812 research outputs found

    Investigation of sympatric speciation as the outcome of competition for food resource by means of an individual-based modeling approach

    Get PDF
    Sympatric speciation, the emergence of new species in the absence of geographic isolation, is one of the most controversial issues in evolutionary biology. Although today the plausibility of the occurrence of sympatric speciation is theoretically acknowledged, its underlying mechanisms are still unknown. We applied a modeling approach with three trophic levels (primary resource, prey, and predator) and supplied prey species with two different food resources (Food 1 and Food 2) to track prey lineage through evolutionary time to detect any indicators of the occurrence of sympatric speciation caused by specialized food consumption. Whereas, Food 1 was the more available resource, Food 2 had higher energy content. Initially, when there was not yet any specific food specialization, Food 1 consumption rate was significantly higher compared to Food 2. Eventually, around time step 22,000 and after the emergence of food consumption specialization, the exploitation of Food 2 was higher than Food 1 in spite of the fact that prey individuals were more frequently encountered with Food 1 than Food 2. Drawing a comparison between simulations with only one food resource and simulations with two available food resources revealed that complete reproductive isolation caused by disruptive selective pressure exerted by adaptation to different resources plays a curial role in the emergence of sympatric species. Machine learning techniques were also employed to identify the shared patterns among sympatric species. Results showed that for most lineages sympatric divergence has occurred at the beginning of the process of the emergence of specialized use. If not, these species have possessed a high spatial distribution and had to meet two conditions to be diverged sympatrically: i. high genetic diversity and ii. a large population size

    Wireless E-Nose Sensors to Detect Volatile Organic Gases through Multivariate Analysis

    Get PDF
    Gas sensors are critical components when adhering to health safety and environmental policies in various manufacturing industries, such as the petroleum and oil industry; scent and makeup production; food and beverage manufacturing; chemical engineering; pollution monitoring. In recent times, gas sensors have been introduced to medical diagnostics, bioprocesses, and plant disease diagnosis processes. There could be an adverse impact on human health due to the mixture of various gases (e.g., acetone (A), ethanol (E), propane (P)) that vent out from industrial areas. Therefore, it is important to accurately detect and differentiate such gases. Towards this goal, this paper presents a novel electronic nose (e-nose) detection method to classify various explosive gases. To detect explosive gases, metal oxide semiconductor (MOS) sensors are used as reliable tools to detect such volatile gases. The data received from MOS sensors are processed through a multivariate analysis technique to classify different categories of gases. Multivariate analysis was done using three variants—differential, relative, and fractional analyses—in principal components analysis (PCA). The MOS sensors also have three different designs: loading design, notch design, and Bi design. The proposed MOS sensor-based e-nose accurately detects and classifies three different gases, which indicates the reliability and practicality of the developed system. The developed system enables discrimination of these gases from the mixture. Based on the results from the proposed system, authorities can take preventive measures to deal with these gases to avoid their potential adverse impacts on employee health

    Case-based maintenance : Structuring and incrementing the Case.

    No full text
    International audienceTo avoid performance degradation and maintain the quality of results obtained by the case-based reasoning (CBR) systems, maintenance becomes necessary, especially for those systems designed to operate over long periods and which must handle large numbers of cases. CBR systems cannot be preserved without scanning the case base. For this reason, the latter must undergo maintenance operations.The techniques of case base’s dimension optimization is the analog of instance reduction size methodology (in the machine learning community). This study links these techniques by presenting case-based maintenance in the framework of instance based reduction, and provides: first an overview of CBM studies, second, a novel method of structuring and updating the case base and finally an application of industrial case is presented.The structuring combines a categorization algorithm with a measure of competence CM based on competence and performance criteria. Since the case base must progress over time through the addition of new cases, an auto-increment algorithm is installed in order to dynamically ensure the structuring and the quality of a case base. The proposed method was evaluated through a case base from an industrial plant. In addition, an experimental study of the competence and the performance was undertaken on reference benchmarks. This study showed that the proposed method gives better results than the best methods currently found in the literature

    HOMOE: A Memory-Based and Composition-Aware Framework for Zero-Shot Learning with Hopfield Network and Soft Mixture of Experts

    Full text link
    Compositional Zero-Shot Learning (CZSL) has emerged as an essential paradigm in machine learning, aiming to overcome the constraints of traditional zero-shot learning by incorporating compositional thinking into its methodology. Conventional zero-shot learning has difficulty managing unfamiliar combinations of seen and unseen classes because it depends on pre-defined class embeddings. In contrast, Compositional Zero-Shot Learning uses the inherent hierarchies and structural connections among classes, creating new class representations by combining attributes, components, or other semantic elements. In our paper, we propose a novel framework that for the first time combines the Modern Hopfield Network with a Mixture of Experts (HOMOE) to classify the compositions of previously unseen objects. Specifically, the Modern Hopfield Network creates a memory that stores label prototypes and identifies relevant labels for a given input image. Following this, the Mixture of Expert models integrates the image with the fitting prototype to produce the final composition classification. Our approach achieves SOTA performance on several benchmarks, including MIT-States and UT-Zappos. We also examine how each component contributes to improved generalization

    Radar signal categorization using a neural network

    Get PDF
    Neural networks were used to analyze a complex simulated radar environment which contains noisy radar pulses generated by many different emitters. The neural network used is an energy minimizing network (the BSB model) which forms energy minima - attractors in the network dynamical system - based on learned input data. The system first determines how many emitters are present (the deinterleaving problem). Pulses from individual simulated emitters give rise to separate stable attractors in the network. Once individual emitters are characterized, it is possible to make tentative identifications of them based on their observed parameters. As a test of this idea, a neural network was used to form a small data base that potentially could make emitter identifications

    FEATURE SELECTION FOR INTRUSION DETECTION SYSTEM IN A CLUSTER-BASED HETEROGENEOUS WIRELESS SENSOR NETWORK

    Get PDF
    Wireless sensor network (WSN) has become one of the most promising networking solutions with exciting new applications for the near future. Notwithstanding the resource constrain of WSNs, it has continued to enjoy widespread deployment.  Security in WSN, however, remains an ongoing research trend as the deployed sensor nodes (SNs) are susceptible to various security challenges due to its architecture, hostile deployment environment and insecure routing protocols. In this work, we propose a feature selection method by combining three filter methods; Gain ratio, Chi-squared and ReliefF (triple-filter) in a cluster-based heterogeneous WSN prior to classification. This will increase the classification accuracy and reduce system complexity by extracting 14 important features from the 41 original features in the dataset. An intrusion detection benchmark dataset, NSL-KDD, is used for performance evaluation by considering detection rate, accuracy and the false alarm rate. Results obtained show that our proposed method can effectively reduce the number of features with a high classification accuracy and detection rate in comparison with other filter methods. In addition, this proposed feature selection method tends to reduce the total energy consumed by SNs during intrusion detection as compared with other filter selection methods, thereby extending the network lifetime and functionality for a reasonable period
    corecore