26 research outputs found

    Wind energy harvester interface for sensor nodes

    Get PDF
    The research topic is developping a power converting interface for the novel FLEHAP wind energy harvester allowing the produced energy to be used for powering small wireless nodes. The harvester\u2019s electrical characteristics were studied and a strategy was developped to control and mainting a maximum power transfer. The electronic power converter interface was designed, containing an AC/DC Buck-Boost converter and controlled with a low power microcontroller. Different prototypes were developped that evolved by reducing the sources of power loss and rendering the system more efficient. The validation of the system was done through simulations in the COSMIC/DITEN lab using generated signals, and then follow-up experiments were conducted with a controllable wind tunnel in the DIFI department University of Genoa. The experiment results proved the functionality of the control algorithm as well as the efficiency that was ramped up by the hardware solutions that were implemented, and generally met the requirement to provide a power source for low-power sensor nodes

    Power electronic interfaces for piezoelectric energy harvesters

    Get PDF
    Motion-driven energy harvesters can replace batteries in low power wireless sensors, however selection of the optimal type of transducer for a given situation is difficult as the performance of the complete system must be taken into account in the optimisation. In this thesis, a complete piezoelectric energy harvester system model including a piezoelectric transducer, a power conditioning circuit, and a battery, is presented allowing for the first time a complete optimisation of such a system to be performed. Combined with previous work on modelling an electrostatic energy harvesting system, a comparison of the two transduction methods was performed. The results at 100 Hz indicate that for small MEMS devices at low accelerations, electrostatic harvesting systems outperform piezoelectric but the opposite is true as the size and acceleration increases. Thus the transducer type which achieves the best power density in an energy harvesting system for a given size, acceleration and operating frequency can be chosen. For resonant vibrational energy harvesting, piezoelectric transducers have received a lot of attention due to their MEMS manufacturing compatibility with research focused on the transduction method but less attention has been paid to the output power electronics. Detailed design considerations for a piezoelectric harvester interface circuit, known as single-supply pre-biasing (SSPB), are developed which experimentally demonstrate the circuit outperforming the next best known interface's theoretical limit. A new mode of operation for the SSPB circuit is developed which improves the power generation performance when the piezoelectric material properties have degraded. A solution for tracking the maximum power point as the excitation changes is also presented.Open Acces

    CMOS indoor light energy harvesting system for wireless sensing applications

    Get PDF
    Dissertação para obtenção do Grau de Doutor em Engenharia Electrotécnica e de ComputadoresThis research thesis presents a micro-power light energy harvesting system for indoor environments. Light energy is collected by amorphous silicon photovoltaic (a-Si:H PV) cells, processed by a switched-capacitor (SC) voltage doubler circuit with maximum power point tracking (MPPT), and finally stored in a large capacitor. The MPPT Fractional Open Circuit Voltage (VOC) technique is implemented by an asynchronous state machine (ASM) that creates and, dynamically, adjusts the clock frequency of the step-up SC circuit, matching the input impedance of the SC circuit to the maximum power point (MPP) condition of the PV cells. The ASM has a separate local power supply to make it robust against load variations. In order to reduce the area occupied by the SC circuit, while maintaining an acceptable efficiency value, the SC circuit uses MOSFET capacitors with a charge reusing scheme for the bottom plate parasitic capacitors. The circuit occupies an area of 0.31 mm2 in a 130 nm CMOS technology. The system was designed in order to work under realistic indoor light intensities. Experimental results show that the proposed system, using PV cells with an area of 14 cm2, is capable of starting-up from a 0 V condition, with an irradiance of only 0.32 W/m2. After starting-up, the system requires an irradiance of only 0.18 W/m2 (18 mW/cm2) to remain in operation. The ASM circuit can operate correctly using a local power supply voltage of 453 mV, dissipating only 0.085 mW. These values are, to the best of the authors’ knowledge, the lowest reported in the literature. The maximum efficiency of the SC converter is 70.3% for an input power of 48 mW, which is comparable with reported values from circuits operating at similar power levels.Portuguese Foundation for Science and Technology (FCT/MCTES), under project PEst-OE/EEI/UI0066/2011, and to the CTS multiannual funding, through the PIDDAC Program funds. I am also very grateful for the grant SFRH/PROTEC/67683/2010, financially supported by the IPL – Instituto Politécnico de Lisboa

    A POWER DISTRIBUTION SYSTEM BUILT FOR A VARIETY OF UNATTENDED ELECTRONICS

    Get PDF
    A power distribution system (PDS) delivers electrical power to a load safely and effectively in a pre-determined format. Here format refers to necessary voltages, current levels and time variation of either as required by the empowered system. This formatting is usually referred as "conditioning". The research reported in this dissertation presents a complete system focusing on low power energy harvesting, conditioning, storage and regulation. Energy harvesting is a process by which ambient energy present in the environment is captured and converted to electrical energy. In recent years, it has become a prominent research area in multiple disciplines. Several energy harvesting schemes have been exploited in the literature, including solar energy, mechanic energy, radio frequency (RF) energy, thermal energy, electromagnetic energy, biochemical energy, radioactive energy and so on. Different from the large scale energy generation, energy harvesting typically operates in milli-watts or even micro-watts power levels. Almost all energy harvesting schemes require stages of power conditioning and intermediate storage - batteries or capacitors that reservoir energy harvested from the environment. Most of the ambient energy fluctuates and is usually weak. The purpose of power conditioning is to adjust the format of the energy to be further used, and intermediate storage smoothes out the impact of the fluctuations on the power delivered to the load. This dissertation reports an end to end power distribution system that integrates different functional blocks including energy harvesting, power conditioning, energy storage, output regulation and system control. We studied and investigated different energy harvesting schemes and the dissertation places emphasis on radio frequency energy harvesting. This approach has proven to be a viable power source for low-power electronics. However, it is still challenging to obtain significant amounts of energy rapidly and efficiently from the ambient. Available RF power is usually very weak, leading to low voltage applied to the electronics. The power delivered to the PDS is hard to utilize or store. This dissertation presents a configuration including a wideband rectenna, a switched capacitor voltage boost converter and a thin film flexible battery cell that can be re-charged at an exceptionally low voltage. We demonstrate that the system is able to harvest energy from a commercially available hand-held communication device at an overall efficiency as high as 7.7 %. Besides the RF energy harvesting block, the whole PDS includes a solar energy harvesting block, a USB recharging block, a customer selection block, two battery arrays, a control block and an output block. The functions of each of the blocks have been tested and verified. The dissertation also studies and investigates several potential applications of this PDS. The applications we exploited include an ultra-low power tunable neural oscillator, wireless sensor networks (WSNs), medical prosthetics and small unmanned aerial vehicles (UAVs). We prove that it is viable to power these potential loads through energy harvesting from multiple sources

    Self-powered and Self-configurable Active Rectifier Using Low Voltage Controller for Wide Output Range Energy Harvesters

    Get PDF
    This is the author accepted manuscript. The final version is available from IEEE via the DOI in this recordData availability: All data are provided in full in the results section of this paper.This paper presents a self-configurable and selfpowered active rectifier that operates from 0.25–20 V for energy harvesting applications. The proposed circuit self-startups from a low voltage using a charge pump and amplifies the voltage with a voltage doubler (VD) topology to provide succeeding circuits such as boost converters with a higher voltage. When the voltage of the energy harvester reaches a high threshold, the circuit switches its topology to a full-wave rectifier (FR) that does not amplify the voltage. The start-up circuit can limit its voltage intake to prevent boosting the high voltage, which may damage the whole circuit. Comparators with a maximum operating voltage of 5.5 V used in the implementation of the rectifier are protected by a diode and resistor based circuit. A piezoelectric energy harvester (PEH) that has a wide open-circuit voltage of 0.4–15 V under the acceleration of 0.04–0.3 g was used to test the circuit. The experiment results showed the rectifier can startup from 0.25 V and switch its topology according to the PEH voltage. The voltage and power conversion efficiencies are over 90% in most cases.Engineering and Physical Sciences Research Council (EPSRC)Royal Societ

    Magnetostriktiivinen energian louhinta teräksestä

    Get PDF
    Energy harvesting is defined as electronic devices acquiring the energy they need to operate from their environment. Potential energy sources in the environment include light, temperature gradients, electromagnetic radiation and kinetic energy. The development of energy harvesting technologies together with a drop in the energy consumption of electronic devices may in the near future make many devices energy independent, which means a drop in the maintenance need of the devices, greater reliability and a reduction in the amount of battery waste. The main aim of the experimental part of this thesis was to present and further develop a new kinetic energy harvesting method, which can harvest energy from elastic waves propagating in steel structures, and to develop harvesting electronics that can be used with the new method. This new method is based on the magnetoelastic effect, which is a natural phenomenon that causes the magnetization of a ferromagnetic material to change when the dimensions of the material are changed. This phenomenon is also known as the inverse magnetostrictive effect. A change in the magnetization of a material will also cause a change in the magnetic flux passing through the material. Since a change in the magnetic flux of a coil will induce and electromotive force in the coil, the magnetoelastic effect can be utilized in energy harvesting. The basic idea behind the new method is harvesting energy from an impact loaded steel bar with a coil wound around the bar. Impact loading a steel bar will cause an elastic wave to propagate along the bar, which will cause alternating compressive and tensile stresses in the steel bar. Since steels are ferromagnetic materials, the strains will alter the magnetization of the bar inducing an electromotive force in a coil around the bar. Thus a part of the kinetic energy carried by the elastic is transduced to electrical energy. In the experimental part a test setup, an experimental harvesting generator and electronic harvesting circuits, to be used with the method, were implemented. The mean power that can be achieved with the experimental method depends on the magnitude and frequency of the impact loading, but during testing mean output power of the harvesting generator was between 1-5 mW, when an elastic wave was propagating in the bar. This is a sufficient mean power for a low power wireless sensor. The thesis also includes a literature survey, which aims to give the reader basic knowledge of existing kinetic energy harvesting methods and magnetostrictive phenomena

    Analysis, Design and implementation of Energy Harvesting Systems for Wireless Sensor Nodes.

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Energy Harvesting Techniques for Small Scale Environmentally-Powered Electronic Systems

    Get PDF
    The continuous advances in integrated circuit fabrication technologies, circuit design, and networking techniques enable the integration of an in-creasing number of functionalities in ever smaller devices. This trend de-termines the multiplication of possible application scenarios for tiny em-bedded systems such as wireless sensors, whose utilization has grown more and more pervasive. However, the operating life time of such sys-tems, when placed in locations not allowing a wired connection to a de-pendable power supply infrastructure, is still heavily limited by the finite capacity of currently available accumulators, whose technology has not improved at the same pace of the electronic systems they supply. Energy harvesting techniques constitute a real solution to power un-tethered computing platforms in this kind of spatially-distributed applica-tions. By converting part of the energy freely available in the surrounding environment to electrical energy, the operating life of the system can be extended considerably, potentially for an unlimited time. In recent years an increasing number of researchers have investigated this possibility. In this dissertation we discuss our results about the study and design of systems capable of harvesting energy from various regenerative sources. We start with the design of an airflow energy harvester, focusing on the optimization of its power generation and efficiency performances, and obtaining superior results with respect to similar works in literature. Then we deal with the improvement of this architecture to implement a fully autonomous vibrational harvester, featuring uncommon in-the-field configuration capabilities. Afterwards we investigate the applicability of self-powered wireless sensor nodes to heavy duty and agricultural machinery, finding attractive vibration sources capable of providing enough power to sustain remarkable data transmission rates. To address remote monitoring applications with stringent needs in terms of power supply availability, we present a truly flexible multi-source energy harvester, along with a simulation framework expressly developed to anticipate the harvester performance when placed in a specific operating environment. Furthermore, the design strategies allowing energy harvesters to fully exploit the locally generated power can be profitably applied in the field of distributed electricity generation from renewable energy sources, to enhance the self-consumption capabilities of microgeneration systems. Based on this motivation, we finally propose a grid-assisted photovoltaic power supply to improve the self-sustainability of ground-source heat pumps, and analyze original data on the consumption profiles of these systems to assess the effectiveness of the design. Energy harvesting techniques have the potential to enable many cut-ting-edge applications, especially in remote sensing and pervasive computing areas, which can bring innovations in several fields of human activity. In this thesis we contribute tackling some of the numerous open research challenges still hampering the widespread adoption of this technology

    Power Management Circuits for Energy Harvesting Applications

    Get PDF
    Energy harvesting is the process of converting ambient available energy into usable electrical energy. Multiple types of sources are can be used to harness environmental energy: solar cells, kinetic transducers, thermal energy, and electromagnetic waves. This dissertation proposal focuses on the design of high efficiency, ultra-low power, power management units for DC energy harvesting sources. New architectures and design techniques are introduced to achieve high efficiency and performance while achieving maximum power extraction from the sources. The first part of the dissertation focuses on the application of inductive switching regulators and their use in energy harvesting applications. The second implements capacitive switching regulators to minimize the use of external components and present a minimal footprint solution for energy harvesting power management. Analysis and theoretical background for all switching regulators and linear regulators are described in detail. Both solutions demonstrate how low power, high efficiency design allows for a self-sustaining, operational device which can tackle the two main concerns for energy harvesting: maximum power extraction and voltage regulation. Furthermore, a practical demonstration with an Internet of Things type node is tested and positive results shown by a fully powered device from harvested energy. All systems were designed, implemented and tested to demonstrate proof-of-concept prototypes
    corecore