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ABSTRACT

As the Moore’s Law continues to drive IC technology, power delivery has become one

of the most difficult design challenges. Two of the major components in power delivery are

DC-DC converters and power distribution networks, both of which are time-consuming to

simulate and characterize using traditional approaches. In this dissertation, we propose a

complete set of solutions to efficiently analyze DC-DC converters and power distribution

networks by finding a perfect balance between efficiency and accuracy.

To tackle the problem, we first present a novel envelope following method based on

a numerically robust time-delayed phase condition to track the envelopes of circuit states

under a varying switching frequency. By adopting three fast simulation techniques, our

proposed method achieves higher speedup without comprising the accuracy of the results.

The robustness and efficiency of the proposed method are demonstrated using several DC-

DC converter and oscillator circuits modeled using the industrial standard BSIM4 transis-

tor models. A significant runtime speedup of up to 30X with respect to the conventional

transient analysis is achieved for several DC-DC converters with strong nonlinear switch-

ing characteristics.

We then take another approach, average modeling, to enhance the efficiency of analyz-

ing DC-DC converters. We proposed a multi-harmonic model that not only predicts the

DC response but also captures the harmonics of arbitrary degrees. The proposed full-order

model retains the inductor current as a state variable and accurately captures the circuit

dynamics even in the transient state. Furthermore, by continuously monitoring state vari-

ables, our model seamlessly transitions between continuous conduction mode and discon-

tinuous conduction mode. The proposed model, when tested with a system decoupling

technique, obtains up to 10X runtime speedups over transistor-level simulations with a

ii



maximum output voltage error that never exceeds 4%.

Based on the multi-harmonic averaged model, we further developed the small-signal

model that provides a complete characterization of both DC averages and higher-order

harmonic responses. The proposed model captures important high-frequency overshoots

and undershoots of the converter response, which are otherwise unaccounted for by the

existing techniques. In two converter examples, the proposed model corrects the mislead-

ing results of the existing models by providing the truthful characterization of the overall

converter AC response and offers important guidance for converter design and closed-loop

control.

To address the problem of time-consuming simulation of power distribution networks,

we present a partition-based iterative method by integrating block-Jacobi method with

support graph method. The former enjoys the ease of parallelization, however, lacks a

direct control of the numerical properties of the produced partitions. In contrast, the lat-

ter operates on the maximum spanning tree of the circuit graph, which is optimized for

fast numerical convergence, but is bottlenecked by its difficulty of parallelization. In our

proposed method, the circuit partitioning is guided by the maximum spanning tree of the

underlying circuit graph, offering essential guidance for achieving fast convergence. The

resulting block-Jacobi-like preconditioner maximizes the numerical benefit inherited from

support graph theory while lending itself to straightforward parallelization as a partition-

based method. The experimental results on IBM power grid suite and synthetic power grid

benchmarks show that our proposed method speeds up the DC simulation by up to 11.5X

over a state-of-the-art direct solver.
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1. INTRODUCTION AND LITERATURE REVIEW

Power delivery has become one of the most important aspects of today’s integrated

circuit (IC) design. As shown in Fig. 1.1, there are two major components that process

and deliver the power from an external power source to the individual functional circuit on

the chip. The first component is the DC-DC converters, which step up/down the external

power supply voltage to desired voltage levels for different functional circuits. The second

component is the power distribution networks (PDN), which are large circuit networks

that deliver power to each transistor. Both components are critical in delivering stable

and robust voltages to functional circuits and may lead to catastrophic consequences when

either component is designed incorrectly.

Nowadays, power delivery design circuit is becoming more and more challenging. As

shown by International Technology Roadmap for Semiconductors (ITRS) in Fig. 1.2, two

significant trends in power supply are observed. First of all, as the supply voltage keeps

scaling down to reduce power consumption, the functionalities of the on-chip circuits are

more vulnerable to supply voltage noise and IR drops on power distribution networks.

Second, with more functional circuits being integrated into the chip, the load current con-

tinues to increase, which causes the DC-DC converter being more susceptive to output

voltage drop in fast load transient and heavy load conditions. Overall, the situations de-

mand better power delivery design methods that provide efficient and accurate analysis of

DC-DC converters and power distribution networks.

While it is important to efficiently analyze, simulate and model DC-DC converters and

power distribution networks, finding the proper methods is proved to be very challenging

[2, 3]. Analyzing both circuits requires carefully designed algorithms to properly extract

desired information from a large amount of data in an efficient manner. In this dissertation,
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Figure 1.1: A power delivery system consists of an external power source, a DC-DC 
converter and power distribution networks (PDN).

we propose a set of solutions to efficiently analyze DC-DC converters and power distribu-

tion networks. At the core of the solutions, the philosophy of tackling the problem is the

efficiency and accuracy trade-off. While it is time-consuming and usually not cost-efficient

to process all simulation data and obtain exact solutions, it is desirable to neglect redun-

dant information and only extract relevant results about the circuit behavior. For DC-DC

converter, we propose to exploit envelope following and circuit averaging techniques to

efficiently obtain circuit responses. The envelope following methods achieves efficiency

by tracing the slowly varying envelope of the circuit and skipping many fast-changing

switching cycles in between [4, 5]. The circuit averaging methods builds averaged behav-

ior models of the periodic circuits and ignore the transient within one cycle. For power

distribution networks, instead of using a direct solution like Cholesky factorization, we

take a divide-and-conquer approach by partitioning the network and build an iterative so-

lution using the result from each partition [6, 3].
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Figure 1.2: Power Supply trends. Reprinted from [1].

1.1 Efficient Simulation of DC-DC converters

DC-DC converters, due to their modulation mechanism, demonstrates multi-rate char-

acteristics and leads traditional transient analysis method to severe over-sampling problem

[4]. While the analysis has to take extremely small steps to capture the switching activi-

ties, it also needs to cover a long period of time due to slow load variations. The amount

of data accumulated during the simulation is large and thus the efficiency of the traditional

analysis methods degrades.

The time-domain envelope following (EF) method is well suited for the simulation of

such circuits with a multi-rate characteristic [2, 4, 5]. The efficiency of envelope following

stems from the fact that it efficiently traces the slowly varying envelope of the circuit by

skipping many fast-changing switching cycles in between. An EF method is introduced in

[2] to simulate open-loop switching power converters with a fixed clock frequency and the

general difficulty in simulating closed-loop switching converters is discussed. [5] extends
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this method for closed-loop converters and the problem of quasi-algebraic variables is ad-

dressed. [7] introduce a method that exploits the parallelism in the envelope-following

method and parallelize the Newton update solving part to boost the simulation perfor-

mance. In [8] quadratic and exponential approximations of the envelope are used in EF

simulation. However, only fixed-frequency PWM converters are targeted. To analyze

variable-frequency converters, [9] approximates variations of the switching period by as-

suming that the envelope stepsize is an integer multiple of the last switching period of each

EF step, which is not true in general. Another envelope following method for closed-loop

converters is proposed in [10] for a specific type of converters with multiple switching in-

tervals with a fixed clock (switching) period. The key limitation of [9] and [10] is that the

entire converter is treated simplistically as a linear switched network with each switching

interval modeled using a linear state transition function.

In this dissertation, we propose an enhanced envelope following method that effi-

ciently simulates DC-DC converters operating with complex modulation controls, e.g.,

pulse width modulation (PWM), pulse frequency modulation (PFM) or pulse skipping

modulation (PSM). At the core of our new envelope following algorithm is a novel time-

delayed phase condition that provides robust tracking of the circuit envelope in the tran-

sient phase, under a varying switching frequency. We further develop a mechanism that

can smoothly track the transitions between the transient and steady-state phases, thereby

providing a unifying solution to the EF simulation of both modes of operation. The pro-

posed method is verified using several DC-DC converters and demonstrated improved

efficiency compared with traditional transient analysis.

1.2 Multi-harmonic Modeling of DC-DC converter

While envelope following method reduces the simulation time by only capturing the

envelope of the responses and skipping multiple switching cycles, the average modeling

4



techniques achieve efficiency by replacing the circuit with a model that only capture aver-

aged behaviors between cycles the ignores the details in between. In particular, state-space

averaging has been a very popular simulation technique of pulse-width modulated (PWM)

DC-DC converters. In [11, 12, 13], both large-signal and small-signal state-space aver-

age models for DC-DC converters operating in continuous conduction mode (CCM) and

Discontinuous Conduction Mode (DCM) are presented. However, without considering

non-ideal device characteristics, [12] and [13] are inaccurate in simulating low-power DC-

DC converters. Furthermore, the modeling approach of [12] and [13] is circuit-specific,

thereby limiting the ability to automate the modeling and simulation process on arbitrary

DC-DC converter topologies.

Alternatively, the PWM switch model [14, 15], which is a linearization of the three-

terminal switch cell, can be readily applied to a wide range of DC-DC converters. By

tracking the circuit operating mode based on averaged circuit states, [16] enhances the

basic PWM switch model to support simulation of DC-DC converters operating in both

CCM and DCM. However, a major limitation of the PWM switch model is that it neglects

the dynamic behavior of DC-DC converters within one cycle and provides no information

about the waveform ripples. As suggested in [17], the PWM switch model has an under-

lying assumption of the small ripple condition, which prevents it from being applied to

converters with large ripples. It has been shown that neglecting the ripples of state vari-

ables can lead to large discrepancies in the simulation results of converters operating at

low frequencies [18].

To address this problem, a lot of work has been done on the generalized averaging

techniques [19]. In [18], a multi-frequency averaged model is introduced which conducts

frequency selective averaging on the switched state-space models of DC-DC converters.

However, this method is based on boost converters and cannot be easily applied to other

converter configurations. In [20], a flexible method of in-place averaging that replaces
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elements in DC-DC converters with the kth-index average elements is presented, thereby

allowing for the tracking of responses with harmonics up to kth degree. However, the

method in [20] assumes a continuous inductor current with ideal switches. As a result, such

a model becomes neither suitable nor accurate enough for low-power DC-DC converter

simulations.

To solve the problem, we propose a multi-harmonic averaged modeling method of DC-

DC converters that combines the accuracy of enhanced state-space averaging, the flexibil-

ity of PWM switch models and the multi-frequency nature of the generalized models. The

proposed model, which is based on the switch cell, can be readily applied to various types

of DC-DC converters. It approximates the converter response using multiple harmonics

up to an arbitrary degree. We demonstrate the efficiency and generality of the proposed

method using different DC-DC converters.

1.3 Small Signal Modeling of DC-DC Converters

Both envelope following method and averaged modeling method provide paths for ef-

ficiently analyzing the large-signal behavior of DC-DC converters. As the complexity of

the modern low-power integrated circuits grows exponentially, there is an increasing need

for accurate control techniques in designing DC-DC converters [21]. Converter circuit

behavior is typically highly nonlinear due to the strong switching activities and the pres-

ence of nonlinear devices. The small-signal model, which approximates the behavior of

the DC-DC converter by linearizing the nonlinear devices and switches at a certain DC

operating point, is widely used by designers to design the control blocks and closed-loop

systems, as well as to analyze system stability.

Typically, a small-signal model is obtained by first deriving the averaged model of the

DC-DC converter, then injecting perturbations to the averaged model through the control

signal/supply voltage, followed by evaluating the sensitivity of the circuit states. For low-
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power DC-DC converters, it is critically important to capture the high-frequency circuit

responses in stability analysis and closed-loop design. For example, [22] demonstrates sig-

nificant accuracy improvement in small-signal models by capturing high-order harmonics

in DC-DC series resonant converters.

Based on the multi-harmonic large-signal model, we further derive a small-signal

model that captures the higher-order effects of the DC-DC converter behavior. The pro-

posed model considers both the DC averages and the higher-order harmonic components

as well as the interactions between them, thereby providing a complete small-signal char-

acterization of the converter circuits. The proposed model forms a linear time-variant

(LTV) system that can be empirically analyzed for stability. Using several closed-loop

design examples, we demonstrate that in practice our model shows significant accuracy

improvements in high-frequency responses over existing methods in the literature, thereby

providing useful design insights for critical applications such as optimization and design

centering.

1.4 Efficient Analysis of Power Distribution Networks

Power distribution networks is another important component in power delivery design.

As shown in Fig. 1.1, the power distribution networks distribute the power drawn from

DC-DC converters to individual transistor on each functional circuit. With the complexity

of chip design continuing to increase to multi-million or even multi-billion gates, the size

of the power distribution networks also increase dramatically and analyzing such circuits

are becoming more and more challenging.

The bottleneck of analyzing the power distribution networks lies in efficiently finding

the solution to the following linear system problem Ax = b, where A is a large sparse

matrix representing the conductance of the circuit, b is a vector of the external current

sources and x is a vector of node voltages. There are largely two families of methods to
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solve the sparse matrix system - the direct method and the iterative method. The direct

solution methods [23, 24], which decompose the matrix into upper and lower triangular

matrices and then solve the system using forward/backward substitution, have been widely

adopted for their robustness and accuracy in circuit simulation. However, these methods

have limited application in power grid analysis due to extremely large circuit size and the

superlinear time and memory complexity of matrix factorization. Iterative solvers includ-

ing conjugate gradient (CG) and generalized minimal residual method (GMRES), which

update the solution step by step and solve the linear system iteratively, are considered more

suitable for power grid analysis due to the favorable memory requirement.

To facilitate fast convergence, preconditioned iterative solvers are introduced and var-

ious preconditioning techniques have been studied. The support graph preconditioner,

which is presented in [25, 26] as a general preconditioner for symmetric positive-definite

(SPD) matrices, is particularly interesting. This technique identifies an underlying sub-

graph from the matrix, called the support graph, and uses it as the preconditioner of the

matrix. For a particular type of support graphs, the maximum spanning tree (MST), it is

proved that the preconditioned system has a bound of O(n2) on the condition number for

any n × n SPD matrix. [27] extends the support graph technique to power grid analysis

by building a hierarchical maximum spanning tree from the circuit, showing a significant

improvement in runtime and memory usage over direct solution methods.

The limitation of the support graph technique is that as a flat preconditioning method,

it can only be applied to the full power grid. Recent development in parallel processing

has made partition-based preconditioners more favorable. [3] presents a parallel addi-

tive Schwarz preconditioner based on the algebraic partition on the circuit conductance

matrix. [6] introduces an overlapping partition-based power grid analysis method using

spatial locality to provide approximate boundary conditions. Multigrid method [28] is

another family of preconditioners, which maps the original problem to a reduced system
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using certain geometric properties of the power distribution network (PDN). Both of these

methods assume that the PDN is well-structured and the partition is already given. How-

ever, for large and complex IC designs with millions of nodes and beyond, the PDN is

not always well-structured and finding a reasonable partition is not trivial. [29] presents

a complete package including hypergraph partitioning and block Jacobi preconditioning

techniques. But as a general-purpose circuit simulator, it lacks the efficiency for power

grid analysis.

To address the problems mentioned above, we propose a hybrid method that com-

bines the support graph preconditioner with the block Jacobi preconditioner. The proposed

method efficiently finds a partition of the matrix based on the support graph extracted from

the circuit. The result is an elegant yet powerful partition-based preconditioner that tar-

gets optimizing the numerical convergence property of the partitioned system. We verify

the performance of our proposed method on several industrial power grid circuits. Com-

pared with direct method and other partition-based iterative method, our proposed method

demonstrates significant improvement in simulation efficiency.

1.5 Organization of Dissertation

The remaining part of this dissertation is organized as follows. In Chapter 2 we elabo-

rate an efficient and robust envelope following algorithm for simulating DC-DC convert-

ers. In Chapter 3 a multi-harmonic large-signal averaging modeling technique that takes

DC-DC converters’ device non-idealities into account is discussed and verified. Chapter 4

extends the multi-harmonic average model to derive small-signal models for DC-DC con-

verters which demonstrate significant accuracy improvements in high-frequency responses

over existing methods. In Chapter 5 we present the convergence-boosted graph partition-

ing method that enables fast and accurate simulation of large power distribution networks.

Finally in Chapter 6 we draw conclusions.
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2. ROBUST AND EFFICIENT TRANSISTOR-LEVEL ENVELOPE-FOLLOWING

ANALYSIS OF DC-DC CONVERTERS *

Highly efficient DC-DC converters are indispensable in today’s low power micropro-

cessors, embedded systems, and portable devices [30]. However, the simulation of these

circuits is generally very challenging due to the existence of complex dynamics, widely

spread time scales (e.g. fast switchings with slowly varying amplitudes) and feedback

control. These difficulties render the use of the standard transient analysis very inefficient,

for instance, by forcing the stepsize to be very small.

In this chapter, we develop a robust and efficient envelope following method to provide

a unifying solution to the simulation of DC-DC converters with both transient and steady-

state behaviors under a constant or varying switching frequency. Of our particular interest

are real-life DC-DC power converters that are operated with complex modulation controls,

e.g., pulse width modulation (PWM), pulse frequency modulation (PFM) or pulse skipping

modulation (PSM). Even with the standard transient analysis, these circuits are very chal-

lenging to simulate due to the co-existence of multi-rate nature, strong nonlinearities, hard

switching activities, digital/memory and hysteretic effects and strong feedback control.

These characteristics significantly stress the robustness and efficiency requirements of the

applied envelope following method and prevent us from using techniques that have been

shown to be successful for oscillators such as [4].

At the core of our new envelope following algorithm is a novel time-delayed phase

condition that provides robust tracking of the circuit envelope in the transient phase, under

a varying switching frequency. We further develop a mechanism that can smoothly track

*©2016 IEEE. Reprinted, with permission, from Ya Wang, Peng Li and Suming Lai, "Robust and Effi-
cient Transistor-Level Envelope-Following Analysis of PWM/PFM/PSM DC-DC Converters", IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems, Volume: 35, Issue: 11, Nov. 2016
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the transitions between the transient and steady-state phases, thereby providing a unifying

solution to the EF simulation of both modes of operation. The implementation of three fast

simulation techniques improves the efficiency of the algorithm without compromising the

accuracy of the results. The proposed method can be transparently applied to PWM, PFM

and PSM converters under a constant or varying switching frequency. We demonstrate

the excellent robustness, generality, and efficiency of the proposed technique using several

DC-DC converters and oscillator circuits.

2.1 Backgrounds

We review the basic backward-Euler based envelope following method for converters

with a constant switching frequency (e.g. PWM converters). An electronic circuit can be

described using a standard differential-algebraic equation (DAE)

q̇(x) + f(x) = u(t), (2.1)

where x ∈ RN is a vector of state variables, q is a nonlinear charge function, f describes

the resistive nonlinearities, and u(t) is the excitation to the circuit [31].

The output voltage of converters such as PWM converters demonstrates fast switching

activities with a slowly varying amplitude as a result of load change, a characteristic that

is well suited for EF analysis [32]. As shown in Fig. 2.1, denote the constant switching

cycle of the circuit at t0 by T0 and switching cycle at tn by Tn. The switching cycle is

known as a constant, so we have T0 = Tn. Denote the state variable at time t by x(t),

accordingly the state at time t0 by x(t0) and that at tn by x(tn). Then define tn as the time

point that is n cycles after t0, namely tn = t0 +nTn, so that circuit at tn has the same phase

as at t0. By the envelope following method, starting from a given x(tn), we simulate the

circuit for one cycle Tn to get another state vector of equal phase x(tn+1) = x(tn + Tn).

As shown in Fig. 2.1, if the amplitude of the circuit response changes slowly enough, a
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Figure 2.1: Basic envelope following method. t0,t1,tn and tn+1 are four time points at
equal phase and satisfy both t1 = t0 + T0 and tn+1 = tn + Tn.

line can be drawn to pass through these three equal-phase points, implying that

x(tn)− x(t0)

nTn
=

x(tn+1)− x(tn)

Tn
. (2.2)

Note that xn+1 can be evaluated as xn+1 = φ(xn, tn, Tn), where φ is the state transition

function of the circuit. Now (2) can be written as

x(tn)− x(t0)

nTn
=
φ(x(tn), tn, Tn)− x(tn)

Tn
. (2.3)

The only unknown in this equation is xn, which can be solved by any nonlinear solution

method such as Newton-Raphson Method.

Starting from a known initial state x(t0), one may skip a large number of switching

cycles which is Tenv = nTn as in Fig. 2.1, to directly solve for the state x(tn). To move

one step forward, the same procedure is re-started by treating the solved x(tn) as the
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new initial state x(t0) and x(tn+1) as x(t1), respectively. However, this basic EF method

assumes that the switching cycle does not change, which prevents its application to circuits

with dynamically changing switching frequencies like PFM DC-DC converters, which are

the focuses of the next section.

2.2 Time-delayed Phasing Tracking for Circuits with Variable Switching Frequen-

cies

For the types of circuits of interest here, the varying switching frequency is set by a

specific modulation or tuning mechanism. As such, the switching period Tn is not known

a priori and must be treated as an unknown variable. Another consequence of the varying

frequency is that the skipped time interval between t0 and tn may not be an integer number

of cycles, i.e., it is generally true that Tenv 6= nTn. To see the issues involved, we rewrite

(2) slightly as
x(tn)− x(t0)

Tenv
=

x(tn+1)− x(tn)

Tn
, (2.4)

where the three unknown variables are x(tn), Tn, and Tenv. Since there are N + 2 un-

knowns and only N equations (N being the dimensionality of (2.4)), this system is under-

determined. In fact, (4) alone does not guarantee x(t0), x(tn) and x(tn+1) being at the

same phase. Varying switching frequencies introduce significant challenges to envelope

following. We propose a novel and numerically robust technique for tracking the phase of

circuits operating under a changing switching frequency.

2.2.1 Challenges and possible solutions

Several existing EF methods address varying switching or oscillation frequencies. In

the oscillator simulation technique of [33], Tn is predetermined during the integration

process by using the notion of Poincaré map. With Tn computed, Tenv is set to be an

integer multiple of Tn. However, the underlying assumption that Tn remains unchanged
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Figure 2.2: Three typical voltage waveforms in a DC-DC converter: (a) external triangular
signal, (b) typical internal signal driving power switches, and (c) typical output response
with both frequency and amplitude modulation. Specific level crossing times may be used
to define equal phase conditions (red dashed lines).

within one envelope step is not true in general and can potentially prevent use of large

envelope stepsizes for transient phases of the circuit. In addition, it not always possible

to determine Tn by Poincaré map as suggested in [34]. This situation could be worse for

DC-DC converters with digital behaviors and hard switching activities. [4] addresses this

problem in oscillator simulation by adding two extra phase conditions at tn and tn+1 by

constraining the time derivatives of a nodal voltage at these two points. Though proved

effective for oscillators, this technique may not be suitable for DC-DC converters due to

the presence of digital characteristics and sharp signal transitions, which exacerbate the

numerical noise inherent in the numerical evaluation of time derivatives.

Fig. 2.2 shows waveforms of three typical nodes in DC-DC converters. Fig. 2.2(a)

shows the external triangular signal that is used in the PWM DC-DC converter of Fig. 2.12.

Fig. 2.2(b) shows a typical internal voltage signal that drives the MOS switches in both

PWM and PFM DC-DC converters. Fig. 2.2(c) depicts a typical output waveform with
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a varying amplitude during the transient phase of a PWM/PFW DC-DC converter. Com-

mon properties of these representative signals are that: they all have discontinuous first

derivatives; and there are long periods of time in which the first-order derivative of a sig-

nal is either very large or approximately constant. These characteristics present practical

challenges for the aforementioned EF techniques developed for oscillators.

On the other hand, sharp signal changes in a converter indicate certain controlled-

switching events that are taking place in the circuit. These switching activities reliably

reflect the onset or ending of a specific mode of operation and can be in principle leveraged

to robustly identify equal-phase points that shall be sampled by an EF method. Clearly,

the main challenge here is to achieve such in a numerically robust manner. For example,

we may purposely choose to monitor one or multiple internal signals with large sharp

swings and use the moments at which such signals cross given critical threshold levels to

determine the sampling time instants for EF, as shown in Fig. 2.2 by the dashed lines. For

instance, the output of the SR-latch of the PFM converter used in the experimental section

(Fig. 2.16) can be a good choice as its switching activities reveal the on or off states of the

power switches. However, using fixed signal crossing levels is problematic for signals that

experience amplitude modulation as in Fig. 2.2(c).

2.2.2 Robust monitoring of phase change

Motivated by the above discussion, we introduce a new equal-phase condition that can

capture both frequency and amplitude variations in a converter. To do that, we begin with

a definition of slope function slp(·, ·). Slope function is defined by two points over a given

period. As shown by points A and B in Fig. 2.3, the slope function of A and B is

slp(A,B) =
x(B)− x(A)

t(B)− t(A)
, (2.5)
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Figure 2.3: Slope function and equal-phase points.

where x(A) and x(B) are the amplitudes of points A and B, t(A) and t(B) the time

instants ofA andB. The slope function is useful in defining equal-phase condition because

the slope function of two equal-phase points can be used to find other equal-phase points

in the vicinity. For example in Fig. 2.3, assume that A and B are already known as equal-

phase points, i.e. they mark the beginning and ending of one switching cycle. In this

case, slp(A,B) is in fact the cycle-slope of the signal during the corresponding switching

period. Then, points C and D are also equal-phase points if and only if slp(A,B) −

slp(C,D) = 0 is satisfied. Note that this new phase condition is a more general case of

the scheme that is based on crossing times of fixed signal threshold levels discussed at the

end of Section 2.2.1.

When computing slope function to find points with equal phase, we monitor one or

multiple internal circuit nodes (branches), or phase monitoring nodes (or branches). To

robustly specify equal-phase points, we assume that phase monitoring nodes are provided

by the designer and exposed to the simulation algorithm. In general, these nodes can be

chosen rather easily by leveraging a very minimum amount of design knowledge. For

instance, for PFM controlled DC-DC converters, a natural choice is the regulated output

node that drive internal comparators to alter the switching behavior. Using the idea of
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Figure 2.4: Equal-phase points defined by equal slope function value are shown in the
dashed lines.

slope function, we now formally define the proposed equal-phase condition. As shown in

Fig. 2.4, denote the voltage of a phase monitoring node by xl. Four nodes involving the

envelope can then be denoted by xl(t0), xl(t1), xl(tn) and xl(tn+1). Under the assumption

that the variance of the envelope slope within one step is small, the equal-phase condition

can be defined as

xl(tn+1)− xl(tn)

Tn
− xl(t1)− xl(t0)

T0

= 0. (2.6)

Note that results from previous envelope cycle xl(t0) and xl(t1) are already available and

are at equal phase. When (6) is satisfied, the value of slope function of xl(tn) and xl(tn+1)

is equal to that of xl(t0) and xl(t1), meaning that xl(tn) is at the equal phase as xl(tn+1).

Since the system needs two phase conditions, we simply apply (6) to another phase

monitoring node, denoted by xk. Now the new system of envelope following formulation
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is

x(tn)− x(t0)

Tenv
− x(tn+1)− x(tn)

Tn
= 0

xl(tn+1)− xl(tn)

Tn
− xl(t1)− xl(t0)

T0

= 0

xk(tn+1)− xk(tn)

Tn
− xk(t1)− xk(t0)

T0

= 0.

(2.7)

Here to distinguish between two different cycle periods, we denote the period at t0 by T0

(already known at this time) and one at tn by Tn.

While (7) appears to be robust, a close examination reveals that (7) has a fundamental

problem. Note that the lth row of the first equation and the second equation in (7) have the

shared term (xl(tn+1)− xl(tn))/Tn. Similarly, (xk(tn+1)− xk(tn))/Tn is shared by the

kth row of the first equation and the third equation. Substituting the last two equal-phase

equations into the lth and kth rows of the first equation leads to

xl(tn)− xl(t0)

Tenv
− xl(t1)− xl(t0)

T0

= 0

xk(tn)− xk(t0)

Tenv
− xk(t1)− xk(t0)

T0

= 0,

(2.8)

which correspond to forward Euler integration of the envelope of xl and xk, respectively.

The explicit forward Euler method is not A-stable and has much degraded stability region.

It is rarely used in practice. The formulation of (7) effectively applies the explicit forward

Euler type integration to the two phase monitoring nodes, a problem that shall be remedied

by an improved equal phase condition introduced next.

2.2.3 Time-delayed equal-phase condition

A deep investigation reveals that the above problem stems from the fact that the in-

troduced two phase conditions do not provide fully independent new constraints of the

circuit state. In (7), shared terms involving envelope states exist between the lth row of
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the first equation and the second equation, and between the kth row of the first equation

and the third equation. Such sharing renders the phase conditions and the backward Euler

based EF equation constrain a common set of state variables and may manifest itself in

several different ways. If the phase conditions are constructed by forcing the two moni-

tored nodal voltages (or branch currents in general) to cross a predetermined level at equal

phase points, a special case of the more general phase conditions adopted in (7), it can

be shown that the equal phase equations would be identical to the lth and kth rows of the

first equation of (7), rendering the full system underdetermined. As discussed already, the

more general formulation of (7) immediately reduces the integration of two monitoring

nodes to forward Euler while the deeper cause of this phenomenon is due to the sharing.

The key observation behind our solution to the above problem is to note that an equal-

phase condition needs not to be defined at the beginning nor end of each cycle; it can be

forced anywhere within a cycle. This observation leads to a new equal-phase condition,

termed time-delayed phase condition, resulting in a new EF formulation

x(tn)− x(t0)

Tenv
− x(tn+1)− x(tn)

T
= 0

xl(t
′
n+1)− xl(t

′
n)

Tn
− xl(t

′
1)− xl(t

′
0)

T0

= 0

xk(t
′
n+1)− xk(t

′
n)

Tn
− xk(t

′
1)− xk(t

′
0)

T0

= 0,

(2.9)

where t′0 = t0 +αT0, t′1 = t1 +αT0, t′n = tn +αTn and t′n+1 = tn+1 +αTn. α ∈ (0, 1) is a

constant factor used to delay the sampling time of phase condition, as illustrated in Fig. 2.5.

In (9), the first equation represents the same backward-Euler style equation involving the

state variables at a set of four points t0, t1, tn and tn+1. In contrast, the last two equations

specify the equal-phase condition at a different set of four points with each delayed by a

fraction of the respective cycle time from the corresponding point in the first set. The two

equal-phase condition in (9) constrain a different set of state variables from ones that are
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Figure 2.5: Time delayed phase tracking method.

in the first equation. The new state variables that are forced to be at an equal phase are the

future states of the corresponding variables in the first equation and are related to the latter

variables through the nonlinear state transition characteristics of the converter excited by

the external input.

2.2.4 Robust numerical solution

Our proposed EF method is described in (9) and the unknown vector that needs to be

solved is

X =
[
xT(tn), Tn, Tenv

]T
. (2.10)

To solve the system in (9) by the Newton Raphson method, we need to evaluate the Jaco-

bian matrix properly which involves computation of the sensitivities of each term in (9)

with respect to any of the three unknown variables. The evaluation of sensitivities is done

by computing the corresponding partial derivatives. Most of them are straightforward to

evaluate except for those terms that involve the state transition function, explained as fol-

lows. Since in every Newton-Raphson iteration an inner-loop transient run from tn to t′n+1
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is performed in order to get x(tn+1) and x(t′n+1) , the desired sensitivities terms can be ac-

cumulated through every transient step [32]. For convenience of notation, denote x(tn) by

x0 (not to be confused with x(t0) in Fig. 2.1) and the state at the kth step of the inner-loop

transient simulation by xk, (1) can be written as

q(xk)− q(xk−1)

hk
+ f(xk) = u(tk), (2.11)

at the kth step of the transient simulation, with a stepsize of hk. Differentiating (11) with

respect to x0 gives

∂xk
∂x0

=

[
1

hk

∂q(xk)

∂xk
+
∂f(xk)

∂xk

]−1[
1

hk

∂q(xk−1)

∂xk−1

∂xk−1

∂x0

]
. (2.12)

Note that 1
hk

∂q(xk)
∂xk

+ ∂f(xk)
∂xk

is the Jacobian matrix of (1) and is available from the transient

simulation. Starting from ∂x0

∂x0
= I , applying (12) repeatedly at every transient step and

accumulating the results will give all the desired sensitivity terms with respect to x0 along

the way including ∂xn+1

∂x0
in the end. Other sensitivity terms can be found in a similar way.

Differentiating (11) with respect to Tn and Tenv gives

∂xk
∂Tn

=

[
1

hk

∂q(xk)

∂xk
+
∂f(xk)

∂xk

]−1

[
1

hk

∂q(xk−1)

∂xk−1

∂xk−1

∂Tn
+
∂u(tk)

∂Tn
+

q(xk)− q(xk−1)

hkTn

]
, (2.13)

and

∂xk
∂Tenv

=

[
1

hk

∂q(xk)

∂xk
+
∂f(xk)

∂xk

]−1 [
1

hk

∂q(xk−1)

∂xk−1

∂xk−1

∂Tenv
+
∂u(tk)

∂Tenv

]
. (2.14)
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Starting from ∂x0

∂Tn
= 0 and ∂x0

∂Tenv
= 0, all sensitivity terms with respect to Tn and Tenv can

also be accumulated by applying (13)(14) repeatedly.

2.3 Unifying Phase Tracking

An EF method transparently applicable to a variety of converters with PWM, PFM

modulation or a combination of thereof, is highly desirable. In fact, a PFM converter

may effectively operate under a constant switching frequency in steady state. We consider

steady-states of PFM converters to motive the need for a new unifying phase condition.

2.3.1 Problems with steady state EF analysis

To see why the formulation of (9) may not be applied to steady state, we examine the

following partial derivatives of the two phase conditions. Denote the first phase condition

in (9) by g1 and the second one by g2. It can be shown that

∂g1

∂Tenv
=

1

Tn

(
∂xl(t

′
n+1)

∂Tenv
− ∂xl(t

′
n)

∂Tenv

)
(2.15)

∂g2

∂Tenv
=

1

Tn

(
∂xk(t

′
n+1)

∂Tenv
− ∂xk(t

′
n)

∂Tenv

)
. (2.16)

When the circuit gets settled in steady state under constant input excitations, ∂u(tk)
∂Tenv

= 0.

According to (14), the sensitivity terms of (15) and (16) are both zero, implying that both

phase conditions do not constrain unknown Tenv and (9) becomes under-determined as

a result. The root cause of this pathological situation is that the circuit appears to be

autonomous in steady sate with its current/future states only depend on its past states, but

not on time.
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2.3.2 Phase condition for steady state

As a first step to addressing the above problem, we adopt a new steady state phase

condition that involves Tenv by noting that cycle T becomes a constant in steady state

Tn − T0 = 0, (2.17)

where T0 is the cycle time at time t0. Also in steady state, Tenv is an integer multiple of T

Tenv − nTn = 0, (2.18)

where n is the number of cycles skipped in one envelope following step. Replacing two

phase conditions in (9) by (17) and (18) yields

x(tn)− x(t0)

Tenv
− x(tn+1)− x(tn)

Tn
= 0

Tn − T0 = 0

Tenv − nTn = 0.

(2.19)

The system described in (19) is equivalent to the classic envelope following algorithm for

circuits with fixed switching frequencies described in (2.2), which can be used to reliably

solve any steady state solutions.

2.3.3 Smooth circuit state tracking and unifying phase condition

Till this point, we have developed two separate EF problem formulations in (9) and

(19), respectively for transient and steady states. However, a circuit may transition between

the two modes of operation back and forth and such transitions may be smooth and are

not known a priori. Clearly, a unifying formulation is desirable. Denote the first phase
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condition in (9) by g11 and the phase condition described in (17) by g12, namely

g11 =
xl(t

′
n+1)− xl(t

′
n)

Tn
− xl(t

′
1)− xl(t

′
0)

T0

(2.20)

g12 = Tn − T0. (2.21)

Similarly, denote the second phase condition in (9) by g21 and the phase condition de-

scribed in (18) by g22, namely

g21 =
xk(t

′
n+1)− xk(t

′
n)

Tn
− xk(t

′
1)− xk(t

′
0)

T0

(2.22)

g22 = Tenv − nTn. (2.23)

The key idea in developing a unifying solution is to define a set of weighted new phase

conditions,

g1 = βg11 + (1− β)g12

g2 = βg21 + (1− β)g22

(2.24)

where β ∈ [0, 1] is a continuous internal parameter that continuously tracks the current

circuit mode of operation, as illustrated in Fig. 2.6. Using this new phase conditions, the

unifying formulation of the envelope following problem is

Tenv[x(tn+1)− x(tn)]− Tn[x(tn)− x(t0)] = 0

βg11 + (1− β)g12 = 0

βg21 + (1− β)g22 = 0.

(2.25)

We now discuss the significance and the implementation of the internal parameter β.

Since the transitions between transient and steady states may not be abrupt, the goal be-
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Figure 2.6: The unifying phase condition. Steps 1 and 2 illustrate the dependency of the
continuous mode tracking parameter β on current circuit state. Steps 3 and 4 weight phase
conditions according to β to define the unifying phase conditions.
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hind the introduction of β is to provide a formal mathematical mechanism to track such

transitions smoothly. As such, β is continuous valued in [0, 1]. Furthermore, such state

transitions are not known a prior, hence, β shall not be set externally and must be an in-

ternal parameter that is dependent of the current circuit state. For this, while there exist

multiple implementation choices for β, the following choice is found to be effective

β = 1− e−kγ, (2.26)

where γ = ‖x(t0) − x(tn)‖2 and k is a scalar to balance between the values of g11 and

g12 as well as g21 and g22. When the circuit is at steady state, β = 1− e−k‖x(t0)−x(tn)‖2=0.

Therefore, g1 and g2 are the same as steady state phase conditions g12 and g22, respectively.

As more transient behavior is excited in the circuit, the norm γ will gradually increase and

β will increase accordingly, putting more weight on g11 and g21. This mechanism has

the desired properties to track the operation mode transition faithfully. For example, with

∂u(t)
∂t

= 0 and as the circuit transitions into steady state, β will not vanish immediately

until it gets completely settled. It is also worth noticing that β is an unknown dependent

on the unknown current state x(tn). The value of β can only become known after (25) is

solved as a whole, providing generality and robustness for mode tracking.

2.4 Fast Simulation Techniques

In this section three techniques are introduced to further improve the efficiency of the

proposed EF algorithm. At the beginning of each envelope following step, a dynamic

prediction scheme generates the best initial guess for x(tn) from three different initial

solution predictors. During each envelope following step, the simulator excludes certain

digital nodes from convergence check, which reduces the number of iterations to reach

convergence without degrading the accuracy of simulation results. At the end of each EF

step, local truncation errors are estimated and the envelope following stepsize is changed
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Figure 2.7: The simulation flow of proposed envelop following algorithm (a) and the flow
of adaptive envelope step selection (b).

using adaptive envelope step selection.

2.4.1 Dynamic prediction scheme

As shown in Fig. 2.7(a), a full cycle of transient simulation is performed for each

Newton-Raphson iteration in one EF step. Since simulation of DC-DC converters is gen-

erally time-consuming, the full cycle transient analysis dominates the simulation time of

envelope following in each step. To reduce the total simulation time and achieve higher

speedups, the number of iterations in each step needs to be minimized. A good prediction

on x(tn) can provide the simulator with a starting point that is close to the actual solu-

tion and need fewer iterations to reach convergence. However, no prediction methods can

always generate the best initial guess due to the fact that DC-DC converters have differ-
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ent dynamic behaviours in different modes. Therefore, we proposed a prediction-selection

scheme to provide the best initial guess for solution vector x(tn) from three different initial

solution predictors (ISPs). The selections are made by comparing three perdition results

and selecting the one with the least error.

The first predictor ISP1 directly uses the solution from the last step as an initial guess

for the current step, namely

x(tn) = x(t0). (2.27)

The second predictor ISP2 leverages the two solution vectors of the previous steps

x(t0) and x(t1) and uses a linear extrapolation of the two as the initial guess for x(t0).

Recall that in Fig. 4 we denote T0 as the time period between t0 and t1, we have

x(tn) = x(t0) +
Tenv
T0

[x(t1)− x(t0)] . (2.28)

The third predictor ISP3 is first introduced in [34], which uses a linear extrapolation

of the circuit transfer function φ to predict x(t0). To achieve this, we first observe that

φ(x(t0), t0, T0), which is the circuit transfer function from x(t0) to x(t1), is already avail-

able from the transient simulation of the last step. With this, we can approximate the

circuit transfer function from x(tn) to x(tn+1) using the first-order Tyler expansion:

φ(x(tn), tn, Tn) = φ(x(t0), t0, T0) + [x(tn)− x(t0)]φx(x(t0)), (2.29)

where φx(x(t0)) = ∂φ
∂x
|x=x(t0). The left-hand-side of (2.29) is essentially equal to the so-

lution vector x(tn+1). Substituting (2.29) into the envelope following equation (2) results

28



in

x(tn) =

[
(1 +

Tn
Tenv

)I − φx(x(t0))

]−1

[
φ(x(t0), t0, T0)− φx(x(t0))x(t0) +

Tn
Tenv

x(t0)

]
. (2.30)

Now we have three different predictors and each of them generates accurate initial

guesses for DC-DC converters operating in different modes. The first predictor (2.27) is

essentially a zero-th order method, which generates accurate prediction when converters

are near steady state. The second predictor method (2.28) is a first-order method and

thus is effective for DC-DC converters with linearly changing load conditions. The third

predictor (2.30) makes extrapolation of solution vectors based on circuit transfer functions.

So it is most accurate when the circuit transfer function has almost linear changes between

cycles and can be precisely calculated from the transient simulation.

To make the best uses of all three predictors, we design a selector that evaluates all

three prediction results and chooses the one with the least error, which is measured by

calculating distance from the given predicted solution to a valid circuit operating state.

This can be done by setting the prediction result as the solution to the circuit and evaluate

(1) with u(t) moved to the left-hand-side. A non-zero residue vector on the right-hand-side

can be acquired and the l2 norm of such residue vector indicates how close the prediction

is to the real circuit operating state. The predicted solution with the least l2 error will be

selected as the initial solution of the current step.

2.4.2 Automatic node selection for convergence check

DC-DC converters are mixed-signal circuits that include digital components with highly

nonlinear behaviours. The outputs of those digital components have large swings and sharp

transitions. As a result, the simulation is very challenging even for standard transient anal-
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Figure 2.8: The transient analysis waveforms of one iteration of an envelope following
step.

ysis with very small stepsizes. It is even more difficult for envelope following algorithm

to efficiently reach convergence on these signals.

To illustrate this, the envelope following waveforms of two nodes in a PWM DC-DC

converter are shown in Fig. 2.8, where the first node a is an internal node that drives the

power switches and the second node b is the output node of the DC-DC converter. One

Newton-Raphson iteration is shown where one cycle of transient simulation from tn to tn+1

is performed for both nodes. At this iteration, the envelope following algorithm has found

an accurate circuit state va(tn) and vb(tn). Due to a small error ∆t in cycle time T , the

cycle starts from tn and ends at tn+1 +∆t instead of tn+1. The corresponding end-of-cycle

solution is ṽa and ṽb, whereas the actual end-of-cycle solution is va(tn+1) and vb(tn+1).

For node b, if the error ∆vb and time difference ∆t are small enough, this solution will be

accepted by the EF convergence check. However, the same conclusion cannot be drawn

for node a, which shows a huge error in ∆va due to the sudden change of voltage level

within a short period ∆t. As a result, this solution is not accepted by convergence check
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and the simulator has to keep iterating. However, even with more iterations, the Newton-

Raphson method cannot efficiently converge to the actual solution, due to the fact that the

waveform between tn+1 and tn+1 + ∆t of node a has discontinuous first order derivatives

[35].

A simple way to fix this problem is to exclude node a and other nodes with sharp tran-

sitions from the convergence check. It is important to note that this does not affect the

accuracy of the results since the solution of one envelope following step is x(tn), which is

the circuit state at tn rather than tn+1. By avoiding choosing nodes excluded from conver-

gence check as the phase monitoring nodes to calculate (20) and (22), we also make sure

that the nodal voltage error of x(tn+1) does not propagate to the evaluation of the phase

conditions. To select the proper nodes for convergence check, a few cycles of transient

simulation is conducted before the envelope following simulation is started. During the

transient simulation, a node selector continuously monitors all node voltages and exclude

any node that satisfies both of the following two criteria, (1) nodes with large swings that

the nodal voltage reaches both 1% and 99% of the supply voltage Vdd within one cycle

and (2) nodes with sharp slopes by checking if the maximum first order derivative of the

nodal voltage exceeds certain threshold. In practise nodes that satisfy these two criterion

are output nodes of the digital components of the internal control circuitry. After remov-

ing nodes that satisfy these two criteria, the EF simulation takes fewer iterations to reach

convergence and the accuracy of the results are not compromised.

2.4.3 Adaptive envelope step selection by LTE

To achieve good speedup factor while controlling accuracy, a backward-Euler based

local truncation error (LTE) is utilized to predict the next envelope stepsize. The value of
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LTE is estimated during each step of EF [33]

LTE =
Tenv

2

(
x(tn+1)− x(tn)

Tn
− x(t1)− x(t0)

T0

)
. (2.31)

Note that the above LTE is a vector. We compute its l2-norm LTEave and the l∞-norm

LTEmax. After solving each envelope step, LTEave, LTEmax and the number of Newton-

Raphson iterations Iter are checked. Based on the LTE information, the current solution

will be categorized into three different types, each leading to a specific action. If the

number of iterations exceeds the maximum threshold Itermax then the solution is rejected

and a smaller stepsize is used to redo this EF step. If the iteration number is accepted,

LTEave and LTEmax are compared with two prescribed tolerance values LTEtol
ave and

LTEtol
max. If both values are smaller than the tolerances, the stepsize is increased for the

next EF step. Otherwise the same stepsize is maintained. Fig. 2.7(b) shows the detailed

process of the adaptive envelope step selection.

2.5 Simulation Results

The proposed envelope following technique with the unifying phase condition of (21)

and fast simulation techneques has been implemented in a comprehensive in-house C++

based SPICE simulation environment with interfaces to industry standard BSIM4 transistor-

level models. We first test the generality of the proposed unifying solution by applying the

formulation in (22) to an oscillator. Then we move on to the circuits of our interest, PWM,

PFM and PSM DC-DC converters, and evaluate the efficiency and robustness of the pro-

posed unifying method. We compare our method with the standard transient analysis in

terms of speedups and accuracy and also comment on improvements over existing EF

methods.
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Figure 2.9: A three-stage ring oscillator with the value of R controlled by a function of
time f(t).

2.5.1 A three-stage ring oscillator

The oscillator of Fig. 2.9 has three identical stages and the resistor of each stage is

controlled by the same time varying function f(t). To evaluate the performance of the

proposed unifying EF method, f(t) is designed in such a way that the oscillator transits

between transient state and steady state. As shown in Fig. 2.10, the frequency of the

ring oscillator first linearly decreases from 2.025MHz to 2.01MHz in the first 2ms and

then remains at about 2.01MHz for another 2ms. Fig. 2.10 also shows in parallel the

corresponding waveform of the second stage output nodal voltage simulated by the pro-

posed EF method. From an initial value of Tenv = 32Tn, the envelope step increases to

Tenv = 128Tn during the transient phase. As circuit enters to steady state and the estimated

LTE decreases, the envelope step further increases to Tenv = 512Tn until the simulation

ends. Fig. 2.11 compares the proposed EF method with the conventional transient anal-

ysis. The EF results match with those of the transient analysis with a high accuracy. An

average speedup of 60× is achieved with respect to the transient analysis. Among the ex-

isting methods, [4] uses similar circuits and obtains speedup factors of about 35×. [33, 36]
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Figure 2.10: The envelope of the second stage output voltage of the ring oscillator (top)
and its frequency variation (bottom) simulated by the proposed EF method. In the top
figure, the red line is the envelope while the blue lines are the transient responses obtained
in each cycle of envelope following.
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Figure 2.11: Comparison between the proposed EF analysis (red solid line) and transient
analysis (blue dashed line) of the ring oscillator.
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Figure 2.12: A PWM controlled DC-DC converter.

report speedup factors higher than 60× for oscillators. Though proven to be effective for

ring oscillators, the proposed method may not be optimized for high-Q oscillators like

crystal oscillators, due to the fact that the Backward Euler integration method, which we

use for inner-loop transient simulation, is a low-order method and has damping effects.

In the next three examples we will simulate DC-DC converters with different modulation

schemes, which are the main targeted circuits of our proposed methods.

2.5.2 A PWM controlled DC-DC converter

Next, we focus on our targeted class of circuits, DC-DC converters that posses strong

nonlinearities, hard switching activities, digital/memory and hysteretic effects and strong

feedback control. We first consider the startup transient of a standard DC-DC converter

with PWM control that has all the essential real-life characteristics as shown in Fig. 2.12,

where the switching frequency is determined by an external 10MHz triangular signal

applied to one of the comparator’s inputs. The transistor-level schematics of the two key

blocks, the error amplifier (EA) and comparator, are shown in Fig. 2.13. While operating

with PWM control under a fixed switching frequency, testing our unifying EF technique
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Figure 2.13: The error amplifier (left) and comparator (right) of the PWM controlled DC-
DC converter.

without any algorithmic-level change on this circuit would demonstrate its generality.

Fig. 2.14 shows the envelope following results of the PWM converter output response.

The envelope step is gradually increased until steady state is reached. Fig. 2.15 compares

our EF method with the transient analysis for the early startup phase, where the output node

has the most dynamic response, showing the ability of our method in closely tracking the

changing amplitude of output voltage.

Overall a speedup factor of 20× is achieved in this example. In comparison, speedup

factors in the range of 6× are reported for PWM converters in [2]. The simulation speedup

improvement of our proposed method over [2] is mainly due to the use of the fast simu-

lation techniques. First of all, the dynamic prediction scheme selects a mix of ISP2 and

ISP3 at the beginning of the startup simulation. Then it switches to ISP1 to predict the

initial solution using the solution from previous step as the output voltage of the converter

reaches the peak and the dynamic behaviors of the converter gradually settle down. The

second technique that bring the performance improvement is the adaptive envelope step

selection scheme. As shown in Fig. 2.14 the envelope step selection scheme dynamically

adjust the envelope step size Tenv of the algorithm based on the LTE of each step, which

make best use of the multi-rate characteristics of DC-DC converters. Finally, the auto-
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Figure 2.14: Simulation of the PWM DC-DC converter using the proposed EF method.
The red line is the envelope of the output voltage while the blue lines are the transient
responses obtained in each cycle of envelope following.
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Figure 2.15: Detailed comparison of envelope following results (red) and transient simu-
lation results (blue) of the PWM DC-DC converter.
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Figure 2.16: A hysteretic/PFM DC-DC converter.

matic node selection excludes nodes with digital behavior and sharp transitions from the

convergence check, resulting in a fast convergence without compromising the accuracy.

2.5.3 A PFM DC-DC converter

The next circuit we consider is a hysteretic/PFM DC-DC converter in Fig. 2.16. This

circuit, along with other autonomous DC-DC converters, are the primary target of our

proposed method. As shown in Fig. 2.16, a hysteretic comparator that consists of two

separate high-gain comparators constantly compare the output voltage with a high (Vref_H)

and low (Vref_L) threshold voltages. The outputs of the hysteretic comparator feed an SR

latch and then drive the two power switches. As such, the converter forces the output

voltage to stay between Vref_L and Vref_H by dynamically adjusting the turn-on time of

the PMOS power switch.

This is a challenging circuit for testing the robustness of the proposed EF technique

due to its strong nonlinearity, high-gain blocks, hysteretic/memory effects and feedback
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Figure 2.17: Load current waveform (top) and the envelope of the hysteretic converter
output node response simulated by our EF method (bottom). In the bottom figure the red
line is the envelope while the blue lines are the transient responses obtained in each cycle
of envelope following.

control. Even for the standard transient analysis, a source ramping scheme and/or tight

stepsize control need to be in place to guarantee convergence and accuracy.

The load current of the converter increases from 0mA to 1mA following a sigmoid

function, resulting in a switching frequency change from 1.06MHz to 1.11MHz. The cor-

responding envelope of the output response is shown in Fig. 2.17. From a conservatively

chosen envelope stepsize of Tenv = 16Tn, the simulator gradually scales up the envelope

stepsize according to the estimated LTE until the circuit enters into steady state. After

that, the load current approximately linearly increases from 0.4ms to 0.7ms. As shown in

Fig. 2.17, during this period of time, the envelope stepsize actually increases. This boost

of performance comes from an internal scheme for guessing the new xn value at the begin-

ning of each envelope step that is based upon a linear extrapolation of x0 and x1, which

are available before the Newton iteration starts. This prediction mechanism happens to
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Figure 2.18: Detailed comparison of the proposed EF method (red solid line) with the
transient analysis (blue dashed line) for the PFM/hysteretic converter.

provide fairly accurate initial guesses while the load current approximately rises up lin-

early. In conjunction with the implemented LTE stepsize control, the scheme boosts the

envelope stepsize allowed by the LTE tolerance around time 6ms as shown in the bottom

plot of Fig. 2.17. Fig. 2.18 compares the detailed EF results with the transient simulation

results. The computed envelope accurately matches the transient simulation, demonstrat-

ing ability of our proposed method to closely track the envelope of highly dynamic and

nonlinear converters with a varying switching frequency.

Our EF method achieves a speedup of 30×with respect to the transient analysis for this

example. Very few reported works target autonomous DC-DC converters under varying

load conditions. [9] demonstrates analysis of two autonomous converters using constant

envelope steps of 3 and 5 without reporting any speedup factors. As discussed in Sec-

tion ??, a simplistic switched linear system model is adopted to model converters with an

additional assumption on variation of cycle time that is not generally true in [9].
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Figure 2.19: A PSM DC-DC converter.

2.5.4 A PSM DC-DC converter

The last circuit we consider is a pulse skipping modulated (PSM) DC-DC converter

in Fig. 2.19, which represents one of the most popular DC-DC converter topologies in

low-power design. This circuit is essentially an enhanced PWM DC-DC converter with

the ability to skip pulses when the output voltage is above certain threshold voltage. The

hysteretic comparator compares Vout with two threshold voltages Vref_L and Vref_H and

generates a binary enabling signal Ven. The PWM module compares the voltage difference

between reference voltage Vref and generates a series of pulses Vpwm to drive the power

switches. When the output voltage is below Vref_L, the enabling signal Ven is high and the

power switches are directly driven by the PWM pulse signals, resulting in an increase of

output voltage. By the time Vout reaches the upper threshold voltage Vref_H , the enabling
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Figure 2.20: The switching signal Vsw and the enabling signal Ven.

signal Ven becomes zero and the pulse signal generated by the PWM module is blocked

by the AND gate. Thus the converter skips all PWM pulse signals until Vout drops below

the lower threshold again.

Fig. 2.20 shows the waveforms of Ven and Vsw. When enabling signal Ven = 1, the

PWM module generates multiple pulses to drive the power switches. The occurrence and

number of PWM pulses depend on the load condition and are not known a priori. Thus

envelope following simulation of this type of circuits is extremely challenging. In order

to robustly apply the proposed envelope following algorithm to this type of circuits, we

pick Vout and Ven as the phase monitoring nodes and define the cycle of the circuit by the

periodic behaviour of Ven rather than that of Vsw.

The results of envelope following simulation are shown in Fig. 2.21. The top waveform

shows a linearly changing load current increased from 50mA to 51mA. The bottom wave-

form shows the voltage responses of the output voltage Vout. Starting from Tenv = 8T ,

our proposed algorithm automatically adjusts stepsize based on the estimated LTE val-

ues. With the help of prediction, our proposed algorithm maintains a rather large stepsize
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Figure 2.21: Linearly increasing load current (top) and the output node voltage response
simulated by the proposed EF method (bottom). In the bottom figure the red line is the
envelope while the blue lines are the transient responses obtained in each step of envelope
following.

during the period when the load current linearly increases. The circuit finally reaches the

steady state at t = 0.18ms and after that the stepsize quickly increases to Tenv = 64T .

Overall, a speedup of 10X is achieved with respect to transient analysis.

Table 2.1 summarizes the simulation results of PWM, PFM and PSM DC-DC convert-

ers. The speedup of the proposed envelope following method with respect to the standard

transient simulation are calculated based on the simulation time of both methods.

2.6 Summary

A robust and efficient envelope following method is presented for circuits with constant

or variable switching frequencies. At the core of our new EF algorithm are a novel time-

delayed equal-phase condition and a mechanism that smoothly tracks the transitions of

the circuit state. The implementation of fast simulation technique improves the efficiency
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Table 2.1: Simulation Results for DC-DC converters

PWM PFM PSM
Number of nodes 22 31 41

Number of transient steps
TR 192,473 10,881,234 1,100,001
EF 9,780 322,307 115,115

Total number of
transient N-R iteration

TR 415,737 1,121,5154 1,374,336
EF 20,737 365,974 132,590

Simulation time (sec)
TR 906 112,321 24,707
EF 54 3,691 2,203

Speedup 20X 30X 11X

of the algorithm while maintaining the same accuracy level. We verify the robustness,

generality and efficiency of the proposed technique using several test circuits for which

our technique offers excellent simulation speedups and robustness.
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3. MULTI-HARMONIC LARGE-SIGNAL NONLINEAR MODELING OF

LOW-POWER PWM DC-DC CONVERTERS*

Beside envelope following introduced in Chapter 2, circuit averaging is another tech-

nique that is well suited for the efficient simulation of DC-DC converters.

In this chapter, we present a multi-harmonic averaged model for low-power PWM

DC-DC converter. The proposed model combines the accuracy of enhanced state-space

averaging, the flexibility of PWM switch models and the multi-frequency nature of the

generalized models. The multi-harmonic model has four main features. First, the model

approximates the actual converter responses by multiple harmonics of ripples up to an arbi-

trary degree. Second, the model accounts for the effects of device non-idealities like diode

forward voltage drop in an efficient manner. The third feature lies in its generality. Our

proposed model is based on the switch cell and can be applied to many DC-DC convert-

ers including buck, boost and buck-boost converters without any modifications. It is also

general in the sense that both CCM and DCM operations are supported. Finally, a system

decoupling technique is introduced to simulate converters with improved efficiency. As a

result, when applied to several open-loop DC-DC converters, the proposed model gener-

ates almost identical responses as the transistor-level simulations with a runtime speedup

of one order of magnitude.

3.1 Generalized Switch Model with Device Non-idealities

In this section, we present a generalized model of a three-terminal switch cell based

on a standard buck converter shown in Fig. 3.1a. The generalized switch model can also

be applied to other PWM DC-DC converters with no additional changes. To accurately

*©2016 IEEE. Reprinted, with permission, from Wang, Ya, et al. "Multi-harmonic nonlinear modeling
of low-power PWM DC-DC converters operating in CCM and DCM." Proceedings of the 2016 Conference
on Design, Automation & Test in Europe. EDA Consortium, 2016.
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Figure 3.1: Standard Buck PWM DC-DC converter

capture the circuit behavior, the dynamic non-idealities are accounted for in the switch

cell. Furthermore, by continuously monitoring the circuit state, our model seamlessly

transitions between CCM and DCM.

3.1.1 Equivalent switch model based on switching functions

Consider the buck converter shown in Fig. 3.1a operating in DCM with a discontinu-

ous inductor current ic shown in Fig. 3.1b. The switching cycle Ts is divided into three

operation intervals by three binary switching functions q1(t), q2(t) and q3(t) using the pa-

rameters d1 and d2 as shown in Fig. 3.1b. Fig. 3.2 (a) shows the extracted switch cell

while Figs. 3.2 (b),(c) and (d) show the three equivalent circuits corresponding to the three

intervals.

Next, we analyze two circuit variables, vag and ip, of particular interest in each opera-

tion interval and construct a complete nonlinear DCM switch model. In the first interval,

the MOS transistor operates in the triode region with a nonlinear resistance of Rds(on) re-

sulting in a voltage drop of Vds(on) while the diode is reverse biased. As shown in Fig.
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Figure 3.2: The three-terminal switch cell(a) and its equivalent circuits in three operation
intervals (b)(c)(d).

3.2(b), in the first interval, we have vag = q1Vds(on) and ip = 0. In the second interval,

the diode is forward biased and holds a forward voltage drop Vd while the MOS transistor

is operating in sub-threshold conduction with a leakage current Ileak. An equivalent re-

sistor Rds(off) is used to model the effect of sub-threshold conduction. As shown in Fig.

3.2(c), in the second interval we have vag = q2 (vap + Vd) and ip = q2 (ic − Ileak). In the

third interval, the inductor is completely discharged and the inductor current is zero. Both

the transistor and the diode are off. According to the constitutive equation of inductors

vL(t) = LdiL(t)
dt

, the inductor is shortened such that vgc = 0. In the third interval, we have

Vag = q3Vac and ip = 0. Combining the expressions of Vag and ip over the three intervals
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results in:

vag = q1(t)Vds(on) + q2(t)(vap + Vd) + q3(t)vac (3.1)

ip = q2(t)(ic − Ileak). (3.2)

We can now replace the transistor and the diode in the original circuit by controlled

sources using the relations in (3.1) and in (3.2). This leads to the model shown in Fig.

3.3, which is essentially an equivalent switch model that accounts for the non-ideal device

characteristics. Inserting the model of Fig. 3.3 in place of the switch cell in Fig. 3.1a

results in a circuit model that accurately captures the behavior of the converter. The switch

model can also be applied to converters operating in CCM with one additional constraint

of d1+d2 = 1. The process of determining the operation mode is automated by calculating

d2 concurrently as the model is being simulated using

d2 =
2L

d1Ts

īc
v̄ac − Vds(on)

− d1, (3.3)

where īc and v̄ac are the average inductor current and the average voltage across nodes a
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and c in one cycle, both of which are immediately available in the multi-harmonic model

as will be shown later. If d1 + d2 < 1, the converter operates in DCM. Otherwise, it

operates in CCM with d2 = 1 − d1[15]. Note that(3.3) accounts for the non-idealities of

the transistors and therefore results into a more accurate evaluation of d2 than [13].

3.1.2 Non-ideal device modeling and the complete equivalent converter model

The accuracy of the model in Fig. 3.3 depends on the evaluation of Vds(on), Vd and

Ileak, which are nonlinear functions of the circuit state and vary dynamically during the

circuit simulation. These three values can be evaluated without simulating the actual buck

converter, but by exploiting the information available in the equivalent model in Fig. 3.3.

The process is illustrated by the example of computing Vds(on) shown in Fig. 3.4, where a

buck converter is operating in the first interval with transistorQ1 in the triode region with a

limited conductance between the drain and the source. Due to the presence of a nonlinear

resistance Rds(on), a voltage drop of Vds(on) is found between the drain and the source.

In the equivalent model, the evaluation of the voltage drop Vds(on) is achieved by adding
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the additional circuit shown in Fig. 3.4(b), which is constructed such that transistor Q2

has the same bias (i.e. gate-to-source voltage and drain-to-source current) as transistor

Q1. To achieve this, we observe that in the first interval the drain-to-source current of Q1

corresponds to Ia(on) of the equivalent model and the gate-to-source voltage of Q1 is Von.

Thus by forcing the drain-to-source current of Q2 to be Ia(on) and connecting the gate of

Q2 to the voltage source Von, we ensure that the voltage drop produced by Q2 is the same

as that of Q1 in the buck converter. Returning the voltage drop of Q2 to the equivalent

model allows the model to account for this type of non-ideality. It is important to note that

the transistor Q2 uses the same device model as Q1(e.g. BSIM3/4). Thus the behaviour

captured by transistor Q2 fully accounts for the device non-idealities of Q1.

Similar procedures can be used to obtain Ileak and Vd. With three additional circuits

included, the complete equivalent model automatically accounts for all non-ideal device

characteristics. By including simple additional transistor circuits as shown in Fig. 3.4(b),

we are able to construct a coupled DC-DC converter model in which essential device non-

idealities from the MOS switch and the diode can be accurately evaluated as part of the

overall converter model.

3.2 Efficient Multi-harmonic Modeling of the Switch Cell

Fig. 3.3 presents a switch model with non-ideal device characteristics. However, it is

essentially a switching circuit due to the presence of q(t) and is computationally expen-

sive for performing transient simulations. In this section, we propose a multi-harmonic

averaged model that is both accurate and efficient. The proposed model approximates the

true response of a DC-DC converter using a Fourier series of any order of choice. Since

the switching functions q(t) are decomposed into several Fourier series and are no longer

present in the model, the proposed model is highly efficient.
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3.2.1 Multi-harmonic model of switch cell

Multi-harmonic modeling decomposes each state variable into a Fourier series. Recall

that a time-domain periodic signal x(τ) can be expanded using the Fourier series as

x(τ) =
∞∑

k=−∞

〈x〉k(t)ejkωsτ , (3.4)

where ωs = 2πfs and fs is the switching frequency. 〈x〉k(t) is the kth complex Fourier

coefficient[17], which is given by

〈x〉k(t) =
1

Ts

∫ t

t−Ts
x(τ)e−jkωsτdτ. (3.5)

As shown in (3.5), 〈x〉k(t) is defined by taking the average of x(τ) at a frequency kfs. For

instance, 〈x〉0(t) represents the dc component and 〈x〉1(t) represents the harmonic com-

ponent at the fundamental frequency. Thus, we denote 〈x〉k(t) by the index-k average.

By including higher orders of harmonics, the multi-harmonic model is able to approx-

imate the non-linear behaviour of the switch cell with higher accuracy. However, as a

result, the multi-harmonic model becomes more complex in circuit topology and more

time-consuming to solve. Essentially a trade off needs to be found between the accuracy

and efficiency of the multi-harmonic model. Going forward, we will develop the proposed

model using only the index-0 and index-1 terms in the derivation as we believe they will

present sufficient accuracy for most practical applications while still having the important

ability to obtain design insights from the model that are critically important for low-power

converter design, such as performing a stability analysis. It is important to note here that

the developed models can be augmented by including higher orders of index-k averages

when necessary. This would result in a multi-harmonic model that approximates the non-

linear behavior of the switch model more accurately, but at the cost of increased complex-
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Figure 3.5: The FFT spectrum of the output voltage of a boost converter operating in the
steady state.

ity. However, the fact that index-1 averages correspond to the most significant fundamental

harmonics implies it is sufficient to only have index-0 and index-1 components for most

practical cases of DC-DC converters which are not typically used as conventional analog

circuits. This is more clearly illustrated in Fig. 3.5, which shows the FFT spectrum of

the output voltage of a standard boost converter operating in the steady-state. As can be

seen, the magnitudes of the index-0 and the index-1 components are measured to be 18dB

and −40dB, respectively, which dominate the overall circuit response. In comparison,

the magnitudes of all the other higher order harmonic components are less than −60dB,

which is no more than 4% of the magnitude of the index-1 component, thus confirming

our original assumption that by including the index-0 and the index-1 components, the

multi-harmonic model is able to capture the circuit behavior with sufficient accuracy. This

is also verified by the FFT analysis of a typical DC-DC converter in [37].

According to [18], two properties can be immediately identified from (3.4) and (3.5)

that allow us to calculate the index-k averages of the switch model. The first property is

discrete convolution. Using this property, each index-0 average term in (3.1) and (3.2) can
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be written as

〈qx〉k = 〈q〉0〈x〉0 + 〈q〉1〈x〉−1 + 〈q〉−1〈x〉1. (3.6)

According to (3.5), every complex Fourier coefficient includes a real and an imaginary

part. We also know that 〈x〉k and 〈x〉−k are conjugates of each other, which means 〈x〉Rk =

〈x〉R−k and 〈x〉Ik = −〈x〉I−k. Exploiting the conjugation property provides the following

expression for the index-0 average of a product

〈qx〉0 = 〈q〉0〈x〉0 + 2
(
〈q〉R1 〈x〉R1 + 〈q〉I1〈x〉I1

)
. (3.7)

Substituting (3.7) into (3.1) and (3.2) gives the index-0 average model of the switch

cell as follows

〈vag〉0 =〈q1〉0Vds(on) + 〈q2〉0Vd

+〈q2〉0〈vap〉0 + 2
(
〈q2〉R1 〈vap〉R1 + 〈q2〉I1〈vap〉I1

)
+〈q3〉0〈vac〉0 + 2

(
〈q3〉R1 〈vac〉R1 + 〈q3〉I1〈vac〉I1

)
〈ip〉0 =〈q2〉0 · Ileak

+〈q2〉0〈ic〉0 + 2
(
〈q2〉R1 〈ic〉R1 + 〈q2〉I1〈ic〉I1

)
.

(3.8)

Similarly, the index-1 average of a product is given by

〈qx〉R1 = 〈q〉0〈x〉R1 + 〈q〉R1 〈x〉0 (3.9)

〈qx〉I1 = 〈q〉0〈x〉I1 + 〈q〉I1〈x〉0. (3.10)

Substituting (3.9) and (3.10) into (3.1) and (3.2) gives the real part of the index-1 average
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Figure 3.6: The multi-harmonic model of the three-terminal the switch cell including (a)
index-0 average model, (b) the real part of index-1 average model and (c) the imaginary
part of index-1 average model.

model of the switch cell as

〈vag〉R1 =〈q1〉R1 Vds(on) + 〈q2〉0〈vap〉R1 + 〈q2〉R1 〈vap〉0

+〈q2〉R1 · Vd + 〈q3〉0〈vac〉R1 + 〈q3〉R1 〈vac〉0

〈ip〉R1 =〈q2〉0 · Ileak + 〈q2〉0〈ic〉R1 + 〈q2〉R1 〈ic〉0,

(3.11)

and the imaginary part of the index-1 average model as

〈vag〉I1 =〈q1〉I1Vds(on) + 〈q2〉0〈vap〉I1 + 〈q2〉I1〈vap〉0

+〈q2〉I1 · Vd + 〈q3〉0〈vac〉I1 + 〈q3〉I1〈vac〉0

〈ip〉I1 =〈q2〉0 · Ileak + 〈q2〉0〈ic〉I1 + 〈q2〉I1〈ic〉0.

(3.12)

The second property we exploit is the average of differentiation

〈dx
dt
〉k(t) =

d〈x〉k(t)
dt

+ jkωs〈x〉k(t). (3.13)
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Applying (3.13) to the constitutive equation of inductors vL = LdiL
dt

reveals that an index-k

average of an inductor can be modeled by an inductor model with the same inductance in

series with an impedance of jkωsL.

Combining (3.8), (3.11), (3.12) and (3.13) produces the final model of the switch in-

cluding index-0 and index-1 averages, as shown in Fig. 3.6. It should also be noted that

a multi-harmonic model is generally highly coupled due to the interactions between aver-

ages of different orders.

3.2.2 Multi-harmonic model of the DC-DC converter

Apart from the switch cell, we need to find the index-k model for all other components

of the DC-DC converter, e.g. the load capacitor and parasitic resistors. By the definition of

index-k average shown in (3.5), it is easy to verify that 〈vR〉k = R〈iR〉k, which implies the

index-k average of a resistor has the same branch constitutive relationship of the resistor in

terms of the branch voltage and current. Like the index-k average of an inductor, a physical

capacitor can be modeled as an average capacitor model with the same capacitance in

parallel with an admittance of jkwsC.

Using the multi-harmonic average models for the switch cell in addition to the capac-

itors and the resistors derived above, we construct an index-0 and index-1 average model

of a DC-DC converter. This results in three coupled circuits, which can be solved for the

dc and the first-order harmonic responses.

3.3 System Decoupling

As pointed out earlier, solving mutually dependent averages of different orders is a

computationally intensive task. In this section, we provide two rules for system decoupling

that can remove the dependency of 0-index average models on all higher order models,

which also improves the model accuracy.

Consider the standard buck converter shown in Fig. 3.1a and its 0-index average model
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Figure 3.7: The index-0 average model of the buck converter. Controlled sources vs1 and
cs2 depend on the index-1 average model and will be completely removed in the decoupled
index-0 average model.

shown in Fig. 3.7. Our objective is to remove the VCVS vs1 and the CCCS cs2, both of

which depend on components from the index-1 average model. Recall that the index-0

average of a product can be evaluated from the discrete convolution relation by (3.6). One

useful observation is that if x has a very small variance within one cycle and hence can

be viewed as a constant, then for any k 6= 0, 〈x〉k = 0. Thus, we suggest the first rule of

system decoupling:

Rule 1. If x has small variance within one cycle, then 〈qx〉0 ≈ 〈q〉0〈x〉0. All higher

order terms can be removed from the index-0 average calculation while only introducing

negligible errors.

In Fig. 3.6(a), there are three averages of product terms 〈q2vap〉0, 〈q3vac〉0 and 〈q2ic〉0.

In the buck converter, we have vap = Vs and vac = Vs− Vout, where Vs denotes the supply

voltage and Vout dc component of the output voltage. Thus the voltage swings in vap and

vac are small and can be neglected. Therefore, we can apply rule 1 to 〈q2vap〉0 and 〈q3vac〉0

for the case of buck converters. This results in the complete removal of vs1 in Fig. 3.7.

On the other hand, 〈q2ic〉0 cannot be simplified by rule 1 due to the large variance of ic

shown in Fig. 3.8(a). (3.7) computeds the discrete convolution of 〈q2ic〉0, which includes
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Figure 3.8: Illustration of 〈q2ic〉0 calculation: (a) inductor current ic, (b) switch function
q2, and (c) product term q2ic. The 0-index average can be calculated by dividing the shaded
area by the length of interval.

the index-1 terms. To remove these terms, we need to consider the shape of ic and q2.

In Fig. 3.8(a), the index-0 average value of ic is essentially the dc value of the inductor

current, which can be calculated by dividing the shaded area by the total time interval

〈ic〉0 = īc =
1

2
(d1 + d2)Ipk, (3.14)

where d1 = 〈q1〉0, d2 = 〈q2〉0 and Ipk is the peak value of ic. Similarly, the index-0 average

value of q2ic is

〈q2ic〉0 = īp =
1

2
d2Ipk. (3.15)

57



Substituting (3.14) into (3.15) leads to an equation that expresses 〈q2ic〉0 as

〈q2ic〉0 =
d2

d1 + d2

〈ic〉0, (3.16)

which is a function of only the index-0 average 〈ic〉0. Since no approximation is made in

the derivation process, (3.16) is precise and equivalent to computing 〈q2ic〉0 using discrete

convolution with infinite terms, which is not practical to compute directly. Thus replacing

(3.7) by (3.16) not only decouples the system and improves efficiency but also results in a

model with enhanced accuracy. As we will later show in a buck converter simulation ex-

ample, simulation using the multi-frequency model presented in [18], which approximates

〈q2ic〉0 by (3.7), shows significant errors when the converter operates in DCM. While our

proposed model using (3.16) accurately and efficiently captures converter behaviour in

both CCM and DCM.

Now we suggest the second rule of system decoupling which also enhances the accu-

racy:

Rule 2. For DC-DC converters in any condition, 〈q2ic〉0 = d2
d1+d2

〈ic〉0. All higher order

terms can be removed from the index-0 average calculation without introducing any errors.

Applying rule 2 to 〈q2ic〉0 results in the removal of cs2 in Fig. 3.7 as well as chang-

ing the current source of 〈q2〉0〈ic〉0 into d2
d1+d2

〈ic〉0. Fig. 3.9 summarizes the decoupled

buck converter index-0 average model where all of the components can be evaluated inde-

pendently of high-order averages. Combining this model with the index-1 average model

results in a more efficient and accurate multi-harmonic model.

3.4 Experimental Results

We test the accuracy and efficiency of our new proposed model by performing simu-

lations of different DC-DC converters and compare the results with two existing averaged
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Figure 3.9: The decoupled index-0 average model of the buck converter.

models. The first example of the boost converter simulation demonstrates the improved

accuracy of our model by considering device non-idealities. The second example of the

buck converter simulation shows improved accuracy and efficiency by calculating 〈q2ic〉0

using (3.16). All models and circuits are implemented in Cadence Virtuoso and simulated

by Spectre [38]. Our proposed model is described using Verilog-AMS and the converter

circuits are described in transistor-level netlists with industry-standard BSIM4 models.

The accuracy of our proposed model is quantified using the following error metric

defined with respect to transistor-level simulation:

σ =

√
n∑
k=1

(Vmodel(Ts · k)− V (Ts · k)))2

√
n∑
k=1

V (Ts · k)2

(3.17)

In (3.17), V is a targeted output voltage obtained by transistor-level simulation while

Vmodel is the corresponding output voltage in our proposed model. Ts is the sampling

stepsize which is set to one tenth of the switching period of a given converter circuit.
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Figure 3.10: A standard boost converter with Vs = 2V , L = 300µH , C = 1µF and
RL = 50Ω.

3.4.1 Boost converter open-loop simulation

Consider the standard PWM boost converter shown in Fig. 3.10. A small capacitance

value is selected for better demonstration of the ripple. The boost converter operates in

CCM with a switching frequency of f = 50kHz. For this example, the converter simula-

tion starts with a duty ratio of d = 0.4. This ratio is maintained until t = 0.4ms at which

the duty ratio ramps up to 0.5 and remains at this level for the remainder of the simulation.

Fig. 3.11 shows a comparison of the transistor-level simulation, our proposed model, and

the equivalent circuit derived from the in-place circuit averaging with index-0 and index-

1 averages considered [20]. The results from the in-place averaging show visible errors

in the steady state and the transient state, because it fails to consider the effect of device

non-idealities. On the other hand, the output voltage and the inductor current waveforms

predicted by our proposed method match very well with the transistor level simulation.

The percentage errors for the output voltage are found to be σv = 3.46% using (3.17).

Furthermore, for this example, our proposed model achieved 6X runtime speedup with
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Figure 3.11: Boost converter open-loop simulation with varying duty ratio using our pro-
posed model(a), transistor-level circuit(b), and the in-place circuit averaging technique(c).

respect to the transistor-level simulation.

3.4.2 Buck converter open-loop simulation

Next we test our proposed model on a buck converter operating in CCM and DCM.

The stability and robustness of the proposed model is investigated by varying the duty

ratio over a wide range. The standard buck converter circuit modeled is shown in Fig. 3.1a

with L = 100µH , C = 500nF , RL = 10Ω and fs = 50kHz. As shown in Fig. 3.12(a),

the duty ratio is varied in such a way that the converter transitions from CCM to DCM at

t = 0.2ms.

The simulation results for the output voltage and inductor current of the transistor-

level circuit, our proposed model and a modified version of the multi-frequency average

model [18] are shown in Fig. 3.12(b)(c). The multi-frequency average model introduced in

[18] does not consider device non-idealities and thus is inaccurate in low-power DC-DC

converter simulations. To differ from the previous comparison with in-place averaging,

we modified the multi-frequency average model by adding controlled sources that account

61



0 0.1 0.2 0.3 0 0.1 0.2

D
ut

y 
R

at
io

0.2

0.4

0.6

0.8

Time (ms)
0 0.1 0.2 0.3 0 0.1 0.2

In
du

ct
or

 
C

ur
re

nt
 (

A
)

0

0.1

0 0.1 0.2 0.3 0 0.1 0.2

O
ut

pu
t 

V
ol

ta
ge

 (
V

)

0.5

1

0.5

(c)
(b)

(a)

(c)

(b)
(a)

d=0.7

d=0.5

d=0.3

DCM

Figure 3.12: Buck converter open loop simulation of the transistor-level circuit(a), our
proposed model(b), and the modified multi-frequency average model(c).

for device non-idealities including Rds(on), Ileak and Vd. As a result, both our model and

the multi-frequency model make good predictions of the voltage and current responses

in the first 0.2ms of simulation when the converter is operating in CCM. However, as

the duty ratio continues to drop and the converter enters into DCM, the multi-frequency

average model significantly deviates from the true response. The reason for the large

errors is that the multi-frequency average model approximates 〈q2ic〉0 by (3.7), which only

considers the 0-index and 1-index average and is not accurate when the inductor current ic

is discontinuous. Our proposed model, on the other hand, successfully detects the presence

of the DCM and precisely calculates 〈q2ic〉0 using (3.16) and therefore closely tracks the

actual circuit response.

In this example, our proposed model replaces the discontinuous inductor current with

continuous averaged currents, which results in a 10X speedup with respect to the simu-

lation of the transistor-level circuit. The output voltage error in this case is found to be

σv = 3.97%, which once again demonstrates the high accuracy of our proposed model. In

comparison, the multi-frequency average model shows an error of σv = 18.13%. Table 3.1
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Table 3.1: Errors and speedups of the proposed model

boost converter buck converter
Transistor-level ckt size 11 nodes 8 nodes
Multi-harmonic ckt size 95 nodes 90 nodes
Error of multi-harmonic ckt 3.46% 3.97%
Speedup over transistor-level ckt 6X 10X

summarizes the speedup and error of our proposed model with respect to the transistor-

level simulations.

3.5 Summary

In this chapter we present a multi-harmonic model for PWM DC-DC converters in

various topologies. Our proposed model can capture the dc response as well as higher-

order harmonics. As a full order model, it retains the inductor current as a state variable

and is accurate even when the converter is in the transient state. Our model can seamlessly

transition between CCM and DCM during the simulation. Moreover, we suggest two

rules for system decoupling in order to achieve better efficiency without compromising

accuracy. Our model was tested on two different DC-DC converters and speedups of one

order of magnitude were achieved with respect to transistor-level simulations.
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4. MULTI-HARMONIC SMALL-SIGNAL MODELING OF LOW POWER PWM

DC-DC CONVERTERS *

As the complexity of the modern low-power integrated circuits grows exponentially,

there is an increasing need for accurate control techniques in designing DC-DC converters

[21]. Converter circuit behavior is typically highly nonlinear due to the strong switch-

ing activities and the presence of nonlinear devices. The small-signal model, which ap-

proximates the behavior of the DC-DC converter by linearizing the nonlinear devices and

switches at a certain DC operating point, is widely used by designers to design the control

blocks and closed-loop systems, as well as to analyze system stability.

The focus of this chapter is on presenting an efficient and accurate model for the anal-

ysis and design of low-power PWM converters. We first derive a multi-harmonic aver-

aged model, which is a six-state variable system that considers both the DC response and

the first-order harmonics as well as the interactions between them. We then develop a

small-signal model to accurately capture the small-signal dependencies of each harmonic

component on the targeted input perturbation. The proposed model is presented in both

the state-space form and in the frequency domain. We perform an empirical analysis on

the linear time-variant (LTV) of the proposed model and derive several key parameters to

characterized the high-frequency behaviors. Then we compare the proposed small-signal

model with the conventional small-signal model, which is based on the average model that

only considers the DC component of the Fourier series of the signals [39], in two converter

examples to demonstrate the significant accuracy enhancement that is offered by using

the proposed model in high-frequency circuit responses. We will show that the proposed

*Wang, Ya, et al. "Multiharmonic Small-Signal Modeling of Low-Power PWM DC-DC Converters."
ACM Transactions on Design Automation of Electronic Systems (TODAES) 22.4 (2017): 68.APA ©2017
ACM, Inc. Reprinted by permission. http://doi.acm.org/10.1145/3057274
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model has a time-varying aspect and has the ability to identify misleading results that can

result from using conventional small-signal models. Therefore, the proposed model pro-

vides the actual behavior of the converters that will, in turn, lead to stable closed-loop

designs.

4.1 Multi-Harmonic Average Model

In this section, we revisit the large-signal multi-harmonic model introduced in Chapter

3 by deriving the averaged model for a boot converter shown in Fig. ??. The multi-

harmonic average model takes both the DC average and the multiple harmonic components

into account [18]. Note that while the derivation will be based on the standard boost

converter shown in Fig. 3.10, fundamentally similar derivations can be applied to other

PWM DC-DC converter topologies, including buck and buck-boost type converters [40,

41].

We begin the derivation with the equations that describe the switched model of the

boost converter operating in CCM and controlled by the switching function q(t):

di(t)

dt
=

1

L
(VS − (1− q(t))v(t)) (4.1)

dv(t)

dt
=

1

C
((1− q(t))i(t)− 1

R
v(t)), (4.2)

The switching function is binary and can be expressed as

q(t) =


1 t ∈ (0, dTs) switch is ON

0 t ∈ (dTs, Ts) switch is OFF,
(4.3)

where d is the duty ratio of the switching function and Ts is the switching period. Using
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the same derivation shown in 3.2, we obtain the index-0 average of (4.1) as

d〈i〉0
dt

=
1

L

(
−〈q′〉0〈v〉0 + 2

(
〈q〉R1 〈v〉R1 + 〈q〉I1〈v〉I1

))
(4.4)

d〈v〉0
dt

=
1

C

(
〈q′〉0〈i〉0 −

〈v〉0
R
− 2

(
〈q〉R1 〈i〉R1 + 〈q〉I1〈i〉I1

))
, (4.5)

where q′ = 1− q, 〈·〉R1 and 〈·〉I1 are the real part and imaginary part of the index-1 average

〈·〉1. Similarly, the index-1 average of the switch model (4.1) can be calculated as

d〈i〉R1
dt

= ωs〈i〉I1 +
1

L
(−〈q′〉0〈v〉R1 + 〈v〉0〈q〉R1 ) (4.6)

d〈v〉R1
dt

= ωs〈v〉I1 +
1

C

(
〈q′〉0〈i〉R1 − 〈i〉0〈q〉R1 −

〈v〉R1
R

)
(4.7)

d〈i〉I1
dt

= −ωs〈i〉R1 +
1

L
(−〈q′〉0〈v〉I1 + 〈v〉0〈q〉I1) (4.8)

d〈v〉I1
dt

= −ωs〈v〉R1 +
1

C

(
〈q′〉0〈i〉I1 − 〈i〉0〈q〉I1 −

〈v〉I1
R

)
. (4.9)

Now we have a highly-coupled system of two state variables of index-0 and four state

variables of index-1, which define the dynamic behavior of the boost converter. The device

non-ideality terms have been dropped due to the fact that they vanish during the small-

signal analysis. Notice that (4.4)-(4.9) rely on the index-0 and index-1 averages of the

switching function q(t). Substituting (4.3) into (3.5) gives the relation of the index-0 and

index-1 averages of the switching function to the duty ratio d as

〈q〉0 = d (4.10)

〈q〉R1 =
1

2π
sin(ωst+ 2πd) (4.11)

〈q〉I1 =
1

2π
[cos(ωst+ 2πd)− 1] . (4.12)

Finally, by combining (4.4)-(4.5) with (4.6)-(4.9) and (4.10)-(4.12), the final multi-harmonic
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averaged model of the boost converter including index-0 and index-1 averages is specified.

4.2 Small-Signal State-Space Model

The small-signal model characterizes the sensitivities of the circuit state variables to

the perturbation of parameters such as duty ratio or supply voltage. In this section we will

focus on the perturbation of the duty ratio. Let us assume that the boost converter is in

steady-state and there is a perturbation in the duty ratio of the form

d = d̄+ d̂, (4.13)

where d̄ is the steady-state value of the duty ratio and d̂ is the small-signal perturbation.

The immediate effect of the duty ratio perturbation is the variation of switching functions.

Based on the relations given by (4.10)-(4.13), the variations of the index-0 and index-1

averages of the switching function are

ˆ〈q〉0 = d̂ (4.14)

ˆ〈q〉
R

1 =
1

2π

[
sin
(
ωst+ 2π(d̄+ d̂)

)
− sin(ωst+ 2πd̄)

]
(4.15)

ˆ〈q〉
I

1 =
1

2π

[
cos
(
ωst+ 2π(d̄+ d̂)

)
− cos(ωst+ 2πd̄)

]
, (4.16)

in which the 〈q̂〉R1 and 〈q̂〉I1 are nonlinear functions of the duty ratio perturbation d̂. Next,

we linearize (4.14)-(4.16) around d = d̄ as
[
〈q̂〉0 〈q̂〉

R
1 〈q̂〉I1

]T
= Qs · d̂, where

Qs =


1

cos
(
ωst+ 2πd̄

)
−sin

(
ωst+ 2πd̄

)
 (4.17)

is the switching function input matrix.
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Figure 4.1: The state space of the multi-harmonic small-signal model and the interactions
between its subsystems.

The effect of the perturbation continues to propagate to each of the state variables.

Based on (4.4)-(4.5), the perturbation of index-0 state variables can be calculated as:

d〈̂i〉0
dt

=
1

L
((〈q̄〉0 − 1)〈v̂〉0 + 〈v̄〉0〈q̂〉0) +

2

L

(
〈q̄〉R1 〈v̂〉R1 + 〈v̄〉R1 〈q̂〉R1

)
+

2

L

(
〈q̄〉I1〈v̂〉I1 + 〈v̄〉I1〈q̂〉I1

)
(4.18)

d〈v̂〉0
dt

=
1

C

(
(1− 〈q̄〉0)〈̂i〉0 + 〈̄i〉0〈q̂〉0 −

〈v̂〉0
R

)
− 2

C

(
〈q̄〉R1 〈̂i〉R1 + 〈̄i〉R1 〈q̂〉R1

)
− 2

C

(
〈q̄〉I1〈̂i〉I1 + 〈̄i〉I1〈q̂〉I1

)
. (4.19)
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Similarly, the perturbation of the index-1 state variables can be calculated as:

d〈̂i〉R1
dt

= ωs〈̂i〉I1 +
1

L

(
−〈v̂〉R1 + 〈q̄〉0〈v̂〉R1 + 〈v̄〉R1 〈q̂〉0 + 〈q̄〉R1 〈v̂〉0 + 〈v̄〉0〈q̂〉R1

)
(4.20)

d〈v̂〉R1
dt

= ωs〈v̂〉I1 +
1

C

(
〈̂i〉R1 −

〈v̂〉R1
R
− 〈q̄〉0〈̂i〉R1 − 〈̄i〉R1 〈q̂〉0 − 〈q̄〉R1 〈̂i〉0 + 〈̄i〉0〈q̂〉R1

)
(4.21)

d〈̂i〉I1
dt

= −ωs〈̂i〉R1 +
1

L

(
−〈v̂〉I1 + 〈q̄〉0〈v̂〉I1 + 〈v̄〉I1〈q̂〉0 + 〈q̄〉I1〈v̂〉0 + 〈v̄〉0〈q̂〉I1

)
(4.22)

d〈v̂〉I1
dt

= −ωs〈v̂〉R1 +
1

C

(
〈̂i〉I1 −

〈v̂〉I1
R
− 〈q̄〉0〈̂i〉I1 − 〈̄i〉I1〈q̂〉0 − 〈q̄〉I1〈̂i〉0 + 〈̄i〉0〈q̂〉I1

)
(4.23)

Combining (4.18)-(4.19) with (4.20)-(4.23) and rewriting the equations into a state-space

representation gives:

d

dt

〈~x〉0
〈~x〉1

 =

A1 A2

A3 A4


〈~x〉0
〈~x〉1

+

B1

B2

 ·Qs · d̂, (4.24)

where 〈~x〉0 =

[
〈̂i〉0 〈v̂〉0

]T
is a two dimensional vector of index-0 state variables and

〈~x〉1 =

[
〈̂i〉R1 〈v̂〉R1 〈̂i〉I1 〈v̂〉I1

]T
is a four dimensional vector of index-1 state variables.

The state matrix A and input matrix B are partitioned to form two subsystems. A1 and A4

represent the subsystems of the index-0 components and index-1 components. A2 and A3

represent the interaction between those two subsystems. Similarly, B1 and B2 represent

the input to the index-0 and index-1 subsystems. The submatrices in state matrix A and
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the input matrix B are

A1 =

 0 〈q̄〉0−1
L

1−〈q̄〉0
C

− 1
RC

 (4.25)

A2 =

0
2〈q̄〉R1
L

0
2〈q̄〉I1
L

0
−2〈q̄〉R1
C

0
−2〈q̄〉I1
C

 (4.26)

A3 =



0
〈q̄〉R1
L

−〈q̄〉R1
C

0

0
〈q̄〉I1
L

−〈q̄〉I1
C

0


(4.27)

A4 =



0 〈q̄〉0−1
L

ωs 0

1−〈q̄〉0
C

− 1
RC

0 ωs

−ωs 0 0 〈q̄〉0−1
L

0 −ωs 1−〈q̄〉0
C

− 1
RC


(4.28)

B1 =

 〈v̄〉0
L

2〈v̄〉R1
L

−2〈v̄〉I1
L

− 〈̄i〉0
C

−2〈̄i〉R1
C

2〈̄i〉I1
L

 (4.29)

B2 =



〈v̄〉R1
L

〈v̄〉0
L

0

−〈̄i〉R1
C

〈̄i〉0
C

0

〈v̄〉I1
L

0 − 〈v̄〉0
L

−〈̄i〉I1
C

0 − 〈̄i〉0
C


. (4.30)

The system described in (4.24) is a complete characterization of the multi-harmonic small-

signal model for the boost converter. The system diagram is shown in Fig. 4.1, with an

output matrix C that selects all voltage harmonic components as the outputs. Compared

to the conventional small-signal model, which is a small-signal DC averaged model with
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a state matrix equal to A1, the multi-harmonic small-signal model provides more accurate

circuit behavior by modeling the index-0 and index-1 components, as well as the interac-

tions between them. This model can be easily extended to include harmonic components

of an arbitrary degree.

4.3 Small-signal AC model

In this section, we cast the proposed small-signal state-space model to the frequency

domain to derive a linear time-varying AC model . We show how our AC model can

immediately capture important high-frequency characteristics and lead to useful design

insights.

4.3.1 Frequency-domain small-signal model

The state-space model of Fig. 4.1 outputs the index-0, and the real and imaginary

parts of the index-1 components of the converter output voltage. These components can

be combined to form the total voltage response

v̂(t) = 〈v̂〉0(t) + 〈v̂〉1(t)ejωst + 〈v̂〉−1(t)e−jωst, (4.31)

where v(t) is a combined output, and for convenience we have represented the index-1

component using complex exponentials. Applying the Laplace transform to (4.31) gives

the frequency-domain representation

v̂(s) =

∫ ∞
0

〈v̂〉0(t)e−stdt+

∫ ∞
0

〈v̂〉1(t)e(jωs−s)tdt+

∫ ∞
0

〈v̂〉−1(t)e−(jωs+s)tdt, (4.32)

which can be further simplified to

v̂(s) = 〈v̂〉0(s) + 〈v̂〉1(s− jωs) + 〈v̂〉−1(s+ jωs). (4.33)
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Figure 4.2: Illustration of the linear time-variant (LTV) system with the frequency-shift
effect.

The small signal model of (4.33) is a linear time-variant (LTV) system, which is illustrated

in Fig. 4.2. Each of 〈v̂〉0, 〈v̂〉1, and 〈v̂〉−1 can be characterized using a scalar LTI transfer

function derived based on the small-signal state-space model. Note that the index-1 com-

ponents 〈v̂〉1(t) and 〈v̂〉−1(t) are modulated by periodic signals ejωst and e−jωst, which

have frequency-shift effects in the frequency-domain response (4.33).

4.3.2 Parametric dependencies of high-frequency behavior

It is worth noticing that the proposed model captures the important high-frequency

characteristics based on two mechanisms. First, as a model with six state variables, the

proposed model accounts for high-frequency poles and zeros that are missing from tradi-

tional second-order models such as the ones presented in [39]. Second, the inclusion of

the index-1 components takes into account additional high-frequency behaviors due to the

frequency-shift effects.

Recall that the state matrix A from (4.24) is a 6 × 6 matrix that has four submatrices,

where A1 and A4 correspond to the subsystem of the index-0 and index-1 harmonic com-

ponents. As pointed out in [42], there is a distinctive model separation in system A and
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we can closely approximate the eigenvalues of A using those of the submatrices A1 and

A4. From (4.28), we evaluate the eigenvalues of A4 analytically [18]

λ1,2(A4) = −α± j(−ωs +
√
ωn2 − α2) (4.34)

λ3,4(A4) = −α± j(ωs +
√
ωn2 − α2), (4.35)

where ωn = 1−d√
LC

, α = 1
2RLC

and ωs is the switching frequency of the converter. In our

case, system eigenvalues are actually the poles for the corresponding transfer functions.

For each pair of complex conjugates we derive the quality factor Q, which indicates the

magnitude of the resonant overshoot, and the angular corner frequency ω0, which indicates

the location of the corresponding overshoot. For boost converters, we have

Q =
1

2α

√
α2 +

(
ωs ±

√
ωn2 − α2

)2

≈ 1

2α
· |ωs ± ωn|

(4.36)

and

ω0 =

√
α2 +

(
ωs ±

√
ωn2 − α2

)2

≈ |ωs ± ωn|.
(4.37)

The effects of Q and ω0 on resonant overshoot are illustrated in Fig. 4.3. From (4.37), it

is clear that the overshoots appear around the switching frequency ωs, and hence have sig-

nificant effect on the converter’s high-frequency response. For converter systems with Q

larger than 1, there will be large overshoots/spikes around the switching frequency, which

can potentially lead to stability problems. In the following converter design examples, we

will show how high-frequency overshoots eventually lead to instability of the closed-loop

system and how this can be fixed by adjusting converter design parameter to reduce the
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Figure 4.3: The effect of Q and ω0 on a boost converter frequency response.

value of Q.

4.4 Experimental Results

We demonstrate the application of the proposed model using two different converter

examples. The two converter types selected are the boost converter shown in Fig. ?? and

the buck-boost converter shown in Fig. 4.4. The nominal duty ratio for both converters is

0.4 with the full set of parameters for both converter types as shown in Table I. We analyze

the frequency response of each converter circuit using the proposed small-signal model and

compare the results with the frequency response obtained using the conventional small-

signal model which is based on the average model that only considers the DC component

of the Fourier series of the signals [39]. We also compared our proposed model with

some reference values, which are the actual gain values obtained from a transient analysis.

These reference values were calculated by first perturbing the duty ratio by a small amount

(0.001 or 0.1% in both cases) and then measuring the resulting perturbation of the average

of the output voltage. The perturbation is a sinusoidal waveform and the commercial tool
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Figure 4.4: The Buck-Boost Converter

Table 4.1: Circuit parameters

R[Ω] C[F )] L[H] fs[Hz] Vin[V ] d [ratio]

Boost
converter 20 50µ 75µ 100k 2 0.4

Buckboost
converter 4 220µ 50µ 10k 4 0.4

used for performing the transient analysis is Cadence Virtuoso. Finally, we demonstrate

how the conventional small-signal model can lead to a false understanding of the closed-

loop stability and how our proposed model can aid in the compensator design to regain

stability of the two converters. Note that the method for analyzing stability using our

proposed model is only empirical since the proposed model forms a linear time-variant

(LTV) system.
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Figure 4.5: The control-to-output transfer functions of the DC-DC converters modeled by
the proposed small-signal model(index-0 and index-1) and the conventional small-signal
model.
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Figure 4.6: Comparison of our proposed model, traditional small signal model and refer-
ence values.
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4.4.1 Analysis of the Frequency-Domain Responses

Fig. 4.5 shows the index-0 and index-1 harmonic components of each converter ob-

tained by the proposed small-signal model. Compared with the transfer function obtained

by the conventional small-signal model, our proposed model demonstrates enhanced ac-

curacy and reveals important response characteristics and design insights. Fig. 4.6 also

shows a direct comparison with the ground truth reference values. As can be seen, the pro-

posed method again demonstrates significantly improved accuracy relative to the reference

values when compared with the traditional model.

The first converter we analyzed is the boost converter with the resulting plots as shown

in Fig. 4.5(a) and in Fig. 4.6(a). The index-1 component is negligible in this exam-

ple. Because our proposed model is a six-state model that also captures the index-0 and

index-1 interactions, the computed index-0 component captures several spikes around the

switching frequency. The peak magnitude of the spikes is 25dB, which means that the

switching noise is essentially amplified by the boost converter. As we will show later in

the closed-loop simulation, the amplified switching noise affects the stability of the sys-

tem by disrupting the behavior of the pulse-width modulator [39]. On the other hand,

the conventional small-signal model only demonstrates a typical two-pole low-pass filter

characteristic, without showing any sign of high-frequency spikes or instability.

The second example converter we analyzed is the buck-boost converter with the result-

ing plots as shown in Fig. 4.5(b) and in Fig. 4.6(b). The frequency responses obtained

by the proposed small-signal model shows that the index-0 component has a large low-

frequency gain with two spikes around the switching frequency. The index-1 harmonic

component has a significant magnitude at high frequency, which indicates that the har-

monic component of the converter response is sensitive to the perturbation of the duty

ratio. On the other hand, the conventional small-signal model only captures behavior of
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the index-0 component, which provides no information on the harmonics of the response.

As will be shown next in the compensator design example, large harmonic components

can possibly lead to an unstable closed-loop design.

4.4.2 Stability analysis and closed-loop design

For each converter circuit, we design a lead compensator based on the gain crossover

frequency and the open-loop phase margin obtained from the frequency response of the

conventional small-signal model which is based on the average model that only considers

the DC component of the Fourier series of the signals [39]. Table II shows the lead com-

pensator transfer functions for both converters. Fig. 4.7 shows the transient simulation of

the closed-loop systems using the converters and the designed compensators. It is clear

that the compensators based on the conventional small-signal model fail to stabilize either

converter circuit in the start-up transient simulation.

The failure of the compensator design demonstrates the limitation of the conventional

small-signal model in modeling the high-frequency behavior of DC-DC converters. On

the other hand, our proposed model can accurately capture high-frequency circuit behav-

iors and provide truthful responses since it is based on a multi-harmonic averaged model,

which considers the DC component, the 1st order component and the interactions between

them. In fact, the index-0 component of the proposed model predicts the instability of the

previously designed closed-loop systems. According to the revised bode stability criterion

[43], both compensated systems are unstable with negative gain margins of −15dB and

−11dB.

Taking things a step further, we will use the proposed model to improve the closed-

loop design and correct the compensator designs, which eventually regains the stability

of the the closed-loop systems. In the first example, the causes of the instability of the

boost converter are the spikes around the switching frequency. As discussed in Section
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Figure 4.7: Comparison of the transient responses of the closed-loop systems designed by
the conventional small-signal model and the proposed small-signal model.

Table 4.2: Lead compensator designs based on the conventional small-signal model and
the proposed small-signal model

Conventional
small-signal model

Proposed
small-signal model

Boost
converter

2.61s+1.47×104

s+3.85×104
4.22s+1.22×105

s+5.17×105

Buckboost
converter

4.41s+1.02×105

s+4.53×105
42.3s+2.73×104

s+1.16×104
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4.3.2, these spikes are essentially high-frequency overshoots of the index-0 component.

To reduce the magnitude of the spikes, we reduce the quality factors. According to (4.36),

the maximum quality factor of the boost converter is Q = 26.3 = 28dB, which is a good

estimation of the amplitude of the spike shown in Fig. 4.5(a). By changing the value of

the output capacitance C from 50µF to 10µF , the value of the quality factor is reduced

to 1.5 and the magnitude of the spike is reduced to 2.3dB, which is less than 8% of the

original spike magnitude. Then, we design a new lead compensator using the frequency

response of the improved converter design. As shown by the transient simulation in 4.7(a),

the closed-loop system becomes stable.

In the second example, the conventional small-signal model, which is a simple second-

order model, fails to reveal the potential design problems due to the large magnitude of

the index-1 component. To properly design a stable closed-loop system, we suppress

the amplitude of the index-1 component. By adjusting the converter parameters to L =

800µH and C = 10µF , we are able to limit the maximum magnitude of the index-1

component in all frequencies under 2dB. With the new converter design, we re-design

the lead compensator based on the gain crossover frequency obtained from our index-0

model. The transfer function of the lead compensator is shown in Table II. With the new

lead compensator, the output voltage of the buck-boost converter settles down as shown in

Fig. 4.7(b), which validates the stability of the closed-loop system.

4.5 Summary

In this chapter, a novel multi-harmonic small-signal model that accurately accounts for

the high-frequency responses of the DC-DC converters is presented. Compared with exist-

ing small-signal models, the proposed model considers both the DC averages as well as the

higher-order harmonic components in addition to the interactions between them, thereby

providing a complete small-signal characterization of the converter circuits. Two con-
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verter design examples are presented which demonstrate the significant improvements of

the proposed model on frequency-domain response analysis, stability analysis and closed-

loop design.
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5. CONVERGENCE-BOOSTED GRAPH PARTITIONING USING MAXIMUM

SPANNING TREES FOR POWER DISTRIBUTION NETWORKS *

Large IC designs with multi-million or even multi-billion devices make the power grid

analysis very challenging due to time and memory constraints. In this chapter, we present

a novel preconditioning technique by integrating two families of methods, the support

graph preconditioners and the partition-based preconditioners. The result is an elegant

yet powerful partition-based preconditioner that targets optimizing the numerical conver-

gence property of the partitioned system. To do this, we extract the maximum spanning

tree, which is an optimized preconditioner for fast convergence, from the underlying cir-

cuit graph. Then we use the maximum spanning tree to guide the partitioning algorithm

to create a partition of the system matrix such that degradation of the numerical proper-

ties brought by the support graph is minimized. Within each partitioned block, we add

all edges from the original graph back to the blocks to build a block-Jacobi-like precon-

ditioner. This MST-guided preconditioning process inherits the numerical convergence

property from support graph and the divide-and-conquer nature from a partition-based

preconditioner. We verify the efficiency and accuracy of the MST-guided preconditioner

using 6 industrial and 3 synthetic power grid benchmark circuits. Our proposed method

demonstrates distinctive advantages over existing preconditioners as well as direct solvers

in factorization time and convergence speed. Compared to the state-of-the-art direct solver

CHOLMOD, our proposed method achieves a runtime speedup up to 11.5X for DC anal-

ysis.

*Wang, Ya, et al. "Convergence-Boosted Graph Partitioning using Maximum Spanning Trees for Iterative
Solution of Large Linear Circuits." Proceedings of the 54th Annual Design Automation Conference 2017.
©2017 ACM, Inc. Reprinted by permission. http://doi.acm.org/10.1145/3061639.3062215
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5.1 Background

5.1.1 Power gird analysis

Power grid analysis targets the problem of analyzing the supply noise of power distri-

bution networks (PDNs) in integrated circuits. A power grid can be modeled as a large

linear network with resistors, energy storage elements including capacitors and inductors,

and voltage/current sources. Typical power grid analysis include DC and transient anal-

ysis. In DC analysis the power grid is modeled as a resistive network and simulation

captures the steady state behavior of the network. In transient analysis the energy storage

devices are also considered when evaluating power supply noise. It can be solved by a

series of equivalent DC analysis at different time points, where the capacitors and induc-

tors are replaced with companion models that only include resistors and voltage/current

sources. As such, we focus on DC analysis, which can be formulated using Nodal Analy-

sis [44] as the following linear system problem

Ax = b, (5.1)

where A is a n × n symmetric positive definite matrix (SPD) representing the resistance

network, b is a n × 1 vector representing the external input current sources, and x is the

n×1 vector of unknown node voltages. A voltage source can be converted to an equivalent

current source using Norton’s therorm [45], thus keeping the positive-definite property of

matrix A.

There are mainly two types of methods used to solve the linear SPD system described

in (5.1). Direct methods like Cholesky factorization [23] decompose the matrix A into

lower and upper triangular matrices L and LT . Then the solution is found using for-

ward/backwards substitution. However, the superlinear cost of matrix factorization makes
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direct methods unscalable for large power grid analysis. On the other hand, iterative

solvers avoid direct matrix factorization by iteratively reducing the error of the solution

step by step. With a good preconditioner, an iterative solver may achieve better time and

memory efficiency than direct solvers.

5.1.2 Preconditioned Iterative Solvers

The convergence of iterative solvers such as conjugate gradient depends on the condi-

tion number of the matrix A, which is defined by

κ(A) =
λmax(A)

λmin(A)
(5.2)

where λmax(A) and λmin(A) are the largest and smallest eigenvalue of the matrixA. When

the condition number of a matrix is large, the matrix is considered ill-conditioned and

the convergence for such matrices is slow. In such cases, preconditioners are applied to

reduce the number of iterations. In preconditioned iterative solvers, instead of solving the

original system (5.1), we find a preconditioner matrix P such that we can efficiently solve

the alternative problem

P−1Ax = P−1b. (5.3)

The efficiency of solving the preconditioned system depends on the condition number,

which is defined by

κ(A,P ) =
λmax(A,P )

λmin(A,P )
, (5.4)

where λmax(A,P ) and λmin(A,P ) are the extreme generalized eigenvalues of the matrix

pencil (A,P ) [26]. In practice, we never explicitly formulate the inverse of the precon-

ditioner P or try to compute P−1A. Instead, we use the preconditioner to solve another

problem that can help reduce the errors in our current solution. For example, in conjugate
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Figure 5.1: An example of building a block-Jacobi preconditioner from a matrix A based
on 3-way partitioning.

gradient, we need to solve the linear system

Py = r, (5.5)

where r = b− Ax is the residue of the original system and y is used to update the current

solution x. To summarize, a good preconditioner should be both effective in significantly

reducing the condition numbers and efficient to compute. In the rest of this section, two

types of preconditioners that our proposed method builds upon are briefly introduced.

5.1.2.1 Block-Jacobi preconditioner

Many power grid designs exhibit a hierarchical structure where several local power

grids are connected to a global power grid. Each of the local power grids are either loosely

connected or disjoint from each other. The block-Jacobi preconditioner exploits this struc-

ture by finding a partitioning of the matrix A into several loosely coupled sub-matrices.

Fig. 5.1 shows an example of applying a 3-way partition on a matrix A. With a good

permutation, most of the nonzero entries in A are placed into the block matrices Ai on

the diagonal, leaving the rest of the matrix very sparse. To construct the block-Jacobi

preconditioner, only the entries in the diagonal block are kept and the other nonzero en-
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Figure 5.2: An example of building a support graph preconditioner from a matrix A.

tries outside each diagonal block matrix Ai are removed. The result is the block-Jacobi

preconditioner as shown in Fig. 5.1(c). Since each block matrices Ai are disjoint from

the rest of the matrix P , we can solve (5.5) by solving each block matrix separately, and

combine the solutions to form the complete solution of (5.5). Due to the super-linear time

complexity of factorization with respect to the matrix size [23], the sum of the cost of fac-

torizing each block matrix Ai is less than the cost of factorizing the unpartitioned matrix

A. Furthermore, parallelism can be easily exploited to further improve the efficiency.

5.1.2.2 Support graph preconditioner

While block-Jacobi preconditioning sparsifies the matrix A by ignoring the nonzero

entries outside the diagonal blocks, the support graph preconditioning reduces the matrix

in a more systemic way. It first constructs an undirected weighted graph G from the

conductance matrix A, where each node corresponds to a row in the matrix and the weight

of each edge between two nodeswij stands for the conductance value on the corresponding

entry aij in the matrix. Then a subgraph called the support graph is extracted from G and

the preconditioner P is constructed according to the subgraph. An example of constructing

the support graph preconditioner is shown in Fig.5.2.

Recall (5.4) shows that for preconditioned system (5.3) the number of iterations is pro-
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portional to κ(A,P ), which is the ratio of the largest and smallest generalized eigenvalue

of matrix pencil (A,P ). We define the support of pencil (A,P ), denoted by σ(A,P ) , by

σ(A,P ) = min{τ : τP − A is positive semidefinite}. (5.6)

According to the support lemma [25], the support σ(A,P ) enforces an upper bound on the

condition number κ(A,P ). Consequently, the support σ(A,P ) also bounds the number of

iterations for preconditioned system to reach convergence. Thus using the support graph

as the preconditioner can significantly reduce the condition number of the system and

accelerate convergence [27, 46].

5.2 MST-guided Preconditioner

Both block-Jacobi and support graph preconditioners are successful preconditioning

techniques. The strength of the block-Jacobi method is that it exploits the divide-and-

conquer approach to solve each block matrix individually. With the help of parallelism, the

cost of factorization and solve can be significantly reduced. However, the method depends

on a good partition strategy to limit the number of iterations to reach convergence. On the

other hand, The strength of the support graph method lies in its theoretical upper bound on

the condition number and fast convergence. The bottle-neck of this method is its inability

to incorporate parallel processing. For power grids of size larger than a million, direct

factorization of the preconditioner is computationally expensive.

In this section, we explore the possibility of bridging these two different methods,

with the goal to build a preconditioner that has both divide-and-conquer nature and fast-

convergence property.
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Figure 5.3: Comparison between partition strategies of (a) the block-Jacobi preconditioner
and (b) the MST-guided preconditioner. The thick lines represent the maximum spanning
tree of the graph.

5.2.1 Minimum-cut partition of maximum spanning tree

In the traditional block-Jacobi method, the goal of partition is to minimize the total

value of nonzero entries outside the diagonal blocks. This can be done by mapping the

matrix to an undirected weighted graph using the same method described in Section 5.1.2.2

and then applying graph partitioning to find a minimum-cut partition of the graph. The sum

of the weights of the edges which are cut across is denoted as the cut cost. It reflects the

quality of the partition. In the ideal case where the graph exhibits a natural separation, a

partition of zero cut cost can be found and the block-Jacobi preconditioner converges in a

single step. However, when the cut cost is not zero, there is no guarantee that minimizing

the cut cost leads to the best convergence rate. Fig. 5.3(a) shows a example of such

partition of which the cut cost is minimized.

Now we reexamine the partitioning strategy of the block-Jacobi preconditioner from
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the support graph point of view. A common choice of support graph is the maximum span-

ning tree. By the discussion of Section 5.1.2.2, the maximum spanning tree preconditioner

guarantees an upper bound on the number of iterations. Since the maximum spanning tree

connects every node of the graph, any partition of the graph will also remove edges from

the maximum spanning tree and thus destroy the bound of the condition number. In that

sense, in order to achieve the best convergence rate in a partition-based preconditioner, we

shall keep the edges of the maximum spanning tree as much as possible. This suggests

that the goal of partition in a block-Jacobi preconditioner should be minimizing the cut-

cost of the maximum spanning tree instead of the full circuit graph. This also suggests

that the actual weights of the edges in maximum spanning tree does not matter and the

cut-cost should be calculated by the number of edges removed from maximum spanning

tree. The maximum spanning tree can be regarded as an underlying structure of the graph

that is crucial for convergence and every edge in the maximum spanning tree is of equal

importance. In some cases, the less damage caused to it during partition, the faster the

convergence would be.

Partitioning the maximum spanning tree produces multipliable disjoint sub-trees which

corresponds to a set of partitioned blocks. To facilitate a faster convergence, we add the

edges of the original graph that fall into each partitioned block back to that block. The

result is in accordance with the block-Jacobi method, where only the edges on the cut

are removed. This process of building the MST-guided preconditioner is illustrated in

Fig.5.3(b), where the maximum spanning tree is highlighted in the graph. In this example,

both methods remove 7 edges from the graph to form a 2-way partition. The MST-guided

partition only cuts one edge on the maximum spanning tree while the block-Jacobi pre-

conditioner cuts four edges on the maximum spanning tree. As a result, the convergence

of the block-Jacobi preconditioner is expected to be much slower than the MST-guided

preconditioner. This will be demonstrated later based on real industrial benchmarks by
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comparing the actual condition numbers of each method.

5.2.2 Algorithm flow

The flow of constructing an MST-guided preconditioner from an input SPD matrix A

is stated as follows.

1. Map matrix A to an undirected weighted graph G = (V,E). The size of V is equal

to the dimension of A. For each off-diagonal entry in A, a corresponding edge is

connected between node i and j with weight wij = aij .

2. Find the maximum spanning tree from the graph G.

3. Find the minimum-cut partition of the maximum spanning tree.

4. Refill all non-MST edges from G within each partition to form the preconditioner

P .

5.3 Experimental Results

We verify the efficiency and accuracy of the proposed MST-guided preconditioner by

comparing it to several existing preconditioners [3, 46] and an state-of-the-art direct solver.

All algorithms have been implemented and integrated into an in-house circuit simulator

written in C++. For the direct solver we use a public-domain solver CHOLMOD [23]. For

graph partitioning, we used the widely adopted METIS package[47]. Circuit simulations

are performed on a single 64-bit 16-Core 2.20GHz AMD Opteron Processor with 32GB

RAM running the Red Hat Linux. We measure the performance of our method using six

industrial benchmarks from the IBM Austin Research Lab[48] and three syntectic power

grid circuits generated from industrial power grid designs. The node count and device

count of each circuit are shown in Table. 5.2. Conversion from voltage sources to the Nor-

ton equivalent current sources is applied during circuit parsing, ensuring the conductance

matrix to be SPD for each benchmark. The parallelization is implemented using OpenMP.
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Figure 5.4: DC simulation runtime comparison between block-Jacobi preconditioner, sup-
port graph preconditioner and the proposed MST-guided preconditioner.

5.3.1 Analysis of results

Fig. 5.4 shows the DC simulation runtime comparison of a conjugate gradient itera-

tive solver using the block-Jacobi preconditioner, support graph preconditioner and the

proposed MST-guided preconditioner. The block-Jacobi preconditioner is constructed

using the method mentioned in Section 5.1.2.1. The support graph preconditioner is

constructed by first extracting the maximum spanning tree from the circuit graph, then

gradually adding edges back to the maximum spanning tree until the best performance

is reached. The details of building such a preconditioner can be found in [46]. For the

block-Jacobi and MST-guided methods, the results are based on 8-way partitioning. For

the largest benchmark, the proposed method achieves a speedup of 12.1X compared to the

block-Jacobi preconditioner and a speedup of 2.6X compared to the support graph precon-

ditioner. The runtime speedups can be explained by two reasons which are elaborated as

follows.
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Figure 5.5: Factorization time of support-graph preconditioner (left column) and parallel
MST-guided preconditioner (right column).

5.3.1.1 Efficient factorization

One of the advantages of the MST-guided preconditioner against support graph precon-

ditioner is the efficient factorization. In the MST-guided method, the matrix is partitioned

into equal-sized sub-matrices, which takes full advantage of parallelism in factorization

process. However the support-graph preconditioner can only be factorized in a serial fash-

ion. Fig. 5.5 shows the matrix factorization time of the support-graph preconditioner

and the parallel MST-guided preconditioner, which performs 8-way matrix partition and

factorize each block matrix in a single thread. The results demonstrate the advantage of

parallel implementation of MST-guided preconditioner, which achieves speedups up to

21X with respect to the support-graph preconditioner in factorization time.

5.3.1.2 Accelerated convergence

The fundamental strength of the MST-guided method lies in its exceptional partition

quality and fast convergence. Again, we compare it with the block-Jacobi preconditioner

and the support graph preconditioner.
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Table 5.1: Comparison of iteration numbers between the support graph precondi-
tioner (SG), block-Jacobi preconditioner (Block) and MST-guided preconditioner (MST).
RdBlock andRdSG are the reduction rate of iteration numbers of MST-guided method com-
pared to the block-Jacobi and support graph method, respectively. ’-’ indicates converge
failure within 5000 iterations.

Circuit SG Block MST RdSG RdBlock
ibmpg3 68 1080 38 1.8X 26.3X
ibmpg4 2 40 30 0.1X 1.3X
ibmpg5 46 47 26 1.8X 1.8X
ibmpg6 34 61 42 0.8X 1.4X
ibmpg7 13 30 39 0.3X 0.8X
ibmpg8 93 2,283 40 2.3X 57.1X
synpg1 86 4,131 34 2.5X 121.5X
synpg2 94 - 34 2.8X -
synpg3 94 - 38 2.5X -

Table 5.1 reports the number of iterations required to reach convergence for each power

grid benchmark. In 6 out of all 9 cases, the MST-guided preconditioner out performs both

the block-Jacobi and support-graph perconditioner. For benchmarks of size larger than

1 million, the MST-guided preconditioner shows distinctive advantages by achieving as

much as 121.5X reduction in the number of iterations compared with the block-Jacobi

method. The block-Jacobi preconditioner fails to reach convergence within 5000 iterations

for the last two benchmarks. This shows that the maximum spanning tree of the circuit

graph indeed provides better partitioning insights than the circuit graph itself.

It is also worth noticing that the MST-guided method shows 2X to 3X improvement in

iteration numbers even compared with the support graph method. This results may seem

counter-intuitive at first glance. The following analysis well justifies this improvement. It

is true that the MST-guided preconditioner partitions the graph and removes edges from

the maximum spanning tree, which might destroy the theoretical bound on the iteration

numbers. However, two actions are taken to compensate for the loss caused by the parti-
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Figure 5.6: Condition numbers of a benchmark using different preconditioners. Numbers
above block-Jacobi and MST-guided preconditioner indicate the number of partitions.

tion. First of all, the potential negative impact on the convergence is minimized by finding

the minimum-cut partition of the maximum spanning tree. Secondly, all non-MST edges

from the full circuit graph are refilled to the preconditioner within each partitioned block,

which improves the convergence speed.

To better illustrate this, we compute the actual condition number of each precondi-

tioned system of an industrial power grid benchmark [48]. Due to the high computational

cost of calculating the condition number, we consider a small benchmark with 16, 328

nodes and 40, 901 devices. The condition numbers corresponding to different methods

with different partition size are shown in Fig. 5.6. The MST-guided preconditioner

achieves the lowest condition number of 581, which is 53X smaller than that of the support

graph method. This confirms our analysis that keeping all edges within each partition in-

deed improves the convergence. In the meantime, the block-Jacobi preconditioner, which

also keeps all edges within each partition, fails to significantly reduce the condition num-

bers. This confirms the understanding that partitioning on the maximum spanning tree
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Figure 5.7: The runtime comparison of direct solver CHOLMOD and the MST-guided
preconditioned conjugated gradient (PCG) Solver.

leads to improved circuit partitions which retain excellent numerical properties of support

graph based methods.

5.3.2 Comparison with direct solver

Table 5.2 demonstrates the DC simulation runtime comparison between the precondi-

tioned conjugated gradient (PCG) solver using our proposed preconditioner and the direct

solver CHOLMOD. For the best performance, the last four benchmark are partitioned into

16 blocks. The total runtime of the direct solver is dominated by the Cholesky factoriza-

tion, which can be extremely slow for large conductance matrices with lots of fill-ins. One

of the significant advantages of our proposed MST-guided preconditioner is its divide-and-

conquer nature and low-cost factorization. For example, factorizing benchmark ibmpg8

using our proposed method only takes 1.5s, which is 52X faster than the factorization cost

of the direct solver. In the meanwhile, partitioning the MST instead of the full circuit

graph makes the partitioner more sensitive about cutting the edges of the MST and guides

the partitioning process towards including the most critical MST edges in the resulting
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circuit blocks, leading to improved convergence. For all benchmarks, with the chosen par-

tition size shown in the table, our MST-guided PCG solver is able to converge within 54

iterations. Figure 5.7 compares the runtime trends of the direct solver and our proposed

MST-guided PCG solver. While the runtime of the direct solver increases drastically in

circuit size, the runtime of the proposed method grows almost only linearly with a small

slope. For the largest benchmark, our proposed method achieves a 11.5X runtime speedup

with respect to the direct solver, while keeping the average error on nodal voltages below

0.33mV.

5.4 Summary

In the chapter, we present a novel preconditioner based on MST-guided partition. The

preconditioner is constructed by first extracting the maximum spanning tree (MST) from

the circuit graph, followed by the minimum-cut partition of the maximum spanning tree,

which largely retains the good numerical properties of the support graph based methods.

Within each partition, the edges from the original circuit graph are added back to the max-

imum spanning tree to build the final block-Jacobi-like preconditioner. By doing so, the

proposed method maximizes the benefit inherited from the MST-guided preconditioner

while producing a disjoint block structure which can be easily leveraged for parallel pre-

conditioning. The DC simulation results on IBM and synthetic power grid benchmarks

show that our proposed method achieves up to 11.5X runtime speedup compared with the

state-of-the-art direct solution methods.
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6. CONCLUSION

The dissertation presents efficient and accurate analysis methods for two important

component of power delivery circuitry in modern IC design, DC-DC converters, and power

distribution networks.

The simulation and modeling of DC-DC converters are challenging due to the multi-

rate characteristics. Chapter 2 presents a robust and efficient envelope following method

for time-domain analysis of DC-DC converters based upon a numerically robust time-

delayed phase condition to track the envelopes of circuit states under a varying switching

frequency. At the core of the algorithm are a novel time-delayed equal-phase condition and

a mechanism that smoothly tracks the transitions of the circuit state. The implementation

of three fast simulation technique significantly improves the efficiency of the algorithm

without degrading the accuracy level. We verify the robustness, generality, and efficiency

of the proposed technique using several test circuits for which our technique offers excel-

lent simulation speedups and robustness.

Using a different approach, in chapter 3 we present a multi-harmonic model, which

captures the DC response as well as higher-order harmonics of PWM DC-DC converters.

As a full order model, it retains the inductor current as a state variable and is accurate

even when the converter is in the transient state. Our model seamlessly transitions be-

tween CCM and DCM during the simulation. Moreover, the efficiency of simulating the

proposed model is boosted due to two system decoupling techniques with minimum im-

pact on model accuracy. Our model was tested on two different DC-DC converters and

speedups of one order of magnitude were achieved with respect to transistor-level simula-

tions.

Small-signal models of DC-DC converters are widely used for analyzing stability and
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play an important role in converter design and control. In Chapter 4, we proposed a small-

signal model based on the multi-harmonic large-signal model proposed in Chapter 3. As

a result, our proposed small signal model accurately accounts for the high-frequency re-

sponses of the DC-DC converters. In two converter examples, the proposed model ac-

curately captures important high-frequency overshoots and undershoots of the converter

response, which are otherwise unaccounted for by the existing techniques.

In Chapter 5, we tackle the challenges of simulating power distribution networks by

presenting a parallel partition-based iterative solver guided by support graph theory. The

proposed method maximizes the benefit inherited from the support graph preconditioner

while producing a disjoint block structure which can be easily leveraged for parallel pre-

conditioning. The DC simulation results on IBM and synthetic power grid benchmarks

show that our proposed method achieves up to 11.5X runtime speedup compared with the

state-of-the-art direct solution methods.
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