
Department for Informatics
University of Fribourg (Switzerland)

UBIDEV
A Homogeneous Service Framework

for Pervasive Computing Environments

THESIS

Submitted to the Faculty of Science of the University of Fribourg (Switzerland) in
conformity with the requirements for the degree of

Doctor scientiarum informaticarum

Submitted by

Sergio MAFFIOLETTI

of
Bergamo, Italy

Thesis No. 1528
Printed at Imprimerie St-Paul Fribourg

2006

Accepted by the Faculty of Science of the University of Fribourg (Switzerland) following the
proposal of:

• Prof. Béat HIRSBRUNNER, Université de Fribourg, Switzerland, Thesis Director;

• Michèle COURANT, Université de Fribourg, Switzerland, Examinator;

• Prof. Peter KROPF, Université de Neuschâtel, Switzerland, Examinator;

• Prof. Vaidy SUNDERAM, Emory University, Atlanta GA, USA, Examinator;

• Prof. Stefano CERRI, LIRMM Université de Montpellier II, France, Examinator;

28 June 2006

The Thesis Director: The Dean:

Prof. Béat HIRSBRUNNER Marco CELIO

Ai miei genitori

I carried out this work at the Department of Informatics, University of Fribourg (Switzerland), as
a member of the research group PAI. I am grateful to the leaders of this group, B. Hirsbrunner and M.
Courant, for their helpful advice, discussions, support, and extreme openness to my work, for which I
was granted complete freedom in all respects.

I would then like to thank my examinators, Peter Kropf, Vaidy Sunderam and Stefano Cerri for
reading and commenting on my work.

During the years I spent in Fribourg, a number of other people have also brought their more per-
sonal contribution to this work. I would like to mention Simon Schubiger, Oliver Hitz, Oliver Buchel,
Amine Tafat-Bouzid, Andrś Perez-Uribe, Patricio Lerena, Soraya Kouadri Mostéfaoui, Alessio Gas-
par and Pierre Andry who were and are a great help, as colleagues and friends.

My thanks go to my parents for their love and encouragement, and for being always there. I
express also my gratitude to my wife Ania and to my son Alessio fort their constant support and
patience.

Encouragements and different forms of help, for which I am thankful, came from many friends
and colleagues; it is impossible to list them all here.
This work has been supported by the Swiss National Science Foundation (grants 57279 and 65301).

Abstract

This dissertation studies the heterogeneity problem of pervasive computing system from
the viewpoint of an infrastructure aiming to provide a service-oriented application model.
From Distributed System passing through mobile computing, pervasive computing is pre-
sented as a step forward in ubiquitous availability of services and proliferation of interacting
autonomous entities. To better understand the problems related to the heterogeneous and
dynamic nature of pervasive computing environments, we need to analyze the structure of
a pervasive computing system from its physical and service dimension. The physical di-
mension describes the physical environment together wit the technology infrastructure that
characterizes the interactions and the relations within the environment; the service dimen-
sion represents the services (being them software or not) the environment is able to provide
[Nor99]. To better separate the constrains and the functionalities of a pervasive computing
system, this dissertation classifies it in terms of resources, context, classification, services,
coordination and application. UBIDEV, as the key result of this dissertation, introduces a
unified model helping the design and the implementation of applications for heterogeneous
and dynamic environments. This model is composed of the following concepts:

• Resource: all elements of the environment that are manipulated by the application,
they are the atomic abstraction unit of the model.

• Context: all information coming from the environment that is used by the application
to adapts its behavior. Context contains resources and services and defines their role
in the application.

• Classification: the environment is classified according to the application ontology in
order to ground the generic conceptual model of the application to the specific envi-
ronment. It defines the basic semantic level of interoperability.

• Service: the functionalities supported by the system; each service manipulates one or
more resources. Applications are defined as a coordination and adaptation of services.

• Coordination: all aspects related to service composition and execution as well as the
use of the contextual information are captured by the coordination concept.

• Application Ontology: represents the viewpoint of the application on the specific
context; it defines the high level semantic of resources, services and context.

Applying the design paradigm proposed by UBIDEV, allows to describe applications ac-
cording to a Service Oriented Architecture[Bie02], and to focus on application functionalities
rather than their relations with the physical devices.

Keywords: pervasive computing, homogenous environment, service-oriented, hetero-
geneity problem, coordination model, context model, resource management, service man-
agement, application interfaces, ontology, semantic services, interaction logic, description
logic.

Sommario

Questa dissertazione studia il problema della eterogeneità nei sistemi pervasivi proponendo
una infrastruttura basata su un modello orientato ai servizi. I sistemi pervasivi sono presen-
tati come un’evoluzione naturale dei sistemi distribuiti, passando attraverso mobile compu-
ting, grazie ad una disponibilità ubiqua di servizi (sempre, ovunque ed in qualunque modo)
e ad una proliferazione di dispositivi (tra cui anche gli utilizzatori) in grado di interagire tra
loro e con l’ambiente stesso. Al fine di meglio comprendere i problemi legati allintrinseca
eterogeneità dei sistemi pervasivi, dobbiamo prima descrivere la struttura fondamentale di
questi sistemi classificandoli attraverso la loro dimensione fisica e quella dei loro servizi. La
dimensione fisica descrive l’ambiente fisico e tutti i dispositivi che fanno parte del contesto
della applicazione. La dimensione dei servizi descrive le funzionalità (siano esse software
o no) che l’ambiente è in grado di fornire [Nor99]. I sistemi pervasivi vengono cosı̀ classifi-
cati attraverso una metrica più formale del tipo risorse, contesto, servizi, coordinazione ed
applicazione. UBIDEV, come risultato di questa dissertazione, introduce un modello unifor-
me per la descrizione e lo sviluppo di applicazioni in ambienti dinamici ed eterogenei. Il
modello è composto dai seguenti concetti di base:

• Risorse: gli elementi dell’ambiente fisico che fanno parte del modello dellapplicazio-
ne. Questi rappresentano l’unità di astrazione atomica di tutto il modello UBIDEV.

• Contesto: le informazioni sullo stato dell’ambiente che il sistema utilizza per adat-
tare il comportamento dell’applicazione. Il contesto include informazioni legate alle
risorse, ai servizi ed alle relazioni che li legano.

• Classificazione: l’ambiente viene classificato sulla base di una ontologia che rap-
presenta il punto di accordo a cui tutti i moduli di sistema fanno riferimento. Que-
sta classificazione rappresenta il modello concettuale dell’applicazione che si riflette
sull’intero ambiente. Si definisce cosı̀ la semantica di base per tutto il sistema.

• Servizi: le funzionalità che il sistema è in grado di fornire; ogni servizio è descritto
in termini di trasformazione di una o più risorse. Le applicazioni sono cosı̀ definite in
termini di cooperazione tra servizi autonomi.

• Coordinazione: tutti gli aspetti legati alla composizione ed alla esecuzione di servizi
cosı̀ come l’elaborazione dell’informazione contestuale.

• Ontologia dell’Applicazione: rappresenta il punto di vista dell’applicazione; defini-
sce la semantica delle risorse, dei servizi e dell’informazione contestuale.

Applicando il paradigma proposto da UBIDEV, si possono descrivere applicazioni in ac-
cordo con un modello Service-oriented [Bie02] ed, al tempo stesso, ridurre l’applicazione
stessa alle sue funzionalità di alto livello senza intervenire troppo su come queste funziona-
lità devono essere realizzate dalle singole componenti fisiche.

Contents

Introduction 1

I The Heterogeneity Problem in Pervasive Computing 9

1 Heterogeneity in Pervasive Computing 11
1.1 From Distributed System to Pervasive Computing 11
1.2 Pervasive Computing . 12
1.3 Infrastructure for Pervasive Computing . 14
1.4 Resources . 17
1.5 Services . 20
1.6 Context . 27
1.7 Coordination . 30
1.8 Application . 33
1.9 Users . 36
1.10 Summary . 36

II UBIDEV 39

2 The Model 41
2.1 Introduction . 41
2.2 A Bio-inspired approach . 42
2.3 The Reference Model . 43
2.4 Physical Entities . 47
2.5 Application . 48
2.6 Resources . 50
2.7 Context . 53
2.8 Services . 55
2.9 Coordination . 58
2.10 Summary . 60

3 The Architecture 63
3.1 Introduction . 63
3.2 Implemented Architecture . 64
3.3 Resource Manager . 68
3.4 Service Manager . 71
3.5 Context Manager . 73

i

CONTENTS

3.6 Coordination Manager . 75
3.7 Summary . 77

4 A Validating Example: Ubiquitous Message System 79
4.1 Ubiquitous Message System . 79
4.2 Summary . 84

III Discussions 85

5 Connected Projects at PAI group 87
5.1 WELCOME . 87
5.2 COCA . 88
5.3 XCM/UCM . 89
5.4 CB-SeC . 90
5.5 Focale . 91

6 Related Works 93
6.1 Gaia . 93
6.2 Aura . 94
6.3 Jini and JavaSpace . 95
6.4 Semantic Service Discovery . 96
6.5 one.world . 97
6.6 Ninja . 98
6.7 E-speak . 98

7 Conclusions 101

References 105

ii

List of Figures

1.1 Service Model. 22
1.2 Sentient Computing. Using sensors and resource status data to maintain a model

of the world which is shared between users and applications. 29
1.3 Context Toolkit. An interaction example between applications and Widgets and

between Interpreters and Aggregators. 29
1.4 Tuple Space abstraction. Tasks can generate asynchronous requests to read, take,

write and eval tuples. 32

2.1 A generic model of a cognitive system. The solid arrows indicate causal pro-
cesses, and the thin lines indicate a coordination of acting, perceiving and representing. 43

2.2 UBIDEV perturbation of the environment. The environment is considered to be
an autopoietic entity that, when perturbed, reacts and adapt its behavior accordingly. 44

2.3 UBIDEV stimuli model. Stimuli are classified in two main classes: 1) percep-
tion stimuli as the perturbation produced on the physical environment that could be
perceived by the system. Input/Output stimuli are considered to be a subclass of per-
ception stimuli. 2) Action stimuli as the explicit action that UBIDEV takes on each
entity that result in the full interaction process that characterize the behavior of the
system. 45

2.4 UBIDEV reference model. UBIDEV separates the coordination aspects from the
resource and service management in order to hide at the application level the hetero-
geneity of the underlying environment. 46

2.5 UbiDev Classification Process. An example of classification of physical resources.
Classifiers are seen as the knowledge required to identify the relation between the icons
in the symbol system and the physical elements. 51

2.6 Context-Tree. An example of the context model used in Ubiquitous Message System
prototype. 54

2.7 UBIDEV Service. Services are described as a transformation from an input resource
yielding an output one. Their description and access method relies on the application
ontology. 56

3.1 UBIDEV implemented architecture. 64
3.2 UBIDEV Resource Abstraction. The virtual representation of a physical entity

inside UBIDEV is composed of an adapter containing the specific resource access in-
formation, of the result of the classification process that allow to abstract the resource
according to the application ontology and of the access protocol that grant the consis-
tence of the mapping between concepts and resources. 68

iii

3.3 UBIDEV protocol handler. The consistence of the mapping between concepts and
resources reference is evaluated inside the service execution environment by the pro-
tocol handler. 71

3.4 UBIDEV Service diagram. 72
3.5 System Ontology. An extracted of the OWL ontology used for the Ubiquitous Mes-

sage System prototype. 76

4.1 Ubiquitous Message System. A composite service can be realized by the coordi-
nation manager by composing existing services according to the classification of the
underlying environment. Coordination manager solves user tasks by finding the path
from the input resource generating the output resource. This path represents a service
invocation chain. Service manager takes in charge the service execution process. . . . 80

4.2 Context-Tree An example of the context model used in Ubiquitous Message System
prototype. 81

4.3 Ubiquitous Message System. The application can compose capsules in a more
structured entity, a composite high level service (document to display). 82

4.4 Ubiquitous Message System. the ontology used in the prototype. “is a” relation
is used to relate concepts. 83

5.1 UMS. Broadcast service as model in UCM. 90
5.2 CB-SeC. Three layer architecture. 91
5.3 Focale defines three functional levels: (1) interconnection, where the interconnection

server is used, (2) instrumentation, aiming at the user interface building and adap-
tation, and (3) interaction, where the final exchanges between user and application
actually take place. 92

Introduction

All technologies have a lifecycle and, as they progress from birth, through adolescence, and
on to maturity, their characteristics change. Today’s computer technology is mature, it can
be taken for granted, so its requirements and purposes are supposed to move from feature-
driven to customer-driven.

Nowadays computers should be thought in terms of infrastructure: they should be silent,
invisible, unobtrusive and user-centered. These are the starting assumptions to define perva-
sive computing, a vision of computer technology where computers disappear from sight and
consciousness, letting users concentrate on their activities, their tasks. The goal is to “move
from the current situation of complexity to one where technology serves human needs in-
visibly, unobtrusively”[Nor99][Wei91].

With each passing year, computers become faster and more powerful, not to mention
smaller, cheaper, and more stylish. The last decade has been characterized by a growing
relevance of the role of computer technology in our everyday life. We are experiencing an
increasing level of integration of technology in our modern society.

That means that our society more and more rely on machines and, more precisely, on the
services offered by this technology.

This phenomenon can be explained observing the direction that the technology is taking
towards the user needs. It is maturing from all its aspects: improving from the electrical and
electronics viewpoint; improving from the design viewpoint; improving from the applica-
tion viewpoint and last but not least improving from the interface viewpoint. As a result,
from one side, technology is more mature to satisfy the user needs and, on the other side,
users are more keen to accept this level of integration.

In the early age of the computer science, technology was very limiting for any kind of
user. Computers were room-size dinosaurs used only in very dedicated and specific applica-
tion domains. Their size, cost and performance, as well as their interface was so limiting that
they were used simultaneously by different specialized users (mainframe era). In those times
the kind of interaction between human and computer was described by the many to one re-
lation: many users for one shared machine.

Technology improvements in the field of electronic miniaturization (VLSI) and the ap-
pearing of the first decent GUI, has lead us to the Personal Computer era. Computers be-
came a tool that every user could install in his office, house, room. The reduction of the
prices as well as the improvement in the performance and interfaces facilitates a largely ac-
ceptance of the computer technology by almost every category of users. This period has
been characterized by the one to one relation: each user with his own machine.

The relatively recent advent of the Internet technology and the subsequent improvement
of distributed systems have promoted a larger acceptance and use of computer technology
has a world wide network of computing machines that may cooperate with each other to

1

INTRODUCTION

accomplish a single user’s requirement. The current period, called Internet era, is described
by the relation one to many: one user makes a simultaneous use of many machines.

The actual situation is reinforcing modern visions of the level of coexistence and de-
pendence between machines and human being. This is made possible by the shift of the
perception users have about technology: we are moving towards a service-based percep-
tion. That means that, as in every other technologies already integrated in our everyday life,
computers are more and more vanishing behind the services they offers to the users. The
interaction patter is also changing toward a many to many paradigm where autonomous
entities interact with each other on a peer level. This tendency is well described by the so
called pervasive computing vision.

Pervasive computing is an attempt to break away from the current paradigm of desk-
top computing to provide computational services to a user when and where required. The
user becomes one of the interacting partners in an environment where technology, services
and context are glued together disappearing from the direct perception, vanishing in the
background of our everyday life.

For computers to become entirely invisible, according to Norman[Nor99], two main
things need to happen. First, the range of simple, inexpensive information appliances would
have to increase significantly. There are still a number of important tasks we do every day
that could be done with a computer.

And second, the infrastructure that allows such devices to communicate with each other
seamlessly would need to be created.

At the moment, there are a great many wired and wireless technologies for connecting
electronic devices, and an even greater number of protocols, formats, and encodings that
make communication challenging. For example, a computer can communicate with a cell
phone or with a camera, but the camera and the cell phone can’t talk to each other. And
none of these can communicate with the television set or the stereo.

If we consider this vision from the technological viewpoint, we may note that a new
category of challenges is raised and old ones are put in a new light. The conception and the
design of a pervasive computing system have to take into account a wider perspective than
in classical desktop and distributed systems. The environment for example plays a relevant
role in the definition, configuration and execution of a pervasive computing system.

This perspective can be summarized by what has been defined to be the heterogeneity
problem for a pervasive computing system [Mat05]. By heterogeneous problem we mean all
aspects that have to be considered when designing and implementing an application for a
pervasive computing system. Typically it includes the configuration of a system in terms of
physical components that belong to the system as well as the software components that run
into the system.

As a result an application should be described in terms abstract enough to not to take
into account the direct management of the environment that is not directly related to the
application’s functional behavior and, at the same time, should be able to configure and
adapt itself to the specificity of the environment, including its changes.

During the presentation of this thesis we will argument that the most suited and power-
ful paradigm that can be used to describe an application for a pervasive computing system
is to conceive the system as a homogeneous space where services and resources cooperate
together to reach the application goal.

With this vision of ubiquitous information access, pervasive computing impacts comput-
ing devices and their deployment. In addition to conventional desktop and server comput-

2

ers, pervasive computing environments encompass many different devices of various size
and capabilities, including PDA, cell phones, dedicated terminals and robots.

Pervasive computing also changes how people interact with the surrounding comput-
ing infrastructure. Differently from conventional computing environments, people focus on
their activities and not on the computers. Furthermore, as already pointed out, these com-
puters are often embedded within ordinary objects so they are not meant to be perceived
directly. Second, tasks often span many devices, people, and places and task requirements
may change frequently due to variations in the execution environment.

The key challenge for developers is to build applications that continuously adapt to such
a highly dynamic environment and continue to function even if users move through the
physical world and change interface devices, and if the surrounding network infrastructure
provides only limited services. However, existing approaches to build distributed applica-
tions, including client/server or multitier computing, are ill-suited to meet these require-
ments.

The fundamental problem is that these approaches try to hide distribution and rely
on technologies like RPC or distributed filesystem that enhance single-node programming
methodologies to distributed systems. This model does not fit the requirements of pervasive
computing systems where the dynamism and the heterogeneity of the environment need to
be taken into account even at design level.

Focus of the Thesis

This thesis faces the heterogeneity problem of pervasive computing systems from resources,
context and service management viewpoints to allow applications to be described in terms
of services provided rather than their low level instantiation details. The aim is to explore the
requirements and constrains of the design and of the implementation of a service-oriented
application for pervasive computing environments.

This dissertation introduces a system architecture, called UBIDEV: a collection of abstrac-
tion services for semantic-driven management of the underlying physical environment that
provide a design methodology that allows to describe the behavior of the whole system in
terms of coordinated homogeneous services.

The main contribution is that UBIDEV takes an holistic approach in the management of
the environment from the resources, services and context viewpoint. This approach allows
applications to be described in terms of their functionalities while maintaining the degree of
dependence they have with the physical environment.

Resources and services are considered to be the building blocks an infrastructure uses
when providing a coordination model that would allow applications to abstract from the
peculiarities of the underlying physical environment and, at the same time, to describe the
entire system’s behavior in terms of interactions between peer homogeneous entities.

As the physical environment plays a relevant role in influencing the overall system be-
havior, contextual information has been taken into account at the same level as resources
and services.

By focusing on these requirements, our system architecture, in contrast to many previous
systems, lets applications instead of users adapt to changes .

For that reason UBIDEV focuses on the management and abstraction of resources, ser-
vices and contextual information providing at coordination level a plethora of homogeneous

3

INTRODUCTION

entities (being them physical devices, users, autonomous robots or software services) and a
set of semantic rich primitives to describe their interaction mechanism. What UBIDEV aims
to demonstrate is the possibility to describe a pervasive computing application in terms of
interacting services operating in a homogeneous and dynamic environment.

Contribution

The contributions of this thesis are:

1. Identify a design model for applications that would express all the fundamental ab-
stractions of a generic pervasive computing environment.

2. Identify requirements to support the building and evolution of pervasive computing
applications, resulting in a conceptual framework that both leverages the developers
to explicitly deal with the heterogeneity of the underlying environment and take into
account the peculiarities and the dependencies each software module may have.

3. Provide programming abstractions to facilitate the design of pervasive computing ap-
plication: adapters to deal with resource management; capsules to encapsulate the no-
tion of a running service together with its functional and physical dependencies; ontol-
ogy and classification to abstract the underlying physical environment on the base of a
semantic agreed by all the component of the application; a context infrastructure that
allow to take into account the information gathered from the physical environment
and to use it to steer the application behavior.

4. Provide a coordination model to supervise the service interaction and to provide high
level primitives to express the behavior of an application in a Service-Oriented model.

5. Implement a functional architecture and a Proof-of-Concept application.

The value added by these contributions wit respect to advances in current practice is:

• by providing a design process for building applications, our research will give appli-
cation designers a better understanding of a pervasive computing system as a whole
and a methodology for using these abstractions.

• by helping to define a generic classification framework that could be used as a reference
point for other middlewares.

• to supports the development of applications through the use of high-level program-
ming abstractions. The goal is to provide an architectural framework to allow de-
signers to prototype applications through a coordination model where all aspects of a
pervasive computing system are descried and coordinated.

The architecture with its required set of supporting mechanisms will provide the nec-
essary building blocks to allow others to implement a number of higher-level features for
dealing with heterogeneity of resources, services, context and to describe the overall behav-
ior of the system in terms of cooperating services.

4

On the application side, the provided abstractions will allow designers to build applica-
tions that were previously seen as difficult to build: context-awareness that scale along sev-
eral dimensions, resource and service management that copes with heterogeneity using an
agreed semantic, holistic coordination of resources in a service-oriented abstraction model.

Assumptions

Consistent with the hypothesis, the design of UBIDEV focuses on meeting the requirements
of pervasive computing from the resources, services and context heterogeneity viewpoint.
However, it does not address all possible needs of pervasive applications. Hereafter we
describe some of the topics that UBIDEV does not take into account or takes for granted:

Network

Whit physical layer we intend to categorize all aspects related to the physicality of the envi-
ronment and of resources that somehow could influence the behavior of the whole system.

Low level network issues like quality of network services, mobile networking support,
disconnected operations, bandwidth-adaptive communication protocols, data consistency
check, transcoding, energy sensitive memory management, are not directly taken into ac-
count by the service framework whose primary goal is to provide at higher abstraction levels
(coordination and application) a service-oriented model that reflects the adaptive behavior
of the whole system to the stimuli that the surrounding environment produces.

However, low level network issues could be addressed by the classification model. Our
research focuses on resource and service management assuming that the underlying physical
environment could be entirely classified through the system ontology.

Unconstrained Use of Contextual Information

UBIDEV relay on the assumption that the whole environment is trusted and so all the contex-
tual information gathered. No encryption or cryptography is used to protect data exchanged
and stored. The infrastructure to device communication is always assumed to be trusted in
order to ease the implementation phase of the conceptual framework.

Radio Frequency IDentification (RFID) is an automatic identification method, relying on
storing and remotely retrieving data using devices called RFID tags or transponders. An
RFID tag is a small object that can be attached to or incorporated into a product, animal,
or person. RFID tags contain antennas to enable them to receive and respond to radio-
frequency queries from an RFID transceiver. Passive tags require no internal power source,
whereas active tags require a power source. The widespread deployment of RFID technol-
ogy poses significant privacy risks not present with prior technology. These privacy issues
arise because RFID tags enable tracking of items and people, possibly without their knowl-
edge or consent.

A primary security concern surrounding RFID technology is the illicit tracking of RFID
tags. Tags which are world-readable pose a risk to both personal location privacy and corpo-
rate/military security. More generally, privacy organizations have expressed concerns in the
context of ongoing efforts to embed electronic product code (EPC) RFID tags in consumer
products.

5

INTRODUCTION

A second security concern is duplication, or ”cloning” of RFID tags. When tags do not
contain built-in security features, an attacker may be able to scan the tag and ”clone” the
data into a tag of her own. This is of particular concern when RFID tags are used in high-
security applications, such as the proximity cards used to access secure facilities, or vehicle
immobilizer anti-theft systems which use an RFID tag embedded in the vehicle key. It is also
a problem when RFID is used for payment systems, such as contactless credit cards.

The security and privacy problem related to the use of RFID technology is just an exam-
ple of all the implications and risks that should be taken into account when developing a
context infrastructure. Identity of users as well as autonomous resources, trust of exchanged
information, privacy of stored data are a must when thinking about a system that should
really be integrated in our everyday life.

Security

Service frameworks are providing mechanisms by which users and applications can interact
and control networked devices and services with unparalleled ease and convenience. Cru-
cial to the successful adoption of such technologies however is security: can applications
and users trust the services they find, and can the services trust the clients they serve? Au-
thentication and certification mechanisms are required to ensure a suitable level of trust.
Encryption and key distribution protocols are required to protect the exchange of sensitive
information. Coupled with the notion of trust is control: the owner of a device might expect
to be able to discover and control it and, furthermore, prevent others from maliciously tam-
pering with the device. However, the same owner might also require that the system allows
members of their family to control the device, perhaps only while they are present in the
room or in a way that the owner approves of (e.g. not allowing a child to switch a television
to an adult channel for instance). Although this level of social, role and contextual reasoning
is almost certainly outside the scope of a service interaction protocol, such protocols should
provide the core mechanisms to facilitate the construction of access control policies (e.g. ac-
cess control lists, conflict resolution strategies and limitations on the adjustment of device
and service state variables for particular clients).

Security is an issue that has not been taken into account in the conceptual framework nor
in the implemented architecture. As will be described in next chapters, the modularity of the
implemented architecture allows plugging a security infrastructure that would provide the
required QoS.

Interfaces

[Sze96] describes four challenges that need to be met by human-computer interface technolo-
gies that could be easily applied to pervasive computing context. Interfaces need to be able
to automatically adapt themselves to support the users current task. Interfaces need to be
able to support multiple platforms. Interfaces should be tailorable to the users current needs.
Interfaces should be able to handle both input and output using multiple mechanisms.

Technologies like MVC (Model View Controller) and PAC (Presentation, Abstraction,
Control) [Cou87] are both agent based models, where an agent is defined to have state,
possess an expertise, and is capable of initiating and reacting to events. [Cou]. An inter-
face is built using hierarchies of agents. These agents represent an object in the application.
In MVC, the model describes the semantics of the object, the view provides the (normally

6

visual) representation of the object and the controller handles user input. In PAC, the ab-
straction describes the functional semantics of the object, the presentation handles the users
interaction with the object, both input and output and the control handles communication
between the presentation and the abstraction as well as between different PAC agents.

As the main focus of this thesis remain to tackle heterogeneity problem at resource and
service level, the whole application interface support, has been defined and implemented
as a classical MVC model (few adaptations have been made to further abstract the Viewer
notion).

Thesis Outline

CHAPTER 1 presents the heterogeneity problem of pervasive computing environments at
different levels of abstraction: resources, services, context, coordination, application and
users. In doing so this chapter reviews the state of the art of relevant technologies and
approaches; this includes a discussion on why existing support for building applications is
not sufficient.

CHAPTER 2 introduces the UBIDEV reference model as a conceptual framework that
supports the building and evolution of pervasive computing applications. It also presents
the basic abstractions and how they address the heterogeneity problem.

CHAPTER 3 presents an implementation of the conceptual framework described in CHAP-
TER 2. It introduces the basic component programming abstraction that facilitates the build-
ing of pervasive computing applications. The architecture not only contains this implemen-
tation, but also includes a set of clear yet simple interfaces to plug new modules to enhance
the functionalities of the middleware (an extended context infrastructure or a rule-based co-
ordination model). The holistic management of the environment emerges at coordination
level, where all the building blocks are described and coordinated in a service-oriented pro-
gramming model.

CHAPTER 4 proposes a Proof of Concepts application that has been built with the UBIDEV

implemented architecture. The application named Ubiquitous Message System, shows the
UBIDEV programming model together with its main advantages in terms of abstraction
of the underlying physical environment, semantic-based holistic coordination of resources,
context and services.

CHAPTER 5 describes the related research activities that have been carried out within
the PAI group during the whole period of this thesis. Their main contributions and their
possible interactions and/or intersections with UBIDEV are also presented.

CHAPTER 6 presents the main related research works. Each of them is described and
compared with UBIDEV using a common metric.

Finally, CHAPTER 7 contains a summary and conclusion with suggestions for future
research.

7

Part I

The Heterogeneity Problem in
Pervasive Computing

9

Chapter 1

Heterogeneity in Pervasive
Computing

A distributed system consists of several computers that communicate over a network to
coordinate the actions and processes of an application. Distributed systems have gained in-
terest in recent years due to the proliferation of the Web and other Internet-based services.
From distributed systems through mobile computing, pervasive computing could be con-
sidered as a step forward in ubiquitous availability of services interacting with autonomous
entities and with the surrounding environment.

1.1 From Distributed System to Pervasive Computing

Well established techniques such as interprocess communication, remote invocation, nam-
ing services, cryptographic security, distributed file systems, replica services, and distributed
transaction mechanisms provide the run-time infrastructure supporting today’s network ap-
plications [CDK00]. The reference model is still the client-server architecture. However, ap-
plications for distributed systems rely more and more on middleware support through the
use of software frameworks that provide higher level abstractions such as distributed shared
objects and distributed communication, on services including secure communication, au-
thentication and persistence and on models for describing the coordination of autonomous
services.

What we are experiencing today is that distributed applications supports more and more
mobile code, multimedia data stream, user and device mobility, spontaneous networking,
service interoperability and context awareness [MS03]. Scalability, quality of service and
robustness with respect to partial component failures is becoming a key issue because the
size of a distributed system is growing in both the number of physical components involved
and the number of services interacting. A shift towards large-scale systems has occurred in
recent years: Internet with its protocols and the higher level World Wide Web are examples
of the de-facto standard platforms for distributed applications. Here, the internet and its
resources are viewed as the global environment in which computation takes place. Con-
sequently, high-level protocols and standards such as XML, enter the focus of distributed
systems research while low-level issues (such as operating systems peculiarities) become
less important. The increasing number of computers connected to the Internet has also laid

11

CHAPTER 1. HETEROGENEITY IN PERVASIVE COMPUTING

the foundation for new application domains such as grid computing [FK03] and per-to-peer
computing [FK03]. Grid computing emphasizes the fact that the Internet can be viewed as a
globally distributed computer with an enormous potential for computing power. In contrast
to this, peer-to-peer computing emphasizes the immediate and unrestricted information ex-
change.

The rapid evolving of network and computer technology and the exponential growth
of the services and information available on the Internet will bring us to the point where
hundreds of millions of users have fast, pervasive access to a phenomenal amount of in-
formation, through desktop machines at work, school and home, through mobile phones,
personal digital assistants, car dashboards, from anywhere and everywhere: the pervasive
computing era [Wei91] [KG99].

This emerging scenario raises its own technical difficulties and requires specialized areas
of research. Taking a broader view, there is the need to reexamine some fundamental as-
sumptions about the structure of interactive systems and integrated environments. Today’s
conventional model of interaction and device communication has served us well up until
now, but will have to evolve towards a different architecture, focused on multiple users in
an interaction space rather than focusing on systems as a network of processors and devices.
Moreover the cooperation of hundreds of thousands of resources and services will call for a
coordination model that is scalable, flexible and able to take into account the granularity of
the surrounding environment.

This chapter introduces the heterogeneity problem in pervasive computing structured
by a conceptual model that captures the nature of a generic system, consisting of: resources,
context, services, coordination, application and user. Starting from the infrastructure view-
point, the chapter formalizes the basic functionalities and services that a pervasive comput-
ing environment should provide.

Then heterogeneity is discussed according to the classification defined by the conceptual
model: for each abstraction concept, the main challenges heterogeneity rises are presented;
then a survey on the state of the art of existing technologies and the way they cope with
heterogeneity is described.

As a conclusion, the resulting scenario should already suggest the fundamental ideas
that have guided the UBIDEV model.

1.2 Pervasive Computing

To better understand what differentiate pervasive computing from classical distributes sys-
tem we will first present a usage scenario. Today’s mobile workforce is using mobile tools for
communication and computing. To stay connected and keep up with their workflow while
on the road, many workers have turned to smart phones, personal digital assistants (PDAs),
notebook computers, and other portable devices that provide network and Internet connec-
tivity. While on the road, users may want to access enterprise applications and databases.
When they come back home, they will likely want to upload information from their portable
devices into their primary workstations or onto the company network.

Pervasive computing is about connecting a wide variety of client devices (such as PDAs,
cellular phones, automotive computers, home gateways, wearable computers, as well as
traditional PCs) to a modern Web environment, and enabling interaction to occur via tech-
nology which is virtually invisible to the end user. These activities raise critical access and

12

security concerns. Integration is a particular problem, because the portable devices operate
on a variety of platforms and use a variety of communications protocols. Pervasive com-
puting enables a broad range of end-user devices to access data and applications on servers,
much like today’s PC access to HTML sources across the Internet. Accesses to both per-
sonal and organizational information from different devices, products that are intuitive, and
network access that is invisible to the end user are the basic requirements.

However, the new devices differ in their input, output, and processing capabilities; they
differ in the content format and user interface paradigms. Most significantly, they also dif-
fer in the interaction patterns and their typical usage scenarios. Consequently, providing
adequate services to such devices is more complex than providing services to uniformly
configured PC-based HTML browsers.

The new pervasive computing paradigm enables a single user to use multiple clients
connected to multiple servers in the network, and to do so in a consistent and natural way.

This model is enabled by bringing clients and servers in a uniform coordination environ-
ment where dynamism and heterogeneity of the underlying physical environment is some-
how blurred by an infrastructure. This is a logical evolution from client/server that sup-
ported a client connected to a single server to network computing that supported a client
connected to multiple servers in the network.

Another key aspect in pervasive computing is the surrounding environment. In tra-
ditional computing, the physical environment is regarded as irrelevant unless it becomes
incompatible with the operation of the computer. The computer is logically self-contained
and users can be viewed as simply source of input for process. Pervasive computing is
ubiquitous, interconnected and dynamic which implies that it is embedded, distributed and
mobile. The environment cannot be ignored; it must be factored into the conceptual model.
The embedded aspect of pervasive computing suggests that sensors and actuators will play a
significant role in many applications. This implies that there will be issues that exist beneath
the physical layer of the computer, beyond the sensors and actuators.

Finally, the mobile nature of many pervasive computing systems ensures that the envi-
ronment’s presence determines the semantics of the system.

A Definition

We define a pervasive computing system as a physical space coordinated by a proactive soft-
ware infrastructure that enhances the capabilities of applications to configure and adapt the
physical and software dimension automatically and transparently with respect of the user.
This definition underlies three main elements composing a pervasive computing system:

• Physical environment as the physical dimension of the system. This dimension de-
scribes all the physical entities belonging to the environment during the entire lifecycle
of the system. As will be discussed in the next chapters, users are considered to be one
of the interacting resources belonging to the environment.

• Software infrastructure that provides the interconnection framework for the element
of the environment and a coordination model to allow these elements to cooperate on
a common goal.

• Application that represents the functional aspect of the system. An application is
structured in two parts: interaction and application logic [SVSF05]. Interaction de-

13

CHAPTER 1. HETEROGENEITY IN PERVASIVE COMPUTING

fines the interchange between the elements of the environment and the system; the
application logic handles the notion of services and their coordination.

Unlike traditional desktop applications with a graphical user interface, pervasive com-
puting forces us to take a rather holistic view of a system.

In traditional GUIs, the interactive system is the desktop computer and a fixed set of in-
put/output devices. The emphasis is on combining software components to provide services
to the user.

pervasive computing on the contrary refers not only to software services but also to de-
vices and how to describe their interactions.

What are the inherent features of a system that make it a pervasive computing system?
According to [Wei91], pervasive computing is characterized by two main attributes:

• ubiquity: interaction with the system is available wherever the user needs it;

• transparency: the system is non-intrusive and is integrated into the everyday environ-
ment.

A refinement of such a characterization [SDA98], introduces the notion of user mobility
dimension to reflect the freedom the user has to move about when interacting with the sys-
tem: desktop computing, for example, allows no user mobility. Some systems allow more
freedom of movement to the user when interacting with the system [WFG92]. When using
a system based on a standalone portable device, user mobility is unconstrained. When the
portable device relies on an infrastructure to provide services, the mobility of the user is usu-
ally constrained by the coverage zone of the infrastructure [FMS93]. For example, systems
relying on the GPS service constrain mobility because GPS is not available indoors or may
be obscured by buildings or tunnels.

Transparency applies to the system’s interface and reflects the conscious efforts and at-
tention the system requires of the user, either for operating it or for perceiving its output.
Most interfaces today lack interaction transparency. To perform a task with the system, the
user must consciously perceive, understand and manipulate an interface which is concep-
tually separate from the task being performed. The graphical user interface remains in the
focus of the user throughout the interaction. A transparent interface disappears from the
user’s focus so that he/she can concentrate on the actual task at hand.

1.3 Infrastructure for Pervasive Computing

Requirements for a pervasive computing infrastructure are centered on a high-level concep-
tual model consisting of resources, users, context, services, coordination models and appli-
cations level interfaces.

Network level issues have to be taken into account when planning an effective infras-
tructure to allow seamless mobility of resources and users. The network as a whole may
have broad coverage, but connection quality and services vary greatly from location to lo-
cation. The connection may vary from wired or infrared in-room networks with great per-
formance, to metropolitan cellular networks, to satellite networks with high latencies but
tremendous coverage. A pervasive computing infrastructure should offer solutions for al-
lowing resources to seamlessly roam both within network and across heterogeneous net-

14

works. The detection and setup of network connections should be transparent and auto-
matic, as the selection of the best network in range.

Resource heterogeneity implies also differences in shape, capabilities, power and usabil-
ity; an infrastructure must be able to recognize such diversities in order to adapt the services
it provides and the services that it controls on behalf of an application. Resource is one
of the key aspects in adaptability because, basically, they represent the endpoint used by
the application to provide its functionalities. The role of the infrastructure is to provide to
the application an easy way to describe the adaptation patterns without having to deal di-
rectly with resource management. That also means to take into account the role and even
the intention that some resources may have in a given environment: take the example of an
autonomous mobile robot; when it enters a new environment it should be able to negotiate
with the application the services to use as well as provide information about its goal. That
implies that the infrastructure should be able to manage and describe such resource to the
application in a way that is compliant with the application knowledge.

Context represents the main shift from classical distributed systems because in pervasive
computing the surrounding physical environment is explicitly taken into account by both the
infrastructure and the application to adapt the behavior of the whole system to the caching
that occurs during the lifecycle of the system. The increasing use of both active and passive
RFID technology as information sensors allows systems to receive and transmit information
to and from physical objects. That means that everyday objects could play an active role in
a pervasive computing environment and, at the same time, an application could be tuned to
a class or category of everyday objects [GBK99].

Services vary greatly as well: from home/office printer access, to local driving directions,
to global services such as search engines and web access. Services tend to relay on a given
hardware configuration for their execution; they have resource requirements that should be
met to ensure their correct execution. Most of the time the coupling between software com-
ponents and the hardware involved is so tight that the notion of a service embodies the two.
The infrastructure should allow describing the fundamental interrelation between software
components and resources while keeping their coupling in terms of functional dependen-
cies. That should also be reflected at application design level.

A pervasive computing infrastructure should be highly available, cost effective, and suf-
ficiently scalable to support millions of users. In general, computation, storage and com-
plexity should be moved from the resources into the infrastructure, thus enabling powerful
services, better overall cost performance, and small, light-weight, low-power, inexpensive
mobile devices to increase functionality [BKA+98].

As a result, a pervasive computing system will be composed of different services and
resources interacting with each other. A coordination model is required to formalize such
interactions as well as the dependencies between the coordinated entities.

Finally an infrastructure should provide functionalities to allow application interfaces to
express the adaptive and autonomous behavior of the whole system when interacting with
the users and with other resources. The responsibility of the infrastructure with respect to
applications includes supporting application requirements such as context awareness, adap-
tation, mobility, distribution and interoperability; facilitating the rapid development and de-
ployment of software components; providing component discovery services; and providing
scalability.

15

CHAPTER 1. HETEROGENEITY IN PERVASIVE COMPUTING

Adaptation

Adaptation is required in order to overcome the intrinsically dynamic nature of perva-
sive computing. Mobility of users, devices and software components can occur, leading
to changes in the physical and virtual environments of these entities. Moreover, applications
can be highly dynamic, with users requiring support for novel tasks and demanding the abil-
ity to change requirements on the fly. It should be the role of the infrastructure for pervasive
computing to facilitate adaptation, which may involve adapting individual software com-
ponents and/or reconfiguring bindings of components by adding, removing or substituting
components. Adaptation may be done in an application-aware or application-transparent
manner [Nob00] [GMGN04]. Dynamic adaptation can involve complex issues such as man-
aging the adaptation of software components that are used simultaneously by applications
with different (and possibly conflicting) requirements, and maintaining a consistent external
view of a component that has behavior that evolves over time.

Adaptation is necessary when there is a significant mismatch between the supply and
demand of a resource. The resource in question may be wireless network bandwidth, energy,
computing cycles, memory, and so on. There are three common strategies for adaptation in
pervasive computing: first, a client can guide applications in changing their behavior so that
they use less of a scarce resource. This change usually reduces the user-perceived quality, or
fidelity, of an application. Odyssey [FS99] [NSN+97] is an example of a system that uses this
strategy. Second, a client can ask the environment to guarantee a certain level of a resource.
This is the approach typically used by reservation-based QoS systems [NCN98]. From the
viewpoint of the client, this effectively increases the supply of a scarce resource to meet the
client’s demand. Third, a client can suggest a corrective action to the user. If the user acts
on this suggestion, it is likely (but not certain) that resource supply will become adequate to
meet the demand.

Smart spaces such as [JF04] and [Rek98] are examples of environments capable of accept-
ing resource reservations. At the same time, uneven conditioning of environments suggests
that a mobile client cannot rely solely on a reservation-based strategy - when the environ-
ment is uncooperative or resource-impoverished, the client may have no choice but to ask
applications to reduce their fidelities. Corrective actions broaden the range of possibilities
for adaptation by involving the user, and may be particularly useful when lowered fidelity
is unacceptable.

Metacomputing Abstraction

Metacomputing environments [CS92] such as [MS99] and [KUB00] are component-based:
the heterogeneous computing environment is aggregated and a concurrent programming
platform emulated through a set of coordinated components. Software components define
the functionalities (services) they provide and their interfaces. Through the composition and
the coordination of such components the heterogeneous environment is aggregated within
a concurrent programming platform. Component-based metacomputing frameworks uti-
lize the concept of a Distributed Virtual Machine (DVM) [SGGB99] [BDF+99] as an abstract
boundary for a collection of active components. The DVM defines a name space and pro-
vides generic discovery mechanisms.

Metacomputers hide the existence of multiple computers and provides a single-system
image to its users. Differently from a Network Operating System approach [TvS02] where a

16

user is fully aware of the machines on which his job is executed, metacomputers dynamically
and automatically allocate jobs to the machines of the system. The key concept behind these
features is ”transparency”. Metacomputing, if conceived as a Distributed Operating System,
supports several forms of transparency to achieve the goal of providing an abstraction of
networked machines as a metacomputer. Harness [BDF+99] is a good example of a system
conceived to centralize the management of the underlying resources providing a uniform
abstraction to the applications and users. In a pervasive computing system applications can
greatly benefit from knowing some relevant functional details of the computational environ-
ment. That could allow them to configure themselves and adapt to every heterogeneous and
dynamic aspect of an environment.

In pervasive computing an infrastructure is motivated by the need to federate the power
of distributed resources into a single virtual compute space, which can be used to run appli-
cations whose requirements could not be met a priori but have to be considered according
to the current configuration of the computational power of the compute space. This is very
similar to what is happening in HPC [FK97], [FT89] where the effort is to provide a seamless
access to computational resources collected into a virtual Grid [FK03].

In the following sections, heterogeneity is presented at the different levels that charac-
terize a generic pervasive computing system with a focus on the role that an infrastructure
should have in facing it.

1.4 Resources

Heterogeneity in computing systems is not meant to disappear in the future, but instead
will increase as the range of computing devices increase. Devices in a pervasive computing
environment will include sensors and actuators that mediate between physical and virtual
environments; embedded devices in objects such as watches and shoes; home and office
appliances such as videos, toasters and telephones; mobile devices, such as handheld or-
ganizers and notebooks; and traditional desktop machines. Heterogeneous devices will be
required to interact seamlessly, despite wide differences in hardware and software capabil-
ities. This will require an infrastructure that maintains knowledge of device characteristics
and manages the integration of devices into a coherent system that enables arbitrary device
interactions (for example, between a mobile phone and a desktop workstation).

If we consider devices used by the user to interact with the system, they can range from
standard ones such as laptops, PDAs, and phones, to emerging ones such as those embed-
ded in clothing and eyeglasses. The variety of available devices has several implications.
One is the kind of input-output devices: textual and graphic input-output will not be the
only forms of human-machine interaction. Audio, visual, and other sensory modes of com-
munication will be prevalent. Another implication is the requirement that the environment
must be prepared to adapt to the device currently used by the user. For example, if the user
is requesting information and is currently driving, the retrieved data should be relayed to
him with an audio message through the car radio. Three level of heterogeneity are discussed
here:

• Physical: For a given cost and level of technology, weight, power, size and ergonomics
represent a limitation with respect of computational resources such as processor speed,

17

CHAPTER 1. HETEROGENEITY IN PERVASIVE COMPUTING

memory size, and disk capacity. While mobile elements will improve in absolute abil-
ity, they will always be resource-poor relative to static elements.

• Communication: some buildings may offer reliable, high-bandwidth wireless connec-
tivity while others may only offer low-bandwidth connectivity. Outdoors, a mobile
client may have to rely on a low-bandwidth wireless network with gaps in coverage.
Over time, the synchronous model implicit in the use of RPC will become inadequate.
What is required is a reliable transport layer that works with legacy servers, while hid-
ing the effects of wireless losses and asymmetry that typically ruin TCP performance.
Eventually, very wide-area distributed systems will have to be structured around an
asynchronous model.

• Power: While battery and energy production technology will undoubtedly improve
over time, the need to be sensitive to power consumption will not diminish. Concern
for power consumption must span many levels of hardware and software to be fully
effective.

Mobility

As users can be mobile and able to exploit the capabilities of several devices simultaneously,
mechanisms will be required to enable the mobility and distribution of software. These
mechanisms should be largely transparent to component developers, who should not be con-
cerned with program and data migration or synchronization and coordination of distributed
components. Deal with mobility goes beyond the current support for code migration pro-
vided by platforms such as the Java virtual machine (JVM) [LY99] as run-time migration in
heterogeneous execution environments will be required. Similarly, the support for distribu-
tion will need to surpass the functionalities provided by platforms such as CORBA [gro02],
which only offer transparency of distributed communication, and typically do not address
mobility, synchronization or coordination.

Mobility introduces problems such as the maintenance of connections as devices move
between areas of differing network connectivity, and the handling of network disconnec-
tions. While protocols for wireless networking handle some of the problems of mobility,
such as routing and handovers, some problems cannot be solved at the network level, as
they require knowledge of application semantics. It should be the role of the computing
infrastructure to cooperate with applications in order to perform tasks related to device mo-
bility, such as management of replicated data in cases of disconnection.

Consider remote control of a robot explorer on the surface of Mars. Since light takes many
minutes to travel from earth to Mars, and emergencies of various kinds may arise on Mars,
the robot must be capable of reacting on its own. At the same time, the exploration is to be
directed live by a human controller on earth – a classic command and control problem. This
example characterizes a distributed system where communication latency is a limitation and
a synchronous design paradigm will not work.

Mobility increases the tension between autonomy and interdependence that is charac-
teristic of all distributed systems. The relative resource poverty of mobile elements as well
as their lower trust and robustness argues for reliance on static servers. But the need to
cope with unreliable and low-performance networks, as well as the need to be sensitive to
power consumption argues for self-reliance. Any approach to mobile computing must bal-
ance between these issues. This balance cannot be a static one in fact as the circumstances of

18

a mobile client change; it must react and dynamically reassign the responsibilities of client
and server. In other words, mobile clients must be adaptive.

At one extreme, adaptation may be considered to be entirely under the responsibility of
individual applications. While this approach avoids the need for system support, it lacks
a central arbitrator to resolve incompatible resource demands of different applications and
to enforce limits on resource usage. It also makes applications more difficult to write and
adaptation is even worse.

The other extreme of application-transparent adaptation places entire responsibility for
adaptation on the system. This approach is attractive because it is backward compatible
with existing applications: they continue to work when mobile without any modifications.
The system provides the focal point for resource arbitration and control. The drawback of
this approach is that there may be situations where the adaptation performed by the system
is inadequate or even counterproductive because it operates without taking into account the
application’s perspective.

There is a clear need of dynamic networks where resources are allowed to appear and
disappear; this behavior is most common in networks which incorporate wireless technolo-
gies such WLAN and Bluetooth. Many protocols like IPX [McL89] incorporate technologies
to dynamically configure a network without central configurations servers. However many
of these network protocols in the last years have been replaced by IP networks. The original
IP architecture does not incorporate the notion of dynamism and automatic configuration.

One of the shortcoming of the current IP version 4 (IPv4) [Pro81] is the address space.
The current 32-bit addressing used within IP is not allocated well, resulting in huge gaps of
unused addresses. Also, the Internet is expanding at an exponential rate, with many more
devices getting added to the network every day.

Another problem is the lack of security and authentication. IP does not encrypt packets.
It is not possible to digitally sign a transmission. Today’s approach is to use an additional
add on software to encrypt packages transmitted.

IP version 6 (IPv6) [Pro97], provides 128-bit addressing (that’s billions upon billions of
addresses), compatibility with IPv4 addresses, security and authentication, quality of ser-
vice (reserving bandwidth), plug-and-play for network device configuration, hierarchically
structured routing and an ability to seamlessly integrate with the current IP during the tran-
sition stages.

An IPv6 address is represented as 8 16-bit numbers in hexadecimal, like

FEDC:BA98:0:0:0:BA98:7654:3210

Also, an IPv6 address can be dynamically built when a new device is plugged in, by
sensing the network address, and then using the device Ethernet card’s address (or whatever
interfaces hardware address) to build an IPv6 address.

Thus the resources can reconfigure automatically when moving from place to place. This
also means that an IPv6 address will change when a resource moves to another ISP (this
is currently effective due to CIDR - classless InterDomain routing - which was invented to
temporarily surmount the addressing and huge routing tables problem).

Physical Resources and the Surrounding Environment

In the MediaCup project [GBK99], active sensor tags are embedded into everyday objects
to derive and provide services based on the situational context of users. For example, the

19

CHAPTER 1. HETEROGENEITY IN PERVASIVE COMPUTING

context “meeting” can be inferred from the presence of many hot cups in a meeting room.
However, this project assumes stationary access points that facilitate the cooperation be-
tween active artifacts and existing infrastructure services.

Many popular pervasive computing scenarios and research efforts are based on computer-
augmentation of consumer appliances. In this kind of projects, everyday objects are enriched
with tags so they can be referenced in computer applications without embedding computing
capabilities. A well-suited tagging technology are RFID tags as they can be attached post hoc
and in unobtrusive ways to everyday artifacts. Tagging though keeps computing away from
artifacts and stays short of enabling artifacts as more autonomous components in pervasive
computing environments.

Beyond tagging there are other approaches based on embedding computing capabilities
in everyday artifacts. The Things That Think consortium at MIT Media Lab1 have produced
a wide range of computer-augmented artifacts. Also notable are computer-augmented toys
with embedded sensors, processors and actuators, for example the Sony pseudo-dog AIBO2,
that goes more in the direction of autonomous robot technology.

All these approaches have been focused on local functionalities and have been thought
for a given context. Interoperability with other environments as well as openness has not
been yet taken into account.

Another important issue that an infrastructure should consider when integrating these
augmented appliances is how to allow a system to configure, access and, eventually, adapt
when a new resources enters the environment. In such a scenario the systems is willing
to integrate the new appliance giving it an appropriate identity that characterizes its role
within the environment; that means that services, contextual information and access rules
are defined according to the given role. This is not just a matter of communication protocol
but, also, a semantic challenge because the description of the new resource should be given
according to the semantics of the hosting system. This is still one of the main challenges of
pervasive computing as well as distributed systems.

1.5 Services

“A service is a self-contained, stateless function which accepts one or more requests and
returns one or more responses through a well-defined, standard interface. Services can also
perform discrete units of work such as editing and processing a transaction. Services should
not depend on the state of other functions or processes. The technology used to provide the
service, such as a programming language, does not form part of this definition.”3.

A Web Service is a programmable application logic accessible using standard Internet
protocols. Web Services combine the best aspects of component-based development and the
Web. Like components, Web Services represent black-box functionality that can be reused
without worrying about how the service is implemented. Unlike current component tech-
nologies, Web Services are not accessed via object-model-specific protocols, such as DCOM,
RMI, or IIOP. Instead, Web Services are accessed via ubiquitous Web protocols (ex: HTTP)
and data formats (ex: XML).

1http://ttt.media.mit.edu/
2http://www.sony.net/Products/aibo/
3wikipedia definition: http://en.wikipedia.org/

20

http://www.sony.net/Products/aibo/
http://en.wikipedia.org/

The Web services architecture [WS-03] defines a service-oriented distributed computing
model in which services interact by exchanging XML documents. The basic elements of the
Web services architecture define the syntax for information exchange.

The W3C Web services Architecture working group provides the following definition
[WS-03]:

• A Web service is a software system designed to support interoperable machine-to-
machine interaction over a network. It has an interface described in a machine-processable
format (specifically WSDL). Other systems interact with the Web service in a manner
prescribed by its description using SOAP-messages, typically conveyed using HTTP
with an XML serialization in conjunction with other Web-related standards.

Service-Oriented Programming builds on Object Oriented Programming, with the as-
sumption that problems can be modeled in terms of the services that an object provides or
uses. Service-Oriented Programming prescribes that programming problems can be seen
as independently deployable black boxes that communicate through contracts. The tradi-
tional client-server model often lacks well-defined public contracts that are independent of
the client or server implementation. In Service-Oriented Programming, components publish
and use services in a peer-to-peer manner: a client is not tied to a particular server; instead,
service providers are interchangeable.

A Service-Oriented Architecture is essentially a collection of services. These services
communicate with each other. The communication can involve either simple data passing
or it could involve two or more services coordinating some activity.

A service-oriented architecture defines a distributed system wherein agents, known as
services, coordinate by sending messages. Quoting [WS-03] once again:

• SOA is a specific type of distributed system in which the agents are ”services”. Ser-
vice is a software agent that performs some well-defined operation (i.e., ”provides a
service”) and can be invoked outside of the context of a larger application. That is,
while a service might be implemented by exposing a feature of a larger application the
users of that server need be concerned only with the interface description of the ser-
vice. ”Services” have a network-addressable interface and communicate via standard
protocols and data formats.

The first service-oriented architecture for many people in the past was with the use
DCOM [dco] or Object Request Brokers (ORBs) of CORBA [gro02].

The technology of Web services is the most likely connection technology of service-
oriented architectures. The Web services architecture has been broadly accepted as a means
of structuring stateless interactions among distributed software services.

The figure 1.1 illustrates a basic service-oriented architecture. It shows a service con-
sumer at the right sending a service request message to a service provider at the left. The
service provider returns a response message to the service consumer. The request and sub-
sequent response connections are defined in some way that is understandable to both the
service consumer and service provider. A service provider can also be a service consumer.

Semantic Web

Semantic Web is a vision of the next generation World Wide Web [BLHL01]. Research efforts
in the Semantic Web are driven by the need for a new knowledge representation frame-

21

CHAPTER 1. HETEROGENEITY IN PERVASIVE COMPUTING

Service

Consumer

Service

Provider

Service Response

Service Request

Figure 1.1: Service Model.

work to cope with the explosion of unstructured digital information on the existing Web.
The present Semantic Web research focuses on the development of ontology languages and
tools for constructing digital information that can be understood by computers [BLHL01].
A goal of the Semantic Web initiatives is to develop languages that are adequate for repre-
senting and reasoning about the semantics of information on the Web. The Web Ontology
Language OWL is the latest standard proposed by the Web-Ontology Working Group. The
OWL language builds on XML’s ability to define customized tagging schemes and RDF’s
flexible approach to representing data [OWLa].

The OWL language shares the root with its predecessor DAML+OIL [dam] (e.g., using
RDF as the modeling language to define ontological vocabularies and using XML as the
surface syntax for representing information [OWLb]).

OWL is a language for defining and instantiating ontologies. In such a context an ontol-
ogy is a formal explicit description of concepts in a domain of discourse (or classes), prop-
erties of each class describing various features and attributes of the class, and restrictions
on properties [OWLc]. OWL ontologies are usually placed on web servers as web docu-
ments, which can be referenced by other ontologies and downloaded by applications that
use ontologies.

Services in Pervasive Computing

As pervasive computing environments are very heterogeneous due to a variety of comput-
ing devices and networks, a key element in these environments is service discovery. Service
discovery protocols for pervasive computing allow clients to locate services even when fac-
ing mobility and heterogeneity.

The services and resources one wishes to locate are no longer constrained to local printers
and scanners, but include online shopping services, publicly accessible web-cams, weather
instruments and data collected by a set of sensors deployed in remote regions.

While today’s service discovery protocols operate in small, local-area settings or in wide-
areas, none work in both these environments.

Coping with the constraints of a generic pervasive computing system requires us to re-
think client-server model. A fixed distinction between clients and servers will not hold any-
more. The resource limitations of clients may require certain operations normally performed
on clients to be performed sometimes on resource-rich servers.

Conversely, the need to cope with uncertain connectivity requires clients to sometimes
emulate the functions of a server. These are, of course, short-term deviations from the clas-
sic client-server model for purposes of performance and availability. From the longer-term

22

perspective of system administration and security, the roles of servers and clients remain
unchanged.

Service Discovery

Discovery is a term used to describe the protocols and mechanisms by which a network con-
nected device or software service becomes aware of the network to which it is connected and
discovers which network services are available. For example, a PDA needs to discover the
home network, and find a service that will provide PDA to PC synchronization capabilities
and use that synchronization service. The issue of discovery of software components has
been addressed in various research areas. In open distributed computing, discovery is sup-
ported by a type management repository, which maintains descriptions of service interface
types, and a trader, which is aware of instances of service types.

Service discovery can be all pre-configured. This is the solution that techniques such as
DHCP, DNS and LDAP provide for enterprise networks. For a relatively static system with
infrequent addition of new devices or software services, this may be a viable approach. The
configuration step can be done once during system installation, and manually maintained,
usually by a skilled system administrator. For relatively static networks where central ad-
ministration is needed or desirable, this sort of pre-configured service discovery may be
appropriate.

However, within the networked home, new information appliances will be purchased
and added to the network with some frequency. Mobile devices, such as cellular phones and
PDAs, can enter and leave a home network quite frequently. In these situations, it is difficult
to rely on manual configuration of the network services. So, we need service discovery in
the home, mobile, and similar environments to be self-configuring.

There are many existing service discovery protocols that have varying degrees of self-
configuration, and more are being announced all the time. For the most part, these protocols
are incompatible. This is natural because the art has not yet achieved maturity. If different
device and network service manufacturers adopt different service discovery protocols, then
it will be difficult for devices built for one protocol to work with services provided by devices
built FOR different protocols.

Let’s examine some of the most important service discovery protocols.

Important Service Discovery Protocols

• Salutation: is an architecture for looking up, discovering, and accessing services and
information. The Salutation architecture [Inc99] is being developed by an open indus-
try consortium, called the Salutation Consortium; it defines abstractions for devices,
applications, and services; a capabilities exchange protocol; a service request proto-
col; ”personalities” (standardized protocols for common services); and APIs for infor-
mation access and session management. The architecture consists of service brokers
called Salutation Managers (SLMs). Services register their capabilities with an SLM,
and clients query the SLM when they need a service. Salutation is independent on the
network technology and may run over multiple infrastructures, such as over TCP/IP
and IrDA. It is not limited to HTTP-over-UDP-over-IP. Moreover,

• SLP: Service Location Protocol (SLP) [Gut00] is a standard developed by a working
group of the Internet Engineering Task Force (IETF). SLP addresses the problem of self

23

CHAPTER 1. HETEROGENEITY IN PERVASIVE COMPUTING

configuring service discovery by applying existing Internet standards to the problem.
SLP is designed to be a lightweight, decentralized protocol with minimal administra-
tion requirements. SLP offers a flexible and scalable architecture and the utilization of
service templates make service browsing and human interaction possible. Since SLP
is able to operate with or without a Discovery Agent, it is suitable for networks of dif-
ferent sizes, ranging from very small ad hoc connectivity to large enterprise networks.
SLP also includes a leasing concept with a lifetime that defines how long a discovery
agent will store a service registration. DHCP options to configure SLP are already de-
fined. LDAP (Lightweight Directory Access Protocols) servers could be also used as a
backend for SLP, i.e., DAs may use LDAP servers as their repository.

• Universal Plug and Play: (UPnP) is an initiative to bring easy to use, flexible, stan-
dards based connectivity to consumer networks, whether in the home, in a small busi-
ness, or attached to the global Internet [Cor05]. From a technology perspective, UPnP
is a suite of protocols and system services for device discovery and control in small
and medium size IP networks. In UPnP environments the Simple Service Discovery
Protocol (SSDP) [GCL+99] runs on top of the IP layer to provide a means of discover-
ing devices on the network. SSDP allows devices to advertise services using datagram
sent using IP multicast. These advertisements contain a service type and a URL for
the service being advertised. Clients interested in accessing services can either wait for
announcements or can multicast a search request that forces all devices on the network
to send service advertisements. Once a client has obtained an URL for a service, it can
retrieve from the device an XML description of the service being offered. This descrip-
tion will include, among a host of other pieces of information, an additional URL that
can be used to access a web page representing the user interface for the device and a
list of state variables associated with the service. In more detail, in UPnP devices are
modeled as objects with an associated state table (c.f. properties). This state table pro-
vides an external representation of the objects internal state. Clients can make changes
to this state table that causes the associated object to invoke operations to achieve a
corresponding change in its internal state. For example, an object representing a cam-
era might have a state table that included a variable autofocus with possible values of
on and off. Clients that wished to change the cameras autofocus mode would simply
need to change the value of the autofocus variable. The architecture requires that ob-
jects generate events whenever their state changes and that clients register for these
events in order to ensure all views on the device are consistent (for example, to ensure
consistency between the cameras front panel and a remote application also controlling
the camera). It is worth highlighting at this point that UPnP compatibility is defined in
terms of the on-wire format used for messages and the architecture is OS and language
independent. Many of the service discovery and interaction technologies operate in a
similar way, and have a number of features in common with UPnP.

• Bluetooth: [AJF02] is a consortium developing a short-range wireless communication
protocol. It is optimized for the highly dynamic nature of Bluetooth networks, and is a
simple, efficient protocol that allows Bluetooth devices to discover services offered by
or through other Bluetooth devices. The Bluetooth protocol stack contains the Service
Discovery Protocol (SDP), which is used to locate services provided by or available
via a Bluetooth device. SDP is described in the Bluetooth specification part E [blu].

24

It addresses service discovery specifically for this environment and thus focuses on
discovering services, where it supports the following inquiries: search for services by
service type; search for services by service attributes; and service browsing without a
priori knowledge of the service characteristics. SDP does not include functionality for
accessing services. Once services are discovered with SDP, they can be selected, ac-
cessed, and used by mechanisms out of the scope of SDP, for example by other service
discovery protocols such as SLP and Salutation.

Limitations of Existing Technologies

Existing service discovery architectures have a few limitations which makes them unsuitable
for wide deployment in the pervasive computing domain.

Some of these protocols like SLP and Salutation are deployed primarily within the enter-
prise or office environment; others like UPnP and Bluetooth were conceived for a more in-
formal, casually connected environment, which could include networked vehicles and small
offices as well as home networks. Consequently, a networking solution should be able to
accommodate heterogeneity, both in terms of underlying connectivity, and in terms of the
discovery infrastructure that is supported.

The infrastructure for pervasive computing must support diverse types of software com-
ponent. It should be able to integrate software components, which may reside in fundamen-
tally different environments (such as home or office computing environments), into compo-
sitions that can successfully interact and cooperate to achieve common tasks. As pervasive
computing environments will be required to respond to novel tasks and situations, appli-
cations will increasingly be formed dynamically from available software components. This
requires dynamic interoperability at the component level, in addition to interoperability that
overcomes the heterogeneity of the environment and of components. Components will need
to be capable of dynamically acquiring knowledge of each other’s interfaces and behavior,
in order to learn how to interact with previously unknown components.

Services are heterogeneous in nature. These services should be defined in terms of their
functionalities and capabilities. The functionality and capability descriptions of these ser-
vices should be used by the service clients to discover them. The existing service discovery
infrastructures lack expressive languages, representations and tools that are good at repre-
senting a broad range of service descriptions and are good for reasoning about the function-
ality and the capabilities of the services.

In the existing service discovery infrastructures, it is impossible to find services which re-
quire a specific attribute value that can change based on the dynamic content of the environ-
ment. In addition, service functionality is described at the syntax level or object level. This
makes difficult to apply approximate matching rules. For example, if the client is attempt-
ing to discover a black and white printer, an approximate matching rule would succeed on
finding a color printer.

Services need to interact with clients and other services across environments and, prob-
ably, applications. Service descriptions and information need to be understood and agreed
among various parties. In other words, well-defined common ontology must be present
before any effective service discovery process can take place. Common ontology infrastruc-
tures are often either missing from or are not well represented in the existing service discov-
ery architectures. Architectures like Service Location Protocol, Jini and Salutation do provide
some sort of mechanisms to capture ontology among services. However, these mechanisms

25

CHAPTER 1. HETEROGENEITY IN PERVASIVE COMPUTING

like Java class interfaces and ad-hoc data structures are difficult to be widely adapted by the
industries to become standards. In the Universal Play and Plug (UPnP) architecture, ser-
vice descriptions are represented in XML (eXtensible Markup Language), which provides
a good base foundation for developing extensible and well-formed ontology infrastructure.
However, a service description in UPnP does not play a role in the service discovery process.

These systems have made progress in various aspects of pervasive computing but are
weak in supporting knowledge sharing and reasoning. A significant source of this weakness
is their lack a common ontology with explicit semantic representation.

A key requirement for realizing pervasive computing systems is to give computer sys-
tems the ability to understand their situational conditions. To achieve this, it requires con-
textual information to be represented in ways that are adequate for machine processing and
reasoning. At the same time resources and services needs to be described ad managed fol-
lowing a common semantics that should, also, be reflected at coordination level. The goal is
to abstract the description of the application behavior from the management of the different
instances that compose the environment.

Semantic Web languages are well suited for this purpose for the following reasons:

• Ontologies provide a means for independently developed systems to share resources,
services and context knowledge,

• RDF and OWL are knowledge representation languages with rich expressive power
that are adequate for modeling various types of contextual information, e.g., informa-
tion associated with people, events, devices, places, time, and space.

• These knowledge representation languages are well suited to, also, describe resources
and services.

• Because ontologies have explicit representations of semantics, they can be used by the
available logic inference engines. Systems with the ability to reason about context can
detect and resolve inconsistent knowledge.

• The Semantic Web languages can be used as meta-languages to define other special
purpose languages such as communication languages for knowledge sharing, policy
languages for privacy and security [KFJ03]. A key advantage of this approach is better
interoperability. Tools for languages that share a common root of constructs can better
interoperate than tools for languages that have diverse roots of constructs.

A common agreed standard ontology could be the “panacea” for most of the interop-
erability and openness issues raised in distributed systems and pervasive computing. But
this is only an ideal scenario, quite difficult to realize given the current situation where lot
of systems have developed their own communication protocols, description scheme and on-
tologies. Interoperability at such level is a very challenging and still open issue. Most of the
approaches imply human intervention to solve, for example, ontologies mapping.

Despite the difficulties that the use of ontologies rise when considering interoperability
between systems, it is a very efficient and interesting approach for describing a system as
an isolate entity. All resources, services, contextual information as well as interaction and
dependencies, when described with an agreed common semantic, could be better managed
by the infrastructure resulting in a more clear separation between the application pure func-
tional level and its specific system instantiation. This has been the approach that has inspired
the UBIDEV model.

26

Development and Deployment

The number and diversity of software components that will be required in pervasive com-
puting environments will necessitate methods for their rapid development and deployment.

Rapid development will be, in part, enabled by a feature rich infrastructure that lightens
the need for application developers to be concerned with tasks such as adaptation, context
gathering and management, resource discovery, distribution management and communi-
cation between distributed application components. Rapid development of specialized ap-
plications can be enhanced further by the development of special-purpose languages that
enable applications to be specified at a very high level of abstraction. Infrastructural sup-
port for rapid application deployment can be achieved through the provision of execution
environments into which applications can be placed without regard for configuration or
adaptation. Rapid deployment of applications in distributed environments is already sup-
ported in a limited fashion by platforms such as the JVM, which can dynamically load and
execute programs. However, these platforms do not yet meet the needs of heterogeneous
environments, which require support for a broad range of component types, scalability, and
dynamic configuration and adaptation of components.

1.6 Context

Invisibility of applications is accomplished by reducing input from users and replacing it
with knowledge of context. The first definition of context-aware applications given by Schilit
and Theimer [ST94]) restricted the definition from applications that are simply informed
about context to applications that adapt themselves to context. Context-aware has become
somewhat synonymous with other terms: adaptive [Bro96], reactive [CTB+95], responsive
[EHC+93], situated [HNBR97], context-sensitive [RAH98] and environment-directed [FKS97].

“A system is context-aware if it uses context to provide relevant information and/or
services to the user, where relevancy depends on the user task” [Dey00].

Context-aware software components exploit information such as the activities in which
the user is engaged, proximity to other devices and services, location, time of day and
weather conditions. Knowledge of context also is required to enable adaptation to chang-
ing environmental conditions, such as changing bandwidth and input and output devices,
which can be brought about by mobility.

Adaptation requires a mobile client to sense changes in its environment, make inferences
about the cause of these changes, and then react appropriately. These imply, for example,
the ability to make global estimates based on local observations. To detect such changes, the
client must rely on local observations; for example, it can measure quantities such as local
signal strength, packet rate, average round-trip times, and dispersion in round-trip times.

The infrastructure for pervasive computing should support context awareness by facil-
itating the gathering of information from sources such as sensors and resource monitors;
performing interpretation of data; carrying out dissemination of contextual information to
interested parties in a scalable and timely fashion; and providing models for programming
context-aware applications. A very challenging aspect is interpretation, which involves steps
such as integration of data from different sources (for example, combining height and hor-
izontal position into a three dimensional position); inference (for example, ”Bob is in the
meeting room and Alice is in the meeting room, therefore a meeting between Bob and Alice

27

CHAPTER 1. HETEROGENEITY IN PERVASIVE COMPUTING

is taking place”); prediction based on context history; resolution of inconsistencies between
context data from different sources; and provision of estimates of the accuracy of contextual
information.

The challenges associated with constructing context-aware applications for pervasive
computing system and the importance of appropriate abstractions for gathering and rea-
soning about the context information has led an ontology-based shift in the research focus
of the context awareness community. Ontology-based approach may improve over clas-
sical context modeling approaches by providing improved support for interoperation and
sophisticated type of reasoning.

Number of interesting frameworks are investigating pervasive computing research, such
as ContextToolkit [AKDS01], Cooltown [KBM+02], Intelligent Room [Coe98], OneWorld
[GABW00], EventHeap [Joh03]. These systems use ad hoc representations of context knowl-
edge, while others [RHC+02] similarly to UBIDEV, explores the use of ontology to represent
context knowledge.

Context Models

Many context models have been developed to support context-aware and adaptive systems
and applications. These primarily address challenges as context representation, interpreta-
tion and dissemination.

The Sentient Computing project, for example, is concerned with supplying context infor-
mation to applications, with particular focus on location information [ACH+01]. The loca-
tion of mobile objects, such as people and equipment, is tracked by devices known as Bats (a
successor to the earlier active badges), which communicate with base stations by ultrasound.
Other context information is gathered by resource monitors, which track resources such as
CPU, memory and bandwidth. Context is associated with a logical model of the physical
world. In this model, real world entities are captured as objects that have types, names, ca-
pabilities and properties, including static and dynamic context. Additionally, applications
can receive notifications of location-related events from a spatial monitoring service, which
performs interpretation of location data and detects important events defined by contain-
ment rules. One of the drawbacks of the Sentient Computing framework is its focus on
location. While the framework provides interpretation and event notification of location
changes, its support for other types of context is limited to the ability to query the infor-
mation via the proxy server. In order to support the rich context requirements of pervasive
computing software, the means to apply context interpretation to arbitrary types of context
are required.

Hewlett-Packard’s Cooltown [KBM+02] project proposes a Web-based model of context.
In this model, entities (people, places and things) have Web representations that can be re-
trieved using a URL. An entity’s Web representation captures both static and dynamic as-
pects of context, including relationships with other entities and sets of services associated
with the entity. One of the primary aims of the model is to enable adaptation of Web content
according to user context. However, the potential uses of the framework are much broader.
Location awareness is based around the concept of a space. Beacons wirelessly transmit
URLs corresponding to spaces, enabling devices near the beacons to discover and access
their local spaces. Spaces are accessed through portals, which are responsible for providing
access control and a gateway to the space’s services. A space manager performs tracking of
the devices located within the space at any point in time and generation of dynamic Web

28

Applications

World Model

Environment

Queries

Events

Sensors

Telemetry

Actuators

Devices

Operators

Applications

World Model

Actions

Observations

Figure 1.2: Sentient Computing. Using sensors and resource status data to maintain a model of
the world which is shared between users and applications.

pages that reflect the current context. The Cooltown context model has several limitations.
First, it does not address the means of specifying context, but instead allows arbitrary Web
descriptions, which renders machine processing of context difficult. Additionally, interpre-
tation of context and subscription to context events are outside the scope of the model.

Application Application

Interpreter

Sensor

Interpreter

Aggregator

WidgetWidget

Sensor

Discover

Figure 1.3: Context Toolkit. An interaction example between applications and Widgets and be-
tween Interpreters and Aggregators.

Unlike the Sentient Computing and Cooltown, the Context Toolkit project [Dey00] fo-
cuses on programming with context rather than context representation. The Context Toolkit
has the aim of providing abstractions for separating the gathering and processing of context
from the use of context. The toolkit comprises three types of component: context widgets,
which acquire context data from sensors; interpreters, which perform processing of context
data, such as abstracting high-level information about a person’s location from raw location
coordinates; and aggregators, which combine context data from multiple sources. None of
the work carried out on context to date is adequate to satisfy the requirements of pervasive
computing. The ideas of context modeling found in the Sentient Computing and Cooltown

29

CHAPTER 1. HETEROGENEITY IN PERVASIVE COMPUTING

approaches, and those of context processing found in the Context Toolkit must be united
into a scalable framework, and better programming models for context-aware applications,
which support rich types of context-awareness and adaptation, must be created.

1.7 Coordination

Coordination languages, models, and systems aim finding solutions to the problem of man-
aging the interaction among concurrent programs. Coordination has been defined as the
study of the dynamic topologies of interactions among Interaction Machines, and the con-
struction of protocols to realize such topologies that ensure wellbehaveness [Weg95].

Analogous to the way in which topology abstracts away the metric details of geometry
and focuses on the invariant properties of shapes, coordination abstracts the details of inter-
action between processes, and focuses on the invariant properties of programs [Weg98]. As
such, coordination focuses on program patterns that specifically deal with interaction.

Coordination models and languages are meant to close the conceptual gap between the
cooperation model of an application and the low-level communication model used in its
implementation.

As we move towards distributed, pervasive environments, the independence (mutual ig-
norance), partiality and unreliability of individual components is becoming a standard sce-
nario. Modern network-based software is moving towards another model, in which commu-
nication connections are virtual and dynamic, rather than explicitly represented in configu-
ration files, routing tables, and the like. Rather than creating explicit communication paths
between individual components, each component can post information to a shared server
(blackboard), and can subscribe to receive information that has been posted that matches a
chosen pattern.

Anyway, the inability to deal with the coordination model in an explicit form increases
the difficulty of developing pervasive computing applications that contain large numbers of
autonomous interacting entities with nontrivial cooperation protocols.

In spite of the fact that the implementation of a complex protocol is often the most dif-
ficult and error prone part of an application development effort, the end result is typically
not recognized as a commodity in its own right, because the protocol is only implicit in the
behavior of the rest of the concurrent software. This makes maintenance and modification
of the cooperation protocols of concurrent applications much more difficult than necessary,
and their reuse next to impossible.

A number of software platforms and libraries are presently popular for easing the devel-
opment of concurrent applications. Such systems, e.g., PVM, MPI, CORBA, etc., are some-
times called middleware. Coordination languages can be thought of as the linguistic coun-
terpart of these platforms which offer middleware support for software composition. One
of the best known coordination languages is Linda, which is based on the notion of a shared
tuple space.

Tuple Space

The tuple space is a centrally managed space which contains all pieces of information that
processes want to communicate. It is a well-established asynchronous communication model
that is effectively a shared distributed memory spread across all participating hosts. It is the

30

core abstraction of all Linda-like coordination models. A tuple is an ordered collection of
values.

The tuple
(1,′Bob′)

is a tuple of size 2, with an integer as the first element, and a string as the second. A template
specifies what sort of tuple to retrieve.

A tuplespace is a virtually shared associative memory structure in that it is accessible to
all processes, no matter what their physical location. It also makes no formal requirement of
the actual distributive nature of the implementation.

All tuples in a tuplespace may be stored on a single node of the network, or they may
be spread out over several nodes. Providing the tuplespace can be accessed from any node
on the network it doesn’t matter where the tuples are stored. A tuplespace is an associative
structure because tuples are accessed based on their value and structure, not by address.

As described in [Gel85] tuplespaces are a generative communication method because
when a tuple is added to a tuplespace by a process, A, then even if that process A dies the
tuple remains in the tuplespace until it is requested by another process. Figure 1.4 shows the
tuple space in action.

Tuple spaces provide temporal and spatial decoupling: hosts communicate through the
space without being online at the same time or attached by an explicit binding, an ideal ap-
proach for mobile computing. Example tuple space implementations designed specifically
for pervasive computing are described in hereafter.

• Linda [CG89] is a process coordination language where multiple processes interact
by asynchronously entering and removing tokens from a single, globally shared tu-
ple space. In the Linda programming model there are four operations: out for tuple
creation, in for destructive tuple retrieval, rd for non-destructive retrieval and eval
which is similar to out except that a new process is created to evaluate the arguments.
Both kinds of retrieval select tuples via pattern matching, making it possible to operate
on multiple tuples. Communication in Linda is decoupled both in time and space as
sender and receiver processes do not need to be available at the same time or have
knowledge of each other’s location. This makes Linda highly appropriate for mobile
platforms, where connectivity patterns typically vary.

However, in an environment where communication links are unreliable and costly all
operations being performed on a central space are infeasible.

• Limbo [DFWB98] is based upon the Linda tuple model architecture, but adds exten-
sions for operation within a mobile environment. Limbo allows multiple tuples spaces
to be created across hosts; tuples propagate between spaces using a bridging agent.
Alternatively, an individual tuple space can span multiple hosts. The consistency be-
tween multiple tuple copies is maintained by a distributed tuple space protocol (that
is implemented as a multicast group). The replication of tuple spaces across multiple
hosts enables the tuple space to remain accessible during disconnection. Furthermore,
QoS attributes can be added to tuples, including delivery deadline, so that mobile
multimedia applications can be supported; this also allows the system to adapt itself
to make best use of network connectivity. System agents monitor QoS and the prop-
agation of tuples between tuple spaces. The monitoring agents watch characteristics
such as connectivity, communication cost and power and inject tuples (representing

31

CHAPTER 1. HETEROGENEITY IN PERVASIVE COMPUTING

Touple Space

in (Sergio,x,y) out (Gian,28,2,0)

rd (Sergio,x,y) eval (person)

John,34,2,1

Sergio,30,1,1
Paul,22,0,3

Figure 1.4: Tuple Space abstraction. Tasks can generate asynchronous requests to read, take, write
and eval tuples.

the current system state) into a management tuple space. These are globally accessible,
allowing remote hosts to query current QoS conditions. Filtering agents, a special type
of bridging agent, then allow Limbo to adapt its behavior by performing transforma-
tions on the tuples being distributed. For example, a filtering agent can act between
two spaces dealing with MPEG video frames and only transmit I-frames, or by per-
forming color reduction on the I-frames if it detects a drop in bandwidth. Limbo’s
implementation of the tuple space paradigm means that disconnection, address mi-
gration and low bandwidth problems are solved. Furthermore, its use of monitoring
and adaptation agents help address variable network conditions, and could feasibly be
used to manage power consumption.

• Linda In a Mobile Environment (LIME) [MPR01] utilizes the concepts of the Linda co-
ordination model and provides additional support to new types of distributed mobile
applications. The underlying core is based upon a global virtual data structure (a tuple
space whose content depends upon the connectivity of mobile hosts). This dynami-
cally changing global context is accomplished by breaking up the Linda tuple space
into many tuple spaces, each permanently associated to a mobile unit, and by intro-
ducing rules for transient sharing of the individual tuple spaces based on connectivity.
The only way to access the global context from a mobile host is through an Interface
Tuple Space (ITS); this contains the tuples that the host is willing to make available to
other mobile units [PMR99]. Upon arrival of a new mobile unit, the tuples in its ITS
are merged with those already within the global context and the result is accessible via
the ITS. This abstraction provides the mobile application with the perception of a local
tuple space contained within the federated space. LIME also allows the ability to react
to changes in context, an important factor in mobile application design (for example,
when a new member node arrives). The Linda model is extended by the Reaction con-
cept. A reaction R(s, p) is defined by code fragment s, which specifies the behavior
when a tuple matching the pattern p is detected within the tuple space. Like Limbo,
the tuple space implementation is particularly suited to addressing problems of termi-
nal mobility, and the reaction concept can be utilized to improve operation in varying

32

network conditions and resource consumption.

Tuples spaces present powerful communication abstractions with simple programming
interfaces. However, the application of the paradigm to real world systems is a complex
task, requiring a thorough understanding of the process, and hence tuple spaces are not
particularly well used compared to other paradigms. However, there is evidence that ap-
plications inherently matched to tuple spaces are simple to develop [MPR01]. Furthermore,
commercial tuple space implementations (designed for the fixed network) including JavaS-
paces [Wal98] and IBM’s T-Spaces [WMLF98] [LMW99] are gaining prominence in the Java
community.

1.8 Application

Applications for pervasive computing system are seen, from the infrastructure viewpoint,
as the collection and the coordination of services provided under the umbrella of the user
interfaces. Fundamental is to highlights the user-centered nature of pervasive computing
applications. Concerns such as the user’s intent, the user’s context, the user’s preferences,
the user’s abilities, the user’s emotions, and the user’s privacy are considered primary.

The user should be able to access any application or data using any device, within the
limits of the capabilities of that device. Applications are considered primary, not the device
from which the application is accessed. This calls for a separation between the logical data
(user space) and the physical resources involved.

Applications need to be autonomous and invisible, by placing greater reliance on knowl-
edge of context and reducing interactions with users. Moreover, applications must cope
with highly dynamic environments in which resources, such as network connectivity and
software services, frequently vary over time.

A programmer who built an interactive application needed to know about the specific
devices and the details of their data structures and signals, in order to write code that used
them appropriately. The code could be carefully tailored to the specific devices, to gain
maximal efficiency and/or to take advantage of their special characteristics.

This arrangement works, but has some obvious shortcomings:

• Each new program had to have code to deal with the specifics of the devices.

• Each new device (or modification to an existing device) could require reprogramming
of pre-existing applications.

• If a computer supports multiple processes, conflicts could arise when two processes
communicate with the same device.

Indirection is one approach for decoupling programs from device interaction details. For
example, the operating system provides device drivers, which are coded to deal with the
specifics of the signals to and from the device, and which provide a higher level interface
to programmers. Drivers can unify abstractions for different devices (for example, different
physical pointing devices can provide the same form of two-dimensional coordinate infor-
mation), or can provide multiple abstraction levels for a single physical device. Application
programs can use libraries with program interfaces that provide higher level events and
descriptions, while accessing lower level drivers provided by the operating system.

33

CHAPTER 1. HETEROGENEITY IN PERVASIVE COMPUTING

Another example is the distinction between software components and user interfaces.
While software components are programming units that are dynamically composed to form
complete applications, user interfaces are conceptual entities that are responsible for inter-
action with the user, and which may be distributed over multiple software components and
devices.

An application is structured into two parts: interaction logic and application logic [SVSF05]
[PPL+03]. Interaction logic defines the interchange between a user and the system, regard-
less of the ”context” of the user, including the device being used and the user’s particular
preferences. The application logic is organized into reusable software modules called ser-
vices, which encapsulate a packaging of computation and data, perhaps to expose the infor-
mation interface of physical artifacts.

Even for simpler objects, we are beginning to see a separation between the devices as
viewed by a user and those designed into the computer system. For example, ”tangible
user interfaces” [FIB95] incorporate passive or semi-passive physical objects into computer
systems as though they were virtual devices. Sensors such as cameras are used by programs
that track these objects and model their behavior, and then provide a higher level interface
to them.

A common approach is to separates three distinct conceptual elements:

• Devices: (sensors and actuators) and the signals they accept and produce

• Phenomena: a space of things and happenings relevant to a program

• Observers, which produce a particular interpretation of the phenomena using infor-
mation from devices.

Application Level Adaptation

User interfaces for pervasive computing environments must be highly adaptable in order to
respond to changes in the available input and output devices caused by mobility, to other
changes in the context in which the application is used (for example, when the user switches
from working at a desk to driving a car) and to novel application behaviors that are cre-
ated in a dynamic fashion from available components. One of the challenges of providing
user interface adaptation lies in ensuring that adaptation preserves a consistent view of an
application. The user should have a uniform mental model of an application regardless of
whether the user is interacting with a speech-based interface or a graphical one. Consistent
adaptation is particularly challenging when the interaction paradigms are completely differ-
ent. For example, interactions in gesture-based interfaces [GTV05] occur over a continuous
period, whereas interactions in a mouse-driven interface occur at discrete points in time
[KS03], which makes it difficult to map between the two forms of input. Another challenge
lies in dynamically coordinating the use of heterogeneous collections of input and output
devices to form a single user interface (for example, when a control interface for a video con-
ferencing system is formed using a user’s PDA as an input device and the videoconference
screen as the output device).

User interfaces for pervasive computing must be carefully designed with several factors
in mind. First, the ergonomics of the interface must be designed to keep the user’s attention
focused on the task at hand rather than on peripheral matters; that is, the interface should
not be distracting [Nor99]. Second, the user interface should be rewarding and enjoyable to

34

use. Third, the user interface must allow novel types of interaction that will become more
common as computing tasks become increasingly ubiquitous, such as delegation of tasks
and provision of guidance to software agents. Finally, user interfaces should be designed for
ordinary people, rather than just for technologists.

User interfaces

Users in pervasive computing environments demand ubiquitous access to their computing
applications, which creates a requirement for universally available user interfaces. Device
heterogeneity introduces a further requirement for user interfaces that are highly adaptable.
Moreover, the diminishing amount of user interaction with applications (brought about in
part by the increasing ratio of applications to people) and the changing nature of the interac-
tions (brought about by computing becoming situated in mobile and other novel situations)
call for new types of user interfaces.

The need for universally available user interfaces creates a requirement for new meth-
ods of programming user interfaces that do not make assumptions about the available input
and output devices. GUI interfaces that are designed for use with a screen, pointing de-
vice and keyboard will no longer be broadly useful in future computing environments, as
devices with novel input and output mechanisms (for example, touch screens and gesture
recognition) will become increasingly common. In order to provide scalable support for uni-
versal interfaces, it will be necessary for application programmers to write generic interfaces
that allow the semantics of user interaction to be specified without reference to rendering or
input modalities.

The main challenges that have to be faced at user interface level are:

• Relocable input and output: the interface should be able to steer information around
an environment and serve as both input and output interface to computing. A far-field
speech recognition system that allows speech based interaction with a moving display,
or a moving projected keyboard that allows the user to type in commands would be
examples of relocable interfaces that support both input and output.

• Adaptation to user and environmental context: as opposed to the typical fixed inter-
faces such as a monitor with a mouse and a keyboard, pervasive computing interfaces
should free the user to move about and carry out other functions. For example, an
interactive display should be oriented towards the user and be close enough to the
user to facilitate interaction. An interface should also adapt to the characteristics of
the environment in order to be useful. For example, a projected visual display should
appear on an available surface in the environment that is of the appropriate size and
orientation, has the appropriate color and texture to show the display with sufficient
contrast, and is not occluded by other objects in the environment. Similarly an acoustic
output should adapt to the presence of acoustic noise sources and objects blocking the
acoustic signal. Thus, a steerable interface typically needs to be aware of, and reason
about, the geometry and properties of the environment, and relate the user as well as
input and output devices to a model of the environment.

• Natural interaction: interfaces should be natural and easy to use. The end result of
ubiquitous access and adaptation to user and environmental context should be an in-

35

CHAPTER 1. HETEROGENEITY IN PERVASIVE COMPUTING

terface that is intuitive and usable rather than something that distracts, confuses, or
overwhelms the user [GSSS02].

Steerable interfaces like [PPL+03] are examples of research results that go in such a di-
rections.

1.9 Users

One of the basic shifts from today’s systems to interactive workspaces is releasing the con-
ventional assumption that each device is associated with a particular user who is logged
onto it at a given moment [Car01]. Shared wall-based displays, for example, need to be us-
able by anyone at any moment, without going through a separate login or identification step
[SGH98]. However, the sharing needs to respect individual information spaces. Users in
pervasive computing environments can be mobile and have computing sessions distributed
over a range of devices. The infrastructure’s role with respect to users should be to maintain
knowledge of their context and to manage tasks related to their mobility.

User Level Context

The infrastructure should maintain context data related to users, including their capabilities,
preferences, current activities and active computing sessions. The uses of user-related con-
text include allowing applications to provide adaptation to user requirements, and enabling
the amount of input that applications require from users to be reduced. For example, with
knowledge that a user is engaged in driving a car, an application can ensure interaction is
carried out through a speech-based interface, rather than a screen based one, in order to en-
able the user to focus on the road. Information about users’ computing sessions, including
details about applications and the devices on which these applications reside, can be used to
manage the application migration and adaptation that frequently must occur when a user is
mobile.

User Level Mobility

User mobility between devices should be supported by enabling automated migration (or re-
instantiation in a new location) of application components. The tasks of identifying the need
for application migration and then carrying out the migration should ideally be performed
by the computing infrastructure in a manner that makes the migration as transparent as
possible to the applications concerned.

One of the key motivations for the generalizations in this architecture is the desire to
support integrated applications with multiple users and multiple devices in an interaction
structure that is many-to-many (one person may use several devices, several people may
share one).

1.10 Summary

This chapter has presented the heterogeneity problem in pervasive computing focusing on
the role that an infrastructure should take when providing support for it. In doing so, this

36

chapter, has analyzed the state of the art of related technologies and approaches trying to
underline their strength and what is still missing. The main problems have been categorized
in terms of resources, services, context, coordination, application and user.

UBIDEV as an infrastructure for pervasive computing systems handles the heterogeneity
problem from the following viewpoint:

1. Resources: the disparate and different nature of resources involved in pervasive com-
puting environments make difficult for an infrastructure to provide a uniform way of
describing, configuring and access them.

2. Services: in a Service-Oriented programming model, services need to abstract their
heterogeneity at higher levels; they also need to express somehow their dependence
and impact on the underlying physical resources.

3. Context: an infrastructure is supposed to provide a way of describing the model of
the context as well as the contextual information contained. More than how to acquire
such information the accent is on how to describe, structure and access it.

4. Coordination: it is required to define the basis for a coordination model built on top
of Resources, Context and Service abstractions. An infrastructure should provide at
application level a service-based coordination model where the behavior of the whole
system is described in terms of homogeneous interacting entities.

5. Semantics: provide a way of describing the semantics of the whole system and ensur-
ing that resources, services and contextual information are managed and coordinated
accordingly. There is the need of providing mechanisms to allow an infrastructure
to act upon a given environment in terms defined by an agreed ontology. In such a
way the application is guaranteed to always have a coherent vision of the underlying
environment.

37

Part II

UBIDEV

39

Chapter 2

The Model

This chapter presents the UBIDEV model, the key result of the research behind this disserta-
tion. UBIDEV is an infrastructure that aims at supporting the development and execution of
applications for pervasive computing system.

UBIDEV stands for Ubiquitous Interacting Devices because it is based on a model where
an environment is characterized by the ubiquitous availability of services provided by ab-
stract devices interacting with each other. As it will be presented during this chapter, users
are considered to be part of such environment as devices (or resources) able to produce and
perceive stimuli with their peer.

2.1 Introduction

We believe that extending the concepts from traditional distributed systems to pervasive
computing system simplifies the management and the development of applications; but at
the same time, we need to actualize these concepts to the new challenges that a generic
pervasive computing system rises.

UBIDEV is a distributed middleware infrastructure that coordinates software entities,
heterogeneous networked devices, users as well as physical entities contained in a physical
space. UBIDEV exports services that could be composed together, it accesses and uses ex-
isting resources and context information to solve user tasks, and provides a framework to
develop resource-aware, multi-device, and context-sensitive applications.

One of the main contributions of UBIDEV is not in the individual service it provides, but
instead, in the interactions among these services. This interaction allows users and devel-
opers to abstract pervasive computing system as a single reactive and programmable entity
instead of a collection of heterogeneous individual devices.

The first part of this research has been addressed to the analysis of a generic perva-
sive computing system. The peculiarity of these systems in terms of heterogeneity and dy-
namism forces applications to take into account both their physical and service dimension:
building a pervasive computing system requires to analyze the computing infrastructure the
environment should be equipped with, as well as how each single service should configure
and adapt itself according to the topology of the resources composing the environment.

A middleware has been induced by the need of supporting applications concerned with
resource and service management. While conventional middleware technology helps the

41

CHAPTER 2. THE MODEL

development of distributed applications, it does not provide suitable support for dealing
with the dynamic and heterogeneous nature of pervasive computing environments. Fur-
thermore, the conventional middleware approach tends to hide the details of the underlying
layers. On the contrary, pervasive computing applications can greatly benefit from knowing
some relevant functional details of the computational environment.

Therefore what is required is a software infrastructure that defines a suitable coordina-
tion model to describe and manage the environment dynamism; that means to relieve the
application from directly handling the heterogeneity of the underlying environment as well
as from maintaining a model of the context. At the same time such a middleware should
offer a level of fine-grained control over the environment to the applications that may need
it. As part of this research we developed an adaptable and reconfigurable middleware pro-
totype [MH02]. This approach as been influenced by the research of Georgia Tech [Abo99]
[DAW98], Carnegie Mellon University [SG02], and Illinois [RHC+02] on pervasive comput-
ing. This middleware allows bidirectional interaction between the physical entities and the
application level.

UBIDEV is a generic model of a service framework with the ability to adapt the behavior
of the whole system according to the changes that occur in the environments, for example,
resource availability or user mobility. It is organized in a form of middleware that is compli-
ant with the specifications of a Service Oriented Architecture: ”problems can be modeled in
terms of the services that an object provides or uses”[Bie02]. An application is then described
in terms of composition of homogeneous autonomous services within a context structure.
Semantics interoperability between each module is granted by an application ontology that
emphasizes the application functional level that is considered to be invariant with respect
to the dynamism of the environment. That ensures that the whole system is represented ac-
cording to the perspective of the application viewpoint and not merely in terms of resources
and services interaction.

The rest of this chapter presents the UBIDEV reference model and its building blocks.
The next section introduces the relation that binds UBIDEV with the physical environment
and how this relation determines the nature of a pervasive computing system. Then the
reference model and the basic abstractions are presented. Then key notions of the model fol-
low: the relation with the physical environment and the application ontology that represents
the key element for granting the semantics interoperability level among all other elements.
Resources, contexts, services and coordination are then presented with respect to the abstrac-
tion they represents and how they rely on the semantics stated by the application ontology.
In the conclusion of the chapter we argument on why the proposed model answers the initial
question.

2.2 A Bio-inspired approach

UBIDEV takes a bio-inspired approach in the relation with the physical environment: ac-
cording to the theory proposed in [MV92], a living system is considered to have an orga-
nized structure able to maintain and regenerate its structure and its autonomy according to
the variations of the environment (autopoiesis). In such a perspective UBIDEV completes a
physical environment with the required functionalities and the interaction model that make
a pervasive computing system an observing system based on perception, representation and
action as depicted in figure 2.1.

42

Cognitive
System

Representation

Perception

Action Environment

Figure 2.1: A generic model of a cognitive system. The solid arrows indicate causal processes,
and the thin lines indicate a coordination of acting, perceiving and representing.

The interactions between each single autonomous entity and the environment occur in
terms of reciprocal perturbations called stimuli. This kind of interaction describes also the
relation between UBIDEV and the physical environment. In such a process, in fact, the
structure of the environment declares and determines the structural changes that occur in
UBIDEV and vice versa for the environment. The result is a mutual structural coupling (fig-
ure 2.2). In such a context the specificity of the physical space could influence the interaction
mechanism. Moreover, as an autopoietic system, UBIDEV introduces a fundamental distinc-
tion between the organization (domain of control) and the structure (domain where entities
exist) of the environment.

This framework allows modeling an environment in terms of resources, services that
manipulate those resources, contexts as containers for resources and services and the com-
position of existing services according to contextual information. UBIDEV interacts with the
environment on the base of stimuli that could be interpreted as either perceptual informa-
tion from the physical space or explicit actions taken on the entities belonging to the envi-
ronment. Those actions determine the nature and the sequence of the interactions that reflect
the whole behavior of the system (figure 2.2). The resulting holistic management emerges
from the building blocks UBIDEV defines: Resource, Context, Service, Coordination and the
Application Ontology. This classification allows to separate the constraints that characterize
all the pervasive computing systems and, at the same time, to define the basic structure of
the model. As a result the design and the development of an application are driven by the
functionalities supported by the system rather than by the configuration and by the use of
the underlying technology infrastructure.

That can be summarized by the following motivating problem:

• “How to define an abstraction of the physical environment that permits to describe applications
in terms that are general enough to be not statically dependent of the specificity of a particular
environment and, at the same time, to preserve the functional dependencies that the environ-
ment may have on the configuration and on the execution of an application.”

2.3 The Reference Model

UBIDEV is a lightweight infrastructure built around a reference model: Physical Entities, Re-

43

CHAPTER 2. THE MODEL

UbiDev

Environment

Stimulus

Interactions

Figure 2.2: UBIDEV perturbation of the environment. The environment is considered to be an
autopoietic entity that, when perturbed, reacts and adapt its behavior accordingly.

sources, Services, Context, Coordination and Application. Unlike most middleware as Jini
that are constructed as monolithic black-boxes, UBIDEV is organized as a group of collabo-
rating logical modules as depicted in figure 2.4. Layering cleanly separates abstraction from
implementation and is thus consistent with sound software engineering. Layering is also en-
couraging standardization since it facilitates the creation of modular software components.
Deciding how to decompose a complex system into layers or modules is nontrivial, and re-
mains very much an art rather than a science. The two most widely-used guidelines for
layering are the information hiding principle [Par72] and the end-to-end principle [SRC84].

All interactions between UBIDEV and the environment are described in terms of stimuli.
Stimuli are classified into two main classes: perception stimuli as the contextual informa-
tion perceived from the physical environment, and action stimuli as the explicit action that
UBIDEV takes on each entity that result in the full interaction process that characterizes the
behavior of the system. Such stimuli exist in the physical level of the system as they refer
and rule the interactions between entities. At a more logical level, the application functional
level, the perturbations of the environment are represented in term of input and output sig-
nal. The application, in fact, through UBIDEV perceives signals from the environment and
produces output signals that are mapped, still through UBIDEV, to new perturbations at the
physical level (figure 2.3).

This model could be used to describe interaction patterns of both of classical computing
nature and those more structured of a pervasive computing environment.

Consider a well known and simple interaction scenario where a user types on a key-
board, the signal is interpreted by an application and the result is displayed on a screen.
The user, the keyboard and the display are resources part of the physical dimension of the
environment. The interactions between resources are categorized as perturbations produced
within the environment in terms of both perception and action stimuli (the user interaction
with the keyboard is more a mechanical interaction, but that produces a perturbation inter-
preted by the OS as input stimuli for the active application. The interdependence between
the resources, the application and the action stimuli produced is described in a coordination
pattern resulting in displaying at the screen what the user has just typed on the keyboard.

In a more pervasive-oriented scenario, a user interacts with an application using an input
device (that could still be the keyboard) and prints out his document on the nearest printer.

44

Logical

Physical

Ubiquitous

Access

Physical Entities

Application

Input/Output

Stimuli

Figure 2.3: UBIDEV stimuli model. Stimuli are classified in two main classes: 1) perception
stimuli as the perturbation produced on the physical environment that could be perceived by the
system. Input/Output stimuli are considered to be a subclass of perception stimuli. 2) Action stimuli
as the explicit action that UBIDEV takes on each entity that result in the full interaction process that
characterize the behavior of the system.

In such a case, the scenario is enriched with contextual information like the position of the
user, his proximity with other resources and, optionally, the user identity and access rights.
Using the UBIDEV model to describe such scenario, the control unit within Ubiquitous Access
layer allows the system to interpret the perturbation produced by the user as well as those
perceived by some contextual information sensors. All information is interpreted by a coor-
dination unit together with the application-interpreted input stimuli. The result is an action
stimuli perturbing the user’s nearest (and available) printer.

UBIDEV can then be considered as a unified management model for resources, services
and context information. It proposes a context centric management of the environment:
it is the application context that determines the semantics of the resources, of the services
involved and of the contextual information. Consequently resource configuration, service
instantiation, description and composition, context model as well as user task solving are
based on this semantics. This allows pervasive computing applications to automatically
reconfigure themselves according to context changes. As a result UBIDEV presents at appli-
cation level a homogeneous coordination space seen as an unified mechanism for dynamic
interaction of services [CA94] [AC93] as depicted in figure 2.4.

A key element in realizing this architecture is the use of an application ontology that
undergrids the communication between entities and the representation of the environment.
A generic knowledge representation system uses various terms with different domain spe-
cific definitions in order to describe the knowledge model. Instead of introducing its own
semantics, UBIDEV identifies the internal representation of semantics and the relation to
the environment as relations to context and resources. That leads to small topic-oriented
ontology used to classify the whole environment in terms of resources, services and contex-
tual information. An application can be described according to the conceptual model of the
ontology that is independent of the specificity of the underlying environment. Once an ap-
plication is instantiated in a specific environment, UBIDEV can ensure that the resource, the

45

CHAPTER 2. THE MODEL

contextual information and the services are described and managed according to this model,
thus shielding the application from directly dealing with it.

Homogeneous

Heterogeneous

Ubiquitous

Access

Physical Entities

Coordination

Services

Resources

Context

Application

Figure 2.4: UBIDEV reference model. UBIDEV separates the coordination aspects from the re-
source and service management in order to hide at the application level the heterogeneity of the un-
derlying environment.

The Physical Entities layer represents all the entities belonging to the environment. This
layer characterizes the physical dimension; is the ground level of description of a pervasive
computing system. Each physical entity that has to be involved in the interaction process has
to be modeled and represented inside UBIDEV. That allows services to rely on such entities
in exploiting their functionalities. In UBIDEV the user is considered as an ultimate resource
involved in the interaction process. As such he belongs to the lowest level of abstraction, in
direct contact with the devices.

The Ubiquitous Access layer represents the core of UBIDEV; it centralizes all functional
aspects related to resource and service management. It is also responsible of creating and
maintaining a model of the context for the application. It is composed of four modules
according to the abstractions is supposed to provide:

• The Resources layer. Resources are considered to be all the entities that may be involved
in the execution process of an application; they describe physical devices, software
components and users. Due to the changes in the availability of physical devices,
network bandwidth, connectivity and user location, the system has to classify those
resources monitoring constantly their changes. In such a way the upper layers have
always a consistent description of the physical dimension.

• The Services layer. It is responsible of analyzing the relation between the service de-
scription and the physical devices. In exploiting such operation it classifies the system
resources and, according with the service description, determines the suitable execu-
tion environment candidate to host the service; then it encapsulates the service and its
execution environment into a self-contained homogeneous entity. That allows a high
degree of flexibility in both service description and resource look-up and composition.

• The Context layer. It takes in charge the process of gathering and representing the con-
text; it relies on dedicated services that sense the information from the physical envi-
ronment. This information is then classified into context data type according to the
application ontology. Context is organized as a container for resources and services;

46

it defines a namespace and the resource access. In order to extend or restrict the per-
ception of the environment, UBIDEV allows some operations on contexts. A new, ex-
tended context can be constructed by the union of contexts and restricted by building a
sub-context. Context determines also the role and the relation that resources may have
with respect to the application; hence subcontext may be used to group resources that
belong to the same set of roles. An example may be the subcontext ”meeting room”
inside the context ”building”.

• The Coordination layer. It defines coordination space and interaction rules allowing
applications to coordinate services as in any classical service-oriented model [Wal98],
[Jav03]. The main difference from the classical coordination models is that through this
layer an application can define behavioral laws that are attached to the context model
and are applied to the resources involved in the interaction process. Its main goal is
to solve complex queries coming from the Application Layer in terms of composition of
basic services. Composition is the process of building complex composite services from
primitive ones; thus enabling rapid and flexible creation of new services. In doing so,
contextual knowledge and behavioral laws are analyzed in order to adapt the service
composition policy, and hence the application behavior, to meet the system constrains.

The Application layer is a generalization of the view in a traditional Model Viewer Con-
troller [KP88]. It works as a presentation module embodying some application dependent
functionalities like the visualization producing the user tasks. Tasks are represented as a
transformation from an input resource to a final output resource; this transformation is inter-
preted by the coordination module in terms of composition of abstract services. It provides
tools for specifying the interaction logic, that will be more relevant at coordination level, and
the application logic according to the shipped ontology. Application GUI modules, together
with the resource specific access modules, are the only pieces of code that are executed on
the specific resource according with the application requirements. UBIDEV does not define
any particular client-side module; in the Ubiquitous Message System prototype, the Palm in-
terface is realized by a simplified implementation of a remote framebuffer protocol [Ric03].

2.4 Physical Entities

The physical environment is perceived as an interaction space where different entities ex-
ists each time given. An application is then realized by the interaction among entities being
them software modules, hardware devices, physical objects or humans. In such a perspective
a pervasive computing system can be associated to the paradigm of an autopoietic system
[MV92]. Fundamental characteristic of such a system is its autonomy and its operational
closure. That means that the system is in a state of fully auto-reference, in which all actions
taken are aimed to preserve its integrity with respect to the external and internal perturba-
tions. This concept does not imply isolation of the system but it is more related to auto-
behaviorism in which the actions of a complex system, realized by interconnected elements,
have effect inside the system itself and inside the system dynamic.

These environments are considered to be physical spaces where different entities interact
with each other for a common goal. Those entities vary from ordinary objects like tables and
walls, to computing devices like sensors or computers, up to animated entities like people,
animals and robots. All the entities that may have any relation with the structure and the

47

CHAPTER 2. THE MODEL

behavior of the system, has to be included in the model of the physical environment. In such
a way a pervasive computing application, seen as the functional part of a pervasive com-
puting system, is realized by inspection and complex interactions of the entities composing
the system. UBIDEV represents the software infrastructure that aims to govern and model
these interactions. Those interactions are structured and governed on the base of stimuli that
entities exchange with the infrastructure. The stimuli from the environment are the common
denominators in the interaction process.

2.5 Application

A pervasive computing system is composed of a physical environment, of a software infras-
tructure that supplies services for configuring the environment and of an application that
specifies the system functionalities. The Application layer embodies the description of the
system functionalities expressed in terms of interfaces defined to generate the input queries,
ontology to state the application conceptual model and the model of the context.

Interfaces

UBIDEV does not define a specific pre-defined GUI module for applications; nor does it
define any client-side module that has to be loaded on the target resource. It only defines a
presentation module that is used as a viewer in a classical MCV model [KP88]. Application
developers have the freedom to design and code any GUI, assuming that they interface with
UBIDEV through the presentation module. Due to the structure of the coordination space,
the user input tasks are expressed in terms of requests to transform an input resource to an
output resource in a specific context space.

Ontology

When two autonomous entities exchange messages they must have common interfaces and
protocols, including a common message format. In addition, the parties must know or dis-
cover the semantics of the messages: the vocabulary of the messages, which includes the
names and valid values of message elements. Essentially, the parties must have a shared
schema for interpreting the messages. Semantic interoperability is the establishment of
shared schema for interacting entities. To ensure that independent and autonomous entities
can understand the semantics of the environment and of the other entities when interacting
with each other, UBIDEV uses semantics web technologies [CFJ03] to attach semantics to var-
ious concepts in pervasive computing environments. The ontology allows different entities
to have a common understanding of various terms and concepts and ease their interaction
process. The ontology also defines the different kind of operation an entity may support to
interact with one another. The goal is to use ontologies to support knowledge representation
and communication interoperability in building pervasive computing systems.

Every UBIDEV application defines its own ontology specific for the pervasive computing
system it aims to address. That leads to small ontologies that better tackle the specificity of
the environment and allow applications to describe their conceptual model in functional
terms more focused on the specific problem they aim to address.

48

The application conceptual model is represented as an Entity Relationship model [Che76]:
it is defined as a collection of entities and of relationship among entities. An entity is an ob-
ject that exists and is distinguishable from other objects. An entity set is a set of entities of
the same type that share the same properties. A relationship is an association among several
entities. It can take the mathematical form of a relation among n ≥ 2 entities, each taken
from entity sets

{(e1, e2, ..., en,) | e1 ∈ E1, e2 ∈ E2, ..., en ∈ En}

where (e1, e2, ..., en) is a relationship.

Entities, that exists in the physical environment, assume a precise semantics when they
are classified into different entity sets. There is a predicate associated with each entity set to
test whether an entity belongs to it. An entity is represented by a set of attributes common
to all members of the entity set it belongs. The interaction among different entities can, then,
be structured according to the expected properties that the entity set guarantee.

The application conceptual model can be interpreted also from a linguistic viewpoint
as a symbolic system [Har90]; a functional level of its own, with rule-full regularities that
are independent of their specific physical realization. The meaning of the symbols comes
from connecting the symbols to the world in the right way. Once one has the grounded
set of elementary symbols provided by taxonomy of names (and the iconic representation
that gives content to the names and allow them to pick up the objects they identify), the
rest of the symbols can be generated by symbol composition alone, and they will inherit the
intrinsic grounding of the elementary set. These elementary symbols called icons represent
the sensor projections of the perceived physical entities.

Classification is the operation of identifying the elementary symbols of the model by
testing whether an entity belongs to a specific entity set or not.

This approach that has already been considered in the COCA model and previously in
the EMUDS [RCC98] project, is an attempt to face the symbol grounding problem [Har90]
by defining instruments for identifing the iconic representation of the real world in a specific
environment.

Context model

In order to extend or restrict the perception of the environment, UBIDEV allows an appli-
cation to define a structural model of the context. It is a descriptive model that defines the
structure of the physical environment in terms of logical spaces. The context module takes
this description to create an organizational structure that will be used by coordination mod-
ule to store resources and services and to determine the role of each entity. That allows
application to restrict resource spaces to have only resources exhibiting certain properties
within a scope. Users could be described within the system with extended properties such
as roles, identities and intentions, giving the possibility to the system to take such informa-
tion into account when adapting individual services to the requests perceived within a given
context and by a given user.

49

CHAPTER 2. THE MODEL

2.6 Resources

Resources are considered to be all the entities in an environment that could be manipulated
by an application. Hence a resource may range from ordinary desktop computers, trough
mobile phones, measurement systems, robots and users. In UBIDEV the user is considered
as an ultimate resource involved in the interaction process. As such he belongs to the lowest
level of abstraction, in direct contact with the devices.

This classification is compliant with the one proposed in other projects [KBM+02]; UBIDEV

just separates the notion of place from things and people because, as we will see later, places
are captured in the context abstraction.

The main question the resource abstraction has been conceived to address is:

• ”How to identify and discriminate resources belonging to the environment allowing an appli-
cation to access them according to their semantics?”

In UBIDEV resources are considered to be atomic elements; hence the necessity to model
the environment in terms of manipulation of resources. Resources are mapped in the model
using an adapter that provides the resource independence abstraction incorporating the soft-
ware modules that the rest of the system uses to accomplish I/O operations. Resources are
then associated with semantic-rich tags coming from the application ontology. This process,
called classification, describes the whole physical dimension in terms known by the applica-
tion. Finally a dedicated protocol allows services to access resources addressing concepts of
the same application ontology.

Adapters

An adapter is considered as a virtual representer of a resource inside the UBIDEV system; it
defines basic standard access mechanisms to exchange data between the platform and the
resource. The major issue is to make all resources look the same at least from the access view-
point. Through the adapter is possible to define uniform access functions calls for accessing
resources without having to deal with the details of the peculiar resource commands. All
adapters have the same interface; in this way it becomes quite easy to plug in a new adapter,
provided it conforms to the interface. An adapter contains the details of a particular re-
source, so each resource corresponds to a specific adapter. The approach is similar to Unix
where all resources (physical) are mapped in terms of an entity called device (/dev) [Tan97].
This kind of abstraction allows to hide at upper layers the management of the specificity of
each resource as the device driver approach permits a uniform access to different resources
[Tan97]. Adapter defines simple yet complete interfaces:

• open: request to gain access to the resource and open a dedicated channel for com-
munication. As it will be presented in next chapter, reservation is granted by a lock
mechanism.

• close: when a resource go ”out-of-reach” or spontaneously leaves the environment,
the adapter is requested to garbage-collect the representation of the resource as well as
its communication channel.

50

• read: request to read data from the resource. No type is specified for the data since the
interface is meant to be valid for all resources. Typing or casting the data is up to the
requester.

• write: request to write data to the resource. Similarly to read(), write takes raw data to
be sent to the resource. Is up to the adapter to structure the data to suite the format of
the resource it is associated to.

Adapter is the first step towards the definition of an abstraction of the underlying physi-
cal dimension. It is particularly suitable for integrating handheld devices because it embod-
ies the specific resource access information.

Classification

The main problem related to the management of resources is the role that each resource may
have in a given context. This is referred as the semantics and is reflected on all action that
could be taken on a resource, typically description, discovery and access. UBIDEV relies
on the COCA[Sch02] principle that it is the application context that should determine the
meaning of resources. In doing so it relies on the ontology stated by the application and
by classifiers. Classifiers [Sch02] are services that given a resource and an ontology, output
concepts of that ontology. This mechanism replaces the classical scheme where resources
supply their description directly.

Resource

display

graphical

color b/w

textual

Resource

display

graphical

color

textual

voice

concept

instanciated

ontology
Resource

display

textual voice

Classifier Classifier

Figure 2.5: UbiDev Classification Process. An example of classification of physical resources.
Classifiers are seen as the knowledge required to identify the relation between the icons in the symbol
system and the physical elements.

A classifier accesses resources through adapters, associates one or more concepts it knows
with a resource in a given context, and tags the resource as an instance of that concept. Clas-
sifications of resources are stored and used as a cache when an instance of a concept is re-
quested by services. The process of requesting an instance of a concept is called ”addressing
by concept”, because the instance is referred by a concept instead of specific resource iden-
tification, such as memory address, or name. Thanks to the classifier UBIDEV decouples the

51

CHAPTER 2. THE MODEL

high-level concepts (abstractions) from the instances implemented by a context. The con-
cept ”nearest printer” [Kam00] for instance may be used no matter how a context supplies
the corresponding implementation. In such a way a user moving around different environ-
ments will not have to reconfigure her printing application. This means that an application
may express its resource requirements in terms of concepts instead of addressing specific
resources directly (i.e. by an URL).

Figure 2.5 shows an example of classification for the Ubiquitous Message System proto-
type. According to the application ontology, a PDA and a portable phone are classified re-
spectively as instances of concepts ”display”, ”textual”, ”graphical” and ”color” the former
and ”display”, ”textual” and ”voice” the latter. A service that manipulates textual display
will find these resources semantically equivalent; the service may access both of them trans-
parently addressing the concept ”textual”. The related adapters will do the rest resulting for
the PDA to receive the text as a new Memo note and, for the portable phone to receive the
text as a SMS.

UBIDEV protocol

UBIDEV defines an access protocol to allow the access to resources through the ”addressing
by concept”. Services manipulate resources through such a protocol that grants the resource
location transparency. In such a way a service, for example, can access a printer resource
by addressing the ”printer” concept given that the printer has been classified as an instance
of that concept. The UBIDEV protocol provides a dynamic configuration mechanism for
services in a local area network. It is not a global resolution system for Internet resources;
rather it is intended to serve local networks with shared resources. Services are modeled as
clients that need to access resources in a specific dedicated environment.

The structure of the UBIDEV protocol is similar to HTTP thanks to its simple and yet clear
syntax. The protocol scheme-specific information following the ”ubidev://” URL scheme
identifier provides information necessary to access the resource. The form of an ubidev:
URL is as follows:

• ubidev: URL = ”ubidev://” <concept> ”?” <request type> ”:” <param>”

where <concept> and <param> are one of the terms of the application ontology. A
request message from a client to a server includes, within the first line of that message,
the <request type> to be applied to the resource. The <request type> token indicates the
method to be performed on the resource identified by the concept. Allowed methods are:

• SND: requests that the enclosed entity (<param>) be stored under the supplied <concept>.
This method allows creating a transfer stream between two resources. A typical exam-
ple could be ”ubidev://display?SND:message” that results in sending the content of
the resource ”message” to the resource ”display”.

• RCV: means retrieve whatever information (in the form of an entity) is identified by
the <concept>. If the <concept> refers to a data-producing process, it is the produced
data which shall be returned as the entity in the response and not the source text of the
process, unless the text is to be the output of the process.

52

ubidev://display?SND:message%E2%80%9D

This protocol allows two level of indirection for services accessing resources: firstly the
protocol handler maps the concepts in the request to specific resource references and, sec-
ondly, it creates a bind with the corresponding adapters allowing services to transfer data
transparently. The linear correspondence with the adapter interfaces and the consequent
transaction mechanism justify the limited methods implemented in the protocol. In such a
way a service could not even be aware of how the request is exploited on the resource, as
long as it is guaranteed that the resource respect the expected semantics.

That implies a considerable level of abstraction because, for example a service may send
data to a concept like ”display” not being aware of how the display is reached and how the
data is structured. In the Ubiquitous Message System prototype, presented in chapter 4, two
instances of the same service address a ”textual” display concept resulting, for one to send
an email to an email client and, for the other to send an SMS to a portable phone.

UBIDEV Resource Abstraction in Pervasive Computing

UBIDEV proposes a model for resource management based on internal representation and
classification according to the system ontology. Adapters, classification and access protocol
are the basic abstraction for resources configuration, description and access:

• Configuration: every resource corresponds to a dedicated adapter that encapsulate the
resource specific access information. Once the adapter exists and is correctly instanti-
ated the resource has a virtual representer in the system.

• Description: resource description is implicitly embodied in the classifiers while the
resource semantics is expressed by the application ontology. Services make a semantic
selection of resources according to the classification. Each concept of the ontology
represents a set of specific characteristics that resources are granted to supply.

• Access: the UBIDEV protocol as been defined as an instance of ”addressing by con-
cept”. Services access resources by formulating requests in terms of concepts they
know.

2.7 Context

A context-aware middleware allows applications to reason on contextual information gath-
ered from the physical environment. Moreover, a holistic management of pervasive com-
puting systems imposes the possibility to structure the environment according to a specific
model of the context.

The context support in the UBIDEV model as been conceived to address the following
question:

• How to model and represent the physical environment and the related contextual information
in order to allow applications to manipulate and infer semantic-rich knowledge?”

Context represents an active container for resources, services and contextual information.
According to this definition, the environment can be represented in terms of a hierarchical
logical structure similar to a n-tier tree called context-tree. This approach is similar to the
RAUM location model [BZD02]. This structure represents the organizational shape of the

53

CHAPTER 2. THE MODEL

physical environment in terms of logical spaces interconnected with each other; the appli-
cation can model the environment through this abstraction according to its model of the
context. The context-tree is characterized by:

• context-root: represents the main container; is the most generic form of logical space.
All other sub-context inherit from it.

• context-node: is a logical organizational context. It may contain different entities and
it has only one parent. It is used to aggregate resources in groups that share similar
characteristics or roles (i.e. all the resources that a user is manipulating).

• context-leaves: leaves are directly associated to resources. Context-leaves are used to
identify resources and to deduce their role inside the context structure.

• entity ubiquity: each node can dynamically change its parent. This functionality has
been introduces to tackle resource mobility. This principle applies to both nodes and
leaves. An entity (both leaves and nodes) can be tied to several contexts. However,
in our model we take for granted the Pauli principle; that means that an entity can be
active at the most in one context at a time (it can have only one direct parent). Apart
from this environment, is can be at most ”virtually” or ”sensorial” present in the other
environments.

DIUF

2.51 2.52 2.56

PaoloAmineSergio

Figure 2.6: Context-Tree. An example of the context model used in Ubiquitous Message System
prototype.

Example of the use of such organizational structure is the context-tree for the Ubiquitous
Message System (UMS) prototype as depicted in figure 2.6. The whole environment corre-
sponds to the physical space of the Department of Informatics University of Fribourg (DIUF)
and is represented by the context-root. Each office is represented by the context-nodes at the
second level. The third level represents the people inside the building. Finally leaves rep-
resent all the resources that can be manipulated by the UMS application. This structure is
flexible and dynamic so it can monitor user and resource mobility quite efficiently.

The role of the context module is to maintain the representation of the context-tree ac-
cording to the actual configuration of the physical environment. Upper layer modules, typi-
cally the coordination module, can profit of this structure to have a consistent representation
of the environment according to the application model of the context.

The context infrastructure consists of a number of components called context provider
services that sense the information form the physical environment. These include sensors

54

that track location of entities, the condition within an environment (e.g. light, temperature
and position) and other external conditions. The nature of such services is related to the
availability of physical devices in the environment each time given. These services, in fact,
are defined as classical UBIDEV services.

Context in UBIDEV is also considered to be active because, together with representing the
logical structure of the physical environment, each context entity of the context-tree supplies
an access to the contextual information gathered from the portion of the environment it
represents.

As in any other context-aware system, UBIDEV allows to sense the information from the
physical environment and to represent it in a sort of knowledge base at application level. In-
stead of defining and implementing its own model for representing the contextual informa-
tion, UBIDEV defines a set of specifications and the suitable abstraction to allow applications
to manipulate and infer on such information according to a well defined model of the con-
text. In such a way, different context-aware approaches could be implemented as a context
module for UBIDEV without affecting the way the application manipulates the knowledge
created on it. Context knowledge is constructed in three phases:

• Gathering: is the process of acquiring contextual information provided from the phys-
ical environment provided by software and hardware sensors.

• Classification and store: in order to be used by a context-aware application, this con-
text information needs to be structured according to the application conceptual model
of the context. The Classification phase structures this context information according
to the application conceptual model (the ontology). The resulting context knowledge
is then stored and accessed by the coordination module.

• Access: is an interface to the context knowledge as in a classical database system. The
model of the context is expressed in terms of concepts of the application ontology. Ac-
cess guarantee to coordination module the up-to-date values associated to each con-
cept stored.

This is similar to what Chen denoted in [CK00] by sensing the contextual information,
and reasoning about contextual knowledge. For each of these steps UBIDEV defines a com-
putational module that ensures the upper layer module, the coordination, to manipulate
contextual knowledge according to the application conceptual model, the application ontol-
ogy.

Using this approach, the application can retrieve the specific contextual data in a way
that is decoupled from the service used for acquiring the data [MH03].

These phases allow implementing any gathering service and store system as long as the
classification is done according to the application ontology. In such a way the semantic
consistency of the contextual information is granted because the application can infer on
the resulting knowledge base only through the same ”addressing by concept” defined for
resource access.

2.8 Services

In a dynamic environment, resources not only exist, they are created, deleted, and manip-
ulated. In a Service Oriented Architecture [Bie02], service is the highest level of abstraction

55

CHAPTER 2. THE MODEL

defined; it should capture the application functionalities and, at the same time, it should be
expressed in terms of manipulation of the underlying resources. A coordination space based
on service oriented architecture should be defined in terms of composition of homogeneous
entities that interact with each other through simple interfaces. These requirements lead the
definition of a UBIDEV service as an atomic action that transforms an input resource yielding
a new resource as output. Services manipulate resources through the UBIDEV protocol that
allows them to address concepts, that represents the semantic capabilities that the resources
are expected to supply. For this reason a service is constraint by (1) the concept it accepts
as argument (input concept), and (2) the concept produced as a result of the action (output
concept) as depicted in figure 2.7.

Input Resource Transformed Resource

ConceptConcept

Instance of

Concept

match

Instance of

Concept

produced

Input Output

Figure 2.7: UBIDEV Service. Services are described as a transformation from an input resource
yielding an output one. Their description and access method relies on the application ontology.

The main question the service support has been conceived to address is:

• “How to create and control the execution of services according to the actual configuration of the
underlying environment?”

As for web service technology[TBGC01], UBIDEV services need to be described in or-
der to allow the system to inspect and create them. Differently from classical distributed
systems, the service support does not rely on the Client/Broker/Server architecture. The
centralized management of the services allows UBIDEV to have a full control and a com-
plete knowledge of the topology of the service dimension of a pervasive computing system.
Service description is analyzed by the service module in order to identify the service depen-
dencies and to expose the service interface to coordination.

The service module relies on two main abstractions that capture the dynamic nature
of the underlying environment and, at the same time, present services to the upper layer
as homogeneous autonomous entities. Those abstractions are 1) the service dependencies
that the system has to analyze in order to build a suitable execution environment and 2)
the environment itself that embodies the service heterogeneity exporting only its functional
interfaces.

EXecution Environment

We argue that operating systems and middleware for pervasive computing system must
take into account the dependencies between software components as well as the dependen-
cies between software and hardware components. Finding a suitable representation of such

56

dependencies would allow implementing services that can configure themselves and adapt
to every heterogeneity and dynamic environment.

To address the problem from the service management viewpoint, UBIDEV explores the
service dependencies in terms of EXecution Environment (EXE): requirements for loading a
service into a runtime system. As long as UBIDEV knows the requirements for installing
and running each service, it can automate the installation and configuration of new com-
ponents. It can improve application performance by analyzing the dynamic state of system
resources, analyzing the characteristics of each service module and configuring each of them
in the most efficient and suitable way. It can also adapt the configuration policy to the con-
textual information the environment provides, resulting in a fully context-sensitive system.
Requirements usually are expressed as dependencies on both persistent and dynamic re-
sources.

Service’s EXecution Environment (EXE) must specify any special requirement needed to
load, configure and execute the service. It is included in the service description together
with the input and output concepts. Even the EXE is expressed in terms of the application
ontology since the semantics of resources, hence their capabilities, is captured in the classifi-
cation phase. A service manager might use these information to determine where, how and
when to execute the service.

The analysis of the inter-component dependencies, expressed in terms of relation among
services and between services and the context, can help to automate and improve the con-
figuration process. UBIDEV can scan the EXecution Environment to ensure that all concepts
required for the execution of a particular service are met before the service is instantiated.

This can also prevent many problems that are common in existing systems where detec-
tion of the lack of a particular resource happens only after a service is running.

capsule

A UBIDEV service is encapsulated in a specific dedicated environment that fulfills its re-
quirements according to the service’s EXecution Environment. This environment contains
all resource access information the service requires for execution.

A run-time instance of a service inside its environment is represented by a homogeneous
entity called capsule. A capsule is homogeneous in the sense that it hides to coordination all
heterogeneous aspects related to the execution of the service it embodies. A capsule exports to
the upper layer only the service interface in terms of input and output concepts. In this way a
capsule represents a new organizational unit to encapsulate a service computing environment
within the system architecture, just as a process is an organizational unit for the components
of a running application [Tan97].

UBIDEV also enables the reconfiguration of services that are already running. In fact,
when the service EXE is no longer met, it can freeze a service’s state (including its runtime
dependencies) by suspending the execution of the corresponding capsule. Every change that
occurs in the environment leads to a reclassification of the resources; UBIDEV, then, analyzes
the services EXecution Environment in order to verify whether they could be met according
to the actual classification of the environment or not. If so, UBIDEV can resume the service’s
execution by using the frozen runtime dependencies as the new additional EXecution Envi-
ronment for loading the service. Although UBIDEV does not guarantee safe reconfiguration
by itself, it provides a valuable framework for developers to implements safe reconfiguration
easily and uniformly.

57

CHAPTER 2. THE MODEL

One way to obtain a service for the UBIDEV architecture is to wrap an existing applica-
tion. For instance Emacs, Microsoft Word, PalmOS memo-pad and the QTopia text-editor
can each be wrapped to become suppliers of a text editing service. Such wrappers map
abstract service descriptions into application-specific settings.

The main advantage of facing the heterogeneity problem with the capsule abstraction
is at coordination level, where the system is seen as an unified mechanism for dynamic
communication, coordination, and sharing of homogeneous objects (in distributed systems,
JavaSpace [Jav03] is a good representer of such a mechanism).

UBIDEV Service Abstraction in Pervasive Computing

Service management in pervasive computing implies the support for configuration, descrip-
tion, discovery, composition and execution. UBIDEV addresses these issues as follow:

• Configuration: the centralized management of services allows UBIDEV to analyze the
service dependencies before creating it. When a service is instantiated, its execution is
granted by the fulfillment of its EXE.

• Description: service description help the service module to analyze the service’s de-
pendencies and to register the service interface. The interface is expressed in terms of
input and output concepts.

• Discovery: in UBIDEV there is no need of a fully functional look-up service because the
discovery of services is needed only at coordination level when is required to build the
composite service that solve the user query. Each subcontext holds a minimal knowl-
edge about the services instantiated in it. The centralized management of service al-
lows the UBIDEV to have a full knowledge of the service dimension of the system.

• Composition: the service composition is a responsibility of the coordination module.
It analyzes the service interface and, according to its compositional policy it determines
the sequence of the service invocation. The description of service interface in terms of
input and output concepts, ensure that the composition is done according to the same
semantics level.

• Execution: Service execution is monitored by the service module that ensure the con-
sistency of the service’s EXE through capsule freezing and centralized service invoca-
tion.

2.9 Coordination

The need to aggregate or combine small services into larger services is core to service ori-
ented architecture and is the main contribution of the coordination module. In many cases,
a single service will act as a front-end to many small services. There are a variety of methods
for combining services, including:

• Pipe and Filters: Direct the output of one service into the input of another service.
(Topology = point-to-point)

58

• Orchestrations: Utilize a high-level scripting language to control the sequence and
flow of service execution. (Topology = hub & spoke)

In UBIDEV coordination takes place as a context driven composition of existing services.
The coordination module acts as a control unit of the whole system. It centralizes the control
of the underlying environment and, together with the semantic interoperability ensured by
the lower layer modules, presents at application level a homogeneous coordination space.

Coordination has been defined to address the following motivating problem:

• “How to steer the execution of an application in terms of selection and composition of services,
resources and contextual information according to the changing in the environment?”

A coordination model is intended to support the specificity of pervasive computing sys-
tems and to provide at application level a simple yet complete programming environment
that reflects the underlying abstraction model. The role of the coordination is to identify the
functional components in terms of their interfaces, to define the relationships among those
components, and, according to the structure of the context, to establish a set of constrains to
affect the desired properties of the overall system.

Its essential characteristics are:

• Genericity that is obtained through a high level abstraction based on the notion of
entity and rules.

• A capacity to handle the dynamism of the underlying environments and the context
sensitivity of applications, thanks to the explicit notion of environment;

• A homogeneous management of the contextual dynamism of components by the for-
malism of role and rules attached to the notion of environment.

The Coordination module proposes a model of the context structured as an organiza-
tional domain composed by autonomous Entities (coordinable and coordinative), Media and
Laws [Sch01] [ACH98]; the coordination laws ruling the actions of coordinable entities de-
fine the semantics of the coordination mechanism allowed in the coordination model. An
entity is defined by its structure obtained by a recursive composition of entities. The appli-
cation model of the context can be described using this hierarchical organization: an entity
hierarchy represents the structure of the context.

Each entity can be mapped to concrete context space like a building or a room in the
case of the Ubiquitous Message System prototype, or can represent a logical context like
the user space. The building blocks of this structure are atomic entities that are in direct
correspondence with the underlying resources. Entities can interact with each other through
communication endpoints that define a set of actions. In this model a service is described by
an active connection between the input and the output entity.

The main difference from the classical coordination models is that it defines context-
dependent behavioral rules [TCH03]. These rules are applied to the communication end-
points: a set of rules may determine whether two entities have to be interconnected with
each other or not. Rules describe the actions that should be taken in different contexts. A
rule consists of a condition that, when satisfied, leads to a set of actions. Actions are inter-
preted to drive the service composition strategy and hence the application behavior.

Coordination defines a language for compose and analyze rules and contextual informa-
tion in terms of:

59

CHAPTER 2. THE MODEL

• Structure of the environment in terms of context and rules to define the role of each
sub-context (these rules if applied to leaves are interpreted to be role specification for
the resources).

• Interface to access context knowledge and services (through capsule).

• Services that exists as rules belonging to a specific context. The description of these
service rules are expressed in terms of input and output concepts. In such a way Coor-
dination is the process of finding the composition of rules that may satisfy the context
environment and may accomplish the user query.

The Coordination module determines in which context the query should be solved and
applies the solving algorithm taking into account all rules that govern the specific context
(that implies also all the rules that are inherited from the context’s parent). The result is
expressed in terms of composition of rules (services are considered to be part of these rules)
that could transform the input concept into the expected output one. Service invocation
mechanism is then controlled by the service module that ensures that each service is correctly
executed inside its proper execution environment.

2.10 Summary

In this chapter the reference model of UBIDEV has been presented along with its base struc-
ture composed of five building blocks. The holistic management of the pervasive computing
environment results in the possibility UBIDEV gives to describe the behavior of the system as
well as the structure of the application model of the context in a homogeneous coordination
space. To close the circle, the initial question is answered by UBIDEV as:

• “How to define an abstraction of the physical environment that permits to applications from one
hand to be described in terms general enough to be not statically dependent of the specificity of
a particular environment and, on the other hand, to preserve the functional dependencies that
the environment may have on the application configuration and execution.”
Applications describe their dependencies in terms of concepts that are mapped to con-
crete resources in a specific context. The coordination of services hence the whole
application behavior, is determined on the base of the implicit semantics stated by the
classification phase through the application ontology. Ontology allows modeling any
kind of dependency which can be used during deployment to ensure proper configura-
tion. The domain specific approach of UBIDEV together with subcontext construction
ensures that an application only see relevant resources. Because resource and service
selection is based on semantics and not on predefined interfaces, a resource with re-
quired semantics is guaranteed to be found if available.

To conclude UBIDEV is a study model for providing a service framework in heteroge-
neous and dynamic environments like those of pervasive computing. It has been validated
with different prototypes as the UMS that will be presented in chapter 4. Still its architec-
ture is far from being complete and, hence to be used as a referring tool for building robust
and stable pervasive computing system. The accent of this project is on resource and service
management, but the integration of other existing systems that may augment the support for

60

context and coordination as well as for dynamic interfaces, will make UBIDEV a complete
functional middleware for modeling pervasive computing system in a flexible and struc-
tured way.

61

Chapter 3

The Architecture

In this chapter the implementation details of the UBIDEV architecture will be presented.
Starting from the reference model presented in the previous chapter, we have instantiated
the UBIDEV building blocks into a functional architecture that exploits services for managing
pervasive computing system through a coordination-based approach. The architecture has
been implemented as a collection of collaborating modules each of them embedding the
management of one of the building blocks.

3.1 Introduction

In the following sections, the functional architecture will be presented with respect to the
reference model. The implementation of the UBIDEV model into a functional architecture
had become necessary prroving the overall conceptual model not only at design but also at
implementation level was raised.

The architecture introduces 5 modules each of them implementing the functionalities of
the UBIDEV building blocks: resource, context, service, coordination and the application; it
introduces also a functional module that embeds the classification phase of the environment
according to the application ontology.

When trying to give a physical shape to a purely theoretical model like the one of UBIDEV,
we had to make some assumptions to restrain the overall model to the constrains and the
requirements of a functional system.

As an example, the classification process as been implemented with a certain level of
pre-defined knowledge (as given belief); in such a way the system is able to classify ground
elements on the base of such knowledge.

Another assumption is related to the definition of the adapter: adapters have already
some pre-defined knowledge that is used to access the related devices. Such knowledge
is separated from the classifiers and, in a certain way, is used implicitly by the classifiers
themselves. This has been done purely for implementation reasons; to ease the adapter and
classifier modules.

Despite such implementation assumptions, the resulting architecture still demostrates
the fundamental abstractions and approach of the reference model.

63

CHAPTER 3. THE ARCHITECTURE

3.2 Implemented Architecture

Presentation
Application

Homogeneous

Heterogeneous

Physical Entities

Ubiquitous Access

Coordination manager

capsule context interface

adapter

Resource

manager

Service

manager

Context

manager

Context

Database

Classification

Figure 3.1: UBIDEV implemented architecture.

Figure 3.1 shows the actual implementation of UBIDEV based on the reference model
presented in the previous chapter. The model building blocks are reflected in the implemen-
tation in two ways:

• in the programming model because they represent the abstractions that are used to
configure a pervasive computing system;

• in the implementation of the Ubiquitous Access Layer because every implemented
module takes in charge of the management of the corresponding building block ab-
straction: the resource manager, the context manager, the service manager and the coordina-
tion manager. The classification phase separates the physical environment management
level from the system management level.

As a result there is a direct correspondence between the modeling phase of a pervasive
computing system and its implementation. At the technical level UBIDEV leverages Java
technology to implement the on-the-fly discovery, selection, run-time (as opposed to design
time) composition of services and on the execution of such composition; the composition
represents the user tasks. UBIDEV relies on XSB [SSW94], a Prolog engine, to implements
the semantic interoperability level; thus service description and context representation and
the application ontology are expressed in terms of Prolog facts.

The main novelty of this implementation resides in the context-centered resource and
service management and in the way the corresponding modules (resource manager, context
manager and service manager) collaborate to define the abstraction of the underlying environ-
ment at the coordination and the application level. Even if the presence of the Java virtual
machine, as an existing abstraction layer, reduces the level of control that UBIDEV may have
on the execution process of the application, the management of resources and the control of

64

the service instances in a distributed environment makes UBIDEV appear as a Distributed
Operating System for pervasive computing scenarios.

The following subsections present the different module of the architecture and the mech-
anism that governs the inter-module interactions.

Modules

This section presents the role of each of the modules depicted in figure 3.1 with respect to
the abstractions of the reference model.

• The Resource Manager handles the communication with the physical entities through
standardized interfaces (adapters in figure 3.1). It implements the methods for resource
reservation and a loosely coupled lock-and-transaction mechanism for resource access.
It is also responsible of maintaining a consistent representation of the physical environ-
ment for the other modules in terms of resource federation.

• The Context Manager embodies the context-awareness infrastructure. It is organized as
a knowledge base system sensing the contextual information from the physical envi-
ronment and structuring it in context types. The context database stores these context
types in a collection of Prolog facts. When coordination manager solves user tasks, it
requires the evaluation of a subset of such facts through context interfaces. The context
manager is also responsible of maintaining the logical organization of the physical envi-
ronment. Through the same interface, coordination manager can infer information about
the environment in terms of concepts representing the contextual information related
to the physical environment (i.e. the location of a user or a resource with respect of the
logical organization of the environment).

• The Classification module defines the abstraction of the underlying physical environ-
ment according to the application conceptual model. In doing so it states the mapping
of the resources and the contextual information into concepts taken from the applica-
tion ontology expressed as a collection of Prolog facts. In this way the whole system
is described according to a common ontology that reflects the application conceptual
model. Upper modules access resources and contextual information formulating com-
plex Prolog-like questions based on these concepts. That ensures the semantic interop-
erability between resources inside the same pervasive computing system.

• The Service Manager controls the lifecycle of each single service. It ensures to the co-
ordination manager the abstraction of a generic homogeneous running service that can
be invoked through uniform and simple execution interfaces (capsule in figure 3.1).
Capsule works as service access points for the coordination manager. This is one of the
fundamental abstractions that help to separate the application functional level from
the control of the specific environment.

• The Coordination Manager’s main goal is to interpret the user tasks, defined at applica-
tion level, in terms of composition of existing services. It accesses these services only
through the I/O interfaces defined by the capsules. It can also access contextual in-
formation through context interfaces. The composition algorithm is affected by the
analysis of the contextual knowledge provided by the context interface, by the avail-
ability of the services inside a specific context environment and by the analysis of the

65

CHAPTER 3. THE ARCHITECTURE

behavioral rules of each sub-context. In such a way the coordination manager adapts the
service composition policy and hence the application behavior, to the specific contex-
tual configuration.

• The Application layer embodies the GUI modules that represents the system interface.
UBIDEV application framework allows defining the shared ontology, the model of the
context as well as the behavioral rules attached to each context module. The system
lacks of a suitable component that allows the upload of the GUI modules on the re-
quired devices. The responsibility of the distribution of these GUI modules is shared
between adapters and off-line upload. Moreover it turned out to be quite difficult to
clearly draw a border between generic application modules that could be realized as
middleware services and application specific ones. For such reasons the implemen-
tation of the presentation module has been omitted in the architecture. One instance
has been realized for the Ubiquitous Message System prototype as will be described in
next chapter.

As a result, developing a pervasive computing system in UBIDEV means:

• define the common ontology that will be used to ensure the semantic interoperability
level;

• define the base services that will compose the minimal functionalities of the system;

• define the model of the context and

• define the behavioral rules that would be applied to each context module.

In addition the system will have to be completed with:

• the pool of classifiers compatible with the chosen ontology,

• the pool of adapters for the expected resources and

• the GUI modules that will compose the system interface.

Module Interaction

UBIDEV modules are distributed objects and require communication services to support
remote interactions. The current implementation uses a push-based informative bus tech-
nology, an event notification mechanism and RMI-based APIs [SM98]. It is possible to port
UBIDEV to other communication architecture like CORBA [gro02] or SOAP [GHMF01] for a
more uniform interaction mechanism.

• The informative bus paradigm [OPSS93] [LCBB00] models the communication between
the physical environment and the resource manager and context manager. The UBIDEV

informative bus is a collection of Java-based libraries that allows different distributed
entities to publish and retrieve data. It is organized in a form of parallel channels each
of them working as a transport mechanism for different classes of events. Resource
authentication and context sensing services generate context events that are published
on the informative bus; resource manager and context manager are subscribers of such a

66

bus and are notified whenever an event they have subscribed for is fired. This action
allows both resource manager and context manager to react in real-time to the changes in
the environment. The implementation does not take into account all the specification
of an informative bus [OPSS93] because of the simplified scenario of UBIDEV in which
resource manager and context manager are not considered to be mobile entities that may
change during the lifecycle of the system. The main advantage of such technology is
the possibility to decouple the publishers form the subscribers allowing dynamic reg-
istration of new services. For example, whenever a new instance of a context sensing
service is created, it automatically registers to the bus as a publisher. That allows re-
source manager and context manager to subscribe for a class of events and not to well
known event sources. The classes of events that are generated on the bus are statically
defined and every context sensing service must adhere to their specifications. Like
tuple spaces, the information bus helps with coordinating loosely coupled services
[OPSS93]. Unlike tuple spaces, it is based on a publish/subscribe paradigm and does
not retain sent messages in storage. While its design is nominally object-based, data
exchanged through the bus is self describing and separate from service objects, com-
parable to the separation of data in the form of tuples and functionality in the form of
components in UBIDEV.

• The Java event notification mechanism addresses the interaction between the other
modules of the architecture. The core of UBIDEV is centralized in the same address
space. Event notification allows modules to interact with each other asynchronously; it
is also convenient for decoupling information suppliers from information consumers; a
crashing supplier can be automatically replaced without disrupting the system. UBIDEV

does not implement a dedicated event manager as in [RHC+02]; it relies on the Java
event mechanism defining proper event sources, event types and event subscribers. It
supports the following type of notification:

– The resource manager notifies to classifier a resource change event. The resource
manager is responsible of monitoring and maintaining the resource federation.
When it receives a context change event; it analyzes if the change concerns a
resource (for example a new resource enter the environment or an existing one
leaves). Classifier will then classify the new resource producing a classification
table, or it will remove the classification table associated to the resource disap-
peared.

– resource manager notifies to service manager resource change events. Service manager
react checking service descriptions from the service description pool to determine
whether a service can be instantiated on the newly classified resource or not. In
doing so it queries the classifier for the classification table of the new resource.
This request is done through an API in order to ensure that the classification pro-
cess is correctly terminated on the new resource before the service manager request.

– context manager notifies to coordination manager of a context change event every
time context database is updated. Database update happen when context manager
is notified of a context change event. Context manager then extracts the data con-
text information and classifies it through classifiers. Then it updates the context
database and notifies the context change event to coordination manager.

67

CHAPTER 3. THE ARCHITECTURE

3.3 Resource Manager

The principal role of the resource manager is to support the functionalities related to the man-
agement of UBIDEV resources in terms of description, configuration and access. In doing
so it implements the concepts defined in the reference model: adapter, classification and the
access protocol. During the execution of the system, it is also responsible of the reservation
of resources for service instances. Reservation does not imply exclusive allocation. It’s a
soft-allocation scheme used to monitor the resource utilization and to control resource reser-
vation. Whenever a service require an access to a specific resource, resource manager reserves
and locks the resource for the operation requested by the authorized service; locking ensure
that a service has an exclusive access to the resource only during the time required by the
single operation.

The services offered by the resource manager together with the physical entity that exists
in the environment make the concept of a UBIDEV resource. A resource, hence, is the com-
position of a physical entity together with its adapter, the result of the classification process
and the protocol handler as illustrated in figure 3.2. This combination allows realizing the
stimuli interaction process between UBIDEV and the physical entities in the environment.

Resource manager

ubidev://graphical?SNDmessage Resource

display

graphical

color b/w

textual voice

Concepts

Chace
- Resource

- display

- graphical

- color

adapter

Protocol Handler

Figure 3.2: UBIDEV Resource Abstraction. The virtual representation of a physical entity inside
UBIDEV is composed of an adapter containing the specific resource access information, of the result
of the classification process that allow to abstract the resource according to the application ontology
and of the access protocol that grant the consistence of the mapping between concepts and resources.

Adapter

An adapter works as a device driver [Tan01] to allow services, through resource manager,
to access a physical entity. In the implemented architecture, adapters are defined as Java
libraries that are instantiated at runtime whenever the corresponding physical entity is de-
tected into the environment. resource manager through a process of pre-classification, deter-
mines which adapter should be associated to which entity. The role of an adapter is threefold:

68

ubidev://graphical?SNDmessage

• It contains the specific resource access information that allows exchanging data to and
from the entity. The modularity of the implementation ensures that a new adapter
(a more suitable one, for example) can be loaded dynamically without affecting the
execution of the system. In the Ubiquitous Message System prototype, for example,
the portable phone entity is associated with an adapter the uses diuf.sms library [diu]
that allows sending SMS messages. A possible extension of the system may replace
such an adapter with another one supporting MMS capabilities.

• It allows classifiers to access information of the entity and hence to classify it accord-
ing to the application ontology. This is ensured by a simple interface that adapters are
supposed to implement. Different adapters for the same resource may lead to different
classification. For example the portable phone adapter predefined for the Ubiquitous
Message System prototype lead to a classification in terms of display, textual and voice.
The extended adapter allows classifier to inspect the resource for the MMS compati-
bility, leading to another classification of the phone as display, graphical, textual and
voice. This information will be used by service manager to instantiate a service that
allows sending images to the portable phone.

• It defines a uniform API for resource manager to exchange data with the entity. Even
if this level of access is transparent to services (because they access resources only
through the ubidev protocol), a set of generic interfaces has been defined in order to
maintain the system modular and more flexible.

The actual implemented architecture allows to associate to an entity one and only one
adapter each time given. Adapter composition is possible but not implemented. Through
adapter composition it would be possible to define abstraction of more complex resources
(up to an entire system for example). Despite of the powerfulness of this approach, we
believe that it would lead to a less flexible system that would require a different approach in
the management of the dynamism of the resources.

Classification

The classification process has been implemented in a separate module for merging the need
of classifying both the resources belonging to the environment and the contextual informa-
tion related to such resources. Classification module takes in charge the operation of creating
a table of semantic-rich concepts for each resource or contextual information. In doing so it
relies on a pool of COCA classifiers that takes as input an instance of a UBIDEV resource and
produces as output a list of the concepts they know. The result of the classification process
is stored in a cache that other modules will use to both access resources and infer contextual
information. The way modules access this cache of concepts is specified by the COCA inter-
faces [Sch02]. The actual implementation of the COCA model is based on the Java language
resulting in a simplified integration process of the COCA classifiers into UBIDEV.

One way of defining a classifier for a resource is to wrap an existing classification scheme
and embed it into the classifier class; in such a way the most part of resources could be classi-
fied without having to write any particular resource dependent analysis. For example it does
not make much sense to redefine the semantics of the concept ”Wav document” when there
are media players available that can easily decide if a file is in a wav format or something
else. Thus building a classifier for the concept ”Wav document” means simply invoking

69

CHAPTER 3. THE ARCHITECTURE

a media player and looking at its exit code. This leads on the one hand to direct reuse of
semantics and knowledge, encoded and available in computer programs today and on the
other hand it helps constructing new semantic out of the existing pool of programs.

The modularity of the COCA specification allows deploying a pool of different classifiers
that could be re-used in different applications. Similarly to the rest of the system, in fact, the
level of standardization they are supposed to meet is at the ontology level. As an example,
the classifiers used in the Ubiquitous Message System prototype for document classification
(ascii, pdf, ps, bmp, gif,), have been reused for another UBIDEV prototype called Docu-
ment Classifiers [pai]; the adaptation of a classifier from one system to another one is on the
mapping from the ontology of the former to the ontology of the latter. Another example of
sharing ontology is brought by the need on inter-application communication; in both cases
the COCA model proposes three approaches [Sch02]:

• Explicit declaration of concept equivalence: Meta ontology may be used to explicitly
state equivalence of concepts in different ontology. This meta-ontology will require
careful maintenance, likely done by humans.

• Proving concept equivalence: If two concepts in different ontology are defined by the
same classifier they are considered equivalent allowing inference of further properties
through each ontology relations.

• Inferring concept equivalence: Concept equivalence may also be automatically in-
ferred by observing classifiers by so-called meta-classifiers. That is, the automated
version of building meta-ontology. Concepts may be considered equivalent as long as
different classifiers consistently output the same concepts for a set of resources under
observation.

Protocol Handler

In multithreaded and multiprocessing environments, additional care must be taken with
regard to reliability and consistency because two threads accessing the same object concur-
rently, for example, may leave the system in an inconsistent state or cause its failure. In
UBIDEV concurrent access to resources is managed by the resource manager with the help
of the adapter abstraction and a lock-and-transaction policy. Requests to a resource access
is captured inside the syntax of the ubidev protocol defined to allow any client (service) to
request an access to a resource inside its execution environment.

The ubidev protocol handler interprets the requests and converts them into specific re-
source access requests for the resource manager. Resource manager uses, then, a lock system to
guarantee the exclusive access to the resource adapter through the whole time necessary to
elaborate the request.

There is an instance of a protocol handler inside every service execution environment;
the local protocol handler forwards the requests to the resource manager that guarantee the
exclusive access to the resources as depicted in figure 3.3.

According to the specification of the protocol, each client requires resources sequentially;
that implies that they could handle to wait until the current resource access request is exe-
cuted. This approach may not look like an optimal one since it supposes that the order of
the resource access request is always sequential.

70

Protocol Handler

service run-time instance

Resource Manager

ubidev://display#SND:message

EXE
Resource

References

adapter adapter adapter

messagedisplay

capsule

capsule capsule

Figure 3.3: UBIDEV protocol handler. The consistence of the mapping between concepts and
resources reference is evaluated inside the service execution environment by the protocol handler.

In the execution of a UBIDEV service, location transparency is achieved by packaging all
resource access requests into the access protocol. All resource access requests are intercepted
by the dedicated protocol handler that is responsible of maintains the consistency of the re-
quest according to the availability of the resources inside the service’s execution environ-
ment. In this way a service is never aware of its specific location as long as its prerequisites
are met by the underlying environment.

3.4 Service Manager

Service manager controls the execution process of services. According to the Service Man-
agement module, it is responsible of:

• Analyzing the service pre-requirements to determine whether a service is entitled to
be instantiated or not;

• Initialize a generic capsule: an execution environment that will guest the service run-
time modules and the resource references as specified in the service EXE description;

• Together with resource manager instantiate a service inside its dedicated capsule,

• Ensure that the service invocation requests are fulfilled and

• Monitor the service execution process according to the changes that occurs in the con-
text.

The granularity of the distribution of the system is the service; user tasks are translated
and solved invoking multiple services each of them instantiated by the system on a specific
execution environment. That makes the pervasive computing system looks like a parallel
distributed system. If during the execution of the system new resources become available,

71

ubidev://display#SND:message

CHAPTER 3. THE ARCHITECTURE

the resource manager notifies service manager of the reclassification of the environment; ser-
vice manager is designed to utilize these new concepts by possibly reassigning resources to
services.

Figure 3.4 shows a simplified version of a state-transaction diagram describing the con-
trol of the service manager over a service. Service manager may react at two classes of events:

• a resource change event fired by resource manager or context manager and

• an input resource change event fired by coordination manager.

The former happens when something changes in the physical environment (or in its log-
ical representation); for example a resource that leaves the environment or a new resource
that joins. Service manager extracts from the event the information about the modified re-
source and checks whether the associated classification may influence the pool of services or
not. Two scenario are considered here:

• When a resource leaves, for any reason, the environment. That means that all the
services associated to such resource are not entitled anymore to be ready. in such a
case, service manager stops the execution of the service, dumps the associated capsule
state and tries to meet the service pre-requirements from the updated classification
pool.

• When a new resource enter the environment. This produces a new classification pro-
cess; hence the service manager checks the classification pool to find out concepts that
may meet the pre-requirement of one service from the service pool. If so, it instantiate
the service and encapsulate it into a new instance of a capsule.

is Dumped State

Retreive State

Init capsule Ready

Resource change
Event

Classification
match Service

Description

is Running

Dump State

Wait

No
No

No

Yes

Yes

Yes

Figure 3.4: UBIDEV Service diagram.

Service Description and EXE

UBIDEV services are described using an XML-like proprietary description format. Further
extension of the system will include the standardization of service description to WSDL

72

[CCMW01]. That will also simplify the opening UBIDEV to web-services. Service description
includes information about the service name, its interfaces in terms of input and output
concepts and the prerequirements.

Service manager parses the service prerequirements in order to determine whether the cur-
rent service is entitled to be instantiated or not. If so it issues a resource reservation request
to resource manager that replies with the corresponding resource access reference. Resource
access reference together with the service run-time module and an instance of the ubidev
protocol handler are encapsulated into a new capsule. In the development of a UBIDEV

service, developer must ensure the correspondence between the concepts required in the
service description and the effective ubidev protocol invocation format.

Capsule

UBIDEV services are able to act upon stateful resources providing access to, and manipulat-
ing a set of logical stateful resources based on messages sent and received. That means the
a UBIDEV service executes against dynamic state, i.e., state for which the service is respon-
sible between message exchanges with its requester. UBIDEV service is stateless because it
delegates the control of its internal state as well as the state of the associated resources to the
capsule. In this way service migration is made easier because the capsule allows to dump
its complete state, and because the representation of the state does not change from service
to service. However, the consistency of the use of the service state has to be ensured by the
service implementation. Whenever a service prerequirement is no longer met, service man-
ager stops the execution of the corresponding capsule and tries to reconfigure it. UBIDEV

supports completely transparent capsule reconfiguration. After a reconfiguration process, a
service inside a capsule continues to interact with its environment regardless of the changes.
The capsule state is divided in two sub-states: the service state which can be migrated and
the user state that is related to the model of the context and may not be migrated. The ser-
vice state contains the program code and a representation of the service data. The user state
contains user dependent data that are organized according to the model of the context. For
this reason it is not necessary for this state to migrate because the service can access it as a
contextual information provided by its execution environment.

This approach is robust and efficient because the consistence of the mapping between
concepts and resources is always granted by the middleware; so services do not have to take
into account resource specific information that are not classified according to the application
ontology.

Context Sensing Services

The context sensing services lifecycle is controlled by service manager. For sake of uniformity,
they are instantiated into capsule whose interface is NULL; in such a way the coordination
manager won’t take them into account when solving user input queries.

3.5 Context Manager

The context infrastructure is twofold:

73

CHAPTER 3. THE ARCHITECTURE

• Provides the contextual information in a form of knowledge base as in a classical
context-aware system [CK03], [BZD02].

• Represents the logical structure of the physical environment as context-tree.

It has been developed around XSB, a Prolog engine. The contextual model of the envi-
ronment as well as the contextual information is represented as a collection of Prolog facts
that are evaluated at run-time for the coordination manager.

Context-awareness

Figure 3.1 illustrates how context management is implemented in a form of knowledge base
abstraction for the coordination and application modules. The context-aware infrastructure
works as a classical database system providing interfaces (context interface in figure 3.1 for
clients, a query interpreting system that is also responsible of decomposing input queries
into more low-level ones, and a synthetizer engine that assemble the results for the clients.
It is divided in four modules each of them implementing one of the required functionalities
of a knowledge base system:

• context gathering:

– acquire data from context sensing services
– register to context event class on the informative bus
– extract data from notified events
– request to classify data in context types
– send classified results and data to Context Knowledge Base engine

• context classification:

– classification of context information into context types. It relies on the Classifi-
cation module that returns a list of concepts and their relation for the requested
data.

– classification allows decoupling the conceptual structure of the contextual infor-
mation from the sources used to acquire data. The location information, for exam-
ple, could be classified with a more abstract position concept allowing coordination
manager to infer information about the location of a specific resource without hav-
ing to know where and how these data are obtained. This level of abstraction is
very important because it allows describing the behavior of a system in generic
terms. The instantiation of these terms is evaluated only at run-time, when the
physical environment characterizes the whole system.

– context types are specified at ontology level and the classifiers grant the compati-
bility of the data representation with the associated context type.

• context database: the knowledge engine stores the result of the classification as well
as the context data values, in a form of Prolog facts.

• context interface: it handles the interfaces to the knowledge base engine as in a classi-
cal database system. Queries are formulated still using Prolog; XSB takes in charge the
interpretation phase.

74

Context Model

The context-tree is defined at application level as a sequence of Prolog facts. The context
engine interprets these assertions and creates an instance of the context-tree interface for the
coordination manager. Context-tree contains also the behavioral rules applied by the coordi-
nation manager when solving user tasks. Once the instance of the context-tree interface is
created, context manager is responsible of maintaining the consistence of its structure with
respects of the changes in the physical environment. The context change events are inter-
preted and modify the context-tree. Context engine extracts the concepts modification and
builds the new prolog facts; XSB, then, re-evaluates the whole pool of assertions in order to
update the context knowledge. Experience in the Ubiquitous Message System prototype has
shown poor performance in the maintenance of the contextual knowledge base also because
the pool of facts tends to grow when the context-tree has a complex structure.

3.6 Coordination Manager

Coordination manager takes in charge of managing the dependencies in the interaction process
of the application-level user task solving.

Coordination manager manages the dependencies between services and contextual infor-
mation when, at application level, a user task request is defined. These dependencies influ-
ence the service composition that is at the hart of the whole coordination process. To better
describe these dependencies, we need to identify and separates the computation and the
coordination aspects of a generic pervasive computing system.

Coordination manager has been implemented as an active orchestrator of the interactions
(coordination) between services (computation) within a structured context space. Differently
from classical implementations of coordination spaces, no explicit coordination is defined at
development level; coordination manager reacts to the application level requests expressed
in terms of user tasks. Such tasks are characterized by an application service expressed in
terms of resource transformation. The current implementation of the coordination manager
uses a first order logic to represent the terminological knowledge of an application domain
in a structured and formally well-understood way; more precisely it is used to describe
behavioral and contextual rules as well as the application ontology (see an example of system
ontology in figure 3.5). Such rules are expressed as Prolog facts that are evaluated (all or
just a part of them) when solving the user task. First activity of the coordination manager is
to determine, according to the configuration of the context and according to the user task,
which are the rules that have to be evaluated. The result of the evaluation determines the
run-time dependencies and constrains that coordination manager takes into account in the
service composition process.

Thus, the resulting composite service that is in charge to accomplish the user task, is in-
fluenced by: the active part of the context where the request has been generated, the social
rules defined for such context, the availability of resources and services, the social laws re-
lated to the context, services and resources. The core of coordination manager is based on XSB
Prolog engine. Coordination manager can not be directly programmed but only instructed by
a richer set of Prolog facts. By analyzing both contextual and behavioral rules, coordination
manager has a full knowledge of the status of the environment and of its role.

Service interaction is achieved by requesting service invocation to service manager inside

75

CHAPTER 3. THE ARCHITECTURE

@ums:ont {

 // ontology

 ums:display[rdfs:subClassOf -> rdfs:Resource]

 ums:textual[rdfs:subClassOf -> ums:display]

 ums:graphical[rdfs:subClassOf -> ums:display]

 ums:bw[rdfs:subClassOf -> ums:graphical]

 ums:color[rdfs:subClassOf -> ums:graphical]

 ums:voice[rdfs:subClassOf -> ums:display]

 ums:Document[rdfs:subClassOf -> ums:Resource]

 ums:text[rdfs:subClassOf -> ums:Document]

 ums:html[rdfs:subClassOf -> ums:text]

 ums:ascii[rdfs:subClassOf -> ums:text]

 ums:sound[rdfs:subClassOf -> ums:Document]

 ums:wav[rdfs:subClassOf -> ums:sound]

 ums:adpcm[rdfs:subClassOf -> ums:sound]

 ums:image[rdfs:subClassOf -> ums:Document]

 ums:gif[rdfs:subClassOf -> ums:image]

 ums:bmp[rdfs:subClassOf -> ums:image]

 ums:http_net[rdfs:subClassOf -> ums:Resource]

 }

Figure 3.5: System Ontology. An extracted of the OWL ontology used for the Ubiquitous Message
System prototype.

a common context space. In this way coordination manager is not aware of where exactly each
capsule physically is, but it only has knowledge of the relative position inside the context
structure. The resource manager analyzes resource dependencies to determine its position
in the context. Service composition means invoking two services chained on a common
resource (the output resource of the first is the input of the latter). Service sequencing is
specified by behavioral rules.

1. Coordination manager analyses the user task to determine the context dependencies.

2. It evaluates context-rules and context information whose pattern matches user task; in
such a way it can determine the context in which the user task should be solved. User’s
identity and related roles are evaluated in this phase.

3. It then evaluate service/capsule pool interface to find a path from user task’s input
resource to the required output resource among the services that matches the just eval-
uated environment (i.e. an instance of a service could be related to a resource the user
is not entitled to use; this is specified by social rules that limit the role of the resource
within the environment).

4. If a path could be found, then coordination manager, through the service manager, chains
the input resource to the first service of the path; that produces the service invocation
and the consequent resources transformation. Coordination manager re-evaluates the
environment according to the perturbation produced by each service invocation. In
such a way the system can also tackle the run-time modification of the environment
that may occur during service invocation. Coordination manager ensures that the pro-
duced output resources are chained to the next service in the found path.

76

5. Output resource is then produced as either a new resource belonging to the environ-
ment or as a modified existing one.

6. User perceive these actions in terms of perturbations produced to their surrounding
environment (like displaying a message on their personal phone or print the document
to the nearest printer.

The Coordination model allows to define rules for every context that may also restrain
the algorithm of resource and service management (i.e. if a service has to be related to a
user-context only, service manager does not propagate the requests to the upper contexts, but
just freeze the capsule until the service EXE is still available). These rules are specified by
the Context itself; the structure of these rules is outside of the contribution of this project
because is one of the key results of the XCM model [TCH04], still to be integrated into the
UBIDEV middleware. Further details may be found in chapter 5.

3.7 Summary

This chapter has presented an implementation of the UBIDEV reference model. The goal of
the architecture is to reflect all building blocks of the model and maintain their interdepen-
dence and role. Differently from the reference model, some implementation assumptions
have to be made.

The interest of this research project is not on the deployment of a fully functional system
but, instead, on the analysis of resource and service management for pervasive computing
system. The implementation of UBIDEV, hence, has been driven by the need of proofing the
architectural concepts defined in the model. Some aspects like security, scalability and effi-
ciency, were not taken into account as fundamental issues that the system should address.
That does not imply that UBIDEV does not scale on large systems, but its actual implemented
architecture does not emphasize these aspects. Another important aspect related to the im-
plementation phase is that UBIDEV is not intended to be a fully open distributed system; it
focuses on how to model the environment in order to allow applications to configure and to
adapt to the changes that occur in such environment. For this reason aspects related to inter-
platform and inter-environment interoperations are not directly addressed by the model.

The centralized management of resource and services is a mechanism easy to implement
and use. The potential scalability bottleneck introduced by the inherent single point of fail-
ure of such approach will be addresses within future works, where a replica of the core
services will be introduced.

77

Chapter 4

A Validating Example: Ubiquitous
Message System

Ubiquitous messaging is the ability to connect people through anywhere-anytime messaging
via any kind of device and communication media. Access transparency means that users do
not distinguish between different communication platforms. They expect a single messaging
application, along with their messages transferred from cell phones to pagers to PCs. How
do these attributes apply else where in pervasive computing? Consider an application for a
tourist: It will be expected that the traveler will be able to make itinerary adjustments from
a phone, a PDA or a public kiosk in realtime, contacting a live person as required. Location
information will be an assumed part of the transaction (as well as, perhaps, a record of the
day that might indicate a recommendation on where to get a quick meal). The tourist will
even be comforted by the ability to share experiences in detail in realtime, providing blow-
by-blow updates to his or her best friends so he or she can create a shared, emotional accent
for the new adventures.

4.1 Ubiquitous Message System

Ubiquitous Message System (UMS) has been thought for a scenario where members of the
same department want to exchange messages with each other (point to point), with group
of colleagues (multicast) or with everybody (broadcast). Without the presence of a unified
communication media (i.e. telephone) it is not a trivial task to set up and configure different
communication channels because there is virtually no interoperability between messaging
context infrastructure and a coordination model. As a result, individuals must check mes-
sages in several different media using the client specific to each of them. The difficulty
of dealing with several message pipelines is worsened by the absence of information that
would allow a sender to determine the best way to reach his or her intended recipient.

Therefore, there is a need for a unified, multipath system for messaging that enables the
connection from sender to recipient, allowing each of them to use the tools they prefer. In
a pervasive world, a wire-line-based device like a computer or desk phone should be able
to detect and route incoming messages based on the proximity of the person who receive
messages on that device. Just walking away from a wire line device should cause important
messages to be routed to the recipient’s portable phone, pager or PDA.

79

CHAPTER 4. A VALIDATING EXAMPLE: UBIQUITOUS MESSAGE SYSTEM

Ubiquitous Message System is a simplified implementation of commercial unified mes-
saging systems like Lotus UMS for Domino [Lot00] and GeneralMagic Portico [Mag01]. It
has been developed to show the added value of an infrastructure like UBIDEV in terms of
application design.

capsule

adapter

Textual

text

ps gif98

Wav

adpcm

voice

colorhtml

document display

Resource

display

graphical

color b/w

textual voice

document

text sound image

gif98adpcmwavpshtml

http_net

service concept interface

application level

communication

Coordination

Service

Classification

Resource

Application

Figure 4.1: Ubiquitous Message System. A composite service can be realized by the coordination
manager by composing existing services according to the classification of the underlying environment.
Coordination manager solves user tasks by finding the path from the input resource generating the
output resource. This path represents a service invocation chain. Service manager takes in charge the
service execution process.

Ubiquitous Message System has been configured to run into the DIUF department. It
provides functionalities to exchange messages between different interface devices relaying
on different media. The application context is organized as a hierarchy of sub-contexts mod-
eling the physical space and the users. The model of the context used describes one training
room (2.56) and two user labs (2.51 and 2.52) inside the DIUF department, as well as three
potential users. An extract of the DAML description is depicted in figure 4.2. A portable
phone, a mailer, a PDA or the terminal where the user just logged in represents an exam-
ple of a user context. UMS allows users to exchange messages through a virtual service
called document to display without concerning them about how this service is realized in ev-
ery user context. Figure 4.1 shows an example of the realization of the abstract service doc-
ument to display made by coordination manager according to the application ontology and to
the availability of resources and services (chained together in a service graph).

Resource management in this prototype means to keep a consistent view of the physi-
cal dimension and to control the resource association, allocation and lock for the running
services. In the current implementation, “plug” and “unplug” a resource is done manually:
there is a dedicated interface to modify the federation. Dynamic control of the resource fed-

80

@ums:ont {
 // ontology
 ums:diuf[rdfs:subClassOf -> rdfs:Context]

 ums:2.51[rdfs:Property]
 ums:2.51[rdfs:subClassOf -> ums:diuf]
 ums:2.51[rdfs:Container]
 ums:2.51[rdfs:li]
 ums:sergio
 ums:2.51[/rdfs:li]
 ums:2.51[/rdfs:Container]
 ums:2.51[/rdfs:Property]

 ums:2.52[rdfs:Property]
 ums:2.52[rdfs:subClassOf -> ums:diuf]
 ums:2.52[rdfs:Container]
 ums:2.52[rdfs:li]
 ums:amine
 ums:2.52[/rdfs:li]
 ums:2.52[/rdfs:Container]
 ums:2.52[/rdfs:Property]

ums:2.56[rdfs:Property]
 ums:2.56[rdfs:subClassOf -> ums:diuf]
 ums:2.56[rdfs:Container]
 ums:2.56[rdfs:li]
 ums:paolo
 ums:2.56[/rdfs:li]
 ums:2.56[/rdfs:Container]
 ums:2.56[/rdfs:Property]

 ums:sergio[rdfs:subClassOf->Resource]
 ums:sergio[rdfs:Property]
 ums:sergio[rdfs:List]
 ums:sergio[rdfs:li]
 ums:palm[rdfs:Property]
 ums:palm[id="af7438"]
 ums:palm[/rdfs:Property]
 ums:sergio[/rdfs:li]
 ums:sergio[/rdfs:List]
 ums:sergio[/rdfs:Property]
 }

Figure 4.2: Context-Tree An example of the context model used in Ubiquitous Message System
prototype.

eration is activated as soon as one or more context services are instantiated (like when a
IrDA port is plugged); the resource manager automatically registers to every new context ser-
vice; actually three context services are implemented: IrDA sensing, 802.11 wireless device
sensing and web client sensing.

Service manager reacts to every resource change event fired by the resource manager match-
ing the service description pool with the actual configuration of the resources. It verifies that
all running services are consistent with their resource requirements and checks if a new ser-
vice could be instantiated.

The modifications that occur at resource and service level are reflected also at the coordi-
nation level, where the coordination manager solves user tasks adapting on the fly the service
composition and invocation according to the actual service availability. The context rules de-
fined to steer the service composition policy are re-evaluated at run-time for every user task.
In the first version of the prototype the only context rules defined were those to allow the
coordination manager to combine services by their matching interfaces. That lead the coordina-
tion manager to solve the user tasks with a ”Shortest-Path-First”[Wir85] service composition
algorithm. A peculiar property of the user resource is the preferred language that is used
by coordination manager to determine, for example, which version of the text to speech service
invoke when trying t reach a voice, display. thanks to the relatively easy integration of web
services, has been possible to instantiate different versions of the text to speech service with
multi-language text translation support.

Developing Ubiquitous Message System

The actual implementation of theUbiquitous Message System allows the use of PalmOS-
based PDA, Zaurus PDA, speakers, any kind of personal phones, fixed phones, fax ma-
chines, X terminals or mail clients.

Coding UMS in UBIDEV requires to:

• Define the application ontology that reflects the application cognitive model (figure
4.4).

81

CHAPTER 4. A VALIDATING EXAMPLE: UBIQUITOUS MESSAGE SYSTEM

wav_to_adpcm

document
display

UbiDev

Coordination space

capsule

instance of a

service

Application level

communication

Ontology driven

compositionadpcm_to_voice

ascii_to_wav

Figure 4.3: Ubiquitous Message System. The application can compose capsules in a more struc-
tured entity, a composite high level service (document to display).

• Code ontology using DAML-OIL (an extract is shown in figure3.5).

• Code the COCA classifiers that allow UBIDEV to tag resources with concepts of the on-
tology. Classifiers embed the knowledge required to tag a specific resource with one
or more concepts of the ontology. the classification is based on both the analysis of
the specific resource (i.e. extract all the information from a generic HTTP request that a
web client sends when trying to contact the web-client sensing service) and the reuse of
existing tools (i.e. all MIME types are ”freely” classified by the MIMEType java class).
The classifiers are strongly dependent on the application ontology since they supply
the icons upon which the symbol system will be constructed [Har90]. For example a
portable phone will be classified as instance of voice, b/w, display and Resource.

• Code the services and their description. Services will be automatically instantiated
according to the actual configuration of the resources federation. The sound to voice
service, for example, requires a voice, display; so when the classifier tags a resource as
instance of voice and display concepts, the service manager will create a capsule con-
taining the instantiated service and its EXE represented by the access reference of the
tagged resource. The binding between a service and a resource is transparent to the
service because of the uniform access granted by the adapter and the access protocol.
That means a service like ascii to textual that requires a textual display can be equally
instantiated on a PDA, on a portable phone or on an X term.

• Code the context rules. These rules are expressed in Prolog predicates. Presently we
have defined simple rules to verify weather a resource can be used by a user; thus the
coordination manager has only to verify whether a service is entitled to access a resource
on behalf of a specific user.

• Code the interfaces that will produce the input queries. The only query generated by
the actual implementation of UMS is document to display. The coordination manager will
solve this query inside each user context by composing available instances of services;
that means, for example, it can compose ascii to wav, wav to adpcm and adpcm to voice
services in order to reach a user context composed of her personal phone (figure4.3).

82

Resource

display

graphical

color b/w

textual voice

document

text sound image

gif98adpcmwavasciihtml

http_net

Figure 4.4: Ubiquitous Message System. the ontology used in the prototype. “is a” relation is
used to relate concepts.

Other important aspects related to the deployment of a Ubiquitous Message System like
complex context adaptation and user interface, have been taken into account in the design
phase but not yet in the implementation.

Configuration of the Environment

Ubiquitous Message System implements a bootstrap sequence that interprets a configuration
file and starts the kernel services accordingly. The configuration file contains basic informa-
tion about the UBIDEV core, such as the location of the services description, the name of the
interface of the services, the location of the description of the ontology, of the model of the
context and of the interfaces for the coordination module. UBIDEV makes the assumption
that a pervasive computing system has a starting state that has been already configured.
Currently, the administrator has to manually provide information about the initial state of
the system. This approach has been followed only in the prototype for seek of simplicity;
while it drastically reduce the flexibility and the autonomy of the system, it allows UBIDEV

to skip the 0-level phase, where the system is unaware of it surrounding environment.

Starting the Ubiquitous Message System

We configure this application so it automatically starts the monitor interface with the pre-
defined list of the devices contained in the environment. During the boot process, UBIDEV

interprets the model of the context specification, then it evaluates the ontology and, finally, it
generates the first resource change event. This boot-strap event let UBIDEV begin its working
loop starting from the classification of the existing resources. The current implementation
allows to manually specifying new resources included into the environment.

A user entering the room with his PDA, points the PDA towards the IrDA port and gets
authenticated. New instances of UBIDEV services are instantiated using the newly classified
resource as execution environment (specifically ascii to graphical and gif98 to color services).
When the user wants to send a text to another user, he just types the text on the PDA through
a very simple interface specifying the text and the user name. Through the IrDA port, the
text is transferred to the text to wav and to the wav to adpcm services reaching the fixed phone
near the destination user who receive a phone call spelling the text typed.

83

CHAPTER 4. A VALIDATING EXAMPLE: UBIQUITOUS MESSAGE SYSTEM

4.2 Summary

We have introduced the design and the first implementation stage of a unified user-to-user
communication system based on the functionalities offered by the UBIDEV middleware layer
for messaging. This work illustrates the feasibility of developing of such a middleware layer
to allow autonomous and adaptative integration of existing messaging services. The encap-
sulation mechanism of a UBIDEV service simplifies the integration of external web services;
that makes quite easy to extend the system with a richer set of services as for the case of
the text to speech service. The analysis of the model of the context as well as the evaluation
of contextual rules that steer the service composition policy, allow UMS to be classified as a
context-aware messaging system.

Compared to a messaging service offered by a collection of existing messaging systems
and connecting gateways, our approach does not suffer from common denominator restric-
tions and frees the users from having to deal with differences between the individual under-
lying messaging systems.

84

Part III

Discussions

85

Chapter 5

Connected Projects at PAI group

This chapter presents other research projects that have been developed within the PAI group1

and have a strong connection with the UBIDEV project. Some of them like the COCA model
and Focale have strongly influenced the reference model; others like XCM and CB-SeC have
been taken into account at integration level. The UBIDEV architecture has been implemented
to allow the integration of these projects, in particular the context infrastructure and the
structured coordination model, to form a fully functional infrastructure for pervasive com-
puting environments.

5.1 WELCOME

The WELCOME2 project [wel04] aims at constituting a conceptual and methodological know-
how related to the design of Intelligent Networks with an immersive interaction strategy.
The considered networks include Internet information and communication services on the
one hand, and the various range of devices gathered under the umbrella of the pervasive
computing domain on the other hand. The project has been structured around two poles: (1)
Network Infrastructure, where the PAI group tackles with different levels of software and
artificial entity management, and (2) Immersion where the group addresses the opening of
networks onto users and their physical environment.

Orthogonally with these two thematic poles, WELCOME revealed to be organized along
a second axis characterizing the system dynamicity, which is of course associated with an in-
creasing problem complexity. The origin of that axis corresponds to Interconnection, that is,
the component assembling operation producing functional initialization, while beyond that
origin begins the area of adaptation, that is, the process allowing interconnected components
to redefine dynamically their functionality regarding individual or collective objectives. Two
kinds of adaptation processes may be distinguished: those purely adaptive, acting only at
the functional level (functional adaptation), and the evolution processes, allowing a struc-
tural renewal of a system through new component generation and assembling (structural
adaptation).

1www.diuf.unifr.ch/pai
2Originally, an acronym from We Enable Large-scale Computing, Operating, Mining and Exchange. SNF

grants 2000.53930.98 and 2000-057279.99.

87

CHAPTER 5. CONNECTED PROJECTS AT PAI GROUP

During the different phases of the WELCOME project, a number of subprojects were
developed to meet the requirements of the two individual thematic poles, while UBIDEV

takes place between the two poles.

5.2 COCA

The COCA model faces the software configuration issue in a heterogeneous and dynamic
environment, by transforming heterogeneous resources through a process called classifica-
tion into a semantic enriched conceptual representation. This enables high-level manipula-
tion and configuration by pervasive computing applications. The COCA model introduces
seven elements helping in the design and implementation of systems for heterogeneous and
dynamic environments. These elements are:

• Resources as the root abstraction of COCA and the atomic unit that can be handled.

• Contexts are the containers resources live in. They define resource access and naming.

• Classifiers are an approach to face the symbol grounding problem and provide the
basic level of semantic abstraction by associating concepts with resources.

• Concepts are the semantic abstractions grounded by classifiers and used to construct
ontologies.

• Ontologies consist of interrelated concepts and provide higher level semantics together
with an inference mechanism.

• Relations are used to represent higher level semantics in ontologies.

• Actions capture the dynamic aspects of the model by transforming resources from one
concept to another.

Applying COCA allows automatic configuration of software items and addressing by
concept, which in turn enables the construction of fault tolerant systems. COCA not only
helps in system design, it also accommodates important programming paradigms such as
object oriented, functional, and logic programming. Autonomous agent systems and the
entity relationship model have also a mapping to COCA resulting in a wide coverage of
important concepts currently found in computer science.

The key to the implementation of such systems is the ability for multiple versions of
services to interact in a meaningful manner. Therefore a software configuration technique
has to be found to provide this interaction. Because of the changing nature of the application
domain, services must be found on other criteria than names. COCA optimizes the selection
of resources for a user request depending on user preferences, cost and other parameters.

COCA resides in the core of UBIDEV as they have been conceived in parallel and in
synergy [SMTH00]. COCA provides the mechanism for classification and addressing by
concept that represents one of the steps UBIDEV takes in abstracting the underlying physical
environment for the coordination module.

88

5.3 XCM/UCM

XCM is a generic coordination model intended aimed to supply abstractions and mecha-
nisms for the effective support of communication, synchronization, and cooperation of dis-
tributed applications [TCH05].

As a coordination model, XCM comes within [ACH98]’s approach, and the vision of co-
ordination proposed by [MC94], while prolonging an experience of coordination platform
development previously carried on [Sch01]. Within this approach, XCM adds on a theoret-
ical component inspired by autopoiesis i.e. the modeling of living systems elaborated in
[VM80]. The interest of this heritage is double: 1) it allows profiting from the specificity of
the physical space for modeling mechanisms like the construction and the maintenance of
organism frontiers; 2) it introduces a fundamental distinction between organization (domain
of control expression) and structure (domain of entity existence).

The model is organized in terms of entities, environment, ports and social laws. Entities
represent an organizational abstraction of the coordinable elements. Every entity, except
the universe, exists as a component of another entity called its environment. Environment
defines the structure and the dynamism of the entities it contains. The social laws associated
to each environment determine the interactions between entities embodied; they rule out
the assembling and disassembling of an entity with the other components. Finally a port is
a special type of entity dedicated to communication between entities. The coupling between
an entity and a port is obtained through a special type of composition called interface, which
is specified by the social laws that exists in the environment that embodies them.

UCM (Ubiquitous Coordination Model), as instantiation of XCM is a coordination model
for pervasive computing environments. It instantiate the generic components of the XCM
into a functional system related to the coordination module of UBIDEV:

• Entity / agent: the generic concepts in XCM naturally correspond to the basic notion
of capsule provided as interface by the service layer in UBIDEV. Capsules are mapped
to XCM atomic entities.

• Environment: it is an execution environment, like the atomic entity’s one correspond-
ing to capsules, or the user context.

• Port: it is a capsule input/output port in UBIDEV. It captures the service interface.

• Social laws: they are matching rules specifying how to combine capsules in UBIDEV,
in order to form higher level structures through service composition.

For the Ubiquitous Message System example considered in chapter 4, this would then
give us three UCM entities: ascii to wav, wav to voice, voice to phone, with the ports: ascii in,
wav in and out wav, voice in and out voice, and out phone. The environment of these en-
tities is the user’s context, and its social rules specify that entity composition is obtained
through coupling of same type in and out ports. An example is given in figure 5.1, were
the broadcast functionality is obtained at coordination level by bridging the communication
ports of different entities. It’s up to coordination manager to apply the policy for connecting
the ports as specified by the UCM specification language.

89

CHAPTER 5. CONNECTED PROJECTS AT PAI GROUP

User User

Display Display

DocumentDocument

Figure 5.1: UMS. Broadcast service as model in UCM.

5.4 CB-SeC

CB-SeC (Context-Based Service Composition) is a generic context-based service discovery
and composition framework. The approach adopted in this framework is the deployment
of intelligent agents, which collectively gather the users context, in order to provide better
user- tailored composite services. Agents have the advantage of being able to assist users,
to discover and compose services. Agents are also mobile and are able to deploy functions
on the fly. This helps with fast and autonomous adaptation to context changes. The con-
text awareness considers the user context, the computing context, the time context, and the
context history. The main characteristics of the CB-SeC framework are flexibility and adapt-
ability. Flexibility is provided by the layered architecture, allowing tasks and functionalities
to be distributed on the different layers of the model. Each layer has certain functions to
fulfill, and keeps the processing details in its own layer. Other layers receive only the results
they need. Adaptability is achieved by the context awareness mechanism embedded in the
system.

The context parameters considered represent only a slice of all possible elements that
make up a full definition of context, but nonetheless potentially useful for CB-SeC service
discovery and composition framework.

1. User context: role, identity, location, preferences, social situation, permission profile,
etc.

2. Computing context: network connectivity and nearby resources (printers, displays,
and workstations), etc.

3. Time: time of a day, week, month, etc.

4. Context history: more importantly, when the user, computing, and physical contexts
are recorded across a time span, we obtain a context history, which is also useful when
discovering and composing service.

The CB-SeC underlines, more than UBIDEV, the relevance of the integration of contex-
tual information in the service discovery, selection and composition processes. UBIDEV relay

90

Cache

Engine

caching

lookup

lookup

Service

Composition

Modules

Service

Execution

Modules

Service Lookup Module

Context

database

Context

Gathering

Engine

End-user Application

Middleware Service

Context Layer

Figure 5.2: CB-SeC. Three layer architecture.

on the CB-SeC approach in structuring the context-aware infrastructure; the contextual in-
formation gathering and store phases are similar to those defined in the UBIDEV reference
model since they have been conceived to interoperate with each other.

5.5 Focale

The FOCALE project aims providing interfacing schemes and concepts supporting a full-
dynamical interaction mechanism with a priori unknown applications running onto the net-
work [PC99].

The idea consists in externalizing the application interface, into a pluggable and ad-
justable device called virtual instrument (VI), inspired by the physical instrument metaphor.

At one side, it captures and emits information fluxes from and towards the application.
At the other side, it is typically connected with input/output devices, which are directly
accessible to the user, like graphical displays, audio devices, or any kind of sensor- motor
device coupled to the user’s body.

The user customizes a virtual instrument in order to choose which objects he wants to
interact with, what part of these objects he wants to observe or change, when the intercon-
nection must be effective, etc.

The model works under minimal assumptions about the application except an object-
oriented design, and the delivering of a declarative interface. Virtual instruments implemen-
tation uses a mirroring technique in order to generate minimal disturbance on the applica-
tion behavior. The model has been confronted to several applications, like object following
in an intelligent building, or remote cooperation, and validated through several implemen-
tations, namely related to the artificial biology application field.

The computing approach, which is based on the paradigms of autonomous agent and
situated intelligence, marks a deep renewal in the way of considering interaction. This ap-
proach shifts Human Computer Interaction (HCI) from the client-server paradigm to the
ecosystemic partnership paradigm [PC00].

91

CHAPTER 5. CONNECTED PROJECTS AT PAI GROUP

R
u
n
n
in
g

A
p
p
li
c
a
ti
o
n Port Server

Dedicated Port

Conceptual

Interface

Instrument

Generator

Virtual

Instrument

declaration

request

Instrument Specification

c
o
n
c
e

p
tu

a
l
In

te
rf

a
c
e

In
te

ra
c
ti
o

n
In

s
tr

u
m

e
n

ta
ti
o

n
In

te
rc

o
n

n
e

c
ti
o

n

Signal

U
s
e
r

Creation

Interconnection Server

Conceptual Interfaces

Figure 5.3: Focale defines three functional levels: (1) interconnection, where the interconnection
server is used, (2) instrumentation, aiming at the user interface building and adaptation, and (3)
interaction, where the final exchanges between user and application actually take place.

Indeed, in order to interact with an evolutive computing system, new sort of interaction
tools allowing observing and to control this system, but also to discover and to explore it,
are necessary.

This project is situated at the application level of UBIDEV. Focale could work as the
interface module for any UBIDEV application; the VI would contain the modules that allow
a user to manipulate the application by generating the input stimuli that would perturbate
the system state inducing a reaction. The result of such a reaction could be sent over the VI
or could perturbate another resource in the environment.

The interaction dedicated components of the application are respectively the declarative
interface (conceptual interface), and two kinds of operational interfaces: the port server, in
charge of the meta-interaction with the interconnection server and the instrument generator,
and the dedicated ports, modeling the information flux handling with the user-dedicated
virtual instruments.

92

Chapter 6

Related Works

This chapter analyses approaches of existing middlewares both academic and commercial
that have been used in different pervasive computing projects. The presented middlewares
have been selected because of their peculiar approach in facing heterogeneity at different
level of the pervasive computing system. they will be described and compared with UBIDEV.
Middlewares that sustain service-oriented approach, typically, aim to facilitate the rapid cre-
ation and deployment of services, while also offering dynamic service discovery, including
the ability for clients to learn the capabilities of services. Some platforms also address issues
of scalability and adaptation. Another approach of pervasive computing middlewares is the
decoupling of users from devices and viewing applications as entities that perform tasks on
behalf of users.

6.1 Gaia

Gaia OS [RHC+02] is a meta-operating system that aims at supporting the development and
execution of portable applications for active spaces. Gaia is a distributed middleware infras-
tructure that coordinates software entities and heterogeneous networked devices contained
in a physical space. Gaia exports services to query and utilize existing resources, to access
and use current context, and provides a framework to develop user-centric, resource-aware,
multi-device, context-sensitive, and mobile applications. The system is built as a distributed
object system. The Gaia Kernel, the Gaia Application Framework, and the Applications Ac-
tive Space form the building blocks of the whole architecture. An Event Manager is a mecha-
nism to expose changes of the environment through a publish subscriber model. The context
infrastructure consists of a number of components, called context providers that provide in-
formation about the current context. Gaia implements a bootstrap protocol that interprets a
configuration file (Lua script) and starts the kernel services. The configuration file contains
information about the Gaia Kernel services, such as the name of the service, the name of the
interface of the service, the Gaia node or nodes that will host the service, the service instan-
tiation policy (i.e., instantiate the service in all Gaia nodes or only in the first available Gaia
node), and start parameters.

This approach works fine when the topology of the active space is well known a priori.
Fixed categorization of resources implies that the relation between hardware and software
level is, in a sort of way, pre-defined. That makes reuse of existing resources as well as the

93

CHAPTER 6. RELATED WORKS

introduction of new ones a difficult task.

Gaia makes use of ontology at different levels [MRMC03], as for the classification of the
context and the semantic service discovery. UBIDEV shares the same philosophy in the use of
ontology to augment the action and reaction of a Ubiquitous Computing system. Differently
from Gaia, UBIDEV relies on the assumption that it is the application that determines how a
specific environment should be configured and managed in terms of resources, services and
context.

6.2 Aura

The Aura project [SG02] is about distraction-free pervasive computing. It supports mobile
users inside a computing environment by maximizing the use of available resources inside
the environment and by minimizing the user distraction and focus on user attention. Its
goal is to provide each user with an invisible halo of computing and information services
that persists regardless the location. It defines the notion of personal aura which can be
considered as a service proxy for the mobile user it represents.

Aura proposes a programming model for task-based computing [WG00]. In this model,
tasks are viewed as compositions of services. Both tasks and services have explicit repre-
sentations. Services are described by virtual service types, which define functional, state
and configuration interfaces and dependencies upon other services. Virtual service types
can be related through inheritance, and can also be composed to form new virtual services.
Tasks are toplevel compositions of services that are specified as flows that decompose tasks
into steps of subtasks or primitives (actions carried out by services). Tasks are instantiated
by a protocol that is responsible for gathering information about available services, select-
ing suitable services to carry out tasks and binding them together, and, finally, performing
configuration and initialization of services. A coordination protocol manages the plugging
and unplugging of services in response to resource changes. Tasks are also managed by a
third protocol responsible for task migration, obtaining consistent snapshots of task state,
and managing replication and consistency.

Aura shares lot of similarities with the UBIDEV project; both of them, in fact, take a
holistic approach in the model of the environment. The definition of abstract services and
the idea of mapping them into concrete instances are similar to the service classification
model in UBIDEV. Also the Task Manager, as the coordination manager in UBIDEV, acts as
a control unit for resources, services and context. Differently from UBIDEV, abstract services
are mapped into concrete instances by analyzing service description. In Aura the whole
process relies on the assumption that suppliers of a given service type share a vocabulary of
tags and the corresponding interpretation.

Aura however lacks in defining at Prism level a proper model of the context. In UBIDEV

the coordination manager has a complete and consistent model of the environment in terms
of resources, services, context and their dependences. This approach allows a more easy
writing of context dependent rules that may drive the application behavior.

94

6.3 Jini and JavaSpace

Jini [Jin03] is a distributed system based on Java. It offers a service model based on three
components: an infrastructure for federating services in a distributed environment, a pro-
gramming model for distributed services, and a set of system services, including a lookup
service used by clients to locate required services and to dynamically access them through
the use of Java RMI stubs.

However, Jini does not address the management of component-based applications and
inter-component dependence. It only provides static look-up (exact matching) of services
and does not consider the run-time resource constraints for small clients. Also, the large
memory requirements imposed by Jini makes it not viable for most mobile devices. In ad-
dition, Jini announces service using UDP multicast by default, which may be suitable only
in LAN-based application, but may not be applicable for large-scale deployment such as the
Internet.

In the Jini architecture, service functionalities and capabilities are described in terms of
Java object interface types. Service capability matching is processed in the object-level and
syntax-level only. For instance, the generic Jini Lookup and other discovery protocols allow
a service client to find a printing service that supports color printing, but the protocols are
not powerful enough to find a geographically closest printing service that has the shortest
print queue. The protocols do exact semantic matching while finding a service. Thus they
lack the power to give a ”close match” even if it was available.

Jini is independent of the platform and operating system to run on. Most important, Jini
uses Java Remote Method Invocation (Java RMI) protocols to move program code around
the network. This introduces the possibility to move device drivers to client applications,
which is its main advantage over the nonJava based service discovery concepts. On the other
hand, the fact that Jini is tightly tied to the programming language Java makes it dependent
on the programming environment. It also requires its devices to run a JVM, which consumes
memory and processing power. This can be a hard requirement for large device drivers and
might not be fulfilled in embedded systems. Due to the dynamic nature of ad hoc networks,
Jini employs the concept of leasing. Each time a device joins the network and its services
become available on the network, it registers itself only for a certain period of time, called a
lease. This is especially useful for very dynamic ad hoc network scenarios.

An important part of the Jini system is formed by a coordination model for genera-
tive communication called JavaSpace. A JavaSpace is a Linda-like coordination system that
stores tuples representing a typed set of references to Java objects. Multiple JavaSpaces may
coexist in a single Jini system. Jini does provide a specialized look-up service that allows
clients to look up registered services using an attribute-based search facility. Each service
has an associated service identifier, which is a globally unique 128-bit value generated by
the lookup service. A service uses this identifier to register a service item at the lookup ser-
vice. A client can provide a template tuple when looking for specific tuple instances. The
lookup service will select only those tuples that match the template.

Jini implicitly forces the use of ad-hoc ontology by ensuring that client queries contain
interfaces. The lack of a well-defined ontology for service descriptions could result in false
matching. These protocols do not solve the problem of making service discovery more flex-
ible and powerful

In the existing Jini architecture, ontologies are captured in the level of Java object interface

95

CHAPTER 6. RELATED WORKS

types. UBIDEV has not been conceived to be an Open Distributed System as Jini so it does
not really address service description and discovery from a fully open scenario. For this
reason, using an ad-hoc representation of the environment through application ontology
is not considered to be a limitation of the system. Moreover UBIDEV allows addressing
resources and context making complex semantic queries that allows the application to be
described in terms of its functional aspects instead of its possible interactions.

The scenario addressed by Jini technology [Wal99], spontaneous networking and service
delivery, is very close to a pervasive computing system where services should be realized
and adapted on the fly. Since Jini is entirely Java based, the environment is homogeneous
as a precondition and only a few additional abstractions are necessary. As a result, Jini has
a very flat structure mainly consisting of services and some support libraries providing re-
mote method invocation (RMI), security, leasing, transactions and distributed events. Jini
does not distinguish between physical devices and services implemented as software only.
Nevertheless, the term “Jini-enabled device” comes close to a virtual representer running
one service. Service discovery and lookup takes place through a set of protocols in conjunc-
tion with a lookup service. Jini automatically discovers services as they appear on the net
and registers them with the lookup service. Unlike classifiers that provide a semantic based
lookup through addressing by concept, Jini limits lookup to Java interfaces and attributes
provided by the service. Service composition lies entirely in the hands of the application
or is done interactively by the user. The Rio [Mic01] architecture provides a higher level
programming model based on Jini for application development with a focus on quality of
service, dynamic deployment and fault tolerance.

6.4 Semantic Service Discovery

Semantic Service Discovery project [AJF02] follows within the research activities of the UMBC
eBiquity Research Group on the second generation Semantic Web. SSD enhances the Blue-
tooth SDP matching mechanism to use semantic information associated with services in the
process of service look-up and selection. This includes priorities, expected values of service
attributes, and some index of a match’s closeness. To support this matching mechanism and
allow more efficient service discovery, SSD introduces a service ontology described in a se-
mantic language and a Prolog-based reasoning engine that uses the ontology. Traditionally,
the assumption is that sophisticated matching mechanisms impose heavy computational
and memory burdens that only server class systems can handle.

Describing services ontologically is superior to UUID-based descriptions because it pro-
vides a structure for reasoning about and deriving knowledge from the given descriptions.
Ontology also describes relationships between different entities in the system more clearly.
Further, the ontology can facilitate inexact matching by specifying rules and constraints on
attributes –for example, by imposing a priority on each option. SSD uses the semantically
rich DAML+OIL Darpa Agent Markup Language and Ontology Inference Layer –to describe
the ontology. Using DAML+OIL as a description language offers two main advantages.
First, it’s easier to use the syntax and rules of an existing language than to create a new one.
Second, because DAML+OIL is becoming a standard for use in the semantic Web, services
developed for the Internet using this language can easily be installed on Bluetooth-enabled
devices and disseminated in Bluetooth networks.

The key to correct functioning of SSD reasoning engine is a knowledge base with suffi-

96

cient and complete information about service instances. Large amounts of factual data must
be loaded into the knowledge base before the program can use them. XSB, then, extracts the
relationships that DAML describes and uses them to arrive at a solution to a given service
discovery query. The engine first performs pattern matching to determine whether it can
answer the query directly. Upon failure, it evaluates other possible solutions, which match
the requested query attribute values within an error range based on the specified closeness
index. SSD is a project that aims to face the semantic interoperability issue in a world wide
web scale using an ontology-based approach. Similarly to other existing projects, SSD focus
on the technology that would allow a semantic matching mechanism to work. It proposes
a common ontology that would be shared among all applications in order to allow services
to be located and selected. It does not provide any mechanism for ontology decomposition
or mapping between sub-ontologies. This project has been very inspiring for UBIDEV since
their reasoning engine based on XSB.

6.5 one.world

One.world [Gri04] architecture is based on three main abstractions: Tasks that represent
computations, tuples that represent persistent data, and environments that provides struc-
ture and control.

Tasks execute code using multiple threads, and have their own, private state. Tuples
are immutable records and are strongly typed in that both their fields and the tuples them-
selves are typed [CG89]. Tasks can request to be notified when (specific) tuples are added or
written. Environments provide structure for computations and data by encapsulating tasks,
tuples, and other environments. Tasks execute within an environment and, by default, ac-
cess only tuples in the same environment. But, in order to enable remote interaction, tasks
can explicitly request to access tuples in other environments. Besides the obvious create
and destroy operations, the basic operations on environments are move, which moves an
environment and all its contents either within a local hierarchy or to a different location,
and open, which moves all contents of an environment into the enclosing environment and
deletes the emptied environment.

Such environments can be used to provide functionality similar to that of distributed vir-
tual machines [BDF+99] within one.world architecture by enforcing a uniform policy across
all nodes within an organization and by providing a single point of administrative control.

As for tuple spaces, one.world uses templates to describe tasks, tuples, environments, as
well as external resources, and, if several resources match a specified template, any of the
matching resources can be selected. Generally, a resource matches a template if its type is a
subtype of the template and if all fields specified by the template match the corresponding
fields of the resource.

Project one.world [GABW00] promotes a new application structure designed to cope
with frequent changes in pervasive computing environment. Solar could be a complemen-
tary system used by one.world applications to detect the contextual changes

University of Washington’s One.World Project provides an integrated framework for
building pervasive applications. One.World allows dynamic decomposition of applications
into components and it separates the functionalities and data. We adopted the same ap-
proach on the separation of the functionalities and data. However, our facet is a Java-based
component as we believe Java programming language is most platform-independent and is

97

CHAPTER 6. RELATED WORKS

more portable and less complex in terms of engineering effort. Similar to the Ninja project,
One.world did not address code mobility. A client-server model is adopted for obtaining
Web services.

6.6 Ninja

Berkeley Ninja [GvBB+01] is a framework for dynamically composable wide-area services
based on strongly typed reusable components. Ninja follows a dataflow-computing model.
A group of dispersed services are identified and chained to form a path based on some
resource demands. Client users are then able to obtain the required service by flowing data
through the path. Ninja does not fully address code mobility. Mobile code is used only to
instantiate the path. Also, all its reusable service components are not able to migrate. On the
contrary, our design enables the dynamic loading of codes to client devices without moving
client data for remote processing, unless the client is unable to handle large computations
locally.

Although Ninja addresses the broad range of distributed Internet services, some of the
problems to solve are very similar to those found in pervasive computing. Specifically, Ninja
has to deal with issues such as heterogeneity, service description, naming and service com-
position. Ninja uses a layered approach as well to leverage the inherent heterogeneity. The
basic building blocks of Ninja are units which are devices and sensors, interacting with the
physical environment and users, active proxies which act as an adapter between units and
services and services which run on bases that are clusters of workstations. Active proxies
combine the roles of adapters and virtual representers. Active proxies are different insofar
that usually multiple units are handled by one proxy and therefore do not exactly mirror the
physical environment in the logical environment as virtual representers do. Service descrip-
tion and discovery is handled by a distributed directory and lack the semantic introduced
by classifiers. Because Ninja services run on powerful clusters of workstations, resource
requirements are a minor issue. In consequence, Ninja limits service description to their
programming interface. For service development, Ninja provides design patterns and dis-
tributed data structures as well as a security infrastructure. A powerful service composition
technique called path allows explicit and implicit (automatic) building of high-level services
through combination of basic services. The current Ninja architecture has been designed to
address many of the requirements of pervasive computing, many other issues remain be-
yond their scopes, including context-awareness and user and user-interface issues.

6.7 E-speak

The e-speak platform [Lab00] aims at the developments, deployment, management and in-
telligent interaction of e-services. As for Ninja, the environment is the Internet but similar
problems are found in an interactive environment too. E-speak does not represent the physi-
cal dimension of the environment and deals with heterogeneity through a common protocol
to all e-services and an XML-based service description. Service description is well sepa-
rated from the service contract (the programming interface) and provides a similar degree
of abstraction as ontologies thanks to a per-service vocabulary. Search recipes that contain
a resource description, a lookup method, predicates and multiple-match policy informa-

98

tion provide a powerful mechanism for resource lookup going further than addressing by
concept. In addition, e-speak provides discovery of services by a registration process, nego-
tiation to narrow down the set of service matching a request, introspection of e-services and
mediation of service access enabling monitoring and dynamic reconfiguration and service
composition. The main difference between UBIDEV and e-speak beside the physical dimen-
sion is, that e-speak does not include the service requirements in the service description.
This implies that an appropriate execution environment is always available for an e-service
given and limits therefore the possible actions the runtime system can take during service
execution.

99

CHAPTER 6. RELATED WORKS

100

Chapter 7

Conclusions

In this dissertation, we have explored the impact that heterogeneity may have on pervasive
computing systems.

Heterogeneity Problem

Pervasive computing presents an attractive vision for the future of distributed computing,
where devices are ubiquitous and seamlessly coordinated in order to help people in accom-
plishing their tasks.

However, existing approaches to building distributed applications fall short in realiz-
ing this vision. The problem is that they try to hide heterogeneity at all levels and rely on
technologies, such as remote procedure call packages, that extend single-node programming
methodologies to distributed systems.

Applications built on top of these technologies tend to be structured like single-node
applications and assume an execution environment where resources and services are homo-
geneous and continuously available.

As a result, users must explicitly reconfigure their devices and applications every time
the execution environment changes, which is tedious at best and antithetical to the vision of
pervasive computing at worst.

How the Problem Has Been Addressed

To face the heterogeneity problem in pervasive computing we have introduced an architec-
ture for supporting the designing, building, execution of applications that relay on semantic-
based and application-centered management of resources, services and context.

Following this approach, system support allows a certain level of visibility of the hetero-
geneity of the underlying environment and, at the same time, allows applications to explic-
itly provide their own semantics of the environment.

The overall abstraction is realized at the coordination level where the system is described
in terms of autonomous and uniform interacting services.

That way, applications can see resources, services and contextual changes in a uniform
way and then adapt to it instead of forcing users to constantly reconfigure their systems.

We have presented UBIDEV, a system architecture for pervasive computing, that em-
bodies this approach to building pervasive applications. The architecture supports a simple

101

CHAPTER 7. CONCLUSIONS

design process for building applications, starting from the definition of the system ontology,
the pool of classifiers that will tag resources and contextual information as instances of the
concepts composing the ontology, simple rules to express the interrelation between concepts
of the ontology that will be used by the coordination control unit to solve the user’s tasks.

By taking a bio-inspired approach, the reference model as been defined as an autopoi-
etic system where the stimuli abstractions describe the interactions that happen within an
environment.

UBIDEV builds on five foundation services:

• Resources are virtualized within the environment through a representer granting a
uniform access interface.

• Resources, services and contextual information are classified and addressed according
to a system ontology to allow a uniform abstraction of the whole environment.

• A coordination unit is responsible of solving user’s tasks through composition of ho-
mogeneous services.

• At coordination level capsules, context model as well as contextual information are
described according to the agreed ontology.

• Environments host applications, store persistent data, and, through nesting, facilitate
the composition of applications and services.

On top of these services, UBIDEV provides a set of system services that address common
application needs, including discovery and access resources.

Main contributions

This dissertation has made the following contributions:

• Resources: the notion of representer as a virtualization of a physical resource, allows a
system to have a full representation of the physical environment in terms of involved
resources. In such a perspective, resources are seen as interacting entities that can both
produce and receive stimuli from the control systems and from other entities. Classifi-
cation of resources according to the system ontology allow a uniform description and
configuration as well as a simple access protocol based on “addressing by concepts”.

• Services: UBIDEV introduces the notion of service prerequirements as a collection of
system properties that have to be met for ensuring the executability of a given ser-
vice. By matching such prerequirements with the current available resources, UBIDEV

builds a proper execution environment for each service. Capsules are instantiated to
frame the notion of a running service together with its execution environment. Cap-
sules exports at coordination level only service interfaces.

• Coordination: is a control unit where all information from resources, context, services,
users and application are orchestrated. The coordination module is in charge of solving
user’s tasks by composing existing services; in doing so it analyses contextual informa-
tion to determine which services to invoke and under which conditions.

102

• Holistic Management: in UBIDEV there is the explicit notion of system as a physical
environment, a service infrastructure and an application. Resources, services and con-
text are managed as part of a common space where the same semantic is used. Users
are described as resources belonging to the environment; they can interact directly with
other resources and could be virtualized within the system by their role, identity and
intentions.

Main differences from Other Approaches

In chapter 6 we have presented different projects that address the same class of problems
UBIDEV does with similar approaches. The main differences from such approaches are:

• In UBIDEV the semantics of the environment is left to the application by a system ref-
erence ontology. Then the classification of the environment is done according to such
an ontology. That means that at application level, resources, services and contextual
information are described and configured in a uniform way that application expects.

• UBIDEV focuses on the holistic management of resources, services and contextual in-
formation rather than describing, configuring and addressing them separately.

• UBIDEV allows a system to be described in terms of interacting homogeneous enti-
ties while exposing at coordination level the properties of the environment that may
influence the whole system.

Future Works

UBIDEV has been the first concrete research project targeting pervasive computing scenarios
within the PAI group. Under the umbrella of the WELCOME SNF project, UBIDEV tried
to profit from the experience of past researches and to position itself as a glue for all new
coming projects defined in similar research areas.

The implemented architecture and the Proof of Concepts have to be considered as devel-
opment exercises aimed to demonstrate the feasibility of the whole approach.

UBIDEV can be considered as a starting point for further exploring research projects in
similar and complementary areas. For such reasons UBIDEV leaves many open directions:

• Application interfaces as well as base services needs to be deployed and migrate over
a wide spectrum of different devices; that implies support of code migration at the in-
frastructure level. Migration needs to be visible to applications rather than being trans-
parent, so that applications know their execution context and can adapt to it. There is
the need to integrate persistent storage, so that applications can continuously provide
access to peoples information. Must be easy to control, so that migration logic can be
effectively factored from the rest of the application functionality and devices are pro-
tected against malicious applications roaming around the network. Code migration
needs to perform well enough to match peoples movements in the physical world.

• Interoperability between systems is still an open issue. The use of ontology to describe
the taxonomy and the semantics of a system frames the interoperability at ontology
mapping level. Ontology mapping has been widely studied in semantic web. Most

103

CHAPTER 7. CONCLUSIONS

ontology mapping tools developed seeks to find a one-to-one corresponding mapping
between concepts in two ontologies [SLD05] [DMDH02]. These mapping tools can
be classified into two types: source-based and instance-based. Source-based mapping
tools compare the similarity of the concepts based on the properties of the concepts
and the structure of the ontology defined in the source ontologies. Examples of source
based mapping tools are PROMPT and Chimaera [MFRW00]. Instance-based ontology
mapping tools compare the similarity of the concepts based on the source ontologies
and their data instances. Examples of instance-based ontology mapping tools are FCA-
Merge and GLUE [CFJ04].

• Another issue related to the use of ontology is the intrinsic difficulty of defining the
ontology that would describe all possible events that would occur within a system.
Experience has shown that the system ontology is too critical to describe from scratch.
For such a reason, ontology-templates have been defined especially in semantic web
area. COCA classifiers would help the integration of sub-ontologies thanks to the real-
time classification of the environment. Dedicated classifiers could be defined to ensure
the coherence of the description of all resources according to a given sub-set of the
system ontology.

• A fully functional infrastructure requires a minimum support for security and trust;
something that has been neglected in the UBIDEV project. What is required at infras-
tructure level is a trust management support for user authentication, access control,
and delegation; assign security credentials to individuals; allow entities to modify ac-
cess rights of other entities by delegating or deferring their access rights and provide
resource access control on the base of system policies and users identities and creden-
tials [KFJ01].

• At coordination level it would be interesting to further investigate the impact and the
potentialities of a fine grained control unit able to take into account environmental
issues like contextual situations, user’s virtual identities and roles as well as resources
access rights. The integration of XCM coordination model is a step in such direction.

104

Bibliography

[Abo99] G. D. Abowd. Classroom 2000: An Experiment with the Instrumentation of a
Living Educational Environment. IBM Systems Journal, 38:50–53, 1999.

[AC93] G. Agha and C. J. Callsen. ActorSpace: An Open Distributed Programming
Paradigm. In Fourth ACM SIGPLAN Symposium on Principles and Practice of Par-
allel Programming, San Diego, CA, May 1993. Also published as a Special Issue
of SIGPLAN Notices vol. 28, No. 7, pp 23-32, July, 1993.

[ACH98] F. Arbab, P. Ciancarini, and C. Hankin. Coordination Languages for Parallel
Programming. Parallel Computing, 24(7):989–1004, 1998.

[ACH+01] M. Addlesee, R. Curwen, S. Hodges, J. Newman, P. Steggles, A. Ward, and
A. Hopper. Implementing a Sentient Computing System. Computer, 34(8):50–
56, 2001.

[AJF02] S. Avancha, A. Joshi, and T. Finin. Enhanced Service Discovery in Bluetooth.
IEEE Computer, 35(6):96–99, June 2002.

[AKDS01] G. D. Abowd A. K. Dey and D. Salber. A Conceptual Framework and a Toolkit
for Supporting the Rapid Prototyping of Context-Aware Applications. Human-
Computer Interaction Journal, Special Issue on Context-Aware Computing, 16(1),
2001.

[BDF+99] M. Beck, J. Dongarra, G. Fagg, G. Geist, P. Gray, J. Kohl, M. Migliardi, K. Moore,
T. Moore, P. Papadopoulous, S. Scott, and V. Sunderam. HARNESS: A Next
Generation Distributed Virtual Machine. Future Generation Computer Systems,
15(5-6):571–582, 1999.

[Bie02] G. Bieber. Introduction to Service-Oriented Programming.
http://www.openwings.org/download.html, October 2002. Motorola
ISD.

[BKA+98] E. Brewer, R. H. Katz, E. Amir, H. Balakrishnan, Y. Chawathe, A. Fox, S. D.
Gribble, T. Hodes, G. Nguyen, V. N. Padmanabhan, M. Stemm, S. Seshan, and
T. Henderson. A Network Architecture for Heterogeneous Mobile Computing.
IEEE Personal Communications Magazine, 5(5):8–24, October 1998.

[BLHL01] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific American,
May 2001.

105

http://www.openwings.org/download.html

BIBLIOGRAPHY

[blu] Bluetooth Specification. https://www.bluetooth.org/foundry/
adopters/document/Bluetooth Core Specification v1.2. version
1.2.

[Bro96] M. G. Brown. Supporting User Mobility. In Proceedings of the IFIP Conference on
Mobile Communications (IFIP’96), Canberra, Australia, September 1996.

[BZD02] M. Beigl, T. Zimmer, and C. Decker. A Location Model for Communicating and
Processing of Context. Personal and Ubiquitous Computing, 6(5-6):341–357, 2002.

[CA94] C. J. Callsen and G. A. Agha. Open Heterogeneous Computing in Actorspace.
Journal of Parallel and Distributed Computing, 21(3):289–300, 1994.

[Car01] J. M. Carroll, editor. Human-Computer Interaction in the New Millennium.
Addison-Wesley, 2001.

[CCMW01] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Services
Description Language (WSDL) 1.1. http://www.w3.org/TR/wsdl, March
2001. W3C Note.

[CDK00] G. Coulouris, J. Dollimore, and T. Kindberg. Distributed Systems: Concepts and
Design. Addison-Wesley, 3rd edition, 2000.

[CFJ03] H. Chen, T. Finin, and A. Joshi. Semantic Web in a Pervasive Context-Aware Ar-
chitecture. In Workshop on Artificial Intelligence in Mobile Systems, the Fifth Annual
Conference on Ubiquitous Computing, Seattle, 12-15 October 2003.

[CFJ04] H. Chen, T. Finin, and A. Joshi. Semantic Web in in the Context Broker Ar-
chitecture. In Proceedings of the Second Annual IEEE International Conference on
Pervasive Computer and Communications, pages 277–287, Washington, DC, USA,
March 2004. IEEE Computer Society.

[CG89] N. Carriero and D. Gelernter. Linda in Context. Communication of the ACM,
32(4):444–458, April 1989.

[Che76] P. Chen. The Entity/Relationship Model: Toward a Unified View of Data. ACM
Transaction on Database Systems, 1(1):9–36, March 1976.

[CK00] G. Chen and D. Kotz. A Survey of Context-Aware Mobile Computing Research.
Technical Report TR 2000-381, Dept. of Computer Science, Dartmouth College,
November 2000.

[CK03] G. Chen and D. Kotz. Context-Sensitive Resource Discovery. In First IEEE In-
ternational Conference on Pervasive Computing and Communications (PerCom 2003),
pages 243–252, Fort Worth, Texas, 23-26 March 2003.

[Coe98] M. H. Coen. Design Principles for Intelligent Environments. In Fifteenth National
Conference on Artificial Intelligence, pages 547–554, Menlo Park, CA, USA, 1998.
American Association for Artificial Intelligence.

[Cor05] Microsoft Corporation. Universal Plug and Play: Device Architecture Version
1.0. http://www.upnp.org/, May 2005.

106

https://www.bluetooth.org/foundry/
http://www.w3.org/TR/wsdl
http://www.upnp.org/

[Cou] J. Coutaz, L. Nigay, and D. Salber. Agent-Based Architecture Modelling for In-
teractive Systems in: D. Benyon and P. Palanque (eds). Critical Issues in User
Interface System Engineering, pages 191-209. Springer-Verlag. 1995.

[Cou87] J. Coutaz. PAC: An Object Oriented Model for Implementing User Interfaces.
ACM SIGCHI Bulletin, 19(2):37–41, 1987.

[CS92] C. Catlett and L. Smarr. MetaComputing. Communications of the ACM, 35(6):44–
52, 1992.

[CTB+95] J.R. Cooperstock, K. Tanikoshi, G. Beirne, T. Narine, and W. Buxton. Evolution
of a Reactive Environment. In Proceedings of the 1995 ACM Conference on Human
Factors in Computing Systems (CHI ’95), pages 170–177, Denver, CO, May 1995.

[dam] D. Connolly, F. van Harmelen, I. Horrocks, D. McGuinness, P. F. Patel-Schneider
and L. Stein. DAML+OIL (March 2001) Reference Description, December 2001.
W3C Note.

[DAW98] A. K. Dey, G. D. Abowd, and A. Wood. CyberDesk: A Framework for Provid-
ing Self-Integrating Context-Aware Services. Intelligent User Interfaces, 11:47–54,
1998.

[dco] DCoM.

[Dey00] A. K. Dey. Providing Architectural Support for Building Context-Aware Applications.
PhD thesis, Georgia Institute of Technology, 2000.

[DFWB98] N. Davies, A. Friday, S. P. Wade, and G. S. Blair. An Asynchronous Distributed
Systems Platform for Heterogeneous Environments. In Proceedings of the 8th
ACM SIGOPS European Workshop: Support for Composing Distributed Applications,
pages 66–73, Sintra, Portugal, 7-10 September 1998.

[diu] Diuf development library. http://www.unifr.ch/diuf/pai/.

[DMDH02] A. Doan, J. Madhavan, P. Domingos, and A. Halevy. Learning to Map Between
Ontologies on the Semantic Web. In WWW ’02: Proceedings of the 11th interna-
tional conference on World Wide Web, pages 662–673, New York, NY, USA, 2002.
ACM Press.

[EHC+93] S. Elrod, G. Hall, R. Costanza, M. Dixon, and J. des Rivieres. Responsive Office
Environments. Communications of the ACM, 36(77):84–85, July 1993.

[FIB95] G. Fitzmaurice, H. Ishii, and W. Buxton. Bricks: Laying the Foundations for
Graspable User Interfaces. In Proceedings of Human Factors in Computing Systems
(CHI95), pages 442–449, Denver, Colorado, May 1995.

[FK97] I. Foster and C. Kesselman. Globus: A Metacomputing Infrastructure Toolkit.
The International Journal of Supercomputer Applications and High Performance Com-
puting, 11(2):115–128, Summer 1997.

[FK03] I. Foster and C. Kesselman, editors. The Grid 2: Blueprint for a New Computing
Infrastructure. Morgan Kaufmann, 2nd edition, 2003.

107

http://www.unifr.ch/diuf/pai/

BIBLIOGRAPHY

[FKS97] S. Fickas, G. Kortuem, and Z. Segall. Software Organization for Dynamic and
Adaptable Wearable Systems. In Proceedings of the 1st International Symposium on
Wearable Computers (ISWC’97), pages 56–63, Cambridge, MA, October 1997.

[FMS93] S. Feiner, B. MacIntyre, and D. Seligmann. Knowledge-Based Augmented Real-
ity. Communications of the ACM, 36(7):52–62, 1993.

[FS99] J. Flinn and M. Satyanarayanan. Energy-aware Adaptation for Mobile Applica-
tions. In Proceedings of the 17th ACM Symposium on Operating Systems and Princi-
ples, Kiawah Island, December 1999.

[FT89] I. Foster and S. Taylor. Strand: New Concepts in Parallel Programming. Prentice-
Hall, Englewood Cliffs, 1989.

[GABW00] R. Grimm, T. Anderson, B. Bershad, and David Wetherall. A System Architec-
ture for Pervasive Computing. In 9th ACM SIGOPS European Workshop, pages
177–182,, Kolding, Denmark, September 2000.

[GBK99] H. Gellersen, M. Beigl, and Holger Krull. The MediaCup: Awareness Tech-
nology Embedded in an Everyday Object. Handheld and Ubiqutious Computing,
1707:308–310, 1999.

[GCL+99] Y. Goland, T. Cai, P. Leach, Y. Gu, and S. Albright. Simple Service Discovery Pro-
tocol, June 1999. IETF Internet Draft.

[Gel85] D. Gelernter. Generative Communication in Linda. ACM Transactions on Pro-
gramming Languages and Systems, 7(1):80–112, January 1985.

[GHMF01] M. Gudgin, M. Hadley, J. Moreau, and H. Frystyk. SOAP Version 1.2 - Part 1:
Messaging Framework, 2001.

[GMGN04] X. Gu, A. Messer, I. Greenberg, and D. Milojicic K. Nahrstedt. Adaptive Of-
floading for Pervasive Computing. IEEE Pervasive Computing, 3(3):66–73, July-
September 2004.

[Gri04] R. Grimm. One.world: Experiences with a Pervasive Computing Architecture.
IEEE Pervasive Computing, 3(3):22–30, July-September 2004.

[gro02] OMG group. Common Object Request Broker Architecture: Core Specifica-
tion. http://www.omg.org/cgi-bin/doc?formal/02-11-01, Novem-
ber 2002. Version 3.0.

[GSSS02] D. Garlan, D. Siewiorek, A. Smailagic, and P. Steenkiste. Project Aura: Towards
Distraction-Free Pervasive Computing. IEEE Pervasive Computing, special issue
on ”Integrated Pervasive Computing Environments”, 21(2):22–31, April-June 2002.

[GTV05] M. Gutierrez, D. Thalmann, and F. Vexo. Semantic Virtual Environments with
Adaptive Multimodal Interfaces. In 11th International Multimedia Modelling Con-
ference (MMM’05), pages 277–283, Melbourne, Australia, January 2005.

[Gut00] E. Guttman. Service Location Protocol Modifications for IPv6, January 2000. IETF
Internet Draft.

108

http://www.omg.org/cgi-bin/doc?formal/02-11-01

[GvBB+01] S. D. Gribble, M. W. Rob von Behren, E. A. Brewer, D. Culler, N. Borisov, S. Cz-
erwinski, R. Gummadi, J. Hill, A. Joseph, R. H. Katz, Z. M. Mao, S. Ross, and
B. Zha. The Ninja Architecture for Robust Internet-Scale Systems and Services.
Computer Networks, 35(4):473–497, 2001.

[Har90] S. Harnad. The Symbol Grounding Problem. Physica D, 42:335–346, 1990.

[HNBR97] R. Hull, P. Neaves, and J. Bedford-Roberts. Towards Situated Computing. In
Proceedings of the 1st International Symposium on Wearable Computers (ISWC’97),
pages 146–153, Cambridge, MA, October 1997.

[Inc99] The Salutation Consortium Inc. Salutation Architecture Specification (Part 1).
http://www.salutation.org, 1999. Version 2.1.

[Jav03] JavaSpaces Service Specification. http://wwws.sun.com/softwarejini/

specs/, June 2003.

[JF04] B. Johanson and A. Fox. Extending Tuplespaces for Coordination in Interactive
Workspaces. Journal of Systems and Software archive, 69(3):243 – 266, January 2004.
Special issue: Ubiquitous Computing.

[Jin03] Jini Architecture Specification. http://wwws.sun.com/software/jini
/specs/, June 2003.

[Joh03] B. E. Johanson. Application Coordination Infrastructure for Ubiquitous Computing
Rooms. PhD thesis, Stanford University, 2003.

[Kam00] A. Kaminsky. Jini Print Service Design. http://print.jini.org/, February
2000.

[KBM+02] T. Kindberg, J. Barton, J. Morgan, G. Becker, D. Caswell, P. Debaty, G. Gopal,
M. Frid, V. Krishnan, H. Morris, J. Schettino, B. Serra, and M. Spasojevic. People,
Places, Things: Web Presence for the Real World. Mobile Networks and Applica-
tions, 7(5):365 – 376, October 2002. Kluwer Academic Publishers.

[KFJ01] L. Kagal, T. Finin, and A. Joshi. Trust-Based Security in Pervasive Computing
Environments. Computer, 34(12):154–157, 2001.

[KFJ03] L. Kagal, T. Finin, and A. Joshi. A Policy Language for a Pervasive Computing
Environment. In POLICY ’03: Proceedings of the 4th IEEE International Workshop
on Policies for Distributed Systems and Networks, pages 63–75, Washington, DC,
USA, 2003. IEEE Computer Society.

[KG99] D. Kotz and R. Gray. Mobile Code: the Future of the Internet. In Third Interna-
tional Conference on Autonomous Agents, Seattle, 1999.

[KP88] G. E. Krasner and S. T. Pope. A Description of the Model-View-Controller User
Interface Paradigm in the Smalltalk-80 System. Journal of Object Oriented Pro-
gramming, 1(3):26–49, 1988.

[KS03] C. Kray and M. Strohbach. Gesture-based Interface Reconfiguration. In Workshop
”AI in mobile systems” (AIMS 2003) at Ubicomp’03, Seattle, WA, USA, October
2003.

109

http://www.salutation.org
http://wwws.sun.com/softwarejini/
http://wwws.sun.com/software/jini
http://print.jini.org/

BIBLIOGRAPHY

[KUB00] P. Kropf, H. Unger, and G. Babin. WOS: an Internet Computing Environment. In
Workshop on Ubiquitous Computing, IEEE International Conference on Parallel Archi-
tecture and Compilation Techniques, pages 14–22, Philadelphia, PA, October 2000.

[Lab00] HP Labs. E-speak Project. www.hp.com/go/espeak, 2000.

[LCBB00] C. Liebig, M. Cilia, M. Betz, and A. P. Buchmann. A Publish/Subscribe CORBA
Persistent State Service Prototype. In Middleware ’00: IFIP/ACM International
Conference on Distributed systems platforms, pages 231–255. Springer-Verlag New
York, Inc., 2000.

[LMW99] T. Lehman, S. McLaughry, and P. Wyckoff. TSpaces: The Next Wave. In In
Proceedings of the 32nd Hawaii International Conference on System Sciences (HICSS-
32), January 1999.

[Lot00] Lotus. Unified Messaging Strategy and Mobile Services for Domino. Data sheet,
2000.

[LY99] T. Lindholm and F. Yellin. The Java Virtual Machine Specification. Sun Microsys-
tems Inc., 1999.

[Mag01] General Magic. Portico. http://www.genmagic.com/portico, 2001.

[Mat05] F. Mattern. Ubiquitous Computing: Scenarios from an informatised world, pages 145–
163. E-Merging Media - Communication and the Media Economy of the Future.
Springer-Verlag, 2005.

[MC94] T.W. Malone and K. Crowston. The Interdisciplinary Study of Coordination.
ACM Computing Surveys, 26(1):87–119, 1994.

[McL89] L. McLaughlin. A Standard for the Transmission of 802.2 Packets over IPX Networks,
November 1989. RFC: 1132.

[MFRW00] D. McGuiness, R. Fikes, J. Rice, and S. Wilder. An Environment for Merging
and Testing Large Ontologies. In Seventh International Conference on Principles of
Knowledge Representation and Reasoning (KR2000), pages 483–493, Breckenridge,
CO, USA, April 2000.

[MH02] S. Maffioletti and B. Hirsbrunner. UbiDev: an Homogeneous Environment for
Ubiquitous Interactive Devices. In Short Paper in Pervasive 2002 - International
Conference on Pervasive Computing, Zurich, Switzerland, August 2002.

[MH03] S. Kouadri M. and B. Hirsbrunner. Towards a Context Based Service Composi-
tion Framework. In 1st International Conference in Web Services, ICWS’03, pages
42–45, Las Vegas, Nevada, USA, 23-26 June 2003.

[Mic01] Sun Microsystems. Rio Architecture Overview. http://www.sun.com
/software/jini/whitepapers/rio architecture overview.pdf,
March 2001.

[MPR01] A. Murphy, G. Picco, and G. C. Roman. Lime: A Middleware for Physical and
Logical Mobility. In Proceeding of the 21st International Conference on Distributed
Computing Systems (ICDCS), pages 524–533, April 2001.

110

www.hp.com/go/espeak
http://www.genmagic.com/portico
http://www.sun.com

[MRMC03] R. E. McGrath, A. Ranganathan, M. D. Mickunas, and R. H. Campbell. Investi-
gations of Semantic Interoperability in Ubiquitous Computing Environments. In
15th IASTED International Conference on Parallel And Distributed Computing And
Systems (PDCS 2003), Seattle Marina del Rey, CA, USA, 3-5 November 2003.

[MS99] M. Migliardi and V. Sunderam. The Harness Metacomputing Framework. In
Proceedings of the Ninth SIAM Conference on Parallel Processing for Scientific Com-
puting, San Antonio (TX), USA, 22-24 March 1999.

[MS03] F. Mattern and P. Sturm. From Distributed Systems to Ubiquitous Comput-
ing – The State of the Art, Trends, and Prospects of Future Networked Sys-
tems. In K. Irmscher and K. Fahnrich, editors, Proceeding KIVS 2003, pages 3–25,
Springer-Verlag, February 2003.

[MV92] H. R. Maturana and F. J. Varella. The Tree of Knowledge - the Biological Root of
Human Understanding. Addison-Wesley, Shambhala USA, 1992.

[NCN98] K. Nahrsted, H. Chu, and S. Narayan. QoS-aware Resource Management for
Distributed Multimedia Application. Journal on High-Speed Networking, 7(3),
1998.

[Nob00] B. Noble. System Support for Mobile, Adaptive Applications. IEEE Personal
Communications, 7(1), February 2000.

[Nor99] D. A. Normann. The Invisible Computer. MIT Pres, 1999.

[NSN+97] B.D. Noble, M. Satyanarayanan, D. Narayanan, J.E. Tilton, J. Flinn, and K.R.
Walker. Agile Application-Aware Adaptation for Mobility. In In Proceedings
of the 16th ACM Symposium on Operating Systems Principles, Saint-Malo, France,
October 1997.

[OPSS93] B. Oki, M. Pfluegl, A. Siegel, and D. Skeen. The Information Bus - an Archi-
tecture for Extensible Distributed Systems. In B. Liskov, editor, Proceedings of
the 14th Symposium on Operating Systems Principles, pages 58–68, Asheville, NC,
USA, December 1993. ACM Press.

[OWLa] D. L. McGuinness and F. van Harmelen. OWL Web Ontology Language
Overview. http://www.w3.org/TR/owl-features/, 2003.

[OWLb] F. van Harmelen and J. Hendler and I. Horrocks and D. L. McGuinness and
P. F. Patel-Schneider and L. Stein. Owl Web Ontology Language Reference.
http://www.w3.org/TR/owl-ref/, 2002.

[OWLc] M. K. Smith, C. Welty, and D. McGuinness. OWL Web Ontology Language
Guide. http://www.w3.org/TR/owl-guide/, 2003.

[pai] Pervasive and Artificial Intelligence Research Group. http://
www.unifr.ch/diuf/pai/.

[Par72] D.L. Parnas. On the Criteria to be Used in Decomposing Systems into Modules.
Communications of the ACM, 15(12), December 1972.

111

http://www.w3.org/TR/owl-features/
http://www.w3.org/TR/owl-ref/
http://www.w3.org/TR/owl-guide/
http://www.unifr.ch/diuf/pai/
http://www.unifr.ch/diuf/pai/

BIBLIOGRAPHY

[PC99] S. Le Peutrec and M. Courant. Instruments Pour la Vie Artificielle. In Proceedings
of the Eleventh French-speaking Congress of Human Computer Interaction, pages 37–
40, Montpellier, France, November 1999.

[PC00] S. Le Peutrec and M. Courant. Revisiting HCI for Networking Computers: A
First Breakthrough for Artificial Biology. In Proceedings of the International ICSC
Symposium on Biologically Inspired Systems (BIS 2000), pages 37–40, Wollongong,
Australia, December 2000.

[PMR99] G. Picco, A. Murphy, and G. Roman. Lime: Linda Meets Mobility. In Proceeding
of the 21st International Conference on Software Engineering (ICSE ’99), pages 368–
377, Los Angeles, CA, USA, May 1999.

[PPL+03] G. Pingali, C. Pinhanez, A. Levas, R. Kjeldsen, M. Podlaseck, H. Chen, and
N. Sukaviriya. Steerable Interfaces for Pervasive Computing Spaces. In PER-
COM ’03: Proceedings of the First IEEE International Conference on Pervasive Com-
puting and Communications, pages 315–322, Washington, DC, USA, March 2003.
IEEE Computer Society.

[Pro81] Defense Advanced Research Projects Agency Internet Program. Internet Protocol,
September 1981. RFC: 791.

[Pro97] Defense Advanced Research Projects Agency Internet Program. Basic Socket In-
terface Extensions for IPv6, April 1997. RFC: 2133.

[RAH98] J. Rekimoto, Y. Ayatsuka, and K. Hayashi. Augment-able Reality: Situated Com-
munication Through Physical and Digital Spaces. In Proceedings of the 2nd IEEE
International Symposium on Wearable Computers (ISWC’98), pages 68–75, Pitts-
burgh, PA, October 1998.

[RCC98] A. Robert, F. Chantemargue, and M. Courant. Emuds: Grounding Agents in
EMud Artificial Worlds. In Proceedings of the First International Conference on Vir-
tual Worlds, VW’98, Paris, France, 1-3 July 1998.

[Rek98] J. Rekimoto. A Multiple Device Approach for Supporting Whiteboard-Based
Interactions. In Proceedings of ACM CHI 98 Conference on Human Factors in Com-
puting Systems, pages 344–351, Los Angeles, CA USA, April 1998.

[RHC+02] M. Roman, C. K. Hess, R. Cerqueira, A. Ranganathan, R. H. Campbell, and
K. Nahrstedt. Gaia: A Middleware Infrastructure to Enable Active Spaces. IEEE
Pervasive Computing, pages 74–83, Oct-Dec 2002.

[Ric03] T. Richardson. The RFB Protocol. http://www.realvnc.com/docs
/rfbproto.pdf, August 2003. Version 3.7, RealVNC Ltd.

[Sch01] M. Schumacher. Objective Coordination in Multi-Agent Systems Engineering.
Springer Verlag, LNAI 2039, 2001. Also published as PhD Thesis, Department
of Computer Science, University of Fribourg (CH).

[Sch02] S. Schubiger. Automatic Software Configuration. PhD thesis, Department of Com-
puter Science, University of Fribourg (CH), October 2002. No. 1393. A short

112

http://www.realvnc.com/docs

version appeared in: S. Schubiger and B. Hirsbrunner. A Model for Software
Configuration in Ubiquitous Computing Environments. In Pervasive 2002, In-
ternational Conference on Pervasive Computing. 26-28 August 2002, Zurich.

[SDA98] D. Salber, A. K. Dey, and G. D. Abowd. Ubiquitous Computing: Defining an
HCI Research Agenda for an Emerging Interaction Paradigm. Technical Report
GIT-GVU-98-01, Gerogia Institute of Technology, February 1998.

[SG02] J. Pedro Sousa and D. Garlan. Aura: an Architectural Framework for User Mo-
bility in Ubiquitous Computing Environments. In Proceedings of the 3rd Working
IEEE/IFIP Conference on Software Architecture, pages 29–43, 25-31 August 2002.

[SGGB99] E. G. Sirer, R. Grimm, A. J. Gregory, and B. N. Bershad. Design and Implementa-
tion of a Distributed Virtual Machine for Networked Computers. In Symposium
on Operating Systems Principles, pages 202–216, 1999.

[SGH98] Norbert A. Streitz, Jörg Geißler, and Torsten Holmer. Roomware for Cooperative
Buildings: Integrated Design of Architectural Spaces and Information Spaces.
Lecture Notes in Computer Science, 1370:4–21, 1998.

[SLD05] W. Shen, X. Li, and A. Doan. Constraint-based Entity Matching. In Proceedings of
the 20th National Conference on Artificial Intelligence (AAAI-2005), pages 862–867,
Pittsburgh, PA, 2005.

[SM98] Inc. Sun Microsystems. Java Remote Method Invocation Specification, Revision
1.50, JDK 1.2, October 1998.

[SMTH00] S. Schubiger, S. Maffioletti, A. Tafat, and B. Hirbrunner. Providing Service in a
Changing Ubiquitous Computing Environment. In Workshop on Infrastructure for
Smart Devices - How to Make Ubiquity an Actuality, HUC2K, Bristol, UK, September
2000.

[SRC84] J.H. Saltzer, D.P. Reed, and D.D. Clark. End-to-End Arguments in System De-
sign. ACM Transactions on Computer Systems, 2(4), November 1984.

[SSW94] K. Sagonas, T. Swift, and D. S. Warren. XSB as an Efficient Deductive Database
Engine. ACM SIGMOD Record, 23(2):442–453, June 1994.

[ST94] B.N. Schilit and M. Theimer. Disseminating Active Map Information to Mobile
Hosts. IEEE Network, 8(5):22–32, September-October 1994.

[SVSF05] P. Sauter, G. Vogler, G. Specht, and T. Flor. A Model-View-Controller Exten-
sion for Pervasive Multi-Client User Interfaces. Personal Ubiquitous Computing,
9(2):100–107, 2005.

[Sze96] P. Szekely. Retrospective and Challenges for Model-Based Interface Develop-
ment. In F. Bodart and J. Vanderdonckt, editors, Design, Specification and Verifica-
tion of Interactive Systems ’96, pages 1–27, Wien, 1996. Springer-Verlag.

[Tan97] A. S. Tanenbaum. Operating Systems: Design and Implementation. Prentice-Hall,
Inc., Upper Saddle River, New Jersey, 1997. 2nd edition.

113

BIBLIOGRAPHY

[Tan01] A. S. Tanenbaum. Modern Operating Systems. Prentice-Hall, Inc., Upper Saddle
River, New Jersey, 2001. 2nd edition.

[TBGC01] D. Trastour, C. Bartolini, and J. Gonzalez-Castillo. A Semantic Web Approach
to Service Description for Matchmaking Services. In International Semantic Web
Working Symposium (SWWS), pages 447–461, Stanford University, California,
USA, August 2001.

[TCH03] A. Tafat, M. Courant, and B. Hirsbrunner. A Coordination Model for Ubiquitous
Computing. In 3rd WSEAS Int. Conf. on Multimedia, Internet and Video Technologies
(ICOMIV 2003), Rethymna, Crete Island, Greece, October 13-15 2003.

[TCH04] A. Tafat, M. Courant, and B. Hirsbrunner. A Generic Coordination Model
for Pervasive Computing Based on Semantic Web Languages. In 9th Interna-
tional Conference on applications of natural languages to information Systems, ICAN-
LIS’04, Manchester, June 2004. Appeared in Lectures Notes in Computer Sci-
ence, Springer, F. Meziane, E. Mtais, eds., 2004 vol. 3136. pp. 265-275.

[TCH05] A. Tafat, M. Courant, and B. Hirsbrunner. Implicit Environment-based Coordi-
nation in Pervasive Computing. In 20th ACM Symposium on Applied Computing,
SAC’05, pages 457 – 461, Santa Fe, New Mexico, USA, March 2005.

[TvS02] A. S. Tanenbaum and M. van Steen. Distributed Systems: Principles and Paradigms.
Prentince Hall, Upper Saddle River, New Jersey, 2002.

[VM80] F. Varela and H. Maturana. Autopoiesis and Cognition: The Realization of the
Living. Boston Studies in the Philosophy of Science, 1980.

[Wal98] J. Waldo. JavaSpaces Specification 1.0. Technical report, SUN Microsystems Inc,
March 1998.

[Wal99] J. Waldo. The Jini Architecture for Network-Centric Computing. Communications
of the ACM, 42(7):76–82, 1999.

[Weg95] P. Wegner. Interaction as a Basis for Empirical Computer Science. ACM Comput.
Surv., 27(1):45–48, 1995.

[Weg98] Peter Wegner. Interactive Foundations of Computing. Theor. Comput. Sci.,
192(2):315–351, 1998.

[Wei91] M. Weiser. The Computer for the 21st Century. Scientific America, 265(3):94–104,
September 1991. reprinted in IEEE Pervasive Computing, pp. 19-25 Jan.-Mar.
2002.

[wel04] Welcome Project Leaflet. http://diuf.unifr.ch/pai/research/
welcome, 2000 - 2004.

[WFG92] R. Want, A. Hopper V. Falcao, and J. Gibbons. The Active Badge Location Sys-
tem. ACM Transactions on Information Systems, 10(1):91–102, 1992.

[WG00] Z. Wang and D. Garlan. Task Driven Computing. Technical Report CMU-CS-
00-154, Carnegie Mellon University, May 2000.

114

http://diuf.unifr.ch/pai/research/welcome
http://diuf.unifr.ch/pai/research/welcome

[Wir85] N. Wirth. Algorithms and Data Structures. Prentice Hall, 1985.

[WMLF98] P. Wyckoff, S. W. McLaughry, T. J. Lehman, and D. A. Ford. T-Spaces. IBM
Systems Journal archive, 37(3):454 – 474, 1998.

[WS-03] The W3C Web Services Architecture working group. http://www.w3.org/TR/
2003/WD-ws-arch-20030808/, August 2003. public draft.

115

http://www.w3.org/TR/

CURRICULUM VITAE

Sergio Maffioletti
Swiss National Supercomputing Centre CSCS

Galleria 2 ‐ Via Cantonale
CH‐6928 Manno (Switzerland)

Personal information

Birth: 11th September 1971
Place of birth: Bergamo, Italy
Nationality: Italian
Marital status: married
URL: http://diuf.unifr.ch/people/maffiole
Email: sergio.maffioletti@unifr.ch

Languages: Italian: mother tongue
 French: spoken and written
 English: spoken and written

Academic Credential

 PhD Candidate in Computer Science
University of Fribourg (CH)
Dissertation: “UbiDev: a Homogeneous Service Framework for Pervasive Computing
Environments”.
Supervisors: Prof. Béat Hirsbrunner and Michèle Courant
02/2000 – 06/2006

 Master Degree of Science, Computer Science
Thesis subject: "Intelligent Agents: Message Scheduler and Conversation".
Supervisor Prof. S.A.Cerri.
Milan University
Milan (Italy)
1998

 Maturity degree in Computer Science
Paleocapa ITIS
Bergamo (Italy)
1990

http://diuf.unifr.ch/people/maffiole
mailto:sergio.maffioletti@unifr.ch

Professional Experience

•Technical Assistant
Microsoft Italia spa. Milan (Italy) 03/1994 – 12/94.

 Technical support for all Microsoft products.
 Advanced support to Windows and NT OS.

•Technical Assistant

Microsoft Italia spa. Milan (Italy) 06/1995 – 10/95.
 Technical support for Microsoft products.
 Beta testing and support on Microsoft Windows 9.

•Technical Assistant & Developer

Communal Library. Capriate commune. Bergamo (Italy). Summer 1996
 Consulting: configuration, administration and maintenance of library network system (based on
Windows).

•Technical Assistant & Developer

Communal Library. Brembate commune. Bergamo (Italy) 1997 - 1998
 Consulting: configuration, administration and maintenance of library network system (based on
Windows). Support and development of communication utilities for bibliography classification
(basically done in C).

•Software educational

Filippin Institute. Bassano del Grappa (Italy). Summer 1999
 Organized and lead professional course: "Java: programming language for Internet applications" for
secondary school's teachers.

•Software educational

Communal Library. Brembate commune. Summer 1999
 Organized and lead course: "Internet and neighbours". Open course.

•Software Developer

Milan University. FPL laboratory. Milan (Italy). 02/1999 – 10/1999
 Developed agent-based applications in the context of the European project LarFLaST.
 Java based agent system dealing with Web information retrieval and representation.

•Software Developer

SoftSolution srl. Bergamo (Italy). 10/1999 – 02/2000
 Implemented, documented and maintained applications for E-market.
 Java-based packages for communication and configuration utilities.
 Java-based request broker (as ORB for Corba) for interoperability among heterogeneous
communication systems.

 Java-based informational bus.

• Scientist in Grid Computing

Swiss National Supercomputing Centre 06/2004 – Present.

Publications

 S. Maffioletti, S.K. Mostéfaoui and B. Hirsbrunner . Automatic Resource and Service
Management for Ubiquitous Computing Environments. to Appear in Middleware Support for
Pervaisve Computing Workshop (at PerCom '04), PerWare '04, Orlando, Florida USA, 14 March
2004.

 S. Le Peutrec, M. Courant, S. Maffioletti and B. Hirsbrunner. Adaptable Interfaces for Augmented
Virtual Reality. Proceedings ot the First Research Workshop on Augmented Virtual Reality,
AVIR'03, Geneva, Switzerland, 18 - 19 September 2003. pp. 29-30.

 S. Maffioletti, S.K. Mostéfaoui and B. Hirsbrunner. Automatic Resource and Service Management
for Ubiquitous Computing Environments. Technical Report no.03-17, Department of Informatics,
University of Fribourg, September 2003

 M. Courant, S. Le Peutrec, S. Maffioletti and B. Hirsbrunner. Architecture for a full-dynamical
Interaction in Pervasive Computing. Proceedings of the 10th International Conference on Human -
Computer Interaction, HCI03, Crete, Greece, 22 - 27 June 2003.
Appeared in Human-Computer Interaction Theory and Practice, C. Stephanidis and J. Jacko
(Eds.), Laurence Erlbaum Associates, 2003 vol.2 no.Part II. pp. 38-42.

 S. Maffioletti and B. Hirsbrunner. Towards a Homogeneous Coordination Space for Ubiquitous
Interacting Entities. Technical Report no.03-02, Department of Informatics, University of Fribourg,
February 2003.

 S. Schubiger, S. Maffioletti and B. Hirsbrunner. Making Sense in Heterogeneous and Dynamic
Environments. Personal and Ubiquitous Computing, 2003. Submitted.

 S. Maffioletti and B. Hirsbrunner. UbiDev: A Homogeneous Environment for Ubiquitous
Interactive Devices. Short paper in Pervasive 2002 - Proceedings of International Conference on
Pervasive Computing, ETHZ, Zurich, Switzerland, 26 - 28 August 2002. pp. 28-40.

 S. Maffioletti. Requirements for an Ubiquitous Computing Infrastructure.
Proceedings ot the Cultura Narodov Prichernomoria Journal, Simferopol, Ukraine, September 2001.
Appeared in Cultura Narodov Prichernomoria Journal vol.3 no.ISSN 1562-0808. pp. 35-40.

 S. Maffioletti, S. Schubiger and B. Hirsbrunner. Towards a Homogeneous Environment for
Ubiquitous Interacting Devices. Technical Report no.01-21, Department of Informatics, University
of Fribourg, July 2001.

 S. Schubiger, S. Maffioletti, A. Tafat-Bouzid and B. Hirsbrunner. Providing Service in a Changing
Ubiquitous Computing Environment. Proceedings of the Workshop on Ubiquitous Computing
Enabling the Networked Society, ICSI, HUC'00, Bristol, UK, 27 September 2000. Proceedings of the
Workshop on Infrastructure for Smart Devices.

 S. Maffioletti. UbiDev: A Middleware for Ubiquitous Computing. Department of Informatics,
University of Fribourg, PhD thesis, started 2000-. in progress.

	Abstract
	Sommario
	Contents
	List of Figures
	Figure 1.1: Service Model.
	Figure 1.2: Sentient Computing.
	Figure 1.2: Sentient Computing.
	Figure 1.4: Tuple Space abstraction.
	Figure 2.1: A generic model of a cognitive system.
	Figure 2.2: UBIDEV perturbation of the environment.
	Figure 2.3: UBIDEV stimuli model.
	Figure 2.4: UBIDEV reference model.
	Figure 2.5: UbiDev Classification Process.
	Figure 2.6: Context-Tree.
	Figure 2.7: UBIDEV Service.
	Figure 3.1: UBIDEV implemented architecture.
	Figure 3.2: UBIDEV Resource Abstraction.
	Figure 3.3: UBIDEV protocol handler.
	Figure 3.4: UBIDEV Service diagram.
	Figure 3.5: System Ontology.
	Figure 4.1: Ubiquitous Message System.
	Figure 4.2: Context-Tree An example of the context model used in Ubiquitous Message System prototype.
	Figure 4.3: Ubiquitous Message System.
	Figure 4.4: Ubiquitous Message System.
	Figure 5.1: UMS. Broadcast service as model in UCM.
	Figure 5.2: CB-SeC. Three layer architecture.
	Figure 5.3: Focale defines three functional levels:

	Introduction
	Focus of the Thesis
	Contribution
	Assumptions
	Network
	Unconstrained Use of Contextual Information
	Security
	Interfaces

	Thesis Outline

	Part I : The Heterogeneity Problem in Pervasive Computing
	Chapter 1: Heterogeneity in Pervasive Computing
	1.1 From Distributed System to Pervasive Computing
	1.2 Pervasive Computing
	A Definition

	1.3 Infrastructure for Pervasive Computing
	Adaptation
	Metacomputing Abstraction

	1.4 Resources
	Mobility
	Physical Resources and the Surrounding Environment

	1.5 Services
	Semantic Web
	Services in Pervasive Computing
	Service Discovery
	Important Service Discovery Protocols
	Limitations of Existing Technologies
	Development and Deployment

	1.6 Context
	Context Models

	1.7 Coordination
	Tuple Space

	1.8 Application
	Application Level Adaptation
	User interfaces

	1.9 Users
	User Level Context
	User Level Mobility

	1.10 Summary

	Part II : UBIDEV
	Chapter 2: The Model
	2.1 Introduction
	2.2 A Bio-inspired approach
	2.3 The Reference Model
	2.4 Physical Entities
	2.5 Application
	Interfaces
	Ontology
	Context model

	2.6 Resources
	Adapters
	Classification
	UBIDEV protocol
	UBIDEV Resource Abstraction in Pervasive Computing

	2.7 Context
	2.8 Services
	EXecution Environment
	capsule
	UBIDEV Service Abstraction in Pervasive Computing

	2.9 Coordination
	2.10 Summary

	Chapter 3: The Architecture
	3.1 Introduction
	3.2 Implemented Architecture
	Modules
	Module Interaction

	3.3 Resource Manager
	Adapter
	Classification
	Protocol Handler

	3.4 Service Manager
	Service Description and EXE
	Capsule
	Context Sensing Services

	3.5 Context Manager
	Context-awareness
	Context Model

	3.6 Coordination Manager
	3.7 Summary

	Chapter 4: A Validating Example: Ubiquitous Message Systems
	4.1 Ubiquitous Message System
	Developing Ubiquitous Message System
	Configuration of the Environment
	Starting the Ubiquitous Message System

	4.2 Summary

	Part III : Discussions
	Chapter 5: Connected Projects at PAI group
	5.1 WELCOME
	5.2 COCA
	5.3 XCM/UCM
	5.4 CB-SeC
	5.5 Focale

	Chapter 6: Related Works
	6.1 Gaia
	6.2 Aura
	6.3 Jini and JavaSpace
	6.4 Semantic Service Discovery
	6.5 one.world
	6.6 Ninja
	6.7 E-speak

	Chapter 7: Conclusions
	Heterogeneity Problem
	How the Problem Has Been Addressed
	Main contributions
	Main differences from Other Approaches
	Future Works

	Bibliography
	Curriculum Vitae

