EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

CABAC accelerator architectures for video compression in
future multimedida : a survey

Citation for published version (APA):

Jan, Y., & Jozwiak, L. (2009). CABAC accelerator architectures for video compression in future multimedida : a
survey. In K. Bertels, N. Dimopoulos, & C. R. Silvano (Eds.), Proceedings 9th international workshop on
Embedded computer systems : architectures, modeling, and simulation, SAMOS 2009, July 20-23, 20089,
Samos, Greece (pp. 24-35). (Lecture Notes in Computer Science; Vol. 5657). Springer.
https://doi.org/10.1007/978-3-642-03138-0_4

DOI:
10.1007/978-3-642-03138-0_4

Document status and date:
Published: 01/01/2009

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://doi.org/10.1007/978-3-642-03138-0_4
https://doi.org/10.1007/978-3-642-03138-0_4
https://research.tue.nl/en/publications/041252c5-123f-4219-a188-e1cbf4c38044

CABAC Accelerator Architectures for Video
Compression in Future Multimedia: A Survey

Yahya Jan and Lech Jozwiak

Faculty of Electrical Engineering
FEindhoven University of Technology, The Netherlands
{Y.Jan,L.Jozwiak}@tue.nl

Abstract. The demands for high quality, real-time performance and
multi-format video support in consumer multimedia products are ever
increasing. In particular, the future multimedia systems require efficient
video coding algorithms and corresponding adaptive high-performance
computational platforms. The H.264/AVC video coding algorithms pro-
vide high enough compression efficiency to be utilized in these systems,
and multimedia processors are able to provide the required adaptabil-
ity, but the algorithms complexity demands for more efficient computing
platforms. Heterogeneous (re-)configurable systems composed of multi-
media processors and hardware accelerators constitute the main part of
such platforms. In this paper, we survey the hardware accelerator archi-
tectures for Context-based Adaptive Binary Arithmetic Coding
(CABAC) of Main and High profiles of H.264/AVC. The purpose of
the survey is to deliver a critical insight in the proposed solutions, and
this way facilitate further research on accelerator architectures, architec-
ture development methods and supporting EDA tools. The architectures
are analyzed, classified and compared based on the core hardware ac-
celeration concepts, algorithmic characteristics, video resolution support
and performance parameters, and some promising design directions are
discussed. The comparative analysis shows that the parallel pipeline ac-
celerator architecture seems to be the most promising.

Keywords: RC hardware architectures, accelerators, multimedia pro-
cessing, UHDTV, video compression, H.264/AVC, CABAC.

1 Introduction

The real-time performance requirement of modern multimedia applications, like:
video conferencing, video telephony, camcoders, surveillance, medical imaging,
and especially High Definition Television (HDTV) and new emerging Ultra
HDTV (UHDTV) in video broadcasting domain, demand for highly efficient
computational platforms. The problem is amplified by the quickly growing re-
quirements of higher and higher quality, especially in the video broadcast do-
main, what results in a huge amount of data processing for the new standards of
digital TV, like UHDTYV that requires a resolution of (7680x4320)~ 33Megapixel

K. Bertels et al. (Eds.): SAMOS 2009, LNCS 5657, pp. 24 2009.
© Springer-Verlag Berlin Heidelberg 2009

CABAC Accelerator Architectures for Video Compression 25

with a data rate of 24Gbps. Additionally, the latest standards video coding al-
gorithms are much more complex due to the digital multimedia convergence and
specifically access of multimedia through a variety of networks and different cod-
ing formats used by a single device, as well as, the slow vanishing of the old video
coding standards (e.g. MPEG-2) and widespread adaptation of the new stan-
dards (e.g. H.264/AVC, VC1 etc). The computational platforms for multimedia
are also required to be (re-)configurable, to enable their adaptation to the various
domains, accessing networks, standards and work modes. Hardware accelerators
constitute the kernel of such (re-)configurable high-performance platforms.

Despite of spectacular advances in microelectronic industry, the future multi-
media systems cannot be realized using the conventional processor architectures
or the existing multimedia processors. They require highly efficient specialized
hardware architectures to satisfy the stringent functional and non-functional re-
quirements, and be flexible enough to support multiple domains, standards and
modes, and have to be implemented with SoC platforms involving embedded
(re-)configurable hardware. In particular, (re-)configurable hardware accelera-
tors are indispensable for the development of these specialized and demanding
systems, as well as, new design and design automation methodologies to support
development of such accelerators.

H.264/AVC [1] is the latest multi-domain video coding standard that pro-
vides the compression efficiency of almost 50% higher than former standards
(e.g. MPEG-2) due to its advance coding tools. However, its computational com-
plexity is about four times higher compared to its predecessors, and induces the
necessity of the real-time video coding through a sophisticated dedicated hard-
ware design.

H.264/AVC supports two entropy coding modes: Context Adaptive Variable
Length Coding (CAVLC) and Context-based Adaptive Binary Arithmetic Cod-
ing (CABAC) [2]. CAVLC covers Baseline profile of H.264/AVC for low-end
applications, like video telephony, while CABAC targets Main and High profiles
for high-end applications, like HDTV. CABAC improves the compression effi-
ciency 9%-14% as compared to CAVLC at the cost of an increase in complexity
of 25-30% and 12% for encoding and decoding, respectively, in terms of access
frequency [2][3][4]. Its purely software based implementation results in an un-
satisfactory performance even for a low quality and resolution video (e.g. 30-40
cycles are required on average for a single bin decoding on DSP [3]). The situ-
ation is much worse for High Definition (HD) video as the maximum bin rate
requirement of HD (level 3.1 to 4.2) in H.264/AVC, averaged across a coded pic-
ture, ranges from 121 Mbins/s to 1.12 Gbins/s [0]. This makes the software based
implementation inadequate to achieve the real-time performance for HD video
as a multi-giga hertz RISC processor would be required for HD encoding in real-
time [6]. Moreover, the serial nature of CABAC paralyzes the other processes
in video codec that could be performed in parallel, making CABAC a bottle-
neck in the overall codec performance. Consequently, to achieve the required
performance, flexibility, low cost and low energy consumption, a sophisticated
(re-)configurable hardware accelerator for CABAC is an absolute necessity.

26 Y. Jan and L. Jozwiak

However, the bitwise serial processing nature of CABAC, the strong dependen-
cies among the different partial computations, a substantial number of memory
accesses, and variable number of cycles per bin processing put a huge challenge
on the design of such an effective and efficient hardware accelerator. Numerous
research groups from academia and industry all over the world have proposed
different hardware architectures for CABAC using different hardware acceler-
ation concepts and schemes. Our work reported in this paper is performed in
the framework of a research project that aims to develop an adequate design
methodology and propose supporting EDA tools for development of demanding
(re-)configurable hardware accelerators.

This paper surveys several most interesting recently proposed hardware accel-
erator architectures for CABAC. Its main purpose is to deliver a critical insight
in the proposed hardware accelerator solutions, and this way facilitate our own
and other researchers further work on (re-)configurable accelerator architectures
for future complex multimedia applications, architecture development methods
and supporting EDA tools. The architectures are analyzed, classified and com-
pared based on the core hardware acceleration concepts, algorithmic character-
istics, video resolution support and performance parameters in the hardware
accelerator domain, like throughput, frequency, resource utilization and power
consumption. Based on the critical architecture comparisons some promising de-
sign directions are discussed in view of the requirements of current and future
digital multimedia applications.

The rest of the paper is organized as follows. Section Bl introduces CABAC.
Section [covers the main hardware accelerator concepts and classification. Using
them, Section [presents a critical review of hardware accelerator architectures
for CABAC, comparison of various architectures and discusses some promising
design directions. Section [l concludes the paper.

2 Introduction to CABAC

CABAC utilizes three elementary processes to encode a syntax element (SE), i.e.
an element of data (motion data, quantized transform coefficients data, control
data) represented in the bitstream to be encoded. The processes are: binarization,
context modeling and binary arithmetic coding, as shown in Figure [

The binarization maps a non-binary valued SE to a unique binary represen-
tation referred to as bin string. Each bit of this binary representation is called
a bin. The reduction of the SE alphabet size to binary in binarization not only
minimizes the complexity of arithmetic coder, but also enables the subsequent
context modeling stage to more efficiently model the statistical behavior of the
syntax elements (SEs). Four basic binarization schemes are used in CABAC [2].

The context modeling process determines the probabilities of the bins using
pre-defined context (probability) models, before they are encoded arithmetically.
The context models are selected taking into account the neighboring informa-
tion of the bins/SEs referred to as context. CABAC defines 460 unique context
models, each of which correspond to a certain bin or several bins of a SE, and are

CABAC Accelerator Architectures for Video Compression 27

Context Model Update
v
Bin, Context
Model
Mon-Binary | Context - F_!egular |
Valued Syniax ¥ Modelar Coding Engine
Element
» Binarizer Bin string (loop
Syntax - owver hins) Reqular Bi)-'b it
egular Bin utpu
Element 4' C;(i::d Bitstream
. A s
Binary Valued ‘v . *
. Bypass Bin
Syntax Element o Ypa i Bypass |
Coding Engine
Binary Arithmetic Coder

Fig. 1. Block Diagram of CABAC Encoder

updated after bin encoding in order to adopt the models to the varying statistics
of the video data. Each context model comprises of the 6-bit probability state
index (pStateldx) and the most probable symbol (MPS) value of the bin [2].

CABAC utilizes the table-based binary arithmetic coder [7] to avoid the costly
multiplication process in probability calculation. The binary arithmetic cod-
ing engine consists of two sub-engines: regular and bypass, as shown in Figure[Il
The regular coding engine utilizes adaptive probability models, but the bypass
coding engine assumes a uniform probability model to speed up the encoding
process. To encode a bin, the regular coding engine requires the probability
model (pStateldx, MPS) and the corresponding interval range (width) R and
base (lower bound) L of the current code interval. The interval is then divided
into two subintervals according to the probability estimate (prpg) of the least
probable symbol (LPS). Then, one of the subintervals is chosen as the new inter-
val based on whether the bin is equal to MPS or LPS, as given in the following
equations [2].

Rpew=R—Rpps and Lpew =1L if bin= MPS (1)

Rpew = Rrps and Lpew =L+ R— Rpps if bin=LPS (2)

where Rpps = R . ppps represents the size of the subinterval associated with
the LPS. The probability model is then updated, and the renormalization takes
place to keep R and L within their legal ranges. The process repeats for the
next bin. In bypass encoding the probability estimation and update processes
are bypassed, because uniform probability is assumed for a bypass bin.

3 Main Concepts of Hardware Acceleration

Hardware accelerator is an application-specific hardware sub-system that can
implement a given function more effectively and efficiently than in software run-
ning on a conventional processor. A good example is the graphic accelerator.
The main concepts of hardware acceleration can be summarized as follows:

28 Y. Jan and L. Jozwiak

— Parallelism exploitation for execution of a particular computation instance
due to availability of multiple application-specific operational resources
working in parallel;

— Parallelism exploitation for execution of several different computation in-
stances at the same time due to pipelining;

— Application-specific processing units with tailored processing and data
granularity.

More specifically these concepts can be oriented towards the data parallelism,
functional parallelism and their mixture. In data parallelism the multiple data
instance of the same type are processed in parallel, provided the application al-
lows and the resources are available. The functional parallelism simultaneously
performs different operations on (possibly) different data instances. Also, the
speculative execution can be used to enable for more parallelism. To design a
high quality hardware accelerator, it is necessary to perform a thorough analysis
of the application algorithms and exploit specific computational characteristics
inherent to these algorithms. Dependent on the different characteristics discov-
ered and accounted for result in different approaches to the design of hardware
accelerators, and therefore, in the past a number of different basic architecture
types were proposed:

Straightforward datapath/controller hardware architecture

Parallel hardware architecture

Pipeline hardware architecture

Parallel pipeline hardware architecture

General purpose processor (GPP) augmented by loosely coupled hardware
accelerator resulting from the HW/SW co-design approach
Extensible/Customizable Application Specific Instruction Set Processor
(ASIP) with basic accelerators in the form of instruction set extensions (ISE)

These basic architectures will be used to categorize the CABAC accelerators.

4 Overview of Hardware Accelerators for CABAC

The accelerator architectures are analyzed here in a systematic conceptual way,
when studying the computational characteristics of CABAC, and thus differently
than in the sporadic fragmentary comparisons that can be found in the litera-
ture. Moreover, we focus on the main problems and solutions that drastically
effect the achieved results. We will not actually consider the mixed HW/SW
solution for CABAC, i.e. accelerated GPP augmented by loosely coupled hard-
ware accelerator, because this option is not promising regarding the real-time
requirements satisfaction due to the strong dependencies in the computations
and the resultant high communication overhead. The performance of different
approaches is analyzed and the results are compared, when focusing on the
throughput, maximum frequency and area. In almost all of the reviewed papers

CABAC Accelerator Architectures for Video Compression 29

no systematic analysis is provided or methods proposed on how to integrate the
CABAC accelerator in a complete H.264/AVC en-/decoder.

Before considering the accelerator architectural approaches, we have to give
a brief overview of the main implementation issues in CABAC. Five memory
operations are involved in the en-/decoding of a single bin and two blocking
dependencies that hampers the parallel and pipeline approaches. The first de-
pendency is relevant to the context model update. Unless the context model
is not updated for the current bin, the next bin processing cannot be started,
because the same context model may be used to en-/decode the next bin. Other
dependency involves the interval range (R) and base (L) update. Unless both are
not renormalized in the renormalization stage, which involves multiple branches
and a variable number of cycles, the next bin processing cannot be initiated, be-
cause the probability estimation of the next bin depends on the current interval
range. These strong dependencies are some of the main challenges in the accel-
erator design, and a number of solutions are proposed to tackle these problems.

4.1 Straightforward Datapath/Controller Accelerators

The straightforward datapath/controller approach relies on the data flows in
the algorithm of the software based implementation. This accelerates the com-
putations to some degree, but does not exploit the true (parallel) nature of the
application algorithm and improvement achievable using the hardware acceler-
ation approach. This approach is followed in some CABAC accelerators, in the
sense that processing is performed sequentially on a per bin basis, and possibil-
ities are not explored for a multi-bin parallel processing. This always limits the
performance to maximally 1 bin/cycle, as the simple serial hardware implemen-
tation without any optimizations takes as many as 14 cycles to encode a single
bin [8]. Some optimization technique like pre-fetching and simple parallelism [S]
etc. were proposed that enables to process one bin in 5 cycles. Chen et al. [9]
proposed an FSM and a memory scheme for neighboring SEs, which results in
the decoding throughput of 0.33~0.50 bin/cycle. However, it decodes only CIF
video at 30fps.

4.2 Parallel Hardware Accelerators

The inefficiency of the straightforward acceleration approaches to en-/decode in
real-time HD video motivated the research community to exploit some alter-
native approaches to the design of CABAC accelerators. The most promising
approach to achieve real-time performance for high resolution video is to pro-
cess more than one bin/cycle, i.e. to utilize a parallel approach. However, in the
en-/decoding of even a single bin complex interdependencies have to be resolved
as discussed before, and consequently, the algorithm cannot be parallelized in
its true basic nature. Utilizing the static and dynamic characteristics of the SEs
that can be discovered through an analysis of CABAC algorithm for real video
sequences, the parallelism can be achieved up to some level for some specific SEs,
what can result in processing of more than one bin/cycle. However, in parallel

30 Y. Jan and L. Jozwiak

en-/decoding of two or more regular bins the context models have to supplied to
the coding engines. Due to the blocking dependencies, this cannot be performed
in parallel. Also the context model fetching takes a substantial time. The de-
tails of these characteristics of SEs and the corresponding parallel schemes are
discussed below.

Yu et al. [3] proposed the first parallel architecture for CABAC decoding.
Unlike the conventional approaches [8][9] that take a number of cycles to decode
a single bin, this architecture decodes 1~3 bin/cycle. The parallelism in this
architecture is achieved through a cascade of the arithmetic decoding engines:
two regular ones and two bypass. This enables the decoding of 1 Regular Bin
(IRB), 1RB with 1 Bypass Bin (1BB), 2RB with 1BB and 2BB bins in parallel
for frequently occurring SEs, like residual data. To reduce the context memory
accesses, relevant context models of a SE or group of SEs are accessed in blocks
and are stored in a high speed register bank. However, it results in an extra cost
of the register bank. The architectures [I0][TT][12][13][14] are based on the same
concept, but after some specific extensions are capable to en-/decode HD video.
In [T5] sixteen cascaded regular decoding units are used for more speed up for
frequent SEs. However, due to dependencies the throughput remains less than 1
bin/cycle, and it causes an increase in the critical path latency and circuit area.
In [16] five different architectures for CABAC encoder are designed and analyzed
for area/performance tradeoff. Results show that two regular with bypass bins
architectures perform better for the high quality video than the others.

A predictive approach is employed by Kim et al. [I7]. Unlike the architectures
[3][10] [I10[I2] [I4] [I5], in which there is a latency due to the cascaded arithmetic
coding engine, this architecture initiates decoding of two bins simultaneously
by prediction. However, due to mis-prediction only 0.41 bin/cycle is achieved,
although with a high frequency of 303MHz.

Algorithmic optimizations can expose far more parallelism than available in
the original application algorithm. A novel algorithm is proposed by Sze et al.
[5] which is fundamentally parallel in nature and deterministically en-/decode
several (N) bins with different context at the same time. The context models
for different bins are determined simultaneously using conditional probabilities,
what is different than in the predictive strategy [17] and the cascaded approaches
[3] [10] [I11[12] [I4][I5]. The two possible context models that could be used for the
second bin are determined by taking into account the two possible values of the
first bin (0 or 1). Its software implementation (N=2) enables 2 bins/cycle at
a cost of 0.76% increase in bit rate compared to the original CABAC algo-
rithm. However, such optimizations require 3 to 4 multiplications for two bins
en-/decoding as well comparators, which could make its hardware implementa-
tion costly in resources.

4.3 Pipeline Hardware Accelerators

Although, the parallelism in the form of multi-bin processing in CABAC outper-
forms the conventional approach, it increases the complexity of the architecture,
specially in the renormalization and context management. The cascaded multiple

CABAC Accelerator Architectures for Video Compression 31

processing engines also increase the critical path delay. Moreover, the hardware
resources are much increased with not much gain from acceleration [4]. In addi-
tion, the multi-bin processing only accelerates the decoding of certain frequent
SEs, is not equally well effective for all SEs, and the number of cycles per bin
processing varies. Therefore, the pipeline concept of hardware acceleration is also
utilized in CABAC, with the prime goal of achieving the real-time performance
for HD video. A number of pipeline schemes are proposed to effectively overcome
the problems and complexities of other schemes discussed earlier. However, the
pipeline hazards appear as a byproduct of pipelining due to the tight depen-
dencies in the CABAC algorithm. There are two pipeline hazards in CABAC:
data and structural. A data hazard occurs when the same context model is used
for the next bin as for the current bin, which is a read after write (RAW) data
hazard. A structural hazard occurs when the context memory is accessed at the
same time due to the context model write for the current bin and context model
read for the next bin. These hazards cause the pipeline stalls that decrease the
throughput of the purely pipelined architecture from the maximum of 1 bin/cycle
to a lower value. Below the details of the pipeline schemes, solutions for pipeline
hazards and performance of proposed pipeline accelerators are discussed.

Zheng et al. [18] proposed a two stage pipeline decoding architecture for resid-
ual SEs only. The stalls in the pipeline are eliminated using standard look ahead
(SLA) technique, to determine the context model for the next bin using both
possible values of the current bin. The proposed architecture supports HD1080i
video. This SLA approach is also used in pipeline architectures [19][20][21]. Yi et
al. [22] proposed a two stage pipeline decoding architecture, instead of 4 usual
stages, to reduce the pipeline latency and to increase the throughput. The data
hazard are removed using the forwarding approach, and the structural hazards
by using a context model reservoir (CMR) with context memory. However, the
SE switching causes stalls due to CMR update, and this limits the throughput
to an average of 0.25 bin/cycle. This problem is solved in [23] by using a SE
predictor that increases the throughput to 0.82 bin/cycle.

Li et al. [4] proposed a three stage dynamic pipeline codec architecture. The
pipeline is dynamic in the sense that the pipeline latency varies between one
and two cycles depending on the bin type. No pipeline stalls occur for the BB
and the RB of value MPS with the interval range (R) in its limit. For data
hazards removal a pipeline bypass scheme is used and for structural hazards
a dual-port SRAM. The bin processing rate of [I8][23] is higher than of [4],
because of the coarse pipeline stages with efficient context management. Tian
et al. [24] proposed a three stage pipeline encoding architecture. Two pipeline
buffers are introduced to resolve the pipeline hazards and the latency issue of
[4], what results in the throughput of exactly 1 bin/cycle. Chang [25] proposed
a three stage pipeline architecture that combines together the different speed
up methods earlier proposed like: pipeline stalls reduction due to SEs switching,
context model clustering for decreasing context memory access, and two-bin
arithmetic decoding engine. The architecture achieves the average throughput
of 0.63 bin/cycle at a comparatively high frequency, as shown in Table [Il

32 Y. Jan and L. Jozwiak

Table 1. Comparison of Different Hardware Accelerator Architectures

Design Freq. Throughput VLSI Tech. Circuit Resolution
Approach MHz Bin(s)/Cycle TSMC(um) Area (gates) Support
Datapath/Control

[8] Codec 30 0.2 Virtex-11 80,000(Inc.)* SD480i@30fps
[9] Decoder 200 0.33~0.5 0.13 138,226(Inc.) CIF@30fps
Parallel

3] Decoder 149 1~3 0.18 0.3mm?>+32x105reg SD480@30fps
[T4] Encoder 186 1.9~2.3 0.354M5 19,426(Exc.) CIF, HD
[15] Decoder 45 <1 0.18 42,000(Exc.) HD1080i@30fps
[I'7] Decoder 303 0.41 0.18 - SD480i@30fps
Pipeline

@] Codec 230 0.607™¢/0.50P¢ 0.18 0.496mm?(Inc.) HD1080i@30fps
[I8] Decoder 160 1 0.18 46,400(Inc.) HD1080i@30fps
[22] Decoder 225 0.25/0.82[23] 0.18 81,162+12.18KB HD1080p@25fps
[24] Encoder 186 1 0.354M5 19,100(Exc.) -

[25] Decoder 250 0.63 0.18 35,615(Exc.) HD1080p@30fps
Parallel pipeline

[21] Decoder 200 1.27 0.18 28,956+10.81KB HD1080i@30fps
ASIP/ISE

[31] Decoder 120 0.021/0.028"* - - -

*Context Memory included in the area calculation **LPS/MPS bins

4.4 Parallel Pipeline Hardware Accelerators

The parallel pipeline schemes combine the acceleration features of both ap-
proaches, what often result in a super fast accelerator. We could benefit from
this approach, if we would be able to process multiple bins in a pipeline fashion
without any stall. Although we cannot fully utilize this approach, because it will
make the accelerator architecture very complex or may even be impossible to
design, its limited practical application is possible by utilizing the characteristics
of SEs, like the processing of a single regular bin with one or more bypass bins
in parallel pipeline fashion. This approach drastically improves the throughput
which is the requirement of the future high quality and resolution systems.

Shi et al. [21] proposed a parallel pipeline approach for the real-time decoding
of HD video with 4-stages that can decode 1RB or 2BB bin(s)/cycle without
any stall. Structural hazards are solved using two dual-port SRAMs and data
hazards using forwarding technique and redundant circuitry. Two bypass bins
are processed in parallel with no pipeline stalls due to switching from the regular
to bypass mode and back to regular mode, what makes this architecture unique.
Due to the processing of multiple bypass bins in pipeline average throughput of
1.27 bins/cycle is achieved.

4.5 ASIP/ISE Based CABAC Accelerators

The configurability and extensibility makes ASIP interesting option for the high-
end adaptive applications. The extensibility in the form of ISE could be used to

CABAC Accelerator Architectures for Video Compression 33

cope with evolving standards and results in an efficient real-time processing for
high resolution video applications.

Flordal et al. [26] proposed a multi-standard (JPEG2000, H.264) CABAC
encoder. A Multi-branch instruction is proposed here for the renormalization
in CABAC. Unfortunately, this approach results in unsatisfactory performance
for HD video. The work of Osorio et al. [27] is also in this direction, but it
is based on an array of simple processors implementing the different tasks of
various entropy en-/decoders (e.g for CABAC 5 processors array). Comparative
study with Texas Instruments TMS320C6711 VLIW DSP shows only results for
QCIF resolution video, however no real figures are given for HD video.

Nunez et al. [28] extended the ISA of SPARC-compatible Leon CPU with 7
instructions just to integrate the CABAC in H.264/AVC encoder. The CABAC
algorithm is implemented without context management and binarization as a
single hardware accelerator unit in a pipeline style. Similarly, in [29] two new
instructions are proposed for Trimedia TM3270 media-processor that accelerate
only the arithmetic coding part of the CABAC, which supports only D1 reso-
lution video. Tensilica 388VDO and Silicon HiveFlex VSP2500 video processors
also utilizes specific instruction set extensions for CABAC implementation that
support D1 and HD resolution videos, respectively. Since Multiprocessor SoC
(MPSoC) are becoming more and more popular in accelerating the back-end
of H.264/AVC. Osorio et al. [30] proposed a novel microprogrammed CABAC
decoder for MPSoC based H.264/AVC Codec. Rouvinen et al. [3I] utilize the
Transport Triggered Architecture (TTA) for implementation of CABAC. Easy
customization of TTA resources and programmable visible interconnect struc-
ture give many possibilities for the designer to get an optimized ASIP solution.
Nine transport buses with other special functional units (SFU) are proposed for
according to the CABAC requirement. However, 36 and 48 cycles are consumed
in the MPS and LPS bins decoding, respectively. This solution is thus not suit-
able for HD applications but its flexibility favors multi-standard codec design.
Most of the ASTP/ISE approaches discussed so far do not support HD video. We
conclude that for HD video any ASIP/ISE other than implementing the whole
coarse-grain CABAC accelerator as a single instruction seems to be less effective
due to the introduction of extra clock cycles for each instruction fetch.

4.6 Comparison

Most of the results are compared in the previous sections along with the architec-
ture discussion. However, the overall view is also important. The straightforward
approach usually en-/decode from 0.2 to 0.5 bin/cycle, as shown in Table[Il Since
the SEs are processed in a sequential manner, no substantial speed up is achieved.
In the parallel approach the number of bins/cycle fluctuates between a certain
maximum and minimum, as it depends on the type of SE. It may result in 2, 3
or even 4 bins/cycle if supported by the architecture as in [12][I4]. In the purely
pipeline approach the throughput never goes above more than 1 bin/cycle, but
independent of SEs it remains at 1 or close to 1 bin/cycle. However, in the paral-
lel pipeline approach some extra performance is obtained from the characteristics

34 Y. Jan and L. Jozwiak

of the SEs that enable to process some bins in parallel, like in reference [2I] for
the bypass bins. This result in average throughput of more than one bin/cycle for
HD video. The decoding rate of 254Mbins/s at operating frequency of 200MHZ
of this approach is much higher than ~45Mbins/s required for HD1080i video.
This can be further improved, if the processing of one or more regular bin(s)
and/or one or more bypass bin(s) is performed in parallel, but with steady and
balanced pipeline to maintain the throughput consistently, simple control and
minimal area. Also, the parallel approach seems to be more effective in case of
CABAC encoding due to the availability of next bin(s) of a SE. However, in
CABAC decoding the next bin information is available only after the processing
of the current bin, so pipelined architectures perform better. These kind micro-
architectural decisions could be employed in high-level synthesis (HLS) tools to
automate the design of such complex accelerators.

5 Conclusion

In this paper, we reviewed numerous approaches to the hardware accelerator
architectures for CABAC from the viewpoint of the hardware acceleration con-
cepts and performances. The features and issues involved in each architectural
approach are discussed with focus on the real-time, high resolution and high qual-
ity video processing capabilities. From the analysis and comparisons it follows
that the parallel pipeline accelerator approach seems to be the most promising,
because of high and steady throughput, simple control and hardware efficiency
as compared to other architectures. However, the computational requirements
of the current and future multimedia systems are ever increasing and require
further research on accelerator architecture concepts, as well as adequate design
methodologies and EDA tools for the development of accelerator architectures.

References

1. ITU-T: Recommendation and Final Draft International Standard of Joint Video
Specification (ITU-T Rec. H. 264— ISO/IEC 14496-10 AVC) (May 2003)

2. Marpe, D.a.: Context-based adaptive binary arithmetic coding in the h.264/avc
video compression standard. IEEE Transactions on CSVT, 620-636 (July 2003)

3. Yu, W., et al.: A high performance cabac decoding architecture. IEEE Transactions
on Consumer Electronics, 1352-1359 (November 2005)

4. Li, L., et al.: A hardware architecture of cabac encoding and decoding with dynamic
pipeline for h.264/avc. J. Signal Process. Syst., 81-95 (2008)

5. Sze, V., et al.: Parallel cabac for low power video coding. In: 15th IEEE Interna-
tional Conference on ICIP 2008, October 2008, pp. 2096-2099 (2008)

6. Shojania, et al.: A high performance cabac encoder. In: NEWCAS, pp. 315-318
(2005)

7. Marpe, D., et al.: A highly efficient multiplication-free binary arithmetic coder and
its application in video coding. In: ICIP 2003, September 2003, pp. 263266 (2003)

8. Ha, V., et al.: Real-time mpeg-4 avc/h.264 cabac entropy coder. In: 2005 Digest of
Technical Papers. In: International Conference on ICCE, January 2005, pp. 255—
256 (2005)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

CABAC Accelerator Architectures for Video Compression 35

. Chen, J.W., et al.: A hardware accelerator for context-based adaptive binary arith-

metic decoding in h.264/avc. In: ISCAS 2005, May 2005, pp. 4525-4528 (2005)
Mei-hua, et al.: Optimizing design and fpga implementation for cabac decoder. In:
International Symposium on HDP 2007, June 2007, pp. 1-5 (2007)

Bingbo, L., et al.: A high-performance vlsi architecture for cabac decoding in
h.264/avc. In: 7th International Conference on ASICON, October 2007, pp. 790—
793 (2007)

Deprd, D.A., et al.: A novel hardware architecture design for binary arithmetic
decoder engines based on bitstream flow analysis. In: SBCCI, pp. 239-244 (2008)
Jian, et al.: A high-performance hardwired cabac decoder. In: ICASSP 2007, pp.
3740 (2007)

Osorio, R.R., et al.: High-throughput architecture for h.264/avc cabac compression
system. IEEE Transactions on CSVT, 1376-1384 (November 2006)

Zhang, P., et al.: High-performance cabac engine for h.264/avc high definition real-
time decoding. In: International Conference on ICCE 2007, January 2007, pp. 1-2
(2007)

Pastuszak, G.: A high-performance architecture of the double-mode binary coder
for h.264.avc. IEEE Transactions on CSVT, 949-960 (July 2008)

Kim, C., et al.: High speed decoding of context-based adaptive binary arithmetic
codes using most probable symbol prediction. In: ISCAS 2006, p. 4 (2006)

Zheng, J., et al.: A novel pipeline design for h.264 cabac decoding. In: Ip, H.H.-S.,
Au, O.C., Leung, H., Sun, M.-T., Ma, W.-Y., Hu, S.-M. (eds.) PCM 2007. LNCS,
vol. 4810, pp. 559-568. Springer, Heidelberg (2007)

Eeckhaut, H., et al.: Optimizing the critical loop in the h.264/avc cabac decoder. In:
IEEE International Conference on FPT 2006, December 2006, pp. 113-118 (2006)
Yang, Y.C., et al.: A high throughput vlsi architecture design for h.264 cabac
decoding with look ahead parsing. In: Multimedia and Expo., pp. 357-360 (2006)
Shi, B., et al.: Pipelined architecture design of h.264/avc cabac real-time decoding.
In: 4th TEEE International Conference on ICCSC 2008, May 2008, pp. 492-496 (2008)
Yi, Y., et al.: High-speed h.264/avc cabac decoding. IEEE CSVT, 490-494 (2007)
Son, W.; et al.: Prediction-based real-time cabac decoder for high definition
h.264/avc. In: IEEE International Symposium on ISCAS 2008, May 2008, pp. 33—
36 (2008)

Tian, X.a.: Implementation strategies for statistical codec designs in h.264/avc
standard. In: 19th IEEE International Symposium on RSP, June 2008, pp. 151—
157 (2008)

Chang, Y.T.: A novel pipeline architecture for h.264/avc cabac decoder. In: IEEE
Asia Pacific Conference on APCCAS 2008, December 2008, pp. 308-311 (2008)
Flordal, O., et al.: Accelerating cabac encoding for multi-standard media with
configurability. In: 20th International IPDPS 2006, April 2006, p. 8 (2006)
Osorio, R.R., et al.: Entropy coding on a programmable processor array for multime-
dia soc. In: International Conference on ASAP 2007, July 2007, pp. 222-227 (2007)
Nunez, et al.: Design and implementation of a high-performance and silicon efficient
arithmetic coding accelerator for the h.264 video codec. In: ASAP 2005, pp. 411—
416 (2005)

van de Waerdt, J.W., et al.: The tm3270 media-processor. In: 38th IEEE/ACM
International Symposium on Microarchitecture 2005, pp. 331-342 (2005)

Osorio, R.R., et al.: An fpga architecture for cabac decoding in manycore systems.
In: International Conference on ASAP 2008, July 2008, pp. 293-298 (2008)
Rouvinen, J., et al.: Context adaptive binary arithmetic decoding on transport
triggered architectures. In: SPIE Conference Series (March 2008)

	CABAC Accelerator Architectures for Video Compression in Future Multimedia: A Survey
	Introduction
	Introduction to CABAC
	Main Concepts of Hardware Acceleration
	Overview of Hardware Accelerators for CABAC
	Straightforward Datapath/Controller Accelerators
	Parallel Hardware Accelerators
	Pipeline Hardware Accelerators
	Parallel Pipeline Hardware Accelerators
	ASIP/ISE Based CABAC Accelerators
	Comparison

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

