
                          Nunez-Yanez, J. L., Chen, X., Canagarajah, C. N., & Vitulli, R. (2008).
Statistical lossless compression of space imagery and general data in a
reconfigurable architecture. In NASA/ESA Conference on Adaptive
Hardware and Systems  (AHS 2008), Noordwijk, Netherlands. (pp. 172 -
177). Institute of Electrical and Electronics Engineers (IEEE).
10.1109/AHS.2008.9

Link to published version (if available):
10.1109/AHS.2008.9

Link to publication record in Explore Bristol Research
PDF-document

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms.html

Take down policy

Explore Bristol Research is a digital archive and the intention is that deposited content should not be
removed. However, if you believe that this version of the work breaches copyright law please contact
open-access@bristol.ac.uk and include the following information in your message:

• Your contact details
• Bibliographic details for the item, including a URL
• An outline of the nature of the complaint

On receipt of your message the Open Access Team will immediately investigate your claim, make an
initial judgement of the validity of the claim and, where appropriate, withdraw the item in question
from public view.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Explore Bristol Research

https://core.ac.uk/display/29025825?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/AHS.2008.9
http://research-information.bristol.ac.uk/en/publications/statistical-lossless-compression-of-space-imagery-and-general-data-in-a-reconfigurable-architecture(1e7bfe22-3dbb-46cd-87e6-d08b08ac40b4).html
http://research-information.bristol.ac.uk/en/publications/statistical-lossless-compression-of-space-imagery-and-general-data-in-a-reconfigurable-architecture(1e7bfe22-3dbb-46cd-87e6-d08b08ac40b4).html


Statistical Lossless Compression of Space Imagery and General Data in a 

Reconfigurable Architecture 
 

Jose Luis Nunez-Yanez, Xiaolin Chen, Nishan Canagarajah                 Raffaele Vitulli 

                    Electronic Engineering Department                        European Space Agency (ESA)                                                                                  

                          Bristol University                               On-Board Payload Data Processing Section 

                        Bristol, BS8 1UB, UK                        Keplerlaan 1, Noordwijk, 2200, The Netherlands  

            {eejlny,eezxxc,eecnc}@bristol.ac.uk                                  raffaele.vitulli@esa.int                                                      
 

 

Abstract 

This paper investigates an universal algorithm and 

hardware architecture for context-based statistical 

lossless compression of multiple types of data using 

FPGA (Field Programmable Gate Array) devices which 

support partial and dynamic reconfiguration. The 

proposed system enables optimal modeling strategies for 

each source type whilst entropy coding of the modeling 

output is performed using a statically configured 

arithmetic coding engine. Spacecraft communications 

typically involve large amounts of information captured 

from different sensors that must be transmitted without 

any loss. The statistical redundancies present in this data 

can be removed efficiently using the proposed 

reconfigurable compression technology.  

1. Introduction 

 Lossless and lossy compression algorithms are 

routinely used to reduce the bandwidth and storage 

requirements of digital data. Lossy compression is well 

suited to data that is already a digital approximation of 

data that is analogue in nature such as visual and audio 

information. Lossy compression can achieve much higher 

compression ratios than lossless precisely because there is 

not a requirement to maintain all the information 

contained in the data source. Lossy compression has been 

widely adopted and global standards exist such as H.264 

and MPEG4 for video and JPEG for still images. 

Traditionally, lossless compression has been used in those 

data types that do not admit any bits to be modified in the 

compression/decompression processes. Examples are 

general data types such as text, html code, database 

information, application data and program binaries where 

reversible compression is required since every bit contains 

critical information.  Nevertheless, lossless compression 

of images and video is also an important topic of research. 

Medical images such as X-rays must be compressed 

without any loss since the implications could be 

catastrophic for the patient. Precious and hard-to-acquire 

images such as those obtained in space exploration and 

satellite surveillance also use lossless compression. Image 

archiving will benefit from a master copy stored using a 

lossless approach from which copies of any desired 

quality could be obtained using lossy methods. 

Additionally applications such as data, video and image 

transmission in space require the performance to be 

achieved in an energy and silicon efficient platform. To 

achieve the demands set by these applications we propose 

a universal lossless compression hardware core that 

exploits dynamic reconfiguration to effectively combine 

predictive coding, motion estimation and context-based 

modeling  hardware blocks depending on the data type.    

2. Related work 

Current lossless compression for general data makes a 

distinction between dictionary-based and statistics-based 

algorithms. Dictionary-based compression has been 

traditionally more popular in software and hardware due 

to the inherent simplicity of these algorithms. Examples of 

dictionary-based compression in software are the popular 

WinZip or Arj algorithms commonly used for archiving 

and distributing large quantities of data. Also, the 

hardware devices available from leading companies such 

as HiFn Microelectronics LZS [1] use dictionary-based 

compression methods based on the original LZ [2] 

algorithms. Our research group’s work has been 

extensively based on dictionary-based compression with 

the X-MatchPRO [3] algorithm targeting a compression 

ratio that halves the original input size while operating at 

very high speeds. This research area both in software and 

hardware is now mature with more than 25 years of work 

having being dedicated to fine tune the LZ method and 

few improvements can be expected. Context-based 

statistical compression has been limited to software and it 

is not very popular due to its high computing 

requirements. An example of a powerful statistical 

compressor is the PPMZ [4] software algorithm that 

requires more than 20,000 CPU cycles per byte in a 

general purpose microprocessor.  

Algorithmic research in lossless image compression 

has focussed in two main techniques; transform-based and 

predictive coding. Extensive experimentation seems to 

indicate that transform methods perform worse than 

predictive methods for lossless compression. Predictive 
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coding is a technique where the value of the next input 

data is predicted as a linear or nonlinear combination of 

previous inputs. It has been successfully used in lossless 

compression of visual content where it makes use of a 

priori knowledge of smoothness. Smoothness means that 

visual signals tend to follow a pattern of gentle variation 

that can successfully be exploited in the first processing 

stage to reduce the entropy of the data source. The output 

of the predictive coder can be modelled using a context 

dependent technique to further remove redundancy prior 

to being entropy coded using Huffman coding or 

arithmetic coding.  Algorithms that employ this approach 

are the Sunset [5], Felics [5] and the LOCO [6] algorithm 

used in the JPEG LS. There are few hardware devices 

proposed for lossless image compression using predictive 

context-based arithmetic coding. A successful example 

targeted at the compression of black and white fax images 

is the IBM Q-Coder [7] device. This chip is based on a 

simple fixed high-order (7th) binary model. This simple 

model means that performance is not well suited for 

general alphabets. This device achieves a throughput of 64 

Mbits/second when implemented in a CMOS 5S (0.35 

µm) technology from IBM.  

Hardware-based lossless video compression is a largely 

unexplored area. An example of a software lossless video 

codec is the Huffyuv algorithm heavily based on lossless 

JPEG operating on each of the frames of the sequence. 

Popular lossy video codecs such as H.264 also offer a 

lossless mode [8]. 

3. Dynamically Reconfigurable Modeling 

Stage 

The proposed compression system uses a dynamically 

reconfigurable modeling stage followed by statically 

configured probability estimation and arithmetic coding 

stages as illustrated in Fig.1. Dynamic modeling is 

specialized to each data type and uses a combination of 

context modeling, predictive coding and motion 

estimation depending on the data type being processed: 1-

D general data, 2-D image data or 3-D multispectral 

images or video. 

 

 

 

 

 

 

 

 

3.1. 1-D Lossless Data Modeling overview  

During context modeling for 1-D data a finite number 

of symbols (model order) that preceded the current 

symbol in a single dimension and constitute its context are 

searched in a context tree built dynamically as more data 

is seen.  Fig. 2 shows a simplified diagram of the context 

modeller.  The context FIFO stores the symbols that 

preceded the current symbol and form its context. The 

FIFO width is 1 byte to match the width of the symbol 

while its length is configurable and depends on the 

maximum model order.  

      The hardware implementation of the context 

modeler is based on a hashing tree that enables fast search 

operations with low complexity.  The tree is stored in 

standard SRAM memory and maintains its logical 

structure using a pointer mechanism.  The hashing shift 

and the XOR gate in Fig. 2 are used to generate an index 

to be used to address the SRAM memory that stores the 

context tree. 

 The tree memory is divided into three sections. 

Section 1 stores the context area memory address where 

the probability data for that particular tree node can be 

found. The other two sections implement the pointer 

mechanism that maintains the logical structure of the tree. 

Section 2 stores the context area index of the tree node 

parent of the current node in the tree structure. Section 3 

stores the context symbol stored at the current tree node.  

The SRAM area free memory and the busy area generator 

shown in Fig. 2 enable a single-cycle reset state without 

having to reset the table memory with a multi-cycle table 

walk operation.  A table walk would have had a very 

negative effect on throughput when dealing with small 

blocks since the number of cycles needed to reset the table 

could typically be larger than the number of cycles needed 

to compress the block. A single valid register,   named 

line free in Fig. 2, is reset after processing each block and 

this automatically invalidates all the locations in the table 

memory. 
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Figure 2.1-D general data modeling architecture 

 

This register has a similar function to the register 

holding the valid bits in a direct-mapped cache. Each of 

the register bits is shared by several table locations and in 

order to distinguish which context tree nodes are busy and 

which context tree nodes are free the area free memory 

contains 1 bit per context tree node signaling a free or 

busy node. If the valid register bit is set to zero all the tree 

nodes associated with that valid register bit are considered 

invalid. The found context areas are stored in two 

equivalent buffers. When the first buffer is being filled 

with context areas by the context modeler the second 

buffer is being emptied by the probability estimator. Once 

both stages have completed their operation the buffers 

functionality is reversed and the process restarted. This 

double buffering mechanism increases the throughput of 

the system avoiding idle stages. 

3.2. 2-D Lossless Image Modeling overview 

Lossless image modeling handles image or any data 

which has two-dimensional correlations. We propose a 

segmentation-based lossless image model. Segmentation, 

here means partitioning of an image into multiple regions 

according to its features. We use this idea to group pixels 

with similar features and use different modes to compress 

them. A new ternary-mode is proposed to detect and 

encode the edges, while the run-length coding [6] is 

adopted to encode the homogeneous regions. The rest of 

the image, mostly the texture regions, is compressed with 

a regular-mode, which is based on the Gradient-Adjusted 

Prediction (GAP) from CALIC [9] but is simplified. As 

the mode selection is made by adaptive online checking of 

neighboring symbols, no side information is transmitted. 

We identify certain conditions for entering each mode. If 

the four nearest symbols of the current symbol are the 

same, a homogeneous region is assumed and the run-mode 

is triggered. If the current symbol is identical to its 

previous symbol, the symbol occurrence, called run, 

increases by one; otherwise it stops and the current  run 

length is encoded. In regions where edges are present, we 

examine if there are no more than three distinct symbol 

values in a small neighborhood of the current symbol and 

the ternary-mode is triggered. Thus only four symbols are 

needed to encode this group of symbols and lower entropy 

can be obtained. When the entry conditions for run-mode 

or ternary-mode cannot be met, or when coding in other 

modes fails, the regular mode is used.  

Fig.3 illustrates the dataflow of the image model. The 

implementation is achieved with two pipelines running in 

parallel. Line 1, indicated by the flow on the left, operates 

on the current symbol and yields the prediction error with 

the selected mode for the probability estimator. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. 2-D data modeling architecture 

 

Line 2, indicated by the flow on the right, calculates the 

prediction value and context index for the next symbol 

under the selected mode. Since complicated coefficient 

calculations are not needed, and simple division is done 

by small lookup table, this model is hardware amenable. 

This model is the base of the video model and can be 

extended to handle multispectral images.  Based on the 2-

D model, the video model incorporates the decorrelation 

in spectral domain and temporal domain. An inter-band 

prediction is used to exploit the correlation in spectral 

domain and a switching strategy is designed to switch 
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between intra-band and inter-band prediction, according 

to which correlation is stronger in the local area. For 

temporal domain, we intend to use a zero-side-information 

(no motion vectors) motion estimator to remove 

redundancy between frames. Implementation details of 

this model are currently under investigation. 

4. Statically Configured Coding Stage 

4.1. Probability estimation overview   

Probability estimation extracts the context area indices 

from the contexts nodes maintained by the context 

modeller and uses them as pointers to the memory area 

holding the probability information. The probability 

estimator starts with the highest model order reached 

during context modelling for general data or one of the six 

context indices for visual data and tries to obtain a valid 

prediction for the current symbol within that context.  

Success is achieved as long as the current symbol has a 

probability value larger than zero in that particular 

context. Otherwise an escape event is coded and the 

algorithm tries to use the next lower order until model 

order -1 is reached. For the image coding case escape is 

only used once and the second context tried is directly 

order –1 that guarantees that a coding operation is always 

possible. Initialization is implemented differently for the 

image and data cases. For general data compression the 

probability counts are always initialized to zero and the 

probability of escaping is high. For the image case 

initialization is done to one and the probability of 

escaping is low but non-zero because the rescaling 

operations can make some of the small values converge to 

zero. In order –1 is used where all the symbols get a 

probability larger than zero and equal to 1/alphabet_size. 

The probabilities in order –1 are fixed and probability 

estimation can never fail. The probability estimator uses a 

balanced binary tree with 256 leafs corresponding to each 

of the symbols in the alphabet.   

The context area obtained from the context modeler 

identifies a memory area where the probability data of the 

symbols seen in that context is stored. An additional 

symbol is the escape symbol used to blend different model 

orders when no valid prediction is possible because the 

symbol is new in the current context. A full alphabet of 

256 symbols will have a tree depth of 9. The important 

point to notice is that to fully code a symbol using this 

binary tree is enough with coding the binary decisions 

(left or right) taken place at each level of the tree when the 

tree is transversed from root to leaf. This procedure means 

that after 9 binary decisions a symbol is fully coded. 

There are two main advantages obtained from using this 

binary tree. Firstly, the arithmetic coding stage does not 

need to be based on a complex multi-alphabet arithmetic 

coder but a simple and fast binary arithmetic coder would 

suffice.  Secondly, the maintenance of the frequency 

counts is achieved with a single update operation per node 

visited [10].  
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Figure 4. Probability estimator architecture 

The binary tree architecture enables the high 

compression ratios possible with multi-symbol alphabets 

(a better match of data granularity) and simultaneously 

achieves low hardware complexity which also helps to 

achieve a higher clock frequency.  The binary tree is 

projected first right to obtain 9 processing elements and 

then down to reduce it to a single processing element. 

This single processing element walks through the tree 

from root to leaf forwarding two frequency count values 

and a binary decision to the binary arithmetic coder. The 

two frequency count values (cum0  and cum1) divide the 

range into a left probability and a right probability.  The 

binary arithmetic coder uses this information to perform a 

series of arithmetic operations that modify its internal 

state and produce a compressed bit stream.  The whole 

process is numerically efficient and using 9 coding events 

instead of 1 coding event per input symbol produces no 

significant redundancy.  Fig. 4 illustrates the architecture 

of the processing element that implements the binary tree 

node assuming a context population of 1024. The total 

value memory contains the total frequency count for a 

particular context while the probability storage memory 

contains all the probability data associated with each of 

the nodes in the tree. 

4.2. Arithmetic Coding   

The final stage of the coding process is arithmetic 

coding. The arithmetic coder is based on a software 

algorithm known as the Z-coder and developed by AT&T 

labs as a generalization of the  Golomb/Rice coder for 

lossless coding of bilevel images. Our work has focused 

on maintaining the simplicity of the Z-coding algorithm 
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while increasing its suitability for hardware 

implementation. The resulting MZ-coder balances the 

complexity of coding the MPS and LPS symbols, 

simplifies the precision of the arithmetic and handles 

special hardware borrow conditions while maintaining 

coding efficiency and achieving high performance.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Arithmetic coding architecture 

Fig.5 shows the internal organization of the 

multiplication-free arithmetic coding module. A total of 6 

pipeline stages are identified to improve the clock ratio of 

the design. The lack of a renormalization loop in the MZ 

algorithm means that one decision bit is processed per 

clock cycle. The functionality of each of the pipeline 

stages is explained in detailed in [10]. 

5. Performance Comparison 

This section analyses the performance of the core in 

terms of compression ratio and throughput and compares 

it with other compression algorithms for data and images 

implemented in both hardware and software.  

Table 1 compares the compression efficiency of the  

algorithm configured in data mode with two dictionary-

based and two statistical-based algorithms using the 

Canterbury corpus as the data set.   We have selected the 

popular open source Lempel-Ziv implementation known 

as GZIP and equivalent to other commercial algorithms 

such as PKZIP and WinZIP as a fast and efficient 

dictionary-based algorithm. LZS is targeted to hardware 

as described in the related work section.  

 

    

Table 1. General data compression performance 

 

PPMC and PPMZ are software-only complex statistical 

algorithms which need around 2,000 and 20,000 clock 

cycles on average to compress a byte when implemented 

in a general purpose processor.  The table measures 

compression in bits per byte and shows that only PPMZ 

outperforms the proposed method. To evaluate image 

compression we use the 8-bit CCSDS reference image set 

as test images. As the proposed system is intended for 

space borne applications test results relevant to this 

purpose are useful. We compare the proposed scheme 

with some state-of-the-art low complexity schemes. 

CCSDS is the current Recommendation for space image 

compression; PRDC is the CCSDS Rice coder; JPEG-LS 

is the lossless image compression standard; JPEG2000 

[11] is the current standard for lossy to lossless 

compression; SPIHT [12] is a low-complexity progressive 

image compressor; ICER [13] is another progressive 

wavelet-based image compressor. When strip-based and 

frame-based options are available for these algorithms, the 

best ones are chosen in the comparison. Table 2 shows 

that the proposed system outperforms the others in terms 

of bit rates. In terms of throughput performance, the 

proposed system is designed to process 1 bit per clock 

cycle, which translates into a throughput of 100Mbits/sec 

on a Xilinx Virtex-4 SX35 FPGA. 
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(data 
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Alic 2.86 4.19 2.82 2.08 2.43 

Asyo 3.05 4.29 3.01 2.26 2.57 

Cppp 2.54 3.64 2.50 2.14 2.48 

Fiel 2.20 2.87 2.14 1.81 2.16 

Gram 2.62 3.09 2.57 2.25 2.51 

Kenn 1.60 2.31 1.42 1.08 1.37 

Lcet 2.71 4.14 2.69 1.82 2.25 

Plra 3.24 4.69 3.22 2.21 2.49 

ptt5 0.87 1.26 0.82 0.79 0.89 

Sum 2.70 3.54 2.59 2.46 3.10 

Xarg 3.29 3.89 3.22 2.84 3.14 

average 2.52 3.45 2.45 1.98 2.30 
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Table 2.  Space Imagery data compression performance 

        

6. Conclusions 

 The compression ratio evaluation of the algorithm shows 

that the proposed method can outperform other well-

known techniques. The hardware amenability and the 

reconfigurable feature mean that the device could operate 

in a resource and energy constraint environment such as a 

space probe. In principle, reconfiguration should be 

initiated by a general controller although automatic 

reconfiguration after data type detection is also possible.    

We are currently working in adding lossless video 

compression support designing an efficient pixel-oriented 

vector-less motion estimation engine. Additionally, we 

would like to investigate the configuration of different 

alphabet sizes extending the current byte-based alphabets 

to multiple-bit alphabets for lossless compression of 

scientific data obtained from high-resolution analogue-to-

digital converters. Executables and information for this 

core named Byacom-2 will become available at 

www.byacom.co.uk as the project progresses.  We would 

like to acknowledge the support of EPSRC under grant 

number EP/D011639/1 for making this research possible. 
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T  

 ICER  Proposed  

(image 

mode) 

 coastal
_
b1   3.36   3.56   3.09   3.13   3.09   3.07   3.00 

 coastal
_
b2   3.22   3.32   2.90   2.97   2.94   2.92   2.84 

 coastal
_
b3   3.48   3.68   3.22   3.23   3.21   3.20   3.14 

 coastal
_
b4   2.81   2.91   2.41   2.53   2.57   2.55   2.37 

 coastal
_
b5   3.16   3.30   2.81   2.94   2.91   2.89   2.79 

 coastal
_
b6h   3.02   2.75   2.50   2.60   2.71   2.54   2.52 

 coastal
_
b6l   2.35   2.03   1.76   1.96   2.02   1.87   1.84 

 coastal
_
b7   3.45   3.66   3.17   3.22   3.17   3.15   3.10 

 coastal
_
b8   3.66   3.93   3.42   3.40   3.35   3.31   3.28 

 europa3   6.61   7.48   6.64   6.52   6.46   6.30   6.42 

 marstest   4.78   5.39   4.69   4.74   4.64   4.63   4.60 

 lunar   4.58   5.23   4.35   4.49   4.43   4.40   4.20 

 spot-la
_
b3   4.80   5.20   4.53   4.69   4.70   4.56   4.43 

spot_la
_
panchr   4.27   4.87   4.00   4.13   4.11   4.03   3.90 

 average   3.82   4.09   3.54   3.61   3.59   3.53   3.46 

177177177

Authorized licensed use limited to: UNIVERSITY OF BRISTOL. Downloaded on February 12, 2009 at 09:33 from IEEE Xplore.  Restrictions apply.


