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Abstract

DESIGN AND LEARNING HYBRID RADIAL BASIS FUNCTION

NETWORKS FOR HETEROGENEOUS DATA

Nouf A. Alghanmi
A thesis submitted to The University of Manchester

for the degree of Doctor of Philosophy, 2022

A heterogeneous dataset can be defined as a dataset having diverse types of fea-

tures that describe a given instance or object. Each of these features represents a piece

of valuable information. Currently, regression models limit the number of features

that can be processed at one time, which means that only a subset of the informa-

tion is considered. Consequently, their regression analysis deals with incomplete data

descriptions, which are affected by significant information loss and miss important

relationships between features.

With the rapidly increasing use of datasets containing mixed data types, current

learning techniques for this kind of dataset include pre-processing and learning phases.

The former focuses on unifying data types by transferring them into categorical or

numerical inputs or defining distance measures. The resulting data can be used in

learning models suited to its types. However, this scheme approach to dealing with

mixed data types can lead to a lack of compatibility. It may also suffer from tremendous
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data dimensions, which may overload the computation capacity of the learning model.

This study focuses on developing a regression model that can handle heterogeneous

datasets based on a radial basis function. Three main solutions are proposed. The first

solution is based on defining a heterogeneous distance measurement and then using it

to train a radial basis function network. The second solution is developing a regression

model without the need to define a distance measure or unifying data types by the

rough development of a heterogeneous radial basis function regression model that can

directly learn from heterogeneous data. As each feature has its own characteristics and

has been widely explored in the literature, a hybrid-regression model is proposed by

combining multiple regression models. With this strategy, information can be extracted

efficiently, and underlying knowledge is revealed optimally by developing a model for

each data type.

These three proposed models as a solution to the regression analysis for heteroge-

neous dataset, were evaluated using a set of mixed numerical and categorical datasets

and social media prediction data that contained numerical categorical and textual fea-

tures. The results of these models were compared to well-known regression models,

such as random forest, support vector regression, and linear regression. The best re-

sults were achieved from the hybrid-regression, where the learner’s performance was

significantly increased. This model proved effective, and its results showed that with

suitable models and simple approaches, heterogeneous data learning problems can be

solved quite easily.
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Chapter 1

Introduction

1.1 Context and Motivation

Advancements in communication and computing technology continuously generate

vast amounts of information. This has triggered an information explosion, and the sit-

uation is increasingly complex and challenging to manage as the Internet of Things

spreads. In many fields, the term Big Data is now more popular even on non-technical

environment [105]. Big data describes three main characteristics, commonly referred

to as the three Vs: volume, velocity, and variety. These aspects of big data are be-

yond the capabilities of conventional systems to handle. Volume refers to the massive

amount of data produced; velocity is the increasing data flow rate; and variety defines

the nature of collected and managed data.

The research presented in this thesis attempts to analyse the variety aspect of big

data. Variety is interpreted as the diversity of data types associated with the magnitudes

and variables that describe data. With these data, board-wide domains of problems,

situations, and processes are captured and described. Additionally, these data can be

imprecise and incomplete, introducing another heterogeneity factor. A growing need

for learning from heterogeneous information is prevalent in a wide range of domains,
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since these information sets include variables that may be scalar, vector, or of a more

complex structure with values of different types (numerical, non-numerical, images,

signals and videos) [105].

Data from Internet of Things devices or clinical records are typical examples of

information comprised of heterogeneous data types. The clinical record of a patient can

contain qualitative scalar variables, such as age or gender; quantitative scalar variables

such as temperature and pressure; imprecise magnitudes, such as level of pain and

radiographic images; signal magnitudes such as an EKG or ECG; and numerical scalar

variables such as blood pressure, and documents (for example laboratory reports and

blood tests) that may be interpreted as time series data. The objective of this study is

to deal explicitly with the data heterogeneity (i.e. different types of features describing

same objects). It mainly deals with the complexity of multiple data types describing

data/information.

Although these variables describe the same object (patient), they have different

types of data, and each one represents a piece of valuable and partial information.

Several regression models, including linear regression, support vector regression, and

neural networks, are well-defined and validated to analyse numerical data efficiently

[53, 64]. These models limit the number of variables/features being processed at a

time, which means that only a subset of the information is considered. Consequently,

the analysis will deal with incomplete data description, meaning it will be affected

by significant information loss and missing important relationships between variables.

Furthermore, a complete analysis of such data will demonstrate information that oth-

erwise would not be disclosed if only a subset of information is considered during

the analysis. As the current regression models do not currently address this area of

development, there is a gap to be filled.

There are two types of machine learning algorithms: supervised and unsupervised.
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A key difference between supervised and unsupervised learning is the presence of tar-

get values. Supervised machine learning models can be divided into classification and

regression models that classify or predict response values based on their inputs. The

former predicts qualitative information while the latter predicts quantitative informa-

tion [5]. In the context of big data, as heterogeneous data with different variables are

becoming increasingly prevalent, learning from such data is receiving greater atten-

tion. Researchers have considered this issue and proposed some solutions to address

the problem. The first solution is a pre-processing step, where the data are unified so

they can be trained by machine learning models that accept that type of data. One

of the most well-known unifying techniques is the encoding/embedding/transforming

method, which gives categorical features a numerical representation. As this method is

simple, fast, and does not lose underlying information or data, it suffers from tremen-

dous data dimensions when the categorical cardinality is high, which overloads the

computation capacity of the learning model [62, 63]. Discretisation is another well-

known unifying technique, which interprets numerical variables as categorical vari-

ables by splitting the numerical value range into sub-ranges, and each numerical value

is consistently associated with an interval [120]. Discretisation can be considered a

data reduction technique since it reduces the indefinite domain of numerical attributes

to a restricted set of categorical values [86]. This thesis addresses the challenge of

learning from heterogeneous datasets, particularly in regression learning fields, by de-

veloping regression models that can train and learn efficiently from heterogeneous

datasets.
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1.2 Research Aim and Objectives

With regard to the heterogeneous data regression issue, the overall aims are: (i) to ex-

amine the current approaches to dealing with heterogeneous datasets and suggest sim-

ple, efficient approaches; and (ii) to design and develop regression models that learn

from heterogeneous datasets. Radial Basis Function (RBF) network is used through-

out this study as the basic model. Radial Basis Function (RBF) network is simpler

and easier to design than neural networks due to their simple and fixed three-layer

architecture. From a generalisation standpoint, RBF networks can perform well with

patterns that are not trained. The robustness of RBF networks to input noise enhances

the stability of the designed systems [116].

In more detail, the research objectives of this thesis are as follows:

1. Define a heterogeneous distance measurement to compute the distance between

two heterogeneous samples. Then use this measurement to train a Radial Basis

Function RBF model to learn from heterogeneous datasets.

2. Propose structure learning for Radial Basis Function to obtain the optimal num-

ber and locations of RBF kernels.

3. Develop a Radial Basis Function regression model that will learn directly from

heterogeneous data, thus eliminating the need to unify all data types or imple-

ment heterogeneous distance measurement.

4. Develop a simple hybrid regression model for heterogeneous datasets based

on the combination of multi-regression models. The hybrid regression model

should consider data heterogeneity and construct a proper regression model for

each distinct data type before combining their outcomes.

5. Verification and comparison of models should be performed. These proposed

models should be verified with a variety of heterogeneous datasets. The strengths
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and weaknesses of the proposed approaches should be discussed and compared

with existing state-of-the-art approaches.

1.3 Thesis Contributions

• A heterogeneous distance measure based on an attribute-weighted scheme is pro-

posed for measuring the distance between heterogeneous objects. It should be

possible to calculate the distance between two heterogeneous samples based on

this measurement.

• The RBF kernel is computed based on distances between its input samples and

its kernel centres. A heterogeneous distance measure should be defined to train

RBF on heterogeneous datasets. Moreover, a supervised clustering technique

referred to as Forward Recursive Input-Output Clustering (FRIOC) is used to

determine the optimal location and number of kernels for the RBF network.

• To learn from heterogeneous data directly, a more robust Heterogeneous Radial

Basis Function (HRBF) model is proposed that does not require the definition

of distance measurement based on constructing an RBF network with heteroge-

neous nodes at its hidden layer.

• A combination of multi-regression models, referred to as a hybrid regression

model for heterogeneous datasets, has been constructed. A simple hybrid mech-

anism is proposed in contrast to the current trend of more complicated models,

leading to the impression that complicated models are necessary for complicated

heterogeneous data. A model is proposed based on a very simple combination

mechanism of multi-regression models. It starts by choosing a regression model

that suited for each type of data. The final prediction output is then derived from

the combined results of these regression models.
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• Multiple state-of-the-art approaches have been compared with the proposed ap-

proaches for heterogeneous data regression on a set of heterogeneous data with

two and three types of data.

• Discuss the weakness and the strength of the proposed approaches and compare

them with the most common regression models such as Support Vector Regres-

sion (SVR), Random Forest (Random Forest (RF)), Linear Regression (Linear

Regression (LR)), and published results from competing models.

1.4 Thesis Structure

The rest of this thesis is organized as follows:

Chapter 2. The related work used throughout this thesis is introduced in this chapter.

The definition and the challenges of the heterogeneous dataset are first intro-

duced. A literature review of the regression approaches used to handle hetero-

geneous datasets is then presented. Following this, the most famous model for

training heterogeneous data is described. Finally, the preparation steps for the

heterogeneous datasets used throughout this thesis are described.

Chapter 3. The focus of this chapter is on developing a Radial Basis Function net-

work (RBF) with a special initialization approach to train heterogeneous datasets.

Furthermore, a distance measure for heterogeneous datasets is defined and ap-

plied to the computation of RBF kernels.

Chapter 4. This chapter develops a heterogeneous RBF network that consists of a set

of heterogeneous nodes in its hidden layer. Models consist of two main phases:

structure learning stage and parameter learning stage. In the first phase, the

optimal number of centers for each data type is determined. A heterogeneous
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RBF network is then constructed before the learning process begins. Finally,

optimum connection weights are computed between the hidden and output layers

by applying the Least Square method.

Chapter 5. This chapter develops a simple multi-regression model for heterogeneous

datasets, namely a hybrid regression model. It combines multiple regression

models to produce the final model outcome. It started by training each feature

with a well-formed learning model, followed by linearly combining their results

to create the final prediction.

Chapter 6. In this chapter, the conclusions of the study and suggestions for future

work are presented.
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Chapter 2

Background and Related Work

This chapter summarises the background and related work that is of relevance through-

out this thesis. Firstly, a literature review describing the common supervised machine

learning approaches that used for training mixed numerical and categorical data types

is provided in Section 2.1. The following sections will describe the most famous re-

gression models that deal with mixed data types, and these models will be used for

comparison with the proposed models. These models are: Support Vector Regres-

sion in Section 2.2, Decision Tree in Section 2.3, Random Forest in Section 2.4, and

Radial Basis Function in Section 2.5. Finally, this chapter is briefly summarized in

Section 2.6.

2.1 Supervised Learning on Mixed Data Type

There has been a rapid rise in the incidence of datasets containing mixed data types.

Current learning techniques for this kind of dataset include pre-processing and learn-

ing phases. The former focus either on unifying data types by transferring them into

categorical or numerical inputs, or defining distance measures. The resulting data can
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be used in learning models that are suited to its types. This scheme approach to deal-

ing with mixed data types can lead to a lack of compatibility [64]. Thus, designing

a supervised machine learning model that directly learns from mixed data (heteroge-

neous data) is a challenging task. Recently, this problem has been tackled by [64] who

proposed a classification RBF-ELM framework to manage mixed numerical and cate-

gorical data types directly. They define a distance measure for mixed data types, in the

form of a weighted sum of categorical and numerical distances. This distance measure

was then used to compute distances in RBF-ELM kernels. Additionally, [53] proposed

a hybrid regression tree model for mixed data types (numerical and categorical). These

train the categorical feature with a decision tree to predict ytree. This value represents

the contribution of categorical features in the final predicted values. After which, this

value and the numerical variables can be used to train regression models and predict

the final output. They examined five regression types, i.e., linear, ridge and lasso re-

gression, k-NN regression, and SVR model, to estimate the target values. Their model

will be used as the basis from which to evaluate our proposed model. Moreover, [4]

developed sampling filtering techniques for a classification model based on similarity

measures. The similarity space utilised Minkowski distance for numeric features, and

simple matching for categorical features. However, their method has been tested on

datasets comprising moderate amounts of data, but has not been used to evaluate a

dataset containing a significant number of samples.

2.1.1 Dealing with Categorical Data in Supervised Learning

In the literature, the term mixed data type refers to a dataset containing both numer-

ical and categorical data. State of the art machine learning algorithms are suited to

numerical data or digital data representation. In contrast, categorical features are rep-

resented by characters or words that contain a semantic meaning within them, and as
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such cannot feed directly into these models [29, 45, 3]. [3] mentions two chief charac-

teristics of categorical features: explicit semantic meaning and disabilities of inherent

mathematical operations. Notably, mathematical operations cannot be directly applied

to them. Researchers have considered this issue, and proposed some solutions to ad-

dress the problem. There are two common approaches to giving the categorical feature

a numerical representation so that it can be trained by machine learning models that

accept numerical values. The first technique is to transform categorical features into

numerical representations via encoding/embedding/transforming methods. The second

is to define a distance metric for them. A brief description of the work done to them is

detailed below:

2.1.1.1 Transforming Methods: Categorical to Numerical

One of the widely used encoding methods is one-hot encoding, which uses binary

coding to represent categorical features on a zero-one matrix [12, 74]. In One-hot

encoding, features are transformed to dimensional vectors, where each vector has a

value of 1 corresponding to one category and the rest entries are 0s [45]. Although this

method is simple, fast, and does not lose the underlying information or data, it suf-

fers from tremendous data dimensions when the categorical cardinality is high, which

overloads the computation capacity of the learning model [62, 63]. Similar to word

embedding in natural language processing, [32] combined one-hot encoding with a

neural network to develop an entity embedding method to capture the representation

of categorical values automatically. However, it required extreme computation time to

find the dimensions of the embedding layers. The bound of the dimension is between

1 and mi − 1, where mi is the number of categories in the categorical variable xi. It

requires several experiments to select the optimal value for each entity embedding di-

mension. Moreover, [12] proposed a similarity encoding scheme, which took the form

of generalisation of one-hot encoding considering similarity across categorical values.
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Recently, several efficient embedding methods have been used to define a similarity

measurement and examine different combinations of categorical features values. For

instance, a pairwise distance measure is defined in [119] to capture the relationship

between all categorical values. While the work in [29] choose the most significant

eigenvectors from a pairwise distance matrix to represent categorical features. The

study in [38] proposed transferring the categorical feature by using Separability Split

Value Transformation (SSVT) based on Separability Split Value (SSV). This method

relied on the splitting criteria of the decision tree, then upon ordering leaf nodes to rep-

resent categorical features. Subsequently, this work was improved by [62] who applied

a fine-tuning conditional probabilities method.

2.1.1.2 Discretisation Methods: Numerical to Categorical

An important aspect of discretisation is the interpretation of numerical variables as cat-

egorical ones, identifying a non-overlapping division of a continuous domain. Specifi-

cally, the numerical value range is split up into subranges, and each numerical value is

consistently associated with an interval [120, 13, 86]. Furthermore, discretisation may

also be thought of as a data reduction technique since it reduces an indefinite domain

of numerical attributes to a restricted set of categorical values [86].

For many reasons, discretisation is an essential pre-processing mechanism used by

data scientists. First, there is a demand for data discretisation since, in some cases,

machine learning models can only train categorical variables, such as C4.5 and Naive

Bayes [56]. Furthermore, discretisation can have a significant impact on learning speed

and accuracy. In addition, decision trees utilising discretisation produce more accurate,

shorter, and compact results, which can be closely examined, compared and reused

[66].

In general, a typical discretisation process is composed of four steps, as illustrated

in Fig. 2.1 [86].
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Figure 2.1: Discretisation process [66].

• Sorting. The value of the continuous attribute is sorted in ascending or descend-

ing order. Sorting is a computationally expensive process that uses an efficient

sorting algorithm with a time complexity of O (NlogN). The most used sorting

algorithm is ”QuickSort”. The sorting step should be performed only once to

permit efficiency at the beginning of the discretisation process.

• Cut-point selection. After sorting, the next step is to find the best cut-point for

the best pair of adjacent intervals to perform merging or splitting in the follow-

ing steps. An evaluation measurement or function determines the best cut-point

according to entropy, gain, performance-boosting, or any other benefit to the

output value.

• Splitting or merging. In the top-down discretisation approach, splitting occurs,

while in the bottom-down approach, interval-merging occurs. In splitting, the

36



cut point divides the range of numerical attributes into two intervals, while in

merging, it seeks to select the adjacent intervals to merge.

• Stopping Criteria. This specifies when the discretisation process should end. It

should make a trade-off between accuracy and the final lower number of inter-

vals.

Over a hundred discretisation models exist, and choosing the right one for a prob-

lem has a significant impact on performance. The goal is to obtain a nominal value for

each numerical value. In the supervised discretisation, the obtained results should have

a close association with the class label in the classification problem by using the infor-

mation from output space to decide the discretisation intervals [112, 25]. Here, we will

describe the three common discretisation approaches: Equal width, Equal frequency,

and Minimum Descriptive Length (MDL).

• Equal width. This is the simple unsupervised discretisation model that computes

the range of numerical attributes and divides it into intervals with equal length.

This will result in unbalanced intervals, with different numbers of items within

each interval, leading to certain intervals being more popular than others.

• Equal frequency. This model aims to generate intervals with a constant number

of items.

• Minimum Descriptive Length (MDL). The model finds the best cut-point based

on minimum information entropy.

Generally, the equal width and equal frequency approaches are simple and easy to im-

plement; however, finding the optimal number of intervals can be difficult [16]. Some

use random numbers, while others rely on training and error. In addition, these models

ignore the useful information provided by the output space. Nonetheless, the classi-

cal discretisation methods failed to handle big data as they are not designed to deal
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with large amounts of data. The most common discretisation approaches have been

modified by using distributed computation frameworks to resolve this issue. Compu-

tational costs should not exceed O(n) to ensure scalability even when dealing with big

data. MDL is the most common supervised discretisation method, which has been

implemented by using the multi-thread process by [23], and by using Apache Spark

[86, 85].

2.1.2 Distance Measure for Mixed Type

This section will focus on a study that developed distance measurement for mixed

numerical and categorical data types. Distance measurement in machine learning in-

volves a mathematical representation of distance functions representing how far away

two points are. A distance metric should fulfil the following three primary axioms:

1. The identity of indiscernible elements; if the distance between two points is 0,

these points are considered identical.

2. Symmetry; there is no explicit order when computing the distance between two

points.

3. Triangle inequality; such that the distance sum for any two sides, has to be

greater than or equal to any other side.

The most famous and straightforward measures for numerical data and categorical

data are Euclidean distance and matching distance, respectively. Real datasets utilis-

ing mixed categorical and numerical data are ubiquitous in the real world. The Gower

[30] similarity measure was the very first measurement introduced to compute the dis-

tance between categorical and numerical observations. Notice that similarity is another

concept related to distance,similarity = 1− distance.The Gower coefficient between

two samples i and j is computed as in Eq.(2.1).
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Si j =
∑

P
k=1 si jkδi jk

∑
P
k=1 δi jk

(2.1)

Where δi jk es a missing value indicator, which is when there are otherwise no null

value or zeroes. The si jk e matching similarity for categorical features; meanwhile, for

numerical features, the range normalised Manhattan distance is used. A modification

to the Gower distance equation was proposed by [37] to include the variance of Gower

distance, as in (2.2).

Si j =

√
∑

P
k=1 si jkδi jk

∑
P
k=1 δi jk

(2.2)

Later on, [81] Gower distance was extended to include the ordinal variables by replac-

ing another distance measure defined by Huang [42], combining the square Euclidean

distance and matching distance for numerical and categorical data, respectively, as in

(2.3).

In that equation, the dN
i j is numerical distance, dC

i j is the categorical distance, and γ is

the user-defined weight-based on the distribution of numerical variables. Soon after,

[1] defined the γ in the measure function itself as the co-occurrent distance between

two categorical values. Moreover, a generalised distance measure for categorical, nu-

merical and binary features was defined by [37]. They argue that binary variables

have different probability distributions than categorical features. Consequently, their

measurements were based on three distance metrics: Manhattan, Hamming and co-

occurrence for numerical, binary, and categorical, respectively.

di j = dN
i j + γdC

i j (2.3)
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and

dN
i j =

Pn

∑
k=1

(
xik − x jk

)2

dC
i j =

Pc

∑
k=1

δC
(
xik;x jk

)
Furthermore, a heterogeneous distance measure that includes the overlap metric

between categorical features was introduced by [111]. This distance can work only

on classification tasks where the target value is set based on distinct classes. After

a number of methods they conclude with a Heterogeneous Value Difference Metric

(HVDM) defined as:

HV DM =

√
p

∑
k=1

(
di j
)2

di j =


1 if xi or x j is unknown, else

normalised di f f (xi,x j), for numerical features

normalised vdm(xi,x j), for categorical features

They found the results were achieved by defining the normalised vdm and normalised di f f

functions as:

normalised vdm(xi,x j) =

√√√√ C

∑
c=1

∣∣∣∣∣Nk,xi,c

Nk,xi

−
Nk,x j,c

Nk,x j

∣∣∣∣∣
2

normalised di f f (xi,x j) =
|xik − x jk|

4σ
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where Nk,xi,c is the number of samples that have a class label c, and a value xi for

attribute k.

Similarly, where Nk,x j,c is the number of samples that have a class label c, and a value

x j for attribute k. Meanwhile, Nk,xi is the number of samples with a value xi for attribute

k. Similarly, Nk,x j is the number of samples with a value x j for attribute k.

2.2 Support Vector Regression

Support Vector Regression (SVR) is an extended model based on the Support Vector

Machine (SVM) developed by Vapnik et al. [117]. The objective of SVM is to com-

pute a hyperplane that correctly classifies input samples. A good hyperplane is found

by maximising the margin between the data points nearest to the hyperplane. In regres-

sion tasks, the ε insensitive loss function is used to compute the hyperplane, allowing

an ε deviation between the predicted and actual values. For the generalised bounds

computation of regression, the hyperplane plus ε is used to form an ε-insensitive tube.

The optimisation then aims to minimise the ε-insensitive to narrow the training samples

as much as possible [117, 26].

For a dataset {xi,yi}n
i=1, where xi is the input sample and yi is the target value The

linear ε-SVR can be formed as follows.

y = f (x) = ⟨w,x⟩+d = wT x+d (2.4)

where ⟨w,x⟩ is the dot product between the input x and the weight vector. The

objective of linear SVR to find the ε-insensitive tube should be as flat as possible,

which can be performed by minimising the norm of w as follows.

min
w

1
2
∥w∥2, (2.5)
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subject to

yi −wT xi −d ≤ ε

wT xi +d − yi ≤ ε

(2.6)

The general performance of the SVR model is directly affected by the ε parameter.

ε values determine the number of support vectors used to construct the decision func-

tion and hence the generalisation complexity and capacity of the SVR. Specifically, the

ε value is critical for the SVR performance because a lower ε value leads to a higher

probability of creating hard margins, while a higher ε value allows for greater error

tolerance in training samples.

In addition, a non-linear transformation can be used with SVR to map non-linear

input space to a higher dimension space where a hyperplane can easily separate data.

Several kernel types are used with SVR, including linear, polynomial, and RBF. Linear

kernels are typically applied to large sparse data, polynomial kernels are commonly

used with image processing, and RBF kernels are general-purpose.

Table 2.1: Kernels in SVR

Kernel function Mathematical expression Description

Linear K(x,y) = x · y x,y : data patterns

Polynomial K(x,y) = (γ(x · y)+ c0)
d

γ: slope parameter

d : polynomial degree

x,y : data patterns

c0: independent term

Radial basis function K(x,y) = exp(γ|x− y|2)
γ: RBF width

c0: independent term

x,y : data patterns
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2.3 Decision Trees

Several factors have led to the increasing use of decision trees in solving regression

and classification challenges over the past few years. Firstly, they are quite simple

to construct, the outputs can be understood easily and the decision-making process is

easy to follow [70]. Secondly, even with high order interactions between predictors,

they are able to detect nonlinear effects on the response variable [89]. In addition, they

are also highly flexible and work well when dealing with high-dimensional data due to

their nonparametric nature and low bias [8]. Finally, decision trees have flexible con-

structions, high robustness to noise, and are capable of handling redundant attributes

and missing values [43].

Decision trees are top-down, rule-based, acyclic graphical trees used in machine

learning to solve classification and regression problems. Predictions are made between

discrete and continuous values in the classification tree and regression tree models re-

spectively. The tree begins with a single node at the top containing all the data referred

to as the root node. There are only outgoing edges on the root node and one incom-

ing edge on all other nodes. The nodes in the tree that do not have successor nodes

(no outgoing edges) are called leaf nodes, and constitute the decision nodes. Nodes

in the tree represent variables in the feature space, and their branches contain either

attributes or conditions based on their types. If the attribute is numerical, there will be

two branches representing conditions, and if the attribute is categorical, the branches

will represent the attribute values. Obviously, the longer and wider the decision tree is,

the more splits there will be in the data.

The construction of the decision tree follows a recursive divide and conquer man-

ner. The input samples are divided recursively from the root node using selected at-

tributes, which are chosen based on a statistical measurement. The recursive partition-

ing process continues until there are no attributes to be split or the partition becomes
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pure. In the next step, the sub-branches that have a minor influence on the tree perfor-

mance are removed through ”tree pruning”.

One of the reasons for the popularity of decision trees is their ability to handle

missing values. Missing values are treated as a data category when applying split rules

or a surrogate rule. A surrogate rule is an alternative way to handle missing values,

and is applied when the missing values prevent data splitting. The evaluation of the

split rules is based on a statistically significant test (chi-square or F-test) or based on a

reduction in entropy, variance, or Gini impurity. The statistical significance test is used

to determine the combination of the values based on their relationship with the target

value. Ideally, the values should be combined if the relationship to the target is strong;

if it is weak, the values should not be combined.

The literature proposes numerous variants of the decision tree algorithms. The

most common ones are classification and regression trees (Classification and Regres-

sion Trees (CART)s) developed by Breiman in 1984. The Iterative Dichotomizer 3

(ID3) was developed by Quinlan in 1986, and C4.5. The most popular decision tree

algorithms are classification and regression trees C4.5 and ID3.

2.3.1 Classification and Regression Trees CARTs

Classification and Regression Trees (CART) is a binary decision tree that solves both

regression and classification tasks. In the regression tree, the predicted value is interval,

while in the classification tree it is categorical. The tree starts with a large dataset

recursively divided into binary sub-groups. The predictors’ values are used to perform

a binary split based on its impurity at every step. The measurement of node impurity

is computed based on the sum of squared deviations. This measurement is calculated

for all the possible splits. The node with the least squared deviations is chosen for

splitting. The node impurity is computed as follows [43].
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Where yi is the average of target values belonging to partition, a partition is selected

based on the attribute, leading to the smallest squared deviation sum. The partition is

divided again until the impurity measure is below a threshold value or the number of

samples in the partition is relatively small. In addition, CART uses the surrogate rule

to handle missing values. A missing value attribute can be split by finding an attribute

that is highly correlated with the original attribute and replacing it with the original

one.

In the classification trees, the Gini index is used to measure node impurity.

GI(D) = 1−
n

∑
i=1

P2
i , (2.7)

where Pi =
|Si|
S represents the ratio of the number of samples present in a dataset with

respect to a particular class relative to the total number of samples within the dataset.

As CART uses binary splitting, (2.7) can be written with respect to attribute t as fol-

lows.

GIt(D) =
2

∑
i=1

|Di|
D

GI(Di) (2.8)

where GIi is the Gini index and the impurity reduction of attribute t can be computed

as:

GIred = GI(D)−GIt(D) (2.9)

The impurity reduction is computed for every feasible split, and the subset with the

lowest reduction is used for splitting.

2.3.2 Iterative Dichotomizer(ID3)

As ID3 was among the first versions of decision trees and form the basis of C4.5 as

will discussed in the next sub section, in this section we will give an overview of this
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algorithm and its selection criteria.

In its original form, ID3 is intended for non-binary trees, but can easily be changed

to work in binary mode [90]. It utilises the entropy mechanism to measure node im-

purity. It measures the uncertainty of a class in a subset of examples. The probability

Pi of any sample belonging to a particular class can be measured. The entropy can be

computed for n classes in a dataset as follows:

En(D) =−
n

∑
i=1

Pi log2(Pi) (2.10)

Where Pi =
|Si|
|S| , in which S represent the total number of samples in the dataset D

and Si is the number of samples with class Ci. Moreover, for attributes t with s different

values t1, t2, · · · , ts the entropy is :

Ent(D) =
s

∑
i=1

|Di|
|D|

×En(Di). (2.11)

where D is partitioned into D1,D2, · · · ,Ds, and En(Di) is the entropy for Di having

attribute value ti. Then the information gain is calculated as:

G(t) = En(D)−Ent(D). (2.12)

The attribute that yields the highest information gain was chosen as the splitting

attribute. ID3 was initially designed to handle nominal features only, but later evolved

to handle continuous data. Some methods have used the midpoint procedure to ad-

dress the split point, while others use the discretisation mechanism to turn continuous

variables into discrete ones.
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2.3.3 C4.5

This was proposed by Quinlan to overcome a limitation of ID3. The problem with ID3

is that it gives preference to the attributes with larger or missing values. In C4.5, the

gain ratio rather than the entropy is employed for attribute splitting selection, and it

uses the following splitting information:

SIt(D) =
s

∑
i=1

|Di|
|D|

× log2(
|Di|
|D|

) (2.13)

where the Gain ration is computed as

GR(t) =
G(t)

SIt(D)
(2.14)

The attribute with the highest GR is selected as the splitting attribute.

2.4 Random Forest

Random forest (RF) [10] is an ensemble learning model that builds a collection of

de-correlated trees (forest) according to the CART algorithm. Random forest uses

bagging to construct the forest. Bagging generates bootstrap samples from the training

data by sampling with replacements, i.e. generating samples that are the same size as

training data. After the sampled data has been gathered, a CART algorithm is used to

build a decision tree based on each bootstrap sample. Since each tree is derived from

a different portion of the original data, ensemble de-correlated trees are formed [87].

Moreover, random forests add additional constraints while building the individ-

ual trees. The tree growth procedure is restricted to a subset of randomly selected

features at each splitting point. Therefore, the Random Forests model involves ran-

domisation with respect to the features (feature bagging) and samples (bootstrapping).
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Consequently, randomisation reduces the correlation between the trees and, therefore,

reduces the prediction variance [55, 51].

The Random Forest’s performance is highly dependent on tuning two main pa-

rameters: the number of randomly selected features to consider at each split, and the

number of trees in the forest. The latter is typically set to be a sufficiently large value,

while the former is depends on the problem to be solved, and a range of values should

usually be considered (starting from 5 (regression) and 3 (classification).

Once a random forest has been produced, an ensemble of trees can be used for

prediction. In regression tasks, the prediction of each regression tree Tb is recorded

and then averaged over all the B trees to report the final prediction value as follows

[51]:

f̂B(x) =
1
B

B

∑
b=1

Tb(x) (2.15)

For the classification task, the predicted class Ĉb(x) from each tree is recorded, and

then the majority voting is chosen[51]:

ĈB(x) = ma jorityvote
{

Ĉb(x)
}B

1
. (2.16)

2.5 Radial Basis Function

Designing Radial Basis Function RBF involves two stages: the structure learning and

parameter learning. The total number of hidden neurons, and their central location

have to be identified in the initialisation phase. The value of the connection weights

between the hidden layer and the output layer is estimated in the learning phase.
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2.5.1 RBF architecture

RBF is a feed-forward neural network that provides non-linear transforming character-

istics with a simple network structure and an efficient learning mechanism. Similar to

a multi-layer network, RBF consists of three main layers: input, hidden, and output,

as shown in Fig. 2.2. The input layer receives the input and directs them to the hidden

layer. The number of nodes in this layer is typically equal to the number of features in

the input space. The hidden layer is where the non-linear transformation is performed

through the kernel activation function. Thus the input layer is directly connected to the

hidden layer. The hidden layer is then connected to the output layer, whose weight is

adjustable through the Orthogonal Least-Squares (Orthogonal Least-Squares (OLS))

method. The final network output provides a linear combination of the hidden layer

and adjustable weights. In our research, we consider the problem with only single

output, which is represented as in (2.17).,

Figure 2.2: RBF network architecture.
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ŷ(x) =
L

∑
j=1

w jh j(x) (2.17)

where L represent the total number of neurons in the hidden layer, j is the index of L

subnodes,w j is the connection weight between jth neuron in the hidden layer to the

output layer, and h j is the output from jth hidden neuron. In this study, h j is computed

according to the resulting clusters from the Forward Recursive Input out clustering

techniques, and with the Gaussian kernel.

h j(x) = exp

(
n

∑
i=1

−D(xi − v ji)

σ ji

)2

(2.18)

where x = (x1,x2, ·,xn), v ji and σ ji are the neuron centre and corresponding width. Ad-

ditionally, more basic functions can be conducted according to the researched object;

such as linear, cubic, multi-quadric, and thin spline.

2.5.2 Center initialisation

The performance of RBF networks is sustained by the location of centres, regardless

of the kernel functions being used in the hidden nodes [102]. [84, 100, 95] stated that,

finding the centres of the hidden nodes is the most important step when constructing

an RBF network structure. [100] outlines that this importance is due to the dependency

between field distribution, underlying data structure, hidden node activation, and the

node width estimation with centres location.

In a primitive study of the RBF network [11, 82] allocated all the training sam-

ples as network centres. This strategy for the allocation of centres may lead to pro-

hibitive time consuming and overfitting when samples are huge, and noise data ex-

ists. Later, [67] proposed a solution in which centres are randomly selected from the

training space. However, this technique does not consider data distribution, so these
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centres are unrepresentative. With the expansion in research, many centres allocation

algorithms have been developed based on sequential strategy, such Orthogonal Least

Squares (OLS) [18], Resource Allocating Networks (RAN) [80], the fast orthogonal

estimation algorithm [122], and fast incremental supervised learning for centre selec-

tion [76]. The RBF network constructed by these approaches has a poor generalisation

capability due to the redundant hidden units.

To overcome these issues, many scholars have adopted a pruning strategy to opti-

mise the network structure; e.g. the growing and pruning algorithm proposed in [41].

In contrast, the others integrate evolution algorithms to RBF construction, such as in

[110, 17, 34, 103, 104, 114]. Rather than gradually building an RBF network, other

sophisticated methods have been developed based on clustering algorithms that are

applied to the training samples. The centres resulting from these clustering methods

are used as neurons in the RBF’s hidden layers. Many scholars have proposed differ-

ent algorithms based on these techniques, such k-means [96, 19, 72], Fuzzy C-means

(Fuzzy C-means (FCM)) [97, 31, 96, 121], K-Nearest Neighbour (K-Nearest Neigh-

bour (KNN) [98].

Moreover, besides considering the application of clustering methods to train sam-

ples, some studies have examined the effects of corporate output samples on the RBF

clustering initialising process. The basic idea of input-output clustering is carried out

by concatenating the input space with a weighted output vector, and then projecting

it into the training space. Thus, the clustering method here is influenced by variance

within both the input and output space [14, 92]. However, the resulting centres are rep-

resentative of the underlying structure of the input space. This negatively affects the

performance of the RBF network. The issues raised here have been reviewed in several

studies; for example, [77] applied the conditional fuzzy mean based on the weighted

information obtained from clustering the output space, and [102] demonstrated the im-

pact when integrating information gained from the output space to minimise the upper
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limit of the mean squared error. Moreover, [96] employed a linear regression model

to capture the relationship between the input and output spaces. A clustering algo-

rithm was performed on the input samples, and then a linear regression performed in

each cluster using both training and target values. This method has generated high

performance, but requires a high number of parameter initialisations. The scholars in

[100] combined the fuzzy c-mean with Particle Swarm Optimization (Particle Swarm

Optimization (PSO)) to generate the optimal cluster centres. Besides, clustering algo-

rithms and other methods such as decision tree have been studied as ways to initialise

centres in RBF networks [57] and genetic algorithms [59, 101], as well as Differential

Evolution [75, 115].

2.5.3 Computation of RBF output weight

The output weight from RBF network can be found by applying the ordinary least

squares to solving the linear equations. Based on the training set, the hidden layer

output can be defined as a matrix of activation functions H as follow:

Y =



y1

y2

...

yn


H =



h1(x1) h2(x1) · · · hP(x1)

h1(x2) h2(x2) · · · hP(x2)

...
... . . . ...

h1(xn) h2(xn) · · · hP(xn)


W =



w1

w2

...

wP


(2.19)

Moreover, based on (2.17) we can defined the output matrix as follow

Y = HW (2.20)
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from the above equation the values of W can be calculated by using least square

method follows:

W =
[
HTH

]−1
HTY (2.21)

Another approach to finding the optimal output weight is the gradient-based tech-

nique, which minimizes the mean square error (MSE) between the desired output and

the networks’ output [73]. In addition, many researchers has investigate other meth-

ods for optimising the output weigth such as genetic algorithms [47, 36], and practical

swarm optimisation [36, 35].It is beyond the scope of this thesis to review these meth-

ods.

2.6 Summary

In this chapter, we review the most common machine learning models, SVR, Random

Forest, Decision Tree, Linear Regression and RBF, and they are limited to one data

type at a time. Then, we provide an overview of the most common techniques to deal

with mixed types datasets, including the transforming methods, discretisation methods

and distance measures.

Upon reviewing the literature, we discovered that most commonly used regression

models only deal with one type of data at a time and that little work has been done on

regression learning with heterogeneous data. Data heterogeneity is a major challenge

facing data scientists, and this study attempts to fill this gap by developing learning

models that can cope with heterogeneity.

The next chapter will define heterogeneous data and outline its main challenges.

Also, it will provide a detailed description of the datasets that will be used in this

research.
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Chapter 3

Overview of Heterogeneous Data and

Datasets Description

A description of heterogeneous data, its challenge, and formalisation will be presented

in Section 3.1 of this chapter. Section 3.2 will describe the dataset used in this thesis

as well as how it was prepared. A brief summary will be provided in Section 3.3.

3.1 Heterogeneous Data

According to [94], the significance of big data is increasing with regard to its multiple

characteristics. Notably, data heterogeneity is an innate feature of big data, which

increases the complexity associated with processing, managing and analysing big data.

Moreover, [48] clearly indicated that mining heterogeneous data plays a vital role in

knowledge discovery and pattern recognition when handling massive amounts of data.

3.1.1 Heterogeneous Data Challenge

The definition of the categorisation and description of heterogeneous data in the liter-

ature primarily reflects scholars’ perspectives. For example, some have used the term
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heterogeneous to refer to semantic heterogeneity [54], or structural heterogeneity [28].

This term was further explained and highlighted by [65], who stated that the former

refers to differentials in terms of data content and meaning. In contrast, the latter refers

to differentials present in the data structure it is store in, i.e. relational vs spreadsheet.

In contrast, [99] describes semantic heterogeneity to include different data types, dis-

tinct specifications or alternative interpolations of the data structure.

Moreover, some researchers used the term heterogeneous data to refer to the dif-

ferent data environments or data generation sources [46]. In the context of the Internet

of Things (IoT ) field, and extensive data analysis, heterogeneity can be divided into

four levels: syntactic, conceptual, terminology, and semiotic heterogeneity. Syntactic

heterogeneity represents differences in the languages used when representing two data

sources; conceptual heterogeneity variations in domain modelling. Meanwhile, termi-

nology heterogeneity is the variation in name when describing the same entity, and

different interpolations for the same entity is known as semiotic heterogeneity. Build-

ing on the previous definition, [105] asserted that the essential feature of heterogeneous

data concerns the nature of the information being stored. This has been used to refer

to situations in which diverse data types are utilised to describe the information. More-

over, [123] summarised the specification of complex data heterogeneity according to

three points:

• Different types of data associated with an object recorded in the dataset; Data

can be stored as numerical, categorical, text, images and videos.

• Diversity in the data source; data are coming from different sources e.g. a pa-

tient’s medical file contains information from different sources. such as surveys,

laboratory records, x-ray images, etc.

• Data can evolve or be re-described at different times in various places. For in-

stance, a patient may have different records associated with those doctors who
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Figure 3.1: Example of a heterogeneous data types.

have examined patients at different times.

The previous research shows that data heterogeneity is a complex task, and that ho-

mogeneous learning methods need to be extended to address data heterogeneity. In this

research, we focus on defining heterogeneous data according to the nature of the pro-

cessed data. The following section formally describes our definition of heterogeneous

data.

3.1.2 Heterogeneous Data Definition

In this research the heterogeneous data set refers to the diverse data types that describe

a given instance. Each instance (record) can be described by a set of unique features.

Each feature may contain multiple attributes (variables). For example, a post in a

simplified example is provided in Fig. 3.1. The first column represents qualitative

information in the form of categorical features, while the second column details the

numerical information. In the third and fourth columns, more complex information is

provided, such as images, and text. This data could include more complex types, such

as graphs, signals and time series data. Thus every row represents an object or instance

consistent with multiple variables.
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Patient records or Internet of Things data are typical examples of heterogeneous

data types [105]. For example, a patient record may contain different features; e.g.

categorical features like blood type, gender, and numerical features like temperature,

blood pressure, and textual information such as family history and image information

like X-ray images. Although the information all describes the same object (patient), it

comprises different data types that are complementary.

Data features that may be composed in the form of heterogeneous objects are as

follow:

• Structured data

Structured data referring to a well-defined and organised data set that can be

easily processed and analysed [93]. The majority of structured data is integrated

into a relational database or a well-structured file format. Simply put, the in-

formation is highly dependent on the data model, which specifies the process of

data generation, integration, storage and access [24].

• Unstructured data

Unlike structured data, unstructured data is usually unorganised and does not

obey a common scheme. It may be textual or non-textual, and may be generated

by either a human or a machine. Some researchers consider, images, video and

recording files as unstructured data, while others categorise these as a multime-

dia data. [58] reported that approximately 90% of big data information takes an

unstructured format.

• Multimedia data

The multimedia data type can be classified into video, image, and audio data.

According to [58], multimedia data can be classified as two types: dynamic

media and static media. Dynamic media is represented by Audio and Video, and

static media contains images.
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3.1.3 Formalising Heterogeneous Data

In this study, the formal definition of heterogeneous data is a set of objects (records or

samples), X = {xi,yi}N
i=1 where X is a dataset containing N number of objects (sam-

ples or records) and xi and yi represent the input sample and it associated output, re-

spectively. Each object is described by a set of features or variables X = {X j}M
j=1, in

which M represents the total number of features (variables). The feature X j may con-

tain multiple descriptive attributes as described below. This research commences by

considering a number of data types:

• Numerical Heterogeneous data generally contains numerical features Xnum. fea-

ture can be described by a set of attributes in the data set, such that Xnum =

{X p
num}P

p=1, where P is the total number of numerical attributes in the dataset.

• Categorical (cat) A heterogeneous dataset may also contain categorical features

Xcat . can be also described by a set of attributes, such that Xcat = {Xc
cat}C

c=1

where C is the total number of categorical features present in the dataset. In

addition, the attribute {Xc
cat} contains distinct nominal values.

• Textual (txt)A heterogeneous element may be described using a text element.

Xtext = {X t
text}T

t=1, where T is the total number of text attributes present in the

dataset.

Upon reviewing the literature, we discovered that most commonly used regression

models limiting the number of data type being processed at a time. For the best of our

knowledge, little work has been done on regression learning with heterogeneous data,

as seen in the previous chapter. For that, we aim in this research to design and develop

a regression model that efficiently learn from heterogeneous dataset.

58



Table 3.1: Description of mixed numerical and categorical datasets. Max cardinality-
the total number of features after applying one-hot encoding.

Dataset # of instances
# of numerical

attributes

# of categorical

attributes
Max cardinalit

Nashville 11956 9 9 74

Autos 64066 4 7 286

House 1440 15 29 176

Horse 73596 8 7 54

Bike 10886 7 4 14

KDD 3175 310 19 1340

Sales 398 7 361 993

3.2 Data Description and Preparation

The proposed model’s chief objective is to handle heterogeneous data types effectively

when performing regression tasks. Therefore, we first tested models across a data set

comprising two different types, i.e. numerical and categorical. We then deployed our

model across a more heterogeneous data set containing three different types. Sec-

tion 3.2.1 provides a description of the mixed numerical and categorical dataset. For

comparison purposes, the datasets selected have been the same as those in [53]. The

Social Media Prediction dataset with a high level of heterogeneity is described in Sec-

tion 3.2.2.
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3.2.1 Mixed Numerical and Categorical datasets

3.2.1.1 Data description

We tested our models applying seven mixed categorical and numerical data sets for

regression tasks. The data sets were selected from Kaggle 1, an online analytical plat-

form upon which companies and researches release their data to enable data analysts

compete to build the best models. A description of the pre-processed data is provided

in Table 3.1. The total number of variables in the final data sets after dummy coding is

shown as the maximum cardinality.

• Nashville Housing Data (Nashville)2:

This data set was collected from 2013 to 2016 from the Nashville market. The

ID, sale date and house image link were deleted. Also, samples with missing

values were dropped. The target value was set to be the house sale price. This

set consists of 9 numerical and 9 categorical variables.

• Used cars database(Autos)3:

This data set provide information about used cars taken from Ebay Kleinanzeigen.

All those records with missing values were removed. Then the variables with a

single value were eliminated. Additional variables, such as car name, date of

advertisement, and postcode were also dropped. The final data set consists of 4

numerical and 7 categorical variables.

• House Prices (House)4:

The main objective of this data set is to predict the sale price of a home. Those

1http://www.kaggle.com
2https://www.kaggle.com/tmthyjames/nashville-housing-data
3https://data.world/data-society/used-cars-data
4https://www.kaggle.com/c/house-prices-advanced-regression-techniques
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variables containing more than 50% missing values were eliminated, and vari-

ables with one value were also dropped. The final data set consists of 15 numer-

ical and 29 categorical variables.

• Horse Racing in Hong Kong (Horse)5:

This data set provides information about horse racing events held in Hong Kong.

It contains two files; one describes the race, and the other the horse. The two

files have been merged, and the finishing time is set as the target value. Only the

information related to the horse is kept, and during the race the other information

is dropped. The resulting set comprises 8 numerical variables and 7 categorical

variables.

• Bike Sharing Demand (Bike)6:

The main objective of this data set is to predict bike rental demand for the Capital

Bikeshare program in Washington, D.C. They provide weather data and histor-

ical usage records to predict total number of rentals. The DateTime variable

was dropped, and consequently the final data set consists of 7 numerical and 4

categorical variables.

• KDD Cup 1998 Data (KDD)7:

The data aims to predict direct mail returns to maximise profit donation. This

data includes two separate files: training and validation. The only file consid-

ered in this experiment was the training file. All the columns with 80% missing

values were eliminated. Variables with one value were also removed as were

variables with no description in the dictionary files. More than 90% of the re-

maining records have a target value of 0, so only the non-zero records are used

5https://www.kaggle.com/gdaley/hkracing
6https://www.kaggle.com/c/bike-sharing-demand
7https://archive.ics.uci.edu/ml/datasets/KDD+Cup+1998+Data
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in the experiment. The final data consists of 310 numerical and 19 categorical

variables.

• Online Product Sales (Sales) 8:

The aim of this data set is to predict online sales for a product. The Sales data

sets provides the monthly online sales for a period of 12 months after the product

is launched. The average online sales for the 12 months is set as the target value.

The features with more than 70% missing values are deleted. After this samples

with missing values are eliminated. The result is a data set with 398 categorical

features and 7 numerical variables.

3.2.2 Social Media Prediction Dataset

Recently, popularity predictions for social media have attracted much attention from

the academic domain. To predict popularity a score is given to images posted by users

on social media. Existing research focuses on three main aspects of these posts: image,

text, and user information. Some scholars [27, 88] have been able to expose the effec-

tiveness of visual information based on the predicted scores. Others have demonstrated

that textual information [61, 21, 15, 109, 60] plays a significant role in post trending,

either by applying classical word embedding models such as Word2Vec, and TFIDF,

or a deep neural pre-trained model, such as BERT and Glove. Additionally, the ma-

jority of these studies highlight the correlation between users and their post trending

scores, so additional user information can be crawled to enrich the model [60, 40, 50].

Additional to these main features, other researchers have utilised temporal-spatial in-

formation to enhance accuracy scores [60, 21]. Another aspect of the studies on social

media prediction is the regression models applied to the tasks. The fast and simple

8https://www.kaggle.com/c/online-sales
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basic model employed to solve this problem is Linear Regression, which linearly com-

bines all the features [68]. A tree-based Ensemble model, random forest (RF), which

relies on building different trees and reporting the averaging prediction of a single tree

for regression tasks is also applied in [40]. A more advanced gradient boosting deci-

sion tree has been deployed to solve this task, such as LightGBM [61, 88], XGboost

[15], and CatBoost [50, 109, 60]. Among them, CatBoost achieved the best accuracy

and time compliant performance.

Furthermore, more sophisticated models, including deep neural networks, have

also been examined, as addressed in [21]. [61] examined the effectiveness of text fea-

ture extraction based on the Doc2Vec model for social media headline prediction. In

[40] user and post-meta-data was used to train Random Forest (RF) without extracting

any information from text or images. [27] combined enriched user and post features

with statistical features and image object detection features from Instagram posts. In

In [22] a high level pre-trained Deep Neural Network (DNN) is used to extract tex-

tual and visual features from text and images to train a DNN model. [88] focused on

visual semantic features such as concept, objects and scenes using computer vision

techniques to interpolate their relationship to prediction value. Both [15, 50] used a

gradient boosting regression tree to predict popularity without considering temporal

spatial features. [15] applied XGboost with text and visual features, and [50] applied

CatBoost to users and post information only.

3.2.2.1 Data Analysis

The aim of this section is to discover and explore the main features that affect social

media popularity scores. The data used in this section was obtained from ACM Multi-

media Challenge SMP [113].The task set was to predict the popularity of a post prior

to publication. The dataset explains the Flickr post with a set of heterogeneous fea-

tures (e.g. text, temporal-spatial, and use profile). The text features, including tags and
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titles, play a significant role in setting the popularity prediction scores. For instance,

widely used tags significantly increase the opportunity to expose the post beyond fol-

lowers [21]. NLP tools are essential for text feature representation, such as GLoVe

[79], and BERT [20]. User profile has a significant impact on realising the prediction

target. Many researches have shown that image popularity is highly correlated to users

[21, 52, 40]. For instance, number of followers has a positive impact on the popularity

of a post. Users with a large number of followers are more likely to have their post

viewed. Important information is missing from SMP, so we have to crawl for it using

the alias provided in dataset. Moreover, the time and the location of the post may also

have a great impact on its popularity. The earlier the post is uploaded the more viewers

it is likely to gain. All these features will be explained in detail in the next section.

3.2.2.2 Feature Representation

Since a heterogeneous data set combines multiple data types, feature extraction is a

mandatory step. High-level feature representation can be extracted from a text by

adopting a Natural Language Processing NLP tool. Some of the features used can be

obtained directly, while the others have to be calculated in some way.

• User profile. Three main features: user’s ID, the total number of photos, and

whether the user is a professional or not, are first determined. Then, we identified

further user characteristics by crawling additional user information from their

pages. These features are the number of followers, the number following, total

favourites, total groups, total geotags, total tags, and total views. In addition, we

construct more averaging information, such as mean favourites, mean tags and

mean view.

• Temporal-spatial features. Geographical information regarding the posts, such
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as granularity levels of location and longitude, latitude information are first ex-

tracted. After which, some additional temporal information is obtained, includ-

ing hour, day and week. Then, we compute hour in the week, day in the week,

and week in the year.

• Categorical There are three main categories featured in social media posts:

Category with 11 classes, Subcategory with 77 classes and concept with 668

classes.

• Deep text feature extraction. The text features associated with each post are

represented by Title and Tags variables. Instead of using a classical machine

learning text representation, such as Word2Vec or TFIDF, we adopted GloVe

(Global vectors) [79], and BERT (Bidirectional Encoder Representations from

Transformer) [20] to obtain word embedding vectors. GloVe is based on global

corpus statistics, which are employed to represent word vectors, while BERT is

a more sophisticated deep learning model that achieves a state-of-the-art perfor-

mance in a wide range of text processing tasks. In addition, more text represen-

tative features are constructed when calculating total number of words and total

number of characters (length) in tags and titles.

3.3 Summary

We defined heterogeneous data in this chapter and highlighted its main challenges.

There is also a description of different datasets with different levels of heterogeneity.

The first set includes mixed numerical and categorical features; the second comprises

numerical, categorical and textual features obtained from the SMP challenge. Detailed

preparation of these data has been provided.
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In order to fulfil the first objective of this thesis, the next chapter will define a het-

erogeneous distance measurement that will be used to develop a radial basis function

network for regression by adopting the forward recursive input-output approach as a

structure learning for the RBF model.
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Chapter 4

An Input-Output Clustering Approach

to Structure Learning of Radial Basis

Function Networks with

Heterogeneous Data

One of the learning models that are widely used is the Radial Basis Function (RBF)

network [107, 69]. Due to their fast learning, representation capabilities and straight-

forward structure [91]. In addition, (RBF) network is considered as the research fruits

in the learning methods [108]. For that, our proposed solutions to regression hetero-

geneous data are to explore (RBF) network with a particular initialisation stage. The

construction of (RBF) network consists of two primary stages of learning procedures:

structure learning stage and parameter learning stage. The number of hidden neurons

(basis functions), and the appropriate centers and width for these hidden neurons, are

determined in the structure learning stage. At the same time, the determination of

final-layer weights is performed in the learning stage, which easily can be computed

by solving a linear regression problem.
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Hence, the structure learning of RBF is a crucial process. The final system per-

formance in terms of accuracy and fewer neurons is highly correlated to the structure

learning of the RBF network [108]. In addition, The performance of RBF networks

is sustained by the location of centres regardless of the kernel functions being used

in hidden nodes [102]. Moreover, [84, 100] stated that finding the hidden nodes cen-

tres is critical in initialising the RBF network structure. [100] outlines this importance

because of the dependency between field distribution, underlying data structure, node

activation, and node width estimation with centroids location.

Much research has been conducted for RBF structure learning as described in Sec-

tion 2.5.2. The intuitive structuring method randomly selected the centres from the

input space [67, 106], or randomly generated centres from training space [49]. The

drawback of this random selection is not guaranteed well training data representation

[69]. The classical approach for (RBF) network centres allocation is to apply clustering

techniques such as K-means clustering [19, 72], Fuzzy c-means (FCM) [97, 31, 96],

and K-Nearest Neighbor (KNN) [97, 98]. The RBF structure learning methods based

on clustering models can be divided into supervised and unsupervised learning. The

former considers both input and output data in the clustering methods, and the latter

considers only input samples.

There are two main weaknesses in the classical approaches (k-means, KNN) for

system (RBF) network identification. First, they ignored the system information repre-

sented by output samples, although this information is major importance for network

fitting and approximation [96, 78, 100].

Secondly, they partition input space into a predefined number of clusters and ignore

finding the optimal number of clusters [107]. Consequently, the valuable information

and knowledge provided by the output data for system identification are not used [84].

For that, input-output clustering, referred to as supervised clustering, is used for the
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RBF structure learning stage. That is used for determining the neuron centroid loca-

tions and their associated width. The input-output clustering takes into account the

information provided by the output space. Thus, the locations of RBF centres are

affected by the input space and the deviation of the output space. Additionally, infor-

mation from the output space is used to guide the clustering method [100]. The idea

of using the supervised clustering approaches for RBF system identification has been

developed in many different ways, as discussed in Section 2.5.2.

The remainder of the chapter is organised as follows. Section 4.1 outline the prob-

lem need to be addressed by this research. Section 4.2 presents the Heterogeneous

Distance Measure (Heterogeneous Distance Measure (HDM)). Section 4.3 explain the

concept of Forward Recursive Input-Output Clustering (FRIOC) approach and Sec-

tion 4.4 explain the structure learning of Radial Basis Function (RBF) network. Sec-

tion 4.5 and Section 4.6 present the experiments on mixed numerical and categorical

datasets and on the Social Media Prediction SMP dataset,respectively. Finally, this

chapter is summarized in Section 4.7.

4.1 Problem Statement

The heterogeneous dataset with M distinct features/variables and N number of input

samples can defined as follows.

D= {xVm
i ,yi}N,M

i=1,m=1

where a feature Vm can be described by a number of attributes {AVm
j }pVm

j=1 such that:

A =
{

AV1
j

}pV1

j=1
∪
{

AV2
j

}pV2

j=1
∪·· ·∪

{
AVm

j

}pVm

j=1
(4.1)

form total set of attributes describing the dataset D. So, the object xi can be represented
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as a vector as follows.

[
xV1,1

i ,xV1,2
i · · · ,xV1,pV1

i ,xV2,1
i ,xV2,2

i · · · ,xV2,pV2
i ,xVm,1

i ,xVm,2
i · · · ,xVm,pm

i

]
(4.2)

Based on this definition of heterogeneous datasets , there are two problems to be

solved by FRIOC-RBF to minimise the Sum of Squares Error (SSE) as in (4.3). Firstly,

distance calculation between heterogeneous samples, and the second problem to be

resolved involves structure learning of RBF networks, in which we determine where

and how many RBF kernels there are in the network, as well as their widths.

SSE =
n

∑
i=1

(yi − f (xi))
2 (4.3)

4.2 Heterogeneous Distance Measurement for Hetero-

geneous Dataset

The most common distance measure is well-defined and can efficiently calculate the

distance for a distinct data type. These well-known distances, such as Euclidean and

Overlap distances, cannot directly deal with mixed and heterogeneous data. Conse-

quently, there is not a unified measurement for heterogeneous and mixed data. One of

the proposed solutions for this issue is to apply a weighted measurement. This involves

using different distance measures for different features, such as Euclidean distance and

Hamming distance for numerical and categorical features. Accordingly, each distance

is given a weight, which is determined by the number of attributes it possesses. The

sum of these weighted distances determines the final distance between objects.

Similarly, distances between objects in a heterogeneous dataset can be calculated.

This research identified data heterogeneity by identifying the major data types repre-

sented in a dataset. Next, a distance measure is identified for each feature, and its
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weights are computed based on the attributes associated with each feature. A final

heterogeneous distance measurement HDM is derived by combining the results from

the previous calculations. In the case of a heterogeneous dataset X that contains M

distinctive features, the Heterogeneous Distance Measure (HDM) between two objects

can be expressed as follows

D(xi,x j) =
M

∑
m=1

pVm

P
DVm(x

Vm
i ,xVm

j ) (4.4)

The pVm and P represent the number of attributes in type m and the total number of

attributes in the dataset X , respectively. Further, the DVm represents the distance mea-

surement identified for a type m attribute.

4.3 Basic Idea of Forward Recursive Input-Output Clus-

tering (FRIOC) Approach

The FRIOC approach consists of two main phases: In the first phase: a coarser cluster

is performed to partition input space by applying a clustering method such as k-means.

The second phase is the recursive clustering phase, where refined sub-clustering is

performed when needed for each cluster by computing their corresponding output

variation. If a cluster output variation meets the accuracy requirement, that cluster

is considered a final cluster, representing a neuron in the RBF network, and no further

sub clustering is performed. Nevertheless, if the output variation exceeds the accuracy

level, a further sub clustering is necessary, and the cluster is considered inadequate to

represent a node in the RBF system. Until every cluster can produce output variations

within acceptable levels, the sub clustering procedure is repeated.

Moreover, during the experiments, it was noticed that the recursive process pro-

duced clusters with few samples and a high output variation. When this is the case, the
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recursive process will continue until producing a cluster with one or two samples. As

a result, the recursive process will be endless and time-consuming. In order to solve

these issues and reduce execution time, we limit the number of samples in each cluster

and the number of recursive iterations. These issues have been addressed with two new

constraints. First, the refine sub-clustering process may result in clusters with a few

samples, and as their variation does not meet the required accuracy level, these clusters

are considered inefficient. Secondly, we limit the number of iterations in the recursive

process to reduce time complexity.

For a given dataset, X = {X1,X2, · · · ,Xn} and Y = {y1,y2, · · · ,yn}, n= {1,2, · · · ,N},

where X is the input data and Y is the corresponding output values and N is the total

number of samples, and α and β are the maximum and the minimum of target value

respectively as in (4.5).

α = max
n=1,2··· ,N

{yn} and β = min
n=1,2··· ,N

{yn} (4.5)

Consider the threshold accuracy as ε(ε > 0), which is a small real value specified

by the designer based on the problem and requirements considered, and K is the num-

ber of clusters used during the initial clustering phase and is defined as the smallest

integer such that:
α−β

ε
< K (4.6)

In other words, K is the smallest integer that divides output space [β,α] into K even

output intervals where the variation of each output interval is smaller than ε then we

can compute K as follows:

K =
α−β

ε
(4.7)

The next section will elaborate on the FRIOC approach following the notation used

here.
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Figure 4.1: Structure simplification procedure for FRIOC.
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4.3.1 FRIOC Approach

This section will describe the concept of the FRIOC approach for identifying the num-

ber of RBF centres and their location. The proposed cluster method as shown in

Fig. 4.1 begins by applying a cluster model to the input samples, and the number of

the clusters K is calculated using (4.7), depending on a threshold value of ε.

In most cases, the initially identified clusters are ineffective candidates to represent

neurons in the RBF system because of their high variability. In this way, it is important

to evaluate the output variation of each initial cluster to determine if it satisfies the

output accuracy criteria in the second stage of the clustering process. Sub-clustering is

conducted if a cluster’s output does not meet the accuracy threshold values. The pro-

cess is repeated until the required variance in cluster output is achieved, as described

below.

The second phase consists in collecting all the output data Oci that are associ-

ated with each input cluster Ici(i = 1,2, · · · ,K) resulting from applying the clustering

method in the initial state, as shown below:

Oci = {yn|xn ∈ Ici} (4.8)

Following this, the standard deviation (σi) for each Oci is calculated as follows:

σi =

√
∑

Ti
j=1 (yi −µi)2

Ti
(4.9)

Where µi is the mean value of the ith cluster Oci, and Ti is the total number of sam-

ples in cluster Ici. As long as the output variance (σi ≤ ε) is less than or equal to the

accuracy threshold, then a sub-clustering step for Ici is not required due to its represen-

tation as a neuron in an RBF network. Whereas if the output variation (σi ≥ ε) exceeds

the defined accuracy threshold, then a further sub-clustering step is carried out for Ici,
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since it is deemed inadequate as a tool to represent the system.

With k = 2, a clustering technique is applied to the clusters with an output variation

greater than the threshold. An evaluation step is performed for each resulting cluster to

determine whether it is qualified to represent the system or whether a second clustering

step is required. Each cluster is then recursively evaluated until the output variation

falls within an acceptable range or meets one of the previous constraints.

In summary,This approach will be conducted to learn the RBF’s structure and find

the optimal number and location of RBF kernels. Three main characteristics of the

FRIOC approach can be derived from the above-detailed description:

• The approach is qualified for complex systems with different output variations as

previously described: finer clustering for a variable region and coarse clustering

for a smoother or linear region.

• It can be classified as supervised clustering as it examines both input and output

information during the clustering process.

• This approach efficiently can obtain the optimal number of clusters avoiding the

train-error process in the existing methods.

4.4 Radial Basis Function Network Structure Learning

After the process of FRIOC is ended, we then apply the resulting clusters for RBF

network structure learning. The number of neurons in the hidden layer is equal to the

number of clusters obtained from FRIOC approach, based on the idea that each cluster

can be represented as a neuron.

The basic structure of RBF network consist of three main layers: one of Input layer,

hidden layer, and output layer. The hidden layer contains the neurons of radial basis
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Algorithm 1 Forward Recursive Input-Output Clustering (FRIOC) Algorithm
Input X ,Y,ε

Initialisation
ClustFinal,CentFinal =[ ], [ ] //This is to store the final clusters and their centers
Clusttemp,Centtemp =[ ], [ ]
Clustcheck,Centcheck =[ ], [ ]
Calculate the initial number of clusters, K, based on (4.7)
Clustcheck,Centcheck = Kcluster(X ,K)

for i = 1 to K do
For Ici ∈ ClustcheckandCenti ∈ Centcheck, collect all the corresponding output

data Oci

Calculate the min and the max values βi and αi for Oci

if αi −βi ≤ ε then
Add Ici to ClustFinal

Add Centi to CentFinal

else
Add Ici to Clusttemp

Add Centi to Centtemp

end if
end for

Clustcheck =Clusttemp

Centcheck =Centtemp
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Algorithm 2 Forward Recursive Input-Output Clustering (FRIOC) Algorithm - Part 2
Recursive iteration
while Clustcheck ̸= empty do

L = length of Clustcheck

Clusttemp,Centtemp =[ ], [ ]
for i = 1 to L do

For Ici ∈ClustcheckandCenti ∈Centcheck, collect all the corresponding output
data Oci

Calculate the min and the max values βi and αi for Oci

Compute σOci standard deviation based on (4.9)

if σOci ≤ ε then
Add Ici to ClustFinal

Add Centi to CentFinal

else
clusters,centers = Kcluster(Ici,2)
Add clusters to Centtemp

Add centers to Centtemp

end if
end for
Clustcheck =Clusttemp

Centcheck =Centtemp

end while
Outcome
L = length of ClustFinal =C1,C2, · · · ,CL

for i = 1 to L do

σi =

√
∑

Ti
j=1 (yi−µi)2

Ti

for Cicompute the cluster’s width based on (4.12)
end for
The final outcomes c = [c1,c2, · · · ,cl], σ = [σ1,σ2, · · · ,σl] represent the kernel cen-
ters and widths in RBF network
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function and the output layer formalizes the estimated network output as in (4.10)

ŷ =
P

∑
j=1

w jh j(x) (4.10)

where P is the total number of radial basis function neurons obtained from the

FRIOC clustering process, and w j is the connection weight between the hidden neuron

and the output node. h j is hidden neuron activation function results, and it is computed

based on the Gaussian kernel as follow.

h j(X) = exp

(
−D(xi,ν j)

2

σ2
j

)
(4.11)

where ν j represents centres of hidden neuron and σ it representative width. xi is the

i-th input of the training samples.

In the next section, we will discuss the formula for computing the hidden layers

based on distance calculations from neurons centres and width calculations.

4.4.1 RBF Parameter Learning

Kernel width is determined by measuring the distance between heterogeneous samples.

Based on the distance used in the previous section, the kernel width is calculated as

follows:

σ j =
∑

n j
i=1 D(xi,ν j)

n j
(4.12)

The kernel centre is defined as ν j, a distance measure is calculated as (4.4), and n j is

the number of the total samples of the cluster j.

The output weight from RBF network can be found by applying the ordinary least

squares to solving the linear equations. Based on the training set, the hidden layer
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output can be defined as a matrix of activation functions H as follow:

Y =



y1

y2

...

yn


H =



h1(x1) h2(x1) · · · hP(x1)

h1(x2) h2(x2) · · · hP(x2)

...
... . . . ...

h1(xn) h2(xn) · · · hP(xn)


W =



w1

w2

...

wP


(4.13)

Moreover, based on (4.10) we can defined the output matrix as follow

Y = HW (4.14)

from the above equation the values of W can be calculated by using least square

method follows:

W =
[
HTH

]−1
HTY (4.15)

4.4.2 Procedure of FRIOC-RBF Model

The learning steps of the proposed RBF with the FRIOC approach is presented in

this section in order to help understand the combination of these two methods to train

heterogeneous dataset.

step 1 Determining the M diverse features that describe the heterogeneous dataset D.

step 2 For each distinct feature m in the dataset, define the distance measurement DVm .

step 3 Apply FRIOC approach with k-medoids and HDM as defined in (4.4) to find

RBF centers.

step 4 For each resulting clusters compute their corresponding width based on (4.12).
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step 5 Start the RBF learning procedure and the matrix H.

step 6 Solve (4.15) to determine the RBF connection weight.

step 7 Use (4.10) to compute the final prediction output.

4.5 Mixed Dataset Experiment

In this section, we will evaluate the proposed model across several mixed numeri-

cal and categorical datasets. We will also measure the results of the proposed model

against baselines and a competing mixed dataset model.

4.5.1 Datasets and Evaluation Metrics

Several benchmark datasets obtain from UCI [6] and Kaggle 1. A detail description

of these data were given in Section 3.2.1. Each dataset is split into training and test-

ing samples with 80%-20% sizes, respectively. As a performance metric, the Mean

Squared Error (MSE) was used to assess the proposed model as in (4.16).

MSE =
∑

N
i=1 (ŷi − yi)

2

N
(4.16)

Where N is the total number of testing samples, yi is the actual output and ŷi is the

RBF predicted value.

4.5.2 Model Framework and Selection

The framework of this model is presented in Fig. 4.2. Since the datasets contain two

distinct features, we must first construct distance measures for each feature. Distance

between numerical features is represented by Euclidean distance, while the distance

1http://www.kaggle.com,accessed 07 August 2022
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Figure 4.2: Structure of mixed numerical and categorical RBF network.
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between categorical features is represented by matching distance. Based on the HDM

defined in Section 4.2 and the distance measure from (4.4), we can estimate the dis-

tance between two objects in a mixed dataset as follow:

D(xi,xk) =
Mc

M
Dc(xc

i ,x
c
k)+

Mn

M
Dn(xn

i ,x
n
k) (4.17)

The number of attributes is M, the number of categorical and numerical features are Mc

and Mn. The distance measures are Dc and Dn, in this case representing the Euclidean

and matching distance.

Following the definition of the Heterogeneous Distance Measure (HDM), the FRIOC

algorithm is applied to determine the optimal number and location of RBF centres.

Then, the RBF networks can be trained using the mixed numerical and categorical

data.

4.5.3 Evaluation

Two different evaluation studies have been conducted to evaluate the performance of

the proposed model in the following subsection.

Firstly, in Section 4.5.3.1 various baseline regression models are developed for

comparison purposes. These models are: Linear Regression (LR), Decision Tree(CART),

Random Forest RF, and Support Vector Regression (SVR). As these models can not di-

rectly deal with mixed datasets, we had to convert the categorical features to numerical

using one-hot encoding.

Secondly, in Section 4.5.3.2 the performance of the proposed model is compared

with a competing method. The hybrid regression tree model proposed in [53] is cho-

sen for comparison purposes as they used the same mixed numerical and categorical

datasets.
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4.5.3.1 Baseline Models

From Table 4.1 we can find that the proposed algorithm outperforms the basic re-

gression models (Linear regression, SVR, and Decision tree) for the majority of the

dataset. The results showed that defining a distance measure for each data type and

using FRIOC to initialise RBF centres and widths can improve learning performance

in some dataset. The proposed model outperformed other models in the Autos, and

Bike datasets.

The linear regression model achieved the highest MSE score for all datasets except

Horse and Bike, indicating that linear regression is inefficient to train mixed datasets.

In contrast, the SVR and decision tree showed a equivalent results in the Nashville, Au-

tos, House, and KDD data. The Random Forest achieved the best results in Nashville,

KDD and Sales dataset.

Meanwhile, the proposed model outperformed these models on datasets Autos,

and Bike, whereas it produced a comparable result as the best model on the remaining

datasets. On the Sales dataset, for instance, the Random Forest obtained a result of

7.55E+05, while the proposed model achieved a result of 9.26E+05.

4.5.3.2 Competing Methods

In comparison to the results published on [53], Table 4.2 shows a better performance

in the most of the datasets. Several datasets have shown improvements in accuracy,

including those on Autos, Bikes, KDDs, and Horses, while scores on Sales and Houses

declined slightly. However, the improvements observed in Nashville were notable.

Table 4.2 shows the MSE test errors for both the hybrid model and the proposed

model. The proposed MD RBF outperformed the competing model in the majority

of the datasets, Nashville, Autos, Horse, Bike and KDD datasets. This reduction

in MSE for the Nashville datasets was significant. It decreased from 2.71E+10to
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+02
2.13E

+00
2.6858E

+01

B
ike

6.80E
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+01
3.4913E

+03

K
D

D
3.98E

+01
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2.65E + 09 with the proposed model. The Autos datasets improved significantly to

reach 1.80E+06, while the improvement in the remaining dataset were marginal.

While the MD RBF did not obtain better results in the case of House and Sales

datasets, its results are similar to the Hybrid model. MD RBF as an example return

was 3.93E+09, while Hybrid model returned 1.08E+09, resulting in a difference of

2.85E+09.

Table 4.2: Testing MSE error in mixed numerical and categorical datasets. Highlighted
values indicate the best performance model.

Dataset MD RBF Hybrid model

Nashville 2.08E+09 2.71E+10

Autos 1.80E+06 4.97E+06

House 3.93E+09 1.08E+09

Horse 1.11E+00 1.13E+00

Bike 6.80E-03 31.13E-03

KDD 3.98E+01 8.00E+01

Sales 9.26E+05 1.81E+05

4.6 Heterogeneous dataset: SMP

The second stage of our experiment was to evaluate our model on a heterogeneous

dataset with different features with numerical, categorical, and textual variables. The

Social Media Prediction (SMP) dataset was chosen to test the proposed model. A

full description of this dataset is provided in Section 3.2.2. The dataset was divided

into 80%-20% train and test samples, respectively. Detailed information about the

experiment is provided in this section.
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4.6.1 Evaluation Metrics

For the evaluation metrics, the Spearman ranking correlation (Spearman’s Rho)(4.19),

and the Mean Absolute Error (MAE) (4.18) was adopted to evaluate the proposed

model performance. Spearman’s Rho (SR)is a ranking correlation metric ranging from

0 to 1, and the highest value indicates a better performance and can be computed as

follows:

MAE =
∑

N
i=1 |ŷi − yi|

N
(4.18)

SR =
1

N −1

N

∑
k=1

(
yk − ȳ

σy

)(
ŷk − ¯̂

ky
σŷk

)
(4.19)

Where N is the total number of training or testing samples, yi is the actual output

and ŷi is the predicted value. The ¯̂
ky,σŷk are the mean and the variance of the predicted

value, and ȳk,σyk are the mean and the variance of the actual output.

4.6.2 Model Framework and Selection

This section will illustrate the main aspect of the proposed model for the SMP dataset.

In the first step, four main features are extracted from the Flickr dataset, and several

of these features were built by crawling user profiles. See Section 3.2.2 for more in-

formation. Besides the two text features, Tags and Title, the final data also includes

several numerical and categorical elements. To extract the word embedding vectors

from textual features, a standard NLP model is adopted. GloVe is a Global Vector

representation of text that compare the local text with a global vectors. Word embed-

ding vectors were obtained in 50 dimensions from GloVe model to represent the text

features, Tag and Titles.

The experiment begins with identifying a distance measure for each feature in the
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heterogeneous dataset and then compute the HDM to compute the final distance be-

tween two heterogeneous objects. The Euclidean distance is used as a distance measure

for numerical and textual variables, while the matching distance is used for categorical

features. The final distance equation is as in (4.20)

D(xi,xk) =
McDc(xc

i ,x
c
k)+MnDn(xn

i ,x
n
k)+MT IDT I(xT I

i ,xT I
k )+MT DT (xT

i ,x
T
k )

M
(4.20)

Then the FRIOC approach with k-medoids is applied with the suitable distance

measure in (4.20) and resulting centres are used to initialise RBF centres and widths.

After finding the centres, the RBF is trained with train samples to compute the final

layer weights.

4.6.3 Evaluation

Three different evaluation studies have been conducted to evaluate the performance of

the proposed model in the following subsection.

Firstly, in Section 4.6.3.1 various baseline regression models are developed for

comparison purposes. These models are: Linear Regression (LR), Random Forest

(RF), Support Vector Regression (SVR), and Decision Tree (Decision Tree (DT))

Secondly, in Section 4.6.3.2 the performance of the proposed model is compared

with the results released via the SMP competition website2

Finally, in Section 4.6.3.3 an ablation study has been performed by performing an

overall features combination to investigate further each feature’s contribution to the

proposed model’s performance.

2https://smp-challenge.com/2020/leaderboard.html,accessed 07 August 2022
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4.6.3.1 Baseline Models

Four main regression models were developed for training the SMP dataset, and then

compared with the proposed model. These models include Linear Regression, Ran-

dom Forest, Decision tree and Support Vector Regression (SVR). Fig. 4.3 displays the

results of the respective models.

The Decision Tree and Random Forrest models produced the best MAE error with

1.41 and 1.496, respectively, while the proposed HDM achieved 1.841, similar to the

SVR result. As for SR results, both the DT and the RF achieved the highest score

around 0.6, whereas the RBF with the proposed HDM achieved 0.3 higher than SVR.

Figure 4.3: Evaluation metrics result from the testing samples of SMP dataset. MAE -
Mean Absolute.

4.6.3.2 Competing Model

The proposed model outperformed the released scores, despite the poor performance

of categorical features in the HRBF. By comparison, the first place provided a MAE

1.3707 and SR 0.7040, while our model produced a MAE 1.2274 and SR 0.7306. Due
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to the increasing dimensionality of the data, the calculation of the distance between het-

erogeneous samples becomes more complex. In addition, the attribute weight scheme

assigns high weight to the features with the largest number of attributes.

4.6.3.3 Ablation Study

Through an ablation study, the model is evaluated by testing all the possible combina-

tions of features in the model to examine the impact of different types of features. The

results are displayed in Table 4.3.

In combining two features at once, the numerical features produced the best MAE

score, around 1.95, while including textual features together (Tags and Titles) produced

the highest score, 5.1760, which indicated the lowest performance.

Furthermore, the best results were obtained when the numerical and textual fea-

tures (Tag and Title) were combined, 1.8572 for MAE and 0.3 for SR. However, the

worst performance was achieved when considering the numerical, categorical and Title

features with an MAE error of 3.0589. This is much better than considering the textual

features alone.

SR results indicated a negative correlation between the output value and the cate-

gorical and textual features, but this improved when considering the numerical features

to achieve 0.3670.

4.7 Summary

This chapter introduced an attribute-weighted distance measurement for the heteroge-

neous dataset, which can compute the distance between two heterogeneous samples

based on the attribute-weighted distance scheme. This measurement is then applied to

train an RBF regression model. Moreover, the FRIOC approach is followed to learn the

proper structure of the RBF network by determining the optimal number and location
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of RBF centres.

Firstly, the model was evaluated on several mixed numerical and categorical datasets.

In some cases, the results obtained from the experiment were promising, leading to bet-

ter results than those from baselines and competing models. Secondly, the model was

tested on the SMP datasets, where the heterogeneity level of the dataset has increased.

In the second experiment, the results were not as promising as expected due to two rea-

sons; first, the weighted attribute scheme emphasized features with the highest number

of attributes rather than those most relevant to the data. As dimensionality increases,

distance measurement becomes more complex and computationally expensive.

Towards addressing the second objective of this thesis and overcoming the limita-

tion of this model, the following chapter introduces a two-phase Heterogeneous Radial

Basis Function HRBF approach to learning from heterogeneous datasets. There is

no longer a need to define and apply a heterogeneous distance measurement and to

adopt a transformation/encoding steps in order to learn effectively from heterogeneous

datasets.
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Chapter 5

Learning Heterogeneous Data Based

on Heterogeneous Radial Basis

Function Network

Having seen how the distance function can be defined for heterogeneous data in the

previous chapter, this chapter addresses the second objective of this thesis. That is, to

construct a model that can learn directly from mixed or heterogeneous data, without

requiring data types to be unified or a heterogeneous distance measures to be imple-

mented. Thus, we present a heterogeneous RBF that can learn directly from heteroge-

neous data.

RBF can efficiently learn from numerical data by projecting the input space into

the hidden layer, but is unable to handle direct mixed or heterogeneous data. In addi-

tion, the number of centres in the hidden layer must adequately represent the data to

guarantee performance stability.

Here, we extend the RBF’s ability to process mixed and heterogeneous data by

introducing a Heterogeneous Radial Basis Function (HRBF) model, to be applied to

the mixed and heterogeneous data. The main objective here is to learn directly from a
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Figure 5.1: Structure of HRBF network.

heterogeneous dataset without requiring a weighted distance function or unification of

the data type. The model was evaluated using the same datasets as those in Chapter 4.

The remainder of the chapter is organised as follows. Section 5.1 presents the

proposed Heterogeneous Radial Basis Function (HRBF) model. Section 5.2 and Sec-

tion 5.3 present the experiments on mixed numerical and categorical datasets and on

the Social Media Prediction SMP dataset,respectively. Finally, this chapter is summa-

rized in Section 5.4.
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5.1 Heterogeneous Radial Basis Function Model for Het-

erogeneous Dataset

This model introduces the Heterogeneous Radial Basis Function (HRBF), which can

learn directly from heterogeneous data. The general structure of the HRBF with M

different types of data, and P hidden neurons and a single output unit are given in

Fig. 5.1. The HRBF input layer accepts the Vm variables, which are described by a dif-

ferent number of attributes. The input layer distributes each set of attributes belonging

to a single data type to their represented neurons in the hidden layer. Kernel compu-

tations occur in the hidden layer, and their results are directly fed into the output layer

so that the target value can be computed. The sections below describe the proposed

HRBF model in more detail.

5.1.1 Structure learning of Heterogeneous Radial Basis Function

model

The three-layer structure of HRBF with M different data types and P hidden neurons

and one output unit is shown in Fig. 5.1. The main components of the model are as

follows:

1. Input layer. This layer receives the heterogeneous data types as input, with M

features/variables, and distributes the feature attributes’ to their represented neu-

rons in the hidden layer.

2. Hidden layer. This layer consists of heterogeneous units based on the hetero-

geneity level in the input space. Each type is represented by a set of LVm neurons

in the RBF network. The FRIOC algorithms are applied separately for each data

type, so as to determine how many and where the neurons are located. Then each
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hidden node computes its outcome (hVm
l ) based on the Gaussian kernel function

as follow:

hVm
l (XVm) = exp

(
−DVm(X

Vm −ν
Vm
l )

σ
Vm
l

)2

(5.1)

where DVm function defines the distance calculation for type Vm. The XVm sam-

ples are the descriptions of the attributes related to the type m. The ν
Vm
l and σ

Vm
l

represent the center and variance for the lth neuron of the feature m, respectively.

The output from this layer will be transmitted to the final layer for computing

the final prediction values.

3. Output layer. The final output is calculated based on information received from

the hidden layer, as the summation weights for the hidden layers are outputted

as follows:

ŷ =
P

∑
p=1

wphp(X) (5.2)

Where P = ∑
M
m=1 LVm represents the total number of neurons in the network, and

wp is the connection weights between the hidden layer and the final layer. By

using the matrix notation (5.2) can be represents as follows.

Y =



y1

y2

...

yn


H =



h1(X1) h2(X1) · · · hP(X1)

h1(X2) h2(X2) · · · hP(X2)

...
... . . . ...

h1(Xn) h2(Xn) · · · hP(Xn)


W⃗ =



w1

w2

...

wm


(5.3)

where

Ŷ = H W⃗ (5.4)
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Figure 5.2: Identification process of HRBF.

which form a least square problem where the coefficient vector W⃗ can be esti-

mated by solving the following equation.

W⃗ =
(
H T H

)−1 H T Ŷ (5.5)

5.1.2 Learning Procedure

HRBF’s training phase is carried out across two phases as illustrated in Fig. 5.2. The

first is HRBF centre initialisation, utilising the FRIOC approach, and the second HRBF

training. These two stages are described in greater detail below.

Several steps were performed separately for each data type during the initial stage

of training the HRBF. First, it is necessary to develop a distance function to be applied

to both the clustering and kernel calculation processes. A clustering method is then

developed using the distance measure defined previously, and the accuracy threshold

set. The FRIOC will begin next, using the constructed clustering method combined
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with the determined accuracy threshold. Once FRIOC has been terminated, the cluster

variances and cluster centres are calculated for each resulting cluster, and then used to

represent the data type in the hidden layer of the HRBF network.

These steps are performed for all the data types in the dataset. The results when

completing this phase will be represented as the number of kernels and their corre-

sponding widths for every data type in the dataset, as well as the total number of

neurons present in the HRBF network.

HRBF network learning is conducted across the following stage using the informa-

tion gathered from the first phase. The input layer receives heterogeneous features, and

then routes them to the hidden layer representing them. Each set of neurons denotes

a specific type of data in the hidden layer, and the Gaussian kernel is computed using

(5.1). The hidden layer’s output is then concatenated to form the final matrix H as

follows:

H = [H1,H2, · · · ,HM] (5.6)

where m = (1,2, · · · ,M) represent the level of heterogeneity in the datasets or the num-

ber of different data types. Once H has been determined, the Ordinary Least Square

(5.5) can be used to calculate the optimal weight matrix.

A simple description of the training and testing function of HRBF is provided in

algorithms 3,4.

In contrast to the FRIOC-RBF for heterogeneous data proposed in Chapter 3 and

the HRBF model presented in this chapter, the former computes the distance between

two sets of heterogeneous data by defining a heterogeneous distance measure. At the

same time, the latter utilises a well-defined distance measure designed explicitly for

each variable. In addition, the nodes in the hidden layer in the former model represent

all the features in the heterogeneous dataset, while in the latter, each set of nodes in
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Algorithm 3 Heterogeneous RBF training function
Input:

X : is the training samples for the heterogeneous data,
y: is the training outputs

Output:
Centers, σ,W⃗ : This function should return the centers and the width for each

distinct features and the weight vector
for i = 1 to M do

get the train samples described by the set attributes {AVi
j }

pVi
j=1 of the feature i as

XVi

CentersVi , σVi = FRIOC(XVi ,y)
HVi = RBF (XVi ,CentersVi , σVi) ▷ compute RBF kernels based on (5.1)

end for
H =

[
H V1,H V2, · · · ,H Vm

]
▷ concatenate the H Vi matrices to represent the

heterogeneous matrix H
W⃗ =

(
H T H

)−1 H TY ▷ compute weight vector as in (5.5)
Return Centers, σVi , W⃗

▷ The Final outcome represents all the centers and the width parameter as well as
the weight vector of Heterogeneous RBF

Algorithm 4 Heterogeneous RBF testing function
Input:

X : is the testing samples for the heterogeneous data
Centers, σVi: Heterogeneous RBF parameters
W⃗ : Heterogeneous RBF weight vector

Output:
Ŷ : The prediction output

for i = 1 to M do
get the test samples described by the set attributes {AVi

j }
pVi
j=1 of the feature i as

XVi

HVi = RBF (XVi ,CentersVi , σVi) ▷ compute RBF kernels based on (5.1)
end for
H =

[
H V1,H V2, · · · ,H Vm

]
▷ concatenate the H Vi matrices to represent the

heterogeneous matrix H
Ŷ = H W⃗ ▷ compute prediction output as in (5.4)
return Ŷ
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the HRBF hidden layer represents different features. Consequently, the network in

the latter model is not fully connected as the input layer maps each set of attributes

representing a feature to their represented neurons in the hidden layer, as illustrated in

Fig. 5.1.

Compared with the previous model proposed in Chapter 4, the main advantages of

the proposed can be summarised below:

• The use of well-defined distance measurements eliminates the need to determine

a unified distance measure for heterogeneous samples.

• This chapter develops a HRBF model in which each feature in the heterogeneous

dataset is represented by a set of neurons with the same type in the hidden layer

of the proposed model. Thus, reducing the computational cost associated with

learning the structure of the HRBF network.

• Weighted distances are the most common method for defining heterogeneous

measurements. Each feature in heterogeneous datasets is represented by a di-

verse set of attributes; defining the optimal weight for each feature adds an extra

level of complexity.

5.2 Mixed Dataset Experiment

In this section, we will evaluate the HRBF model across several mixed numerical and

categorical datasets. We will also measure the results of the proposed model against

baselines and a competing mixed dataset model.

5.2.1 Datasets and Evaluation Metrics

This experiment can be set up by testing our model on mixed data with only numerical

and categorical variables, and then comparing it to recent models using this type of
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Figure 5.3: mixed numerical and categorical RBF Framework.

data. This section provides additional information about the experiment and its results.

Several benchmark datasets were obtained from UCI [6] and Kaggle 1. Section 3.2.1

provides a detailed description of this data. Datasets are split into training and testing

samples, and have respective sizes of 80%-20%. As a performance metric, the Mean

Squared Error (MSE) was used to assess the proposed model as in (5.7).

MSE =
∑

N
i=1 (ŷi − yi)

2

N
(5.7)

5.2.2 Model Framework and Selection

The framework for this model is illustrated in Fig. 5.3. The datasets are represented

by numerical and categorical features. The HRBF structure and parameters need to

be learned in the first phase. For that, we will use a FRIOC approach using k-means

for numerical variables and k-medoids for categorical variables. Numerical centres’

1http://www.kaggle.com, accessed 07 August 2022
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widths are determined by their variations, while categorical centres’ widths are decided

consistently by (5.8).

After the structure identification stage, the learning process is started by computing

the kernel functions in the hidden layer, the Euclidean distance is used in numerical

nodes, and the overlap distance is obtained in categorical ones. In the numerical neu-

rons, variations of each cluster are obtained to represent their associated kernel width.

In the categorical neurons, the kernel width is consistent in all the categorical neurons

computed based on (5.8).

σct =
dmax√
2Lm

(5.8)

where dmax is the maximum distances between any pairs of categorical centroids, and

lm is the number of categorical centroids.

5.2.3 Evaluation

Three different evaluation studies have been conducted to evaluate the performance of

the proposed model in the following subsection.

Firstly, in Section 5.2.3.1 various baseline regression models are developed for

comparison purposes. These models are: Linear Regression (LR), Decision Tree(CART),

Random Forest RF, and Support Vector Regression (SVR). As these models can not

directly deal with mixed datasets, we had to convert the categorical features to numeri-

cal using one-hot encoding. As Chapter 2 describes The Random Forest, we have only

looked at this model in Section 5.3 of our evaluation experiment.

Secondly, in Section 5.2.3.2 the performance of the proposed model is compared

with a competing method. The hybrid regression tree model proposed in [53] is cho-

sen for comparison purposes as they used the same mixed numerical and categorical

datasets.
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Finally, in Section 5.2.3.3 an ablation study has been performed by performing an

overall features combination to investigate further each feature’s contribution to the

proposed model’s performance.

5.2.3.1 Baseline models

Several well-performed baseline regression models were used to evaluate the pro-

posed HRBF model. Table 5.1 details the corresponding outcomes. These models

include Random Forest, Linear Regression, Decision Tree, and Support Vector Ma-

chine (SVR). Of all these models, Linear Regression failed to learn from all the mixed

datasets. This is apparent from its high value of MSE error, which indicates poor

performance.

Despite being the highest MSE score for all datasets, the linear regression model

was the best for the Horse and Bike datasets. There were no significant differences

between HRBF results in these datasets. According to the Horse dataset, the MSE

score with linear regression is 1.08 and 1.47 with HRBF.

Although the SVR and decision tree models performed similarly, the SVR model

performed significantly worse than decision tree models for the Sales dataset. The

HRBF model produces results comparable to SVR and decision trees; on the Nashville,

Autos and House datasets, it even outperforms them. According to the KDD, the

difference between the best model and HRBF is 9.1.

For the majority of the datasets, the Random Forest was the best. The proposed

model, however, performed better in the Autos dataset and produced similar results in

Nashville, House, and KDD.

103



5.2.3.2 Competing Method

In comparison to the results published in [53], Table 5.2 shows the MSE test errors for

both the hybrid model and the proposed HRBF model. The proposed HRBF outper-

formed the competing results in three datasets, Nashville, Autos and KDD datasets.

This reduction in MSE for the Nashville datasets was significant. It decreased from

2.71E+10 to 2.65E + 09 with the proposed model. The Autos datasets improved by

65% to reach 1.72E+06, while the improvements in the KDD dataset were marginal. In

the case of the other datasets, the proposed model performed differently. In the Horse

dataset, the MSE scores differed by 0.35, while for the Sales and House datasets, the

difference illustrated is considerable.

Table 5.2: Testing MSE error in the mixed numerical and categorical datasets for the
Hybrid model and the HRBF model. Highlighted values indicate the best performance
model.

Dataset Hybrid model HRBF model

Nashville 2.71E+10 2.6519E+09

Autos 4.97E+06 1.7178E+06

House 1.08E+09 3.2698E+09

Horse 1.13E+00 1.4797E+00

Bike 31.13E-03 4.1673E+00

KDD 8.00E+01 6.9699E+01

Sale 1.81E+05 9.4907E+05

5.2.3.3 Ablation Study

A further experiment is then conducted to examine the performance of each features

alongside the proposed HRBF model. Table 5.3 shows the MSE testing error when

training the numerical features with FRIOC-RBF with K-means and the categorical

features with FRIOC-RBF with K-medoids.
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In general, numerical features provide better results than the categorical features

besides the KDD dataset. Additionally, when using both features, the results improved

slightly. The MSE on the Nashville dataset increased from 2.9259E+09 for the numer-

ical features and 9.1506E+09 for the categorical features when both were trained as

2.6519E+09.

Table 5.3: MSE for HRBF model in mixed datasets with different features combina-
tions. MSE- Mean Squared Error

Dataset Categorical RBF Numerical RBF HRBF

Nashville 9.1506E+09 2.9259E+09 2.6519E+09

Autos 1.4661E+07 1.8182E+06 1.7178E+06

House 9.2898E+09 3.5817E+09 3.2698E+09

Horse 2.6813E+03 1.6945E+00 1.4797E+00

Bike 3.0259E+04 3.0259E+04 4.1673E+00

KDD 7.0705E+01 1.0514E+02 6.9699E+01

Sale 1.0889E+06 9.2947E+05 8.7790E+05

5.3 Heterogeneous Dataset Experiment: SMP

The experiment evaluates the proposed model against a well-known regression model

and a computing model on heterogeneous data with numerical, categorical, and textual

variables. Detailed information about the experiment is provided in this section.

5.3.1 Datasets and Evaluation Metrics

The Social Media Prediction (SMP) dataset was collected from Flickr, which is one

of the largest media sharing websites. The dataset comprises about 300K samples,

describing a single social post. The primary aim of the data is to predict popularity
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Figure 5.4: Heterogeneous Radial Basis Function (HRBF) framework.

scores for unseen posts. For evaluation purposes, we divided the data into 80% − 20%

training and testing samples, respectively. For the evaluation metrics, the Spearman

ranking correlation (Spearman’s Rho) (5.10), and Mean Absolute Error (MAE) (5.9)

were adopted to evaluate the proposed model’s performance. Spearman’s Rho is a

ranking correlation metric ranging from 0 to 1, with the highest value indicating a

better performance

MAE =
∑

N
i=1 |ŷi − yi|

N
(5.9)

SR =
1

N −1

N

∑
k=1

(
yk − ȳ

σy

)(
ŷk − ¯̂

ky
σŷk

)
(5.10)

5.3.2 Model Framework and Selection

This section will illustrate the main aspect of the model proposed for the SMP dataset.

Fig. 5.4 details the main components of the model, which are feature extraction, and

the heterogeneous regression model. In the first step, four main features were ex-

tracted from the Flickr dataset; several of which were built by crawling user profiles.
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See Section 3.2.2 for more information. Additional to the two text features, Tags and

Title, the final data also includes several numerical and categorical elements. To ex-

tract the word embedding vectors from the textual features, an effective NLP model is

adopted. For diverse areas in NLP, BERT [20] achieved a significant state of the art

performance, including for the purpose of text classification, questions and answers

and translations. Word embedding vectors were obtained in 768 dimensions from the

pretrained BERT model as a way to represent the text features, Tag and Titles. SMP’s

dataset has four unique features: two numerical categorical features and two textual

features. Defining distance functions, accuracy thresholds, and clustering methods for

each data type is essential before starting the structure learning process of HRBF. Tex-

tual and numerical features can be clustered using K-means with Euclidean distance,

whereas categorical features use K-medoids with a matching distance. When consid-

ering the distance functions and clustering methods defined in the FRIOC approach,

kernels must first be defined in order to begin training. The cluster variation represents

the kernels widths for the numerical and textual nodes, while the categorical neurons

have a consistent kernel width, which is computed using (5.8).

5.3.3 Evaluation

Three different evaluation studies have been conducted to evaluate the performance of

the proposed model in the following subsection.

Firstly, in Section 5.3.3.1 various baseline regression models are developed for

comparison purposes. These models are: Linear Regression (LR), Random Forest

(RF), Support Vector Regression (SVR), and Decision Tree (DT).

Secondly, in Section 5.3.3.2 the performance of the proposed model is compared

with the results released via the SMP competition website2

2https://smp-challenge.com/2020/leaderboard.html,accessed 07 August 2022
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Figure 5.5: Testing error for the baseline models and HRBF. MAE-Mean Absolute
Error.

Finally, in Section 5.3.3.3 an ablation study has been performed by performing an

overall features combination to investigate further each feature’s contribution to the

proposed model’s performance.

5.3.3.1 Baseline Models

Four main regression models were developed for the purpose of training the SMP

dataset, and these were then compared with the proposed model. The models in-

cluded Linear Regression, Random Forest, Decision tree and Support Vector Regres-

sion (SVR). Fig. 5.5 displays the results for the respective models. The SVR model

with an MAE of 2.2185 produced the worst results, with the Random Forest and Lin-

ear Regression model producing similar results, of around 1.48 for MAE. Concerning

the SR results, the lowest rank was achieved by SVR with the Linear Regression and
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Random Forest achieving similar results at 0.61. However, the proposed model out-

performed relative to the baseline scores with an MAE score of 1.227 and 0.7306 for

SR rank.

5.3.3.2 Competing Results

We compare the performance of our model to the results on the leader board page

for the competition website. Table 5.5 shows that the top three MAE and SR scores

have been achieved. The proposed model outperformed the released scores, despite the

poor performance of categorical features in the HRBF. By comparison, the first place

provided a MAE 1.3707 and SR 0.7040, while our model produced a MAE 1.2274 and

SR 0.7306. Based on these findings, the model is deemed generally significant, but in

need of slight improvements to improve its performance.

5.3.3.3 Ablation Study

An ablation study was conducted to evaluate the model by testing all the possible

combinations of features present, in an effort to examine the impact of the different

feature types. The results are displayed in Table 5.4. Accordingly, the categorical

features performed significantly worse in cases where each individual data type was

tested separately. Their MAE score was 6.23, but the SR rank was negatively corre-

lated. Additionally, the Title feature performed poorly, with an MAE score of 2.88 and

a SR 0.06. However, the numerical and tag features performed well, achieving MAE

scores of 1.56 and 1.68, respectively.

Combining the two features generates improved performance across the entire case,

with numerical and tag features doing best, with an MAE of 1.30 and SR of 0.70, and

categorical and title features doing worst with an MAE of 2.83 and SR of 0.09.

The performance improves further when three features are combined at a time. By

combining the numerical and textual features, an MAE score of 1.24 and an SR score
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1.3084
1.4544

1.6413
2.8285

1.5663
1.2867

1.4299
1.2435

1.5435
1.2274

SR
0.5627

-0.0881
0.536

0.0649
0.5741

0.6999
0.6187

0.5474
0.0865

0.5778
0.7066

0.6269
0.7257

0.585
0.7306
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Table 5.5: Proposed HRBF performance compared with top three result announced
in SMP leaderboard for different combinations of features is shown as MAE and SR
testing results. MAE-Mean Absolute Error, SR-Spearman’s Rho.

Team SR MAE

ecnu aida 0.7040 1.3707

USTC CrossModal Robot 0.6744 1.3586

UESTC IntelliGame Lab 0.6506 1.3935

HRBF model 0.7306 1.2274

of 0.73 were reached; both of which are significantly higher than for individual scores.

However, the model accuracy increased by 1.5% once all the features are combined to

achieve a 1.227 MAE score and 0.731 SR. Despite this, the model performance gradu-

ally increased with additional features considered, although the combination including

the categorical features was the worst. The best model performance is achieved by

combining all four features. To conclude, the proposed model can learn significantly

from the numerical and textual features and thereby produce significant results; how-

ever, it is less effective at handling categorical features.

5.4 Summary

This chapter proposed a two-phase heterogeneous RBF to learn from heterogeneous

datasets. In the first phase, a special clustering approach was implemented for each

data type to indicate the numbers and locations of the REF centres. Each feature’s

attributes were then sent to their representative neurons in the second phase, in which

the Gaussian kernel performs non-linear transformation.

We evaluated the proposed model by implementing two kinds of datasets, and com-

pared its results to a baseline regression models and a competing model. Numerical

and categorical variables are included in the first experiment type, while numerical,
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categorical and textual variables are included in the second type. Finally, the results

were evaluated with different metrics and compared to the baseline regression models

and competing models. The results show that while the model learned well from the

numerical and textual data, it has not trained the categorical features sufficiently.

The next chapter fulfils the final objective of the thesis by proposing a hybrid re-

gression model that can learn from heterogeneous data without defining a distance

function or applying an encoding transformation. This model aims to train each fea-

ture/variable with a regression model and then linearly combine the results to produce

the final prediction values.
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Chapter 6

Hybrid-Regression model Prediction

Based on Heterogeneous data

We presented two machine learning approaches for learning from heterogeneous datasets

in the previous two chapters. One model defines a unified distance measurement for

heterogeneous data, and the other is based on developing heterogeneous RBF net-

works. Our goal in this chapter is to address the final objective stated in this thesis

by proposing a combined regression model capable of learning from heterogeneous

datasets.

Bates and Granger first introduced combination models theory in 1969 [7], in the

field of time forecasting prediction. Combining forecasts involves capturing patterns in

datasets comprised of different features based on the unique features of different mod-

els. The literature related to this topic has been expanded upon significantly since then,

and it has been revealed that combining multiple models greatly improves forecasting

accuracy [118, 2, 39]. Moreover, many machine learning techniques developed based

on the combination idea have improved predictive performance and reduce the bias.

These concepts include bootstrapping, bagging, stacking, and boosting. Additionally,
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combining multiple models reduces the risk of using an inappropriate model for pre-

dicting the output, reduces bias, and makes the model more stable and less noisy [33].

We propose a hybrid combination regression model based on this idea as a tool to train

heterogeneous data.

The key motivation behind this work emerges from these perspectives. First, the

difficulty of defining a single model that can extract complete knowledge from hetero-

geneous data is primarily a consequence of the fact that most regression models are

developed to train a single type of data, and as such may not be directly applicable to

other kinds of data. Moreover, since each feature is unique; unified or simple models

cannot learn or reveal pieces of information derived from this feature efficiently. In

conclusion, each type of data has been extensively studied separately, with many algo-

rithms developed to learn from single types of data. Moreover, the combination model

has proven to be efficient. Here we will utilize these to establish a hybrid regression

model that combines multiple models.

Although each data type has unique characteristics and applies a specific format

when describing data, building a heterogeneous model and learning from each feature

is proposed here. As each data type has been widely studied in isolation, and many

algorithms have been proposed to learn from these single data types, we plan to take

advantage of this by selecting a suitable model for each data type and combining their

results to form final prediction values. Thus, heterogeneous data has been derived to

learning models. Moreover, the following section will describe the models used for

each data type as the base model, and their combination as high-level models.

The remainder of the chapter is organised as follows. Section 5.1 presents the pro-

posed Hybrid-Regression model. Section 6.3 and Section 6.4 present the experiments

on mixed numerical and categorical datasets and on the Social Media Prediction SMP

dataset,respectively. Finally, this chapter is summarized in Section 6.5.
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6.1 Problem Statement

As the problem statement stated previously in Section 4.1 in Chapter 4, The problem to

be solved by the hybrid regression model is to minimise the Sum of Square Error (Sum

of Square Error (SSE)) as in (6.1) by learning from heterogeneous datasets without

using distance measures or encoding transformation systems that unify data types.

SSE =
n

∑
i=1

(yi − f (xi))
2 (6.1)

Figure 6.1: Hybrid-Regression model hierarchical structure framework. Each colour
refer to different feature and each feature assigned a regession model.

6.2 Hybrid-Regression model Prediction Based on Het-

erogeneous data

In this section, we introduce the proposed method framework to manage heteroge-

neous datasets; namely, the Hybrid-Regression model Prediction Based on Hetero-

geneous data, designed to estimate target value. The principle behind the proposed
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framework is that, for each data type/variable, a regression model constructed specifi-

cally for that data type is learned, then the obtained individual models are combined to

formed the final prediction model. Additionally, Unlike the current trend to use more

complicated approaches to model building, which leads to the impression that com-

plicated models are required to analyze and model complicated heterogeneous data,

our approach provides a simple yet effective alternative that should be adopted. The

following content of this section is organised as follows: Section 6.2.1 introduce the

proposed Hybrid-Regression Model framework; and the model learning process are

presented in Section 6.2.2 and Section 6.2.3; Section 6.3.

6.2.1 Framework of Hybrid-Regression Model

Fig. 6.1 illustrated the hierarchical structure of the proposed framework. The model

first identified the range of diverse data types/variables included in the heterogeneous

dataset. Then for each type/variable Vm on the dataset, a regression model Fm(x
Vm
i ) is

designed and developed. These models are then trained with their corresponding fea-

tures and obtained intermediate prediction values. Finally, after all regression models

are trained, their outputs are linearly combined to produce a final prediction value. A

more detailed description of the framework is given in the following subsections.

6.2.2 Base Models Learning

This thesis uses three types of data: numerical, categorical, and textual data. Therefore,

each of their base models will be explained in this section, which will be used during

the experiment.
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6.2.2.1 Learning From Categorical Features

Categorical features have a uniquely finite set of values defined according to cate-

gories. One of the most widely used techniques to represent categorical features is

one-hot encoding. This schema uses a binary vector to represent categories where one

component is set to one, and the remainder are set to zero [83, 71]. This mapping

is applicable and useful when the number of categories remains small (less than ten)

[71]. Using a coding system to assist data transformation increases the dimensions of

the data. Thus, in this case, the categorical features have to be trained differently to en-

hance model efficiency. Tree-based machine learning algorithms can effectively handle

high-cardinality categorical features without engaging in any external pre-processing

steps (omit the need of encoding system) [71]. A state of art gradient boosting tree

algorithm can be applied to train these categorical features.

In recent research three decision trees have been broadly used relying on the gra-

dient boosting concept. These are CatBoost (Categorical Boosting), XGBoost and

LightGBM. Of these, CatBoost has proven its superior performance over the two other

trees, as measured by accuracy of prediction and computation time [83]. CatBoost is

a decision tree model that utilises gradient boosting techniques. It was developed to

solve the main issue affecting the classical gradient boosting approach; i.e. prediction

shift. Prediction shift is a term that was used by the developer of CatBoost to describe

the leakage issue affecting the target value during the training process. The chief rea-

son for the prediction shift is that it uses the same data samples at each boosting step

(i.e. estimation of the gradient). To overcome this, CatBoost constructs a decision

tree model by performing ordering boost. Order boost uses a random permutation of

training samples to support the ordered boost calculation. When using this technique,

CatBoost reduced the overfitting of the categorical features [83, 71, 44]. Furthermore,

an essential detail of CatBoost is the construction of a new categorical features based
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on the various combinations of categorical variables supplied. This combination is

used to ensure the capture of high-order dependency, such as joint information [83].

To summarise, CatBoost is a recent gradient boosting tree model that has two main

advantages over the other three models. First, they handle categorical features differ-

ently by omitting the need for pre-processing and encoding scheme steps. In addition,

they enrich the features dimension by introducing new features that are effective for

gradually combining categorical features. Secondly, they enhance model accuracy by

using the boost ordering technique to solve the prediction shift problem, and avoid

overfitting. Moreover, based on the significant body of research conducted to compare

gradient boosting techniques, CatBoost outperforms alternatives in terms of accuracy

and time complexity [9, 44]. We therefore employ CatBoost as a based regression

model to train categorical features.

6.2.2.2 Learning From Numerical Features

A Radial Basis Function network with FRIOC clustering approach is used to train the

numerical features. A detailed description of the FRIOC approach was provided in

Section 4.3.1. So here we offer only a brief description.

The concept of Forward Recursive Input-Output clustering was first proposed by

[84] to identify centres for Mamdani fuzzy neural networks, in which both the input

and the output are utilized for clustering. FRIOC applies a coarser and a finer clus-

tering to manage smooth and high variable regions respectively. Firstly, it applies an

input cluster to divide input space into a predefined number of clusters. Then further

sub-clustering is performed for those clusters with an overflow output variance. This

process is repeated and guided by a validity check step, as a way to detect whether the

cluster variation is set at an acceptable level. This forward recursive method facilitates

the identification of a sufficient number of centres to support their representation in

the RBF network. After, completing the FRIOC approach, the resulting centres can be
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used to represent the neurons in the RBF network.

The final k outputted clusters and centers from applying The FRIOC approach with

the k-means to the numerical features can be represented as:

Oci(i = 1,2, · · · ,K) νi(i = 1,2, · · · ,K)

Then, their corresponding widths σi(i= 1,2, · · · ,K) for the Gaussian kernel is com-

putes as data deviation by (6.2).

σi =

√√√√∑
NOci
j=1

∥∥∥Xnum
j −νi

∥∥∥
NOci

(6.2)

Where Xnum
j is the data samples that are contained in a cluster Oci, and NOci is the

total number of samples for that cluster. Then, these centres and widths represent the

neurons in the RBF network.

A RBF network consists of an input layer, a hidden layer (containing hidden neu-

rons with Gaussian kernel) and an output layer, as described previously in Section 2.5.

The input layer will receive the numerical features Xnum and feed them to the hidden

layer where the Gaussian kernel is applied to perform the non-linear transformation as

follows.

h j(Xnum) = exp
(
−∑

N
i=1 ||Xnum

i − v ji||
σ ji

)2

(6.3)

Then, the output of RBF is computed by (6.4),

ynum
i =

K

∑
j=1

w jh j(Xnum) (6.4)

where ynum
i is the output prediction from numerical features, K is the total number

of neurons in the RBF network, and w j is the the connection weight between the jth

neuron in the hidden layer and the output layer. By applying the matrix notation the
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(6.4) can be written as follows.

Ynum = WH (6.5)

Then we can apply the ordinary Least Square methods to find the optimum weight

values as follows.

W =
[
HT H

]−1 HT Ynum (6.6)

6.2.2.3 Learning From Textual Features

Text features must be mapped into a set of vectors based on the Word Embedding algo-

rithms. Word/Sentence Embedding is a commonly used NLP procedure that converts

words or sentences into a set of real numbers (vectors) used in machine learning and

deep learning models.

The Bidirectional Encoder Representations from Transformers (BERT) is a recent

state-of-the-art pre-trained deep network NLP model. For diverse areas in NLP, BERT

[20] has achieved significant and state-of-the-art performance, including for text clas-

sification, questions and answers and translations. BERT has been pre-trained on two

main tasks in NLP: mask language modelling and Next sentence prediction.

There are a number of pre-trained BERT models available, and among them, we use

the BERT-base-uncased model to extract sentence embedding from textual features.

This results in a 768-dimensional vector for every text sample.

The extracted sentences vectors are then trained using the FRIOC-RBF method.

As previously described in Section 6.2.2.2, this method consists of two phases: the

initialisation phase and the training phase. During the initialisation phase, FRIOC

with K-means is used to determine the optimal number and location of RBF centres.

RBF kernel widths are then defined based on (6.2). The second phase involves training

an RBF with Gaussian kernels based on (6.3) and(6.4). Finally, the final prediction
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values can be determined by solving (6.5) with the Least Square method (6.6).

6.2.2.4 The Combination of the Learning Models

Finally, once all regression models have been individually trained, a linear regression

model is applied to obtain the weights of each model and to obtain the final prediction

value as follows.

ŷi =
M

∑
m=1

βVmFm(x
Vm
i ) (6.7)

The (6.7) can be expresses by using matrix notation as follows.

Y =



y1

y2

...

yn


Y =



F1(x
V1
1 ) F2(x

V2
1 ) · · · Fm(x

Vm
1 )

F2(x
V2
2 ) F2(x

V2
2 ) · · · Fm(x

Vm
2 )

...
... . . . ...

F1(x
V1
n ) F2(x

V2
n ) · · · Fm(xVm

n )


β⃗ =



βV1

βV2

...

βVm


(6.8)

where

Ŷ = Y β⃗ (6.9)

which form a least square model where the coefficient vector β⃗ can be estimated by

solving the following equation.

β⃗ =
(
Y T Y

)−1 Y T Ŷ (6.10)

6.2.3 Procedure of Hybrid-Regression Model

The learning steps is presented in this section in order to help understand how the

Hybrid-Regression Model combines the diverse regression models demonstrated in
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Section 6.2.2.

step 1 Determining the M diverse features that describe the heterogeneous dataset D.

step 2 Design and develop regression models Fm(xVm) for each feature m

step 3 Training Fm(xVm) using xVm and predicting yVm .

step 4 Solve equations (6.9) and (6.10) to determine the models’ weights.

step 5 Calculate the final prediction value ŷF by solving equation (6.7).

6.3 Mixed Numerical and Categorical Datasets

This experiment was set up by testing the model for mixed data, applying only numer-

ical and categorical variables, and comparing these to recent models using the specific

data type. This section provides additional information regarding the experiment and

its results.

6.3.1 Datasets and Evaluation Metrics

Several benchmark datasets obtained from UCI [6] and Kaggle 1 (Section 3.2.1) pro-

vide a detailed description of the data. Datasets are split into training and testing

samples, with respective sizes of 80%-20%. Mean Squared Error was used as a per-

formance metric to assess the proposed model as in (6.11).

MSE =
∑

N
i=1 (ŷi − yi)

2

N
(6.11)

1http://www.kaggle.com, accessed 07 August 2022
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Figure 6.2: Hybrid-Regression model framework for mixed numerical and categorical
dataset

6.3.2 Model Framework and Selection

The framework for this model is illustrated in Fig. 6.2. The datasets are characterised

both numerically and categorically, and a regression model was selected to train and

learn each feature. First, CatBoost trees can be used to train categorical features, when

responses are denoted by ŷct . Secondly, after normalization of the numerical features,

the response value is produced by FRIOC-RBF with k-means as ŷnm. A linear regres-

sion model can then be applied to incorporate the results from the two learning models,

to derive the final response values notated as ŷF .

6.3.3 Evaluation

Three different evaluation studies have been conducted to evaluate the performance of

the proposed model in the following subsection.

Firstly, in Section 6.3.3.1 various baseline regression models are developed for

comparison purposes. These models are: Linear Regression (LR), Decision Tree(CART),

and Support Vector Regression (SVR). As these models can not directly deal with

mixed datasets, we had to convert the categorical features to numerical using one-hot

encoding.

Secondly, in Section 6.3.3.2 the performance of the proposed model is compared
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with a competing method. The hybrid regression tree model proposed in [53] is cho-

sen for comparison purposes as they used the same mixed numerical and categorical

datasets.

Finally, in Section 6.3.3.3 an ablation study has been performed by performing an

overall features combination to investigate further each feature’s contribution to the

proposed model’s performance.

6.3.3.1 Baseline models

In Table 6.1, we present the outcomes of some well-performed baseline regression

models that were adopted to evaluate our proposed model. These models include Lin-

ear Regression, RandomForest, Decision Tree, Support Vector Regression (SVR) and

CatBoost. For almost all the datasets, except for the Bike and Horse datasets, the Linear

Regression model performed significantly worse than the others. CatBoost and Ran-

dom Forest offer relatively similar results for the sets Nashville, Autos, House KDD,

and Sales. The proposed model did, however, perform exceptionally well across most

datasets; i.e. it reduced the MSE error for the Nashville, Autos, House, Horse, and

Sales datasets by 90%.

6.3.3.2 Competing method

In comparison to the results published by [53], Table 6.2 shows the MSE test errors for

both the hybrid model and the proposed model. The proposed model significantly out-

performed the hybrid model across almost all the datasets analysed, according to the

results. The MSE accuracy for the proposed model was 3.3668E+04, 1.0690E+03,

2.9761E+04, and 6.8467E+02 for Nashville, Autos, House, and Sales datasets, re-

spectively. Meanwhile, the hybrid model results 2.71E+10, 4.97E+06, and 1.08E+09

for the same datasets. This improvement is significant when compared to the KDD

and Horse datasets, with the proposed model resulting in a value of 3.7781E+00
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and 8.872E-01, and the Hybrid model yielding an equivalent value of 8.00E+01 and

1.13E+00.

Table 6.2: Testing MSE error in the mixed numerical and categorical datasets for the
Hybrid model and the proposed Hybrid-Regression model. Highlighted values indicate
the best performance model.

Dataset Hybrid model Proposed model

Nashville 2.71E+10 3.3668E+04

Autos 4.97E+06 1.0690E+03

House 1.08E+09 2.9761E+04

Horse 1.13E+00 8.872E-01

Bike 31.13E-03 1.3744E+00

KDD 8.00E+01 3.7781E+00

Sale 1.81E+05 6.8467E+02

6.3.3.3 Ablation Study

The selected learning model was also used to measure each feature’s performance in

a subsequent experiment. Table 6.3 shows the MSE testing error for training the nu-

merical features with FRIOC-RBF with K-means, and the categorical features with the

CatBoost tree. The results from the various models proved to be similar, except for the

Horse and Bike datasets, where the CatBoost model performed significantly worse than

the FRIOC-RBF model; meanwhile the opposite was true for the Sales and the KDD

datasets. Despite this, the linear combination for both models generated significantly

stronger results than either model did separately. Considering the Nashville, Autos,

and Sales datasets, the MSE score fell drastically to 3.3668E+04, 1.0690E+03, and

6.8467E+02, respectively, and this finding was similar for the other datasets.

The selected learning model is used to measure each feature’s performance in a
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subsequent experiment. Table 6.3 shows the MSE testing error of training the nu-

merical features with FRIOC-RBF with K-means and the categorical features with

CatBoost tree. The results from the various models are similar except for the Horse

and Bike datasets, where the Catboost model performed significantly worse than the

FRIOC-RBF model, while the opposite was true for the Sales and the KDD datasets.

Even so, the linear combination of both models shows significantly stronger results

than either model separately. Considering the Nashville, Autos, and Sales datasets, the

MSE score has decreased drastically to 3.3668E+04, 1.0690E+03, and 6.8467E+02,

respectively, and this can also be said for the other datasets.

Table 6.3: Testing MSE for Hybrid-Regression model in mixed datasets with different
combinations of features.

Dataset Numerical features Categorical features Linear regression

Nashville 1.8271E+09 2.4505E+09 3.3668E+04

Autos 1.7738E+06 1.7544E+06 1.0690E+03

House 4.1806E+09 2.0932E+09 2.9761E+04

Horse 2.0740E+00 3.0967E+02 1.0455E+00

Bike 3.2722E+00 2.9426E+04 1.3744E+00

KDD 2.9528E+02 3.3684E+01 3.7781E+00

Sale 1.2464E+06 9.1486E+05 6.8467E+02

6.4 Heterogeneous Dataset Experiment: SMP

The experiment evaluates the proposed model against a well-known regression model

and a computing model on heterogeneous data with numerical, categorical, and textual

variables. Detailed information about the experiment is provided in this section.

127



Figure 6.3: Illustration of the Hybrid-Regression model framework for SMP dataset.

6.4.1 Datasets and Evaluation Metrics

The Social Media Prediction (SMP) dataset was collected from Flickr, one of the

largest media sharing websites. The dataset includes about 300K samples, each de-

scribing a single social post. The primary aim of collecting the data is to predict the

popularity score for unseen posts. For evaluation purposes, we divided the data up into

80%-20% training and testing samples, respectively.

For the evaluation metrics, the Spearman ranking correlation (Spearman’s Rho),

and the Mean Absolute Error (MAE) was adopted to evaluate the proposed model

performance (6.12). Spearman’s Rho (SR) is a ranking correlation metric ranging

from 0 to 1, (6.13) and the highest value indicates a better performance and can be

computed as follows:

MAE =
∑

N
i=1 |ŷi − yi|

N
(6.12)

SR =
1

N −1

N

∑
k=1

(
yk − ȳ

σy

)(
ŷk − ¯̂

ky
σŷk

)
(6.13)

where n indicates the total number of samples, ŷk and yk are the predicted and true
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popularity values, respectively, and ¯̂
ky,ȳk are the mean and the variance of the corre-

sponding target values. In addition the MAE is defined as shown in Eq.(6.14).

MAE =
1
n

n

∑
k=1

|ŷk − yk| (6.14)

Figure 6.4: Hybrid-Regression model framework for SMP dataset.

6.4.2 Model Framework and Selection

In this section, the chief component of the proposed model for the SMP dataset is il-

lustrated as shown in Fig. 6.3. The model is mainly for features extraction and is a

heterogeneous regression model. Initially, four main features were extracted from the

Flickr dataset and post. Some of these features were constructed by crawling the user’s

profile, while the others were computed based on the current information ( for addi-

tional details, please refer to Section 3.2.2). The results described two text features,

Tags and Title, a numerical and categorical features.

As shown in Fig. 6.4, for each of these features, a regression model was selected

for the purpose of training and learning, as follows. Firstly, the categorical features

are fed into and trained with the CatBoost tree, and its response value notated as ŷct .

Secondly, the additional features are trained by constructing a FRIOC-RBF with a

k-means clustering approach, separately, and their response values notated as ŷnm,ŷti

and, ŷta, for numerical, Title and Tags features respectively. Finally, a linear regression
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model is applied to the responses of the four learning models to assign a weighting for

each model outcome, and the final prediction reported as in (6.7).

6.4.3 Evaluation

Three different evaluation studies have been conducted to evaluate the performance of

the proposed model in the following subsection.

Firstly, in Section 6.4.3.1 various baseline regression models are developed for

comparison purposes. These models are: Linear Regression (LR), Random Forest

(RF), Decision Tree (DT), XGBoost, and CatBoost.

Secondly, in Section 6.4.3.2 the performance of the proposed model is compared

with the results released via the SMP competition website2

Finally, in Section 6.4.3.3 an ablation study has been performed by performing an

overall features combination to investigate further each feature’s contribution to the

proposed model’s performance.

6.4.3.1 Baseline models

A number of well-performed baseline regression model were used to evaluate the pro-

posed model. Fig. 6.5 shows the corresponding outcomes. When analysing all the

methods, the first thing we note is the poor performance of the Random Forest com-

pared to the baselines. Moreover, we can observe that the proposed model outperforms

the other models in terms of MAE and SR, and competitive results are achieved by Cat-

Boost and XGBoost models, taking advantage of the designed features.

2https://smp-challenge.com/2020/leaderboard.html,accessed 07 August 2022
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Figure 6.5: Testing error of the proposed Hybrid-Regression model against the baseline
models in terms of MAE and SR. MAE-Mean Absolute Error, SR-Spearman’s Rho.
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6.4.3.2 Competing results

We compared the performance of our model to the results on the leader board page of

the competitors website. Table 6.5 shows the top three MAE and SR scores had been

achieved. The top two winning teams applied the TFIDF and word2vec scheme to

extract the word embedding vectors from the textual features. While adopting BERT

for the purpose of textual feature extraction greatly influences the performance of the

proposed model.

6.4.3.3 Ablation Study

In this section a further experiment is conducted to evaluate the impact of different

types of features through an ablation study, involving removing one type of feature

from the method at a time. The results are as displayed in Table 6.4. Accordingly,

we reached the following conclusions: Firstly, all the features have a positive impact

on the model’s performance. However, the categorical features have a large impact

on the performance, while the numerical and tags features participate equally in model

performance, with the impact of the title feature on performance being relatively small.

6.5 Summary

A regression model, based on a linear combination of trained models for each type of

data, was presented in this chapter to train heterogeneous data. We evaluated the pro-

posed model considering two levels of heterogeneity: mixed numerical and categorical

data and a social media prediction dataset with four different data types. In addition to

using the FRIOC-RBF with the k-mean clustering approach to train the numerical and
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Table 6.5: Proposed Hybrid-Regression model performance compared with top three
result announced in SMP leaderboard for different combinations of features is shown
as MAE and SR testing results. MAE-Mean Absolute Error, SR-Spearman’s Rho.

Team SR MAE

ecnu aida 0.7040 1.3707

USTC CrossModal Robot 0.6744 1.3586

UESTC IntelliGame Lab 0.6506 1.3935

Hybrid-Regression model 0.8622 1.0218

textual data, the CatBoost gradient boosting tree was used to train the categorical fea-

tures. The results obtained demonstrate: 1) the combined performance of the models

is better than the performance of each model individually; and 2) the proposed model

showed a significantly positive performance with the mixed data types, and satisfactory

results with the SMP dataset. In summary, the proposed model can be applied to any

kind and level of heterogeneity in data. Future work will primarily focus on applying

the proposed model to scenarios integrating more data types.
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Chapter 7

Conclusions and Future Work

This study has developed a variety of regression approaches to learn from heteroge-

neous datasets. The aim is to predict continuous values from datasets described by

various features represented by multiple data types. Learning from heterogeneous data

have been shown to be complicated machine learning problems. Section 7.1 summa-

rizes the major contributions of this thesis, while Section 7.2 examines possible future

research in this research area.

7.1 Thesis Contributions and Discussion

Overall, the research in this thesis focuses on the regression problems posed by het-

erogeneous data with different data types. This topic is very important in areas such as

medicine, recommendation systems, social prediction, and energy.

Regarding the first and second objectives, a heterogeneous distance measurement

based on an attribute-weighted scheme is defined and used to train the radial basis func-

tion network. The forward recursive input output clustering approach is conducted as

structured learning for the RBF network. These two objectives are fulfilled in Chap-

ter 4.
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Table 7.1: Testing MSE Error in the Mixed numerical and categorical datasets for the
proposed models. Highlighted values indicate the best performance model. MSE-
Mean Squared Error

Dataset RBF with HDM HRBF Hybrid-Regression Model

Nashville 2.08E+09 2.6519E+09 3.3668E+04

Autos 1.80E+06 1.7178E+06 1.0690E+03

House 3.93E+09 3.2698E+09 2.9761E+04

Horse 1.11E+00 1.4797E+00 8.872E-01

Bike 6.80E-03 4.1673E+00 1.3744E+00

KDD 3.98E+01 6.9699E+01 3.7781E+00

Sale 9.26E+05 8.7790E+05 6.8467E+02

For the third objective, the Heterogeneous Radial Basis Function (HRBF) regres-

sion model presented in Chapter 5 is developed to learn from heterogeneous datasets

without defining a heterogeneous distance measurement.

In Chapter 6, a simple hybrid-regression model is presented that linearly combines

the results of the multi-regression model to achieve the fourth objective.

The following subsections will summarise and discuss these models’ weaknesses,

strengths and outcomes.

7.1.1 An Input-Output Clustering Approach to The Structure Learn-

ing of Radial Basis Function Networks with Heterogeneous

Data

In this model, a RBF regression model is developed using a unified distance measure

for heterogeneity data. The FRIOC approach is followed to initialise the RBF network.

FRIOC is proven to be a qualified approach for a complex system with various output

variations as it uses a coarser cluster for smooth or linear regions and a finer cluster
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for a variable region. In addition, FRIOC can be classified as a supervised clustering

approach as it uses both predictor and response variables during the clustering process.

This approach determines the optimal number and location of RBF centres.

Furthermore, the idea behind this approach is to define a unified distance measure

that can calculate the distance between heterogeneous samples. An attribute-weighted

distance measure was developed and tested on two heterogeneous datasets: mixed nu-

merical and categorical datasets and a social media dataset with numerical, categorical

and textual features. The first set of results obtained from the experiment were promis-

ing results, in some cases, led to better results than those from baselines and competing

models.

In the second phase of the experiment, where the heterogeneity level of the dataset

has increased, the results were not as good as expected. There may be several reasons

for this. First, the defined distance measure used the weighted attribute scheme, where

each feature/variable is assigned a weight based on the number of described attributes.

As a result, this measure emphasises the features with the largest number of attributes,

regardless of whether they are true. Although it worked well with mixed numerical and

categorical data where the number of attributes is similar, in the SMP dataset, where

the number of represented attributes varies as the data dimensionality increased, its

performance decreased. As a result of the attribute weight scheme, features with the

largest number of attributes receive a high weight, even though they may not be the

most significant features. Secondly, extremely high data dimensionality has a negative

influence on distance measurement. As dimensionality increases, the complexity of

distance measurement and computation costs increase.

Table 7.1 summarises the results from the three models proposed in this thesis. A

comparison of the results obtained from this model with the other proposed models,

shows that whilst its performance is low for most datasets, it performs well in the bike

dataset with an MSE score of 6.80E − 03. Overall, the RBF regression model with
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unified distance measure performed well with low heterogeneity but not with high data

dimensions.

7.1.2 Learning Heterogeneous Data Based on Heterogeneous Ra-

dial Basis Function Network

The Heterogeneous Radial Basis Function (HRBF) regression model presented in Chap-

ter 5 can be applied to heterogeneous datasets without defining a distance measure.

Each feature or variable is represented by a set of nodes in the hidden layer of the

HRBF. An appropriate clustering and distance measure was used for each feature in

conjunction with the FRIOC approach to construct these nodes.

By constructing a heterogeneous Radial Basis Function (HRBF) network with het-

erogeneous nodes in the network’s hidden layer, it was possible to efficiently extend the

RBF’s ability to cope with diverse data types. This model made it unnecessary to de-

fine a unified distance measure and unify data types using transformation or encoding

techniques, which reduced the number of steps required to pre-process the heteroge-

neous data. Furthermore, the use of the FRIOC approach during the initialisation phase

helped to simultaneously and effectively identify the number, location, and width of

RBF kernels for each data type. Moreover, modifying and updating the nodes repre-

senting a feature in the RBF hidden layer can be carried out easily without impacting

on the other representative nodes.

Compared to the previous one and its competitors, this model produced better re-

sults. Nevertheless, the model was found to be inefficient at learning from categorical

features when the effect of features on the model performance was investigated.

the model performance decreased when learning from categorical features as the

data dimentionality incresed. when the effect of features on the model performance

was investigated.
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Figure 7.1: Testing error for the proposed regression models. MAE- Mean Absolute
Error. SR- Spearman Correlation

7.1.3 Hybrid-Regression Model Prediction Based on Heterogeneous

Data

In the absence of a universal machine learning method that can be applied to all types

of problems and data, machine learning struggles to manage sets of heterogeneous

data. Chapter 6 proposed a regression model that can learn from diverse data types by

aggregating outcomes from various models associated with each data type to deliver a

final prediction. First, a mixed numerical and categorical dataset was examined, and

then a dataset with additional heterogeneity was used for the purpose of evaluation.

Results from both experiments demonstrated that it this approach is effective, and its

performance was significantly positive.

The majority of machine learning models are tailored to specific problems or data

sources; using the most robust model for each data type is a very effective method.

The following are the advantages of this approach: 1) By developing a model for each

type of data, information can be extracted efficiently and the underlying knowledge
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revealed optimally. The CatBoost tree, for example, significantly impacts a model’s

performance when used to train categorical features. 2) Aggregating the results from

different models is more effective than any single specific model. For example, the

combined results are superior to each model individually with mixed data. 3) During

the learning process, a model can be updated and modified at any time, and multiple

processes run simultaneously.

Furthermore, the model eliminates the need to unify the data types and to de-

fine a distance measure in order to train heterogeneous data. With this strategy, the

full knowledge provided by each feature is extracted, taking advantage of the well-

performed regression model for each data type. In addition, the information can be

extracted efficiently and the underlying knowledge revealed optimally by developing a

model for each type of data. For example, the CatBoost tree significantly impacts the

model’s performance when used to train categorical features.

In addition, the use of the FRIOC approach to identify the RBF centres is beneficial

as it eliminates the need for a trial and error process and determines the optimal number

and location of centres. Moreover, it utilizes the knowledge and information provided

by the output space.

Compared with the previous models, this model has significantly increased the

learner’s performance. The mixed numerical and categorical dataset dramatically de-

creased the MSE error for almost all the datasets, as shown in Table 7.1. In the SMP

data, the evaluation metrics proved the effectiveness of this model compared with the

other competitors. In Fig. 7.1, the high value of SR indicates the high correlation

between the true and the predicted target values.

This model proved to be effective, and its results showed that with suitable models

and simple approaches, learning problems for heterogeneous data can be solved quite

easily.
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7.2 Future Work

This study has proposed RBF-based approaches for training heterogeneous data. De-

spite some achievements, there are still areas for improvement in learning performance.

The following ideas are proposed for future work:

• The proposed models in this thesis are based on RBF networks with a Gaussian

kernel. The least square method was used to compute the optimal connection

weights between the hidden and last layers in these models. In future, a more

advanced technique should be considered to find the optimal weight values, such

as genetic algorithms with practical Swarm optimisation or gradient descent.

• The distance measure proposed in Chapter 4 is based on defining weights for

each feature, and the weight definition is based on the number of attributes and

the construction of the features. It assigns higher weights to features with a

greater number of attributes. Therefore, a more accurate weighting scheme

should be explored such as swarm-based optimizer. Additionally, the perfor-

mance of this model depends on what is learned during the clustering step. As

a clustering model was designed to train mixed numerical and categorical data

types, the model did not perform as expected. Therefore, it is necessary to de-

velop a clustering model that can learn from large heterogeneous datasets or to

adopt one from previous research into this topic.

• A more robust representation of the categorical features should be considered,

as the performance of the regression model depends on the representation of the

categorical features. In future, we will try to represent these features similarly to

word embedding.

• The heterogeneous RBF model presented in Chapter 5 consists of nodes in the

hidden layer with the same types of data as those in the heterogeneous dataset.
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However, due to the high computational cost of the model, it can only be applied

to a few different types of data. For that in future, a feature reduction techniques

may applied to decrease the model complicity.

• A hybrid regression model was proposed in Chapter 6 based on two main mod-

els: FRIOC-RBF network and CatBoost. However, other models could be se-

lected and combined to improve performance accuracy. Additionally, the model

only tested linear combinations of the hybrid models, whereas other nonlinear

combinations could be considered.

• Even though this thesis is about developing a simple and direct regression model

for training heterogeneous data, it is necessary to assess the performance of the

deep learning model as a solution for this data. Furthermore, more research

should be carried out to include classification and clustering tasks.

• The models in these thesis only consider a limit number of different features. In

future, a more complex dataset that contain more data types such as images and

time series can be used to evaluated these models.
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