370 research outputs found

    The SATIN component system - a metamodel for engineering adaptable mobile systems

    Get PDF
    Mobile computing devices, such as personal digital assistants and mobile phones, are becoming increasingly popular, smaller, and more capable. We argue that mobile systems should be able to adapt to changing requirements and execution environments. Adaptation requires the ability-to reconfigure the deployed code base on a mobile device. Such reconfiguration is considerably simplified if mobile applications are component-oriented rather than monolithic blocks of code. We present the SATIN (system adaptation targeting integrated networks) component metamodel, a lightweight local component metamodel that offers the flexible use of logical mobility primitives to reconfigure the software system by dynamically transferring code. The metamodel is implemented in the SATIN middleware system, a component-based mobile computing middleware that uses the mobility primitives defined in the metamodel to reconfigure both itself and applications that it hosts. We demonstrate the suitability of SATIN in terms of lightweightedness, flexibility, and reusability for the creation of adaptable mobile systems by using it to implement, port, and evaluate a number of existing and new applications, including an active network platform developed for satellite communication at the European space agency. These applications exhibit different aspects of adaptation and demonstrate the flexibility of the approach and the advantages gaine

    Development of a Proactive Fault Diagnosis for Critical System

    Get PDF
    Large-scale network environments, such as the Internet, are characterized by the presence of various devices connected at various remote locations. There is a scenario of main office connected to different branch offices in another town and cities, with the presence of central administrative system at the main office. Any problem at branches is reported to the main office, due to availability of enough resources there. However, few support tools have been developed to allow the administrators at the central office to remotely control and monitor the computers at the branches. Even, in local area network environment, diagnosing the computers on the network is always a big problem for the administrator, as he/she moves from one computer to another, running the diagnostic program and collecting report for each machine tested. This is strenuous and time consuming. To help address these problems, I have employed the concept of mobile agent to design an architecture that can remotely perform various checks and tests on computers on network, and report its findings to the server administrator as central location. This architecture was implemented with Java, using Jini lookup service to establish communication between the computers. The agent tasks were implemented in C programming language. The result of this research work shows that the use of mobile agent for remote maintenance of computers on network was found to provide an improved, efficient, and dynamic diagnostic management system. All the same, it has proven to be a substantive contributor to efficient network management

    A deliberative model for self-adaptation middleware using architectural dependency

    Get PDF
    A crucial prerequisite to externalized adaptation is an understanding of how components are interconnected, or more particularly how and why they depend on one another. Such dependencies can be used to provide an architectural model, which provides a reference point for externalized adaptation. In this paper, it is described how dependencies are used as a basis to systems' self-understanding and subsequent architectural reconfigurations. The approach is based on the combination of: instrumentation services, a dependency meta-model and a system controller. In particular, the latter uses self-healing repair rules (or conflict resolution strategies), based on extensible beliefs, desires and intention (EBDI) model, to reflect reconfiguration changes back to a target application under examination

    FUSION@, A SOA-Based Multi-agent Architecture

    Get PDF
    This paper presents a multi-agent architecture which facilitates the integration of distributed services and applications to optimize the construction of multi-agent systems. The architecture proposes a new and easier method to develop distributed multi-agent systems, where applications and services can communicate in a distributed way, even from mobile devices, independent of a specific programming language or operating system. The core of the architecture is a group of deliberative agents acting as controllers and administrators for all applications and services. The functionalities of the agents are not inside their structure, but modelled as services. This approach provides a higher ability to recover from errors and a better flexibility to change the agents’ behaviour at execution time

    An Ontology Based Approach Towards A Universal Description Framework for Home Networks

    Get PDF
    Current home networks typically involve two or more machines sharing network resources. The vision for the home network has grown from a simple computer network, to every day appliances embedded with network capabilities. In this environment devices and services within the home can interoperate, regardless of protocol or platform. Network clients can discover required resources by performing network discovery over component descriptions. Common approaches to this discovery process involve simple matching of keywords or attribute/value pairings. Interest emerging from the Semantic Web community has led to ontology languages being applied to network domains, providing a logical and semantically rich approach to both describing and discovering network components. In much of the existing work within this domain, developers have focused on defining new description frameworks in isolation from existing protocol frameworks and vocabularies. This work proposes an ontology-based description framework which takes the ontology approach to the next step, where existing description frameworks are in- corporated into the ontology-based framework, allowing discovery mechanisms to cover multiple existing domains. In this manner, existing protocols and networking approaches can participate in semantically-rich discovery processes. This framework also includes a system architecture developed for the purpose of reconciling existing home network solutions with the ontology-based discovery process. This work also describes an implementation of the approach and is deployed within a home-network environment. This implementation involves existing home networking frameworks, protocols and components, allowing the claims of this work to be examined and evaluated from a ‘real-world’ perspective

    UBIDEV: a homogeneous service framework for pervasive computing environments

    Get PDF
    This dissertation studies the heterogeneity problem of pervasive computing system from the viewpoint of an infrastructure aiming to provide a service-oriented application model. From Distributed System passing through mobile computing, pervasive computing is presented as a step forward in ubiquitous availability of services and proliferation of interacting autonomous entities. To better understand the problems related to the heterogeneous and dynamic nature of pervasive computing environments, we need to analyze the structure of a pervasive computing system from its physical and service dimension. The physical dimension describes the physical environment together wit the technology infrastructure that characterizes the interactions and the relations within the environment; the service dimension represents the services (being them software or not) the environment is able to provide [Nor99]. To better separate the constrains and the functionalities of a pervasive computing system, this dissertation classifies it in terms of resources, context, classification, services, coordination and application. UBIDEV, as the key result of this dissertation, introduces a unified model helping the design and the implementation of applications for heterogeneous and dynamic environments. This model is composed of the following concepts: • Resource: all elements of the environment that are manipulated by the application, they are the atomic abstraction unit of the model. • Context: all information coming from the environment that is used by the application to adapts its behavior. Context contains resources and services and defines their role in the application. • Classification: the environment is classified according to the application ontology in order to ground the generic conceptual model of the application to the specific environment. It defines the basic semantic level of interoperability. • Service: the functionalities supported by the system; each service manipulates one or more resources. Applications are defined as a coordination and adaptation of services. • Coordination: all aspects related to service composition and execution as well as the use of the contextual information are captured by the coordination concept. • Application Ontology: represents the viewpoint of the application on the specific context; it defines the high level semantic of resources, services and context. Applying the design paradigm proposed by UBIDEV, allows to describe applications according to a Service Oriented Architecture[Bie02], and to focus on application functionalities rather than their relations with the physical devices. Keywords: pervasive computing, homogenous environment, service-oriented, heterogeneity problem, coordination model, context model, resource management, service management, application interfaces, ontology, semantic services, interaction logic, description logic.Questa dissertazione studia il problema della eterogeneit`a nei sistemi pervasivi proponendo una infrastruttura basata su un modello orientato ai servizi. I sistemi pervasivi sono presentati come un’evoluzione naturale dei sistemi distribuiti, passando attraverso mobile computing, grazie ad una disponibilit`a ubiqua di servizi (sempre, ovunque ed in qualunque modo) e ad loro e con l’ambiente stesso. Al fine di meglio comprendere i problemi legati allintrinseca eterogeneit`a dei sistemi pervasivi, dobbiamo prima descrivere la struttura fondamentale di questi sistemi classificandoli attraverso la loro dimensione fisica e quella dei loro servizi. La dimensione fisica descrive l’ambiente fisico e tutti i dispositivi che fanno parte del contesto della applicazione. La dimensione dei servizi descrive le funzionalit`a (siano esse software o no) che l’ambiente `e in grado di fornire [Nor99]. I sistemi pervasivi vengono cos`ı classificati attraverso una metrica pi `u formale del tipo risorse, contesto, servizi, coordinazione ed applicazione. UBIDEV, come risultato di questa dissertazione, introduce un modello uniforme per la descrizione e lo sviluppo di applicazioni in ambienti dinamici ed eterogenei. Il modello `e composto dai seguenti concetti di base: • Risorse: gli elementi dell’ambiente fisico che fanno parte del modello dellapplicazione. Questi rappresentano l’unit`a di astrazione atomica di tutto il modello UBIDEV. • Contesto: le informazioni sullo stato dell’ambiente che il sistema utilizza per adattare il comportamento dell’applicazione. Il contesto include informazioni legate alle risorse, ai servizi ed alle relazioni che li legano. • Classificazione: l’ambiente viene classificato sulla base di una ontologia che rappresenta il punto di accordo a cui tutti i moduli di sistema fanno riferimento. Questa classificazione rappresenta il modello concettuale dell’applicazione che si riflette sull’intero ambiente. Si definisce cos`ı la semantica di base per tutto il sistema. • Servizi: le funzionalit`a che il sistema `e in grado di fornire; ogni servizio `e descritto in termini di trasformazione di una o pi `u risorse. Le applicazioni sono cos`ı definite in termini di cooperazione tra servizi autonomi. • Coordinazione: tutti gli aspetti legati alla composizione ed alla esecuzione di servizi cos`ı come l’elaborazione dell’informazione contestuale. • Ontologia dell’Applicazione: rappresenta il punto di vista dell’applicazione; definisce la semantica delle risorse, dei servizi e dell’informazione contestuale. Applicando il paradigma proposto da UBIDEV, si possono descrivere applicazioni in accordo con un modello Service-oriented [Bie02] ed, al tempo stesso, ridurre l’applicazione stessa alle sue funzionalit`a di alto livello senza intervenire troppo su come queste funzionalit` a devono essere realizzate dalle singole componenti fisiche

    SPAWN: Service Provision in Ad-hoc Wireless Networks

    Get PDF
    The increasing ubiquity of wireless mobile computing platforms has opened up the potential for unprecedented levels of communication, coordination and collaboration among mobile computing devices, most of which will occur in an ad hoc, on-demand manner. This paper describes SPAWN, a middleware supporting service provision in ad-hoc wireless networks. The aim of SPAWN is to provide the software resources on mobile devices that facilitate electronic collaboration. This is achieved by applying the principles of service oriented computing (SOC), an emerging paradigm that has seen success in wired settings. SPAWN is an adaptation and extension of the Jini model of SOC to ad-hoc networks. The key contributions of SPAWN are (1) a completely decentralized service advertisement and request system that is geared towards handling the unpredictability and dynamism of mobile ad-hoc networks, (2) an automated code management system that can fetch, use and dispose of binaries on an on-demand basis, (3) a mechanism supporting the logical mobility of services, (4) an upgrade mechanism to extend the life cycle of services, and (5) a lightweight security model that secures all interactions, which is essential in an open environment. We discuss the software architecture, a Java implementation, sample applications and an empirical evaluation of the system
    • …
    corecore