15,159 research outputs found

    A review of R-packages for random-intercept probit regression in small clusters

    Get PDF
    Generalized Linear Mixed Models (GLMMs) are widely used to model clustered categorical outcomes. To tackle the intractable integration over the random effects distributions, several approximation approaches have been developed for likelihood-based inference. As these seldom yield satisfactory results when analyzing binary outcomes from small clusters, estimation within the Structural Equation Modeling (SEM) framework is proposed as an alternative. We compare the performance of R-packages for random-intercept probit regression relying on: the Laplace approximation, adaptive Gaussian quadrature (AGQ), Penalized Quasi-Likelihood (PQL), an MCMC-implementation, and integrated nested Laplace approximation within the GLMM-framework, and a robust diagonally weighted least squares estimation within the SEM-framework. In terms of bias for the fixed and random effect estimators, SEM usually performs best for cluster size two, while AGQ prevails in terms of precision (mainly because of SEM's robust standard errors). As the cluster size increases, however, AGQ becomes the best choice for both bias and precision

    Modeling Binary Time Series Using Gaussian Processes with Application to Predicting Sleep States

    Full text link
    Motivated by the problem of predicting sleep states, we develop a mixed effects model for binary time series with a stochastic component represented by a Gaussian process. The fixed component captures the effects of covariates on the binary-valued response. The Gaussian process captures the residual variations in the binary response that are not explained by covariates and past realizations. We develop a frequentist modeling framework that provides efficient inference and more accurate predictions. Results demonstrate the advantages of improved prediction rates over existing approaches such as logistic regression, generalized additive mixed model, models for ordinal data, gradient boosting, decision tree and random forest. Using our proposed model, we show that previous sleep state and heart rates are significant predictors for future sleep states. Simulation studies also show that our proposed method is promising and robust. To handle computational complexity, we utilize Laplace approximation, golden section search and successive parabolic interpolation. With this paper, we also submit an R-package (HIBITS) that implements the proposed procedure.Comment: Journal of Classification (2018

    Multiple Imputation Ensembles (MIE) for dealing with missing data

    Get PDF
    Missing data is a significant issue in many real-world datasets, yet there are no robust methods for dealing with it appropriately. In this paper, we propose a robust approach to dealing with missing data in classification problems: Multiple Imputation Ensembles (MIE). Our method integrates two approaches: multiple imputation and ensemble methods and compares two types of ensembles: bagging and stacking. We also propose a robust experimental set-up using 20 benchmark datasets from the UCI machine learning repository. For each dataset, we introduce increasing amounts of data Missing Completely at Random. Firstly, we use a number of single/multiple imputation methods to recover the missing values and then ensemble a number of different classifiers built on the imputed data. We assess the quality of the imputation by using dissimilarity measures. We also evaluate the MIE performance by comparing classification accuracy on the complete and imputed data. Furthermore, we use the accuracy of simple imputation as a benchmark for comparison. We find that our proposed approach combining multiple imputation with ensemble techniques outperform others, particularly as missing data increases

    A General Spatio-Temporal Clustering-Based Non-local Formulation for Multiscale Modeling of Compartmentalized Reservoirs

    Full text link
    Representing the reservoir as a network of discrete compartments with neighbor and non-neighbor connections is a fast, yet accurate method for analyzing oil and gas reservoirs. Automatic and rapid detection of coarse-scale compartments with distinct static and dynamic properties is an integral part of such high-level reservoir analysis. In this work, we present a hybrid framework specific to reservoir analysis for an automatic detection of clusters in space using spatial and temporal field data, coupled with a physics-based multiscale modeling approach. In this work a novel hybrid approach is presented in which we couple a physics-based non-local modeling framework with data-driven clustering techniques to provide a fast and accurate multiscale modeling of compartmentalized reservoirs. This research also adds to the literature by presenting a comprehensive work on spatio-temporal clustering for reservoir studies applications that well considers the clustering complexities, the intrinsic sparse and noisy nature of the data, and the interpretability of the outcome. Keywords: Artificial Intelligence; Machine Learning; Spatio-Temporal Clustering; Physics-Based Data-Driven Formulation; Multiscale Modelin

    Geoadditive hazard regression for interval censored survival times

    Get PDF
    The Cox proportional hazards model is the most commonly used method when analyzing the impact of covariates on continuous survival times. In its classical form, the Cox model was introduced in the setting of right-censored observations. However, in practice other sampling schemes are frequently encountered and therefore extensions allowing for interval and left censoring or left truncation are clearly desired. Furthermore, many applications require a more flexible modeling of covariate information than the usual linear predictor. For example, effects of continuous covariates are likely to be of nonlinear form or spatial information is to be included appropriately. Further extensions should allow for time-varying effects of covariates or covariates that are themselves time-varying. Such models relax the assumption of proportional hazards. We propose a regression model for the hazard rate that combines and extends the above-mentioned features on the basis of a unifying Bayesian model formulation. Nonlinear and time-varying effects as well as the baseline hazard rate are modeled by penalized splines. Spatial effects can be included based on either Markov random fields or stationary Gaussian random fields. The model allows for arbitrary combinations of left, right and interval censoring as well as left truncation. Estimation is based on a reparameterisation of the model as a variance components mixed model. The variance parameters corresponding to inverse smoothing parameters can then be estimated based on an approximate marginal likelihood approach. As an application we present an analysis on childhood mortality in Nigeria, where the interval censoring framework also allows to deal with the problem of heaped survival times caused by memory effects. In a simulation study we investigate the effect of ignoring the impact of interval censored observations

    A hybrid naïve Bayes based on similarity measure to optimize the mixed-data classification

    Get PDF
    In this paper, a hybrid method has been introduced to improve the classification performance of naïve Bayes (NB) for the mixed dataset and multi-class problems. This proposed method relies on a similarity measure which is applied to portions that are not correctly classified by NB. Since the data contains a multi-valued short text with rare words that limit the NB performance, we have employed an adapted selective classifier based on similarities (CSBS) classifier to exceed the NB limitations and included the rare words in the computation. This action has been achieved by transforming the formula from the product of the probabilities of the categorical variable to its sum weighted by numerical variable. The proposed algorithm has been experimented on card payment transaction data that contains the label of transactions: the multi-valued short text and the transaction amount. Based on K-fold cross validation, the evaluation results confirm that the proposed method achieved better results in terms of precision, recall, and F-score compared to NB and CSBS classifiers separately. Besides, the fact of converting a product form to a sum gives more chance to rare words to optimize the text classification, which is another advantage of the proposed method
    • …
    corecore