106 research outputs found

    Analysis, Design and Implementation of a Resonant Solid State Transformer

    Get PDF
    This thesis discusses the design of a full-bridge resonant LLC Solid State Transformer. The proposed topology uses a high-frequency transformer which helps minimizing its cost and size, and enables operating at varying load conditions. By using a resonant circuit, soft switching is achieved. Commutation techniques are discussed, namely ZVS and ZCS. Both concepts are applied on different legs of the H-bridge. Pulse frequency modulation (PFM) and Phase Shifting Modulation (PSM) are utilized to control this resonant converter. One of the requirements of this work is to achieve a tightly regulated DC bus voltage. This was shown to be achieved using the proposed controller. An experimental setup was assembled and the controller was tested, the results match the simulation and calculation results. The SST setup was tested for two different power levels. The outputs confirm the validity of the controller in feeding the load and regulating the voltage within the desired switching frequency interval, while maintaining soft switching. A thermal analysis was conducted to calculate losses, and a conversion efficiency of 97.18% was achieved. Using a high frequency transformer, a reduction in size and cost is achieved as compared to conventional low frequency transformers that usually are large in size and require more material to be assembled (copper and iron). Design requirements and limitations, the proposed control scheme, modeling and implementation, and test results are provided in this thesis

    Symmetrical Bipolar Output Isolated Four-Port Converters Based on Center-Tapped Winding for Bipolar DC Bus Applications

    Get PDF

    Grid Integration of DC Buildings: Standards, Requirements and Power Converter Topologies

    Get PDF
    Residential dc microgrids and nanogrids are the emerging technology that is aimed to promote the transition to energy-efficient buildings and provide simple, highly flexible integration of renewables, storages, and loads. At the same time, the mass acceptance of dc buildings is slowed down by the relative immaturity of the dc technology, lack of standardization and general awareness about its potential. Additional efforts from multiple directions are necessary to promote this technology and increase its market attractiveness. In the near-term, it is highly likely that the dc buildings will be connected to the conventional ac distribution grid by a front-end ac-dc converter that provides all the necessary protection and desired functionality. At the same time, the corresponding requirements for this converter have not been yet consolidated. To address this, present paper focuses on various aspects of the integration of dc buildings and includes analysis of related standards, directives, operational and compatibility requirements as well as classification of voltage levels. In addition, power converter configurations and modulation methods are analyzed and compared. A classification of topologies that can provide the required functionality for the application is proposed. Finally, future trends and remaining challenges pointed out to motivate new contributions to this topic

    Three-level (TL) based isolated DC/DC converters with improved performances

    Get PDF

    Phase-shift-modulation for a current-fed isolated DC-DC converter in more electric aircraft

    Get PDF
    A Phase-Shift-Modulation (PSM) technique is proposed for an Active-Bridge-Active-Clamp (ABAC) topology. This topology is aimed for high power more-electric-aircraft applications. The proposed PSM has a complete switching harmonics cancellation on the low voltage terminal, independently of the operating conditions by effectively interleaving inductor currents. This results in a DC current at the low voltage terminal without any AC components, thus minimizing the passive filtering requirements. Additionally, when terminal voltages vary from their nominal values, the maximum power transfer capability of the ABAC converter can be greatly improved by using the proposed PSM. In this paper, the limitations of the conventional modulation technique for the ABAC converter are introduced and analysed. Then, a PSM scheme is proposed, which can provide high quality power on the low voltage terminal whilst maintaining high power transfer capability and efficiency in a wide operating range. The theoretical claims are validated by both simulation and experimental results on a 10kW 270V/28V ABAC converter

    Efficient and Robust Simulation, Modeling and Characterization of IC Power Delivery Circuits

    Get PDF
    As the Moore’s Law continues to drive IC technology, power delivery has become one of the most difficult design challenges. Two of the major components in power delivery are DC-DC converters and power distribution networks, both of which are time-consuming to simulate and characterize using traditional approaches. In this dissertation, we propose a complete set of solutions to efficiently analyze DC-DC converters and power distribution networks by finding a perfect balance between efficiency and accuracy. To tackle the problem, we first present a novel envelope following method based on a numerically robust time-delayed phase condition to track the envelopes of circuit states under a varying switching frequency. By adopting three fast simulation techniques, our proposed method achieves higher speedup without comprising the accuracy of the results. The robustness and efficiency of the proposed method are demonstrated using several DCDC converter and oscillator circuits modeled using the industrial standard BSIM4 transistor models. A significant runtime speedup of up to 30X with respect to the conventional transient analysis is achieved for several DC-DC converters with strong nonlinear switching characteristics. We then take another approach, average modeling, to enhance the efficiency of analyzing DC-DC converters. We proposed a multi-harmonic model that not only predicts the DC response but also captures the harmonics of arbitrary degrees. The proposed full-order model retains the inductor current as a state variable and accurately captures the circuit dynamics even in the transient state. Furthermore, by continuously monitoring state variables, our model seamlessly transitions between continuous conduction mode and discontinuous conduction mode. The proposed model, when tested with a system decoupling technique, obtains up to 10X runtime speedups over transistor-level simulations with a maximum output voltage error that never exceeds 4%. Based on the multi-harmonic averaged model, we further developed the small-signal model that provides a complete characterization of both DC averages and higher-order harmonic responses. The proposed model captures important high-frequency overshoots and undershoots of the converter response, which are otherwise unaccounted for by the existing techniques. In two converter examples, the proposed model corrects the misleading results of the existing models by providing the truthful characterization of the overall converter AC response and offers important guidance for converter design and closed-loop control. To address the problem of time-consuming simulation of power distribution networks, we present a partition-based iterative method by integrating block-Jacobi method with support graph method. The former enjoys the ease of parallelization, however, lacks a direct control of the numerical properties of the produced partitions. In contrast, the latter operates on the maximum spanning tree of the circuit graph, which is optimized for fast numerical convergence, but is bottlenecked by its difficulty of parallelization. In our proposed method, the circuit partitioning is guided by the maximum spanning tree of the underlying circuit graph, offering essential guidance for achieving fast convergence. The resulting block-Jacobi-like preconditioner maximizes the numerical benefit inherited from support graph theory while lending itself to straightforward parallelization as a partitionbased method. The experimental results on IBM power grid suite and synthetic power grid benchmarks show that our proposed method speeds up the DC simulation by up to 11.5X over a state-of-the-art direct solver

    Efficient and Robust Simulation, Modeling and Characterization of IC Power Delivery Circuits

    Get PDF
    As the Moore’s Law continues to drive IC technology, power delivery has become one of the most difficult design challenges. Two of the major components in power delivery are DC-DC converters and power distribution networks, both of which are time-consuming to simulate and characterize using traditional approaches. In this dissertation, we propose a complete set of solutions to efficiently analyze DC-DC converters and power distribution networks by finding a perfect balance between efficiency and accuracy. To tackle the problem, we first present a novel envelope following method based on a numerically robust time-delayed phase condition to track the envelopes of circuit states under a varying switching frequency. By adopting three fast simulation techniques, our proposed method achieves higher speedup without comprising the accuracy of the results. The robustness and efficiency of the proposed method are demonstrated using several DCDC converter and oscillator circuits modeled using the industrial standard BSIM4 transistor models. A significant runtime speedup of up to 30X with respect to the conventional transient analysis is achieved for several DC-DC converters with strong nonlinear switching characteristics. We then take another approach, average modeling, to enhance the efficiency of analyzing DC-DC converters. We proposed a multi-harmonic model that not only predicts the DC response but also captures the harmonics of arbitrary degrees. The proposed full-order model retains the inductor current as a state variable and accurately captures the circuit dynamics even in the transient state. Furthermore, by continuously monitoring state variables, our model seamlessly transitions between continuous conduction mode and discontinuous conduction mode. The proposed model, when tested with a system decoupling technique, obtains up to 10X runtime speedups over transistor-level simulations with a maximum output voltage error that never exceeds 4%. Based on the multi-harmonic averaged model, we further developed the small-signal model that provides a complete characterization of both DC averages and higher-order harmonic responses. The proposed model captures important high-frequency overshoots and undershoots of the converter response, which are otherwise unaccounted for by the existing techniques. In two converter examples, the proposed model corrects the misleading results of the existing models by providing the truthful characterization of the overall converter AC response and offers important guidance for converter design and closed-loop control. To address the problem of time-consuming simulation of power distribution networks, we present a partition-based iterative method by integrating block-Jacobi method with support graph method. The former enjoys the ease of parallelization, however, lacks a direct control of the numerical properties of the produced partitions. In contrast, the latter operates on the maximum spanning tree of the circuit graph, which is optimized for fast numerical convergence, but is bottlenecked by its difficulty of parallelization. In our proposed method, the circuit partitioning is guided by the maximum spanning tree of the underlying circuit graph, offering essential guidance for achieving fast convergence. The resulting block-Jacobi-like preconditioner maximizes the numerical benefit inherited from support graph theory while lending itself to straightforward parallelization as a partitionbased method. The experimental results on IBM power grid suite and synthetic power grid benchmarks show that our proposed method speeds up the DC simulation by up to 11.5X over a state-of-the-art direct solver

    A Voltage Doubler Circuit to Extend the Soft-switching Range of Dual Active Bridge Converters

    Get PDF

    High Performance Power Management Integrated Circuits for Portable Devices

    Get PDF
    abstract: Portable devices often require multiple power management IC (PMIC) to power different sub-modules, Li-ion batteries are well suited for portable devices because of its small size, high energy density and long life cycle. Since Li-ion battery is the major power source for portable device, fast and high-efficiency battery charging solution has become a major requirement in portable device application. In the first part of dissertation, a high performance Li-ion switching battery charger is proposed. Cascaded two loop (CTL) control architecture is used for seamless CC-CV transition, time based technique is utilized to minimize controller area and power consumption. Time domain controller is implemented by using voltage controlled oscillator (VCO) and voltage controlled delay line (VCDL). Several efficiency improvement techniques such as segmented power-FET, quasi-zero voltage switching (QZVS) and switching frequency reduction are proposed. The proposed switching battery charger is able to provide maximum 2 A charging current and has an peak efficiency of 93.3%. By configure the charger as boost converter, the charger is able to provide maximum 1.5 A charging current while achieving 96.3% peak efficiency. The second part of dissertation presents a digital low dropout regulator (DLDO) for system on a chip (SoC) in portable devices application. The proposed DLDO achieve fast transient settling time, lower undershoot/overshoot and higher PSR performance compared to state of the art. By having a good PSR performance, the proposed DLDO is able to power mixed signal load. To achieve a fast load transient response, a load transient detector (LTD) enables boost mode operation of the digital PI controller. The boost mode operation achieves sub microsecond settling time, and reduces the settling time by 50% to 250 ns, undershoot/overshoot by 35% to 250 mV and 17% to 125 mV without compromising the system stability.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Isolated and Bidirectional DC-DC Converter for Electric Vehicles

    Get PDF
    O estado da arte iniciou com a análise na literatura de topologias de conversores DC-DC. Técnicas de modulação são estudadas com vista a melhorar a eficiência de conversão, realçando as vantagens e limitações inerentes das mesmas. Após a análise da literatura, o foco projeto passou a ser a topologias de dupla ponte com dispositivos ativos e com isolamento galvânico intermédio entre as duas pontes (conhecido em inglês por dual active bridge). Algumas técnicas de modulação que permitem o funcionamento do conversor são analisadas no documento e suportadas com resultados obtidos em ambiente de simulação. O dimensionamento do transformador de potência é realizado assim como a descrição dos passos. É relizado uma análise de mercado de dispositivos de comutação com a tecnologia "Silicon Carbide" e são apresentados estimativas de perdas e eficiência de operação na utilização de transistores com a techonoloa SiC no conversor analisado. Os resultados são obtidos com recurso a simulações computacionais que através de modelos de aproximação permitem aproximar o conversor a uma situação mais proxima da real. Em termos de implementação, é esperado a implementação um circuito de comando para dois MOSFETS com tecnologia SiC com a configuração em meia ponte ligada a uma carga
    corecore