39,965 research outputs found

    Minimization of Active Power Loss and Voltage Profile Fortification by Using Differential Evolution – Harmony Search Algorithm

    Get PDF
    This paper presents DEHS (Differential Evolution-harmony Search) algorithm for solving the multi-objective reactive power dispatch problem .Harmony Search is a new heuristic algorithm, which mimics the procedure of a music player to search for an ideal state of harmony in music playing. Harmony Search can autonomously mull over each component variable in a vector while it generates a new vector. These features augment the flexibility of the Harmony Search algorithm and produce better solutions and overcome the disadvantage of Differential Evolution. Improved Differential Evolution method based on the Harmony Search Scheme, which we named it DEHS (Differential Evolution-harmony Search). The DEHS method has two behaviors. On the one hand, DEHS has the flexibility. It can adjust the values lightly in order to get a better global value for optimization. On the other hand,   DEHS can greatly boost the population’s diversity. It not only uses the DE’s strategies to search for global optimal results, but also utilize HS’s tricks that generate a new vector by selecting the components of different vectors randomly in the harmony memory and its outside. In order to evaluate the proposed algorithm, it has been tested on IEEE 30 bus system and compared to other algorithms.

    Document clustering with optimized unsupervised feature selection and centroid allocation

    Get PDF
    An effective document clustering system can significantly improve the tasks of document analysis, grouping, and retrieval. The performance of a document clustering system mainly depends on document preparation and allocation of cluster positions. As achieving optimal document clustering is a combinatorial NP-hard optimization problem, it becomes essential to utilize non-traditional methods to look for optimal or near-optimal solutions. During the allocation of cluster positions or the centroids allocation process, the extra text features that represent keywords in each document have an effect on the clustering results. A large number of features need to be reduced using dimensionality reduction techniques. Feature selection is an important step that can be used to reduce the redundant and inconsistent features. Due to a large number of the potential feature combinations, text feature selection is considered a complicated process. The persistent drawbacks of the current text feature selection methods such as local optima and absence of class labels of features were addressed in this thesis. The supervised and unsupervised feature selection methods were investigated. To address the problems of optimizing the supervised feature selection methods so as to improve document clustering, memetic hybridization between filter and wrapper feature selection, known as Memetic Algorithm Feature Selection, was presented first. In order to deal with the unlabelled features, unsupervised feature selection method was also proposed. The proposed unsupervised feature selection method integrates Simulated Annealing to the global search using Differential Evolution. This combination also aims to combine the advantages of both the wrapper and filter methods in a memetic scheme but on an unsupervised basis. Two versions of this hybridization were proposed. The first was named Differential Evolution Simulated Annealing, which uses the standard mutation of Differential Evolution, and the second was named Dichotomous Differential Evolution Simulated Annealing, which used the dichotomous mutation of the differential evolution. After feature selection two centroid allocation methods were proposed; the first is the combination of Chaotic Logistic Search and Discrete Differential Evolution global search, which was named Differential Evolution Memetic Clustering (DEMC) and the second was based on using the Gradient search using the k-means as a local search with a modified Differential Harmony global Search. The resulting method was named Memetic Differential Harmony Search (MDHS). In order to intensify the exploitation aspect of MDHS, a binomial crossover was used with it. Finally, the improved method is named Crossover Memetic Differential Harmony Search (CMDHS). The test results using the F-measure, Average Distance of Document to Cluster (ADDC) and the nonparametric statistical tests showed the superiority of the CMDHS over the baseline methods, namely the HS, DHS, k-means and the MDHS. The tests also show that CMDHS is better than the DEMC proposed earlier. Finally the proposed CMDHS was compared with two current state-of-the-art methods, namely a Krill Herd (KH) based centroid allocation method and an Artifice Bee Colony (ABC) based method, and found to outperform these two methods in most cases

    Comparisional Investigation of Load Dispatch Solutions with TLBO

    Get PDF
    This paper discusses economic load dispatch Problem is modeled with non-convex functions. These are problem are not solvable using a convex optimization techniques. So there is a need for using a heuristic method. Among such methods Teaching and Learning Based Optimization (TLBO) is a recently known algorithm and showed promising results. This paper utilized this algorithm to provide load dispatch solutions. Comparisons of this solution with other standard algorithms like Particle Swarm Optimization (PSO), Differential Evolution (DE) and Harmony Search Algorithm (HSA). This proposed algorithm is applied to solve the load dispatch problem for 6 unit and 10 unit test systems along with the other algorithms. This comparisional investigation explored various merits of TLBO with respect to PSO, DE, and HAS in the field economic load dispatch

    Metaheuristic Algorithms for Convolution Neural Network

    Get PDF
    A typical modern optimization technique is usually either heuristic or metaheuristic. This technique has managed to solve some optimization problems in the research area of science, engineering, and industry. However, implementation strategy of metaheuristic for accuracy improvement on convolution neural networks (CNN), a famous deep learning method, is still rarely investigated. Deep learning relates to a type of machine learning technique, where its aim is to move closer to the goal of artificial intelligence of creating a machine that could successfully perform any intellectual tasks that can be carried out by a human. In this paper, we propose the implementation strategy of three popular metaheuristic approaches, that is, simulated annealing, differential evolution, and harmony search, to optimize CNN. The performances of these metaheuristic methods in optimizing CNN on classifying MNIST and CIFAR dataset were evaluated and compared. Furthermore, the proposed methods are also compared with the original CNN. Although the proposed methods show an increase in the computation time, their accuracy has also been improved (up to 7.14 percent).Comment: Article ID 1537325, 13 pages. Received 29 January 2016; Revised 15 April 2016; Accepted 10 May 2016. Academic Editor: Martin Hagan. in Hindawi Publishing. Computational Intelligence and Neuroscience Volume 2016 (2016

    DIFFERENTIAL EVOLUTION FOR OPTIMIZATION OF PID GAIN IN ELECTRICAL DISCHARGE MACHINING CONTROL SYSTEM

    Get PDF
    ABSTRACT PID controller of servo control system maintains the gap between Electrode and workpiece in Electrical Dis- charge Machining (EDM). Capability of the controller is significant since machining process is a stochastic phenomenon and physical behaviour of the discharge is unpredictable. Therefore, a Proportional Integral Derivative (PID) controller using Differential Evolution (DE) algorithm is designed and applied to an EDM servo actuator system in order to find suitable gain parameters. Simulation results verify the capabilities and effectiveness of the DE algorithm to search the best configuration of PID gain to maintain the electrode position. Keywords: servo control system; electrical discharge machining; proportional integral derivative; con- troller tuning; differential evolution

    Review of Metaheuristics and Generalized Evolutionary Walk Algorithm

    Full text link
    Metaheuristic algorithms are often nature-inspired, and they are becoming very powerful in solving global optimization problems. More than a dozen of major metaheuristic algorithms have been developed over the last three decades, and there exist even more variants and hybrid of metaheuristics. This paper intends to provide an overview of nature-inspired metaheuristic algorithms, from a brief history to their applications. We try to analyze the main components of these algorithms and how and why they works. Then, we intend to provide a unified view of metaheuristics by proposing a generalized evolutionary walk algorithm (GEWA). Finally, we discuss some of the important open questions.Comment: 14 page

    Optimal Microgrid Topology Design and Siting of Distributed Generation Sources Using a Multi-Objective Substrate Layer Coral Reefs Optimization Algorithm

    Get PDF
    n this work, a problem of optimal placement of renewable generation and topology design for a Microgrid (MG) is tackled. The problem consists of determining the MG nodes where renewable energy generators must be optimally located and also the optimization of the MG topology design, i.e., deciding which nodes should be connected and deciding the lines’ optimal cross-sectional areas (CSA). For this purpose, a multi-objective optimization with two conflicting objectives has been used, utilizing the cost of the lines, C, higher as the lines’ CSA increases, and the MG energy losses, E, lower as the lines’ CSA increases. To characterize generators and loads connected to the nodes, on-site monitored annual energy generation and consumption profiles have been considered. Optimization has been carried out by using a novel multi-objective algorithm, the Multi-objective Substrate Layers Coral Reefs Optimization algorithm (Mo-SL-CRO). The performance of the proposed approach has been tested in a realistic simulation of a MG with 12 nodes, considering photovoltaic generators and micro-wind turbines as renewable energy generators, as well as the consumption loads from different commercial and industrial sites. We show that the proposed Mo-SL-CRO is able to solve the problem providing good solutions, better than other well-known multi-objective optimization techniques, such as NSGA-II or multi-objective Harmony Search algorithm.This research was partially funded by Ministerio de Economía, Industria y Competitividad, project number TIN2017-85887-C2-1-P and TIN2017-85887-C2-2-P, and by the Comunidad Autónoma de Madrid, project number S2013ICE-2933_02
    • …
    corecore