd
ejep 0} Jndur sueld eyep renyuajod Suimoys yyed yderd moyy yuaas sjdwrexy adfy pajpueyqun ddy ArdAD #

(0670 = 1) SurIalL 9sn) JuaAg pue sis[euy ydeir) MO[] JUSAT UO paseyq SINI[IqeIUNA JOU)STT JUIAY :T°S J[qe],

87

We assume a topology of at least two hosts: h1 and h2. The attacker controls host h1l and wants

to communicate with h2. An access control policy prevents h1 and h2 from communicating.

5.71.2 Method

The attack occurs in two stages.

First, the attacker host hl sends into the data plane an ICMP packet with an invalid source
IP address (e.g., the broadcast address). The host provider learns about host h1l from the ICMP
packet’s source MAC address, creates a host object (without an associated IP address), and gener-
ates a HostEvent event with a HOST _ADDED event type.” On the HOST _ADDED event type, acl
checks whether flow deny rules should be installed for the added host. Since acl performs this check
at the IP layer only and host h1 has an empty IP address list, no flow deny rules are installed.

Next, the attacker host hl sends traffic intended for the target host h2. The host provider ref-
erences the prior host object representing host h1, updates host h1’s list of IP addresses with host
h1’s real IP address, and generates a HostEvent event with a HOST UPDATED event type. Prior
to patching the vulnerability, acl did not check for the HOST UPDATED event type and took no
action with such events. Another app, such as fwd, then installs flow allow rules from the attacker
host h1 to the target host h2.

5.71.3 Results and implications

We wrote an exploit that performed the attack, and we were able to demonstrate that messages could
be sent from the attacker to the target. From a defender’s perspective, the exploit’s effects may not
be obvious immediately because the flow deny rules were never installed. A defender would need
to check for evidence of the absence of the flow deny rules or the unintended presence of the flow
allow rules. Since the host object corruption in the first stage need not occur at the same time as the
lateral movement in the second stage, a stealthy attacker could wait until he or she needed to use

such elevated access at a later time.

88

Data Plane In

PacketContext
inPacket(...)

s

y \
provider.host.impl .
HostLocationProvider .
InternalHostProvider \

X fwd
! ReactiveForwarding
I ReactivePacketProcessor

HostProviderService
hostDetected(...)

FlowObjectiveService

HOST < HOST HOST

; HOST
- REMOVED . MOVED ADDED UPDATED forward(...)
y . .

N acl.impl

""""""" > AclManager
InternalHostListener

N\,

FlowRuleService
applyFlowRules(...)

Data Plane Out

Figure 5.7: Partial event flow graph showing vulnerable code paths used in CVE-2018-12691. Blue
rectangles represent event listeners and packet processors, gray ellipses represent API methods,
bold edges represent event dispatches, and dashed edges represent API calls. (Dotted gray edges

represent unhandled event types, which are shown for reference.)

89

5.7.1.4 Event flow graph

Figure 5.7 shows the partial event flow graph with the relevant code paths used by the attacker. The
attack’s first stage follows the left-side path, in which the attack corrupts the host information in the
HostProviderService. The attack’s second stage triggers a HOST UPDATED event type that does
not get handled by acl’s host event listener; in addition, the attack’s second stage succeeds as shown
by the right-side path.

In the analysis of acl, EVENTSCOPE produces an absent context set, c_, that includes fwd. The
absent context set represents other event listeners and packet processors that might also respond to
the same set of data plane input and produce data plane effects. A practitioner would discover that

an app in the absent context set is producing undesirable effects via flow rule installation by fwd.

5.7.2 Data Plane Access Control Bypass with acl, mobility, and fwd
(CVE-2019-11189)

5.7.21 Summary

We found that an attacker could bypass the data plane access control policies by spoofing another
host using ARP reply packets. Such a spurious location change can allow the host mobility app,
mobility, to remove acl’s flow deny rules. Since acl does not reinstall such flow deny rules after a
location change, the attacker can subvert network policy with increased access.

We assume a topology of at least three hosts: h1, h2, and h3. The attacker controls h1 and h3 and
desires access to h2. Hosts h1 and h3 have different data plane connection points. An access control

policy prevents communication between h1 and h2 as well as between h3 and h2.

5.72.2 Method

The attack occurs in two stages.

First, the attacker host hl attempts to connect to the target host h2, but the connection is de-
nied by acl’s flow deny rules that were created when the hosts were detected or when a new ac-
cess control policy was installed. The other attacker-controlled host, h3, sends into the data plane
an ARP reply that spoofs the identity of host h1l. The host provider determines that host h1 has

*The HOST _ADDED event type assumes that the controller has never seen that host’s MAC address before, but
that is unlikely to be true if host h1 had sent any traffic prior to attacker compromise. However, if we assume that the
attacker has root privileges on host h1, the attacker can change host h1’s network interface MAC address. Thus, host h1
will appear as a newly added host and trigger the HOST _ ADDED event type if the host subsequently sends any traffic
into the data plane.

90

“moved” to the same connection point as host h3 and generates a HOST _MOVED event type. On
the HOST MOVED event type, mobility performs a network-wide cleanup that removes “old” flow
rules whose source or destination MAC addresses match the respective host’s MAC address. Thus,
mobility removes acl’s flow deny rules related to host h2.

Next, the attacker host hl attempts again to connect to the target host h2, and that causes
the host provider to assume that host hl has moved to its original location and thus triggers
a HOST MOVED event type. Prior to patching the vulnerability, acl did not check for the
HOST MOVED event type and took no action to reinstall the former flow deny rules. Another
app; such as fwd, then installs flow allow rules from the attacker host h1 to the target host h2.

5.7.2.3 Results and implications

We wrote an exploit that performed the attack and were able to demonstrate that messages could be
sent from the attacker to the target. Although the attack assumed that the attacker controlled two
hosts on different connection points, an attacker who initially controls only one host could use the
previous exploit in Section 5.7.1 to compromise a second host so as to perform the attack in this sec-
tion. Much like the exploit in Section 5.7.1, the increased access has significant consequences if our
assumptions about the security of data plane access control are incorrect. For instance, if hosts h1l
and h2 were segmented and isolated by policy (e.g, to satisfy regulatory compliance requirements),

then clever manipulation of host events can effectively bypass such protections.

5.7.2.4 Event flow graph

Figure 5.8 shows the partial event flow graph with the relevant code paths used by the attacker. The
attack’s first stage follows the path through the host mobility app, mobility, in the figure’s center. The
host mobility app responds to the HOST MOVED event type and removes flow rules. The access
control app, acl, does not handle the HOST MOVED event, and thus the app does not install new
flow rules. The attack’s second stage succeeds as shown by the path on the right side of the figure.
In the analysis of acl, EVENTSCOPE produces a present context set, c,, that includes mobility.
The present context set indicates how the unhandled event type (i.e., HOST MOVED) is handled
by other event handlers of the same event kind (i.e., the HostEvent event kind). A practitioner
would determine that mobility uses flow removal to produce undesirable effects. The absent context
set, c_, includes the forwarding app, fwd. A practitioner would determine that fwd uses flow rule

installation to produce undesirable effects.

91

Data Plane In

PacketContext
inPacket(...)

4 \

¥ \

provider.host.impl [\
HostLocationProvider | *
InternalHostProvider |

HOST : HOST

X A |

! fwd

I ReactiveForwarding
I

I

ReactivePacketProcessor

HostProviderService
hostDetected(...)

>

RN acl.impl
AclManager
InternalHostListener

."-. mobility
HostMobility
InternalHostListener

A}
\

FlowRuleService
applyFlowRules(...)

FlowRuleService
removeFlowRules(...)

Data Plane Out

FlowObjectiveService
forward(...)

Figure 5.8: Partial event flow graph showing vulnerable code paths used in CVE-2019-11189. Blue
rectangles represent event listeners and packet processors, gray ellipses represent API methods,
bold edges represent event dispatches, and dashed edges represent API calls. (Dotted gray edges

represent unhandled event types, which are shown for reference.)

92

5.73 Other Vulnerabilities

In Table 5.1, we summarize the remaining vulnerabilities that EVENTScOPE discovered, grouped by

app.

Vulnerabilities 3-5 (virtualbng) The virtual broadband network gateway app, virtualbng, main-
tains a relationship between a network’ set of private IP addresses and public-facing IP addresses
on the Internet [223]. The app also installs network intents, which get translated to new flow rules,
to allow the network’s hosts with private IP addresses to connect to the Internet. The app’s host event
listener handles the HOST ADDED event type but does not handle the remaining three host event
types. As a result, the app does not handle any state updates about the virtual gateways it has previ-
ously created if a host changes its information (e.g., new location). A malicious host could spoof that
host’s identity, via a process similar to that described in Section 5.7.2.2, to cause HOST UPDATED
or HOST MOVED event types to be triggered. Furthermore, when a host is removed, the app does
not asynchronously remove its intents (or, by extension, its flow rules) that it previously installed
because it does not handle HOST REMOVED event types.

Vulnerabilities 6-8 (mobility) The host mobility app, mobility, listens for host-related events
and cleans up any related flow rules if a host has moved. Related work [49] has shown how the
host mobility app in ONOS can be abused by hosts to force ONOS to reinstall flow rules and cause
a control plane denial-of-service attack. Instead, we focus here on the absence of what event types
mobility handles. The app’s host event listener handles the HOST MOVED event type (as expected)
but does not handle the remaining three host event types. If mobility is expected by other apps to
be responsible for cleaning up flow rules, then a host whose information has been updated (where
updating would triggera HOST UPDATED event type), would not cause a flow removal and might
lead to stale flow rules. If there is sufficient time between a moved host’s removal from and addition
back into the network, it may trigger a HOST REMOVED event followed by a HOST ADDED
event. As mobility does not handle either event type, the expected flow removal by mobility would

not occur.

Vulnerability 9 (vtn) The virtual tenant network app, vtn, provisions virtual networks as
overlays over physical networks [224]. The app handles all of the host event types except for
HOST MOVED. For the host event types that are handled, the app installs flow rules for added
hosts (i.e., HOST ADDED), removes flow rules for removed hosts (i.e., HOST REMOVED),
and installs and removes flow rules for any host that has changed its properties but not moved
(i.e, HOST UPDATED). A host that moves (i.e., HOST MOVED) would not have any actions

taken by the app; as a result, flow rules would not be reinstalled, and denial of service could occur.

93

Vulnerabilities 10-11 (evpnopenflow) The Ethernet VPN app, evpnopenflow, uses OpenFlow to
install MPLS-labeled overlay routes for virtual private networks [225]. The app’s host event listener
handles the HOST ADDED and HOST REMOVED event types, which call functions that are
responsible for finding routable paths, installing flow rules, and removing flow rules. The app does
not handle hosts moving (i.e., HOST MOVED) or being updated (i.e., HOST UPDATED), and
that could cause denial of service to such hosts if old flow rules are not removed and new flow rules

are installed.

Vulnerabilities 12-14 (p4tutorial) The P4 tutorial app, p4tutorial, is a proof-of-concept app that
demonstrates P4’s programmable data plane capabilities. The app’s host event listener handles the
HOST ADDED event type only. Like virtualbng, p4tutorial’s lack of handling of other host event

types leaves it susceptible to denial-of-service vulnerabilities and failure to remove flow rules.

5.8 Discussion

5.8.1 SDN Design Concerns

App composability We found that some apps, which we term “helper apps,” were designed to
perform functionality on behalf of other apps currently running. One helper app, mobility, removes
flow rules when hosts move within the network. However, as we noted with respect to our exploit in
Section 5.7.2, if an app’s design does not account for helper apps that are taking actions on its behallf,
then the combination of apps may introduce vulnerabilities that arise from a lack of coordinated
responsibility. That suggests a need for stronger integration testing among apps; EVENTSCOPE is

useful in identifying the subsets of apps that may interact.

Update semantics We found that ONOS event kinds often had representations in their event types
for updates (i.e., * UPDATED, * CHANGED, or * MOVED). While some apps handled the re-
spective “addition” or “removal” event types, they did not handle the respective “updated” event type
(e.g., the odtn app for LINK UPDATED). Apps that did handle update event types often did so by
first calling a removal method, followed by an addition method; for instance, the vtn app handles
HOST UPDATED by calling its onHostVanished () and onHostDetected () methods consecu-
tively. The lack of uniform update event-type handling across apps suggests that update handling is

a useful place to identify vulnerabilities.

94

Host migration Although host migration hijacking is a known problem [22, 55, 58, 93], we found
that ONOS v1.14.0 and earlier versions do not provide any protections against the broader class of
adversarial host-generated data plane input. That suggests a strong cross-plane attack vector, and
EVENTScOPE’s event flow graph can show the extent to which the control plane’s control flow can
be altered.

Event abstraction While EVENTSCOPE’s discovered vulnerabilities do relate to host movement,
such vulnerabilities differ from the host migration vulnerabilities discovered in related work [22,
55, 58, 93]. Those previously known vulnerabilities specifically use incoming data plane packets
to target the host migration service. In contrast, EVENTSCOPE’s discovered vulnerabilities occur
one abstraction layer higher: the host migration service declares that a host has moved, and other
apps attempt to update their own states to account for such movement. EVENTSCOPE’s discovered
vulnerabilities could occur as a result of benign host migration. For example, the acl app relies on
a host migration service event (i.e., HostEvent) instead of relying directly on data plane packets
because the semantic notion of host migration is a useful abstraction for other apps, too. We believe
that future apps will likely follow a similar trend of using abstracted events. One of our goals is to
make event propagation more understandable for practitioners and developers. In that context, we
believe that EVENTScOPE’s discovered vulnerabilities are distinct from and complementary to the

host migration vulnerabilities found in related work.

Other controllers Much like ONOS’s packet processor, Floodlight’s [28] processing chains allow
for specific execution ordering. ONOS contains a more sophisticated, extensive, and distributed
event-driven architecture than Floodlight, and we opted to evaluate the more sophisticated archi-
tecture. ONOS also contains event processing that does not specify ordering, which is the case for
the majority of ONOS event kinds (i.e., all non-packet events). Although the event flow graph cap-
tures the ordering of different events (e.g., a packet event that subsequently triggers a host event),
the graph does not capture the processing order within an event (e.g., the packet event goes to app
X, then app Y).

5.8.2 Limitations

EVENTSCOPE cannot establish the absence of vulnerabilities. NICE [105] shows that a large state
space search is needed to reason about the absence of vulnerabilities, but such state does not scale
beyond simple apps and controllers. EVENTScOPE lets developers and practitioners understand
complex app interactions using a scalable approach.

To help practitioners identify unsafe operating conditions, EVENTSCOPE can generate contexts

95

under which certain combinations of apps may manifest a vulnerability; however, EVENTSCOPE
does not generate exploits. Automated exploit generation [216] is an ongoing research area, and we
consider automated SDN exploit generation to be future work.

We believe that the event flow graph data structure has applicability beyond the identification of
missing event vulnerabilities. For instance, concurrent event processing can be represented in an
event flow graph by two paths with the same start and end nodes. Such path structures may indicate
race conditions, and the event flow graph could be well-suited to identifying where these occur.
However, we believe that that, and other possible applications, are complex research questions in

their own right, and we leave them as future work.

5.9 Related Work

SDN security Cross-plane attacks have been studied in specific contexts. Yoon et al. [80] refer
to these attacks as control plane remote attacks for network-view manipulation. SpHINX [93], To-
POGUARD [22], TOoPOGUARD+ [55], and SECUREBINDER [58] reveal the lack of protection against link
fabrication attacks and host location hijacking. However, none of the four systems analyze the extent
to which the untrusted data plane inputs propagate via events to other components in the controller,
and such analysis is necessary for cases where apps’ competing behaviors create vulnerabilities.

CoNGUARD [109] identifies time-of-check-to-time-of-use race conditions in SDN controllers and
provides a generalized model of control plane happens-before relations, but the generalized seman-
tics do not account for more sophisticated app semantics whose incomplete event handling can be
exploited.

INDAGO [114] and SHIELD [113] use static analysis to analyze SDN apps and summarize their API
use. INDAGO proposes machine learning techniques to determine whether an app is malicious or
benign based on its sources and sinks from API call use. Given that benign apps can be co-opted
by other apps as confused deputies [51], we find the distinction of malicious and benign labeling to
be irrelevant for EVENTSCOPE. Instead, EVENTSCOPE approaches the problem from a global event

dependency view.

Event-driven architectures We consider the SDN architecture vis-a-vis Android and Web
browser extensions. SDN and Android differ based on the mechanisms by which data are passed and
on how apps coordinate with each other [51]. Event-driven SDN relies on a central event dispatch-
ing mechanism over a limited set of network events, which implies that SDN apps must coordinate
with each other to apply policies to and to enforce security over the shared data plane resource.

Vulnerability tools and analyses for Android [196, 214, 226, 227, 228, 229, 230, 231] and browser ex-

96

tensions [232, 233, 234, 235] have focused primarily on preventing information leakage among apps

or extensions rather than specifically on how unhandled events affect global control flow.

Vulnerability discovery Livshits and Lam [215] secure Java programs from unchecked Web-based
input vulnerabilities. We study the analogous SDN problem of untrusted data plane input and
model our attacks using a two-stage model of initial injection and subsequent manipulation. Yang et
al. [236] note the challenges for event-driven callbacks in Android, which we consider in our SDN
component model. Monperrus and Mezini [237] study the use of missing method calls as indica-
tors of deviant code, using an approach similar to that used for the unhandled event type problem.
CHEX [214] identifies entry points in Android applications and uses “app splitting” to identify all
code that is reachable from a given entry point. We adapted CHEX’s notion of app splitting for use in
building event flow graphs. Code property graphs [211] combine abstract syntax trees, control flow
graphs, and program dependence graphs into a unified data structure for automated vulnerability

discovery, but have scalability concerns.

Network debugging Cross-plane and cross-app attacks can be tracked using causality tracking
and data provenance approaches. PROVSDN [51] prevents cross-app poisoning attacks in real time
using a provenance graph structure to enforce information flow control, and FORENGUARD [129]
records previous causal relationships to identify root causes. Negative provenance [131], differen-
tial provenance [202], and meta provenance [132] have been proposed to explain why SDN routing
events did not occur and to propose bug fixes, but such methods require either a history of traces or
reference examples of “good” behavior; furthermore, analysis of SDN applications in those systems
must be written in or translated into the Datalog language NDlog prior to analysis. The aforemen-
tioned systems record code paths that were taken rather than all potential code paths, which limits
their effectiveness in identifying potential vulnerabilities ahead of time.

DELTA [112], BEADS [111], and STS [110] use fuzzing to generate data plane inputs, but the space
of potential inputs is complex for large and complex event-driven controllers. NICE [105] models
basic control plane semantics (e.g., flow rule installation ordering) and uses the generated state space
to perform concrete symbolic (i.e., concolic) execution to find bugs; however, even for simple single
apps, the approach does not scale well. VeriFlow [96] uses network correctness properties to prevent
flow rules from being installed. However, such approaches require a formal statement about app
behavior. Given that the checks occur in the southbound API, such tools do not identify the sources

of vulnerabilities.

97

5.10 Conclusion

We have presented EVENTSCOPE, a vulnerability discovery tool for SDN that enables practitioners
and developers to identify cross-plane event-based vulnerabilities by automatically analyzing con-
troller apps’ event use. EVENTSCOPE uses similarities among apps to find potential logic bugs where
event types are not handled by apps. EVENTSCOPE uses an event flow graph, which abstracts relevant
information about how events flow within the control plane, captures data-plane inputs as potential
cross-plane attack vectors, and captures data-plane outputs as targets. We used EVENTSCOPE on
ONOS to find and validate 14 new vulnerabilities.

98

CHAPTER 6

CONTROL PLANE CAUSAL ANALYSIS

Software-defined networking (SDN) has emerged as a flexible network architecture for central and
programmatic control. Although SDN can improve network security oversight and policy enforce-
ment, ensuring the security of SDN from sophisticated attacks is an ongoing challenge for prac-
titioners. Existing network forensics tools attempt to identify and track such attacks, but holistic
causal reasoning across control and data planes remains challenging.

We present P1ICOSDN, a provenance-informed causal observer for SDN attack analysis. PIcOSDN
leverages fine-grained data and execution partitioning techniques, as well as a unified control and
data plane model, to allow practitioners to efficiently determine root causes and to make informed
decisions on mitigating attacks. We implement P1icoSDN on the popular ONOS SDN controller.
Our evaluation across several attack case studies shows that P1coSDN is practical for the identifi-

cation, analysis, and mitigation of SDN attacks.

6.1 Introduction

Over the past decade, the software-defined networking (SDN) architecture has proliferated as a
result of its flexibility and programmability. The SDN architecture decouples the decision-making
of the control plane from the traffic being forwarded in the data plane, while logically centralizing the
decision-making into a controller whose functionality can be extended through network applications
(or apps).

SDN has been touted as an enhancement to network security services, given that its centralized
design allows for complete oversight into network activities. However, the programmable nature
of SDN creates new security challenges and threat vectors. In particular, the control plane’s state
and functionality can be maliciously influenced by data input originating from the data plane and
apps. These cross-plane [22, 43, 44, 48, 55, 93] and cross-app [45, 51] attacks have significant security
repercussions for the network’s behavior. An adversary only needs to attack data plane hosts or apps,
and does not have to compromise the controller. Complex SDN control planes and new attack vec-
tors make a network security practitioner’s job more challenging, as he or she must quickly collect

any evidence of an attack, establish possible root causes, and mitigate such causes to prevent future

99

attacks.

Network causality and provenance tools are becoming more popular as evidenced by recent re-
search contributions [51, 129, 131, 141]. However, we argue that such tools have limitations in terms
of providing precise and holistic causal reasoning.

First, the control plane’s causality (or provenance) model has a significant effect on the preci-
sion with which a practitioner can identify root causes. If the control plane’s data structures are
too coarse-grained or if the control plane uses long-running processes, this can lead to dependency
explosion problems in which too many objects share the same provenance. That reduces the ability
to identify precise causes.

Second, the control plane’s decisions cause the data plane’s configuration to change; the effects
of the data plane’s configuration on packets sent to the controller cause subsequent control plane
actions. When network causality and provenance tools examine the control plane alone, the indi-
rect causes of control plane actions that result from data plane packets will lead to an incomplete
dependency problem that ignores the data plane topology.

Third, a practitioner will want to know not only the root causes for an action but also the extent
to which such root causes impacted other network activities. For instance, if a spoofed packet is
found to be the attack vector for an attack, then the practitioner will want to investigate what else
that spoofed packet influenced to understand whether other attacks and undesirable behavior have

also occurred.

Overview We present PICOSDN, a tool for SDN attack analysis that mitigates the aforementioned
dependency explosion and incomplete dependency challenges. P1coSDN allows practitioners to ef-
fectively and precisely identify root causes of attacks. Given evidence from an attack (e.g., violations
of intended network policies), PICOSDN determines common root causes in order to identify the
extent to which those causes have affected other network activities.

P1coSDN’s approach uses data provenance, a data plane model, and a set of techniques to track
the lineage of objects, activities, and system principals. P1cOSDN records provenance graphically
to allow for efficient queries over past state. Although similar network forensics tools have also
used graphical structures [51, 129, 130], these tools’ provenance models suffer from dependency ex-
plosion or incomplete dependency problems. To account for those challenges, PicOSDN performs
fine-grained partitioning of control plane data objects and leverages the loop-based event listen-
ers common in SDN apps to further partition data and process execution, respectively. PicoSDN
also incorporates the data plane’s topology such that indirect control plane activities caused by data
plane packets are correctly encoded, which mitigates incomplete dependencies. Finally, PIcoSDN’s
toolkit reports the impacts of suspected root causes, identifies how network identifiers (i.e., host

identities) evolve over time, and summarizes the network’s flow rule configuration.

100

We have implemented P1coSDN within the popular ONOS SDN controller [25]. Many telecom-
munications providers, such as Comcast, use ONOS or one of its proprietary derivatives [159]. We
evaluated P1cOSDN by executing and analyzing recent SDN attack scenarios found in the literature
and in the Common Vulnerabilities and Exposures (CVE) database. PIcOSDN precisely identifies
the root causes of such attacks, and we show how P1coSDN’s provenance model provides better
understanding than existing network tools do. Our implementation imposes an average overhead
latency increase of between 7 and 21 ms for reactively instantiated flow rules (with the increase de-

termined by topology size), demonstrating PICOSDN'’s practicality in realistic network settings.

Contributions Our main contributions are:

1. An approach to the dependency explosion problem for SDN attack provenance that utilizes

event listeners as units of execution.

2. An approach to the incomplete dependency problem for SDN attack provenance that in-

corporates a data plane model and tracking of network identifiers.

3. The design and implementation of P1coSDN, which we use with ONOS to evaluate SDN

attacks and to demonstrate PICOSDN'’s causal analysis benefits.

4. The performance and security evaluations of PIcoSDN on recent SDN attacks.

6.2 Challenges

Many real-world SDN attacks leverage data plane dependencies and long-running state corruption
tactics to achieve their goals. SDN controllers are susceptible to attacks from data plane hosts that
poison the controller’s network state view and cause incorrect decisions [22, 44, 48, 55, 93, 238]. We
consider a motivating attack to illustrate the limitations that a practitioner encounters when using

existing network forensics tools.

6.2.1 Motivating Attack Example

Scenario Consider the control plane attack CVE-2018-12691 [44, 238] in ONOS. It enables an at-
tacker to use spoofed packets to circumvent firewall rules. This class of cross-plane attack leverages
spoofed data plane input to fool the controller into maliciously changing the data plane forward-
ing. Complete prevention of such attacks is generally challenging, as spoofed information from data

plane hosts is a notorious network security problem in SDN [22, 58, 93]. Such attacks can also be

101

Network Applications
Controller (Northbound API)
Control Plane Channel
CONTROL PLANE (Southbound API)

DATA PLANE

Switch s, Switch s,
Attacker Host (h,) Victim Host (h,)

Figure 6.1: Topology of the CVE-2018-12691 attack scenario described in Section 6.2.1. The red
path represents the attacker’s desired data plane communication from h; to h,.

one part of a multi-stage attack in which the attacker’s goal is to defeat the data plane access control
policy and move laterally across data plane hosts to gain additional access [4].

Suppose that the attack is carried out on a network topology as shown in Figure 6.1. Assume that
the controller runs a data plane access control application and a reactive' forwarding application.
The attack works as follows. A malicious data plane host, h;, wants to connect to a victim host, h,,
but the data plane access control policy is configured to deny traffic from h, to h, based on its IP
address. The malicious host /; emits into the data plane a spoofed ICMP packet, p;, with an invalid
IP address. The controller creates a host representation object for /; with a valid MAC address but
no IP address. The data plane access control application, acl, checks to see if it needs to insert new
flow rules based on the data plane access control policy. As the controller does not associate h; with
an IP address, no flow rules are installed.

Some time later, h; sends to h, a packet, p,, with a valid source IP address. ONOS updates the
host object for h; with h;’s actual IP address. Unfortunately, at this point, a bug causes the data plane
access control application to not handle events in which a host object is updated. Thus, the update
never triggers the application to install flow deny rules that prevent /; from sending traffic to h,.

The result is that the reactive forwarding application forwards the packet out (i.e., p3).

Investigation At a later point in time, a practitioner discovers that data from h, have been exfil-
trated out of the network through connections originating in h, that violate the intended data plane
access control policy. To investigate why the policy was bypassed, the practitioner attempts to per-
form causal analysis using a provenance graph (depicted in Figure 6.2a) over the control plane’s past

state.

'Although we discuss a reactive SDN configuration here as an example, PIcoOSDN’s design generalizes to proactive
SDN configurations, too. We refer the reader to Section 6.8 for further discussion.

102

Switch Switch
S1 S2
PacketManager PacketManager
Device Event Listene

Device Event Listene
Flow Rule f1
match=all traffic

action=send to controller
switch=s;

Flow Rule f5
match=all traffic
action=send to controller
switch=s;

Packet In pa

Packet In p1 Packet In p2
MACq;c=h1, MACygi=h MACq c=h1, MACyor=h MACq c=h1, MACyer=h
IPorr 55755 255 25 W, =10.0.0% 2 W, =10.0.0% 2

switch:port=s;:1

HostProvider
Packet Processol

swﬁrc%:por't=52:1

fwd
Packet Processo

Flow Rule f3

swﬁrc%:por't=51:l

HostProvider
acket Processo

fwd r|

L’acket Processo

Packet Out p3

OStAé‘_lh(VZ) MAC. c=hy, MAC4ei=h> match={PACsre SN, FCast=h2
1P=10.0.0.1 1B.c=10.0.0F Stion=s,:2
s SWItC‘i’}:pOr‘t=Sl:2 SWitCh=25-2

Flow rule installed
from hi to hy

acl
ost Event Listene

No action taken No action taken

(IP not matched) (Event type not handled)
(a) Relevant provenance generated based on techniques from prior work [129]. The activities from
switches s; and s, appear to be independent of each other, masking the derivation of a root cause of
so’s flow rule f3 from host h;’s activities on switch s;.

N

> Data Plane\
<~ Model

« Identifer
*SEvolution
*

(b) Relevant provenance generated with
P1coSDN, which includes a data plane model,
network identifiers, and precise agency.

Figure 6.2: Data, process, and agency provenance of the CVE-2018-12691 attack scenario described
in Section 6.2.1. Ellipses represent SDN control plane data objects, rectangles represent SDN
processes, and pentagons represent SDN principal agents.

103

The practitioner knows that a flow rule or a set of packets between h; and h, must have allowed
the communication, so he or she starts with a piece of evidence that consists of the flow rule installed
by the reactive forwarding application that allowed traffic from #, to h, on switch s, (i.e., flow rule
f3). The practitioner issues a query and identifies a set of possible root causes related to the lineage
of that flow rule.

6.2.2 Existing Tool Limitations

However, the practitioner runs into several challenges when using existing tools to generate a graph
such as the one in Figure 6.2a. Although linking h;’s packets to s;’s default flow rule (i.e., f;) does
capture past causality, the practitioner is easily overwhelmed when all packets over all time from
any of s;’s ports are also linked to that default flow rule. The practitioner also finds that switches
s; and s, as principal agents become too coarse-grained to enable pinpointing of attribution. Since
existing tools do not account for the data plane as a causal influence, the result in Figure 6.2a is a
set of two disconnected subgraphs. That disconnection prevents the practitioner from performing
a meaningful backward trace. Finally, backward tracing alone would not provide the practitioner
with details about the attack’s other effects. We generalize those challenges and consider them in
depth below.

Limitation (L1): Dependency explosion Identification of provenance suffers from the depen-
dency explosion problem in which long-running processes or widely used data structures within
a system can create false dependencies. That problem can be mitigated through data partitioning or
execution partitioning. SDN tools, such as CAP [51] and FORENGUARD [129], mitigate the problem,
but limitations remain. For instance, PROVSDN’s API-centric model would create many false de-
pendencies among an app’s event listener instances because an API call would be falsely dependent
on all previous API calls. FORENGUARD’s event-centric model uses execution partitioning, but if we
apply it as shown in Figure 6.2a, we see that a controller that installs default flow rules (i.e., f;) will
cause all unmatched packets (i.e., p; and p,) to become dependent on it. As a result, FORENGUARD’s
modeling approach can suffer from data partitioning challenges when too many unrelated effects of

a root cause must also be analyzed.

Limitation (L2): Coarse-grained agency and false attribution A similar challenge exists in the
assignment of data plane agency. In Figure 6.2a, the agency traces back to a switch, either s, or s,.
Although this correctly implies that one of the root causes of the attack is s, or s,, it is not a particu-
larly useful insight because all other activities have one of these root causes, too. Instead, should the

responsibility be assigned to a notion of a host? Given that network identifiers (e.g., MAC addresses)

104

are easily spoofable, assigning agency to hosts would not solve the problem either; malicious hosts

would simply induce false dependencies in the provenance graph.

Limitation (L3): Incomplete dependencies In contrast to false dependencies, the incomplete de-
pendencies occur when the provenance model does not capture enough information to link causally
related activities. For SDN attacks, that occurs when the data plane’s effects on the control plane
are not captured by an implicit data plane model. In our attack scenario in Section 6.2.1, the reac-
tive forwarding application reacts to activities from switch s; before forwarding the packet (i.e., p3)
out to other ports. On the other end of one of s;’s ports, switch s, receives that incoming packet
(i.e., p4) and further processes it. Figure 6.2a’s disconnected subgraphs appear to show that switch
s;’s history of events is independent of switch s,’s history of events. Thus, if a practitioner were
starting his or her investigation from a flow rule on switch s,, he or she would not be able to see
that the root cause occurs because of earlier events related to switch s; and the malicious host h;’s
spoofed packets. PROVSDN and FORENGUARD do not account for this data plane model and would
thus suffer from incomplete dependencies. Other tools [131, 132, 202, 239] model the implicit data
plane, but are applicable only in the declarative networking paradigm. Most of the popular SDN

controllers [25, 28, 30], in contrast, use an operating-system-like imperative paradigm.

Limitation (L4): Interpretation and analysis Even if the dependency-related challenges previ-
ously described were mitigated, it can still be challenging to interpret provenance graphs. For in-
stance, if the practitioner in our attack scenario from Section 6.2.1 wanted to understand how net-
work identifier bindings (e.g., the network’s bindings between a host's MAC address and its location
in the data plane) changed over time, the provenance graph in Figure 6.2a would not support that;
it does not directly link the host objects because their generation were not causally related.

PrOvVSDN and FORENGUARD use backward tracing to start with a piece of evidence and find its
information flow ancestors or set of root causes, respectively. However, if the practitioner wanted
to know the other effects of the spoofed packet generated by h;, that analysis would require for-
ward tracing techniques that start at a cause and find its progeny to determine what other data and
processes were affected. As neither PROVSDN nor FORENGUARD performs forward tracing, the
practitioner would not be able to discover other relevant unexpected artifacts of the attack, such as
acl’s failure to generate flow deny rules.

The practitioner ultimately wants to answer network connectivity questions of the form “Which
packet(s) caused which flow rule(s) to be (or not to be) installed?” However, the SDN controller’s
event-based architecture can be itself complex [44]. Although the complexity must be recorded to
maintain the necessary dependencies, most of the complexity can be abstracted away to answer a

practitioner’s query. Thus, abstracted summarization is necessary for practitioners to understand

105

attacks easily and quickly.

6.2.3 Our Approach

Motivated by the attack presented in Section 6.2.1 and the previous tools’ limitations noted in Sec-
tion 6.2.2, we highlight how P1coSDN would mitigate the issues. PIcOSDN uses a provenance model
that accounts for data and execution partitioning with precise agency, while also incorporating the
implicit data plane effects on the control plane (Section 6.3). PIcOSDN also provides techniques to
aid in analysis (Section 6.5).

Applying P1coSDN produces the graph shown in Figure 6.2b. Rather than relying solely on the
default flow rule f; as a root cause, the practitioner can see that packets p; and p, originate at a
host on switch s;’s port 1 (L1). That also allows the practitioner to precisely identify agency at the
switch port (rather than switch) level (L2). The previously independent activities from each switch
are linked by the data plane model that connects ps with p; (L3), which allows the practitioner
to backtrace from s, to s; (L4). Finally, the practitioner can see how host hy’s network identifier

information evolved over time (L4) and can summarize the past network state (L4).

6.3 P1coSDN Provenance Model

In order to reason about past activities and perform causal analysis, we first define a provenance
model that formally specifies the relevant data, processes and principal identities involved in such
data’s generation and use.” Our unified approach accounts for app, control, and data plane activities,

which allows us to reason holistically about SDN attacks.

6.3.1 Definitions

Provenance graph A provenance graph, denoted by G = (V, £), is a directed acyclic graph (DAG)
that represents the lineages of objects comprising the shared SDN control plane state. Informally
stated, the graph shows all of the relevant processes and principal identities that were involved in
the use or generation of such control plane objects. We use the graph to analyze past activities to
determine root causes (i.e., backward tracing) and use those root causes to determine other relevant

control plane activities (i.e., forward tracing).

*Our model is loosely based on the W3C PROV data model [51, 184, 186].

106

Table 6.1: Nodes in the PIcOSDN Provenance Graph Model.

Node class Node meaning and node subclasses
A data object within the SDN control plane state, used or generated through API ser-

Entity vice calls or event listeners o
Subclasses: Host, Packet (subsubclasses: Packetln, PacketOut), FlowRule, Objective,
Intent, Device, Port, Table, Meter, Group, Topology, Statistic

Activi An event listener or a packet processor used by an SDN app or controller

ctivity :

Subclasses: EventListener, PacketProcessor

Agent An SDN app, an SDN controller core service, a switch port, or a switch (i.e., device)

Subclasses: App, CoreService, SwitchPort, Switch

Table 6.2: Edges (Relations) in the PicoSDN Provenance Graph Model.

Valid edge (relation) class

Relation meaning

Entity wasGeneratedBy Activity

Creation of an SDN control plane state object

Activity used Entity
EventListener used Entity

PacketProcessor used Packet

Use of an SDN control plane state object

An event listener’s use of the SDN control plane state ob-
ject

A packet processor’s use of a data plane packet

Entity waslnvalidatedBy Activity

Deletion of a data object within the SDN control plane
state

Entity wasDerivedFrom Entity
PacketIn wasDerivedFrom FlowRule

PacketIn wasDerivedFrom PacketOut

Causal derivation of one SDN control plane state object
to another object

Causal derivation of an incoming packet based on a pre-
viously installed flow rule (e.g., default flow rule)

Causal derivation of an incoming packet from one switch
based on the outgoing packet of another switch

Entity wasRevisionOf Entity

Non-causal revision (i.e., new version) of an SDN control
plane state object

Activity wasAssociatedWith Agent

Agency or attribution of an SDN control plane event

Packet wasAttributedTo SwitchPort

Agency or attribution of a data plane packet with the re-
spective switch port on which the packet was received

Nodes Each node v € V belongs to one of three high-level classes: Entity, Activity, and Agent.

Each high-level node class is explained with its respective subclasses in Table 6.1. We detail the

design choices and semantics of these nodes in Section 6.3.2. A node may also contain a dictionary

of key-value pairs.

Edges (relations) Each edge (or relation) e € £ belongs to one of the classes listed in Table 6.2;

rows that are indented show relations that have more precise subclasses and meanings than their

107

superclass. Relations form the connections among the control plane objects, the network activities

involved in their generation and use, and principal identities within the SDN components.

Paths (traces) A backward trace path, denoted by t, = (vp > ey — ==+ = e; = vj),e0...¢; €
Elass+wasRevisionOfs Vo - - - Vj € V, is a path of alternating nodes and edges that begins at a node of interest
v and ends at an ancestry node v;. An ancestry node is a predecessor of a node of interest. Given
that G is a DAG, nodes vy, ..., v, are also ancestry nodes. A backward trace does not include
any wasRevisionOf edges because such edges represent non-causal relations. A revision trace path,
denoted by t, = (vy = ey = == = €; = Vj),€...€; € Edass-wasRevisionOfs Vo - - - Vj € V, is a path of
edges that begin at a node of interest v, and show the revisions of that node’s object starting from an
earlier revision node v;. These revisions are non-causal and are used to identify changes to objects

over time.

6.3.2 Model Design Choices

Given the aforementioned definitions, we now discuss the design decisions we made in PIcoOSDN’s
provenance model. We show how these decisions were influenced by the limitations found in pre-

vious work and how these decisions help us solve the challenges outlined in Section 6.2.2.

Data and execution partitioning We achieve data partitioning with Entity objects by partition-
ing the data objects specified in the controller’s API. For instance, the ONOS controller’s host core
service provides the API call getHosts(), which returns a set of Host objects. Thus, a natural way
to partition data is to identify each Host object as a data partition. The Entity subclasses are gen-
eralizable to common SDN control plane state objects as found in the representative ONOS [25],
OpenDaylight [30], and Floodlight [28] SDN controllers.

Default flow rules can generate dependency explosions because any incoming packet that does
not match other flow rules is sent to the controller for processing. All previously unseen packets
become causally dependent on a generalized default flow rule, as shown in Figure 6.3a. To miti-
gate that problem, our model links any such packets to the respective edge ports that generated the
packets, as shown in Figure 6.3b.

We achieve execution partitioning with Activity objects by partitioning each execution of recur-
ring event listeners and packet processors into separate activities. Figure 6.4 shows the differences
between API-based modeling and event-based modeling. With event-based modeling, we can more
clearly show which Entity objects were used, generated, or invalided by a given Activity and mitigate

the dependency explosion.

108

(Default) Flow Rule
match=all traffic, action=send to controller
switch=s7, xid=1

was
Derived
From

was
Derived
From

was
Derived
From

was
Derived
From

Packet In Packet In Packet In Packet In
MACsc=h1 MACsrc=h> MACsrc=h1 MACsrc=h3
switch:port=sj:1 switch:port=s7:2 switch:port=s;:1 switch:port=s7:3

xid=1, t=1 xid=1, t=2 xid=1, t=10 xid=1, t=100
(a) Data dependency explosion using default flow rules (used in PROVSDN and FORENGUARD). All packets

from switch s; that do not match any other flow rules become causally dependent on the default flow rule,

which leads to dependency explosion.
Switch s Switch s1
Port 2 Port 3

(Default) Flow Rule
match=all traffic
action=send to controller
switch=s7, xid=1

Switch s1
Port 1

Packet In
MACgrc=h3
switch:port=sj:1
xid=1, t=1

was 7 N was was
Attributed, Attributed Attributed
To,” | To

Packet In
MACgrc=h3
switch:port=sj:1
xid=1, t=10

Packet In
MACgrc=h3
switch:port=s7:3
xid=1, t=100

Packet In
MACgrc=h>
switch:port=s7:2
xid=1, t=2

(b) Data partitioning using packets and switch port agents (used in P1coSDN). All packets per switch port
are logically grouped together.

Figure 6.3: Data partitioning models for flow rules. Ellipses represent Entity nodes, and house
polygons represent Agent nodes.

Event listening SDN controllers dispatch events to event listeners. In ONOS, for example, the
host service dispatches a HostEvent event (with the corresponding Host object) to any HostEvent
listener. We model an event’s data object as an Entity node that was used by EventListener nodes,

with each event listener invocation represented as its own node.

Data plane model Figure 6.5 shows a diagram of data plane activities between two switches, s,
and s,. Figure 6.5a shows the temporal order of a control plane activity (i.e., generation of an outgo-
ing data plane packet), followed by a data plane activity (i.e., transmission of a data plane packet),
followed by another control plane activity (i.e., processing of an incoming data plane packet). As
shown in Figure 6.5b, a provenance model without the implicit causality of the data plane shows two
separate subgraphs, which makes it impossible to perform a causally meaningful backward trace.

To mitigate that problem, we use a data plane model that includes the network’s topology and re-

109

Control plane
object 01

was was was was was
Associated Associated |JAssociated Associated Associated /used
With With With With With
All previous
NB API call API calls NB API call NB API call NB API call
type=WRITE from App X type=READ type=READ type=READ
t=10 t=2 t=1 t=9
wasGeneratedBy

Control plane
object 02

(a) API-based modeling (used in PROVSDN). If one is tracing 0,’s provenance via the API write at time ¢ = 10,
it will not be clear that only the API read of o; at t = 9 is causally associated with 0,. The other API reads at

t =1and t = 2 represent false dependencies.
App Y App X

Control plane

object 01
AkwasAssociatedWith used Jused used wasAssociatedWith
Event Listener . All other event Event Listener
app=App Y listeners interested in o1 app=App X
t=12 t=9
wasGeneratedBy

Control plane

object 03

(b) Event-based modeling (used in P1coSDN). If one is tracing 0,’s provenance via the event listener, it will
not be clear that o, is causally associated with o; through App X’s event listener.

Figure 6.4: Comparison of execution partitioning models. Ellipses represent Entity nodes,
rectangles represent Activity nodes, and house polygons represent Agent nodes.

lated happens-before relationships among activities. Our provenance model includes a data-plane-

based causal derivation in the relation Packet/n wasDerivedFrom PacketOut to represent the causal-
ity.

Network identifiers Control plane objects generated from data plane hosts pose a unique attribu-
tion challenge. Data plane hosts can spoof their principal identities, or network identifiers, relatively
easily in SDN [58] as a result of network protocols (e.g., the Address Resolution Protocol) that do

not provide authentication and SDN controller programs that naively trust such information [44].

110

SDN Controller

Nort

hbound
API

CONTROL
PLANE =~ A D)~ “dN1 Southbound
DATA API
PLANE
Switch s, Switch s,
Switch s, Port 1 Port1 Switch s,

(a) Control plane — data plane — control plane activity. 1: App X instructs the
controller to emit a data plane packet from switch s;. 2: Switch s; emits the data
plane packet on its link towards switch s,. 3: Switch s, receives the incoming data
plane packet and sends it to the controller. 4: App Y processes the data plane

packet.
was was
Event |Generated / Packet Out \ .., / PacketIn Packet
Listener By MA-CSﬁjhl From MACS'ﬁZhl Processor
app=App X switch=s7 je------ switch=s> app=App Y
t=1 port=1 port=1 t=>
— t=1 t=2 —

(b) Resulting control plane provenance graph. The dashed edge represents the provenance if we include a
data plane model. Without the edge (and the data plane model), the PacketIn from s, would not appear to be
causally dependent on PacketOut from s;; that represents an incomplete dependency.

Figure 6.5: Data plane model.

Ideally, each data plane host would have its own principal identity, but that is impossible if hosts can
spoof their network identifiers.

To mitigate that problem, our provenance model offers two features: edge ports as principal identi-
ties and network identifier revisions. To enable those abilities, we model each edge port® as a principal
identity, or Agent node; Figure 6.3b shows an example. As we assume in our threat model (described
in detail in Section 6.4) that switches are trusted, we can trust that the data plane traffic originating
at a particular switch port is actually originating at such port. Whether or not a host claiming to
have a particular identifier (e.g., MAC address) on that port is legitimately located on that port can-
not be verified from the data plane alone. To account for that, we model identifier changes by using

the non-causal relation wasRevisionOf. It allows for a succinct trace of identifier changes over time.

*As opposed to an internal port that links a switch with another switch.

111

ONLINE OPERATION , OFFLINE OPERATION

= ! APPLICATION PLANE| Controller core PICOSDN RUNTIME PHASE | | ! PICOSDN INVESTIGATION PHASE
= | EventListeners & NB API | | T
o | ngester racer ‘
‘E 3 Packet Processors | b\ o4 Methods } Provenance Collector}z | [Common Ancestry || |
83 Data Store |[€ = Cleaner | Backward-Forward | |y
1 Internal Provenance | = \
=z SB API Seriali ! Topology | Activity Summary ||
o State erializer | ! = . ;
R ; Augmenter | Identifier Evolution || ;
e e e e e Y ..-.....-.\{/-.. 0 £
Southbound API
CONTROL PLANE ation Data Plane
DATA PLANE Model

PIcOSDN Inputs and Outputs
from Practitioner

Forwarding Devices

g --- Data Plane Hosts

Figure 6.6: P1cOSDN architecture overview with example workflow. 1: An app makes an APT call.
2: PICOSDN’s API hooks register the API call. 3: The provenance collector checks its internal state
and makes changes based on the API call. 4: The provenance serializer generates the relevant
graph. 5: The ingester, cleaner, and topology augmenter prepare the graph. 6: The tracer receives
the graph. 7: The tracer answers causal analysis queries based on the graph.

6.4 P1coSDN Threat Model

We assume that the SDN controller is trusted but that its services and functionality may be subverted
by apps or by data plane input, which is similar to a threat model found in related work [51, 129].
Attackers will try to influence the control plane via cross-app poisoning attacks [51] or via cross-plane
poisoning attacks [22, 48, 55, 93]. As a result, we assume that all relevant attacks will make use of the
SDN controller’s API service calls, event dispatches, or both.

We further assume that switches and apps maintain their own principal identities and can-
not spoof their identifiers, and indeed we can enforce that policy using public-key infrastructure
(PKI) [15]. However, we assume that data plane hosts can spoof their network identifiers (e.g., MAC
address).

6.5 P1coSDN Design

Based on the provenance model described in Section 6.3, we now present the design of provenance-
informed causal observation for software-defined networking, or P1coSDN. P1coSDN provides
fine-grained data and execution partitioning to aid in the identification of SDN attack causes. P1-
coSDN’s analysis capabilities allow a practitioner to identify evidence of malicious behavior, to pin-
point common causes, and to identify the extent to which other malicious activities have occurred.

Figure 6.6 shows an overview of the PIcOSDN architecture. PIcoOSDN has two phases: a run-

time phase (Section 6.5.1) that collects relevant provenance information during execution, and an

112

investigation phase (Section 6.5.2) that analyzes the provenance.

P1coSDN is designed with the following goals in mind:

G1 Precise Dependencies. PIcOSDN should reduce the units of execution to remove false execution
dependencies that arise from long-running processes in the SDN control plane. P1coSDN

should also reduce the unit size of data to remove false data dependencies.

G2 Unified Network Model. P1coSDN should leverage control and data plane activities, and thereby

mitigate the incomplete dependency problem.

G3 Iterative Analysis. P1ICOSDN should perform backward and forward tracing to enable causal
analysis of SDN attacks. It should efficiently summarize network activities and network iden-

tifier evolution.

G4 Activity Completeness. PICOSDN should observe and record any apps, controller, or data plane
activity relevant to network activities to ensure that it serves as a control plane reference mon-

itor.

6.5.1 Runtime Phase

During the network’s execution, P1IcOSDN’s runtime phase records control plane activities in its

collector and transforms them into a lightweight graph by using its serializer.

Collector The provenance collector consists of three components: wrappers around event dis-
patches and packet processors, hooks on API calls, and an internal state tracker.

We have instrumented wrappers around the SDN controller’s event dispatcher and packet pro-
cessor. The provenance collector uses these wrappers to maintain knowledge about which event lis-
tener or packet processor is currently handling the dispatch or processing, respectively; this achieves
goal G1.

We have instrumented hooks on each of the SDN controller’s API calls; this achieves goal G4. For
a single-threaded controller, the reconstruction of the sequence of events, packets, and API calls
is straightforward. However, in modern multi-threaded controllers, we also need a concurrency
model to correctly link such calls to the right events. For event dispatching, we assume the fol-
lowing concurrency model: a particular event, &, is processed sequentially by each interested event
listener (i.e., ¢ is processed by listener [;, then by 1,); different events, ¢ and ¢,, may be processed
concurrently (i.e., & is processed by listener [; followed by /,, while concurrently ¢, is processed by
listener 5 followed by I,). That is the model used by ONOS,* among other SDN controllers. It allows

*ONOS maintains several event dispatch queues based on the event type, and each queue is implemented in a sepa-

113

P1coSDN’s provenance collector to use hooks to correctly determine whether a particular API call
should link the use or generation of control plane objects to the event listener (or packet processor)
in execution at that time. Hooking the API calls and linking them with the event and packet wrap-
pers not only permits a transparent interposition over all app and data plane interactions with the
control plane, but also avoids the limitations of prior work [129] that requires app instrumentation.

The provenance collector includes an internal state tracker that maintains knowledge of current
events and control plane objects to detect when such objects change. The internal state is necessary
to keep track of ephemeral objects’ uniqueness that would not necessarily be captured by raw logging
alone. (See Section 6.8 for a discussion about internal state storage costs and external provenance

storage costs.)

Serializer Once the provenance collector has determined the correct provenance based on con-

text, the provenance serializer writes out a lightweight serialized graph of nodes and edges.

6.5.2 Investigation Phase

At some later point in time, PICOSDN’s investigation phase uses the lightweight serialized graph as a
basis for analysis. The ingester de-serializes the graph, the cleaner removes unnecessary provenance,
and the topology augmenter incorporates the data plane model. The tracer answers practitioner

queries. Each component is designed to be modular.

6.5.2.1 Ingester, cleaner, and topology augmenter

The ingester reads in the serialized graph. As most nodes contain additional details, the graph
ingester de-serializes the node’s dictionary into a set of key-value pairs. The cleaner component
can perform preprocessing to remove unnecessary or irrelevant nodes and edges. For instance, the
cleaner removes singleton nodes that are not connected to anything; they may appear if they are
not being used. The cleaner removes nodes that are not relevant to an investigation; for instance,
removing Statistic nodes about traffic counts may be useful if the investigation does not involve
traffic counts. The topology augmenter adds edges into the graph (e.g., wasDerivedFrom relations
between Packetlns and PacketOuts) to define the data plane model; doing so achieves goal G2.
P1coSDN’s data plane model algorithm is shown in Algorithm 6.1. We assume that the data plane’s
topology can vary over time, and for each variation, we say that the state is an epoch consisting of a

topology that is valid between a start time and an end time (lines 1-2). For each PacketIn, we want

rate thread. Given that listeners process a particular event sequentially, ONOS’s event dispatcher sets a hard time limit
for each event listener to avoid indefinite halting.

114

Algorithm 6.1 Data Plane Model

Input: graph G, data plane topology states Ds,;, time window 7,,, headers fields to match on H
Output: graph with data plane model G

Initialize: (V,€) < G

1: foreach D € D,,; do

2: (N, Tstarts Tena) < D I> Data plane topology graph N, epoch start 74+, epoch end 7,4
3 (MwitcheS)Minks) «N

4 for each piy € Vijass=Packetin 40 D> Packet piy,
5t if Tstart < Pints < Teng then > Timestamp pj,.ts
6: for each Pout € Vclass:PacketOut do

7: if (pout-switch, p;,.switch) € Ny, i, then

8: if pour.H = pin.H then

9: if pout.ts < pin.tsand piy.ts — poys.ts < 7,, then
10: V < VU{(pin: pout) }

11 end if

12 end if

13: end if

14: end for

15: end if

16: end for

17: end for

18: G« (V,E)

19: return G

to determine if it should link to a causally related PacketOut (line 4). P1coSDN filters temporally
based on the current epoch (line 5), and it checks all PacketOuts during that epoch (line 6). We
consider a PacketOut to be causally related to a Packetln if all of the following conditions are met:
1) there is a link between the outgoing and incoming switches (line 7); 2) the specified packet headers
are the same for both packets (line 8); 3) the PacketOut “happened before” the PacketIn (line 9); and
4) the timestamp differences between the PacketOut and PacketIn are within a specific threshold
(line 9).

As P1coSDN is modular, Algorithm 6.1’s data plane model can be replaced as needed. For in-
stance, header space analysis [103] uses functional transformations to model how packets are trans-
formed across the data plane (e.g., packet modifications), and P4 [36] proposes a programmable
data plane. Practitioners can write their own data plane model components that take those trans-

formations into account.

6.5.2.2 Tracer

After the graph is prepared, the tracer component answers investigative queries. PICOSDN provides

facilities to answer queries related to root cause analysis, network activity summarization, and net-

115

Algorithm 6.2 Common Ancestry Trace

Input: graph G, evidence set N
Output: agent set Ag, activity set Ac, and entity set En
Initialize: (V,£) « G, Ag < @, Ac < @, En <« 3, A<V
1: foreache e & do > Remove non-causal edges
if e is a wasRevisionOf edge then
E<E~{e}
end if
end for
for each n ¢ N do > Evidence n (note: n € V,N c V)
A, < getAncestors((V,E), n) D> Set of ancestor nodes A,
A< AnA, > Common ancestor set A
end for
for each a € Ado > Common ancestor a
if ais an Agent node then
Ag<+ Agua
else if a is an Activity node then
Ac <+ Acua
else
En< Enua
end if
: end for
: return (Ag, Ac, En) >AgcV,AccV,EncV

L XN 2R w N

= — - = =
e xS oG k£ &R EQ

work state evolution; these facilities achieve goal G3. We now describe each kind of query and under
what scenarios a practitioner would want to use each kind.

As G is a DAG, we assume the use of standard graph functions in Algorithms 6.2-6.5 that
can determine the ancestor and descendant nodes (i.e., progeny) of a given node n, denoted by

getAncestors(G, n) and getDescendants(G, n), respectively.

Root cause analysis After an attack, a practitioner wishes to investigate the attack’s causes so as to
determine what changes should be made to prevent such attacks from reoccurring. We assume that
a practitioner has evidence of incorrect behavior, wants to find common causes, and wants to ex-
plore whether other evidence of incorrect behavior also exists. PIcOSDN provides two interrelated
algorithms to achieve these goals: common ancestry tracing (Algorithm 6.2) and backward-forward
tracing (Algorithm 6.3). Practitioners can iteratively use these tools to determine root causes effi-
ciently.

Algorithm 6.2 shows the common ancestry tracing. We assume that our practitioner can pinpoint
evidence of incorrect behavior, such as a set of packets or flow rules that appear suspicious. Our
practitioner’s goal is to see if such evidence has anything in common with past history. PicoSDN

starts by discarding non-causal edges in the graph (lines 1-3). Then, for each piece of evidence,

116

Algorithm 6.3 Iterative Backward-Forward Trace

Input: graph G, evidence n, root r
Output: affected difference function A : V - P(V)
Initialize: (V,€) « G; A(i) « @,VieV

1: foreachee & do > Remove non-causal edges
2 if e is a wasRevisionOf edge then

3 E<E~{e}

4 end if

5: end for

6: A, < getAncestors((V,€),n) > Evidence’s ancestor set A,
7: D, < getDescendants((V,€),r) > Root’s descendant set D,
8: Vintermediate <~ An N Dy

9: foreach v; € Viyiermediate do

10: A(i) < D, \ getDescendants((V,), v;)
11: end for
12: return (Vintermediate) A)

P1coSDN computes its set of ancestor nodes and takes the intersection of that ancestry with the
ancestries of all previous pieces of evidence (lines 4-6). Once all the pieces of evidence have been
examined, the set of common ancestors is partitioned into agent, activity, and entity nodes (lines 7-
13). Thus, P1coSDN provides data-centric, process-centric, and agent-centric answers.

Algorithm 6.3 shows the iterative backward-forward tracing. Our practitioner has a piece of ev-
idence and a suspected root cause (derived, perhaps, from Algorithm 6.2). Our practitioner’s goal
is to iteratively determine how intermediate causes (i.e., those causes that lie temporally in between
the evidence and the root cause) impact the evidence and other effects on the network’s state. P1-
coSDN starts by discarding non-causal edges in the graph (lines 1-3). For the piece of evidence,
P1coSDN determines all of its ancestors, or the set of all causally related entities, activities, and
agents responsible for the evidence (line 4). For the suspected root cause, PicoSDN determines all
of its descendants, or the set of all the entities and activities that the root cause affected (line 5).
P1coSDN takes the intersection of those two sets (line 6) to examine only the intermediate causes
that occurred as a result of the root cause. For each intermediate cause, PICOSDN derives the set
of affected entities and activities that the root cause affected that the intermediate cause did not af-
fect (lines 7-8). In essence, that lets the practitioner iteratively examine intermediate effects at each

stage.

Network activity summarization One general provenance challenge is that graphs can become
large and difficult to interpret even for simple activities, and that creates fatigue when one is ana-
lyzing such graphs for threats and attacks [240]. P1coSDN provides an efficient network-specific

summarization.

117

Algorithm 6.4 Network Activity Summarization

Input: graph G

Output: set of (activity a, flow rule f,,;, packet p;,, data plane packets P;,)

Initialize: (V,£) < G,S <« @

1: foreachee & do > Remove non-causal edges
2 if e is a wasRevisionOf edge then

3 E<&E~{e}

4 end if

5: end for

6: for each a € Vg g-Activity do
7 fout < null, pj, < null, P;;, < null
8 P;,, < getAncestors((V,€),a)

9 for each p € P;, do

10: if p ¢ Vass=Packetin then
11 Py < Py~ {p}
12 end if
13: end for

*
14: if (a —» (v € Vilass#Activity OT € € £) — P € Vass=Packetln) backward trace path exists then
15: Pin< P
16: end if

*

17: if (f € Veass=FlowRule = (v € Vilass#Activity OT € € €) — a) backward trace path exists then
18: fout <~ f
19: end if
20: SeSU{(a,fout:Pin’Pin)}
21: end for

22: return S

Algorithm 6.4 shows the summarization approach. Our practitioner’s goal is to answer questions
of the form “Which data plane activities (i.e., packets) caused flow rules to be or not be installed?”
P1coSDN starts by discarding non-causal edges in the graph (lines 1-3). It collects each event listener
or packet processor activity (line 4). For each activity, it derives all of the PacketIn packets that
causally affected the activity (lines 5-9). Then, PIcoOSDN determines whether a Packetln is a direct®
cause by computing a backward trace path; if it is a direct cause, the packet is marked (lines 10-11).
Similarly, P1IcoSDN determines whether a FlowRule is a direct effect of the activity; if it is, the flow
rule is marked (lines 12-13).

Algorithm 6.4 allows practitioners to efficiently investigate instances in which flow rules were
not created, too. For example, if an event listener used a packet but did not generate a flow rule,
the resulting value for f,,, would be null. Algorithm 6.4 also derives a set of all data plane PacketIn
packets causally related to each activity; as we show later in Section 6.7, this information is useful

for diagnosing cross-plane attacks.

*In other words, without any intermediate Activity nodes in between. However, intermediate data derivations be-
tween Entity objects are permissible.

118

Algorithm 6.5 Network Identifier Evolution

Input: graph G, network identifier i

Output: revision trace path t,, affected nodes function F
Initialize: (V, &) « G; Espusn < D5 F(i) <« @, VieV
1: foreachee & do > Remove and stash non-causal edges
2 if e is a wasRevisionOf edge then
3 E<E~{e}
4 Estash < Estash Y {e}
5: end if

6: end for

7: n < getMostRecentNode(V, i)

8: t, < (n)

9: F(n) « getDescendants((V, &), n)
10: while n < getNextNode (&4,) and # is not null do

11 t..append(wasRevisionOf, n)

12: F(n) < getDescendants((V, &), n)

13: end while

14: return (¢, F)

Network state evolution Given the attribution challenges of data plane host activities, practition-
ers will want to investigate whether any of the pertinent identifiers have been spoofed. Such spoofing
can have systemic consequences for subsequent control plane decisions [22, 44, 55, 93]. PICOSDN
efficiently tracks network identifier evolution (i.e., the wasRevisionOf relation) and provides an al-
gorithm to query it (Algorithm 6.5).

Algorithm 6.5 shows the network identifier evolution approach. Our practitioner’s goal is to see
whether any identifiers have evolved over time as a result of malicious spoofing, as well as the extent
of damage that such spoofing has caused. P1coSDN starts by stashing non-causal edges in the graph,
thus removing them from causality-related processing, but keeping them for reference (lines 1-4).
For a given network identifier, PIcoOSDN determines the node most recently linked to that identifier
(line 5) and adds it to a revision trace path (line 6). P1coSDN derives that node’s descendants to
determine the extent to which that network identifier causally affected other parts of the network
state (line 7). That process is repeated back to the identifier’s first version (lines 8-10).

Algorithm 6.5 produces a concise representation of an identifier’s state changes over time. That
allows the practitioner to easily determine when an identifier may have been spoofed, and that
respective node in time can be used in Algorithm 6.3 as a root cause in further iterative root cause
analysis. Furthermore, the affected nodes that are returned by Algorithm 6.5 can be used as evidence

in the common ancestry trace of Algorithm 6.2.

119

Table 6.3: List of P1IcoSDN Hooks (i.e., PIcoSDN API Calls).

P1coSDN API call Description
recordDispatch (activity) Mark the start of an event dispatch or packet processing loop
recordListen (activity) Mark the demarcation (i.e., start of each loop) of an event being

listened to or a packet being processed

recordApiCall(type, entity) Record a control plane API call of a type (i.e., create, read, update,
delete) on an entity (or entities)

recordDerivation (entity, entity) Record an object derived from another object

6.6 Implementation

We implemented P1coSDN in Java on ONOS v1.14.0 [26]. We modified ONOS in several key lo-
cations. We created a set of PIcoOSDN API calls, which are listed in Table 6.3. We created Java
classes to represent Activity and Entity objects, and we made them into superclasses for relevant
ONOS classes (e.g., ONOS’s Packet superclass is Entity). We wrapped the ONOS event dispatcher
and packet processor by using the recordDispatch() and recordListen() calls, which represented the
execution partitioning of PIcoOSDN. We hooked the ONOS core services® public API calls by us-
ing the recordApiCall() calls.” For a given core service API call, if the return value was iterable, we
marked each object within the iterable object with its own separate provenance record. For certain
data whose processing spanned multiple threads, we used recordDerivation() calls to maintain the
causal relations across threads. We implemented the ingester, modifier, and tracer on top of the
JGraphT library [190].

Because of our design decisions, described in Section 6.5.1, we did not need to perform an anal-
ysis on or make any modifications to the ONOS apps. Practitioners do not need to instrument
each new app that they install in their network. Furthermore, P1IcoSDN’s API and classes allow Pi1-
coSDN to be easily updated as new core services and objects are implemented in ONOS. Although
we implemented P1coSDN on ONOS, the same conceptual provenance model and design can be
implemented with minimal modifications on any event-based SDN controller architecture, and in-

deed the most popular controllers (e.g., ODL [30] and Floodlight [28]) all use such architectures.

°In ONOS, these core services are represented by classes that end in *Manager or *Provider. For instance, ONOS
has a HostManager class and a HostProvider class that include public API calls related to hosts.

7 As ONOS does not provide a reference monitor architecture that would allow us to wrap one central interposition
point across all API calls, we had to add recordApiCall() hooks across 141 API calls to ensure completeness.

120

6.7 Evaluation

We now evaluate P1coSDN’s performance and analysis capabilities. We have examined its perfor-
mance overhead (Section 6.7.1). We used recent SDN attacks to show that PICOSDN can capture a
broad diversity of SDN attacks. We consider the following cases for our security analysis evaluation:
the earlier motivating example [44] (§6.7.2), a cross-plane host migration attack [22] (Section 6.7.3),
and a cross-app attack (Section 6.7.4). We implemented all topologies using Mininet [41].* We ran
experiments using a workstation with a four-core 3.30-GHz Intel Core i5-4590 processor and 16 GB

of memory.

6.71 Performance Evaluation

Given the latency-critical nature of control plane decision-making, we benchmarked the latency
that P1coSDN imposed on common ONOS API calls (Figure 6.7a). To further understand these
costs, we microbenchmarked P1coSDN’s hooks (Figure 6.7b). We also benchmarked the overall
latency imposed by a reactive control plane configuration (Figure 6.7c) as a function of the data

plane’s network diameter.

Benchmarks on ONOS Figure 6.7a shows the average latencies of common ONOS API calls with
and without P1coSDN enabled. These calls were called most often in our case studies (Sections 6.7.2,
6.7.3, and 6.7.4) and relate to flow rules, hosts, and packets. Although certain calls generated signif-
icantly greater latency, that was expected for cases in which iterable objects require generation of

individual provenance records.

Microbenchmarks To further analyze the benchmark results, we microbenchmarked P1coSDN’s
hooks (i.e., PIcOSDN’s API calls). Figure 6.7b shows the average latencies of the PIcOSDN API calls
listed in Table 6.3, with the recordApiCall() calls broken down by call type. As shown in Figure 6.7b,
event listening and dispatching are fast operations. We expected API calls to be slower, given the

tracking operations within P1IcoSDN’s internal state.

Overall latency We also measured the overall latency that PIcoSDN imposes on control plane
operations. We wanted to see what the additional incurred latency would be from the perspective of
host-to-host communication, or the time-to-first-byte metric. This metric measures the total round-

trip time (RTT) measured between data plane hosts (e.g., via the ping utility) for the first packet

¥We chose Mininet because it is common in prior work (e.g., [51, 129]) and because it causes PIcOSDN’s runtime
phase to record the same kind and amount of provenance information that would be captured in a real network.

121

100<
1074 ' N _

B Without PicoSDN
10—2< - W|th P|COSDN

Latency [ms]

O 080 e 0 (0 1 (O A0 N 000\0\\\\\\
?'.699\2\ Ve ‘e&\’\c’;&*ﬁ i«\“\s N QX/P’S?, é\\‘cqoﬁ \0%3 CX\\ e®
&\0"‘?\2@\0\“&?\0 ot \Age‘\;s;\ 0‘9‘0{\&‘“ a\\\c(: a\\\O \a\\\)()e(\(60\6 (O™

¢ \’(‘%(‘(e(('\;e&co“ WO \(:'é\,oca QP‘Q\(%P‘Q\Q(C)P;gPQ\C <O oot <@
A &° eco((e o et
\e\"
ONOS API call (F = flow, H = host, P = packet) PicoSDN API call
(a) Average latency per ONOS API call. (b) Average latency per PIcoSDN hook.
60 - . .
BN Without PicoSDN

& 501 mmm With PicoSDN

S

'; 40 A

e

@ 30

@©

-

|: 20

4
10

1 2 5 10
Number of Hops Traversed

(c) Overall average latency per diameter.

Figure 6.7: P1coSDN latency performance results. (Error bars represent 95% confidence intervals.)

of a flow. The RTT captures the latency of both data plane processing and control plane decision-
making.

In reactive control planes, the first packet of a flow suffers high latency because it does not match
existing flow rules, but once matching flow rules have been installed, the remaining packets of the
flow use the data plane’s fast path. Although SDN configurations can be proactive by installing flow
rules before any packets match them, we measured a reactive configuration because it represents
the worst-case latency that is imposed if the controller must make a decision at the time it sees the
first packet. (See Section 6.8 for a discussion of the differences.) In addition, the network’s diameter
(i.e., the number of hops between data plane hosts) affects latency in reactive configurations if the
first packet must be sent to the controller at each hop. Thus, we measured a reactive configuration
and varied the number of hops to determine the effect on latency.

Figure 6.7c shows the average overall latencies imposed with and without P1coSDN, varied by the

number of hops. We performed each experiment over 30 trials. In contrast to prior work [51, 129],

122

we parameterized the number of hops traversed to reflect different network topology diameters. We
found that P1coSDN increased the overall latency on average from 7.44 ms for 1-hop (i.e., same-
switch) topologies to 21.3 ms for 10-hop topologies. That increase was expected, given that additional
provenance must be generated for longer routes. For long-running flow rules, the one-time latency
cost in the flow’s first packet can be amortized. Thus, we find P1coSDN acceptable for practical

implementation.

6.72 Security Analysis 1: Motivating Example

We now revisit the motivating cross-plane attack example described in Section 6.2.1. Our practi-
tioner now examines the provenance data collected during the attack by P1coSDN’s runtime phase,
which is shown in abbreviated form in Figure 6.2b.

As our practitioner knows that hosts h; and h, communicated, he or she uses the network activity
summarization to derive the set of flow rules related to these hosts. Among the returned set, the

practitioner sees the following:

1. the flow rule from the fwd app that allowed communication (fwd, f3, p4, {ps, p2});

2. the acl app’s failure to install a flow denial rule, resulting from an invalid IP address
(acl, null, null, {p;}); and

3. the acl app’s failure to install a flow denial rule, resulting from the host event type’s not being
handled (acl, null, null, {p,}).

The practitioner uses the common ancestry trace of fwd and acl’s actions to determine the com-
mon ancestors of the discovered flow rules. Among this set, the common ancestor is the switch
port agent s; : portl. Now equipped with a set of possible root causes, the practitioner issues a
backward-forward trace from f; to the root of the switch port agent to see the differences in descen-
dants (i.e., impacts) that each intermediate cause affects. That allows the practitioner to discover
that the relevant root cause can be traced back to the spoofed packet p;. Starting there, the practi-
tioner’s forward traces show the effects that p; has on the network’s subsequent activities, such as
the corrupted host object h(,1y. PIcOSDN identifies the root cause and effects of the spoofed packet,
thus letting the practitioner know that host 4, should be disconnected.

Figure 6.2b shows the relevant features that PicoSDN produced. The data plane model clearly
links the data plane packets that result from fwd’s installation across switches, which prior tools do
not. The default flow rules would otherwise create a dependency explosion, but PicoSDN mitigates

that problem by partitioning agency with switch ports.

123

wasAttributedTo
Agency

Packet In
mace=00:00:00:00:00:02
1P,,=192.168.0.2
receivedFrom=s:2
EtherType=ARi>

wasAttributedTo | wasAttributedTo used

Packet In
macg=00:00:00:00:00:02
1P,,=192.168.0.2
receivedFrom=s7:3
EtherType=AR?—"

Host

Provider
Packet Processor

Packet In
macs=00:00:00:00:00:02
1P, =192.168.0.2
receivedFrom=sq:2
EtherType=ARi’

used wasGeneratedBy

Host ho
Host mac=00:00:00:00:00:02
used Provider ip=192.168.0.2

Packet Processor

hloc=sq:port,
t=1

Host

Provider

[]
: .
wasGeneratedBy wasRevisionOf
Packet Processor

» ldentifer Evolution

Host ho

mac=00:00:00:00:00:02

ip=192.168.0.2

hloc=sq:port3
t=5

¢ - =
» wasRevisionOf

wasGeneratedBy XIdentifer Evolution
*

used

Host ho
mac=00:00:00:00:00:02 Host
ip=192.168.0.2 Mobility
hIocTsi:gortz Event Listener

Figure 6.8: Relevant features of the host migration attack’s graph showing the evolution of hosts
that claimed to be h,.

124

6.7.3 Security Analysis 2: Host Migration

We consider another cross-plane-based host migration attack. This attack uses a malicious data
plane host to trick the control plane into believing that a victim host has changed its location. We
assume a three host (h;, h,, and h;) topology with one switch (s;). Host h; attempts to masquerade
as host h, so as to trick other hosts (e.g., h;) into sending traffic meant for h, to instead go to hs;.
(See [22] for the attacK’s details.)

Our practitioner queries the network identifier evolution for h,. Figure 6.8 shows a partial prove-
nance graph of the relevant features. The evolution shows that h, appears to have switched network
ports from s,’s port 2 to port 3; in reality, h; spoofed h,’s identifier. The query returns the descendants
(i.e., the impacts) that each version of the identifier has had on the network. For instance, during
the time that the spoofed location of h, was being used between times ¢ = [5,10], old flow rules that
directed traffic to h, were removed by the host mobility app. The practitioner can now efhiciently
see the attack’s ramifications at each stage because of the combination of the network identifier evo-
lution and the forward-tracing capabilities, which prior work does not offer. PicoSDN identifies a
cause in the spoofed packet used by the host provider, and also finds the other effects of the spoofed

packet. The practitioner thus disconnects the malicious host from port 3.

6.7.4 Security Analysis 3: Cross-App Attack

We also use P1ICOSDN to analyze a cross-app-based attack. This attack uses a malicious app to
modify packets in the packet processing pipeline, which subsequent apps use to make control plane
decisions. (We refer the reader to [51] for a detailed description of the attack’s mechanism.)

Figure 6.9 shows the important features of the graph. We can see that the packet changes as it
is handed off from the triggering trigger (i.e., malicious) app to the forwarding fwd (i.e., benign)
app in the processing pipeline. Since P1icoSDN uses an event-based model, we can reduce the false
dependencies that PRovSDN would show. For instance, for each instance of trigger’s event handler,
the precise API calls that were used are embedded in the used and wasGeneratedBy relations for
API read and write calls, respectively, on the Packetlns.

To understand how the attack occurred, a practitioner issues a network activity summarization
query to find malicious flow rules and uses them in the common ancestry trace to look at the trigger
agent. The practitioner then issues an iterative backward-forward trace query on the trigger app to
determine the extent to which trigger has caused other undesired network activities. P1coSDN
identifies the root cause and other effects of trigger, thus informing the practitioner that the app

should be removed.

125

m Default Flow Rule m

was 7 was s as was
Attr_lrbuted 'Derived \ Denved Attributed
(o) F \ To
Agency rom Agency

By
(fwd)
was

Associated Jused
With

fwd

Packet Processor

was
enerated

By

D

Figure 6.9: Relevant features of the graph from the cross-app attack. The graph shows that trigger

modifies packets before to fwd receives them.

6.8 Discussion

Reactive and proactive configurations P1coSDN is designed to work for both reactive and proac-
tive SDN control plane configurations. We used reactive configurations in our case studies because
recent SDN attacks have leveraged reactive configurations [22, 43, 44, 55], but we argue that P1-
coSDN is well-suited for proactive configurations, too. Proactive configurations install flow rules
ahead of time. However, the time at which flow rules are inserted may be far removed from the time
when data plane packets exercise these rules. As a result of the time gap, manual tracing by a prac-

titioner would be a difficult task. That provides the motivation to create quality network forensics

126

With With
was trigger trigger was
Revision Packet%?ocessor Packet%rgocessor Revision
Oof Oof
Wwas
Generated Generated

By

tools such as PIcoSDN to maintain history.

Storage costs Although a reduction of P1coSDN’s latency overhead will be critical for practi-
cal implementation, the storage overhead must also be a consideration. Internally, PIcOSDN’s
design allows it to maintain only the minimum state necessary to keep track of object changes.
In practice, that means that the state is as large as the number of objects representing the net-
work’s flow rules, topology, and system principals (e.g., switches and hosts) at a given time. Ex-
ternally, provenance graphs can grow large over time if they must maintain historical metadata.
While provenance storage reduction is an important goal, it is orthogonal to the aims of Pi1-
coSDN and can be implemented using existing provenance storage reduction systems and tech-

niques [241, 242, 243, 244, 245, 246, 247].

Attack identification P1coSDN does not claim to automatically identify and detect SDN attacks.
SDN attack detection is an ongoing research area examining expected semantic behavior [22, 55, 93]
and pattern recognition of anomalous features or behavior [44, 114], both of which are orthogonal
to P1coSDN’s aims. P1coSDN provides practitioners with the necessary tools for insight into con-
trol plane execution and analysis of causal dependencies. Both are necessary for successful attack

identification.

6.9 Related Work

SDN control plane insight FORENGUARD [129] is the prior effort that is most closely related to
P1coSDN. Like FORENGUARD, P1cCOSDN provides root cause analysis capabilities for SDN attacks.
P1coSDN extends those capabilities with a data plane model and mitigates the data dependency
explosions caused by default flow rules. PRovSDN [51] focuses on information flow control en-
forcement rather than root cause analysis, so its analysis capabilities are limited; it also uses an
API-centric model rather than an event-centric model for execution partitioning, resulting in false
dependencies that would not be generated in P1coSDN'’s provenance model. GitFlow [141] proposes
a version control system for SDN; that influenced our decision to include revision relations. AIM-
SDN [248] outlines the challenges in SDN, influencing our decisions on how to represent agency.
Ujcich et al. [122] argue that provenance is necessary to ensure a secure SDN architecture.
Declarative network provenance has shown promise in automated bug removal [249], differen-
tial provenance [202, 250], meta provenance [132], and negative provenance [130, 131]. The various
solutions use a declarative paradigm [251], which requires nontrivial translation for apps written in
the imperative paradigm. A benefit of declarative programs is that they inherently capture the data

plane model, which P1coSDN provides but PROvSDN and FORENGUARD do not.

127

The general research space of SDN security, including the set of potential attack vectors, is large

and well-studied; we refer the reader to [80] for a survey of the area.

SDN debugging and verification We outline existing SDN debugging and verification tools, as
they are complementary to provenance-based causal analysis tools.

Control-plane debugging tools include FALCON [128], Net2Text [127], BigBug [126],
ConGuard [109], STS [110], and OFRewind [123]. They record the network’s state to identify un-
usual behavior and replay suspect activities in a simulated environment. However, they assume that
activity traces are dependent upon all previous states and/or inputs, whereas P1IcoSDN avoids that
assumption through its dependency partitioning.

Data plane verification tools include Cocoon [121], SDNRacer [107], VeriCon [106], Veri-
Flow [96], NetPlumber [97], NICE [105], NDB [125], header space analysis [103], and Anteater [104].
They prevent instantiation of incorrect configurations in the network according to a predefined
policy, but such tools’ prevention capabilities are dependent upon correct policy specifications. P1-
coSDN records known and unknown attacks so that practitioners can investigate how such attacks

occurred.

Provenance and causality analysis The dependency explosion problem has been studied for host
applications [183], binary analysis [182, 252], and host operating systems [178, 240, 253, 254, 255, 256,
257]. Provenance for attack causality analysis has also been well-studied [3, 176, 179, 187, 239, 258,
259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270]. PICOSDN’s primary contributions to this
area include 1) a provenance model for SDN control and data planes that focuses on SDN-specific
dependency explosion factors (e.g., default flow rule dependencies), and 2) relevant attack analysis

techniques of particular interest to network practitioners (e.g., network summarization).

6.10 Conclusion

We presented P1coSDN, a provenance-informed causal observation tool for SDN attacks. P1coSDN
leverages a fine-grained provenance model to allow practitioners to reconstruct past control and
data plane activities, to analyze them for root causes when control plane attacks occur, to understand
the scope of attacks’ effects on other network activities, and to succinctly summarize the network’s
activities and evolution. We evaluated P1coSDN using recent control plane attacks, and we found

that P1coSDN is practical for runtime collection and offline analysis.

128

CHAPTER

CONCLUSIONS

Programmable networks that use the SDN architecture have enabled unmatched flexibility in the
enforcement of network security and policy. However, the security posture of the SDN architec-
ture is significantly different from that of traditional networking architectures because of that pro-
grammable design. The “appification” of network functionalities and the coordination of those func-
tionalities within a network operating system creates new security challenges.

In the work described in this dissertation, we demonstrated that the security posture of SDN
can be enhanced by using control and data dependency techniques that track information flow and
enable understanding of application composability, control and data plane decoupling, and control
plane insight. We applied data provenance and static analysis techniques to the SDN architecture,
which allowed us to better understand and analyze the architecture’s security posture. Our focus
was on development of attacks that revealed cross-app and cross-plane vulnerabilities, as well as on
design of defenses to prevent or mitigate such attacks. We provided contributions for the runtime,
pre-runtime, and post-runtime stages of attack prevention and mitigation.

In this chapter, we briefly review the significant contributions of this dissertation, provide overall
takeaways based on those contributions, and outline future research directions that would extend

the work of this dissertation.

7.1 Review of Contributions

We applied a conceptual framework of accountability to the SDN architecture, which allowed us
to understand the agents, system entities, processes, and standards involved in an accountable net-
work. That accountability analysis, along with a multi-app case study, provided us with our basis for
understanding the security challenges of the SDN architecture that we investigated throughout the
remainder of the dissertation.

Next, we identified the cross-app poisoning (CAP) problem, in which confused deputy attacks by
malicious apps can influence benign apps to take actions on their behalf. We showed how the control
plane lacked information flow control (IFC) mechanisms. We identified where CAP vulnerabilities

occurred in spite of least-privilege RBAC enforcement. We defended against CAP vulnerabilities

129

through data provenance tracking for IFC, and we designed PRovSDN to enforce IFC and to serve
as a reference monitor.

In addition to cross-app-based vulnerabilities, we also investigated a class of cross-plane vulner-
abilities that leverage missing event handling. We showed the various ways in which data plane
hosts can influence control plane decisions with respect to how events are used and executed. We
designed an approach to analyzing apps” event use that identifies likely missing event handling. We
created the event flow graph data structure to aid in the identification of event-based vulnerabilities
and to succinctly represent control plane activities. We designed EVENTSCOPE to generate event flow
graphs and to find vulnerabilities, and we discovered 14 new vulnerabilities in the ONOS controller.

Finally, we revisited the use of data provenance in the control plane for the purpose of causal
analysis. We mitigated the dependency explosion problem through fine-grained data partitioning
and execution partitioning techniques for control plane objects and event listeners, respectively.
We mitigated the incomplete dependency problem through the inclusion of a data plane model. We
designed P1coSDN to aid in the analysis of SDN attacks.

7.2 Overall Takeaways

We now revisit the research questions posed in Chapter 1. We consider how our dissertation’s contri-

butions provide solutions to those questions and the overall takeaways of our impacts and insights.

Network application composability We found that the SDN architecture in use today, as im-
plemented in network operating systems such as ONOS, does not provide a clear mechanism for
inter-process communication (IPC) among apps.’ As a result, apps must communicate through
northbound control plane API interfaces or through event notifications. In contrast to mobile or
host operating systems with well-defined IPC interfaces [7], network operating systems often rely
on a shared state design in which apps communicate through the writing and reading of shared
data structures. We discovered that this can induce strong data dependencies across apps from an
information flow perspective. From a security perspective, it allows untrusted lower-integrity apps
to poison the state of trusted higher-integrity apps. Our takeaway is that the use and generation of
information must be tracked across apps to prevent “confused deputy” attacks.

The tight coupling among apps through a shared state design is not surprising, given that the use
of network abstractions is prevalent in SDN network operating systems. For instance, a controller
core service can use information derived from Packet objects to generate Host control plane objects;

apps can use higher abstractions (i.e., Host) without duplicating functionality (i.e., the Packet—>Host

'Early SDN network operating systems, such as Rosemary [14], provide IPC between an app and the controller’s
core services only. That increases apps’ isolation but does not provide cross-app communication interfaces.

130

transformation). A shared state design could be problematic for security enforcement in mobile
or host operating system contexts in which apps can operate relatively independently; to address
that concern, authorization and permission systems such as role-based access control (RBAC) can
enforce app isolation when apps work independently. For network operating systems, we found
that a shared state design works well for SDN because the network operating system is ultimately
responsible for the behavior of one shared resource: the network’s data plane. However, this shared
state design suggests that RBAC is not the right access control model when data dependencies are
high. Nevertheless, we found that authorization and permission systems for control plane objects in
prior work [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21] all used some variation of RBAC. Our takeaway is
that RBAC is problematic for security enforcement in the SDN architectures highly dependent shared
state design because RBAC does not track how data are used after permission has been granted.

The design of the SDN architecture assumes that apps work together in a collaborative and com-
posable way, but we found that such apps often have competing functionalities and work against
each other in practice. Although prior work [17, 114] has studied malicious apps in isolation, we
found that the combination of apps creates complex and nontrivial vulnerabilities. Such vulnerabil-
ities are caused by missing event handling among apps, which resulted in the absence of expected
control flow execution and the presence of unexpected control flow execution. Our takeaway is that
the security analysis of apps must occur at a system-wide level in order to reveal the security ramifica-
tions of composable apps. This takeaway suggests that app developers should “design defensively” by

considering all possible uses of the events to which apps subscribe.

Control and data plane decoupling Although the SDN architecture decouples the control and
data planes [1], we found that hosts on the data plane can have an outsized effect on the control
plane’s behavior. This impact results from reactive control planes” use of the data plane to make
informed decisions about the network’s current state. That challenge is generally hard to defend
against because the underlying host-generated network protocol messages, such as ARP, do not of-
fer authentication by default. We found that malicious hosts can take advantage of data plane infor-
mation that is used as input into control plane decision-making, and that, in turn, changes the data
plane configuration (i.e., it creates a data plane—control plane—data plane pattern of information
and control flow). Our takeaway is that the control and data planes are, in practice, tightly integrated,
which can cause trust vulnerabilities in reactive control planes.

We also discovered that the control plane can have indirect causal effects on itself through the data
plane (i.e., a control plane—data plane—control plane pattern of information and control flow). For
instance, reactive forwarding will emit packets out of a forwarding device, and those packets will
trigger subsequent control plane actions when received by another forwarding device. That indirect

causal influence via the data plane impacted our decision to include a data plane model in our

131

control plane provenance. Our takeaway is that a control plane activity can use the data plane to
cause another control plane activity to occur, which must be tracked for information and control flow

purposes.

Control plane insight We found that static analysis techniques offer insight into many possible
control and data dependencies, and thereby aid in the systematic identification of vulnerabilities,
but cannot provide a history of how specific vulnerabilities were actually exploited in attacks. We
also found that provenance techniques offer insight into the specific control and data dependencies
used during an execution, and thereby reveal root causes of attacks, but may not be able to diagnose
corner cases of rarely-used control and data flow paths in execution. However, the data provenance
techniques used in PROVSDN and P1coSDN and the static analysis techniques used in EVENTSCOPE
complement each other in improving our understanding of the control plane during the runtime,
pre-runtime, and post-runtime stages. Our takeaway is that the combination of static analysis and
data provenance approaches allows us to better understand and analyze the control plane, and that
improved understanding of the control plane enables us to improve the security posture of the SDN
architecture.

We found that although the reference monitor concept has already been proposed for SDN [23],
it had not previously been implemented in any popular network operating systems, such as
ONOS [25]. A reference monitor can centrally interpose across relevant requests and can ensure
completeness of mediation for access control or insight. In ONOS, API requests are not centrally
managed, so instrumentation of all API calls is required to ensure completeness. In PRovSDN, we
demonstrated the need to provide a reference monitor over API requests. In P1coSDN, we demon-
strated the additional need to provide a reference monitor over event dispatching and event listen-
ing. Our takeaway is that a reference monitor for the control plane must reside at the API and event
boundaries in order to ensure oversight completeness.

We found that we need semantically aware and precise abstractions for a network in order to
reason effectively about what the network has done. The general data structures and abstractions
found in static analysis, such as call graphs and control flow graphs, are necessary but not sufficient
for reasoning about event-based vulnerabilities. Similarly, we found that our data provenance model
for the SDN control and data planes required that we specify data and processes at a fine granularity
to avoid dependency explosion issues (i.e., false positives) and that we had to include the data plane
in our causal model to avoid incomplete dependency issues (i.e., false negatives). We also found that
the modeling of principal agents in SDN can be challenging. Such agency attribution is necessary
in a shared state design, but we found that assigning agency to hosts was a poor modeling option
because such hosts’ network identifiers are easily spoofed; instead, we relied upon switch ports as

principal agents. Our takeaway is that our abilities to reason about the control plane are significantly

132

influenced by the modeling, abstraction, and agency choices used.

7.3 Future Research

The work in this dissertation can be extended in several directions.

Malware-based attacks on SDN Recent malware campaigns, such as NotPetya [271], leveraged
vulnerable hosts on open networks in order to spread laterally to infect other hosts. SDN as a net-
work security service has been shown to provide promising mechanisms for preventing such lateral
movement through the enforcement of fine-grained, least-privilege data plane access control [4].
However, in spite of such enforcement, we anticipate that the programmable control plane will be-
come a target for malware developers who leverage cross-plane vulnerabilities.

Although we have not seen publicly disclosed examples of exploitation of SDN controller vul-
nerabilities in practice, the building blocks for such exploitation by malware already exist. First,
prior work has demonstrated that malicious hosts can tell whether or not they are residing on an
SDN-controlled network [66, 67, 72], and that if the network is SDN-controlled, the host can de-
termine which controller [64, 65] and apps [47] are being used. Second, this dissertation showed
how the policies of data plane access control apps, such as the acl app in the ONOS controller, can
be bypassed with several packets. We hypothesize that SDN-aware malware would be able to lever-
age such fingerprinting and packet-generating capabilities to defeat lateral movement prevention
mechanisms from the narrow (but powerful) data plane attack vector.

We envision that future research in this area will require a better understanding of how hosts
interact with and influence the control plane, particularly for detection and prevention purposes.
We imagine that cross-layer provenance capabilities, such as systems that integrate network-level,
host-level, and application-level provenance, will be able to provide practitioners with better insight

and analysis than individual layers alone can provide.

SDN attack patterns We foresee that the abstractions and models that we designed for the event
flow graph and control plane provenance will have broader applicability in the understanding and
analysis of network attacks.

Although we used the event flow graph for the detection of missing event handling, the same
structure may be amenable to use in the identification of other attack classes. For instance, the
presence of several paths in an event flow graph may be indicative of race conditions for causal
chains of event dispatches and event listens by apps. As a future research direction, we anticipate
that other attack classes may be mapped into the event flow graph structure and thus would allow

us to detect and fix those vulnerabilities prior to runtime.

133

Control plane provenance graphs provide a dataset from which one can find common patterns
of repetitive and commonly used control flows in the control plane. Deviations from such patterns
may be an indication of an anomalous behavior that practitioners can use to understand whether
such behavior is an attack that is causing undesirable control plane behavior. Limitations exist in
the use of pattern recognition techniques for the identification of outliers [272], and we anticipate

that the semantics of SDN and the control plane may be useful in mitigating such limitations.

Control plane policy generation Verification-based approaches for SDN security can check
against well-known invariants of network properties or against desired network policy, but the gen-
eration of such properties or policies is challenging and may not reflect the intended policy. We
imagine that pattern recognition over control plane provenance graphs may be able to inform the
control plane policy generation process. Such pattern recognition could inform practitioners in the
policy-writing process and result in policies that reflect how the network is actually used in practice.

This research direction would complement existing work on network verification.

Programmable data planes The extensibility of the SDN architecture has recently created addi-
tional abstractions. OpenFlow [27] operates as a configuration protocol for the data plane but is
limited to a static set of match fields based on well-known network protocols. Programmable data
planes allow for arbitrary fields to be matched and forwarding actions to be taken. Languages for
programmable data planes, such as P4 [36], provide capabilities beyond the control plane to extend
the network’s programmability. Just as we implemented control plane insight and vulnerability de-
tection for this dissertation, we imagine that similar data plane insight and vulnerability detection
mechanisms will be required for attack prevention and analysis. Initial work in the networking com-

munity has started to explore the data plane execution [273] and buggy data plane programs [274].

134

APPENDIX A

PUBLICATIONS RELATED TO THE DISSERTATION

The following peer-reviewed publications are related to this dissertation. Authors are affiliated with

the University of Illinois at Urbana-Champaign unless otherwise noted.

o Chapter 3 is based on “Towards an Accountable Software-Defined Networking Architecture,’
which was accepted to the 2017 IEEE Conference on Network Softwarization (NetSoft '17)
and was co-authored by Andrew Miller, Adam Bates, and William H. Sanders. The Version
of Record can be found at https://doi.org/10.1109/NETSOFT.2017.8004206.

o Chapter 4 is based on “Cross-App Poisoning in Software-Defined Networking,” which was ac-
cepted to the 2018 ACM Conference on Computer and Communications Security (CCS ’18)
and was co-authored by Samuel Jero (MIT Lincoln Laboratory), Anne Edmundson (Prince-
ton University), Qi Wang, Richard Skowyra (MIT Lincoln Laboratory), James Landry (MIT
Lincoln Laboratory), Adam Bates, William H. Sanders, Cristina Nita-Rotaru (Northeastern
University), and Hamed Okhravi (MIT Lincoln Laboratory). The Version of Record can be
found at https://doi.org/10.1145/3243734.3243759.

o Chapter 5 is based on “Automated Discovery of Cross-Plane Event-Based Vulnerabilities in
Software-defined Networking,” which was accepted to the 2020 Internet Society Network and
Distributed System Security Symposium (NDSS ’20) and was co-authored by Samuel Jero
(MIT Lincoln Laboratory), Richard Skowyra (MIT Lincoln Laboratory), Steven R. Gomez
(MIT Lincoln Laboratory), Adam Bates, William H. Sanders, and Hamed Okhravi (MIT Lin-
coln Laboratory). The Version of Record can be found at https://doi.org/10.14722/
ndss.2020.24080.

« Chapter 6 is based on “Causal Analysis for Software-Defined Networking Attacks,” which is
in submission at the time of this writing and was co-authored by Samuel Jero (MIT Lincoln
Laboratory), Richard Skowyra (MIT Lincoln Laboratory), Adam Bates, William H. Sanders,
and Hamed Okhravi (MIT Lincoln Laboratory).

In reference to IEEE copyrighted material that is used with permission in this dissertation, the

IEEE does not endorse any of the University of Illinois at Urbana-Champaign’s products or ser-

135

https://doi.org/10.1109/NETSOFT.2017.8004206
https://doi.org/10.1145/3243734.3243759
https://doi.org/10.14722/ndss.2020.24080
https://doi.org/10.14722/ndss.2020.24080

vices. Internal or personal use of this material is permitted. If interested in reprinting/republish-
ing IEEE-copyrighted material for advertising or promotional purposes or for creating new col-
lective works for resale or redistribution, please go to http://www.ieee.org/publications_

standards/publications/rights/rights_link.html to learn how to obtain a License from
RightsLink.

136

http://www.ieee.org/publications_standards/publications/rights/rights_link.html
http://www.ieee.org/publications_standards/publications/rights/rights_link.html

APPENDIX B

ProvSDN

B.1 Security-Mode ONOS Details

Security-Mode ONOS specifies permissions at the 1) bundle, 2) application, 3) API, and 4) net-
work (i.e., header space) levels [19]. We considered the API level permissions in our RBAC anal-
ysis in Section 4.5.1, since it was an appropriate level of granularity for discussing the shared SDN
control plane data structures’ permissions. Although the Security-Mode ONOS paper describes
network-level permissions that would allow for finer granularities beyond API level permissions
(e.g., FLOWRULE_READ with packets matching an IP source address within 10.0.0.0/24), we were
not able to find the relevant code in the ONOS repository [166] that implemented such permissions

at the time of writing.

B.i1 Configuration

Security-Mode ONOS requires the installation of the Apache Felix Framework security extensions
and a reconfiguration of Apache Karaf prior to running the controller [275]. It is expected that app
developers must create a manifest of necessary permissions for an app in order for it to be allowed
to be used when running Security-Mode ONOS [19]. Such a manifest subsequently is included with
the app and is verified when the app is installed [276].

In addition to our static analysis script (see Section 4.5.1.4) that we used to determine which
permissions apps would need to run with Security-Mode ONOS, we encountered other permissions
that needed to be set at the bundle and application levels. In particular, the interactions with the
OSGi framework required that we allow the org. osgi.framework.ServicePermission and the
org.osgi.framework.AdminPermission permissions for all OSGibundles so that the apps could

interact with the core ONOS services; not doing so produced silent failures.

137

Table B.1: Partial RBAC Model for Security-Mode ONOS and Included ONOS Apps.

Apps: A = {acl, actn-mdsc, bgprouter, bmv2-demo, castor, cip, config, cord-support, cpman, dhcp,
dhcprelay, drivermatrix, events, faultmanagement, flowanalyzer, flowspec-api, fwd, gangliametrics,
graphitemetrics, influxdbmetrics, intentsync, iptopology-api, kafka-integration, 13vpn,
learning-switch, mappingmanagement, metrics, mfwd, mlb, mobility, netconf, network-troubleshoot,
newoptical, ofagent, openroadm, openstacknetworking, openstacknode, optical, optical-model,
pathpainter, pce, pcep-api, pim, proxyarp, rabbitmg, reactive-routing, restconf, roadm, routing,
routing-api, scalablegateway, sdnip, segmentrouting, tenbi, test, tetopology, tetunnel, virtualbng,
vpls, vrouter, vtn, yang, yang-gui, yms}

Read permissions: Pr = { APP_READ, APP_EVENT, CONFIG_READ, CONFIG_EVENT, CLUSTER_READ,
CLUSTER_EVENT, CODEC_READ, DEVICE_KEY_EVENT, DEVICE_KEY_READ,DEVICE_READ,
DEVICE_EVENT, DRIVER_READ, EVENT_READ, FLOWRULE_READ, FLOWRULE_EVENT, GROUP_READ,
GROUP_EVENT, HOST_READ, HOST_EVENT, INTENT_READ, INTENT_EVENT, LINK_READ, LINK_EVENT,
PACKET_READ, PACKET_EVENT, PARTITION_READ, PARTITION_EVENT, RESOURCE_READ,
RESOURCE_EVENT, REGION_READ, STATISTIC_READ, TOPOLOGY_READ, TOPOLOGY_EVENT,
TUNNEL_READ, TUNNEL_EVENT, UI_READ}

Write permissions: Py, = {APP_EVENT, APP_WRITE, CONFIG_WRITE, CONFIG_EVENT,
CLUSTER_WRITE, CLUSTER_EVENT, CODEC_WRITE, CLOCK_WRITE, DEVICE_KEY_EVENT,
DEVICE_KEY_WRITE, DEVICE_EVENT, DRIVER_WRITE, EVENT_WRITE, FLOWRULE_WRITE,
FLOWRULE_EVENT, GROUP_WRITE, GROUP_EVENT, HOST_WRITE, HOST_EVENT, INTENT_WRITE,
INTENT_EVENT, LINK_WRITE, LINK_EVENT, MUTEX_WRITE, PACKET_WRITE, PACKET _EVENT,
PERSISTENCE_WRITE, PARTITION_EVENT, RESOURCE_WRITE, RESOURCE_EVENT, STORAGE_WRITE,
TOPOLOGY_EVENT, TUNNEL_WRITE, TUNNEL_EVENT, UI_WRITE}

Objects: O = {ApplicationManager, ClusterCommunicationManager, ClusterManager,
ClusterMetadataManager, CodecManager, ComponentConfigManager, CoreEventDispatcher,
CoreManager, DefaultOpenFlowPacketContext, DefaultPacketContext, DeviceKeyManager,
DeviceManager, DriverManager, DriverRegistryManager, EdgeManager,
FlowObjectiveCompositionManager, FlowObjectiveManager, FlowRuleManager,
FlowStatisticManager, GroupManager, HostManager, IntentManager, LinkManager,
LogicalClockManager, MastershipManager, NettyMessagingManager, NetworkConfigManager,
PacketManager, PartitionManager, PathManager, PersistenceManager, ProxyArpManager,
RegionManager, ResourceManager, SimpleClusterStore, StatisticManager, StorageManager,
TopologyManager, UiExtensionManager }

138

B.1.2 App, Permission, and Object Details

Table B.1 enumerates the specific apps, read permissions, write permissions, and objects that we
used in our CAP model for Security-Mode ONOS.

B.2 Selected Code for Reactive Forwarding App

Figure B.1 shows the relevant Java code portions for the reactive forwarding app fwd. The reactive
forwarding app requires PACKET _* permissions to set up a packet processor (Line 5, Figure B.1) and
to process such packets (Line 9, Figure B.1), in addition to the FLOWRULE_

WRITE permission to emit flow rules into the data plane (Line 17, Figure B.1). We also permitted fwd
to have the APP_x* (Line 4, Figure B.1), CONFIG_*, DEVICE_READ, TOPOLOGY_READ, INTENT_x*, and
HOST_READ permissions to ensure fwd’s proper operation.

Note that any flows generated from fwd are attributed to fwd through the fromApp (appId)
method (Line 16, Figure B.1), in spite of the fact that fwd’s decisions may be based on data gen-
erated by other apps. In the case of the attack from Section 4.5.3, trigger poisons such data before
they arrive to fwd (Line 9, Figure B.1).

B.3 W3C PROV-DM Representations

Table B.2 summarizes the visual representations of the W3C PROV data model’s provenance objects
and relations [184]. The basic PROV object classes are Agent, Activity, and Entity. The basic
PROV relation classes that we use for PROVSDN are wasGeneratedBy, wasAttributedTo, used,

wasInformedBy, wasAssociatedWith, and actedOnBehalfOf.

B.4 Implementing PROVSDN on Other Controllers

Provenance is effective only if an adversary cannot bypass the collection system. We note that the
feasibility of satisfying this requirement depends significantly on the language used to implement
the SDN controller. Certain language features may aid (e.g., private/public declarators) or hinder
(e.g., lack of memory safety) the ability to instrument all communication paths between apps and
the controller. Here, we discuss what challenges exist if PROVSDN were to be implemented on other
SDN controllers.

139

1 public class ReactiveForwarding {

2 public void activate(...) {

3 o

4 appIld = coreService.registerApplication("org.onosproject.fwd");

5 packetService.addProcessor (processor, PacketProcessor.director(2));
6

7 b

8 private class ReactivePacketProcessor implements PacketProcessor {

9 public void process(PacketContext context) {

10 e

11 installRule(context,...);

12 }

13 }

14 private void installRule(PacketContext context,...) {

15 o

16 ForwardingObjective forwardingObjective = DefaultForwardingObjective.builder().

— withSelector(selectorBuilder.build()) .withTreatment (treatment) .withPriority
— (flowPriority) .withFlag(ForwardingObjective.Flag.VERSATILE) .fromApp (appId) .
— makeTemporary(flowTimeout) .add();

17 flowObjectiveService.forward(context.inPacket() .receivedFrom() .deviceId(),
— forwardingQObjective)

18 }

19

Figure B.1: Selected reactive forwarding app code during app activation and during packet
processing for inserting flow rules. Lines with permissioned calls are highlighted in gray.

B.4.1 Java-Based Open-Source Controllers

In addition to ONOS, Floodlight [28], SE-Floodlight [15], and OpenDaylight [30] are all imple-
mented in Java. Classes in Java can have member variables be declared as private or protected,
which prevents other, potentially malicious classes from directly manipulating such variables. All
interactions must be through public method invocations that can be instrumented to collect prove-
nance data. In addition, Java is memory-safe, barring the exploitation of vulnerabilities against the
JVM itself. This ensures that an attacker cannot, for instance, corrupt a reference to point to a sen-
sitive object’s private or protected member variables.

As noted earlier, Java’s Reflection API should be disabled to prevent overriding the declared
access modifiers. Furthermore, the bytecode of compiled Java classes can be modified at class-load
time, and several libraries are available to facilitate this process. This may allow an attacker to re-
move provenance collection code, or induce other unwanted behaviors into other classes. In order
to collect complete provenance information, both reflection and byte code rewriting should be dis-
abled. For example, static analysis can detect use of such methods and refuse to load classes which

exploit these features.

140

Table B.2: SDN Shared Control Plane State Semantics Using W3C PROV-DM.

Object or Event W3C PROV-DM Representation
. . . Entity
Control plane object with attributes T S

ey n = Value

Activity

(class:method)

App, controller, or switch identity
(app)

App method or function call

wasAssociated
i j With — used .
App reading object from the shared control plane Agent AcFlwty Kelarlt\::xﬂ
(app) (class:method) ey 1= Valua
wasGenerated wasAssociated
App writing object to the shared control plane Entity By Activity With Agent
Ke‘;":, z 32:3:‘ (class:method) (gpp)
Activity 2
(class:method)
Intra-app method or callback method Waslrg(;rmed
\ 4
Activity 1
(class:method)

actedOnBehalfOf
Internal service on behalf of controller [Agent » Agent]
Controller

B.4.2 Python-Based Open-Source Controllers

Several SDN controllers, including Ryu [29] and POX [82], are written in Python. Python does not
enforce private data structures that are only accessible to their containing class. All objects can di-
rectly manipulate the attributes of all other objects and do not need to go through getter and setter
calls that could otherwise enforce instrumentation. As such, it difficult to support internal apps
while maintaining guarantees about complete provenance collection, outside of instrumenting the
Python interpreter itself. One option is to move controller apps to discrete processes that commu-
nicate only over inter-process communication primitives. This would allow provenance collection

at the cost of higher latency.

141

B.4.3 C/C++-Based Open-Source Controllers

Controllers written in C or C++, such as Rosemary [14] and NOX [31], support private data struc-
tures and allow provenance to be collected by instrumenting getters and setters. Unfortunately,
neither language is memory-safe. This is a particularly severe problem for handling malicious apps.
Not only could controller code contain exploitable bugs, but malicious apps themselves may delib-
erately include vulnerabilities that they exploit locally in order to gain arbitrary read/write access to
memory. This clearly bypasses provenance collection and may even have more severe repercussions

if the malicious app can, for example, make system calls.

B.4.4 Closed-Source Controllers

Collecting provenance data as discussed here implicitly requires the ability to instrument code,
which is not possible for closed source controllers such as HP’s VAN [277]. However, possible fu-
ture work could leverage verbose log files to gain insight into interactions between the controller

and apps.

142

APPENDIX C

EVENTSCOPE

C.1 ONOS Application Structure

C.11 App Components

We provide an example ONOS app with representative components. Figure C.1 shows the represen-
tative code structure of an example application, sampleApp. sampleApp listens for host events and
incoming data plane packets; based on such events, the app installs new flow rules. We highlight

the key components of an ONOS app below.

« Internal variables (lines 3-8): Internal variables maintain the app’ state, which includes ref-
erences to data store objects and core controller services. In sampleApp, references to the host,
packet, and flow rule services are created, along with the instantiations of the host (event) lis-

tener and the packet processor.

« Activation and deactivation methods (lines 9-19): The activation method is called once
when the app is activated; similarly, the deactivation method is called once during deactiva-
tion. During activation and deactivation, the app registers and deregisters components that
it needs, such as event listeners and packet processors. In sampleApp, the host event listener

and packet processor are registered and deregistered.

» Event listeners (lines 20-29): Event listeners listen for an event kind of interest and take
further action, often based on the event type. Event listeners may call other methods within
the app to perform a desired functionality. In sampleApp, the host event listener executes
event () when it receives a HostEvent (line 22). Ithandles the HOST ADDED type by calling
the internal method internalMethod1 () (line 25). Note that all other HostEvent event types
(e.g, HOST REMOVED) are not handled.

« Packet processors (lines 30-37): Packet processors function much like to event listeners by

listening for incoming data plane packets and taking appropriate actions. In sampleApp, the

143

1 package org.onosproject.sampleApp;

2 public class SampleAppManager {

3 /* Internal variables */

4 protected HostService hostService;

5 protected PacketService packetService;

6 protected FlowRuleService flowRuleService;

7 private HostListener hostListener = new HL();
8 private PacketProcessor processor = new PP();
9 /* Activation and deactivation methods */

10 protected void activate() {

11 ce

12 hostService.addListener (hostListener) ;

13 packetService.addProcessor (processor, 0);
14 }

15 protected void deactivate() {

16 R

17 packetService.removeProcessor(processor) ;
18 hostService.removelListener (hostListener) ;
19 }
20 /% Event listener(s) */

21 private class HL implements HostListener {

22 public void event(HostEvent event) {

23 switch (event.type()) {
24 case HOST_ADDED:

25 internalMethodl(event,...);
26 default:

27 }

28 }

29 }
30 /* Packet processor(s) */

31 private class PP implements PacketProcessor {
32 public void process(PacketContext context) {
33 .

34 internalMethod2(...)

35 +

36 }

37 /* App internal methods (public or private) */
38 private void internalMethodl(Event event,...) {

40 internalMethod2(...)
41 }
42 public void internalMethod2(...) {

44 flowRuleService.applyFlowRules(...);

45 }
46}

Figure C.1: Abbreviated code structure of an example ONOS network application, sampleApp,
written in Java.

144

Hostservice)
getConnectedHosts(..) _

Hostservice B
getConnectedHosts(..)

roviderhostimpT
HostLocationProvider|
linternalConfigListener} -+

roviderhostimpT
“HHostLocationProvider|
al

> TostProviderService
removelLocationFromHost(..)

provida
[NetworkCon
Internal

A Gnkroviderservice
)

linkVanishe: et edgeservce mp]
et e

lnternalNetworkConfigListene

DeviceService
getborts(.)

et resource mpl
[ResourceNetworkConfigListener

et region mpl
RegionManager e netintent mpl TinkProviderService
JinternalNetworkConfigListener aetRolel.) o e i finksVanished(... Tt topologyimpT
[DefaultTopology Provider

etk impT

LinkManager linksVanished(..)

InternalDeviceListener

Providernetcigiinks
INetwork=ConfiglinksProvider
InternalDeviceListener

Jprovider netcont device mpl
NetconfDeviceProvider
InternalDeviceListener

e ovcimpl
FlowRuleManager
internalDeviceListene

provider dp mpT TinkProviderService
UidpLinkProvider linkDetected(..)
internalDeviceListene

et opology mpl
IDefaultTopologyProvider
InternalDeviceListener

etintentimpl

+_receivedRoleReply(..)

ﬁ‘—wn onfgimp
figMonit
"|__intemalConfigListener

Provider general devi
GeneralDeviceProvider
gl

deviceConnected(.)

et device mpl froviderTinkdiscoveryimpl -~
L

onfigListener [provider general devicemp] t

A - 2 et groupmpT
pManager
~HntermalDeviceListener

Providermetcont device mp!

Store Mlowmpl
ECFlowRuleStore|

JinternalFlowTabl {
TSt
StatisticManager

et TowimpT
et flowbjective mpl composition

B\ - N —\ IFlowObjcctiveCompositionManager| %,
- InnerDeviceListener. g

et flowobjective mpT

| innerDeviceListener |.. .

DeviceService - - \ ‘
SAVBlable() 7ot et e e memeanenr e ;
. i Driversenvice
)

NetworkConfigService
. getSubjectFactory(.) 2
NetworkConfigser
. getConfigClass(..)

NetworkConfigService
applyConfig(..)

ovider netcrglnie
[providernetery! | TntentService

2| IntemalPacketProcessor

DhepRelayManager |
HnternalDeviceListener "

providerTdp el | et packetmpl
PacketContext UdplinkProvider | PacketManager
isHandled(..) internalPacketProcesso - - Tod -

Pirtentservics
withdraw..)

[Tetneghbourimpl |
~|_InternalPacketProcessor

linternalTopologyListener]

32 PacketContext
block(..)

FacketContex
inPacket(..)
HostService
getHost(..)

Data Plane|
Out

FlowRuleService !
removeFlowRules(..) 7

PacketService -+
q)

forward(...)

FlowObjectiveService

pply(..)

providernetclghost
NetworkConfigHostProvi
lnternalNetworkConfigLis

) “Ghep mpl B

** DhepManager

[DhepPacketProcessorf ™™+
providerhos

“#ostLocationP
internalHostP: -

Thcprelay
DhepRelayManager
hepRelayPack

EdgePortService
iskdgePoint(..) -

applyFlowRules(..)

FlostProviderService
hostVanished(...)

HostProviderService
removelpFromHost(..)

" PacketService
cancelPackets(...)

Dhepaandlerimp!
ist
Y-
hcprelay
- DhepRelayManager
lintermalConfigListene:
DeviceService .
,,,,,,,,,,,,,,,,,,,,,,,,, LidpLinkProvider
- Minternal ConfigListene:

S netmeterimpl
MeterDriverProvider

HostService
getHostsBylp(..)

InterfaceService
getMatchingInterfaces(..)

Figure C.2: Event flow graph of ONOS with core service components and several apps (i.e., acl,
fwd, mobility, dhcp, and dhcprelay). Blue rectangles represent event listeners and packet
processors, gray ellipses represent API methods, bold edges represent event dispatches, and
dashed edges represent API calls. (For simplicity, event types are reduced to a single edge of the

event type’s respective event kind.)

145

packet processor executes process () when it receives a packet (line 32) and subsequently

after execution calls the internal method internalMethod2() (line 34).

o App internal methods (lines 38-45): App internal methods handle the main functional-
ity of the app. They may read from core services (i.e., API read calls), write to core ser-
vices (i.e., API write calls), or dispatch new events. In sampleApp, internalMethod1()
calls internalMethod2(). New flow rules are generated as a result of the calling of
internalMethod2() (line 44).

C.1.2 App Analysis

We explain how sampleApp would be analyzed within EVENTSCOPE.

Event use Based on the event listener that is implemented in sampleApp, we see that the
HostEvent event is handled. For simplicity, Ex = {HostEvent} and Er = {HOST ADDED,
HOST REMOVED,HOST MOVED,HOST UPDATED}. Because sampleApp handles only
the HOST ADDED event type, its corresponding row in the event use matrix, M, would be
M[sampleApp] = [true, false, false, false]. Next,sampleApp’s event types would be compared

with respect to all other apps to determine if the 3 remaining event types are candidates.

Event flow Given thatapps’ event listeners and packet processors drive the main app functionality,
EVENTSCOPE focuses on these methods and ignores the activation and deactivation methods. We
mark the host event listener event () method (line 23) and the packet processor process () method
(line 32) as entry points for the event flow graph generation. Each entry point is represented as a
node in the event flow graph, G. We note that flowRuleService.applyFlowRules() is an API
write method, so it would also be marked as an entry point.

For the host event listener, the resulting call graph contains the path event() —
internalMethod1() — internalMethod2() — applyFlowRules(), so we add an outgo-
ing edge from the host event listener node to the flow rule API call node in G. For the packet
processor, the resulting call graph contains the path process() — internalMethod2() -
applyFlowRules (), so we add a similar edge from the packet processor node to the flow rule
API call node. As the host event listener handles only 1 event type, we add 1 edge from each host
event dispatcher node (assumed to have been dispatched from other activated controller code) to
sampleApp’s host event listener in G.

Finally, as the packet processor receives incoming data plane input, we add an edge from DPIn
to the packet processor in G. As the host event listener and packet processor add flow rules, we add

edges from each to DPOut in G.

146

175+
150+

=
U N o N
o u o u

Number of Results

N
Ul

B Candidate vulnerabilities
V¥ Valid vulnerabilities

o

v

vvvyVYy

\

0.5

0.6

0.7

0.8

0.9

1.0

Clustering Threshold T

Figure C.3: ONOS apps’ candidate and valid vulnerabilities as a function of clustering threshold =
(using SimRank [213]).

C.2 ONOS Event Flow Graph Example

Figure C.2 shows the ONOS event flow graph with the controller’s core services, the access control
app (acl), the reactive forwarding app (fwd), the host mobility app (mobility), and the DHCP apps
(dhcp and dhcprelay).

We start from the Data Plane Innode on theleftside of the figure, where the inPacket () API
read call receives incoming data plane packets. Such packets are read by several packet processors:
the neighborhood service’s InternalPacketProcessor, the reactive forwarding app’s ReactivePacket-
Processor, the LLDP link provider’s InternalPacketProcessor, the DHCP apps’ DhcpPacket Proces-
sor and DhcpRelayPacketProcessor, and the host location provider’s InternalHostProvider.

We follow paths from left to right to understand how those packet processors cause subsequent
API calls and event dispatches. For instance, the dhcprelay app calls the HostProviderService’s
hostDetected() API call. The hostDetected() API call will dispatch a HostEvent event that
gets received by the dhcprelay app’s InternalHostListener event listener. That event listener calls the
PacketService’s cancelPackets () API call, which subsequently calls the FlowObjective Service’s
forward() API call. The forward () API call causes a data plane effect.

C.3 Number of Clusters and Detection Rate

Figure C.3 shows the effect of choosing different values for the event use clustering threshold 7

(i.e., changing the number of clusters) on the detection rate for the number of candidate vulnera-

147

bilities (Section 5.4.1) and valid vulnerabilities (Section 5.5.2) for ONOS v1.14.0 [26]. We note an
inflection point of candidate vulnerabilities near 7 = 0.90, which is the threshold that we used

throughout our evaluation.

148

[1]

(2]

(3]

(4]

(6]

(8]

REFERENCES

D. Kreutz, F. M. V. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodolmolky, and S. Uhlig,
“Software-defined networking: A comprehensive survey, Proceedings of the IEEE, vol. 103,
no. 1, pp. 14-76, Jan. 2015.

(Cited on pages 1, 2, 7, 27, 36, 65, and 131.)

M. Cooney, “What is SDN and where software-defined networking is going,” Apr.
2019, Network World. [Online]. Available: https://www.networkworld.com/article/3209131/
what-sdn-is-and-where-its-going.html

(Cited on page 1.)

A. Bates, K. Butler, A. Haeberlen, M. Sherr, and W. Zhou, “Let SDN be your eyes: Secure
forensics in data center networks,” in Proceedings of the 2014 Workshop on Security of Emerging
Networking Technologies (SENT '14). Internet Society, Apr. 2014.

(Cited on pages 1, 27, 32, 64, and 128.)

S.R. Gomez, S. Jero, R. Skowyra,]. Martin, P. Sullivan, D. Bigelow, Z. Ellenbogen, B. C. Ward,
H. Okhravi, and J. W. Landry, “Controller-oblivious dynamic access control in software-
defined networks,” in Proceedings of the 2019 IEEE/IFIP International Conference on Depend-
able Systems and Networks (DSN ’19). 1EEE, June 2019, pp. 447-459.

(Cited on pages 1, 102, and 133.)

S. Shin, P. Porras, V. Yegneswaran, M. Fong, G. Gu, and M. Tyson, “FRESCO: Modular com-
posable security services for software-defined networks,” in Proceedings of the 2013 Network
and Distributed System Security Symposium (NDSS ’13). Internet Society, Feb. 2013.

(Cited on pages 1, 19, and 63.)

D. Kreutz, F. M. Ramos, and P. Verissimo, “Towards secure and dependable software-defined
networks,” in Proceedings of the 2013 ACM SIGCOMM Workshop on Hot Topics in Software
Defined Networking (HotSDN ’13). ACM, 2013, pp. 55-60.

(Cited on pages 1, 13, 29, 38, 41, and 42.)

W. Enck, M. Ongtang, and P. McDaniel, “Understanding Android security;, IEEE Security ¢
Privacy, vol. 7, no. 1, pp. 50-57, Jan. 2009.
(Cited on pages 2 and 130.)

R. Sherwood, G. Gibb, K.-K. Yap, M. Casado, N. McKeown, and G. Parulkar, “FlowVisor: A
network virtualization layer,” OpenFlow, Tech. Rep., 2009.
(Cited on page 2.)

149

https://www.networkworld.com/article/3209131/what-sdn-is-and-where-its-going.html
https://www.networkworld.com/article/3209131/what-sdn-is-and-where-its-going.html

[9]

[10]

[11]

[13]

[14]

[15]

[16]

A. Blenk, A. Basta, M. Reisslein, and W. Kellerer, “Survey on network virtualization hypervi-
sors for software defined networking,” IEEE Communications Surveys Tutorials, vol. 18, no. 1,
pp. 655-685, 2016.

(Cited on page 2.)

X. Wen, Y. Chen, C. Hu, C. Shi, and Y. Wang, “Towards a secure controller platform for
OpenFlow applications,” in Proceedings of the 2013 ACM SIGCOMM Workshop on Hot Topics
in Software Defined Networking (HotSDN ’13). ACM, 2013, pp. 171-172.

(Cited on pages 2, 20, 21, and 131.)

P. Porras, S. Shin, V. Yegneswaran, M. Fong, M. Tyson, and G. Gu, “A security enforcement
kernel for OpenFlow networks,” in Proceedings of the 2012 ACM SIGCOMM Workshop on Hot
Topics in Software Defined Networking (HotSDN ’12). ACM, 2012, pp. 121-126.

(Cited on pages 2, 9, 14, 17, 20, 21, 22, and 131.)

S. Scott-Hayward, C. Kane, and S. Sezer, “OperationCheckpoint: SDN application control,” in
Proceedings of the 2014 IEEE International Conference on Network Protocols (ICNP '14). 1EEE,
Oct 2014, pp. 618-623.

(Cited on pages 2, 20, 21, and 131.)

S. Matsumoto, S. Hitz, and A. Perrig, “Fleet: Defending SDNs from malicious administrators,”
in Proceedings of the 2014 ACM Workshop on Hot Topics in Networks (HotNets '14). ACM,
2014, pp. 103-108.

(Cited on pages 2, 14, 19, 21, 22, 30, and 131.)

S. Shin, Y. Song, T. Lee, S. Lee, J. Chung, P. Porras, V. Yegneswaran,]. Noh, and B. B. Kang,
“Rosemary: A robust, secure, and high-performance network operating system,” in Proceed-
ings of the 2014 ACM Conference on Computer and Communications Security (CCS ’14). ACM,
2014, pp. 78-89.

(Cited on pages 2, 9, 20, 21, 23, 38, 41, 63, 130, 131, and 142.)

P. Porras, S. Cheung, M. Fong, K. Skinner, and V. Yegneswaran, “Securing the software-
defined network control layer,” in Proceedings of the 2015 Network and Distributed System
Security Symposium (NDSS 15). Internet Society, Feb. 2015.

(Cited on pages 2, 9, 20, 21, 22, 29, 30, 31, 32, 35, 36, 38, 41, 60, 63, 112, 131, and 140.)

H. Padekar, Y. Park, H. Hu, and S.-Y. Chang, “Enabling dynamic access control for controller
applications in software-defined networks,” in Proceedings of the 2016 ACM Symposium on
Access Control Models and Technologies (SACMAT 16). ACM, 2016, pp. 51-61.

(Cited on pages 2, 20, 21, 38, and 131.)

X. Wen, B. Yang, Y. Chen, C. Hu, Y. Wang, B. Liu, and X. Chen, “SDNShield: Reconciliat-
ing configurable application permissions for SDN app markets,” in Proceedings of the 2016
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN ’16). 1EEE,
2016, pp. 121-132.

(Cited on pages 2, 14, 17, 19, 20, 21, 23, 43, 61, 63, and 131.)

150

18]

[19]

[20]

[23]

[24]

[25]

[26]

[27]

Y. Tseng, M. Pattaranantakul, R. He, Z. Zhang, and E Nait-Abdesselam, “Controller DAC:
Securing SDN controller with dynamic access control,” in Proceedings of the 2017 IEEE Inter-
national Conference on Communications (ICC 17). IEEE, May 2017, pp. 1-6.

(Cited on pages 2, 20, 21, 38, and 131.)

C. Yoon, S. Shin, P. Porras, V. Yegneswaran, H. Kang, M. Fong, B. O’Connor, and T. Vachuska,
“A security-mode for carrier-grade SDN controllers,” in Proceedings of the 2017 Annual Com-
puter Security Applications Conference (ACSAC ’17), 2017, pp. 461-473.

(Cited on pages 2, 9, 20, 21, 38, 39, 46, 63, 131, and 137.)

B. Toshniwal, K. D. Joshi, P. Shrivastava, and K. Kataoka, “BEAM: Behavior-based access
control mechanism for SDN applications,” in Proceedings of the 2019 IEEE International Con-
ference on Computer Communication and Networks (ICCCN ’19). 1EEE, 2019, pp. 1-2.
(Cited on pages 2, 20, 21, and 131.)

F. Klaedtke, G. O. Karame, R. Bifulco, and H. Cui, “Access control for SDN controllers,” in Pro-
ceedings of the 2014 ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking
(HotSDN ’14). ACM, 2014, pp. 219—220.

(Cited on pages 2 and 131.)

S. Hong, L. Xu, H. Wang, and G. Gu, “Poisoning network visibility in software-defined net-
works: New attacks and countermeasures,” in Proceedings of the 2015 Network and Distributed
System Security Symposium (NDSS ’15). Internet Society, Feb. 2015.

(Cited on pages 3, 14, 18, 21, 22, 23, 66, 70, 95, 96, 99, 101, 112, 119, 121, 125, 126, and 127.)

D. Gkounis, F. Klaedtke, R. Bifulco, and G. O. Karame, “Cases for including a reference mon-
itor to SDN;” in Proceedings of the 2016 ACM Special Interest Group on Data Communication
Conference (SSIGCOMM ’16). ACM, 2016, pp. 599-600.

(Cited on pages 3 and 132.)

R. Kissel, “Glossary of key information security terms,” National Institute of Standards and
Technology, Tech. Rep. NISTIR 7298, May 2013. [Online]. Available: http://dx.doi.org/10.
6028/NIST.IR.7298r2

(Cited on pages 3, 15, 19, and 29.)

P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide, B. Lantz, B. O’Connor, P. Ra-
doslavov, W. Snow, and G. Parulkar, “ONOS: Towards an open, distributed SDN OS,” in Pro-
ceedings of the 2014 ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking
(HotSDN ’14). ACM, 2014.

(Cited on pages 4, 8, 9, 10, 22, 28, 30, 31, 38, 39, 46, 65, 68, 101, 105, 108, and 132.)

3.

Open Networking Foundation, “Github - opennetworkinglab/onos at 1.14.0,” 2019. [Online].
Available: https://github.com/opennetworkinglab/onos/tree/onos-1.14
(Cited on pages 4, 76, 120, and 148.)

N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker,
and J. Turner, “OpenFlow: Enabling innovation in campus networks,” ACM SIGCOMM Com-
puter Communication Review, vol. 38, no. 2, pp. 69-74, Mar. 2008.

151

http://dx.doi.org/10.6028/NIST.IR.7298r2
http://dx.doi.org/10.6028/NIST.IR.7298r2
https://github.com/opennetworkinglab/onos/tree/onos-1.14

28]

[29]

(31]

(36]

(Cited on pages 7, 10, 13, and 134.)

Floodlight, 2018. [Online]. Available: http://www.projectfloodlight.org/
(Cited on pages 8, 9, 16, 20, 31, 60, 65, 69, 95, 105, 108, 120, and 140.)

Ryu SDN Framework Community, “Ryu SDN framework,” Aug. 2018. [Online]. Available:
http://osrg.github.io/ryu/
(Cited on pages 8, 9, 16, 61, and 141.)

OpenDaylight, “OpenDaylight,” Aug. 2018. [Online]. Available: https://www.opendaylight.
org/
(Cited on pages 8, 9, 16, 22, 38, 60, 65, 105, 108, 120, and 140.)

N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and S. Shenker, “NOX:
Towards an operating system for networks,” ACM SIGCOMM Computer Communication Re-
view, vol. 38, no. 3, pp. 105-110, 2008.

(Cited on pages 9, 20, and 142.)

Open Networking Foundation, “System components — ONOS,” 2019. [Online]. Available:
https://wiki.onosproject.org/display/ ONOS/System+Components
(Cited on pages 9 and 81.)

Open Networking Foundation, “Distributed primitives - ONOS,” 2019. [Online]. Available:
https://wiki.onosproject.org/display/ ONOS/Distributed+Primitives
(Cited on page 9.)

R. Enns, “NETCONTF configuration protocol,” Internet Engineering Task Force (IETF), REC
4741, Dec. 2006. [Online]. Available: https://tools.ietf.org/html/rfc4741
(Cited on page 10.)

E. Haleplidis, J. Hadi Salim, J. M. Halpern, S. Hares, K. Pentikousis, K. Ogawa, W. Wang,
S. Denazis, and O. Koufopavlou, “Network programmability with ForCES,” IEEE Communi-
cations Surveys Tutorials, vol. 17, no. 3, pp. 1423-1440, 2015.

(Cited on page 10.)

P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford, C. Schlesinger, D. Talayco,
A.Vahdat, G. Varghese, and D. Walker, “P4: Programming protocol-independent packet pro-
cessors, SIGCOMM Computer Communication Review, vol. 44, no. 3, pp. 87-95, July 2014.
(Cited on pages 10, 13, 115, and 134.)

Hewlett-Packard Enterprise, “HPE SDN app store,” https://community.arubanetworks.com/
t5/SDN-Apps/ct-p/SDN-Apps, Aug. 2018.
(Cited on pages 12, 37, and 40.)

Open Networking Foundation, “GitHub - onos/apps at 1.10.0,” 2018. [Online]. Available:
https://github.com/opennetworkinglab/onos/tree/1.10.0/apps
(Cited on pages 12 and 46.)

152

http://www.projectfloodlight.org/
http://osrg.github.io/ryu/
https://www.opendaylight.org/
https://www.opendaylight.org/
https://wiki.onosproject.org/display/ONOS/System+Components
https://wiki.onosproject.org/display/ONOS/Distributed+Primitives
https://tools.ietf.org/html/rfc4741
https://community.arubanetworks.com/t5/SDN-Apps/ct-p/SDN-Apps
https://community.arubanetworks.com/t5/SDN-Apps/ct-p/SDN-Apps
https://github.com/opennetworkinglab/onos/tree/1.10.0/apps

(39]

[43]

[45]

[46]

[47]

(48]

Open Networking Foundation, “GitHub - onos-app-samples,” 2018. [Online]. Available:
https://github.com/opennetworkinglab/onos-app-samples
(Cited on page 12.)

Linux Foundation, “Open vSwitch,” 2018. [Online]. Available: https://www.openvswitch.org/
(Cited on pages 13, 18, and 59.)

B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: Rapid prototyping for software-
defined networks,” in Proceedings of the 2010 ACM Workshop on Hot Topics in Networks (Hot-
Nets ’10). ACM, 2010.

(Cited on pages 13, 86, and 121.)

Open Networking Foundation, “OpenFlow v1.3.0,” June 2012. [Online].
Available: https://www.opennetworking.org/images/stories/downloads/sdn-resources/
onf-specifications/openflow/openflow-spec-vi1.3.0.pdf

(Cited on pages 13, 24, 30, and 31.)

F Xiao, J. Zhang, J. Huang, G. Gu, D. Wu, and P. Liu, “Unexpected data dependency creation
and chaining: A new attack to SDN,” in Proceedings of the 2020 IEEE Symposium on Security
and Privacy (S&P ’20). 1EEE, May 2020.

(Cited on pages 14, 19, 25, 99, and 126.)

B. E. Ujcich, S. Jero, R. Skowyra, S. R. Gomez, A. Bates, W. H. Sanders, and H. Okhravi, “Auto-
mated discovery of cross-plane event-based vulnerabilities in software-defined networking,”
in Proceedings of the 2020 Network and Distributed System Security Symposium (NDSS ’20).
Internet Society, Feb. 2020.

(Cited on pages 14, 19, 25, 99, 101, 105, 110, 119, 121, 126, and 127.)

J. Cao, R. Xie, K. Sun, Q. Li, G. Gu, and M. Xu, “When match fields do not need to match:
Buffered packets hijacking in SDN,” in Proceedings of the 2020 Network and Distributed System
Security Symposium (NDSS "20). Internet Society, Feb. 2020.

(Cited on pages 14, 18, and 99.)

J. Xu, L. Wang, C. Song, and Z. Xu, “An effective table-overflow attack and defense in software-
defined networking,” in Proceedings of the 2019 IEEE Local Computer Networks Conference
(LCN ’19). IEEE, 2019, pp. 10-17.

(Cited on pages 14, 15, 21, and 24.)

J. Cao, Z. Yang, K. Sun, Q. Li, M. Xu, and P. Han, “Fingerprinting SDN applications via en-
crypted control traffic,” in Proceedings of the 2019 International Symposium on Research in
Attacks, Intrusions and Defenses (RAID 19). USENIX Association, Sep. 2019, pp. 501-515.

(Cited on pages 14, 17, and 133.)

E. Marin, N. Bucciol, and M. Conti, “An in-depth look into SDN topology discovery mech-
anisms: Novel attacks and practical countermeasures,” in Proceedings of the 2019 ACM Con-
ference on Computer and Communications Security (CCS 19). ACM, 2019.

(Cited on pages 14, 18, 99, 101, and 112.)

153

https://github.com/opennetworkinglab/onos-app-samples
https://www.openvswitch.org/
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.0.pdf

[49]

[52]

[54]

(57]

R. Hanmer, S. Liu, L. Jagadeesan, and M. R. Rahman, “Death by babble: Security and fault
tolerance of distributed consensus in high-availability softwarized networks,” in Proceedings
of the 2019 IEEE International Conference on Network Softwarization (NetSoft 19). IEEE,
June 2019, pp. 266—270.

(Cited on pages 14, 16, and 93.)

D. Smyth, D. O’Shea, V. Cionca, and S. McSweeney, “Attacking distributed software-defined
networks by leveraging network state consistency,” Computer Networks, vol. 156, pp. 9 - 19,
2019.

(Cited on pages 14 and 16.)

B. E. Ujcich, S. Jero, A. Edmundson, Q. Wang, R. Skowyra,]. Landry, A. Bates, W. H. Sanders,
C. Nita-Rotaru, and H. Okhravi, “Cross-app poisoning in software-defined networking,” in
Proceedings of the 2018 ACM Conference on Computer and Communications Security (CCS 18).
ACM, 2018.

(Cited on pages 14, 17, 20, 21, 22, 67, 70, 71, 82, 96, 97, 99, 100, 104, 106, 112, 121, 122, 125, and 127.)

K. Thimmaraju, L. Schiff, and S. Schmid, “Outsmarting network security with SDN telepor-
tation,” in Proceedings of the 2017 IEEE European Symposium on Security and Privacy (Eu-
roSeP 17). 1EEE, 2017, pp. 563-578.

(Cited on pages 14 and 17.)

J. Cao, Q. Li, R. Xie, K. Sun, G. Gu, M. Xu, and Y. Yang, “The CrossPath attack: Disrupting the
SDN control channel via shared links,” in Proceedings of the 2019 USENIX Security Symposium
(Security '19). USENIX Association, Aug. 2019.

(Cited on pages 14 and 17.)

M. Zhang, G. Li, L. Xu, J. Bi, G. Gu, and J. Bai, “Control plane reflection attacks in SDNs: New
attacks and countermeasures,” in Proceedings of the 2018 International Symposium on Research
in Attacks, Intrusions and Defenses (RAID ’18), M. Bailey, T. Holz, M. Stamatogiannakis, and
S. Ioannidis, Eds., 2018, pp. 161-183.

(Cited on pages 14, 15, 21, and 24.)

R. Skowyra, L. Xu, G. Gu, V. Dedhia, T. Hobson, H. Okhravi, and J. Landry, “Effective topol-
ogy tampering attacks and defenses in software-defined networks,” in Proceedings of the 2018
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN 18). 1EEE,

June 2018, pp. 374-385.
(Cited on pages 14, 18, 66, 70, 95, 96, 99, 101, 112, 119, 126, and 127.)

K. Thimmaraju, B. Shastry, T. Fiebig, E Hetzelt, J.-P. Seifert, A. Feldmann, and S. Schmid,
“Taking control of SDN-based cloud systems via the data plane,” in Proceedings of the 2018
ACM SIGCOMM Symposium on SDN Research (SOSR 18). ACM, 2018.

(Cited on pages 14 and 18.)

S. Deng, X. Gao, Z. Lu, and X. Gao, “Packet injection attack and its defense in software-
defined networks,” IEEE Transactions on Information Forensics and Security, vol. 13, no. 3, pp.
695-705, 2018.

(Cited on pages 14, 19, 21, and 23.)

154

(58]

[60]

[61]

[62]

[63]

[64]

S. Jero, W. Koch, R. Skowyra, H. Okhravi, C. Nita-Rotaru, and D. Bigelow, “Identifier bind-
ing attacks and defenses in software-defined networks,” in Proceedings of the 2017 USENIX
Security Symposium (Security ’17). USENIX Association, 2017.

(Cited on pages 14, 18, 21, 22, 70, 95, 96, 101, and 110.)

M. Ambrosin, M. Conti, E De Gaspari, and R. Poovendran, “LineSwitch: Tackling control
plane saturation attacks in software-defined networking,” IEEE/ACM Transactions on Net-
working, vol. 25, no. 2, pp. 1206-1219, 2017.

(Cited on pages 14, 15, 21, and 23.)

S. Shin, V. Yegneswaran, P. Porras, and G. Gu, “AVANT-GUARD: Scalable and vigilant switch
flow management in software-defined networks,” in Proceedings of the 2013 ACM Conference
on Computer and Communications Security (CCS ’13). ACM, 2013, pp. 413-424.

(Cited on pages 14, 15, 21, and 23.)

S. Liu, M. K. Reiter, and V. Sekar, “Flow reconnaissance via timing attacks on SDN switches,”
in Proceedings of the 2017 IEEE International Conference on Distributed Computing Systems
(ICDCS ’17). IEEE, 2017, pp. 196-206.

(Cited on pages 14 and 17.)

P. Zhang, “Towards rule enforcement verification for software defined networks,” in Proceed-
ings of the 2017 IEEE International Conference on Computer Communications INFOCOM ’17).
IEEE, 2017, pp. 1-9.

(Cited on pages 14, 18, 21, and 23.)

D. Smyth, V. Cionca, S. McSweeney, and D. O’Shea, “Exploiting pitfalls in software-defined
networking implementation,” in Proceedings of the 2016 IEEE International Conference on Cy-
ber Security and Protection of Digital Services (CyberSecurity ’16). 1EEE, 2016, pp. 1-8.
(Cited on pages 14 and 15.)

M. Zhang, J. Hou, Z. Zhang, W. Shi, B. Qin, and B. Liang, “Fine-grained fingerprinting threats
to software-defined networks,” in Proceedings of the 2017 IEEE International Conference on
Trust, Security and Privacy in Computing and Communications (TrustCom 17). 1EEE, Aug.

2017, pp. 128-135.
(Cited on pages 14, 17, 70, and 133.)

A. Azzouni, O. Braham, T. M. T. Nguyen, G. Pujolle, and R. Boutaba, “Fingerprinting Open-
Flow controllers: The first step to attack an SDN control plane,” in Proceedings of the 2016

IEEE Global Communications Conference (GLOBECOM 16). 1EEE, Dec. 2016, pp. 1-6.
(Cited on pages 14, 16, 70, and 133.)

R. Bifulco, H. Cui, G. O. Karame, and F. Klaedtke, “Fingerprinting software-defined net-
works,” in Proceedings of the 2015 IEEE International Conference on Network Protocols
(ICNP ’15). IEEE, 2015, pp. 453-459.

(Cited on pages 14, 16, and 133.)

155

[67]

[68]

[69]

[70]

[71]

[72]

(73]

[74]

J. Sonchack, A. Dubey, A. J. Aviv,]. M. Smith, and E. Keller, “Timing-based reconnaissance
and defense in software-defined networks,” in Proceedings of the 2016 Annual Computer Secu-
rity Applications Conference (ACSAC ’16), 2016, pp. 89-100.

(Cited on pages 14, 16, 21, 24, and 133.)

T. Alharbi, M. Portmann, and F. Pakzad, “The (in)security of topology discovery in soft-
ware defined networks,” in Proceedings of the 2015 IEEE Local Computer Networks Conference
(LCN ’15). 1EEE, 2015, pp. 502-505.

(Cited on pages 14, 18, 21, and 22.)

C. Ropke and T. Holz, “SDN rootkits: Subverting network operating systems of software-
defined networks,” in Proceedings of the 2015 International Symposium on Research in Attacks,
Intrusions and Defenses (RAID ’15). Springer-Verlag New York, Inc., 2015, pp. 339-356.
(Cited on pages 14, 17, and 27.)

Y. Zhou, K. Chen, J. Zhang, J. Leng, and Y. Tang, “Exploiting the vulnerability of flow table
overflow in software-defined network: Attack model, evaluation, and defense,” in Security
and Communication Networks, Z. Cai, Ed., vol. 2018. Hindawi, 2018.

(Cited on pages 14 and 17.)

P.-W. Chi, C.-T. Kuo,].-W. Guo, and C.-L. Lei, “How to detect a compromised SDN switch,” in
Proceedings of the 2015 IEEE International Conference on Network Softwarization (NetSoft 15).
IEEE, April 2015, pp. 1-6.

(Cited on pages 14, 18, 19, 21, and 22.)

S. Shin and G. Gu, “Attacking software-defined networks: A first feasibility study,” in Pro-
ceedings of the 2013 ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking
(HotSDN ’13). ACM, 2013, pp. 165-166.

(Cited on pages 14, 16, and 133.)

J. Hizver, “Taxonomic modeling of security threats in software defined networking,” in Pro-
ceedings of the 2015 BlackHat Conference, 2015.
(Cited on page 13.)

»

K. Benton, L. J. Camp, and C. Small, “OpenFlow vulnerability assessment,” in Proceed-
ings of the 2013 ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking
(HotSDN ’13). ACM, 2013, pp. 151-152.

(Cited on page 13.)

R. Kléti, V. Kotronis, and P. Smith, “OpenFlow: A security analysis,” in Proceedings of the 2013
IEEE International Conference on Network Protocols (ICNP ’13). 1EEE, 2013, pp. 1-6.
(Cited on page 13.)

S. Scott-Hayward, S. Natarajan, and S. Sezer, “A survey of security in software defined net-
works,” IEEE Communications Surveys Tutorials, vol. 18, no. 1, pp. 623-654, 2016.
(Cited on pages 13 and 38.)

156

[77]

[79]

[80]

[81]

A. B. Martin, L. Marinos, E. Rekleitis, G. Spanoudakis, and N. Petroulakis, “Threat landscape
and good practice guide for software defined networks/sG,” European Union Agency for Net-
work and Information Security, Tech. Rep., Dec. 2015.

(Cited on page 13.)

S. Khan, A. Gani, A. W. Abdul Wahab, M. Guizani, and M. K. Khan, “Topology discovery in
software defined networks: Threats, taxonomy, and state-of-the-art,” IEEE Communications
Surveys Tutorials, vol. 19, no. 1, pp. 303-324, 2017.

(Cited on page 13.)

T. A. V. Sattolo, S. Macwan, M. J. Vezina, and A. Matrawy, “Classifying poisoning attacks
in software defined networking,” in Proceedings of the 2019 IEEE International Conference on
Wireless for Space and Extreme Environments (WiSEE ’19). 1EEE, 2019, pp. 59-64.

(Cited on page 13.)

C. Yoon, S. Lee, H. Kang, T. Park, S. Shin, V. Yegneswaran, P. Porras, and G. Gu, “Flow wars:
Systemizing the attack surface and defenses in software-defined networks,” IEEE/ACM Trans-
actions on Networking, vol. 25, no. 6, pp. 3514-3530, Dec. 2017.

(Cited on pages 13, 66, 96, and 128.)

B. E. Ujcich, U. Thakore, and W. H. Sanders, “ATTAIN: An attack injection framework for
software-defined networking,” in Proceedings of the 2017 IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN ’17). IEEE, June 2017.

(Cited on pages 15, 24, and 64.)

POX, “POX;” Aug. 2018. [Online]. Available: https://github.com/noxrepo/pox
(Cited on pages 16 and 141.)

D. Erickson, “The Beacon OpenFlow controller;” in Proceedings of the 2013 ACM SIGCOMM
Workshop on Hot Topics in Software Defined Networking (HotSDN ’13). ACM, 2013, pp. 13-18.
(Cited on page 16.)

A. Alimohammadifar, S. Majumdar, T. Madi, Y. Jarraya, M. Pourzandi, L. Wang, and M. Deb-
babi, “Stealthy probing-based verification (SPV): An active approach to defending software
defined networks against topology poisoning attacks,” in Computer Security, J. Lopez,]. Zhou,
and M. Soriano, Eds. Cham: Springer International Publishing, 2018, pp. 463-484.

(Cited on pages 21 and 23.)

S. Scott-Hayward and T. Arumugam, “OFMTL-SEC: State-based security for software de-
fined networks,” in Proceedings of the 2018 IEEE Conference on Network Function Virtualiza-
tion and Software Defined Networks (NFV-SDN 18). 1EEE, Nov. 2018, pp. 1-7.

(Cited on pages 21 and 23.)

C. Ropke and T. Holz, “Preventing malicious SDN applications from hiding adverse network
manipulations,” in Proceedings of the 2018 ACM SIGCOMM Workshop on Security in Soft-
warized Networks: Prospects and Challenges (SecSoN ’18). ACM, 2018, pp. 40-45.

(Cited on pages 21 and 22.)

157

https://github.com/noxrepo/pox

[87]

(88]

[89]

[90]

[92]

[93]

[94]

[95]

D. Tatang, F. Quinkert, J. Frank, C. Ropke, and T. Holz, “SDN-Guard: Protecting SDN con-
trollers against SDN rootkits,” in Proceedings of the 2017 IEEE Conference on Network Function
Virtualization and Software Defined Networks (NFV-SDN ’17). 1EEE, Nov. 2017, pp. 297-302.
(Cited on pages 21 and 22.)

A. Shaghaghi, M. A. Kaafar, and S. Jha, “WedgeTail: An intrusion prevention system for the
data plane of software defined networks,” in Proceedings of the 2017 ACM Asia Conference on
Computer and Communications Security (AsiaCCS '17). ACM, 2017, pp. 849-861.

(Cited on pages 21 and 22.)

D. Smyth, S. McSweeney, D. O’Shea, and V. Cionca, “Detecting link fabrication attacks in
software-defined networks,” in Proceedings of the 2017 IEEE International Conference on Com-
puter Communication and Networks (ICCCN ’17). 1EEE, July 2017, pp. 1-8.

(Cited on pages 21 and 23.)

B. Chandrasekaran, B. Tschaen, and T. Benson, “Isolating and tolerating SDN application fail-
ures with LegoSDN;,” in Proceedings of the 2016 ACM SIGCOMM Symposium on SDN Research
(SOSR ’16). ACM, 2016, pp. 7:1-7:12.

(Cited on pages 21 and 23.)

T. Sasaki, C. Pappas, T. Lee, T. Hoefler, and A. Perrig, “SDNsec: Forwarding accountability for
the SDN data plane,” in Proceedings of the 2016 IEEE International Conference on Computer
Communication and Networks (ICCCN ’16). 1EEE, 2016.

(Cited on pages 21, 23, and 29.)

K. Mahajan, R. Poddar, M. Dhawan, and V. Mann, “JURY: Validating controller actions in
software-defined networks,” in Proceedings of the 2016 IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN 16). 1IEEE, June 2016, pp. 109-120.

(Cited on pages 21 and 22.)

M. Dhawan, R. Poddar, K. Mahajan, and V. Mann, “Sphinx: Detecting security attacks in
software-defined networks,” in Proceedings of the 2015 Network and Distributed System Secu-
rity Symposium (NDSS 15). Internet Society, Feb. 2015.

(Cited on pages 21, 23, 52, 66, 70, 95, 96, 99, 101, 112, 119, and 127.)

A. Kamisinski and C. Fung, “FlowMon: Detecting malicious switches in software-defined
networks,” in Proceedings of the 2015 ACM Workshop on Automated Decision Making for Active
Cyber Defense (SafeConfig '15). ACM, 2015, pp. 39-45.

(Cited on pages 21 and 22.)

H. Wang, L. Xu, and G. Gu, “FloodGuard: a DoS attack prevention extension in software-
defined networks,” in Proceedings of the 2015 IEEE/IFIP International Conference on Depend-
able Systems and Networks (DSN ’15). 1EEE, 2015, pp. 239-250.

(Cited on pages 21 and 24.)

A. Khurshid, W. Zhou, M. Caesar, and P. B. Godfrey, “VeriFlow: Verifying network-wide
invariants in real time,” ACM SIGCOMM Computer Communication Review, vol. 42, no. 4,

Pp. 467-472, Sep. 2012.

158

[97]

[100]

[101]

[102]

[103]

[104]

[105]

(Cited on pages 21, 23, 64, 70, 97, and 128.)

P. Kazemian, M. Chan, H. Zeng, G. Varghese, N. McKeown, and S. Whyte, “Real time network
policy checking using header space analysis,” in Proceedings of the 2013 USENIX Symposium
on Networked Systems Design and Implementation (NSDI ’13). USENIX Association, 2013,

pp- 99-111.
(Cited on pages 21, 23, 64, and 128.)

T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu, R. Ramanathan, Y. Iwata,
H. Inoue, T. Hama, and S. Shenker, “Onix: A distributed control platform for large-scale
production networks,” in Proceedings of the 2010 USENIX Symposium on Operating Systems
Design and Implementation (OSDI '10). USENIX Association, 2010.

(Cited on page 22.)

A.R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and S. Banerjee, “DevoFlow:
Scaling flow management for high-performance networks,” in Proceedings of the 2011 ACM
Special Interest Group on Data Communication Conference (SIGCOMM ’11). ACM, 2011, pp.
254—-265.

(Cited on page 22.)

A. Tootoonchian and Y. Ganjali, “HyperFlow: A distributed control plane for OpenFlow,’
in Proceedings of the 2010 USENIX Internet Network Management Workshop/Workshop on
Research on Enterprise Networking (INM/WREN ’10). USENIX Association, 2010.

(Cited on page 22.)

E Botelho, A. Bessani, F. M. V. Ramos, and P. Ferreira, “On the design of practical fault-
tolerant SDN controllers,” in Proceedings of the 2014 IEEE European Workshop on Software
Defined Networks (EWSDN ’14). 1EEE, 2014.

(Cited on pages 22, 30, 32, and 36.)

N. Katta, H. Zhang, M. Freedman, and]. Rexford, “Ravana: Controller fault-tolerance in
software-defined networking,” in Proceedings of the 2015 ACM SIGCOMM Symposium on SDN
Research (SOSR ’15). ACM, 2015.

(Cited on pages 22, 30, 32, and 36.)

P. Kazemian, G. Varghese, and N. McKeown, “Header space analysis: Static checking for net-
works,” in Proceedings of the 2012 USENIX Symposium on Networked Systems Design and Im-
plementation (NSDI ’12). USENIX Association, 2012.

(Cited on pages 23, 115, and 128.)

H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B. Godfrey, and S. T. King, “Debugging the
data plane with Anteater,” in Proceedings of the 2011 ACM Special Interest Group on Data Com-
munication Conference (SIGCOMM ’11). ACM, 2011.

(Cited on pages 24 and 128.)

M. Canini, D. Venzano, P. Peresini, D. Kosti¢, and]. Rexford, “A NICE way to test OpenFlow

applications,” in Proceedings of the 2012 USENIX Symposium on Networked Systems Design
and Implementation (NSDI '12). USENIX Association, 2012, pp. 127-140.

159

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

(Cited on pages 24, 64, 66, 70, 95, 97, and 128.)

T. Ball, N. Bjerner, A. Gember, S. Itzhaky, A. Karbyshev, M. Sagiv, M. Schapira, and A. Val-
adarsky, “VeriCon: Towards verifying controller programs in software-defined networks,” in
Proceedings of the 2014 ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI '14). ACM, 2014.

(Cited on pages 24 and 128.)

J. Miserez, P. Bielik, A. El-Hassany, L. Vanbever, and M. Vechev, “SDNRacer: Detecting con-
currency violations in software-defined networks,” in Proceedings of the 2015 ACM SIGCOMM
Symposium on SDN Research (SOSR 15). ACM, 2015.

(Cited on pages 24 and 128.)

X.S.Sun, A. Agarwal, and T. S. E. Ng, “Controlling race conditions in OpenFlow to accelerate
application verification and packet forwarding,” IEEE Transactions on Network and Service
Management, vol. 12, no. 2, pp. 263-277, 2015.

(Cited on page 24.)

L. Xu, J. Huang, S. Hong, J. Zhang, and G. Gu, “Attacking the brain: Races in the SDN con-
trol plane,” in Proceedings of the 2017 USENIX Security Symposium (Security ’17). USENIX
Association, 2017.

(Cited on pages 24, 67, 70, 96, and 128.)

C. Scott, A. Wundsam, B. Raghavan, A. Panda, A. Or,]. Lai, E. Huang, Z. Liu, A. El-Hassany,
S. Whitlock, H. Acharya, K. Zarifis, and S. Shenker, “Troubleshooting blackbox SDN con-
trol software with minimal causal sequences,” in Proceedings of the 2014 ACM Special Interest
Group on Data Communication Conference (SIGCOMM 14). ACM, 2014.

(Cited on pages 24, 66, 97, and 128.)

S. Jero, X. Bu, C. Nita-Rotaru, H. Okhravi, R. Skowyra, and S. Fahmy, “BEADS: Automated
attack discovery in OpenFlow-based SDN systems,” in Proceedings of the 2017 International
Symposium on Research in Attacks, Intrusions and Defenses (RAID ’17), 2017.

(Cited on pages 24, 64, 67, 70, and 97.)

S.Lee, C. Yoon, C. Lee, S. Shin, V. Yegneswaran, and P. Porras, “DELTA: A security assessment
framework for software-defined networks,” in Proceedings of the 2017 Network and Distributed
System Security Symposium (NDSS ’17). Internet Society, Feb. 2017.

(Cited on pages 24, 40, 64, 66, 67, 70, and 97.)

C. Lee and S. Shin, “SHIELD: An automated framework for static analysis of SDN applica-
tions,” in Proceedings of the 2016 ACM International Workshop on Security in Software Defined
Networks & Network Function Virtualization (SDN-NFV Security 16). ACM, 2016, pp. 29—

34.
(Cited on pages 25, 52, 63, 67, and 96.)

C. Lee, C. Yoon, S. Shin, and S. K. Cha, “INDAGO: A new framework for detecting mali-
cious SDN applications,” in Proceedings of the 2018 IEEE International Conference on Network
Protocols (ICNP 18). IEEE, Sep. 2018.

160

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

(Cited on pages 25, 67, 75, 96, 127, and 131.)

N. Foster, M. J. Freedman, R. Harrison, J. Rexford, M. L. Meola, and D. Walker, “Frenetic: A
high-level language for OpenFlow networks,” in Proceedings of the 2010 ACM Workshop on
Programmable Routers for Extensible Services of Tomorrow (PRESTO ’10). ACM, 2010, pp.
6:1-6:6.

(Cited on pages 25, 63, and 71.)

C. Monsanto, J. Reich, N. Foster, J. Rexford, and D. Walker, “Composing software defined
networks,” in Proceedings of the 2013 USENIX Symposium on Networked Systems Design and
Implementation (NSDI ’13). USENIX Association, 2013, pp. 1-13.

(Cited on pages 25, 63, and 71.)

C. Monsanto, N. Foster, R. Harrison, and D. Walker, “A compiler and run-time system for
network programming languages,” in ACM SIGPLAN Notices, vol. 47, no.1. ACM, 2012, pp.
217-230.

(Cited on pages 25, 63, and 71.)

R. Soulé, S. Basu, P. J. Marandi, F. Pedone, R. Kleinberg, E. G. Sirer, and N. Foster, “Merlin: A
language for provisioning network resources,” in Proceedings of the 2014 ACM Conference on
Emerging Networking Experiment and Technologies (CONEXT 14). ACM, 2014, pp. 213-226.
(Cited on page 25.)

C. J. Anderson, N. Foster, A. Guha, J.-B. Jeannin, D. Kozen, C. Schlesinger, and D. Walker,
“NetKAT: Semantic foundations for networks,” in ACM SIGPLAN Notices, vol. 49, no. 1.
ACM, 2014, pp. 113-126.

(Cited on pages 25, 63, and 71.)

T. Nelson, A. D. Ferguson, M. J. Scheer, and S. Krishnamurthi, “Tierless programming and
reasoning for software-defined networks,” in Proceedings of the 2014 USENIX Symposium on
Networked Systems Design and Implementation (NSDI '14). USENIX Association, Apr. 2014,
Pp- 519-531.

(Cited on page 25.)

L. Ryzhyk, N. Bjerner, M. Canini, J.-B. Jeannin, C. Schlesinger, D. B. Terry, and G. Vargh-
ese, “Correct by construction networks using stepwise refinement,” in Proceedings of the 2017
USENIX Symposium on Networked Systems Design and Implementation (NSDI ’17). USENIX
Association, Mar. 2017.

(Cited on pages 25 and 128.)

B.E. Ujcich, A. Miller, A. Bates, and W. H. Sanders, “Towards an accountable software-defined
networking architecture,” in Proceedings of the 2017 IEEE International Conference on Network
Softwarization (NetSoft '17). 1EEE, July 2017.

(Cited on pages 25, 64, and 127.)

A. Wundsam, D. Levin, S. Seetharaman, and A. Feldmann, “OFRewind: Enabling record and
replay troubleshooting for networks,” in Proceedings of the 2011 USENIX Annual Technical
Conference (ATC '11). USENIX Association, 2011.

161

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

(Cited on pages 25 and 128.)

N. Handigol, B. Heller, V. Jeyakumar, D. Mazieres, and N. McKeown, “I know what your
packet did last hop: Using packet histories to troubleshoot networks,” in Proceedings of
the 2014 USENIX Symposium on Networked Systems Design and Implementation (NSDI ’14).
USENIX Association, Apr. 2014, pp. 71-85.

(Cited on page 25.)

N. Handigol, B. Heller, V. Jeyakumar, D. Maziéres, and N. McKeown, “Where is the debugger
for my software-defined network?” in Proceedings of the 2012 ACM SIGCOMM Workshop on
Hot Topics in Software Defined Networking (HotSDN 12). ACM, 2012.

(Cited on pages 25 and 128.)

R. May, A. El-Hassany, L. Vanbever, and M. Vechev, “BigBug: Practical concurrency analysis
for SDN,” in Proceedings of the 2017 ACM SIGCOMM Symposium on SDN Research (SOSR ’17).
ACM, 2017.

(Cited on pages 25 and 128.)

R. Birkner, D. Drachsler-Cohen, L. Vanbever, and M. Vechev, “Net2Text: Query-guided sum-
marization of network forwarding behaviors,” in Proceedings of the 2018 USENIX Symposium
on Networked Systems Design and Implementation (NSDI "18). USENIX Association, Apr.
2018.

(Cited on pages 25 and 128.)

X. Li, Y. Yu, K. Bu, Y. Chen, J. Yang, and R. Quan, “Thinking inside the box: Differential
fault localization for SDN control plane,” in Proceedings of the 2019 IFIP/IEEE International
Symposium on Integrated Network Management (IM ’19). 1EEE, April 2019.

(Cited on pages 25 and 128.)

H. Wang, G. Yang, P. Chinprutthiwong, L. Xu, Y. Zhang, and G. Gu, “Towards fine-grained
network security forensics and diagnosis in the SDN era,” in Proceedings of the 2018 ACM
Conference on Computer and Communications Security (CCS 18). ACM, 2018.

(Cited on pages 26, 67, 70, 79, 97, 100, 103, 104, 112, 114, 121, 122, and 127.)

Y. Wu, A. Haeberlen, W. Zhou, and B. T. Loo, “Answering why-not queries in software-defined
networks with negative provenance,” in Proceedings of the 2013 ACM Workshop on Hot Topics
in Networks (HotNets '13). ACM, 2013.

(Cited on pages 26, 100, and 127.)

Y. Wu, M. Zhao, A. Haeberlen, W. Zhou, and B. T. Loo, “Diagnosing missing events in dis-
tributed systems with negative provenance,” in Proceedings of the 2014 ACM Special Interest
Group on Data Communication Conference (SIGCOMM ’14). ACM, 2014, pp. 383-394.
(Cited on pages 26, 64, 97, 100, 105, and 127.)

Y. Wu, A. Chen, A. Haeberlen, W. Zhou, and B. T. Loo, “Automated network repair with
meta provenance,” in Proceedings of the 2015 ACM Workshop on Hot Topics in Networks (Hot-
Nets 15). ACM, 2015, pp. 26:1-26:7.
(Cited on pages 26, 64, 97, 105, and 127.)

162

[133]

[134]

[135]

[136]

(137]

[138]

[139]

[140]

[141]

[142]

A.R. Yumerefendi and J. S. Chase, “Trust but verify: Accountability for network services,” in
Proceedings of the 2004 ACM SIGOPS European Workshop, 2004.
(Cited on page 28.)

A. R. Yumerefendi and J. S. Chase, “The role of accountability in dependable distributed sys-
tems,” in Proceedings of the 2005 USENIX Workshop on Hot Topics in System Dependability
(HotDep ’05). USENIX Association, 2005.

(Cited on page 28.)

J. L. Mashaw, “Accountability and institutional design: Some thoughts on the grammar of
governance,” in Public Accountability: Designs, Dilemmas, and Experience, M. W. Dowdle,
Ed. Cambridge University Press, 2006, pp. 115-156.

(Cited on pages 28 and 29.)

A. Haeberlen, “A case for the accountable cloud,” ACM SIGOPS Operating Systems Review,
vol. 44, no. 2, pp. 52-57, Apr. 2010.
(Cited on pages 30 and 35.)

Open Networking Foundation, “OF-CONFIG 127 2014. [Online].
Available: https://www.opennetworking.org/images/stories/downloads/sdn-resources/
onf-specifications/openflow- config/of-config-1.2.pdf

(Cited on page 31.)

P. Buneman, S. Khanna, and W. C. Tan, “Why and where: A characterization of data prove-
nance, in Proceedings of the 2001 International Conference on Database Theory (ICDT ’o1),
2001.

(Cited on page 31.)

Y. L. Simmbhan, B. Plale, and D. Gannon, “A survey of data provenance in e-science,” ACM
SIGMOD Record, vol. 34, no. 3, Sep. 2005.
(Cited on page 31.)

A. Haeberlen, P. Kouznetsov, and P. Druschel, “PeerReview: Practical accountability for dis-
tributed systems,” in Proceedings of the 2007 ACM Symposium on Operating Systems Principles
(SOSP ’07). ACM, 2007.

(Cited on page 31.)

A. Dwaraki, S. Seetharaman, S. Natarajan, and T. Wolf, “GitFlow: Flow revision management
for software-defined networks,” in Proceedings of the 2015 ACM SIGCOMM Symposium on
SDN Research (SOSR ’15). ACM, 2015, pp. 6:1-6:6.

(Cited on pages 31, 36, 64, 100, and 127.)

>

S. A. Crosby and D. S. Wallach, “Efficient data structures for tamper-evident logging,” in Pro-
ceedings of the 2009 USENIX Security Symposium (Security ‘o9). USENIX Association, 2009.
(Cited on page 31.)

163

https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow-config/of-config-1.2.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow-config/of-config-1.2.pdf

[143]

(144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

M. Castro and B. Liskov, “Practical Byzantine fault tolerance,” in Proceedings of the 1999
USENIX Symposium on Operating Systems Design and Implementation (OSDI "99). USENIX
Association, 1999.
(Cited on page 32.)

W. Zhou, Q. Fei, A. Narayan, A. Haeberlen, B. T. Loo, and M. Sherr, “Secure network prove-
nance,” in Proceedings of the 2011 ACM Symposium on Operating Systems Principles (SOSP ’11).
ACM, 2011, pp. 295-310.
(Cited on pages 32 and 64.)

L. Jacquin, A. L. Shaw, and C. Dalton, “Towards trusted software-defined networks using a
hardware-based integrity measurement architecture,” in Proceedings of the 2015 IEEE Interna-
tional Conference on Network Softwarization (NetSoft '15). IEEE, 2015.

(Cited on pages 32 and 36.)

Council of the European Union, “Regulation (EU) 2015/2120,” in Official Journal of the Euro-
pean Union, vol. L 310, 2015.
(Cited on page 33.)

E B. Schneider, “Accountability for perfection,” IEEE Security and Privacy, vol. 7, no. 2, Mar.
2009.
(Cited on page 33.)

C. E. Landwehr, “A national goal for cyberspace: Create an open, accountable Internet,” IEEE
Security and Privacy, vol. 7, no. 3, May 2009.
(Cited on page 33.)

Ethereum Project, “Ethereum white paper: A next-generation smart contract and
decentralized application platform,” (Accessed 7 Jan. 2017). [Online]. Available: https:
//github.com/ethereum/wiki/wiki/White-Paper

(Cited on pages 33 and 35.)

Y. Zhang, N. Beheshti, and R. Manghirmalani, “NetRevert: Rollback recovery in SDN,” in
Proceedings of the 2014 ACM SIGCOMM Workshop on Hot Topics in Software Defined Net-
working (HotSDN ’14). ACM, 2014.

(Cited on pages 34 and 36.)

A. Dixit, F. Hao, S. Mukherjee, T. Lakshman, and R. Kompella, “Towards an elastic distributed
SDN controller,” in Proceedings of the 2013 ACM SIGCOMM Workshop on Hot Topics in Soft-
ware Defined Networking (HotSDN ’13). ACM, 2013.

(Cited on pages 34 and 36.)

Hewlett-Packard Enterprise, “HPE SDN app store,” (Accessed 7 Jan. 2017). [Online].
Available: https://marketplace.saas.hpe.com/sdn
(Cited on pages 34 and 65.)

164

https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
https://marketplace.saas.hpe.com/sdn

[153]

[154]

[155]

[156]

[157]

(158]

[159]

[160]

[161]

[162]

A. Bates, K. R. B. Butler, and T. Moyer, “Take only what you need: Leveraging mandatory
access control policy to reduce provenance storage costs,” in Proceedings of the 2015 USENIX
International Workshop on the Theory and Practice of Provenance (TaPP 15). USENIX As-
sociation, 2015.

(Cited on page 36.)

International Data Corporation, “SDN market to experience strong growth over next several
years, according to IDC,” https://www.idc.com/getdoc.jsp?containerld=prUS41005016, Feb.
2016.

(Cited on page 37.)

S. Lee, C. Yoon, and S. Shin, “The smaller, the shrewder: A simple malicious application can
kill an entire SDN environment,” in Proceedings of the 2016 ACM International Workshop on
Security in Software Defined Networks & Network Function Virtualization (SDN-NFV Secu-
rity ’16). ACM, 2016, pp. 23-28.

(Cited on pages 38, 42, and 63.)

M. C. Dacier, H. Konig, R. Cwalinski, F. Kargl, and S. Dietrich, “Security challenges and
opportunities of software-defined networking,” IEEE Security & Privacy, vol. 15, no. 2, pp.
96-100, March 2017.

(Cited on pages 38, 42, and 63.)

N. Hardy, “The confused deputy: (Or why capabilities might have been invented),” ACM
SIGOPS Operating Systems Review, vol. 22, no. 4, pp. 36-38, Oct. 1988.
(Cited on page 38.)

A. Sabelfeld and A. C. Myers, “Language-based information-flow security,” IEEE Journal on
Selected Areas in Communications, vol. 21, no. 1, pp. 5-19, Jan 2003.
(Cited on pages 38, 41, and 42.)

Open Networking Foundation, “ONOS in action,” 2018. [Online]. Available: https:
//onosproject.org/in-action/
(Cited on pages 40, 46, 68, and 101.)

Open Networking Foundation, “Security advisories: ONOS,” 2018. [Online]. Available:
https://wiki.onosproject.org/display/ ONOS/Security+advisories
(Cited on page 40.)

T. Pasquier, J. Singh, D. Eyers, and J. Bacon, “CamFlow: Managed data-sharing for cloud
services,” IEEE Transactions on Cloud Computing, vol. 5, no. 3, 2017.
(Cited on pages 41, 53, and 61.)

K.]J. Biba, “Integrity considerations for secure computer systems,” MITRE Corporation, Tech.
Rep. MTR-3153, June 1975.
(Cited on pages 41 and 62.)

165

https://www.idc.com/getdoc.jsp?containerId=prUS41005016
https://onosproject.org/in-action/
https://onosproject.org/in-action/
https://wiki.onosproject.org/display/ONOS/Security+advisories

[163]

[164]

[165]

[166]

[167]

[168]

[169]

[170]

[171]

[172]

(173]

A. C. Myers and B. Liskov, “A decentralized model for information flow control,” in Proceed-
ings of the 1997 ACM Symposium on Operating Systems Principles (SOSP '97). ACM, 1997,
pp- 129-142.

(Cited on pages 41 and 53.)

J. C. Mogul, A. AuYoung, S. Banerjee, L. Popa, J. Lee, J. Mudigonda, P. Sharma, and Y. Turner,
“Corybantic: Towards the modular composition of SDN control programs,” in Proceedings of
the 2013 ACM Workshop on Hot Topics in Networks (HotNets '13). ACM, 2013, pp. 1:1-1:7.
(Cited on page 42.)

R.J. Lipton and L. Snyder, “A linear time algorithm for deciding subject security,” Journal of
the ACM, vol. 24, no. 3, pp. 455-464, July 1977.
(Cited on page 43.)

Open Networking Foundation, “GitHub - opennetworkinglab/onos at 1.10.0,” 2018. [Online].
Available: https://github.com/opennetworkinglab/onos/tree/1.10.0
(Cited on pages 46 and 137.)

D. van Bruggen, “JavaParser: For parsing Java code,” 2018. [Online]. Available: http:
/ljavaparser.org/
(Cited on page 50.)

Flick Team, “C abstract syntax tree (CAST) representation,” 2018. [Online]. Available:
http://www.cs.utah.edu/flux/flick/current/doc/guts/gutsch6.html
(Cited on page 50.)

Python Software Foundation, “ast—abstract syntax trees,” 2018. [Online]. Available:
https://docs.python.org/3/library/ast.html
(Cited on page 50.)

D. J. Tian, A. Bates, K. R. Butler, and R. Rangaswami, “ProvUSB: Block-level provenance-
based data protection for USB storage devices,” in Proceedings of the 2016 ACM Conference on
Computer and Communications Security (CCS ’16). ACM, 2016, pp. 242-253.

(Cited on page 53.)

L. T. Foster,].-S. Vockler, M. Wilde, and Y. Zhao, “Chimera: A virtual data system for repre-
senting, querying, and automating data derivation,” in Proceedings of the 2002 Scientific and
Statistical Database Management Conference (SSDBM "02), July 2002.

(Cited on page 54.)

J. Widom, “Trio: A system for integrated management of data, accuracy, and lineage,” Stan-
ford InfoLab, Tech. Rep. 2004-40, Aug. 2004.
(Cited on page 54.)

L. Chiticariu, W.-C. Tan, and G. Vijayvargiya, “DBNotes: A Post-it system for relational
databases based on provenance,” in Proceedings of the 2005 ACM Special Interest Group on
Management of Data Conference (SSIGMOD ’05). ACM, June 2005.

(Cited on page 54.)

166

https://github.com/opennetworkinglab/onos/tree/1.10.0
http://javaparser.org/
http://javaparser.org/
http://www.cs.utah.edu/flux/flick/current/doc/guts/gutsch6.html
https://docs.python.org/3/library/ast.html

[174]

[175]

[176]

[177]

[178]

[179]

[180]

[181]

[182]

B. Glavic and G. Alonso, “Perm: Processing provenance and data on the same data model
through query rewriting,” in Proceedings of the 2009 IEEE International Conference on Data
Engineering (ICDE 09), Mar. 2009.

(Cited on page 54.)

B. Arab, D. Gawlick, V. Radhakrishnan, H. Guo, and B. Glavic, “A generic provenance mid-
dleware for database queries, updates, and transactions,” in Proceedings of the 2014 USENIX
International Workshop on the Theory and Practice of Provenance (TaPP '14). USENIX As-
sociation, June 2014.

(Cited on page 54.)

D.J. Pohly, S. McLaughlin, P. McDaniel, and K. Butler, “Hi-Fi: Collecting high-fidelity whole-
system provenance,” in Proceedings of the 2012 Annual Computer Security Applications Con-
ference (ACSAC ’12), 2012, pp. 259-268.

(Cited on pages 54 and 128.)

K.-K. Muniswamy-Reddy, D. A. Holland, U. Braun, and M. Seltzer, “Provenance-aware stor-
age systems,” in Proceedings of the 2006 USENIX Annual Technical Conference (ATC ’06).
USENIX Association, 2006.

(Cited on page 54.)

S. Ma, X. Zhang, and D. Xu, “ProTracer: Towards practical provenance tracing by alternating
between logging and tainting,” in Proceedings of the 2016 Network and Distributed System
Security Symposium (NDSS 16). Internet Society, Feb. 2016.

(Cited on pages 54 and 128.)

A. Bates, D. Tian, K. R. B. Butler, and T. Moyer, “Trustworthy whole-system provenance
for the Linux kernel,” in Proceedings of the 2015 USENIX Security Symposium (Security ’15).
USENIX Association, 2015, pp. 319-334.

(Cited on pages 54 and 128.)

M. Backes, S. Bugiel, and S. Gerling, “Scippa: System-centric IPC provenance on Android,” in
Proceedings of the 2014 Annual Computer Security Applications Conference (ACSAC ’14), 2014,
pp- 36-45.

(Cited on page 54.)

M. Dietz, S. Shekhar, Y. Pisetsky, A. Shu, and D. S. Wallach, “Quire: Lightweight provenance
for smart phone operating systems,” in Proceedings of the 2011 USENIX Security Symposium
(Security '11). USENIX Association, 2011.

(Cited on pages 54 and 62.)

K. H. Lee, X. Zhang, and D. Xu, “High accuracy attack provenance via binary-based execu-
tion partition,” in Proceedings of the 2013 Network and Distributed System Security Symposium
(NDSS 13). Internet Society, Feb. 2013.

(Cited on pages 54 and 128.)

[183]

(185]

[186]

[187]

[188]

[189]

[190]

[191]

[192]

S. Ma, J. Zhai, E. Wang, K. H. Lee, X. Zhang, and D. Xu, “MPI: Multiple perspective attack
investigation with semantic aware execution partitioning,” in Proceedings of the 2017 USENIX
Security Symposium (Security '17). USENIX Association, Aug. 2017.

(Cited on pages 54 and 128.)

L. Moreau and P. Groth, Provenance: An introduction to PROV, ser. Synthesis Lectures on the
Semantic Web: Theory and Technology, J. Hendler and Y. Ding, Eds. Morgan & Claypool
Publishers, 2013, vol. 3, no. 4.

(Cited on pages 54, 106, and 139.)

B. E. Ujcich, A. Bates, and W. H. Sanders, “A provenance model for the European Union
General Data Protection Regulation,” in Proceedings of the 2018 International Provenance and
Annotation Workshop (IPAW ’18), 2018.

(Cited on page 54.)

P. Missier, K. Belhajjame, and J. Cheney, “The W3C PROV family of specifications for mod-
elling provenance metadata,” in Proceedings of the 2013 ACM International Conference on Ex-
tending Database Technology (EDBT 13), 2013, pp. 773-776.

(Cited on pages 54 and 106.)

A. Gehani and D. Tariq, “SPADE: Support for provenance auditing in distributed environ-
ments,” in Proceedings of the 2012 ACM/IFIP/USENIX International Conference on Middle-
ware (Middleware ’12). Springer-Verlag New York, 2012, pp. 101-120.

(Cited on pages 54 and 128.)

A. Bates, D. J. Pohly, and K. R. B. Butler, “Secure and trustworthy provenance collection for
digital forensics,” in Digital Fingerprinting, C. Wang, R. M. Gerdes, Y. Guan, and S. K. Kasera,
Eds. Springer New York, 2016, pp. 141-176.

(Cited on page 54.)

D. van Heesch, “Doxygen: Generate documentation from source code,” 2018. [Online].
Available: http://www.stack.nl/~dimitri/doxygen/
(Cited on page 57.)

B. Naveh, “JGraphT,” 2018. [Online]. Available: https://jgrapht.org/
(Cited on pages 57, 85, and 120.)

OpenDaylight Project, “OpenDaylight documentation: Authentication, authorization and
accounting (AAA) services,” 2018. [Online]. Available: https://docs.opendaylight.org/en/
stable-boron/user-guide/authentication-and-authorization-services.html

(Cited on page 60.)

Project Floodlight, “Floodlight controller: MemoryStorageSource (dev),” 2018. [Online].
Available: https://floodlight.atlassian.net/wiki/spaces/floodlightcontroller/pages/1343633/
MemoryStorageSource+Dev

(Cited on page 60.)

168

http://www.stack.nl/~dimitri/doxygen/
https://jgrapht.org/
https://docs.opendaylight.org/en/stable-boron/user-guide/authentication-and-authorization-services.html
https://docs.opendaylight.org/en/stable-boron/user-guide/authentication-and-authorization-services.html
https://floodlight.atlassian.net/wiki/spaces/floodlightcontroller/pages/1343633/MemoryStorageSource+Dev
https://floodlight.atlassian.net/wiki/spaces/floodlightcontroller/pages/1343633/MemoryStorageSource+Dev

(193]

[194]

[195]

[196]

[197]

[198]

[199]

[200]

[201]

[202]

A. Banerjee and D. A. Naumann, “Stack-based access control and secure information flow;’
Journal of Functional Programming, vol. 15, no. 2, pp. 131-177, Mar. 2005.
(Cited on page 61.)

A. Banerjee and D. A. Naumann, “History-based access control and secure information flow;’
in Proceedings of the 2004 International Workshop on Construction and Analysis of Safe, Secure,
and Interoperable Smart Devices (CASSIS "04). Berlin, Heidelberg: Springer-Verlag, 2005,
pp. 27-48.

(Cited on page 61.)

A. C. Myers, L. Zheng, S. Zdancewic, S. Chong, and N. Nystrom, “Jif: Java + information
flow;” 2018. [Online]. Available: http://www.cs.cornell.edu/jif/
(Cited on page 61.)

W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and A. N. Sheth, “TaintDroid:
An information-flow tracking system for realtime privacy monitoring on smartphones,” in
Proceedings of the 2010 USENIX Symposium on Operating Systems Design and Implementation
(OSDI 10). USENIX Association, 2010, pp. 393—-407.

(Cited on pages 62 and 96.)

A. P. Felt, H. J. Wang, A. Moshchuk, S. Hanna, and E. Chin, “Permission re-delegation: At-
tacks and defenses,” in Proceedings of the 2011 USENIX Security Symposium (Security ’11).
USENIX Association, 2011.

(Cited on page 62.)

A. Nadkarni, B. Andow, W. Enck, and S. Jha, “Practical DIFC enforcement on Android,” in
Proceedings of the 2016 USENIX Security Symposium (Security 16). ~ USENIX Association,
2016, pp. 1119-1136.

(Cited on page 62.)

L. Bauer, S. Cai, L. Jia, T. Passaro, M. Stroucken, and Y. Tian, “Run-time monitoring and
formal analysis of information flows in Chromium,” in Proceedings of the 2015 Network and
Distributed System Security Symposium (NDSS ’15). Internet Society, Feb. 2015.

(Cited on page 62.)

T. Fraser, “LOMAC: Low water-mark integrity protection for COTS environments,” in Pro-
ceedings of the 2000 IEEE Symposium on Security and Privacy (S&P 'o0). 1EEE, May 2000,
pp. 230-245.

(Cited on page 62.)

A. Voellmy, H. Kim, and N. Feamster, “Procera: A language for high-level reactive network
control,” in Proceedings of the 2012 ACM SIGCOMM Workshop on Hot Topics in Software De-
fined Networking (HotSDN ’12), ACM. ACM, 2012, pp. 43-48.

(Cited on pages 63 and 71.)

A. Chen, Y. Wu, A. Haeberlen, W. Zhou, and B. T. Loo, “The good, the bad, and the differ-
ences: Better network diagnostics with differential provenance,” in Proceedings of the 2016
ACM Special Interest Group on Data Communication Conference (SSIGCOMM 16). ACM,
2016, pp. 115-128.

169

http://www.cs.cornell.edu/jif/

[203]

[204]

[205]

[206]

[207]

[208]

[209]

[210]

[211]

[212]

(Cited on pages 64, 97, 105, and 127.)

C. Min, S. Kashyap, B. Lee, C. Song, and T. Kim, “Cross-checking semantic correctness: The
case of finding file system bugs,” in Proceedings of the 2015 ACM Symposium on Operating
Systems Principles (SOSP ’15). ACM, 2015.

(Cited on page 66.)

D. Hovemeyer and W. Pugh, “Finding more null pointer bugs, but not too many, in Proceed-
ings of the 2007 ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools
and Engineering (PASTE "07). ACM, 2007.

(Cited on page 66.)

PMD, “PMD: An extensible cross-language static code analyzer,” 2019. [Online]. Available:
https://pmd.github.io/
(Cited on page 66.)

A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem, C. Henri-Gros, A. Kamsky,
S. McPeak, and D. Engler, “A few billion lines of code later: Using static analysis to find bugs
in the real world,” Communications of the ACM, vol. 53, no. 2, pp. 66-75, Feb. 2010.

(Cited on page 66.)

X. Wang, H. Chen, Z. Jia, N. Zeldovich, and M. F. Kaashoek, “Improving integer security
for systems with KINT,” in Proceedings of the 2012 USENIX Symposium on Operating Systems
Design and Implementation (OSDI ’12). USENIX Association, 2012.

(Cited on page 66.)

B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, “Why don’t software developers use
static analysis tools to find bugs?” in Proceedings of the 2013 ACM International Conference on
Software Engineering (ICSE 13). ACM, 2013.

(Cited on page 66.)

J. Toman and D. Grossman, “Taming the static analysis beast,” in Proceedings of the 2017 Sum-
mit on Advances in Programming Languages (SNAPL ’17), B. S. Lerner, R. Bodik, and S. Krish-
namurthi, Eds. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017, pp. 18:1-18:14.
(Cited on pages 66 and 81.)

J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program dependence graph and its use in
optimization,” ACM Transactions on Programming Languages, vol. 9, no. 3, pp. 319-349, July
1987.

(Cited on page 71.)

E Yamaguchi, N. Golde, D. Arp, and K. Rieck, “Modeling and discovering vulnerabilities with
code property graphs,” in Proceedings of the 2014 IEEE Symposium on Security and Privacy
(S&+P ’14). 1EEE, 2014.
(Cited on pages 71 and 97.)

L. Kaufman and P. . Rousseeuw, Finding Groups in Data: An Introduction to Cluster Analysis.
John Wiley & Sons, 1990.
(Cited on page 75.)

170

https://pmd.github.io/

[213]

[214]

[215]

[216]

[217]

[218]

[219]

[220]

[221]

[222]

G. Jeh and J. Widom, “SimRank: A measure of structural-context similarity;” in Proceedings
of the 2002 ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD ’02). ACM, 2002.
(Cited on pages 75 and 147.)

L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang, “CHEX: Statically vetting Android apps for compo-
nent hijacking vulnerabilities,” in Proceedings of the 2012 ACM Conference on Computer and
Communications Security (CCS ’12). ACM, 2012.

(Cited on pages 79, 96, and 97.)

V. B. Livshits and M. S. Lam, “Finding security vulnerabilities in Java applications with static
analysis,” in Proceedings of the 2005 USENIX Security Symposium (Security ’o5). USENIX
Association, 2005.

(Cited on pages 83 and 97.)

T. Avgerinos, S. K. Cha, B. L. T. Hao, and D. Brumley, “AEG: Automatic exploit generation,”
in Proceedings of the 2011 Network and Distributed System Security Symposium (NDSS ’11).
Internet Society, Feb. 2011.

(Cited on pages 83 and 96.)

E. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pret-
tenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Per-
rot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal of Machine Learn-
ing Research, vol. 12, pp. 2825-2830, Nov. 2011.

(Cited on page 85.)

R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan, “Soot: A Java byte-
code optimization framework,” in Proceedings of the 2010 IBM Center for Advanced Studies
Conference (CASCON ’10), 2010.

(Cited on page 85.)

M. L. Fredman and R. E. Tarjan, “Fibonacci heaps and their uses in improved network opti-
mization algorithms,” Journal of the ACM, vol. 34, no. 3, pp. 596-615, July 1987.
(Cited on page 85.)

Y. Shoshitaishvili, R. E Wang, A. Dutcher, C. Hauser, J. Grosen, C. Salls, N. Stephens, N. Re-
dini, C. Kruegel, and G. Vigna, “angr, a binary analysis framework,” http://angr.io/, 2017.
(Cited on page 85.)

E.Bodden, A. Sewe, J. Sinschek, H. Oueslati, and M. Mezini, “Taming reflection: Aiding static
analysis in the presence of reflection and custom class loaders,” in Proceedings of the 2011 ACM
International Conference on Software Engineering (ICSE ’11). ACM, 2011.

(Cited on page 85.)

P. Biondi, “Scapy: Packet crafting for Python2 and Python3,” 2019. [Online]. Available:
https://scapy.net/
(Cited on page 86.)

171

http://angr.io/
https://scapy.net/

[223]

[224]

[225]

[226]

[227]

[228]

[229]

[230]

[231]

[232]

Open Networking Foundation, “Virtual BNG,” 2019. [Online]. Available: https://wiki.
onosproject.org/display/ONOS/Virtual+BNG
(Cited on page 93.)

Open Networking Foundation, “Virtual network subsystem,” 2019. [Online]. Available: https:
/Iwiki.onosproject.org/download/attachments/6357849/VirtualNetworkSubsystem.pdf
(Cited on page 93.)

Open Networking Foundation, “Overlay VPNs and Gluon,” 2019. [Online]. Available:
https://wiki.onosproject.org/display/ONOS/Overlay+VPNs+and+Gluon
(Cited on page 94.)

S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon, D. Octeau, and
P. McDaniel, “FlowDroid: Precise context, flow, field, object-sensitive and lifecycle-aware
taint analysis for Android apps,” in Proceedings of the 2014 ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI ’14). ACM, 2014.

(Cited on page 96.)

L. Li, A. Bartel, T. E Bissyandé,]. Klein, Y. Le Traon, S. Arzt, S. Rasthofer, E. Bodden,
D. Octeau, and P. McDaniel, “IccTA: Detecting inter-component privacy leaks in Android
apps, in Proceedings of the 2015 ACM International Conference on Software Engineering
(ICSE ’15). ACM, 2015.

(Cited on page 96.)

C. Qian, X. Luo, Y. Le, and G. Gu, “VulHunter: Toward discovering vulnerabilities in Android
applications,” IEEE Micro, vol. 35, no. 1, pp. 44-53, Jan. 2015.
(Cited on page 96.)

M. Zhang and H. Yin, “AppSealer: Automatic generation of vulnerability-specific patches for
preventing component hijacking attacks in Android applications,” in Proceedings of the 2014
Network and Distributed System Security Symposium (NDSS '14). Internet Society, Feb. 2014.
(Cited on page 96.)

M. Zhang, Y. Duan, H. Yin, and Z. Zhao, “Semantics-aware Android malware classification
using weighted contextual API dependency graphs,” in Proceedings of the 2014 ACM Confer-
ence on Computer and Communications Security (CCS '14). ACM, 2014.

(Cited on page 96.)

W. Yang, X. Xiao, B. Andow, S. Li, T. Xie, and W. Enck, “AppContext: Differentiating malicious
and benign mobile app behaviors using context,” in Proceedings of the 2015 ACM International
Conference on Software Engineering (ICSE ’15). ACM, 2015.

(Cited on page 96.)

S. Bandhakavi, S. T. King, P. Madhusudan, and M. Winslett, “VEX: Vetting browser exten-
sions for security vulnerabilities,” in Proceedings of the 2010 USENIX Security Symposium (Se-
curity 10). USENIX Association, 2010.

(Cited on page 97.)

172

https://wiki.onosproject.org/display/ONOS/Virtual+BNG
https://wiki.onosproject.org/display/ONOS/Virtual+BNG
https://wiki.onosproject.org/download/attachments/6357849/Virtual NetworkSubsystem.pdf
https://wiki.onosproject.org/download/attachments/6357849/Virtual NetworkSubsystem.pdf
https://wiki.onosproject.org/display/ONOS/Overlay+VPNs+and+Gluon

[233]

[234]

[235]

[237]

[238]

[239]

[240]

[241]

[242]

A. Barth, A. P. Felt, P. Saxena, and A. Boodman, “Protecting browsers from extension vul-
nerabilities,” in Proceedings of the 2010 Network and Distributed System Security Symposium
(NDSS 10). Internet Society, Feb. 2010.

(Cited on page 97.)

N. Carlini, A. P. Felt, and D. Wagner, “An evaluation of the Google Chrome extension security
architecture,” in Proceedings of the 2012 USENIX Security Symposium (Security 12). USENIX
Association, 2012.
(Cited on page 97.)

L. Liu, X. Zhang, G. Yan, and S. Chen, “Chrome extensions: Threat analysis and counter-
measures, in Proceedings of the 2012 Network and Distributed System Security Symposium
(NDSS ’12). Internet Society, Feb. 2012.

(Cited on page 97.)

S. Yang, D. Yan, H. Wu, Y. Wang, and A. Rountev, “Static control-flow analysis of user-driven
callbacks in Android applications,” in Proceedings of the 2015 ACM International Conference

on Software Engineering (ICSE 15). ACM, 2015.
(Cited on page 97.)

M. Monperrus and M. Mezini, “Detecting missing method calls as violations of the majority
rule,” ACM Transactions on Software Engineering and Methodology, vol. 22, no. 1, pp. 7:1-7:25,
Mar. 2013.

(Cited on page 97.)

MITRE, “CVE-2018-12691: Time-of-check to time-of-use (TOCTOU) race condition in
org.onosproject.acl” [Online]. Available: https://cve.mitre.org/cgi-bin/cvename.cgi?name=
2018-12691

(Cited on page 101.)

Y. Wu, A. Chen, and L. T. X. Phan, “Zeno: Diagnosing performance problems with temporal
provenance,” in Proceedings of the 2019 USENIX Symposium on Networked Systems Design and
Implementation (NSDI '19). USENIX Association, 2019.

(Cited on pages 105 and 128.)

W. U. Hassan, S. Guo, D. Li, Z. Chen, K. Jee, Z. Li, and A. Bates, “NoDoze: Combatting
threat alert fatigue with automated provenance triage.” in Proceedings of the 2019 Network
and Distributed System Security Symposium (NDSS 19). Internet Society, Feb. 2019.

(Cited on pages 117 and 128.)

Y. Xie, K.-K. Muniswamy-Reddy, D. D. E. Long, A. Amer, D. Feng, and Z. Tan, “Compressing
provenance graphs,” in Proceedings of the 2011 USENIX International Workshop on the Theory
and Practice of Provenance (TaPP '11). USENIX Association, June 2011.

(Cited on page 127.)

Y. Xie, K.-K. Muniswamy-Reddy, D. Feng, Y. Li, and D. D. E. Long, “Evaluation of a hybrid
approach for efficient provenance storage,” ACM Transactions on Storage, vol. 9, no. 4, pp.
14:1-14:29, Nov. 2013.

173

https://cve.mitre.org/cgi-bin/cvename.cgi?name=2018-12691
https://cve.mitre.org/cgi-bin/cvename.cgi?name=2018-12691

[243]

[244]

[245]

[246]

(247]

[248]

[249]

[250]

[251]

(Cited on page 127.)

A. Chapman, H. Jagadish, and P. Ramanan, “Efficient provenance storage,” in Proceedings
of the 2008 ACM Special Interest Group on Management of Data Conference (SIGMOD ’08).
ACM, 2008.

(Cited on page 127.)

K. H. Lee, X. Zhang, and D. Xu, “LogGC: Garbage collecting audit log,” in Proceedings of the
2013 ACM Conference on Computer and Communications Security (CCS 13). ACM, 2013.
(Cited on page 127.)

W. U. Hassan, M. Lemay, N. Aguse, A. Bates, and T. Moyer, “Towards scalable cluster auditing
through grammatical inference over provenance graphs,” in Proceedings of the 2018 Network
and Distributed System Security Symposium (NDSS 18). Internet Society, Feb. 2018.

(Cited on page 127.)

A. Gehani, H. Kazmi, and H. Irshad, “Scaling SPADE to ‘big provenance;” in Proceedings of
the 2016 USENIX International Workshop on the Theory and Practice of Provenance (TaPP ’16).
USENIX Association, 2016.

(Cited on page 127.)

Y. Xie, D. Feng, Z. Tan, L. Chen, K.-K. Muniswamy-Reddy, Y. Li, and D. D. Long, “A hybrid
approach for efficient provenance storage,” in Proceedings of the 2012 ACM Conference on
Information and Knowledge Management (CIKM ’12). ACM, 2012, pp. 1752-1756.

(Cited on page 127.)

V. H. Dixit, A. Doupé, Y. Shoshitaishvili, Z. Zhao, and G.-J. Ahn, “AIM-SDN: Attacking in-
formation mismanagement in SDN-datastores,” in Proceedings of the 2018 ACM Conference
on Computer and Communications Security (CCS ’18). ACM, 2018.

(Cited on page 127.)

Y. Wu, A. Chen, A. Haeberlen, W. Zhou, and B. T. Loo, “Automated bug removal for software-
defined networks,” in Proceedings of the 2017 USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI '17). USENIX Association, 2017.

(Cited on page 127.)

A. Chen, Y. Wu, A. Haeberlen, W. Zhou, and B. T. Loo, “Differential provenance: Better net-
work diagnostics with reference events,” in Proceedings of the 2015 ACM Workshop on Hot
Topics in Networks (HotNets ’15). ACM, 2015.

(Cited on page 127.)

B. T. Loo, T. Condie, M. Garofalakis, D. E. Gay,]. M. Hellerstein, P. Maniatis, R. Ramakrish-
nan, T. Roscoe, and I. Stoica, “Declarative networking: Language, execution and optimiza-
tion,” in Proceedings of the 2006 ACM Special Interest Group on Management of Data Confer-
ence (SIGMOD ’06). ACM, 2006.

(Cited on page 127.)

174

[252]

[253]

[254]

[255]

[256]

[257]

[258]

[259]

[260]

[261]

W. U. Hassan, M. A. Noureddine, P. Datta, and A. Bates, “Omegalog: High-fidelity attack
investigation via transparent multi-layer log analysis,” in Proceedings of the 2020 Network and
Distributed System Security Symposium (NDSS ’20). Internet Society, Feb. 2020.

(Cited on page 128.)

S. Ma, K. H. Lee, C. H. Kim, J. Rhee, X. Zhang, and D. Xu, “Accurate, low cost and
instrumentation-free security audit logging for Windows,” in Proceedings of the 2015 Annual
Computer Security Applications Conference (ACSAC ’15), 2015.

(Cited on page 128.)

S. Ma, J. Zhai, Y. Kwon, K. H. Lee, X. Zhang, G. Ciocarlie, A. Gehani, V. Yegneswaran, D. Xu,
and S. Jha, “Kernel-supported cost-effective audit logging for causality tracking,” in Proceed-
ings of the 2018 USENIX Annual Technical Conference (ATC ’18). USENIX Association, 2018.
(Cited on page 128.)

Y. i, S. Lee, E. Downing, W. Wang, M. Fazzini, T. Kim, A. Orso, and W. Lee, “Rain: Refinable
attack investigation with on-demand inter-process information flow tracking,” in Proceedings
of the 2017 ACM Conference on Computer and Communications Security (CCS '17). ACM,
2017.

(Cited on page 128.)

Y. Kwon, E Wang, W. Wang, K. H. Lee, W.-C. Lee, S. Ma, X. Zhang, D. Xu, S. Jha, and G. Cio-
carlie, “MCI: Modeling-based causality inference in audit logging for attack investigation,”
in Proceedings of the 2018 Network and Distributed System Security Symposium (NDSS ’18).
Internet Society, Feb. 2018.

(Cited on page 128.)

M. N. Hossain, S. Sheikhi, and R. Sekar, “Combating dependence explosion in forensic anal-
ysis using alternative tag propagation semantics,” in Proceedings of the 2020 IEEE Symposium
on Security and Privacy (S&P 20). 1EEE, 2020.

(Cited on page 128.)

T. Kim, X. Wang, N. Zeldovich, and M. F. Kaashoek, “Intrusion recovery using selective re-
execution,” in Proceedings of the 2010 USENIX Symposium on Operating Systems Design and
Implementation (OSDI 10). USENIX Association, 2010.

(Cited on page 128.)

S. T. King and P. M. Chen, “Backtracking intrusions,” in Proceedings of the 2003 ACM Sympo-
sium on Operating Systems Principles (SOSP 03). ACM, 2003.
(Cited on page 128.)

S. T. King, Z. M. Mao, D. G. Lucchetti, and P. M. Chen, “Enriching intrusion alerts through
multi-host causality;” in Proceedings of the 2005 Network and Distributed System Security Sym-
posium (NDSS °05). Internet Society, 2005.

(Cited on page 128.)

R. Hasan, R. Sion, and M. Winslett, “Preventing history forgery with secure provenance,’
ACM Transactions on Storage, vol. 5, no. 4, pp. 12:1-12:43, Dec. 2009.

175

[262]

[263]

[264]

[266]

[267]

[268]

[269]

[270]

(Cited on page 128.)

K.-K. Muniswamy-Reddy, U. Braun, D. A. Holland, P. Macko, D. Maclean, D. Margo,
M. Seltzer, and R. Smogor, “Layering in provenance systems,” in Proceedings of the 2009
USENIX Annual Technical Conference (ATC ’09). USENIX Association, 2009.

(Cited on page 128.)

S. M. Milajerdi, R. Gjomemo, B. Eshete, R. Sekar, and V. Venkatakrishnan, “HOLMES: Real-
time APT detection through correlation of suspicious information flows,” in Proceedings of
the 2019 IEEE Symposium on Security and Privacy (S&P 19). 1EEE, 2019.

(Cited on page 128.)

Q. Wang, W. U. Hassan, A. Bates, and C. Gunter, “Fear and logging in the Internet of things,”
in Proceedings of the 2018 Network and Distributed System Security Symposium (NDSS ’18).
Internet Society, Feb. 2018.

(Cited on page 128.)

M. N. Hossain, S. M. Milajerdi, J. Wang, B. Eshete, R. Gjomemo, R. Sekar, S. D. Stoller, and
V. Venkatakrishnan, “SLEUTH: Real-time attack scenario reconstruction from COTS audit
data,” in Proceedings of the 2017 USENIX Security Symposium (Security ’17). USENIX Asso-
ciation, 2017.

(Cited on page 128.)

K. Pei, Z. Gu, B. Saltaformaggio, S. Ma, E Wang, Z. Zhang, L. Si, X. Zhang, and D. Xu, “HER-
CULE: Attack story reconstruction via community discovery on correlated log graph,” in Pro-
ceedings of the 2016 Annual Computer Security Applications Conference (ACSAC ’16), 2016.
(Cited on page 128.)

A. Bates, W. U. Hassan, K. Butler, A. Dobra, B. Reaves, P. Cable, T. Moyer, and N. Schear,
“Transparent web service auditing via network provenance functions,” in Proceedings of the
2017 International World Wide Web Conference (WWW ’17), 2017.

(Cited on page 128.)

M. Stamatogiannakis, P. Groth, and H. Bos, “Looking inside the black-box: Capturing data
provenance using dynamic instrumentation,” in Proceedings of the 2015 International Prove-
nance and Annotation Workshop (IPAW ’15), 2015.

(Cited on page 128.)

D. Tarig, M. Alj, and A. Gehani, “Towards automated collection of application-level data
provenance,” in Proceedings of the 2012 USENIX International Workshop on the Theory and
Practice of Provenance (TaPP "12). USENIX Association, 2012.

(Cited on page 128.)

E. Gessiou, V. Pappas, E. Athanasopoulos, A. D. Keromytis, and S. Ioannidis, “Towards a uni-
versal data provenance framework using dynamic instrumentation,” in Information Security
and Privacy Research, D. Gritzalis, S. Furnell, and M. Theoharidou, Eds. Springer Berlin
Heidelberg, 2012.

(Cited on page 128.)

[271]

[272]

[273]

[274]

[275]

[276]

[277]

A. Greenberg, “The untold story of NotPetya, the most devastating cyberattack
in history,” Aug. 2018, Wired. [Online]. Available: https://www.wired.com/story/
notpetya-cyberattack-ukraine-russia-code-crashed-the-world/

(Cited on page 133.)

R. Sommer and V. Paxson, “Outside the closed world: On using machine learning for net-
work intrusion detection,” in Proceedings of the 2010 IEEE Symposium on Security and Privacy
(S¢+P ’10), 2010, pp. 305-316.

(Cited on page 134.)

S. Kodeswaran, M. T. Arashloo, P. Tammana, and J. Rexford, “Tracking P4 program execution
in the data plane,” in Proceedings of the 2020 ACM SIGCOMM Symposium on SDN Research
(SOSR ’20). ACM, 2020, pp. 117-122.

(Cited on page 134.)

M. V. Dumitru, D. Dumitrescu, and C. Raiciu, “Can we exploit buggy P4 programs?” in
Proceedings of the 2020 ACM SIGCOMM Symposium on SDN Research (SOSR 20). ACM,
2020, pp. 62-68.

(Cited on page 134.)

Open Networking Foundation, “Enabling Security-Mode ONOS,” 2018. [Online]. Available:
https://wiki.onosproject.org/display/ONOS/Enabling+Security-Mode+ONOS
(Cited on page 137.)

Open Networking Foundation, “Creating security-mode compatible ONOS applica-
tions,” 2018. [Online]. Available: https://wiki.onosproject.org/display/ ONOS/Creating+
Security-Mode+compatible+ ONOS+applications

(Cited on page 137.)

Hewlett-Packard Enterprise, “Software defined networking,” Aug. 2018. [Online]. Available:
https://www.hpe.com/us/en/networking/sdn.html
(Cited on page 142.)

177

https://www.wired.com/story/notpetya-cyberattack-ukraine-russia-code-crashed-the-world/
https://www.wired.com/story/notpetya-cyberattack-ukraine-russia-code-crashed-the-world/
https://wiki.onosproject.org/display/ONOS/Enabling+Security-Mode+ONOS
https://wiki.onosproject.org/display/ONOS/Creating+Security-Mode+compatible+ONOS+applications
https://wiki.onosproject.org/display/ONOS/Creating+Security-Mode+compatible+ONOS+applications
https://www.hpe.com/us/en/networking/sdn.html

	List of Tables
	List of Figures
	List of Algorithms
	List of Abbreviations
	Chapter 1 Introduction
	1.1 Overview
	1.2 Contributions
	1.3 Organization

	Chapter 2 Background
	2.1 SDN Architecture
	2.1.1 Controllers and the Control Plane
	2.1.2 Apps and the Application Plane
	2.1.3 Forwarding Devices and the Data Plane

	2.2 SDN Architecture Attacks
	2.2.1 Flooding
	2.2.2 Information Leakage
	2.2.3 Policy Modification
	2.2.4 Spoofing

	2.3 SDN Architecture Defenses
	2.3.1 Runtime Defenses
	2.3.2 Pre-Runtime Defenses
	2.3.3 Post-Runtime Defenses

	Chapter 3 Accountability in Software-Defined Networking
	3.1 Introduction
	3.2 Designing an Accountable SDN Architecture
	3.2.1 Who Is Accountable to Whom?
	3.2.2 What Is One Accountable For?
	3.2.3 What Process Assures Accountability Mechanisms?
	3.2.4 By What Standards Should Accountability Be Judged?
	3.2.5 What Are the Effects of Breaching Standards?

	3.3 Case Study: Accountable SDN Applications
	3.3.1 Scenario
	3.3.2 Analysis
	3.3.3 Remarks

	3.4 Conclusion

	Chapter 4 Control plane cross-app poisoning
	4.1 Introduction
	4.2 Threat Model
	4.3 Challenges
	4.3.1 Information Flow Models for Integrity
	4.3.2 SDN Control Plane Information Flow Challenges

	4.4 Cross-App Poisoning
	4.4.1 RBAC Policy Model
	4.4.2 Cross-App Information Flow Graph
	4.4.3 Cross-App Attack Vectors
	4.4.4 Cross-App Poisoning Gadgets

	4.5 Cross-App Poisoning Case Study: Security-Mode ONOS
	4.5.1 CAP Model for Security-Mode ONOS
	4.5.2 CAP Gadgets in Security-Mode ONOS
	4.5.3 Example Attack: Packet Modification and Flow Rule Insertion for Data Plane DoS
	4.5.4 Remarks

	4.6 Information Flow Control Policies
	4.7 ProvSDN
	4.7.1 Data Provenance Model
	4.7.2 System Components
	4.7.3 Implementation
	4.7.4 Attack Evaluation
	4.7.5 Performance Evaluation

	4.8 Discussion
	4.9 Related Work
	4.10 Conclusion

	Chapter 5 Control plane event-based vulnerabilities
	5.1 Introduction
	5.2 Challenges
	5.2.1 Malicious Data Plane Input
	5.2.2 Event-Driven Apps
	5.2.3 Event Flow Interactions

	5.3 EventScope Overview
	5.4 Event Use Analysis
	5.4.1 Event Use Methodology
	5.4.2 Event Use Results

	5.5 Event Flow Analysis
	5.5.1 Event Flow Graph Generation
	5.5.2 Vulnerability Validation
	5.5.3 Performance Results

	5.6 Implementation
	5.7 ONOS Vulnerability Evaluation Results
	5.7.1 Data Plane Access Control Bypass with acl and fwd (CVE-2018-12691)
	5.7.2 Data Plane Access Control Bypass with acl, mobility, and fwd (CVE-2019-11189)
	5.7.3 Other Vulnerabilities

	5.8 Discussion
	5.8.1 SDN Design Concerns
	5.8.2 Limitations

	5.9 Related Work
	5.10 Conclusion

	Chapter 6 Control plane causal analysis
	6.1 Introduction
	6.2 Challenges
	6.2.1 Motivating Attack Example
	6.2.2 Existing Tool Limitations
	6.2.3 Our Approach

	6.3 PicoSDN Provenance Model
	6.3.1 Definitions
	6.3.2 Model Design Choices

	6.4 PicoSDN Threat Model
	6.5 PicoSDN Design
	6.5.1 Runtime Phase
	6.5.2 Investigation Phase

	6.6 Implementation
	6.7 Evaluation
	6.7.1 Performance Evaluation
	6.7.2 Security Analysis 1: Motivating Example
	6.7.3 Security Analysis 2: Host Migration
	6.7.4 Security Analysis 3: Cross-App Attack

	6.8 Discussion
	6.9 Related Work
	6.10 Conclusion

	Chapter 7 Conclusions
	7.1 Review of Contributions
	7.2 Overall Takeaways
	7.3 Future Research

	Appendix A Publications Related to the Dissertation
	Appendix B ProvSDN
	B.1 Security-Mode ONOS Details
	B.1.1 Configuration
	B.1.2 App, Permission, and Object Details

	B.2 Selected Code for Reactive Forwarding App
	B.3 W3C PROV-DM Representations
	B.4 Implementing ProvSDN on Other Controllers
	B.4.1 Java-Based Open-Source Controllers
	B.4.2 Python-Based Open-Source Controllers
	B.4.3 C/C++-Based Open-Source Controllers
	B.4.4 Closed-Source Controllers

	Appendix C EventScope
	C.1 ONOS Application Structure
	C.1.1 App Components
	C.1.2 App Analysis

	C.2 ONOS Event Flow Graph Example
	C.3 Number of Clusters and Detection Rate

	References

