313 research outputs found

    Video Compression from the Hardware Perspective

    Get PDF

    Statistical lossless compression of space imagery and general data in a reconfigurable architecture

    Get PDF

    CABAC accelerator architectures for video compression in future multimedida : a survey

    Get PDF
    The demands for high quality, real-time performance and multi-format video support in consumer multimedia products are ever increasing. In particular, the future multimedia systems require efficient video coding algorithms and corresponding adaptive high-performance computational platforms. The H.264/AVC video coding algorithms provide high enough compression efficiency to be utilized in these systems, and multimedia processors are able to provide the required adaptability, but the algorithms complexity demands for more efficient computing platforms. Heterogeneous (re-)configurable systems composed of multimedia processors and hardware accelerators constitute the main part of such platforms. In this paper, we survey the hardware accelerator architectures for Context-based Adaptive Binary Arithmetic Coding (CABAC) of Main and High profiles of H.264/AVC. The purpose of the survey is to deliver a critical insight in the proposed solutions, and this way facilitate further research on accelerator architectures, architecture development methods and supporting EDA tools. The architectures are analyzed, classified and compared based on the core hardware acceleration concepts, algorithmic characteristics, video resolution support and performance parameters, and some promising design directions are discussed. The comparative analysis shows that the parallel pipeline accelerator architecture seems to be the most promising

    MASCOT : metadata for advanced scalable video coding tools : final report

    Get PDF
    The goal of the MASCOT project was to develop new video coding schemes and tools that provide both an increased coding efficiency as well as extended scalability features compared to technology that was available at the beginning of the project. Towards that goal the following tools would be used: - metadata-based coding tools; - new spatiotemporal decompositions; - new prediction schemes. Although the initial goal was to develop one single codec architecture that was able to combine all new coding tools that were foreseen when the project was formulated, it became clear that this would limit the selection of the new tools. Therefore the consortium decided to develop two codec frameworks within the project, a standard hybrid DCT-based codec and a 3D wavelet-based codec, which together are able to accommodate all tools developed during the course of the project

    Survey of advanced CABAC accelarator architectures for future multimedia.

    Get PDF
    The future high quality multimedia systems require efficient video coding algorithms and corresponding adaptive high-performance computational platforms. In this paper, we survey the hardware accelerator architectures for Context-based Adaptive Binary Arithmetic Coding (CABAC) of H.264/AVC. The purpose of the survey is to deliver a critical insight in the proposed solutions, and this way facilitate further research on accelerator architectures, architecture development methods and supporting EDA tools. The architectures are analyzed, classified and compared based on the core hardware acceleration concepts, algorithmic characteristics, video resolution support and performance parameters, and some promising design directions are discussed

    High-Speed FPGA Architecture for CABAC Decoding Acceleration in H.264/AVC Standard

    Get PDF
    This is a post-peer-review, pre-copyedit version of an article published in Journal of Signal Processing Systems. The final authenticated version is available online at: https://doi.org/10.1007/s11265-012-0718-y.[Abstract] Video encoding and decoding are computing intensive applications that require high performance processors or dedicated hardware. Video decoding offers a high parallel processing potential that may be exploited. However, a particular task challenges parallelization: entropy decoding. In H.264 and SVC video standards, this task is mainly carried out using arithmetic decoding, an strictly sequential algorithm that achieves results close to the entropy limit. By accelerating arithmetic decoding, the bottleneck is removed and parallel decoding is enabled. Many works have been published on accelerating pure binary encoding and decoding. However, little research has been done into how to integrate binary decoding with context managing and control without losing performance. In this work we propose a FPGA-based architecture that achieves real time decoding for high-definition video by sustaining a 1 bin per cycle throughput. This is accomplished by implementing fast bin decoding; a novel and area efficient context-managing mechanism; and optimized control scheduling.Ministerio de Ciencia e Innovación; TIN2010-17541Xunta de Galicia, Consellería de Cultura, Educación e Ordenación Universitaria; 2010/6Xunta de Galicia, Consellería de Cultura, Educación e Ordenación Universitaria; 2010/28

    Distributed Video Coding for Multiview and Video-plus-depth Coding

    Get PDF

    Low Power Architectures for MPEG-4 AVC/H.264 Video Compression

    Get PDF

    Performance analysis of H.264 encoder for high-definition video transmission over ultra-wideband communication link.

    Get PDF
    With the technological advancement, entertainment has become revolutionized and the High-definition (HD) video has become a common feature of our modern amusement devices. Moreover, the demand for wireless transmission of HD video is rising increasingly for its ubiquitous nature, easy installation and relocation. The high bandwidth requirement is the main concern for wireless transmission of high quality video streams. Research has been going on by the consumer electronics industry to provide different solutions of this issue, for the last few years. In this research work, HD video transmission feasibility using the Ultra-wideband (UWB) communication channel is analyzed. The UWB channel is selected for its short-range, high-speed data transmission capability at low-cost, and low-power consumption. The maximum transmitting range of this technology is about 10 m at 100 Mbps data rate. Simulation is conducted by controlling key parameters, such as, in-loop deblocking filter, group of pictures, and quantization parameter of an H.264/AVC encoder. Here, standard HD video streams with different motion characteristics are used, and the impact of these parameters change on the reconstructed video quality and the broadcasting data rate are analyzed. Finally, a generalized parameters settings, and a video content dependent settings for an H.264/AVC encoder are proposed for different bandwidth requirements, as well as acceptable video quality. Performance evaluation of these parameters settings is performed, and the results are quite satisfactory as long as the symbol energy to noise power density ratio, Es/No, is above 15. With the proposed parameters settings, maximum 20 Mbps data rate is achieved with 33.5 dB Y-PSNR
    corecore