EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Survey of advanced CABAC accelarator architectures for
future multimedia.

Citation for published version (APA):

Jan, Y., & Jozwiak, L. (2009). Survey of advanced CABAC accelarator architectures for future multimedia. In J.
Becker, R. Woods, & P. Athanas (Eds.), Proceedings 5th international workshop on Reconfigurable computing
architectures, tools and applications, ARC 2009, Karlsruhe, Germany, March 16-18, 2009 (pp. 342-348).
(Lecture Notes in Computer Science; Vol. 5453). Springer. https://doi.org/10.1007/978-3-642-00641-8_39

DOI:
10.1007/978-3-642-00641-8_39

Document status and date:
Published: 01/01/2009

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.1007/978-3-642-00641-8_39
https://doi.org/10.1007/978-3-642-00641-8_39
https://research.tue.nl/en/publications/0259d987-2e27-45fe-bee1-49561a6e81bd

Survey of Advanced CABAC Accelerator
Architectures for Future Multimedia

Yahya Jan and Lech Jozwiak

Faculty of Electrical Engineering
Eindhoven University of Technology, The Netherlands
{Y.Jan,L.Jozwiak}@tue.nl

Abstract. The future high quality multimedia systems require efficient
video coding algorithms and corresponding adaptive high-performance
computational platforms. In this paper, we survey the hardware acceler-
ator architectures for Context-based Adaptive Binary Arithmetic Cod-
ing (CABAC) of H.264/AVC. The purpose of the survey is to deliver a
critical insight in the proposed solutions, and this way facilitate further
research on accelerator architectures, architecture development methods
and supporting EDA tools. The architectures are analyzed, classified and
compared based on the core hardware acceleration concepts, algorithmic
characteristics, video resolution support and performance parameters,
and some promising design directions are discussed.

Keywords: RC hardware architectures, accelerators, multimedia pro-
cessing, UHDTV, video compression, H.264/AVC, CABAC.

1 Introduction

The real-time performance requirement of modern multimedia applications, like:
video conferencing and telephony, medical imaging, and especially High Defi-
nition Television (HDTV) and new emerging Ultra HDTV (UHDTV) require
highly efficient computational platforms. The problem is amplified by demands
of higher and higher quality, particularly in the video broadcast domain, what
results in a huge amount of data processing for the new standards of digital
TV, like UHDTV that requires a resolution of (7680x4320)~33Megapixel with a
data rate of 24Gbps. Additionally, the latest standards video coding algorithms
are much more complex. The computational platforms for multimedia are also
required to be (re-)configurable, to enable their adaptation to the various do-
mains, accessing networks, standards and work modes. Hardware accelerators
constitute the kernel of such (re-)configurable high-performance platforms.

The H.264/AVC [I] is the latest multi-domain video coding standard that
provides the coding efficiency of almost 50% higher than former standards at the
cost of almost four times increase in computational complexity. Context-based
Adaptive Binary Arithmetic Coding (CABAC) [2], an entropy coding technique,
covers Main and High profiles of H.264/AVC for high-end applications. Its purely
software based implementation results in an unsatisfactory performance for High

J. Becker et al. (Eds.): ARC 2009, LNCS 5453, pp. 342]348,|2009.
© Springer-Verlag Berlin Heidelberg 2009

Survey of Advanced CABAC Accelerator Architectures 343

Definition (HD) video (e.g. 30-40 cycles are required on average for a single bin
decoding on DSP [3]). CABAC is a bottleneck in the overall codec performance.
Consequently, a sophisticated hardware accelerator for CABAC is an absolute
necessity. However, the bitwise serial processing nature of CABAC, the strong
dependencies among the different partial computations, a substantial number of
memory accesses, and variable number of cycles per bin processing put a huge
challenge on the design of such an effective and efficient hardware accelerator.

This paper surveys several most advanced recently proposed hardware acceler-
ator architectures for CABAC. Its main purpose is to deliver a critical insight in
the proposed solutions, and this way facilitate further research on accelerator ar-
chitectures, development methods and supporting electronic design automation
(EDA) tools. The architectures are analyzed, classified and compared based on
the core hardware acceleration concepts, algorithmic characteristics, video reso-
lution support and performance parameters in the hardware accelerator domain,
like throughput, frequency, resource utilization and power consumption. Based
on the architecture comparison some promising design directions are discussed in
view of the requirements of current and future digital multimedia applications.

The rest of the paper is organized as follows. Section Bl introduces CABAC.
Section [3] covers the main hardware accelerator concepts, implementation diffi-
culties in CABAC and presents a critical review of advanced hardware acceler-
ator architectures for CABAC in detail. Section @] concludes the paper.

2 Introduction to CABAC

CABAC utilizes three elementary processes to encode a syntax element (SE), i.e.
an element of data (motion data, quantized transform coefficients data, control
data) represented in the bitstream to be encoded. The processes are: binarization,
context modeling and binary arithmetic coding, as shown in Figure [

The binarization maps a non-binary valued SE to a unique binary represen-
tation referred to as bin string. Each bit of this binary representation is called a
bin. The context modeling process estimates the probabilities of the bins in the
form of context models, before they are encoded arithmetically. CABAC defines

Context Model Update

v

Bin, Context|
) Context Model Regular
Non-Binary Modeler ¥ Codin ; Engine
Valued Syntax v 9509
Element /Bi i 3
s » Binarizer > B|r;3$n§n(ls<;op }
Syntax N Regular Bin > Output
; / X
Elemem//*“ L Coded \ Bitstream
‘ Bits \. \
. / . »
Binary Valued - % .
Syntax Element "~) Bypass Bin Bypass
¢ > Coding Engine

Binary Arithmetic Coder

Fig. 1. Block Diagram of CABAC Encoder

344 Y. Jan and L. Jozwiak

460 unique context models, each of which corresponds to a certain bin or several
bins of a SE, and are updated after bin encoding. Context model comprises of
the probability state index (pStateldx) and the most probable symbol (MPS)
value of the bin. The binary arithmetic coding engine consists of two sub-engines:
regular and bypass. The regular engine utilizes adaptive context models, but the
bypass engine assumes a uniform context model to speed up encoding. To encode
a bin, the regular coding engine requires the context model and the interval range
(width) R and base (lower bound) L of the current code interval. The interval is
then divided into two subintervals (Ryps, Raps) according to the probability
estimate (prps) of the least probable symbol (LPS) [2]. Then one of the subin-
tervals is chosen as the new interval based on whether the bin is equal to LPS or
MPS. The context model is then updated, and the renormalization takes place
to keep R and L within their legal ranges. The process repeats for the next bin.

3 Overview of Hardware Accelerators for CABAC

The main concepts of hardware acceleration can be summarized as follows: par-
allelism exploitation for execution of a particular computation instance due to
availability of multiple application-specific operational resources working in par-
allel; parallelism exploitation for execution of several different computation in-
stances at the same time due to pipelining; application-specific processing units
with tailored processing and data granularity. More specifically these concepts
can be oriented towards the data parallelism, functional parallelism and their
mixture. In the past a number of different basic architecture types for hard-
ware acceleration were proposed: parallel; pipeline; parallel pipeline; general
purpose processor augmented by loosely coupled hardware accelerator; extensi-
ble/customizable application specific instruction set processor (ASIP) with basic
accelerators in the form of instruction set extensions (ISE). These basic archi-
tectures will be used to categorize the CABAC accelerators.

Before considering the accelerators, we have to give a brief overview of the
main implementation issues in CABAC. Five memory operations are involved in
the en-/decoding of a single bin and two blocking dependencies that hamper the
parallel and pipeline approaches. The first dependency is relevant to the context
model update. Unless the context model is not updated for the current bin, the
next bin processing cannot be started, because the same context model may be
used to en-/decode the next bin. Other dependency involves the interval range
R and base L update. Unless both are not renormalized in the renormalization
stage, which involves multiple branches, the next bin processing cannot be initi-
ated, because the probability estimation of the next bin depends on the current
interval range R. These strong dependencies are some of the main challenges in
the accelerator design, and a number of solutions are proposed.

The straightforward datapath/controller approach relies on the data
flows in the algorithm of the software based solution. This accelerates the com-
putations to some degree, but does not exploit the true (parallel) nature of the
application algorithms. In CABAC accelerators, it takes as many as 14 cycles to

Survey of Advanced CABAC Accelerator Architectures 345

process a single bin [4]. After further optimizations throughput of 0.2 bin/cycle
is achieved in [4] for en-/decoding, and 0.33~0.50 bin/cycle in [5] for decoding.
The inefficiency of the straightforward approach for HD video motivated the
research community to propose parallel accelerators to process more than 1
bin/cycle. However, in en-/decoding of even a single bin complex interdependen-
cies have to be resolved as discussed before, and consequently, the algorithm can
not be parallelized in its true basic nature. Utilizing the static and dynamic char-
acteristics of the SEs that can be discovered through CABAC analysis for real
video, the parallelism can be achieved up to some level for some SEs, what can
result in processing of more than 1 bin/cycle. However, in parallel en-/decoding
of two or more regular bins the context models have to be supplied to the coding
engines. Due to the blocking dependencies, this cannot be performed in parallel.
In the first parallel architecture for CABAC decoding [3] the parallelism is
achieved through a cascade of the arithmetic decoding engines: two regular ones
and two bypass. This enables the decoding of 1 Regular Bin (1RB), 1RB with 1
Bypass Bin (1BB), 2RB with 1BB, and 2BB bins in parallel for frequently occur-
ring SEs, like residual data and results in the throughput of 1~3 bins/cycle. The
architectures [6][7][8][9] are based on the same concept, but after specific exten-
sions are capable to en-/decode HD video. In [I0] five different architectures for
CABAC encoder were proposed. Two RB with BB architectures perform better
for HD video than the others. A predictive approach is employed in [I1]. Unlike
Bl[6][7][8][9], in which there is a latency due to the cascaded arithmetic engines,
this architecture initiates decoding of two bins simultaneously by prediction.
The cascaded processing engines of the parallel accelerators increase the crit-
ical path delay and hardware resources. In addition, it accelerates only the pro-
cessing of certain frequent SEs, and the number of bin(s)/cycle varies. There-
fore, pipeline accelerators were proposed with the prime goal of achieving the
real-time performance for HD video. However, the pipeline hazards appear as a
byproduct of pipelining, due to the tight dependencies in the CABAC algorithm.
There are two pipeline hazards in CABAC: data and structural. A data hazard
occurs when the same context model is used for the next bin as for the current
bin (read after write). A structural hazard occurs when the context memory is
accessed at the same time due to the context model write for the current bin
and context model read for the next bin. These hazards cause the pipeline stalls
that decrease the throughput from the maximum of 1 bin/cycle to a lower value.
Zheng et al. [12] proposed a two-stage pipeline decoding architecture for resid-
ual data only. The stalls in the pipeline are eliminated using standard look ahead
(SLA) technique, to determine the context model for the next bin using both
possible values of the current bin. This SLA approach is also used in [I3][14].
Yi et al. [15] proposed a two-stage pipeline decoding architecture, to reduce the
pipeline latency and to increase the throughput. The data hazards are removed
using the forwarding approach, and the structural hazards by using a context
model reservoir. However, the stalls due to SE switching limit the throughput to
an average of 0.25 bin/cycle. This problem is solved in [I6] by using a SE pre-
dictor, that increases the throughput to 0.82 bin/cycle. Li et al. [I7] proposed a

346 Y. Jan and L. Jozwiak

three-stage dynamic pipeline codec architecture. The pipeline is dynamic as the
pipeline latency varies between one and two cycles depending on the bin type.
For data hazards removal a pipeline bypass scheme is used and for structural
hazards a dual-port SRAM. Tian et al. [I8] proposed a three-stage pipeline en-
coding architecture. Two pipeline buffers are introduced to resolve the pipeline
hazards and the latency in [I7]. This results in the throughput of exactly 1
bin/cycle.

The parallel pipeline accelerators combine the acceleration features of
both approaches, what often results in a super fast accelerator. We could benefit
from this approach, if we would be able to process multiple bins in a pipeline fash-
ion without any stall. Although we can not fully utilize this approach, because it
will make the accelerator architecture very complex or may even be impossible
to design, its limited application is possible by utilizing the characteristics of
SEs, like the processing of a single RB with one or more BB in parallel pipeline
fashion. This approach drastically improves the throughput which is the require-
ment of future multimedia systems. Shi et al. [T4] proposed a parallel pipeline
approach for the real-time decoding of HD video with 4-stages that can decode
1RB or 2BB bin(s)/cycle without any stall. Due to the processing of multi-
ple bypass bins in pipeline average throughput of 1.27 bins/cycle is achieved.
The decoding rate of 254Mbins/s of this approach is much higher compared to
~45Mbins/s required for HD1080i video. Structural hazards are solved using two
dual-port SRAMs and data hazards using forwarding technique and redundant
circuitry.

The configurability and extensibility makes ASIP interesting option for the
high-end adaptive applications. ASIP-based accelerators for CABAC were

Table 1. Comparison of Different Hardware Accelerator Architectures

Design Freq. Throughput VLSI Tech. Circuit Resolution
Approach MHz Bin(s)/Cycle TSMC(um) Area (gates) Support
Datapath/Control

[4] Codec 30 0.2 - 80,000(Inc.)” SD480i
[5] Decoder 200 0.33~0.5 0.13 138,226(Inc.) CIF
Parallel

[3] Decoder 149 1~3 0.18 0.3mm?+32x105reg SD
[9] Encoder 186 1.9~2.3 0.354M5 19,426(Exc.) CIF, HD
[I1] Decoder 303 0.41 0.18 - SD480i
Pipeline

[12] Decoder 160 1 0.18 46.4K (Inc.) HD1080i
[15] Decoder 225 0.25/0.82[16) 0.18 81,162+12.18KB HD1080p
[T7] Codec 230 0.60%7¢/0.507¢ 0.18 0.496mm?(Inc.) HD1080i
[18] Encoder 186 1 0.354M5 19.1K(Exc.) -
Parallel pipeline

[14] Decoder 200 1.27 0.18 28,956+10.81KB ~ HD1080i
ASIP/ISE

[20] Decoder 120 0.021/0.028*" - - -

*Context Memory included in the area calculation **LPS/MPS bins.

Survey of Advanced CABAC Accelerator Architectures 347

proposed in [I9][20], but they do not satisfy the real-time requirements, e.g. in
[20] 36 and 48 cycles are consumed in MPS and LPS bins decoding, respectively.

4 Conclusion

In this paper, we reviewed numerous approaches for the hardware accelerator ar-
chitectures for CABAC from the viewpoint of the hardware acceleration concepts
and performances. The straightforward architecture usually en-/decode from 0.2
to 0.5 bin/cycle, as shown in Table[ll Since the SEs are processed in a sequential
manner, no substantial speed up is achieved. In the parallel approach the number
of bins/cycle depends on the type of SE and fluctuates mostly between 1 and 4
bin(s)/cycle. In the purely pipeline approach the throughput never goes above 1
bin/cycle, but independent of SEs it remains at 1 or close to 1 bin/cycle. In the
parallel pipeline approach, some extra performance is obtained from the char-
acteristics of SEs, that enables to process some bins in parallel, and results in
average throughput of more than 1 bin/cycle for HD video. This can be further
improved, if the processing of one or more regular bin(s) and/or one or more
bypass bin(s) is performed in parallel, but with steady and balanced pipeline,
simple control and minimal area. From the analysis and comparison it follows
that the parallel pipeline accelerator approach seems to be the most promising.
However, the computational requirements of the current and future multimedia
systems are increasing and require further research on accelerator architectures.

References

1. ITU-T: Recommendation and Final Draft International Standard of Joint Video
Specification (ITU-T Rec. H. 264— ISO/IEC 14496-10 AVC) (May 2003)

2. Marpe, D.a.: Context-based adaptive binary arithmetic coding in the h.264/avc
video compression standard. IEEE Transactions on CSVT, 620-636 (July 2003)

3. Yu, W., et al.: A high performance cabac decoding architecture. IEEE Transactions
on Consumer Electronics, 1352-1359 (November 2005)

4. Ha, V., et al.: Real-time mpeg-4 avc/h.264 cabac entropy coder. In: 2005 Digest of
Technical Papers. International Conference on ICCE, pp. 255-256 (January 2005)

5. Chen, J., et al.: A hardware accelerator for context-based adaptive binary arith-
metic decoding in H. 264/AVC. In: ISCAS 2005, pp. 4525-4528 (2005)

6. Mei-hua, et al.: Optimizing design and fpga implementation for cabac decoder. In:
International Symposium on HDP 2007, pp. 1-5 (June 2007)

7. Bingbo, L., et al.: A high-performance vlsi architecture for cabac decoding in
h.264/avc. In: 7th International Conference on ASICON 2007, pp. 790-793 (Octo-
ber 2007)

8. Depra, D.A., et al.: A novel hardware architecture design for binary arithmetic
decoder engines based on bitstream flow analysis. In: SBCCI 2008, pp. 239244
(2008)

9. Osorio, R.R., et al.: High-throughput architecture for h.264/avc cabac compression
system. IEEE Transactions on CSVT, 1376-1384 (November 2006)

10. Pastuszak, G.: A high-performance architecture of the double-mode binary coder
for h.264.avc. IEEE Transactions on CSVT, 949-960 (July 2008)

348

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Y. Jan and L. Jozwiak

Kim, C., et al.: High speed decoding of context-based adaptive binary arithmetic
codes using most probable symbol prediction. In: ISCAS 2006, p. 4 (2006)

Zheng, J., Wu, D., Xie, D., Gao, W.: A novel pipeline design for h.264 cabac
decoding. In: Ip, H.H.-S., Au, O.C., Leung, H., Sun, M.-T., Ma, W.-Y., Hu, S.-M.
(eds.) PCM 2007. LNCS, vol. 4810, pp. 559-568. Springer, Heidelberg (2007)
Eeckhaut, H., et al.: Optimizing the critical loop in the h.264/avc cabac decoder.
In: IEEE International Conference on FPT 2006, pp. 113-118 (December 2006)
Shi, B., et al.: Pipelined architecture design of h.264/avc cabac real-time decoding.
In: 4th IEEE International Conference on ICCSC 2008, pp. 492-496 (May 2008)
Yi, Y., et al.: High-speed h.264/avc cabac decoding. IEEE CSVT, 490-494 (2007)
Son, W., et al.: Prediction-based real-time cabac decoder for high definition
h.264/avc. In: IEEE International Symposium on ISCAS 2008, pp. 33-36 (May
2008)

Li, L., et al.: A hardware architecture of cabac encoding and decoding with dynamic
pipeline for h.264/avc. J. Signal Process. Syst., 81-95 (2008)

Tian, X.a.: Implementation strategies for statistical codec designs in h.264/avc
standard. In: 19th IEEE International Symposium on RSP 2008, pp. 151-157 (June
2008)

Flordal, O., et al.: Accelerating cabac encoding for multi-standard media with
configurability. In: 20th International IPDPS 2006, p. 8 (April 2006)

Rouvinen, J., et al.: Context adaptive binary arithmetic decoding on transport
triggered architectures. In: SPIE Conference Series (March 2008)

	Survey of Advanced CABAC Accelerator Architectures for Future Multimedia
	Introduction
	Introduction to CABAC
	Overview of Hardware Accelerators for CABAC
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

