
1

A Deliberative Model for Self-Adaptation Middleware Using Architectural
Dependency

N. Badr, A. Taleb-Bendiab, M. Randles, D. Reilly
School of Computing and Mathematical Science,

Liverpool John Moores University,
Byrom Street, Liverpool

L3 3AF, UK
{cmsnbadr, a.talebbendiab, cmsmrand, d.reilly}@livjm.ac.uk

Abstract: A crucial prerequisite to externalized adaptation is an
understanding of how components are interconnected, or more
particularly how and why they depend on one another. Such
dependencies can be used to provide an architectural model,
which provides a reference point for externalized adaptation. In
this paper, it is described how dependencies are used as a basis
to systems’ self-understanding and subsequent architectural
reconfigurations.

The approach is based on the combination of:
instrumentation services, a dependency meta-model and a
system controller. In particular, the latter uses self-healing
repair rules (or conflict resolution strategies), based on an
Extensible Beliefs, Desires and Intention (EBDI) model, to
reflect reconfiguration changes back to a target application
under examination.

I. INTRODUCTION
The term autonomic computing was “coined” by IBM to

draw an analogy with the autonomic nervous system: “the
autonomic nervous system frees our conscious brain from
having to deal with vital, but lower-level functions” [1]. The
concept of an autonomic computing system is one that
“knows itself” to such an extent that it is capable of self-
diagnosis and self-healing whenever internal problems and/or
external disturbances are encountered.

The realization of a system that “knows itself” is no mean
feat and stretches our existing computing and software
paradigms to the limit. For this reason, techniques to self-
understanding have drawn inspiration from other fields, such
as control engineering [2] and biology [3].

Through this paper, a system is developed that is capable of
imparting externalized reconfiguration in the event of runtime
conflicts. The term externalized is used in the same context as
in [4] to refer to reconfigurations handled outside the
application, which is under examination. The target
application is monitored from outside a given application.
Thus, adhering to the emerging separation of concerns
principle, a target application is monitored, from outside
itself by meta-level middleware services. These provide self-
management utilities to monitor the system’s states and act
upon the observed, or discovered, situations of concern
(adaptation triggers) such as failure or system tuning event
notification requiring reconfiguration actions. The approach
is based on the combination of: instrumentation services, a

dependency meta-model and a system controller. The
dependency meta-model is determined and maintained by
probe instrumentation services. The model is then used by the
system controller to carry out externalized reconfigurations,
which are reflected back onto the actual application, via the
probes. The controller operates in a feedback regime to at
best rule out, or at least minimize the effects of runtime
conflicts.

The paper is structured as follows: Section II, provides the
background material. Section III, describes the concept of
dynamic dependencies. Section IV describes the logical
architecture of the adaptation system. Section V describes a
case study and, finally, Section VI draws conclusions and
mentions future work.

II. BACKGROUND
Previous research has focused on the use of conventional

engineering principles to assist the understanding and
management of distributed systems [16]. In particular,
research has been undertaken into the use of software
instrumentation and controller concepts to monitor runtime
behaviour and stabilize “misbehaving” applications
respectively [23]. The choice of such conventional
engineering principles stems from their pragmatic yet sound
mathematical basis.

Some researchers believe that the key to self-understanding
lies in the maintenance of architectural models [4, 5, 6].
Through such architectural approaches, models of what the
system is currently doing can be compared against models of
what the system should be doing. Discrepancies resulting
from the comparisons may then be used as the basis for
internalized or externalized reconfiguration. At the heart of
such approaches are architectural models, which are
developed using Architectural Description Languages
(ADLs) such as Acme [7] and XADL [8], which describe
software architecture in terms of components and connectors.

Whilst the use of architectural models may be advocated, as
the basis of self-understanding and self-adaptation, it is in the
choice of basic elements, where this approach differs to those
of other researchers [5-7]. It is preferable to describe
architectures in terms of service providing components and
the dependencies that components have on one another.
Essentially, this provides a higher level of abstraction above

Proceedings of the 15th International Workshop on Database and Expert Systems Applications (DEXA’04) 
1529-4188/04 $ 20.00 IEEE 



2

the component connector model in terms of: components,
services and service dependencies. Also where components
provide and use services and a dependency exists when one
component uses or relies upon a service provided by another.

The concept of service dependencies is not new, as it has
been used before in database systems [9] and network
management [10]. Other research work has additionally used
dependencies to further an understanding of component-
based distributed applications [11, 12].

Figure 1: Dynamic Dependency Representation

III. AN ARCHITECTURAL MODEL FOR SELF-UNDERSTANDING
As illustrated in figure 1 a dependency can be regarded as

a directed relationship between two components in the sense
that one component (the dependent) depends on the service
provided by another component (the independent). A
dependency is a dynamic artefact, which has a lifetime and it
ceases to exist when the dependent component no longer
relies on the independent component’s service.

A. Dependency Probes

In previous research a dependency probe instrument has
been developed [11]. A dependency probe may be
dynamically deployed and attached to a component to
determine its complete dependency graph. By “complete”, it
is meant that all dependencies (primary, secondary, tertiary,
etc.), which could result in the component being deprived of
a particular service, are plotted on the graph.

To do so, the probe uses a visitor design pattern [13] to
traverse the component graph and calculate, for each
component, its current binding. However, the use of
dependency probes does require a compromise that
developers must include an administration object within their
application components, which is used to access the
component’s bindings.

The current prototype implementation, used here, utilises
Jini middleware [14] and more particularly Jini’s
Administrable interface. The Administrable
interface allows application developers to attach service-
specific information to their services so that the information
may be accessed and even changed by any client or any other
services within a Jini federation. Such information may be
retrieved, as an administration object, by invoking the
method getAdmin.

Also, as shown below, a Dependable interface and a
ServiceAdmin object are used to represent dependencies.

public interface Dependable {
public Class getDeclaringClass();
public Object[] getBindings(); }

A ServiceAdmin object implements this interface.

public class ServiceAdmin implements
Dependable {

public Object obj = null;
public Object[] bindings = null;
public ServiceAdmin(Object obj) {

this.obj = obj; }
public Class getDeclaringClass() {

return obj.getClass(); }
public Object[] getBindings() {

return bindings; } }

Essentially the compromise requires that any application-
level component, which is likely to be dependent on services
provided by other components, must include a
ServiceAdmin object. The component must also
implement the Administrable interface and therefore the
getAdmin method, which returns the ServiceAdmin
object. Probe instruments may then recursively access
consecutive ServiceAdmin objects that they encounter, as
the visitor design pattern executes, and build an in-memory
digraph as a series of nodes, representing services, and edges,
representing the dependencies, which provides the
dependency snapshot for a particular component.

Of course, to maintain the current dependency snapshot a
probe must also be aware of any changes in a component’s
dependencies. To do so, probes register to receive event
notifications from each Jini lookup service to which the
application-level component holds a reference.

B. Reconfiguration Based on Dependency Digraphs

A self-adaptive system controller prototype has been
developed, which combines the probes together with method
invocation monitor and remote event monitor instruments.
The method invocation monitors are capable of intervening in
method invocations and repackaging the invocations as new
meta-objects. In a similar fashion, event monitors register to
receive application-level events, which are repackaged as
new meta-objects.

The system controller fuses data from the monitors and
maintains an in-memory representation of the application’s
digraph. By examining meta-objects, the controller can detect
runtime conflicts. The simplest form of conflict is a Java
exception, whereas a more complex conflict occurs when a
component enters a fail-stop state. When conflicts are
detected the controller can examine any portion of the
applications digraph, or indeed the whole digraph in order to
formulate an appropriate course of action.

Such remedial action takes the form of a conflict resolution
strategy. In such a strategy the controller typically instantiates
an appropriate repair plan (series of actions) intended to
eliminate or reduce the conflict leading to the application’s
reconfiguration. Each self-healing session is supervised by an
associated controller service, which is implemented following

Proceedings of the 15th International Workshop on Database and Expert Systems Applications (DEXA’04) 
1529-4188/04 $ 20.00 IEEE 



3

the Extensible Beliefs, Desires and Intention (EBDI) model
[15-19], considered further in Section IV. Repair strategies
are represented as plans and encoded in XML.

Throughout the enactment of a given self-healing plan each
action (move) of a conflict resolution strategy is first applied
to the application’s digraph . If the move proves successful
(i.e. no further conflicts occur) the move is then reflected
onto the actual application via the dependency probe
instruments. This in turn leads to changes in the application’s
dependency digraph, which must be redrawn to give a
faithful “up to date” representation of the application.

Using this approach the dependency model is used like an
“electronic bread -board” to try out and experiment with
various circuit designs. When a successful design is reached
it is then reflected onto a “production quality” circuit. So far
only relatively simple conflict/resolution pairings have been
considered, such as fail-stop and hot swapping. In future
work, it is intended to address more substantial
conflict/resolution pairs.

IV. SYSTEM ARCHITECTURE
As shown in Figure 2, the logical architecture is based on

a three-layered model namely:
• Application Layer: which contains the application

components that provide a federation of application
services. Figure 2, shows how the application may be
reconfigured by the adaptation layer. We see how the
application cloud on the left has been modified to that
on the right, where a new server S4 has been
introduced to counteract a fail-stop condition in S3.

Figure 2. Logical Architecture of the Adaptation System.

• Adaptation Layer: which contains the meta-
representation of the application’s component
dependencies in the form of a dependency digraph.
The adaptation layer also contains: method and event
monitor services, gauge services, dependency probes
and the system controller.

• Middleware core services Layer: which contains a
registration service, discovery service and space
service. The middleware control service can establish
the required communication via its registration
service, as the application services register with a
middleware service locator.

A. System Repair Strategies
Repair strategies are an essential aspect of autonomic

computing, determining when, where and how the repair, and
any subsequent adaptation, is applied. This approach to repair
strategies relies on a dynamic solution treatment, which uses
XML documents. A lightweight system interpreter is used to
translate the XML based description of resolution strategies
into executable operations. The interpreter is used to map and
bind the XML-encoded “tags” of a repair strategy to Java
method calls. This process is implemented using the Java
reflection API, which allows the Java methods to be invoked
based on their XML encoded counterparts.

The resolution strategies are used to represent the effect of
various alternative resolutions. Initially, strategies were to be
based on the BDI model, which represents the Beliefs,
Desires and Intentions. However, the BDI model lacks
support for policy and norm constructs, which are central to
the developed deliberative autonomic self-healing approach.
Various extensions to the original BDI model were proposed
to address some of its documented weaknesses, including a
normative model, expounded in EDA [20] and BOID [21].
However, these extensions do not address the usage of the
norms and policies for optimizing its selected repair
strategies (i.e. intentions).

The development of system repair strategies was based on
the proposed Extensible Beliefs, Desires and Intention
(EBDI) model [15]. The EBDI model is a policy-based model
that provides a highly suitable architecture for the design of
situated intentional software that continuously monitors
and/or observes its environment and acts to change in
accordance with its situated BDI.

• Beliefs, which correspond to service information
derived and/or accessed from a range of sources,
including domain, environment or beliefs of other
services.

• Desires, which represent the state of affairs (i.e. in an
ideal world), which often maximize the services’ own
goals. By comparing a system beliefs set (observed
system states) against its desires the system may
detect a mismatch and trigger intentions (instantiate a
set of intentions) [22].

• Situated intentions, which represent action sets for
the system to undertake in a given situation to achieve
its specified desires and/or to address the mismatch
between the system environment (beliefs) and the
system’s desires (goals).

• Normative intention, which represents a set of actions
to be undertaken to ensure a specified set of policies.

Proceedings of the 15th International Workshop on Database and Expert Systems Applications (DEXA’04) 
1529-4188/04 $ 20.00 IEEE 



4

The policies, which may include obligation and
responsibility rules, are observed before a given
intention is enacted.

• Utility intention, which represents a set of system
actions examined by the policies to optimize its goal-
oriented intentions, such as cost or QoS.

B. System Reconfiguration
To achieve “optimal” reconfiguration the controller takes

into account a number of considerations to avoid any further
downstream inconsistencies. These inconsistencies may
include performance degradation and/or failures. Adopting a
similar approach to [23], a set of reconfiguration operators is
defined to perform an application’s architectural
reconfiguration. These operators are encoded in external
XML-based strategies. Typical operators are:
getClient(), and notifyClient().

V CASE STUDY
A prototype of the control system has been demonstrated

through an industrial case-study, namely EmergeITS [24].
EmergeITS (Fig. 3) is a software simulation that was
developed using Jini middleware technology to demonstrate
the concept of intelligent networked vehicles. EmergeITS
was developed and prototyped in collaboration with the
Merseyside Emergency Fire Service.

Figure 3: EmergeITS Architecture

One crucial service of EmergeITS is the 3-in-1 Phone
service, which allows a mobile phone or PDA device to be
used in one of three different modes: a cellular phone, a WAP
phone or a walkie-talkie. The 3-in-1 phone service may be
used for either voice communication or to receive multimedia
content, subject to the requirements of the user and
availability of a communication service provider. A prototype
of the system controller and its associated probe instruments
was incorporated into the case study to provide the control
software to support EmergeITS over the network.

The 3-in-1 phone service is hosted by an in-vehicle
application server, which also provides a gateway service.
The service manager is used to deploy application
components along with invocation monitor and event monitor
services, which repackage method invocations and events
sent and received as meta-objects. In the event of conflict, the

controller will select an appropriate repair strategy, thereby
providing a degree of conflict resolution and fault-tolerance.

The sequence of actions, of the controller, proceeds as
follows:

• The system controller monitors the method
invocations made by clients, such as connect(),
disconnect(), and send(), receive(). If an
invocation should fail the controller will try to repair
the failure using its repair operators, such as
notify(), add_Client(), etc.

• The controller uses two main criteria for the selection
of the appropriate operator for a specific conflict. The
first criterion is the satisfaction of the application-
level component’s attributes and parameters. The
second criterion is the execution of the operator
without exceptions, whilst also accounting for the
runtime system’s current structure and behaviour.

A repair operator is : remove_Client(), which may be
invoked by the controller to remove or disconnect a client
who has a low priority and has been connected for more than
a predefined time. In such a case, the client would be
removed from the list of clients that are using the service as
soon as the service’s rules are checked. The rule to enforce
this is:

service.num_connections > service.max_connections
where num_connections is the current number of connected
clients and max_connections is the maximum number of
connected clients. If further exceptional behaviour prevails,
the system controller will trigger additional conflict
resolution moves and subsequent reconfigurations as
appropriate. For example, in the 3-in-1 phone the invocation
of the connect() method on a GSM service, may result in
a RemoteConnectionException due to the
unavailability of a GSM service. This exception is then
checked by the controller, resulting in the activation of a
suitable resolution strategy based on the EBDI model. For
instance, the repair strategy may first attempt a specified
number of connection retries. If the retries are unsuccessful,
the strategy then searches for an alternative GSM service
provider or connects to another suitable alternate service such
as WAP. Figure 4, shows an example of an EBDI-based
conflict repair strategy encoded as an XML document.

VI CONCLUSIONS AND FUTURE WORK
In this paper an approach to externalized reconfiguration

based on the combination of: instrumentation services, a
dependency meta-model and a system controller has been
described. It has been shown how the dependency meta-
model is used to maintain a faithful architectural model of a
distributed computing application. It is believed that such a
model can be used to assist the understanding of an
application in terms of its structure and behaviour and serve
as the basis for externalized architectural reconfigurations.

The operations of the controller, which combines
diagnostic and EBDI-based resolution strategies, to minimize

Proceedings of the 15th International Workshop on Database and Expert Systems Applications (DEXA’04) 
1529-4188/04 $ 20.00 IEEE 



5

or rule out runtime conflicts, have been summarized. The use
of the controller has been demonstrated for managing a 3-in-1
phone service and dealing with simple conflicts that may
arise.

In future work it is intended to further develop the use of
conflict resolution strategies for dealing with more complex
conflicts. Additionally conflicts relating to security, such as
authorization and authentication conflicts will be addressed.

Figure 4: An XML Conflict Repair Strategy

REFERENCES
[1] A.G. Ganek and T.A. Corbi, “The Dawning of the Autonomic

Computing Era”, IBM Systems Journal, Vol. 42, No. 1, 2003.
[2] S. George, D. Evans and L. Davidson, “A Biologically Inspired

Programming Model for Self-Healing Systems”, in Proceedings of
First ACM SIGSOFT Workshop on Self-Healing Systems
(WOSS’02), Charleston, South Carolina, USA, 2002.

[3] Kokar, K. B., and Eracar, Y., “Control Theory -Based Foundation of
Self-Controlling Software.” IEEE Intelligent Systems: 37 -45, 1999.

[4] D. Garlan, B. Schmerl and J. Chang, “Using Gauges for
Architecture-Based Monitoring and Adaptation”, Working
Conference on Complex and Dynamic Systems Architecture,
Brisbane, Australia, December 2001.

[5] D. Garlan, B. Schmerl, “Model -Based Adaptation for Self-Healing
Systems”, in Proceedings of First ACM SIGSOFT Workshop on
Self-Healing Systems (WOSS’02), Charleston, South Carolina,
USA, 2002.

[6] S.W. Cheng, D. Garlan, B. Schmerl, J. Pedro Sousa, B. Spitznagel,
P. Steenkiste, and N. Hu, “Software Architecture -Based Adaptation
for Pervasive Systems”, in Lecture Notes in Computer Science,
Volume 2299, H. Schmeck, T. Ungerer, L. Wolf (Eds).

[7] D. Garlan, R.T. Monroe and D. Wile, “Acme: An Architecture
Description Interchange Language”, in Proceedings of CASCON
' 97, November 1997.

[8] E.M. Dashofy, A. van der Hoek, and R.N. Taylor, “An
Infrastructure for the Rapid Development of XML-based
Architecture Description Languages”,
in Proceedings of the 24th International Conference on Software
Engineering (ICSE2002), Orlando, Florida.

[9] H.C. Smith, “Database design: composing fully normalized tables
from a rigorous dependency diagram”, Communications of the
ACM Vol. 28, Issue 8, pp. 826-838, August 1985.

[10] G. Kar, A. Kar and S. Calo, “Managing Application Services Over
Service Provider Networks: Architecture and Dependency
Analysis”, in Proceedings of IEEE/IFIP Network Operations and
Management Symposium (NOMS 2000), Honolulu, HI, USA, April
2000.

[11] P.Hasselmeyer, “Managing Dynamic Service Dependencies”,
Twelfth International Workshop on Distributed Systems: Operations
and Management (DSCOM 2001), ISBN 0-8194-4245-3, Nancy,
France, October 2001.

[12] H. Cervantes and R.S. Hall, “Automating Service Dependency
Management in A Service-Oriented Component Model”, in
Proceedings of Sixth ICSE Workshop on Component-Based
Software Engineering: Automated Reasoning and Prediction,
Portland, Oregon, USA, May 2003.

[13] E. Gamma, R. Helm, R. Johnson, J. Vlissides and G. Booch,
“Design Patterns”, Addison-Wesley Publishing Company, ISBN: 0-
201-63361-2, 1995.

[14] Sun Microsystems Inc. “Jini Architecture Specification v.1.2, 2001.
[15] N. Badr, “An Investigation into Autonomic Middleware Control

Service to Support Distributed Self-Adaptive Software”, PhD
Thesis, School of Computing and Mathematical Sciences, Liverpool
John Moores University, Liverpool, 2003.

[16] N. Badr, D. Reilly and A. Taleb-Bendiab. "A Conflict
Resolution Control Architecture for Self-Adaptive", in
Proceeding of Proceedings of International Workshop
on Architecting Dependable Systems WADS 2002
(ICSE 2002). May 2002. Orlando, Florida.

[17] M. Allen, N. Badr, E. Grishikashvili, and A. Taleb-Bendiab.
"Adaptation Engine: an Agent-Based Framework for ad-hoc Service
Life-Cycle Management for Meta-Computing". in Proceeding of
Processing of AISP symposium on (IA and Grid Computing). 2002.
Imperial college London.

[18] E. Grishikashvili, N. Badr, D. Reilly, M. Allen, M.Yu, and A.Taleb-
Bendiab. "Autonomic computing: A Service-Oriented Framework
to Support the Development and Management of Distributed
Applications". in Proceeding of 3rd Annual Postgraduate
Symposium on The Convergence of Telecommunications,
Networking & Broadcasting (PGNet2002). 2002. U.K.

[19] E. Grishikashvili, N. Badr, D. Reilly, and A. Taleb-Bendiab, "From
Component-Based to Service-Based Distributed Applications
Assembly and Management". in Proceeding of Proceedings 29th
EuroMicro Conference. 2003. Turkey.

[20] J. Filipe, “A Normative and Intentional Agent Model
for Organization Modelling”, in Third International
Workshop on Engineering Societies in the Agents
World, Madrid, Spain, 2002.

[21] “Home of the BOID", http://boid.info/, accessed December.2003.
[22] M. Bratman, “Intentions, Plans and Practical Reason”, Harvard

University Press, 1987.
[23] D. Garlan and R. Stratton, “Rainbow: Architecture -Based

Adaptation of Complex Systems
”http://www.cs.cmu.edu/~able/rainbow/ accessed 2002.

[2 [24] D.Reilly and A.Taleb-Bendiab. "A Service Based
Architecture for In-Vehicle Telematics Systems". in
Proceeding of IEEE Proceedings of the 22nd
International Conference on Distributed
Computing Systems (ICDCS 2002). 2002. Vienna
Austria

Proceedings of the 15th International Workshop on Database and Expert Systems Applications (DEXA’04) 
1529-4188/04 $ 20.00 IEEE 


	footer1: 


