
 Nunez-Yanez, J. L., Chen, X., Canagarajah, C. N., & Vitulli, R. (2008).
Statistical lossless compression of space imagery and general data in a
reconfigurable architecture. In NASA/ESA Conference on Adaptive
Hardware and Systems (AHS 2008), Noordwijk, Netherlands. (pp. 172 -
177). Institute of Electrical and Electronics Engineers (IEEE).
10.1109/AHS.2008.9

Link to published version (if available):
10.1109/AHS.2008.9

Link to publication record in Explore Bristol Research
PDF-document

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms.html

Take down policy

Explore Bristol Research is a digital archive and the intention is that deposited content should not be
removed. However, if you believe that this version of the work breaches copyright law please contact
open-access@bristol.ac.uk and include the following information in your message:

• Your contact details
• Bibliographic details for the item, including a URL
• An outline of the nature of the complaint

On receipt of your message the Open Access Team will immediately investigate your claim, make an
initial judgement of the validity of the claim and, where appropriate, withdraw the item in question
from public view.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Explore Bristol Research

https://core.ac.uk/display/29025825?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/AHS.2008.9
http://research-information.bristol.ac.uk/en/publications/statistical-lossless-compression-of-space-imagery-and-general-data-in-a-reconfigurable-architecture(1e7bfe22-3dbb-46cd-87e6-d08b08ac40b4).html
http://research-information.bristol.ac.uk/en/publications/statistical-lossless-compression-of-space-imagery-and-general-data-in-a-reconfigurable-architecture(1e7bfe22-3dbb-46cd-87e6-d08b08ac40b4).html

Statistical Lossless Compression of Space Imagery and General Data in a

Reconfigurable Architecture

Jose Luis Nunez-Yanez, Xiaolin Chen, Nishan Canagarajah Raffaele Vitulli

 Electronic Engineering Department European Space Agency (ESA)

 Bristol University On-Board Payload Data Processing Section

 Bristol, BS8 1UB, UK Keplerlaan 1, Noordwijk, 2200, The Netherlands

 {eejlny,eezxxc,eecnc}@bristol.ac.uk raffaele.vitulli@esa.int

Abstract

This paper investigates an universal algorithm and

hardware architecture for context-based statistical

lossless compression of multiple types of data using

FPGA (Field Programmable Gate Array) devices which

support partial and dynamic reconfiguration. The

proposed system enables optimal modeling strategies for

each source type whilst entropy coding of the modeling

output is performed using a statically configured

arithmetic coding engine. Spacecraft communications

typically involve large amounts of information captured

from different sensors that must be transmitted without

any loss. The statistical redundancies present in this data

can be removed efficiently using the proposed

reconfigurable compression technology.

1. Introduction

 Lossless and lossy compression algorithms are

routinely used to reduce the bandwidth and storage

requirements of digital data. Lossy compression is well

suited to data that is already a digital approximation of

data that is analogue in nature such as visual and audio

information. Lossy compression can achieve much higher

compression ratios than lossless precisely because there is

not a requirement to maintain all the information

contained in the data source. Lossy compression has been

widely adopted and global standards exist such as H.264

and MPEG4 for video and JPEG for still images.

Traditionally, lossless compression has been used in those

data types that do not admit any bits to be modified in the

compression/decompression processes. Examples are

general data types such as text, html code, database

information, application data and program binaries where

reversible compression is required since every bit contains

critical information. Nevertheless, lossless compression

of images and video is also an important topic of research.

Medical images such as X-rays must be compressed

without any loss since the implications could be

catastrophic for the patient. Precious and hard-to-acquire

images such as those obtained in space exploration and

satellite surveillance also use lossless compression. Image

archiving will benefit from a master copy stored using a

lossless approach from which copies of any desired

quality could be obtained using lossy methods.

Additionally applications such as data, video and image

transmission in space require the performance to be

achieved in an energy and silicon efficient platform. To

achieve the demands set by these applications we propose

a universal lossless compression hardware core that

exploits dynamic reconfiguration to effectively combine

predictive coding, motion estimation and context-based

modeling hardware blocks depending on the data type.

2. Related work

Current lossless compression for general data makes a

distinction between dictionary-based and statistics-based

algorithms. Dictionary-based compression has been

traditionally more popular in software and hardware due

to the inherent simplicity of these algorithms. Examples of

dictionary-based compression in software are the popular

WinZip or Arj algorithms commonly used for archiving

and distributing large quantities of data. Also, the

hardware devices available from leading companies such

as HiFn Microelectronics LZS [1] use dictionary-based

compression methods based on the original LZ [2]

algorithms. Our research group’s work has been

extensively based on dictionary-based compression with

the X-MatchPRO [3] algorithm targeting a compression

ratio that halves the original input size while operating at

very high speeds. This research area both in software and

hardware is now mature with more than 25 years of work

having being dedicated to fine tune the LZ method and

few improvements can be expected. Context-based

statistical compression has been limited to software and it

is not very popular due to its high computing

requirements. An example of a powerful statistical

compressor is the PPMZ [4] software algorithm that

requires more than 20,000 CPU cycles per byte in a

general purpose microprocessor.

Algorithmic research in lossless image compression

has focussed in two main techniques; transform-based and

predictive coding. Extensive experimentation seems to

indicate that transform methods perform worse than

predictive methods for lossless compression. Predictive

NASA/ESA Conference on Adaptive Hardware and Systems

978-0-7695-3166-3/08 $25.00 © 2008 IEEE
DOI 10.1109/AHS.2008.9

172

NASA/ESA Conference on Adaptive Hardware and Systems

978-0-7695-3166-3/08 $25.00 © 2008 IEEE
DOI 10.1109/AHS.2008.9

172

NASA/ESA Conference on Adaptive Hardware and Systems

978-0-7695-3166-3/08 $25.00 © 2008 IEEE
DOI 10.1109/AHS.2008.9

172

Authorized licensed use limited to: UNIVERSITY OF BRISTOL. Downloaded on February 12, 2009 at 09:33 from IEEE Xplore. Restrictions apply.

coding is a technique where the value of the next input

data is predicted as a linear or nonlinear combination of

previous inputs. It has been successfully used in lossless

compression of visual content where it makes use of a

priori knowledge of smoothness. Smoothness means that

visual signals tend to follow a pattern of gentle variation

that can successfully be exploited in the first processing

stage to reduce the entropy of the data source. The output

of the predictive coder can be modelled using a context

dependent technique to further remove redundancy prior

to being entropy coded using Huffman coding or

arithmetic coding. Algorithms that employ this approach

are the Sunset [5], Felics [5] and the LOCO [6] algorithm

used in the JPEG LS. There are few hardware devices

proposed for lossless image compression using predictive

context-based arithmetic coding. A successful example

targeted at the compression of black and white fax images

is the IBM Q-Coder [7] device. This chip is based on a

simple fixed high-order (7th) binary model. This simple

model means that performance is not well suited for

general alphabets. This device achieves a throughput of 64

Mbits/second when implemented in a CMOS 5S (0.35

µm) technology from IBM.

Hardware-based lossless video compression is a largely

unexplored area. An example of a software lossless video

codec is the Huffyuv algorithm heavily based on lossless

JPEG operating on each of the frames of the sequence.

Popular lossy video codecs such as H.264 also offer a

lossless mode [8].

3. Dynamically Reconfigurable Modeling

Stage

The proposed compression system uses a dynamically

reconfigurable modeling stage followed by statically

configured probability estimation and arithmetic coding

stages as illustrated in Fig.1. Dynamic modeling is

specialized to each data type and uses a combination of

context modeling, predictive coding and motion

estimation depending on the data type being processed: 1-

D general data, 2-D image data or 3-D multispectral

images or video.

3.1. 1-D Lossless Data Modeling overview

During context modeling for 1-D data a finite number

of symbols (model order) that preceded the current

symbol in a single dimension and constitute its context are

searched in a context tree built dynamically as more data

is seen. Fig. 2 shows a simplified diagram of the context

modeller. The context FIFO stores the symbols that

preceded the current symbol and form its context. The

FIFO width is 1 byte to match the width of the symbol

while its length is configurable and depends on the

maximum model order.

 The hardware implementation of the context

modeler is based on a hashing tree that enables fast search

operations with low complexity. The tree is stored in

standard SRAM memory and maintains its logical

structure using a pointer mechanism. The hashing shift

and the XOR gate in Fig. 2 are used to generate an index

to be used to address the SRAM memory that stores the

context tree.

 The tree memory is divided into three sections.

Section 1 stores the context area memory address where

the probability data for that particular tree node can be

found. The other two sections implement the pointer

mechanism that maintains the logical structure of the tree.

Section 2 stores the context area index of the tree node

parent of the current node in the tree structure. Section 3

stores the context symbol stored at the current tree node.

The SRAM area free memory and the busy area generator

shown in Fig. 2 enable a single-cycle reset state without

having to reset the table memory with a multi-cycle table

walk operation. A table walk would have had a very

negative effect on throughput when dealing with small

blocks since the number of cycles needed to reset the table

could typically be larger than the number of cycles needed

to compress the block. A single valid register, named

line free in Fig. 2, is reset after processing each block and

this automatically invalidates all the locations in the table

memory.

Uncompressed

 Data

Time

Multiplex
Dynamic Modeling

Reconfiguration

Context
Modeling

Lossless Data Modeling

Lossless Image Modeling

Lossless Video Modeling

Context
Modeling

Context
Modeling

Probability

Estimator

Predictive
Coding

Motion
Estimator

Arithmetic

Coder

Compressed

Data

Figure 1. System Overview

173173173

Authorized licensed use limited to: UNIVERSITY OF BRISTOL. Downloaded on February 12, 2009 at 09:33 from IEEE Xplore. Restrictions apply.

Figure 2.1-D general data modeling architecture

This register has a similar function to the register

holding the valid bits in a direct-mapped cache. Each of

the register bits is shared by several table locations and in

order to distinguish which context tree nodes are busy and

which context tree nodes are free the area free memory

contains 1 bit per context tree node signaling a free or

busy node. If the valid register bit is set to zero all the tree

nodes associated with that valid register bit are considered

invalid. The found context areas are stored in two

equivalent buffers. When the first buffer is being filled

with context areas by the context modeler the second

buffer is being emptied by the probability estimator. Once

both stages have completed their operation the buffers

functionality is reversed and the process restarted. This

double buffering mechanism increases the throughput of

the system avoiding idle stages.

3.2. 2-D Lossless Image Modeling overview

Lossless image modeling handles image or any data

which has two-dimensional correlations. We propose a

segmentation-based lossless image model. Segmentation,

here means partitioning of an image into multiple regions

according to its features. We use this idea to group pixels

with similar features and use different modes to compress

them. A new ternary-mode is proposed to detect and

encode the edges, while the run-length coding [6] is

adopted to encode the homogeneous regions. The rest of

the image, mostly the texture regions, is compressed with

a regular-mode, which is based on the Gradient-Adjusted

Prediction (GAP) from CALIC [9] but is simplified. As

the mode selection is made by adaptive online checking of

neighboring symbols, no side information is transmitted.

We identify certain conditions for entering each mode. If

the four nearest symbols of the current symbol are the

same, a homogeneous region is assumed and the run-mode

is triggered. If the current symbol is identical to its

previous symbol, the symbol occurrence, called run,

increases by one; otherwise it stops and the current run

length is encoded. In regions where edges are present, we

examine if there are no more than three distinct symbol

values in a small neighborhood of the current symbol and

the ternary-mode is triggered. Thus only four symbols are

needed to encode this group of symbols and lower entropy

can be obtained. When the entry conditions for run-mode

or ternary-mode cannot be met, or when coding in other

modes fails, the regular mode is used.

Fig.3 illustrates the dataflow of the image model. The

implementation is achieved with two pipelines running in

parallel. Line 1, indicated by the flow on the left, operates

on the current symbol and yields the prediction error with

the selected mode for the probability estimator.

Figure 3. 2-D data modeling architecture

Line 2, indicated by the flow on the right, calculates the

prediction value and context index for the next symbol

under the selected mode. Since complicated coefficient

calculations are not needed, and simple division is done

by small lookup table, this model is hardware amenable.

This model is the base of the video model and can be

extended to handle multispectral images. Based on the 2-

D model, the video model incorporates the decorrelation

in spectral domain and temporal domain. An inter-band

prediction is used to exploit the correlation in spectral

domain and a switching strategy is designed to switch

Symbols
Value FIFO

Hashing

Shift

Index

Calculation

Busy Area

Generator

Match

Generator

Prefix

Area

Context

Symbols

Context

Area

Symbols In

Index

Match

Next

Available

Context

Area

Free

wr address

wr address

rd address

rd address

SRAM

SRAM

Context

Area Free

Line Free

Update available

Areas

Current

Context

Area

Previous

Context

Area

Current

Symbol

Symbols

Found

Contexts

Areas

8

3

8

8

10 10

11
11

11 10 10 8

1312

10

326

6

41

41

(41x32 = 1312)

11

11

10

10

10

10

10

8

3

10

+

10 Contexts

Areas Out

Context

Area FIFO
3

10
10 Contexts

Areas Out

new symbol

&

rescale if overflow

Mode Selection

Calculate

gradients

GAP prediction

Error energy

calculation

Texture pattern

generation

Calculate context mean

Calculate

ternary

context

Mode Decision

Mapping

Regular

mode

Run

mode

Ternary

mode

Regular

mode

Update contexts

Ternary

mode

Run

mode

Probability Estimator

Arithmetic Coder

174174174

Authorized licensed use limited to: UNIVERSITY OF BRISTOL. Downloaded on February 12, 2009 at 09:33 from IEEE Xplore. Restrictions apply.

between intra-band and inter-band prediction, according

to which correlation is stronger in the local area. For

temporal domain, we intend to use a zero-side-information

(no motion vectors) motion estimator to remove

redundancy between frames. Implementation details of

this model are currently under investigation.

4. Statically Configured Coding Stage

4.1. Probability estimation overview

Probability estimation extracts the context area indices

from the contexts nodes maintained by the context

modeller and uses them as pointers to the memory area

holding the probability information. The probability

estimator starts with the highest model order reached

during context modelling for general data or one of the six

context indices for visual data and tries to obtain a valid

prediction for the current symbol within that context.

Success is achieved as long as the current symbol has a

probability value larger than zero in that particular

context. Otherwise an escape event is coded and the

algorithm tries to use the next lower order until model

order -1 is reached. For the image coding case escape is

only used once and the second context tried is directly

order –1 that guarantees that a coding operation is always

possible. Initialization is implemented differently for the

image and data cases. For general data compression the

probability counts are always initialized to zero and the

probability of escaping is high. For the image case

initialization is done to one and the probability of

escaping is low but non-zero because the rescaling

operations can make some of the small values converge to

zero. In order –1 is used where all the symbols get a

probability larger than zero and equal to 1/alphabet_size.

The probabilities in order –1 are fixed and probability

estimation can never fail. The probability estimator uses a

balanced binary tree with 256 leafs corresponding to each

of the symbols in the alphabet.

The context area obtained from the context modeler

identifies a memory area where the probability data of the

symbols seen in that context is stored. An additional

symbol is the escape symbol used to blend different model

orders when no valid prediction is possible because the

symbol is new in the current context. A full alphabet of

256 symbols will have a tree depth of 9. The important

point to notice is that to fully code a symbol using this

binary tree is enough with coding the binary decisions

(left or right) taken place at each level of the tree when the

tree is transversed from root to leaf. This procedure means

that after 9 binary decisions a symbol is fully coded.

There are two main advantages obtained from using this

binary tree. Firstly, the arithmetic coding stage does not

need to be based on a complex multi-alphabet arithmetic

coder but a simple and fast binary arithmetic coder would

suffice. Secondly, the maintenance of the frequency

counts is achieved with a single update operation per node

visited [10].

Probability Storage

Calculate

Index
<<1

Scale and

Invalidate

SRAM

Total values

SRAM

Scale Invalidate

Cum0 Cum1

Increment

Escape

Decision Bit

Top Total Index

Symbol

rd address

wr address

most significant bit

Top Count
Middle count

Reset
Scale

New Middle count

New Index

Context Area

Old

Index

Middle count

11

1024

mux

-

scale
1

10

10

10

10

10

18

10

10

<< 8

10

18

mux

18

14

1024*256 =

262,144

mux

8

8

1 1

mux

+

1

1

1

10

10

10

10 10

1

1

1
1

Figure 4. Probability estimator architecture

The binary tree architecture enables the high

compression ratios possible with multi-symbol alphabets

(a better match of data granularity) and simultaneously

achieves low hardware complexity which also helps to

achieve a higher clock frequency. The binary tree is

projected first right to obtain 9 processing elements and

then down to reduce it to a single processing element.

This single processing element walks through the tree

from root to leaf forwarding two frequency count values

and a binary decision to the binary arithmetic coder. The

two frequency count values (cum0 and cum1) divide the

range into a left probability and a right probability. The

binary arithmetic coder uses this information to perform a

series of arithmetic operations that modify its internal

state and produce a compressed bit stream. The whole

process is numerically efficient and using 9 coding events

instead of 1 coding event per input symbol produces no

significant redundancy. Fig. 4 illustrates the architecture

of the processing element that implements the binary tree

node assuming a context population of 1024. The total

value memory contains the total frequency count for a

particular context while the probability storage memory

contains all the probability data associated with each of

the nodes in the tree.

4.2. Arithmetic Coding

The final stage of the coding process is arithmetic

coding. The arithmetic coder is based on a software

algorithm known as the Z-coder and developed by AT&T

labs as a generalization of the Golomb/Rice coder for

lossless coding of bilevel images. Our work has focused

on maintaining the simplicity of the Z-coding algorithm

175175175

Authorized licensed use limited to: UNIVERSITY OF BRISTOL. Downloaded on February 12, 2009 at 09:33 from IEEE Xplore. Restrictions apply.

while increasing its suitability for hardware

implementation. The resulting MZ-coder balances the

complexity of coding the MPS and LPS symbols,

simplifies the precision of the arithmetic and handles

special hardware borrow conditions while maintaining

coding efficiency and achieving high performance.

Figure 5. Arithmetic coding architecture

Fig.5 shows the internal organization of the

multiplication-free arithmetic coding module. A total of 6

pipeline stages are identified to improve the clock ratio of

the design. The lack of a renormalization loop in the MZ

algorithm means that one decision bit is processed per

clock cycle. The functionality of each of the pipeline

stages is explained in detailed in [10].

5. Performance Comparison

This section analyses the performance of the core in

terms of compression ratio and throughput and compares

it with other compression algorithms for data and images

implemented in both hardware and software.

Table 1 compares the compression efficiency of the

algorithm configured in data mode with two dictionary-

based and two statistical-based algorithms using the

Canterbury corpus as the data set. We have selected the

popular open source Lempel-Ziv implementation known

as GZIP and equivalent to other commercial algorithms

such as PKZIP and WinZIP as a fast and efficient

dictionary-based algorithm. LZS is targeted to hardware

as described in the related work section.

Table 1. General data compression performance

PPMC and PPMZ are software-only complex statistical

algorithms which need around 2,000 and 20,000 clock

cycles on average to compress a byte when implemented

in a general purpose processor. The table measures

compression in bits per byte and shows that only PPMZ

outperforms the proposed method. To evaluate image

compression we use the 8-bit CCSDS reference image set

as test images. As the proposed system is intended for

space borne applications test results relevant to this

purpose are useful. We compare the proposed scheme

with some state-of-the-art low complexity schemes.

CCSDS is the current Recommendation for space image

compression; PRDC is the CCSDS Rice coder; JPEG-LS

is the lossless image compression standard; JPEG2000

[11] is the current standard for lossy to lossless

compression; SPIHT [12] is a low-complexity progressive

image compressor; ICER [13] is another progressive

wavelet-based image compressor. When strip-based and

frame-based options are available for these algorithms, the

best ones are chosen in the comparison. Table 2 shows

that the proposed system outperforms the others in terms

of bit rates. In terms of throughput performance, the

proposed system is designed to process 1 bit per clock

cycle, which translates into a throughput of 100Mbits/sec

on a Xilinx Virtex-4 SX35 FPGA.

File GZIP LZS

PPMC

PPMZ

Proposed

(data

mode)

Alic 2.86 4.19 2.82 2.08 2.43

Asyo 3.05 4.29 3.01 2.26 2.57

Cppp 2.54 3.64 2.50 2.14 2.48

Fiel 2.20 2.87 2.14 1.81 2.16

Gram 2.62 3.09 2.57 2.25 2.51

Kenn 1.60 2.31 1.42 1.08 1.37

Lcet 2.71 4.14 2.69 1.82 2.25

Plra 3.24 4.69 3.22 2.21 2.49

ptt5 0.87 1.26 0.82 0.79 0.89

Sum 2.70 3.54 2.59 2.46 3.10

Xarg 3.29 3.89 3.22 2.84 3.14

average 2.52 3.45 2.45 1.98 2.30

+ - -

+

>>

1

MUXMUX

MUX

>0x

80

+

MUX

A <<

SHIFT
BITS

SHIFT

A

+

MUX

SUBEND <<

SHIFT BITS

0x40 0x60 0x100

z

A

A

Subend

MPS

Probability

State

Value

bit

Code Buffer

Code

Bits
Valid

B its

Code Generator

New

Codeword
New

Bits

Zero

Run

Code Packer

Codeword
Valid

Length

LPS Table

64x6

LPS

MPS

6

6

7

6

7 77

77

7

7

6

3

6

7

7

6 3

13
4

3

20

8

5

Virtual

Run

176176176

Authorized licensed use limited to: UNIVERSITY OF BRISTOL. Downloaded on February 12, 2009 at 09:33 from IEEE Xplore. Restrictions apply.

Table 2. Space Imagery data compression performance

6. Conclusions

 The compression ratio evaluation of the algorithm shows

that the proposed method can outperform other well-

known techniques. The hardware amenability and the

reconfigurable feature mean that the device could operate

in a resource and energy constraint environment such as a

space probe. In principle, reconfiguration should be

initiated by a general controller although automatic

reconfiguration after data type detection is also possible.

We are currently working in adding lossless video

compression support designing an efficient pixel-oriented

vector-less motion estimation engine. Additionally, we

would like to investigate the configuration of different

alphabet sizes extending the current byte-based alphabets

to multiple-bit alphabets for lossless compression of

scientific data obtained from high-resolution analogue-to-

digital converters. Executables and information for this

core named Byacom-2 will become available at

www.byacom.co.uk as the project progresses. We would

like to acknowledge the support of EPSRC under grant

number EP/D011639/1 for making this research possible.

1 ‘9600 Data Compression Processor’, Data Sheet, Hi/fn Inc,

750 University Avenue, Los Gatos, CA, 1999.

2 J.Ziv, A.Lempel, ‘ A Universal Algorithm for Sequential

Data Compression’ IEEE Trans. Inf. Theory, Vol. IT-23,

pp. 337-343, 1977.

3 J.L Núñez, S. Jones, ' Gbit/Second Lossless Data

Compression Hardware', IEEE Transactions in VLSI

Systems (TVLSI), Vol. 11, No. 3, pp. 499-510, June, 2003

4 C. Bloom, ‘Solving the Problems of Context Modelling’,

http://www.cbloom.com/papers/index.html, 1998.

5 X. Wu, ‘An algorithmic study in lossless image

compression', Proceedings of the 1996 Data Compression

Conference, Snowbird, Utah, pp. 150-159, April 1996.

6 M. Weinberger, G. Seroussi, and G. Shapiro, ‘The LOCO-I

lossless image compression algorithm: Principles and

standardization into JPEG-LS’, IEEE Trans. on Image

Proc., vol. 9, pp. 1309-1324, Aug. 2000.

7 M. J. Slattery, J. L. Mitchell, ‘The Qx-Coder’, IBM Journal

of Research and Development, Vol. 42, No. 6, pp. 767-784,

1998.

8 Sullivan, T. Wiegand, “Video Compression - From

Concepts to the H.264/AVC Standard”, Proc. the IEEE,

Special Issue on Advances in Video Coding and Delivery,

Vol. 93, No. 1, pp. 18-31, January 2005.

9 X. Wu and N. Memon, “Context-based, adaptive, lossless

image coding,” IEEE Trans. Commun., vol. 45, no. 4, pp.

437-444, Apr. 1997.

10 J. L. Nunez-Yanez and V. A. Chouliaras, “A configurable

statistical lossless compression core based on variable order

Markov modelling and arithmetic coding,” IEEE Trans.

Comput., vol. 54, no. 11, pp. 1345-1359, Nov. 2005.

11 Taubman, D. S., Marcellin, M. W.: JPEG2000 Image

Compression Fundamentals, Standards and Practice.

Kluwer. 2002

12 Said, A., Pearlman, W. A.: A New Fast and Efficient Image

Codec Based on Set Partitioning in Hierarchical Trees.

IEEE Trans. Circuits Syst. Video Technol. Vol. 6, pp. 243-

250, 1996.

13 Kiely, A., Klimesh, M.: The ICER Progressive Wavelet

Image Compressor. IPN Progress Report 42-155. pp. 1-46,

2003.

image CCSDS PRDC JPEG-LS JPEG2000 SPIH

T

 ICER Proposed

(image

mode)

 coastal
_
b1 3.36 3.56 3.09 3.13 3.09 3.07 3.00

 coastal
_
b2 3.22 3.32 2.90 2.97 2.94 2.92 2.84

 coastal
_
b3 3.48 3.68 3.22 3.23 3.21 3.20 3.14

 coastal
_
b4 2.81 2.91 2.41 2.53 2.57 2.55 2.37

 coastal
_
b5 3.16 3.30 2.81 2.94 2.91 2.89 2.79

 coastal
_
b6h 3.02 2.75 2.50 2.60 2.71 2.54 2.52

 coastal
_
b6l 2.35 2.03 1.76 1.96 2.02 1.87 1.84

 coastal
_
b7 3.45 3.66 3.17 3.22 3.17 3.15 3.10

 coastal
_
b8 3.66 3.93 3.42 3.40 3.35 3.31 3.28

 europa3 6.61 7.48 6.64 6.52 6.46 6.30 6.42

 marstest 4.78 5.39 4.69 4.74 4.64 4.63 4.60

 lunar 4.58 5.23 4.35 4.49 4.43 4.40 4.20

 spot-la
_
b3 4.80 5.20 4.53 4.69 4.70 4.56 4.43

spot_la
_
panchr 4.27 4.87 4.00 4.13 4.11 4.03 3.90

 average 3.82 4.09 3.54 3.61 3.59 3.53 3.46

177177177

Authorized licensed use limited to: UNIVERSITY OF BRISTOL. Downloaded on February 12, 2009 at 09:33 from IEEE Xplore. Restrictions apply.

