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Abstract 

 

An effective document clustering system can significantly improve the tasks of 

document analysis, grouping, and retrieval. The performance of a document clustering 

system mainly depends on document preparation and allocation of cluster positions. As 

achieving optimal document clustering is a combinatorial NP-hard optimization 

problem, it becomes essential to utilize non-traditional methods to look for optimal or 

near-optimal solutions. During the allocation of cluster positions or the centroids 

allocation process, the extra text features that represent keywords in each document have 

an effect on the clustering results. A large number of features need to be reduced using 

dimensionality reduction techniques. Feature selection is an important step that can be 

used to reduce the redundant and inconsistent features. Due to a large number of the 

potential feature combinations, text feature selection is considered a complicated 

process. 

 

The persistent drawbacks of the current text feature selection methods such as local 

optima and absence of class labels of features were addressed in this thesis. The 

supervised and unsupervised feature selection methods were investigated. To address 

the problems of optimizing the supervised feature selection methods so as to improve 

document clustering, memetic hybridization between filter and wrapper feature 

selection, known as Memetic Algorithm Feature Selection, was presented first. In order 

to deal with the unlabelled features, unsupervised feature selection method was also 

proposed. The proposed unsupervised feature selection method integrates Simulated 

Annealing to the global search using Differential Evolution. This combination also aims 

to combine the advantages of both the wrapper and filter methods in a memetic scheme 

but on an unsupervised basis. Two versions of this hybridization were proposed. The 

first was named Differential Evolution Simulated Annealing, which uses the standard 

mutation of Differential Evolution, and the second was named Dichotomous Differential 

Evolution Simulated Annealing, which used the dichotomous mutation of the 

differential evolution. 

After feature selection two centroid allocation methods were proposed; the first is the 

combination of Chaotic Logistic Search and Discrete Differential Evolution global 
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search, which was named Differential Evolution Memetic Clustering (DEMC) and the 

second was based on using the Gradient search using the k-means as a local search with 

a modified Differential Harmony global Search. The resulting method was named 

Memetic Differential Harmony Search (MDHS). In order to intensify the exploitation 

aspect of MDHS, a binomial crossover was used with it. Finally, the improved method 

is named Crossover Memetic Differential Harmony Search (CMDHS). The test results 

using the F-measure, Average Distance of Document to Cluster (ADDC) and the non-

parametric statistical tests showed the superiority of the CMDHS over the baseline 

methods, namely the HS, DHS, k-means and the MDHS.  

The tests also show that CMDHS is better than the DEMC proposed earlier.  Finally the 

proposed CMDHS was compared with two current state-of-the-art methods, namely a 

Krill Herd (KH) based centroid allocation method and an Artifice Bee Colony (ABC) 

based method, and found to outperform these two methods in most cases.   
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Chapter 1 

Introduction 
 

 

1.1 Overview 

An effective document clustering system can significantly improve the tasks of document 

analysis, grouping, and retrieval. The performance of document clustering systems depends on 

document preparation and allocation of cluster positions (Zaw and Mon 2015). A document 

clustering system automatically organizes documents according to their content. This must be 

done in such a way that documents are more similar in one cluster than those belonging to other 

clusters (Mecca, Raunich et al. 2007). The process of document cluster centroids distribution 

in document clustering is considered as an unguided or unsupervised machine learning task 

(Dhillon, Mallela et al. 2003, Premalatha and Natarajan 2010). 

Traditional clustering methods deal with documents as numeric vectors. Numeric vectors are 

clustered according to distance measures such as cosine or Euclidean distance criteria. These 

measures find the distance between each pair of document vectors and between each document 

vector and particular cluster center (centroid) (Jain 2010). 

As the number of text documents increases, the process of allocating these documents to their 

right clusters becomes more complicated. This is especially more challenging in the current 

digital environment, given the huge amount of digital text available. In this context, traditional 

clustering methods that use distance measures might fail to perform the clustering optimally 

(Forsati, Keikha et al. 2015). In order to find optimal document clusters, it becomes necessary 

to apply optimization methods (Patil and Thakur 2016) capable of enhancing centroids 

allocation process. Consequently, using these methodologies in that context has become an 

active research area in the last few years (Forsati, Keikha et al. 2015, Abualigah, Khader et al. 

2018). 

Since the introduction of Evolutionary Algorithms (EA) (Hruschka, Campello et al. 2009), 

researchers have begun to use this branch of Artificial Intelligence (AI) to formulate document 
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clustering as a typical combinatorial optimization problem (Patil and Thakur 2016). EA 

methods have been used for document clustering, however due to their global search nature, it 

has become necessary to look for other variants to perform the local search in addition to 

performing the global search. Recently, Memetic Algorithms (MA) are a particular type of 

algorithm that belongs to the EA category, and can strike a balance in the search space between 

the exploration performed by the global search and the exploitation performed by the local 

search (Ning, Ong et al. 2003). Therefore, an investigation of MA algorithms to enhance the 

task of centroid allocation is justified for this present research. 

Moreover, in every document each keyword corresponds to a feature. The distribution of 

features among documents can give an idea of categorization patterns in different documents 

(Ghareb, Bakar et al. 2016). The number of features selected has increased at the same rate as 

the volume of documents and is thus unwieldy. In this case, optimization methods can play a 

significant role to select the best features to enhance the document clustering process. The 

selection of best representative features will also help to reduce the complexity of centroids 

allocation processing in document clustering and to increase the accuracy of the resulted 

clusters (Hong, Lee et al. 2015). 

It is important to mention that text feature selection for document clustering differs from many 

other feature selection methods used for Text Classification (TC) (Chandrashekar and Sahin 

2014, Xue, Zhang et al. 2016). The latter relies on the classification accuracy of the chosen 

subset of features. Therefore, it is necessary to research ways to create a more efficient and 

automated unsupervised feature selection method to enhance the centroid allocation process 

that will improve the document clustering process. In that context MA was also applied for 

feature selection. However, the way that the MA applied to feature selection differs from that 

used with the centroids allocations. In feature selection the MA is a combination of both 

wrapper and filter methods (Abualigah, Khader et al. 2018). It is worthy to mention that two 

MA methods were proposed for feature selection in this thesis. One is to handle labelled 

documents while the other is to handle unlabelled documents. In summary, three main issues 

in this thesis were taken care by the MA which are the centroids allocation, supervised feature 

selection, and the unsupervised feature selection. 
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1.2 Text Document Clustering System 

Typically, document clustering system has four major phases. These phases are all derived 

from a typical data clustering system, but they differ in techniques used to perform them. These 

phases are sequentially conducted (Forsati, Mahdavi et al. 2013, Zaw and Mon 2015). They 

are the pre-processing, feature selection, centroids allocation, and clusters evaluation (Patil and 

Thakur 2016). Figure. 1.1 shows the architecture of a typical document clustering system. 

Figure 1. 1 General System Architecture 

 

Despite the large number of research conducted on document clustering, there are still many 

challenges that need to be handled, in particular with the increasing number of documents and 

their features. To address the problems different researchers have proposed solutions (Forsati, 

Mahdavi et al. 2013, Forsati, Keikha et al. 2015, Song, Qiao et al. 2015) that will be discussed 

in the next chapter. The two most crucial parts in the document clustering process are feature 

selection, which is responsible in selecting representative, meaningful and non-redundant 

features, and the centroid allocation process (Jun, Park et al. 2014).  

 

1.2.1 Document Pre-Processing 

The text pre-processing phase is responsible for transforming text corpus into a structured 

format. Typically, each document will be converted into a numeric vector after this process 

(Tran, Vo et al. 2017). The pre-processing starts by analyzing the content of each document to 

generate a feature space referencing their original documents (Uysal and Gunal 2014). This 

phase involves tokenization, stop words removal, stemming, and term weighting. After 

tokenizing each word in each document, unnecessary words are excluded by comparing their 

Heading

Benchmark 
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Download Documents Text Pre-processing 
Dimension Reduction 
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Clustering 
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values with a standard stop words list in English. The stemming is then applied to combine the 

words that share the same root regardless of their conjugations. Finally, the weighting step is 

applied to find the numeric value corresponding to each keyword, and is usually calculated 

according to their co-occurrence within text corpus to produce weights (Ghareb, Bakar et al. 

2016). The weighted keywords are named features. The stop words removal is insufficient to 

eliminate all the unimportant features, especially in large documents. Therefore, 

dimensionality techniques such as the feature selection and feature extraction techniques can 

be used. The main text pre-processing operations involved are text tokenization, stop word 

removal and stemming steps before the weighting step (Uysal and Gunal 2014). 

 

1.2.2 Text Feature Selection 

High dimensional feature space for text documents is associated with several problems such as 

the overfitting problem that occurs due to the usage of the entire existing features, which leads 

to all results returned as true positives. Also, inconsistency occurs when two documents have 

the same features even though they belong to two distinct groups. Last, the entire feature space 

leads to a degraded clustering performance as the computational complexity will increase 

(Zong, Wu et al. 2015). 

Fundamentally, text feature selection is based on the same principles and ideas of data feature 

selection. Data and text feature selection can be classified into the filter, wrapper, or hybrid 

methods (Liu and Motoda 2012). Despite their simplicity, filter methods are incapable of 

selecting the optimal features on their own (Hua, Tembe et al. 2009). Several studies have 

reported that wrapper methods outperform filter methods in many cases, in particular when 

datasets become larger (Oreski, Oreski et al. 2016, Abualigah and Khader 2017). 

Stochastic search methods have been used as successfully as wrapper methods (Liu and Yu 

2005). In recent years, researchers have used those techniques in two different ways:  

supervised and unsupervised methods. The supervised method is more commonly tested, and 

is widely studied in the field of text categorization (Bharti and Singh 2014). Supervised feature 

selection depends on the availability of class labels, which are necessary for classifiers to use; 

the class labels are used to group features according to their classification accuracy. In contrast 

to the supervised method, unsupervised feature selection depends on measuring the relationship 
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between features without class labels, and therefore is an ideal feature selection used with 

document clustering in which class labels are not available (Dadaneh, Markid et al. 2016). 

Genetic algorithm (GA) is an example of stochastic methods frequently used for feature 

selection. It has been used for feature selection in the two decades prior to this present study 

(Hong, Lee et al. 2015, Ghareb, Bakar et al. 2016). However, due to some drawbacks associated 

with the GA in terms of feature selection, such as parameter tuning and the random effect of 

initial population, GA has been improved in different ways, and other population-based 

methods are proposed (Ong, Lim et al. 2006). One of the most successful ways to enhance the 

performance of GA is to use MA (Radcliffe and Surry 1994). Recently, a large body of research 

has been devoted to further exploring the prospects of MA in feature selection. However, most 

of the MA research in text feature selection only addressed supervised feature selection 

(Kannan and Ramaraj 2010, Montazeri, Naji et al. 2013, Lee and Kim 2015). 

 

1.2.3 Centroids Allocation 

The process of centroids allocation means the distribution of cluster centers to their optimal 

position throughout the search (Forsati, Keikha et al. 2015). These centroids are distributed in 

the space according to their distance from their relevant documents, calculated using a distance 

function (Celebi 2015). The centroid allocation process can be performed using statistical 

methods such as k-means and its variants (Jain 2010). However, because the centroids 

allocation process is a combinatorial optimization problem, it becomes necessary to look for 

more sophisticated methods to find optimal or near-optimal solutions (Forsati, Mahdavi et al. 

2013, Forsati, Keikha et al. 2015, Patil and Thakur 2016). 

In order to enhance the distribution of centroids, optimization methods could also be utilized 

(Song, Qiao et al. 2015). A large number of optimization methods has been proposed and 

reused in various scientific and engineering problems, such as data and document clustering 

(Hruschka, Campello et al. 2009) (Nanda and Panda 2014). These methods are derivative-free 

methodologies, which means they are incapable of finding optimal solutions in the 

neighborhood of any particular region (Kramer, Ciaurri et al. 2011). MA has been used to 

enhance the task of centroids allocation. 
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A memetic-based clustering method named Web Document Clustering-based Niching 

Memetic Algorithm (WDC-NMA) was proposed in (Cobos, Montealegre et al. 2010). The k-

means was used as a local search and hybridized with the GA that performs the global search. 

On the other hand, another web-based document clustering method called Iterative Fuzzy C-

means algorithm for Clustering of Web Results (IFCWR) was proposed in (Cobos, Mendoza 

et al. 2013); it also used the memetic hybridization. The IFCWR selects the initial centroids 

using the Fuzzy C-Means algorithm; the Bayesian Information Criterion (BIC) was used as a 

fitness function. The limitation of both WDC-NMA and IFCWR is the use of the BIC classifier. 

The Bayes factors depend on prior assumptions about the distribution of cluster centroids. 

Nonetheless, there is no guarantee that BIC will be close to the first assumption. Therefore, the 

use of this criterion could mislead the process of centroids allocation. 

In addition, several other global search methods other than GA could also be hybridized with 

the local search method used for an efficient centroids allocation for document clustering. For 

instance, other global search methods include the Ant Colony Optimization (ACO) (Saatchi 

and Hung 2005), Artificial Bees Colony (ABC) (Bharti and Singh 2016), Harmony Search 

(HS) (Forsati, Mahdavi et al. 2013), and Bee Colony Optimization (BSO) (Forsati, Keikha et 

al. 2015). Some of these hybrid methods are equivalent to the MA such as in (Saatchi and Hung 

2005), (Forsati, Mahdavi et al. 2013) and (Forsati, Keikha et al. 2015). These methods will be 

discussed in more detail in the next chapter. 

 

1.2.4 Evaluation Measures for Text Document Clustering 

Evaluation measures are used to assess the quality of the resulting clusters. These measures 

can be divided into both external and internal evaluation measures. Internal measures are used 

to verify the degree of closeness of documents within every single cluster as a fitness function. 

For instance, the Average Distance to Cluster Centroid (ADDC) was one of the internal 

measures used to assess the compactness of clusters (Forsati, Mahdavi et al. 2013, Forsati, 

Keikha et al. 2015). It uses Euclidean distance or cosine distance. Such measures are called 

internal because they depend only on the intrinsic characteristics of clusters. External measures, 

however, use an external knowledge source to check the accuracy of the resulted clusters 

(Forsati, Mahdavi et al. 2013, Forsati, Keikha et al. 2015, Al-Jadir, Wong et al. 2017). 
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The objective of this present research was to develop an improved approach for text feature 

selection and optimally allocate the cluster centroids for an efficient document clustering 

system. 

 

1.3 Problem Statement 

The research scopes of both document clustering and feature selection are given in this chapter. 

It is necessary to provide an outline of achievements and contributions accomplished regarding 

these two problems in order to develop the currently available techniques and to enhance the 

performance further. A list of research questions realized after the literature review is as 

follows: 

A. Missing Labels of Text Features 

With the increasing number of irrelevant, redundant, inconsistent text features, the 

clustering quality could be degraded. The primary challenge of unlabeled data in feature 

selection is that no external knowledge source helps to predict the real distribution of 

features to guide the ranking process. The majority of the current techniques available 

for text feature selection deal with the supervised text classification problems (Xue, 

Zhang et al. 2016). Studies relating to semi-supervised and unsupervised text feature 

selection have been relatively sparse. Given the increasing number of digital 

documents, it is a challenge to obtain significant number of labelled information. 

Therefore, developing efficient unsupervised text feature selection method is 

increasingly important due to the fact that not all documents are labelled. Predicting the 

classes of these documents via their features is necessary in that case. Conducting 

unsupervised feature selection is more challenging than both supervised and semi-

supervised feature selection as unsupervised technique is unguided by any extra 

knowledge sources i.e. the class labels. Unlike the supervised and the semi-supervised, 

the unsupervised feature selection is unbiased as there is no necessity to use an expert 

view or data labels for the feature categorization (Ang, Mirzal et al. 2016). In that case, 

in this thesis by using the unsupervised approach, is more compatible with the next 

stage of study which is the unsupervised centroids allocation for clustering the text 

documents. 

 

B. Local Optima in Feature Selection 
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One of the problems associated with the limited number of methods that handle 

unsupervised text feature selection is that these methods might become stuck in the 

local optimum during the search. That result is because of global wrapper search 

methods (Abualigah and Khader 2017). Wrapper methods are capable of exploring 

feature space, but are incapable of exploring regions of interest within that space by 

performing only short leaps. It is therefore necessary to develop robust optimizing 

algorithms to assist the unsupervised feature selection process. 

 

C. No Optimal Centroids Allocation Strategy 

An optimization method is needed to enhance the distribution of centroids in document 

clustering. Although global search methods of optimization have been widely used 

instead of statistical clustering methods to improve the distribution for cluster centroids, 

hybrid methods such as memetic searches have been used by combining the global and 

local searches. The majority of the existing memetic search methods have used Gradient 

local search, which only searches within a narrow area within the search space 

(Abualigah, Khader et al. 2018). Other local search patterns such as the Chaotic search 

that has different search patterns, could help the local search to converge to more 

promising regions within the search space. It becomes important to develop a centroids 

allocation method that uses memetic optimization for local searches capable of 

performing a search over wider distances than the Gradient search.  

 

D. Harmony Search Parameter Dependency 

The calculation of the cluster centroids allocation is crucial in a document clustering 

system. The Harmony Search (HS) optimization has been applied successfully for that 

problem (Forsati, Mahdavi et al. 2013). However, the HS is considered a Bandwidth-

dependent method. The Bandwidth parameter is a parameter used to modify solutions. 

This parameter could potentially affect the performance due to its higher sensitivity 

(Abedinpourshotorban, Hasan et al. 2016). Thus, a modified version of the HS that 

bypasses the need to use the Bandwidth parameter is important to perform the global 

search in the memetic optimization properly. 
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1.4 Aims and Objectives 

The research presented in this thesis aims to enhance document clustering by efficiently 

allocating cluster centroids to their optimal positions. The research further improves the 

document clustering system by applying feature selection techniques that are capable of 

selecting a reduced feature space. In that sense, the concept of the memetic optimization, which 

hybridizes global and local search methods, is applied to enhance the performance of both 

feature selection and document clustering. 

 

1.4.1 Improving Text Feature Selection 

Feature selection methods are intended to reduce the extra text that affects the centroids 

allocation process with the following two sub-objectives: 

1. To develop a supervised text feature selection method that combines the global 

search wrapper and a ranking method to reduce the original feature subsets 

into smaller feature spaces with an eliminated chance of falling into local 

optima. 

2. To develop an unsupervised text feature selection method that selects a 

reduced feature space using a global search method and unsupervised local 

search. This method aims to resolve the problem of missing class labels in text 

features. 

 

1.4.2 Improving Centroids Allocation  

To develop two centroid allocation methods, which are Differential Evolution Memetic 

Clustering (DEMC) and the Crossover Memetic Differential Harmony Search (CMDHS), 

that address the following: 

1. Regarding DEMC: it overcomes the problem of local search using the chaotic 

logistic search with randomicity and ergodicity properties. Using these two 

properties is important to exploit the search in the vicinity to the best solution. 

 

2. Regarding the CMDHS: it overcomes the problem of bandwidth (BW) 

dependency in the existing harmony global search. This aims to reduce the 
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adverse effects of using the BW with existing methods. It aims to overcome 

the problem of the parameters’ dependancy in the HS. Using the modified 

version of the HS only improves the control parameters of this method, but the 

local search problem remains. Therefore, this method aims to enrich the 

modified HS with a local search method that overcomes the local search 

problem. 

 

3. To develop an adaptive version of the produced modified memetic HS 

document clustering CMDHS method in order to ensure that the values of these 

parameters are automatically set to their best values.  

 

1.5 Contributions and Significance 

It is expected that this thesis will contribute to more efficient document clustering by 

improving the text feature selection process before clustering, and by improving the 

distribution of the cluster centroids. The following contributions of this study are expected: 

1. Unsupervised text feature selection methods are capable of ranking features 

without previous categorization. However, most previous research focused 

only on supervised-based feature selection for classification problems and paid 

less attention to unsupervised-based methods, especially with text. The present 

study will investigate the gap more completely. 

 

2. Unsupervised text feature selection needs to be capable of skipping entrapment 

in local optima. The few studies that handled the unsupervised text feature 

selection focused on using wrapper schemes only, and these methods are more 

likely to be stuck in local optima. This study will cover this gap by using the 

hybrid memetic schemes. 

 

3. The calculation of the centroids for text document clustering using the HS have 

been successful; still, the HS suffers from the effect of using bandwidth 

parameters on performance. The previous literature did not explore the 

prospect of using modified versions of HS in centroids allocation for document 

clustering. This study will propose a modified HS method that overcomes the 

problem of the native HS and another version of a modified differential 
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harmony search. These proposed methods can efficiently be used with centroid 

allocations in document clustering. 

 

1.6 Thesis Outline 
The thesis is organized as follows: 

Chapter 2 covers the existing Document Clustering (DC) methods, supervised and 

unsupervised Feature Selection (FS) methods for text data. This chapter also highlights the 

main limitations and restrictions that exist in the DC, supervised and unsupervised FS 

methods.  

Chapter 3 discusses the proposed supervised FS that uses the memetic wrapper-filter 

hybridization. It gives various comparisons of the proposed method with other existing 

methods, in order to highlight the performance of the proposed method with the other 

baseline and state-of-the-art methods. 

Chapter 4 proposes the unsupervised FS that also uses memetic hybridization with 

comparisons of performance with other methods. 

Chapter 5 presents the centroids allocation process of document clustering using the 

proposed methods. Two approaches are given: the DEMC and the MDHS, with two 

variants which are the Crossover MDHS (CMDHS) and the Adaptive Crossover MDHS 

(ACMDHS). 

Chapter 6 presents the overall outcomes of the research and explains achievements 

obtained during the investigation. It also describes future work, which can be continued in 

the same domain. 
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Chapter 2 

Literature Review and Theoretical Background 
  

 

2.0 Overview 

This chapter provides a literature review of the fundamental and background concepts that 

support the justification of the aims and objectives presented in Chapter 1. An overview of the 

theoretical background of Document Clustering (DC) and Feature Selection (FS) will be 

presented first, followed by a detailed explanation of optimization methods used to enhance 

the traditional techniques used for DC. Recent research advancements and trends in DC and 

FS areas will be described. This chapter will also highlight the drawbacks associated with FS 

and DC. 

In this chapter, DC, supervised feature selection and unsupervised feature selection are 

reviewed critically, starting with DC as it is the main problem addressed by the present 

research. The use of traditional data clustering is first discussed. It is followed by examining 

feature selection of text data from the two different approaches of supervised and unsupervised 

methods. In this literature review, the main focus will be concerned with optimization methods 

used for both document clustering and feature selection.  

 

2.1 Formal Description of Document Clustering  

The field of document clustering is illustrated in Figure 2.1. Document clustering can be 

represented as a document corpus named D, such that di∈ D where di represents a particular 

document. The di document is transformed into a vector, vi, which is composed of a number of 

components named weights. In other words, the document corpus can be formalized as a 2-D 

matrix (M). This matrix has D rows (the same number as the documents number) and V 

columns where each mij is an element of Matrix M that represents the weight of the jth feature 

of the ith document. Thus, in this matrix, each row is a vector representing a document and each 

column represents a feature of that documents. 
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The clustering works on this matrix to find the most relevant documents and label them as one 

cluster (C)), where ci⊆ C. Thus, for a document subset C1 where C1⊆ C, it must have more 

relevant documents and be distinct from other subsets Cn⊆ C. In this case, clustering aims to 

find the optimal representation by considering the minimal distance of documents within the 

same class and a maximum distance between documents located in different classes. Thus, the 

clustering objective is to find out the representation that has highest adequacy in relation to the 

large number of potential candidate solutions. That could be represented using Stirling number 

of second kind which is usually represented in the notion S(n,k) where S represents the number 

of representations of the n objects into a nonempty clusters (k) (Sharp 1968). This 

representation shows the complicated nature of the clustering problem as can be seen in 

equation 2.1 where the solutions (groups) Si∈ S are represented as  and 

N(n,k) is calculated as follows in Equation 2.1, where k is the number of the clusters, n is the 

number of the document vectors and i is the index of a particular cluster.  

 

                                         Equation (2.1)  

It has been proven that the clustering is NP-hard optimization problem even with the cases 

where there is no more than two classes (Dasgupta 2008). This shows that the clustering by 

testing all possible solutions of n vectors of d-dimensions into any number of clusters is 

computationally infeasible. This problem is far more complex when the number of clusters 

becomes unknown. Then the number of combinations equals to the sum of the Stirling numbers 

of the second kind. Therefore, the optimization is used to reduce the search space. However, 

obtaining the optimal solution is not guaranteed (Forsati, Keikha et al. 2015).  

 
2.2 Document Clustering System Using Traditional Methods 

Document clustering is an important tool that plays a significant role in document archiving, 

organization, summarization, and retrieval. It is also one of the effective ways of knowledge 

management, via the categorization of text documents with minimal human intervention (Song, 

Qiao et al. 2015). It is a process of grouping documents into distinct clusters (Saiyad, Prajapati 

et al. 2016) in a way that similarities of documents within any single cluster are to be 

maximized while similarities between different cluster centers (centroids) are to be minimized 

(Feng 2007). The clustering problem can be categorized as an unsupervised machine learning 
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approach. The problem differs from supervised machine learning (classification), in that the 

latter depends on the previous categorization of documents and divides documents sets into 

training and testing subsets (Tang, He et al. 2016). On the other hand, clustering uses the entire 

document set. The clustering system predicts the best representation of documents according 

to their intrinsic properties (Rafi, Shahid et al. 2017). 

Traditional clustering can be divided into hierarchical (Lee, Hsu et al. 2017), partitional (Nanda 

and Panda 2014), density-based (Geng, Li et al. 2018), and other clustering techniques. 

Partitional clustering allocates documents into K groups by minimizing the distance between 

objects within one group and maximizing it between objects located in other groups using an 

objective function that is capable of capturing a true notion of clustering, whereas hierarchical 

clustering creates a hierarchy of clusters by conducting a series of merge and split operations 

(Aggarwal and Zhai 2012). 

Document clustering uses almost the same methodologies and techniques that are used for data 

clustering (Zaw and Mon 2015). However, traditional clustering, in general, suffers from 

several drawbacks, such as random centroid initial distribution and data variance caused by the 

usage of mean values to calculate the distance between objects. Moreover, the average-based 

centroid calculation is probably not the most efficient way to reflect the best representation of 

clusters. Finally, when the number of clusters increase, traditional methods such as k-means 

are not so capable of handling that increase (Liu, Li et al. 2012). Consequently, these drawbacks 

could potentially be propagated, in turn, to text document clustering as the text data will have 

the same data format as any other numeric dataset after transformation. 

 

2.2.1 Hierarchical Methods 

These methods recursively build cluster groups by grouping documents (or any objects) in top-

down or bottom-up fashion. In turn, the top-down and bottom-up approaches can be classified 

further into agglomerative hierarchical clustering and divisive hierarchical clustering. In the 

agglomerative hierarchical clustering, each document is considered as a separate cluster, and 

then single clusters are successively combined until the desired number of clusters is reached 

(Lee, Hsu et al. 2017). In divisive hierarchical clustering, all documents are treated as if they 

belong to a unique supercluster. This cluster is then broken up into smaller clusters and 
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repeatedly subdivided until the desired number of clusters is generated (Zhao and Karypis 

2002). 

Dissimilarity measures in hierarchical clustering determine both merge and split operations. 

These measures are selected to optimize some criteria (e.g., sum of squares). Hierarchical 

clustering methods can also be classified according to the way these dissimilarity measures are 

computed. For instance, single-link clustering (Murtagh and Contreras 2017) (also named 

connectedness, minimum or nearest neighbor methods) considers the path running between 

any two cluster centers to be equal to the shortest path between any object of one cluster to any 

other object of another cluster. Unlike single-link clustering, complete-link clustering (also 

named maximum, diameter or further neighbor methods), considers a path running between 

any two cluster centers to be equal to the longest path between any object of one cluster to any 

other object of another cluster (Pal and Bhattacherjee 2018). Besides both single and complete-

link methods, the average-link clustering method, also known as the minimum variance 

method, considers the path linking any two cluster centers to be equal to the average path 

between an object of one cluster to any other object of another cluster (Murtagh and Contreras 

2017). 

Both single-link and average-link methods have several drawbacks. The single-link suffers 

from a problem called the chaining effect. This happens when the single-link can produce 

straggling clusters. As the merging criterion is strictly local, a chain of points could be 

prolonged for wider distances with no consideration to the final shape of the constructed 

cluster. 

On the other hand, in average-link clustering, the distance between any two clusters is 

calculated by taking the average distance of each point in one cluster to each point in another 

cluster. The general problems with all types of hierarchical methods of clustering is that 

hierarchical methods are incapable of scaling up, because of the time complexity associated 

with it. Regarding document centroids allocation, the non-linear relationship with the number 

of documents might potentially lead to the need of more computational requirements (Forsati, 

Mahdavi et al. 2013).  
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2.2.2 Partitional Methods 

Partitional clustering methods reallocate documents (or any other objects) by rearranging them 

in different clusters, beginning with a random initial distribution of cluster centroids. These 

methods ideally need a predefined number of cluster centers. One of the main aims of this 

thesis is to optimize partitional document clustering; the main focus is dedicated to exploring 

methods used to optimize the traditional methods of clustering. As mentioned earlier, 

partitional clustering divides documents into distinct clusters depending on some distance 

functions. It can further be categorized into traditional and non-traditional approaches (Figure 

2.1). Traditional-based clustering uses statistical methods and similarity distance measures to 

find the distance between documents and their corresponding central points (centroids) (Rafi, 

Shahid et al. 2017). Error minimization methods are first used as partitional clustering methods. 

These methods are based on the idea of finding the least error after using particular 

minimization criteria, which are usually distance-based. The widely used criterion is the Sum 

of Square Error (SSE) using the Euclidian distances of document vectors to their corresponding 

clusters. The SSE value might be globally optimized via the use of the exhaustive enumeration 

of all clusters, an inefficient process. As another enumeration process used in error 

minimization methods is by setting approximated solutions (not mandatorily leading to global 

minima) using some heuristics such as k-means and its variants (Deelers and 

Auwatanamongkol 2007). 

 

Figure 2.1 Clustering Hierarchy 
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The k-means approach has been widely used in data clustering and later in document clustering 

because of its simplicity and easy implementation (Jain 2010). The k-means can optimize an 

objective function in a two-step procedure. Often, documents are transformed into vectors that 

contain weights of terms in that document. By using term-frequency or term-frequency-

inverse-document-frequency weighting schemes, different objective functions of clustering 

can be optimized (Zhao and Karypis 2001). The objective functions quantify cluster properties 

such as compactness, separability, or both. The k-means is capable of maximizing the similarity 

of documents within the same cluster documents in a reliable way. 

In (Farnstrom and Lewis 2008) a comparison was made of scalable k-means, complete k-

means, and traditional k-means. The comparison outcomes showed that traditional k-means 

outperformed other methods. In (Bouras and Tsogkas 2010), the authors tested hierarchical 

clustering using single, maximum, link and centroid link. The k-means, k-medians, and k-

means++ were also tested. The results revealed that clustering using k-means outperformed 

other methods in terms of the internal measurement index. Moreover, the results showed the 

superiority of k-means using the external evaluation measurement. Additionally, in (Jo 2009), 

a comparison was made which involved k-means and single-pass hierarchical clustering and 

some other methods on text news datasets. The authors showed that k-means performed better 

than hierarchical clustering, which used the single-pass method.  

Still, solutions from the k-means approach and its variants may not be optimized and remain 

stuck in local optima for several reasons, (Forsati, Mahdavi et al. 2013) such as random centroid 

initial distribution and data variance that occurs because of average values used to calculate the 

distance between objects. Moreover, the average-based centroid calculation is not an efficient 

way to reflect the best representation of clusters. Finally, when the number of clusters increases, 

k-means is not capable of handling the increase efficiently (Abualigah, Khader et al. 2018). 

K-medoid is a variant of the k-means. Although its main idea is similar to that of k-means, the 

main difference between them is that k-medoid clustering uses the closest documents to the 

cluster centroid while k-means uses the average value of document vectors in order to calculate 

cluster centroids (Nanda and Panda 2014). A k-medoid clustering algorithm is capable of 

effectively enhancing the performance of the clustering, but two drawbacks are associated with 

its performance. First, a large number of iterations is required to converge due to the large 
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number of distance measure computations. Second, the k-medoid clustering method is 

incapable of handling sparsity in text data (Aggarwal and Zhai 2012). 

 

2.2.3 Density-Based Clustering  

A density-based clustering is another example of traditional clustering. It assumes that the 

documents (objects) belonging to any particular cluster are the result of a specific distribution 

of probability. The overall distribution is considered as a combination of many single 

distributions. The objective of density-based clustering is to find the clusters and their 

associated distributional probabilities. Such methods are designated to discover the clusters of 

random shapes, but not limited to finding those residing in convex areas. Density-based 

clustering suffers from several drawbacks. For example, the Density-Based Spatial Clustering 

of Applications with Noise (DBSCAN) clustering method, despite its ability for noise-

resistance and high accuracy, still suffers from time complexity. Additionally, its threshold 

parameters can be difficult to set up (Chen, Yuen et al. 2017). 

Subsequent sections will explore the techniques proposed in the literature to enhance document 

clustering using optimization methods such as evolutionary and memetic optimization 

methods. A broad spectrum of evolutionary-based methods has been proposed. Such 

techniques have been used in various scientific and engineering problems (Hruschka, Campello 

et al. 2009, Jensi and Jiji 2014, Saiyad, Prajapati et al. 2016). The use of these methods has 

been noted to obtain better clustering results not only with text, but also with other data types 

such as microarray data and image processing. However, this thesis only focuses on text data 

and text documents processing. Due to the similarities existing among the methods used with 

other data types, some of those optimization methods will also be reviewed. The use of 

optimization methods could make the clustering process more efficient via the best distribution 

of cluster centers in the search space (Forsati, Keikha et al. 2015). The following sections will 

focus on studies conducted to select the best representation of cluster centroids using different 

optimization techniques, especially the memetic-based techniques. 
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2.3 Optimization Methods for Centroid Allocation in Document Clustering 

Optimization methods are used as an alternative to traditional methods as explained in the last 

section for document clustering. These methods can perform the clustering in a non-traditional 

manner when the centroids are calculated and allocated. EA, Swarm Intelligence (SI) or HS 

are examples of those methods (Feng 2007, Kohli and Mehrotra 2016, Patil and Thakur 2016, 

Daoud, Sallam et al. 2017). Mainly, they are used for the selection of the best centroid positions 

with respect to their surrounding documents (Kohli and Mehrotra 2016). The main reason 

behind for using these methods is their ability to choose the most optimal solution among many 

options. 

After modelling the centroids distribution as an optimization problem, these optimization 

methods repeatedly iterate to obtain the optimal solution. Each solution contains a number of 

cluster centroids, which are calculated as a function of distance from their current location to 

the surrounding documents. These centroids are repositioned according to the fitness function 

used by the optimization methods. The common denominator among the optimization methods 

used in centroids allocation for document clustering is the effect of their parameters on the 

performance. Moreover, these methods may fall in local minima due to their deficiency in the 

local search. The global search refers to the search to the best individual solution or set of 

solutions while the local search is responsible of modifying only one single solution (Nanda 

and Panda 2014, Joyce and Herrmann 2018). 

As a result, these methods are confronted with the problem of premature convergence that 

downgrades the accuracy of the global search. The premature convergence problem might be 

the result of the poor distribution of initial solutions (Jensi and Jiji 2014).  

 

2.3.1 Global-Based Centroid Allocation in Document Clustering 

The first category of the optimization-based methods includes those methods that perform the 

global search. They are classified as follows: 

2.3.1.1 Evolutionary-Based Methods 

These methods are inspired by either natural phenomenon and/or natural processes (Nanda and 

Panda 2014). EA methods incorporate a number of algorithms such as GA, Evolutionary 

Strategies (ES) (Beyer and Schwefel 2002), Evolutionary Programming (EP) and Differential 
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Evolution (DE). From these many variations, the main focus will be on the GA-based and the 

DE-based centroids allocation methods, it is because the GA-based and the DE-based are most 

used algorithms in this category. 

 

A. Genetic Algorithm for Centroids Allocation 

GA is considered as a baseline evolutionary method. It was inspired by Darwin’s concepts of 

evolution and natural selection. It starts with an initial population of solutions (individuals) 

thriving for survival. The fittest individuals survive to the next generations. The older 

population passes merits of survival to successor generations by different means of evolution 

through using genetic crossover and mutation operators. The evolution process iterates until a 

specified number of generations is reached, with the evolutionary goal being the best solution 

to minimize or maximize the fitness function that determines survival (Goldberg and Holland 

1988). 

In document clustering, the same concepts presented by Goldberg in his original paper can also 

be applied. For instance, since Ravindra Krovi (Krovi 1992) first studied the possibility of 

obtaining promising clusters centroids by GA algorithms, optimization methods for clustering 

(mostly GA) have continued to develop. The research proposed in (Bezdek, Boggavarapu et 

al. 1994) was a leading study to incorporate genetic-based searching for the optimization of 

centroids allocation of the clustering problems. Later, GA was used for the document clustering 

problem in (Casillas, de Lena et al. 2003), the binary encoding scheme represented the 

population with a predefined number of centroids. Uniform crossover and cluster-orientated 

mutations were used to modify the population (alternating the order of bits in each solution). 

After many years, in (Song and Park 2009), another GA-based clustering system that uses a 

gene index to encode chromosomes in a semantic space was proposed. Gene index refers to the 

position of every single gene in the chromosome. As for text document centroids allocation, 

the gene index should point out the right positions for them. Latent Semantic Indexing (LSI) 

was used to find the minimum features of text. In (Karaa, Ashour et al. 2016) a document 

clustering approach was devised to handle text data. This approach was based on GA and 

agglomerative clustering. Despite the success of the document clustering systems using the 

genetic search, just mentioned, the genetic-based centroids allocation has a deficiency: they 

fall in local optima (Song and Park 2009), which makes it more likely for performance 
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impairment, in comparison to some other modified versions and other meta-heuristic methods 

in numerical optimization. 

 

B. Differential Evolution for Centroids Allocation 

DE (Storn and Price 1997) is another EA method. It has been reported that it outperformed 

GAs in terms of the highest scores achieved by their fitness function in different problems (Das, 

Mullick et al. 2016). The DE is simple, robust, and converges fast. In addition, it has few 

parameters to tune, and the same settings could be utilized for different problems. DE has 

shown its worth in real-world problems, and in (Vesterstrom and Thomsen 2004) it 

outperformed PSO and EA in the majority of numerical benchmark problems. Among the 

tested algorithms, DE could be an optimal choice when confronted with a new optimization 

problem to resolve. In order to understand how DE is used for document clustering, its main 

fundamentals are described in this section. DE is a population-based evolutionary optimization 

method. It is considered a modification to GA. The main steps of DE can be summarized as 

below: 

A. The initialization phase: A population consists of S solutions, where 

population size is S and the size of each solution is N. The population in 

differential evolutions can be represented by S*N matrix P. Each row of matrix 

P is a solution. We use the notion xi to present ith row of P. 

B. Population update: the mutation is first used to create a new trial solution v 

through the addition of the weighted difference of a randomly chosen pair of 

solutions to a third one. The operation is illustrated in Equation 2.2. 

                                       i=1,2,…,S     Equation (2.2) 

where row numbers r1, r2 and r3 are three randomly selected numbers between 

1 and S and these three numbers, differ from each other. xr1, xr2, and xr3 are r1th, 

r2th and r3th solutions selected from P respectively. F, which is between 0 and 

1, is a scaling factor that modifies the difference between solution xr2, and 

solution xr3. 

The crossover is applied later to diversify the population by the perturbation 

of the current population. The crossover in DE is performed as shown in 

)( 321 rrr xxFxv -´+=
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Equation 2.3. The perturbation is carried out in accordance with a specific 

probability Cr ∈ [0, 1]. 

    j=1,2…,N              Equation (2.3) 

where k is the index of the best solution from the current population and rand 

(0,1) is a random number between 0 and 1. At the beginning of each iteration, 

the best solution xk, from the current population is found, and is used to create 

vector u using the above equation. The target solution is xk , xi is the mutant 

vector obtained from Equation 2.4, and Cr is the crossover probability. The 

number of solutions is S and N is the number of documents in each solution. 

C. Selection: the target solution (xk) is then compared with vector u, and both xk 

and u are evaluated; the one that obtains a better fitness value is transferred to 

the next generation. Equation 2.4 shows the selection operation. 

   

                                                 Equation (2.4) 

The DE was used in (Abraham, Das et al. 2006) in document clustering for the centroids 

allocation process, and it outperformed both Particle Swarm Optimization (PSO) and genetic-

based clustering methods. That study was the first study to incorporate DE explicitly for 

clustering allocation problem. However, in (Das, Abraham et al. 2008) a modified version of 

the DE was proposed. To enhance the convergence of DE, the authors intended to modify the 

scaling parameter F (shown in Equation 2). In normal cases, the F parameter is usually selected 

between [0, 1] as a random number. In contrast, the authors in (Das, Abraham et al. 2008) used 

a different way to generate this parameter, which is shown in Equation 2.5. Equation 2.5 is 

simply given a systematic way to generate this parameter. 

 

                                                            Equation (2.5) 
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This allows for stochastic variations in the amplification of the difference vector and therefore 

that will preserve the population diversity while the search advances. This method performed 

the clustering using an automatically determined number of clusters centroids with an 

unlabeled document set. Moreover, it showed that DE could obtain promising clustering results 

with negligible control parameters. This modified DE method was proposed to improve its 

convergence, and named the Automatic Clustering Differential Evolution (ACDE) algorithm. 

DE mimics the GA in its search global nature. Therefore, it has been modified further. In recent 

years, to intensity its local search capability. It has been modified in two ways: 

A. Using it as a global search and combine it with a local search (Peng, Zhang et al. 2017) 

which is a key candidate solution to boost its performance in different optimization 

problems. 

B. The second way is by combining it with another global search such as the Differential 

HS (DHS). For instance, the differential operators are used in the HS 

(Abedinpourshotorban, Hasan et al. 2016). 

C. Using both 2 previous approaches mentioned in points one and two. 

Thus, in order to achieve the second and third modifications of the DE, in the next section we 

discover the strength points of the HS to aid with optimizing the performance of the DE for 

better document clustering. 

  

2.3.1.2 Swarm Intelligence- Based Methods 

Swarm Intelligence (SI) is another category of global search methods. However, their 

performance is similar to that of the GA or DE. The SI is the property of a system where the 

overall behavior of particles (members) that interact in a local manner with their environment 

results in a coherent functional global search pattern. Unlike EAs, SI algorithms are inspired 

initially from basic behavioral actions and self-organizing interaction among the swarm 

members, such as ant colony foraging, bird flocks, animal herds, bacteria foraging and division, 

honey bees colonies, fish schools, etc. (Mavrovouniotis, Li et al. 2017). 

The terminology of SI was first time used by Beni in (Beni 1988) in cellular robotics systems 

where a self-organization process is conducted among simple agents using neighborhood 

interactions. These methods do not need constrains on the objective functions such as the 

continuity or differentiability. Thus, these methods are good candidates to solve different 
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optimization problems (Rezaee Jordehi, Jasni et al. 2015). Moreover, these methods have a 

tendency to obtain good quality solutions and also they are capable of handling a large and 

complex set of NP-hard optimization problems efficiently. It is also noticed that they have a 

neighboring structure which directs the particles (solutions) in directions that lead to the 

optimality more than the classical methods (kumar and Sahoo 2017). 

For that reason, SI methods have been widely used for the document clustering problem. Some 

examples of this category are PSO (Karol and Mangat 2013), ACO (Aghdam, Ghasem-Aghaee 

et al. 2009), Cuckoo Cuckoo Search via Lévy Flight (Yang and Deb 2009), Bee Colony 

Optimization (BCO) (Bui, Bui et al. 2017), Artificial Bee Colony (ABC) (Xue, Jiang et al. 

2017), Krill Herd (KH) (Abualigah, Khader et al. 2016, Abualigah, Khader et al. 2017). 

As for the centroids allocation process in document clustering, PSO was first used with 

document clustering in (Cui, Potok et al. 2005). Later in (Premalatha and Natarajan 2010) it 

was combined with the generic algorithm to improve the diversity of PSO. In (Song, Qiao et 

al. 2015) a hybrid method that combines the GA and Quantum PSO (QPSO) that is named 

(GQPSO) was proposed for document clustering. The GA was used to initialize the population 

of the QPSO. More specifically, GA was used as a first line optimizer to generate the initial 

population used later by the QPSO. In this system, the use of the GA and QPSO as two global 

searchers could be associated with two problems. First using two global searchers is associated 

with a doubled system complexity, and also both methods would still be suffering from the 

local search deficiency. In general, PSO in its standard form has a weakness in the non-

oscillatory route that can quickly make the particles to stagnate and that may lead to premature 

convergence on suboptimal solutions. 

The ACO method was also used for document clustering as an SI optimizer. For example, in 

(He, Hui et al. 2006) the ACO was used for an efficient centroids allocation method, this 

method does not depend on a 2D grid structure. Even though the convergence is guaranteed, 

still the time to converge to the optimality is uncertain. On the other hand, in (Zaw and Mon 

2015) the cuckoo search via Lévy Flight was applied to the document clustering in order to 

find optimal solutions. Cuckoo search via Lévy flights is based on the obligate brood parasitic 

behavior of cuckoo birds in combination with Lévy flight of some birds. Still, this method lacks 

to enough mathematical and theoretical background. The KH optimization was also used for 

document clustering (Abualigah, Khader et al. 2016). Later, it was discovered that the original 

KH algorithm is incapable of guaranteeing to reach to optimality. More recently, KH was 
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modified by using the genetic operators. Authors claimed that using the genetic operators 

insignificantly enhance the global search capability in the basic KH. Therefore, the authors 

used a hybrid fitness function that is based on the global best concept to improve the 

performance of KH in (Abualigah, Khader et al. 2018). 

The ABC method (Karaboga and Ozturk 2011), is another variant to the PSO, and is is based 

on the synergy of intelligent foraging of bees. It is one of the popular methods for numeric 

optimization. It was used for centroid allocation clustering problems in (Karaboga and Ozturk 

2011). As with other SI methods, ABC starts with a random initial population. The exploration 

of the search space begins in different directions to detect global optimum solutions. Candidate 

solutions of honey bees are food sources. Each solution is updated by re-positioning in order 

to diversify the exploration of the search space. Still, the ABC as used in experiments by 

(Kumar, Sharma et al. 2014) is quite inefficient for exploiting the obtained solution. 

 
2.3.1.3 Harmony Search-Based Methods 

Since its discovery, the HS has been successfully used for a large number of optimization 

problems. HS could be perceived as a simple real-coded GA, as it has almost the same 

distinctive features of GAs such as mutation, crossover, and selection. In order to understand 

how HS has been used with centroids allocation, we need to first understand its fundamentals. 

HS was proposed first by Geem (Geem, Kim et al. 2001) as an optimization method. It belongs 

to EAs. The population in HS is represented as a set of harmonies stored in a data structure, 

such as a matrix, called Harmony Memory (HM), and each harmony represents one solution. 

The method uses the following parameters: Harmony Memory Size (HMS) that is the number 

of solutions in the HM, Harmony Memory Consideration Rate (HMCR) that controls the 

selection of the solutions from HM, and Pitch Adjustment Rate (PAR) that resembles the 

mutation in the GA. Furthermore, a BW parameter is used to modify the harmonies. The 

optimal value of BW is still unknown, despite much previous research. It is important to note 

that the terminology of harmony and solution is interchangeable. There are four main phases 

in the standard HS optimization which are listed below: 

A. Initialization of the HM. The method sets a predefined number of clusters, c. HM 

contains a list of potential solutions, which is normally represented by a matrix as 

shown in Figure 2.2. Each row of the matrix is a solution which includes an 

assignment of documents to cluster numbers. For instance, if there are six clusters, 
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values in a solution will be between 1 and 6. The length of each solution is the same 

as the number of the documents while the number of solutions in HM, or HMS, can 

be set to any number, normally to twice the number of clusters. 

 

 

Figure 2.2 Harmony Memory (Forsati, Mahdavi et al. 2013) 

 

The initialization of HM is performed using Equation (2.6), which randomly sets the 

initial population in a particular range. 

  

 ,  i = 1 , 2 , 3 , . . . , HMS and j = 1 , 2 , 3 , . . . , N         Equation  (2.6) 

where c is the predefined number of clusters and  represents the assignment of a 

cluster index. 

In equation 2.6, the new solution is generated by randomly selecting numbers between 

zero and one. In equation 2.6 the random number is multiplied by the number of the 

clusters represented by (c-1).  

B. Harmony memory improvising. This step creates new solutions by modifying the 

existing solutions in HM, as shown in Algorithm 2.1. 

C. The next step is to update HM. A comparison is done by checking the fitness value of 

an improvised solution with the older one. If the fitness value of the newly improvised 

solution is higher than the older one, the newly updated solution will replace the older 

one. 

D. The termination condition is satisfied when the maximum number of iterations is 

reached, or no further improvement is observed. 

1)1()1,0( +-´= crandxij
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Algorithm 2.1: Improvising the population 

1. for i = 1 to HMS do  
2. for j = 1 to N do 
3. if rand (0, 1) ≤ HMCR then  
4. x =HM(i, j); 
5. if rand (0, 1) ≤ PAR then 
6. x =x + rand( 0 , 1 ) × BW  
7. else  
8. x =x - rand( 0 , 1 ) × BW  
9. end if 
10. else 
11. x = rand(0,1)*(c-1) + 1; 
12. end if 
13. HM(i, j) = x ; 
14. end for 
15. end for 

In algorithm 2.1, the HMS represents the first population while N represents the size of each 

member (harmony) in the population. Therefore, the first two loops determine the harmonies 

number and the size of each harmony. The rest of the algorithm describes the way that each 

element in each harmony represented by x is created using and adding that element to its 

position in the Harmony Memory (HM).  

2.3.2 Memetic Optimization for Centroid Allocation in Document Clustering 

As an improvement to EA optimization methods that performs only the global search, MA have 

been proposed to merge the advantages of the EAs with local search methods. The global search 

method is greatly improved when combined with the local search method; this is known as 

MA. Such a combination has been successfully applied to global optimization of numerical 

functions (Nguyen, Ong et al. 2009) and it has been utilized to solve many real-world 

optimization problems (Lee and Kim 2015). The workability of the memetic optimization in 

its simplest form is shown in Figure 2.3. 
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Figure 2.3 Local Search in Memetic Optimization 

 
 

The term ‘memetic' was used first by Dawkins (Amaya, Porras et al. 2015) to refer to a gene 

counterpart in terms of cultural evolution in the GA. Unlike EA, MA is concerned with the 

exploitation of search space; however, this is unfortunately not covered by EAs. On the other 

hand, MA are population-based algorithms; they maintain a solution set of the problem that 

mimics the population set in the evolutionary algorithm. Each solution is named as an 

individual in evolutionary algorithm terminology, whereas they are called agents in MA (Neri 

and Cotta 2012). 

In memetic optimization, the use of the local search is an efficient way to enhance the 

performance of the global search (Aarts and Laarhoven 1989). The local search starts from a 

single solution; this solution will be improved until no further optimization makes a difference 

to the previous versions of that solution. In other words, it stops when the solution is stagnated 

in one specific area in the search space through iterations (Bolaji, Al-Betar et al. 2016). Some 

of the well-known local search methods in the clustering or the document clustering problems 

are simulated annealing (Kirkpatrick, Gelatt et al. 1983), Chaotic Logistic Search (CLS) (Choi 

and Lee 1998), and gradient-based search methods such as the k-means and its variants (Jain 
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2010). The integration between global search methods with local search methods is highly 

recommended by researchers, in order to handle various combinatorial optimization problems 

(Patil and Thakur 2016). The next subsections shows the modification of the previously 

explained meta-heuristic methods.  

 

2.3.2.1 Memetic Evolutionary-Based Methods 

The GA was first used as an evolutionary global search method in a memetic-based clustering 

method named Web Document Clustering, which the researchers (Cobos, Montealegre et al. 

2010) based on a new Niching Memetic Algorithm, Term-Document Matrix and Bayesian 

Information Criterion (WDC-NMA). The k-means was used as a local search and hybridized 

with the genetic search that performs the global search for the document clustering, whereas 

the BIC was used as a fitness function. Another web-based document clustering method, the 

Iterative Fuzzy C-means algorithm for Clustering of Web Results (IFCWR) was proposed in 

(Cobos, Mendoza et al. 2013), which also used memetic hybridization. The IFCWR method 

selects the initial centroids using the Fuzzy C-Means algorithm, and it also used the BIC fitness 

function. 

As is described earlier, the DE outperformed GA on different occasions in terms of the 

centroids allocation, but its global search nature is still dominant. Thus, different memetic 

techniques have been developed to enhance performance of DE. For example, in (Reynoso-

Meza, Sanchis et al. 2011) the DE was integrated with a sequential quadratic programming 

local search method (Boggs and Tolle 1995) while in (Poikolainen and Neri 2013), the Hooke–

Jeeves local search was integrated with the DE global search. In (Poikolainen and Neri 2013) 

the local search was used to generate the initial population, to reduce the randomness of the 

first generation. 

A distributed memetic that also used the Hooke–Jeeves-based DE, controlled by the 

Lamarckian and Baldwinian learning, is proposed in (Zhang, Chen et al. 2013). In (Jia, Zheng 

et al. 2011) the chaotic local search method was hybridized with the DE using the shrinking 

strategy to stabilize the algorithm through generations. The use of the shrinking strategy in 

local search is an effective way to help a local search to perform more efficiently via the 

preservation of the convergence directions of the global search as reported in (Jia, Zheng et al. 
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2011). In (Guo, Huang et al. 2015) chaotic local search was also used to intensify the 

exploitation aspect of DE to optimize the benchmark functions set. 

Thus, it can be observed that the use of the local search outperforms the canonical global search 

methods on many occasions. However, the review of literature suggests none of the above 

research applied the MDHS to enhance the performance of document clustering by a more 

efficient distribution of the cluster centroids. The advantages of using the MDHS with the 

centroids allocation is by allocating the centroids with a minimal likelihood of entrapment in 

local optima due the use of the localized search. On the other hand, another advantage of using 

this algorithm is by enhancing the performance of the global search to be less dependent on the 

tuning of the BW parameter, which is a sensitive parameter; incorrect tuning of this parameter 

could lead the search into undesirable directions.  

  

2.3.2.2 Memetic Swarm Intelligence-Based Methods 

Memetic optimization has also been used to optimize the SI methods used for different 

clustering problems. As is mentioned earlier, PSO is a leading SI method. As a global search 

in the memetic optimization, it was first used with clustering by Merwe et al. (Van der Merwe 

and Engelbrecht 2003). Two approaches were proposed, both based on PSO optimization. The 

first utilized the native PSO to obtain clusters from randomly initialized points whereas the 

second used k-means clustering to initialize the first generation. The performance of both 

approaches was evaluated on benchmark datasets and a comparison was conducted against the 

k-means. The test results showed that the hybrid approach outperformed both the k-means and 

PSO algorithms when used on their own. 

In (Yang, Sun et al. 2009) the authors explored the use of PSO to assist the K-harmonic means 

algorithm to skip the local optima. A hybrid data clustering algorithm based on KHM and PSO, 

called PSOKHM, was proposed. This method was incapable of being used with the text data. 

As another PSO-based clustering method (Daoud, Sallam et al. 2017) an Arabic document 

clustering system was proposed. A combined PSO k-means method was proposed. However, 

in (Daoud, Sallam et al. 2017), the performance of the PSO k-means combined method was not 

tested against other SI document clustering methods. 

As for local search methods, several studies utilized gradient search using the k-means as a 

local search with SI-based global search methods as explained in (Van der Merwe and 
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Engelbrecht 2003) (Yang, Sun et al. 2009) and (Daoud, Sallam et al. 2017). This technique has 

been used to enhance the selection of the initial centroids in k-means for clustering that follows 

a random fashion and that in turn affects the clustering results. For instance, in (Mohd, Bsoul 

et al. 2012) the authors tried to generate new ways of choosing optimal initial centroids for 

each cluster in the k-means. The method proposed in their study achieved a higher F-measure 

over the traditionally initialized k-means. As another example, in (Mahdavi and Abolhassani 

2009) the authors tried to propose an initialization method of the k-means using the HS to 

generate an optimal initial centroid selection for each cluster. The authors compared their 

method with the genetic-based k-means, PSO clustering, and Mises-Fisher Generative-based 

model. The test results showed that the centroids initialization using the HS method 

outperformed other methods. 

 

2.3.2.3 Memetic Harmony Search-Based Methods 

The first use of HS in document clustering was when it had been modified to Global-Best HS 

(GHS) method. GHS was inspired by the SI as proposed in PSO. In a global-best PSO, a swarm 

of individuals (or particles) fly in the search space. Each particle can be considered a candidate 

solution for the problem. The position of an individual is impacted by the best position 

traversed by itself (i.e. self-experience) as well as the position of the best particle in the entire 

swarm (i.e. all-experience) (Omran and Mahdavi 2008). However, the global search nature of 

the HS was still persistent. In (Cobos, Andrade et al. 2010), the GHS was used with the k-

means for Web document clustering.  

Another variation to the HS was the Improved Harmony Search (IHS). This version 

dynamically modifies the PAR and this version was used later in hybridization with k-means. 

The IHS was used to optimize centroids selection for efficient document clustering along with 

k-means in (Forsati, Mahdavi et al. 2013). The k-means was used to refine solutions resulted 

from HS global search and it was hybridized in three different forms: interleaved, sequential, 

and one-step-k-means. The difference between these three forms is in the position of the local 

search (i.e. k-means in that case) within the global search. The experimental results showed a 

superiority of all hybridized forms over the HS, GA, and k-means. The authors stated that the 

test result of document clustering using the combination of HS and k-means outperformed the 

result produced after using HS or k-means separately. The HS was also used to optimize data 
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clustering (Senthilnath, Kulkarni et al. 2016), and outperformed many other evolutionary 

algorithm methods, including the genetic search. In (Rafi, Shahid et al. 2017) three models 

have been tested for document clustering which are the GA-k-means and HS-k-means, and a 

combination of both methods in which the results of the GA-k-means were fed into the input 

to the HS-k-means. The authors claimed this hybridization outperformed the use of HS or GA 

solely with the k-means. 

As was explained earlier, hybrid memetic methods for centroids allocation have been 

developed. The powerful global search ability is combined with some local improver methods. 

Such combinations have been successfully applied to the global optimization of numerical 

functions (Nguyen, Ong et al. 2009) and have been utilized to solve many real-world 

optimization problems (Neri and Mininno 2010). To enhance the performance of global search 

optimization methods such as the EA, , SI and HS methods, they have been combined with 

local search. In this way, the global search methods, which are more robust in the exploration 

aspect of the search space, could perform better using the local search (Gao, Wang et al. 2015).  

Moreover, the modification of the memetic global search itself can contribute to better search 

results, such that combining two or three global search methods might be more efficient than 

previous methods. For example, the use of the DE mutation with the HS instead of the PAR 

step can produce a better performance. Furthermore, the use of the adaptive parameter settings 

can also enhance performance in comparison to the performance of the static parameter setting 

(Zhang and Sanderson 2009, Reynoso-Meza, Sanchis et al. 2011). These improvements can all 

be combined to produce an efficient method for document clustering. Table 2.1 shows a 

detailed summary of all the document clustering methods that utilized the optimization 

methods since 2006. 

From the discussion thus far, it can be said that optimization methods, especially memetic 

optimization, are capable of enhancing performance document clustering. However, another 

problem remains: the higher number of text features dimensionality. In most document 

clustering systems, the issue of the high number of features can negatively affect the 

performance of the clustering. Even if the method is successful and performs accurately, hyper-

dimensionality has the potential for causing failure (Alsaeedi, Fattah et al. 2017).  

Therefore, besides the intelligent selection of centroids, the feature selection is still an 

important issue to be discussed in this thesis. In the upcoming section, the most recent feature 
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selection methods along with the baseline methods are explained first. In particular, attention 

will focus on applying feature selection methods for text dimensionality reduction. Moreover, 

the detection of the gaps in existing techniques also will be explained. 

 

Table 2.1Summary of Document Clustering Using Optimization Methods  

# Name Document 
clustering 
method 

Data 
type 

Year Local 
search 

1 Genetic algorithm for text clustering based on 
latent semantic indexing (Abe 2005). 

GA+LSI 
feature 
extraction 

Text data 2009 no 

2 Automatic clustering using an improved 
differential evolution algorithm (Das, 
Abraham et al. 2008). 

DE Text data 2008 no 

3 Exploring differential evolution and Particle 
Swarm Optimization to develop some 
symmetry-based automatic clustering 
techniques: application to gene clustering 
(Saha and Das 2017). 

DE+PSO  Data 
mining 
dataset 

2017 no 

4 Document clustering using Particle Swarm 
Optimization (Cui, Potok et al. 2005). 

PSO Text data 2005 no 

5 Unsupervised Text Classification and Search 
using Word Embeddings on a Self-
Organizing Map (Subramanian and Vora 
2016). 

SOM Text data 2016 no 

6 Toward A Soft Computing Approach to 
Document Clustering (Rafi, Shahid et al. 
2017). 

GA+HS Text data 2017 k-means 

7 A hybrid evolutionary computation approach 
with its application for optimizing text 
document clustering (Song, Qiao et al. 2015). 

QPSO+GA Text data 2015 non 

8 Web Document Clustering by Using PSO-
Based Cuckoo Search Clustering Algorithm 
(Zaw and Mon 2015). 

PSO+Cuckoo 
Search 

Text data 2015 non 

9 Efficient stochastic algorithms for document 
clustering (Forsati, Mahdavi et al. 2013). 

HS Text data 2013 k-means 

10 A novel clustering based differential 
evolution with 2 multi-parent crossovers for 
global optimization (Liu, Li et al. 2012). 

DE Data 
mining 
dataset 

2012 non 

11 An improved bee colony optimization 
algorithm with an application to document 
clustering (Forsati, Keikha et al. 2015). 

BCO Text data 2015 k-means 

12 Improving Arabic document clustering using 
k-means algorithm and Particle Swarm 
Optimization (Daoud, Sallam et al. 2017). 

PSO Text data 2017 k-means 

13 A krill herd algorithm for efficient text 
documents clustering (Abualigah, Khader et 
al. 2016). 

KH Text data 2016 no 

14 A novel hybridization strategy for krill herd 
algorithm applied to clustering techniques 
(Abualigah, Khader et al. 2017). 

KH Text data 2017 k-means 

15 Hybrid PSO and GA models for document 
clustering (Premalatha and Natarajan 2010). 

PSO+GA Text data 2010 k-means 
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16 A novel ant-based clustering approach for 
document clustering (He, Hui et al. 2006). 

ACO Text data 2006 no 

17 A novel clustering approach: Artificial Bee 
Colony (ABC) algorithm (Karaboga and 
Ozturk 2011). 

ABC Data 
mining 
dataset 

2011 no 

18 Web page clustering using harmony search 
optimization (Forsati, Mahdavi et al. 2008). 

HS Text data 2008 no 

19 Harmony k-means algorithm for document 
clustering (Mahdavi and Abolhassani 2009). 

HS Text data 2009 no 

20 An efficient hybrid data clustering method 
based on K-harmonic means and Particle 
Swarm Optimization (Yang, Sun et al. 2009). 

PSO Data 
mining 
dataset 

2009 no 

21 Fuzzy document clustering based on ant 
colony algorithm (Wang, Zhang et al. 2009). 

ACO Text data 2009 no 

22 Web document clustering based on a new 
niching memetic algorithm, term-document 
matrix and Bayesian Information Criterion 
(Cobos, Montealegre et al. 2010). 

GA Text data 2010 k-means 

23 Clustering of web search results based on an 
Iterative Fuzzy C-means Algorithm and 
Bayesian Information Criterion (Cobos, 
Mendoza et al. 2013) 

GA Text data 2013 FCM 

24 Web document clustering based on global-
best harmony search, k-means, frequent term 
sets and Bayesian Information Criterion 
(Cobos, Andrade et al. 2010). 

HS text data 2010 k-means 

25 A novel harmony search-based approach for 
clustering problems (Senthilnath, Kulkarni et 
al. 2016). 

HS text data 2016 no 

26 Chaotic gradient artificial bee colony for text 
clustering (Bharti and Singh 2016). 

ACO text data 2016 Chaotic 
local 
search+
k-means 

27 An efficient Particle Swarm Optimization 
approach to cluster short texts (Cagnina, 
Errecalde et al. 2014). 

PSO short text 
data 

2014 no 

28 Hybrid clustering analysis using improved 
krill herd algorithm (Abualigah, Khader et al. 
2018) 

Krill Herd text and 
data 
mining  

2018 k-means 

29 A new hybridization strategy for krill herd 
algorithm and harmony search algorithm 
applied to improve the data clustering 
(Abualigah, Khader et al. 2017). 

PSO+HS data 
mining 
dataset 

2017 no 

30 Hybrid clustering analysis using improved 
krill herd algorithm (Abualigah, Khader et al. 
2018). 

KH text data 2018 no 

31 MEDLINE text mining: an enhancement 
genetic algorithm based approach for 
document clustering (Karaa, Ashour et al. 
2016) 

GA text data 2016 no 

 

2.4 An Overview of Dimensionality Reduction 

Knowledge discovery from the text is a challenging task as was explained earlier in this chapter. 

Due to the increasing numbers of electronic text documents, it becomes necessary to develop 
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up-to-date tools to handle that increase. With around 80 percent of all data stored electronically 

in text format, it is a priority to reduce the extra text dimensions (Korde and Mahender 2012). 

In most cases, processing text data in its original format without feature reduction could affect 

machine learning accuracy, efficiency and data comprehensibility (Khorsheed and Al-Thubaity 

2013). Thus, text feature selection methods are used to reduce the feature space (Diaz-

Valenzuela, Loia et al. 2015). Unlike feature extraction methods such as the Principal 

Component Analysis (PCA) or compression methods using information theory, feature 

selection methods select a smaller number of features and preserves the original features (Gui, 

Sun et al. 2017). 

In general, machine learning performance can be affected by processing high dimensional 

features. Therefore, the combination of feature selection with machine learning becomes an 

important issue in different applications such, as document classification and clustering. After 

feature selection, the size of the selected feature groups from text is reduced, the size is less 

than the original. As a result, the storage, processing and time requirements of non-contributing 

features will be reduced. This will make machine learning more efficient. Moreover, feature 

selection improves the model performance for obtaining better cluster detection because 

redundant and non-significant features are eliminated (Gui, Sun et al. 2017). 

2.5 Text Dimensionality Reduction Techniques 

For document clustering, each document is represented by a set of relevant terms in a Vector 

Space Model (VSM) (Tang, Kay et al. 2016). Each document has a multi-dimensional feature 

space, and each dimension is represented by a numeric value (weight) corresponding to a 

specific featured term, which is calculated using various weighting schemes. However, not all 

the weighted features (keywords) are similarly important. Therefore, irrelevant and confusing 

features should be excluded. That is, for an n feature space the number of possible feature 

representations reaches 2n, potentially becoming more complicated over time, because of the 

increasing number of text documents, leading to an increase in n dimensions (Song, Qiao et al. 

2015, Xue, Zhang et al. 2016). 

Three critical problems are associated with high dimensional feature space for text data. First, 

an overfitting problem that occurs, because the use of all the existing features cause all results 

to be returned as true positives. Second, the inconsistency problem that happens when two 

objects have the same features, although they belong to two distinct groups. Third, use of the 
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entire feature space leads to a degraded clustering performance as the computational 

complexity increases (Zong, Wu et al. 2015). 

In general, dimensionality reduction techniques are classified into two types: feature extraction 

and feature selection. The first aims to generate features from existing ones by merging existing 

ones. Some widely used extraction methods successfully used with document clustering are 

Semantic Mapping, PCA, and LSI (Yaghoubyan, Maarof et al. 2016). 

An explanation of feature extraction methods is beyond the scope of this literature review; our 

main focus is feature selection of text documents. Unlike feature extraction, feature selection 

selects only a subset of features from the original feature space without transforming them and 

generating new features (Liu and Motoda 2012). It looks for the important subsets according 

to evaluation criteria that calculates the classification error ratio, divergence, consistency or 

correlation (Khalid, Khalil et al. 2014). Figure 2.4 shows the difference between the feature 

selection and feature extraction. Figure 2.4 (a) demonstrates that feature selection selects only 

a smaller number of subsets. Figure 2.4 (b) shows that the results of extraction techniques are 

a function of the input data. In both cases m < n (Zhang, Wang et al. 2014) 

 

Figure 2.4 (a): Feature Selection of n Dimensions to m Dimensions. 

Figure 2.4 (b)Feature Extraction from n Dimensions into new Reduced Feature 
Space (m<n in both cases). 

 

This literature review will examine the following issues, in particular the use of unsupervised 

feature selection methods. More specifically, the review will:  

A. Discuss the filter, wrapper and the hybrid feature selection methods that reduce the text 

features using statistical methods. 
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B. Study the impact of feature selection using different techniques on the performance of 

unsupervised machine learning. 

C. Review the current methods used as internal clustering evaluation measures that are used 

as filter methods with unsupervised methods, rather than using classifiers to assess the 

quality of resulted features. 

D. Discuss a memetic optimization option to be used with unsupervised combination of 

wrapper and filter methods. Also, discuss the advantages of using this option over 

wrapper or filter methods by reviewing studies in that domain.  

Table 2.2 reports the most recent published academic works regarding text feature selection. 

Studies 1 to 9 are unsupervised studies, and studies 10 to 14 concern supervised methods. The 

table shows that the majority of studies in both the supervised and unsupervised feature 

selection followed the hybrid or memetic-based schemes. However, filter methods are seldom 

used by themselves without optimization. Another observation drawn from Table 2.2 is that 

only a few studies that focused on text data or document clustering dealt with unsupervised 

feature selection. In the following sections, the studies in Table 2.2 and research conducted in 

the last decade will be Discussed. On the other hand, Figure 2.5 shows a hierarchy of the 

dimensionality reduction techniques that will be handled in this literature review. 

 

2.6 Text Feature Selection Development 

Text feature selection methods have been used to handle high dimensionality within the text as 

a pre-processing step (Uysal and Gunal 2014, Hong, Lee et al. 2015). The recent methods 

proposed to handle the text feature selection are shown in Table 2.2. The methods are classified 

into three categories: filter, wrapper, and hybrid methods (Liu and Motoda 2012) as can be 

seen in Figure 2.4. Despite their simplicity, filter methods are incapable of selecting optimal 

features on their own (Hua, Tembe et al. 2009). These methods are inline methods. The 

availability of the optimization methods or classifiers is not required (Lazar, Taminau et al. 

2012). There is a large number of filter methods such as Mutual Information (MI), Gain Ratio 

(GR), Symmetrical Uncertainty (SU), Relief and Relief-F (Lazar, Taminau et al. 2012). 

However, all these methods are used with supervised feature selection with the availability of 

the class labels. 
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Recently, an improved global feature selection filter method, Improved Global FS Scheme 

(IGFSS), was proposed to enhance the performance of text classification (Uysal 2016). In 

(Pinheiro, Cavalcanti et al. 2015) two other filter methods were introduced. The first is named 

Maximum Features per Document (MFD), and the second is Maximum Features per 

Document–Reduced (MFDR). The number of selected features is determined in a data-driven 

way by using a global ranking Feature Evaluation Function (FEF). To ensure that each 

document in the training set is represented in the final feature vector, the MFD filter analyses 

all documents while the MFDR analyses only the documents with high FEF values to select 

fewer features and to avoid insignificant ones. 

 

 

 

Figure 2.5 Dimensionality Reduction Hierarchy 

 

 

Several studies (Table 2.2) have reported that wrapper methods outperform filter methods in 

many cases, especially when the datasets become larger. Wrapper search strategies can be 
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classified into three categories: exponential, sequential and stochastic methods. These feature 

selection methods are shown in Figure 2.5.  

 

Table 2.2 Supervised and Unsupervised Feature Selection 

# Ref. Datasets Extraction FS Optimization 
Method 

Abbreviation Categorization Parameter 
Settings 

Domains 

1 (Dadaneh, 
Markid et al. 
2016) 2016 

Benchmark 
dataset 

Unsupervised Wrapper ACO -- Data FS No Data Mining 

2 (Tabakhi, 
Moradi et al. 
2014) 2014 

Benchmark 
dataset 

Unsupervised Wrapper ASO -- Data FS No Data Mining 

3 (Abualigah, 
Khader et al. 
2016) 2016 

Benchmark 
text dataset 

Unsupervised Wrapper GA FSGATC Text FS No Text Clustering 

4 (Abualigah and 
Khader 2017) 

2017 

Text 
dataset 

Unsupervised Wrapper GA+PSO H-FSPSOTC Text Clustering No Text Clustering 

5 (Tabakhi and 
Moradi 2015) 

2015 

Benchmark 
dataset 

Unsupervised Wrapper ACO RRFSACO_1 
and 

RRFSACO_2 

Data FS No Text Clustering 

6 (Bharti and 
Singh 2016) 

2016 

Benchmark 
text dataset 

Unsupervised Wrapper PSO BPSO Text FS No Text Clustering 

7 (Kumar, 
Chhabra et al. 

2015) 2015 

Benchmark 
dataset 

Unsupervised Wrapper Gravitational 
Search 

Algorithm 

AFSGSA Data FS No Data Mining 

8 (Chen, Li et al. 
2017) 2017 

Benchmark 
dataset 

Supervised Wrapper BFO ACBFO and 
ISEDBFO 

Data FS No Data Mining 

7 (Apolloni, 
Leguizamón et 
al. 2016) 2016 

Microarray 
dataset 

Supervised Hybrid BDE -- Microarray FS No Microarray 
clustering 

8 (Tang, Kay et al. 
2016) 2016 

Benchmark 
text dataset 

Supervised Filter Jeffrey’s -
Multi-

Hypothesis 
divergence 

-- Text FS No Text 
Classification 

9 (Qian and Shu 
2015) 2015 

Benchmark 
dataset 

Supervised Filter MI and Rough 
sets 

-- Data FS No Incomplete 
data 

10 (Lee and Kim 
2015) 2015 

Benchmark 
dataset 

Supervised Memetic Memetic -- Data FS No Text 
Classification 

11 (Tran, Xue et al. 
2016) 2016 

Benchmark 
dataset 

Supervised PSO + 
local 

search 

Hybrid -- Data FS No Data 
classification 

12 (Ghareb, Bakar 
et al. 2016) 

2016 

Arabic Text 
Datasets 

Supervised GA + local 
search 

Hybrid -- Text FS No Text 
Classification 

13 (Shreem, 
Abdullah et al. 

2016) 2016 

Benchmark 
dataset 

Supervised HS + 
Filter 

Hybrid -- Data FS No Data 
classification 

14 (Han and Ren 
2015) 2015 

Benchmark 
dataset 

Supervised MI Filter and 
Hybrid 

-- Data FS No Data 
classification 

 

2.6.1 Exponential Wrapper Search 

The exponential search can be divided into an exhaustive (breadth-first) heuristic search and 

Branch and Bound search (BB) (Narendra and Fukunaga 1977). Although the exhaustive 

search guarantees an optimal search state, it works only with countable feature sets. If the 
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number of features increases, the computational complexity will increase accordingly, 

rendering the exhaustive search to be impracticable for many cases (Chen 2003). Similarly, the 

BB method is considered impractical as its performance downgrades when it deals with non-

linear classifiers (e.g., Neural Networks) (Ripley 2007). Furthermore, the BB method has 

exponential complexity. Therefore, it is considered inapplicable to large (or even moderate) 

feature spaces (Zhang and Sun 2002). 

For NP-problems, it is important to create a compromise between effectiveness and optimality, 

because optimality is not the only factor that has an impact on performance. Therefore, with 

increased robustness and efficacy, sub-optimality can become an acceptable option 

(Chandrashekar and Sahin 2014). Thus, sequential wrapper search methods were suggested. 

 

2.6.2 Sequential Wrapper Search 

The sequential search looks for features in two directions, either forward or backward (Guan, 

Liu et al. 2004). The Sequential Forward Selection (SFS) starts from an empty set of features 

and continuously adds features in that list, while in the Sequential Backward Selection (SBS), 

the search begins with all features and then deletes those features from the list repetitively (Aha 

and Bankert 1996, Kudo and Sklansky 2000).  

Although the sequential search seems to be straightforward and easy to implement, it suffers 

from the nesting effect, which means that features cannot be updated in case of the existence 

of redundant features in the list (Pudil, Novovičová et al. 1994). Therefore, the Plus-l-Take-

Away-r (PTA) method was proposed, which combines both the forward and backward 

strategies. It was primarily suggested as a remedy to overcome the nesting effect of the 

previously explained methods. The PTA search strategy moves L stages forward by adding L 

elements to the list, and similarly, it moves R stages backward and removes R elements from 

the list. Consequently, this method had shown no visible improvement over the SFS or the SBS 

methods as noted by (Hao, Liu et al. 2003). 

On the other hand, another version of PTA has also been suggested which relies on the floating 

search strategy (Pudil, Novovičová et al. 1994) where L and R values are not fixed. This helped 

to approximate the optimal feature solution subsets. The floating search is either a Sequential 

Floating Forward Selection (SFFS) or a Sequential Floating Backward Selection (SFBS). 

Theoretically, there is no reliable way to predict the exact values of L and R to achieve 
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optimality in the floating search (Bolón-Canedo, Sánchez-Maroño et al. 2013). Also, the 

floating approach has not shown any improvement on the PTA, SFS and the SBS approaches.  

2.6.3 Stochastic Wrapper Search 

The stochastic search method uses the meta-heuristic algorithms. It has been proposed as an 

alternative to the sequential search (Liu and Yu 2005). In recent years, researchers have used 

stochastic methods in two different ways: supervised and unsupervised (Tutkan, Ganiz et al. 

2016, Zorarpacı and Özel 2016). The supervised method has been more commonly 

experimented with, and it has been widely studied in the field of text categorization. The 

supervised feature selection depends on the availability of the class labels, which are mandatory 

for classifiers, and the class labels are used to group features according to their classification 

accuracy. On the other hand, unsupervised feature selection is not well discussed and tested in 

the text mining field. In contrast to the supervised feature selection, the unsupervised feature 

selection depends on measuring the relationship between features in a data-driven way. In other 

words, it uses internal validation measures that derive knowledge from the intrinsic 

relationships between features. It is also an appropriate choice used with text clustering in 

which the class labels are unavailable (Tang, Kay et al. 2016). 

The stochastic global search can be applied to perform both the supervised and unsupervised 

feature selection. For instance, the GA is an example of stochastic methods that have frequently 

been used for feature selection. GAs initially were proposed by Holland (Holland 1975), and 

inspired by the natural biological evolution of species. It has a well-documented and successful 

history with applications to many combinatorial NP-hard optimization problems in science and 

engineering (Dasgupta and Michalewicz 2013). GA (Goldberg and Holland 1988) has been 

used for feature selection since the last two decades. However, due to some of the drawbacks 

associated with its structure, such as the parameter tuning and the random effect of the initial 

population, it has evolved in many different ways, and other population-based methods have 

been proposed (Ghareb, Bakar et al. 2016). 

As stochastic-based wrapper methods, meta-heuristic optimization methods have been used as 

wrapper feature selection. Those methods can roughly be classified into evolutionary search, 

SI, HS (Xue, Zhang et al. 2016) and other meta-heuristic methods. For evolutionary search, a 

genetic-based wrapper search method was used in (Abualigah, Khader et al. 2016) for 

unsupervised text feature selection problems. The method was named Unsupervised Feature 
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Selection Technique Based on Genetic Algorithm for Improving Text Clustering (FSGATC). 

Also, in (Hong, Lee et al. 2015), the authors used the genetic-based wrapper search method for 

the text feature selection. As was mentioned earlier, the genetic wrapper has some problems 

therefore other variants have been used. Similarly, the SI methods have been used extensively 

for text feature selection, such as the ACO method that was used in (Aghdam, Ghasem-Aghaee 

et al. 2009), and it achieved slightly better results than the genetic wrapper methods. In (Saraç 

and Özel 2014) the ACO was also used for text feature selection to improve the accuracy of 

the classification of Web documents. 

Moreover, the PSO method was used in (Zahran and Kanaan 2009) to reduce the features of 

Arabic text. The algorithm showed superiority over the Chi statistical filter method. In (Lu, 

Liang et al. 2015) an improved PSO method was proposed, based on a functional inertia weight 

and a constant constriction factor. According to the constant constriction factor, a functional 

constriction was added to the traditional PSO. The two improved PSO methods developed upon 

the functional constriction and functional inertia factors to obtain higher accuracy. They were 

named synchronously and asynchronously improved PSO, respectively. Moreover, an 

unsupervised text feature selection method that uses a hybrid PSO with genetic wrapper search 

operators for text clustering was proposed in (Abualigah and Khader 2017). 

The HS has also been applied as a wrapper feature selection method. A self-adjustment feature 

selection approach that uses HS was proposed in (Zheng, Diao et al. 2015) to improve the 

performance of the traditional HS based method further. On the other hand, unsupervised HS-

based text feature selection was proposed by (Abualigah, Khader et al. 2016). The proposed 

method was named Feature Selection using Harmony Search for Text Clustering (FSHSTC). 

All global search methods represented by the meta-heuristic methods mentioned above are 

more likely to be stuck in local optima due to their global search nature (Al-Jadir, Wong et al. 

2017). This implies they are not well-suited to deal with searches in local areas of the feature 

space. As a result, that could affect the quality of their resulting features. Therefore, hybrid 

methods have been proposed to overcome the underlying deficiency of wrapper methods by 

integrating the advantages of filter and wrapper methods together, as will be seen in following 

subsections. 
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2.7 Memetic Filter-Wrapper Feature Selection 

Memetic optimization combines filter methods as a local search with wrapper methods that are 

powerful in a global search (Günal 2012, Ghareb, Bakar et al. 2016). The first attempt to 

hybridize feature selection using memetic-based wrapper-filter method was proposed in 

(Radcliffe and Surry 1994). The authors used the method to improve the performance of the 

genetic wrapper search. Many years later, memetic optimization was also used to produce high-

quality solutions in different feature selection problems (Lee and Kim 2015). Through 

reviewing the methods used for the text feature selection, it was discovered that the majority 

only utilized memetic optimization to optimize feature selection performance in a supervised 

manner (Günal 2012, Lee and Kim 2013, Lamirel, Cuxac et al. 2015). The literature review 

suggests little effort has been made to solve the problem of the unsupervised text feature 

selection by memetic optimization for efficient document clustering. 

The hybrid methods could be performed in various ways. Some of them combine either two 

filters or two wrappers such as the method proposed in (Zorarpacı and Özel 2016), that 

combines ABC and DE. Still, the computational complexity becomes higher when two 

wrappers are used. Filter-filter models are not common reported in the literature unless more 

than one filter is aggregated with some wrapper method, as seen in Figure 2.6. 

 
Figure 2.6 Aggregated Hybridization 

 

Therefore, Wrapper-Filter or Filter-Wrapper models are more commonly proposed. Wrapper-

Filter hybridizations are mainly constructed with filters embedded inside a wrapper, as can be 

seen in Figure 2.7. For instance, in a previous work published by the authors in (Al-Jadir, Wong 

et al. 2017), it was shown that feature selection using a wrapper-filter hybridization, could 
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improve the performance of traditional clustering methods using k-means and Spherical k-

means traditional clustering methods in terms of the external and internal clustering evaluation 

measures. 

 

 

Figure 2.7 Embedded Hybridization 

 

Important examples of the supervised filter methods (classifiers) and unsupervised filter 

methods used in a memetic scheme are explained in the next two subsections. 
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2.7.1 Supervised Filter Methods 

Using the supervised filter methods with classifiers in hybrid wrapper-filter methods has been 

dominant in data mining and also text mining (Xue, Zhang et al. 2016). For example, in (Onan 

and Korukoğlu 2015) a hybrid feature selection method was used to reduce the extra features 

for the sentiment analysis. The wrapper was applied to aggregate features selected using 

different filters. It was used to choose the most optimal feature subsets in an ensemble 

approach. This method composed of a wrapper and multiple filters that are integrated using an 

ensemble scheme, in which the MI, Information Gain (IG), and Chi filters were used first, 

before their results were fed to the wrapper. In the same context, in (El Akadi, Amine et al. 

2011), a hybrid feature selection method named Maximum Relevance Minimum Redundancy 

(MRMR) was proposed. The MRMR filter was first applied to exclude noise and redundancy, 

followed by the genetic wrapper search. The Support Vector Machine (SVM) and Naive Bayes 

(NB) classifiers were utilized later to serve as fitness functions to evaluate the selected features. 

Both of (Onan and Korukoğlu 2015) and (El Akadi, Amine et al. 2011) resemble the aggregated 

hybridization shown in Fig. 2.5. 

In (Uğuz 2011), the authors hybridized both filter and wrapper methods to generate a reduced 

feature space. The authors proposed two models for the dimensionality reduction. The first was 

based on the Feature Selection-Feature Selection (FS-FS) which is an Information Gain-

Genetic Algorithm (IG-GA) that used the Information Gain classifier first and then the genetic 

wrapper. The latter was used to further refine the selected features. The second model was 

based on Feature Selection-Feature Extraction (FS-FE) that was named Information Gain-

Principle Component Analysis (IG-PCA). This second model differs from the IG-GA in that it 

extracts features by using PCA. In both models, features are first ranked according to their 

importance, determined by the IG classifier. Then the feature selection using the genetic 

wrapper or the Feature Extraction using the PCA is applied separately to reduce the feature 

space. For evaluation, the effectiveness of both models was assessed using the k-nearest 

neighbor (KNN) and C4.5 decision tree classifiers on Reuters and Classic-3 benchmarks 

datasets. The test results showed that the two models were effective according to precision, 

recall and F-measure values.  

Furthermore, it was discovered that using the filter-wrapper model, IG-GA had a better 

performance than IG-PCA. Moreover, despite the success of the classifiers with these two 

models, the overfitting problem could be generated due to the use of classifier-dependant 
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features. Also, using the classifiers iteratively might be expensive in terms of computational 

complexity. As another example, in (Hsu, Hsieh et al. 2011) a hybrid feature selection was 

proposed, which integrates the IG classifier with a sequential floating search wrapper. The IG 

classifier was first used individually to select first feature groups, and these features were 

further selected using the wrapper method. The study concluded that better or at least similar 

classification performance can be obtained by using the feature selection. 

 

2.7.2 Unsupervised Filter Methods 

Unsupervised filter methods differ from supervised filters in that unsupervised methods can 

rank features without a need to use the original representation (Dadaneh, Markid et al. 2016). 

However, the challenge of performing unsupervised feature selection is associated with the 

absence of referencing class labels, which makes it impossible to utilize the same validation 

criteria used in the supervised feature selection for classification. Because of the lack of 

research in this domain, there are no standardized measures to assess the performance of 

unsupervised methods, as the meaning of the best feature subsets might change across different 

methods.  In effect, the limited unsupervised feature selection methods found in the literature 

have only been used as wrapper methods (Tabakhi, Moradi et al. 2014). 

In summary of what has been discussed above, hybrid methods can be more successful than 

filter or wrapper methods used separately. However, many of the available filter methods used 

with hybrid methods are not suitable with unsupervised feature selection, because of the 

necessity of class labels. However, a few examples of unsupervised text filter methods show 

exceptions. These methods can be categorized into two groups: statistical and approximation-

based methods. 

 

2.7.2.1 Statistical Unsupervised Local Search Filter Methods 

Statistical unsupervised filter ranking methods could be used as local searches. For instance, 

the MAD method reported in (Bharti and Singh 2014, Abualigah, Khader et al. 2016, 

Abualigah, Khader et al. 2016, Abualigah and Khader 2017) is considered a simplification of 

the Term Variance (TV) filter method proposed in (Liu, Kang et al. 2005). A feature relevancy 

score is assigned by the MAD method for every feature by calculating the distance of each 
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feature to the average of the entire set. Mean-Median (MM) (Ferreira, #225 et al. 2012) is 

another example of the unsupervised filters. Unlike MAD, the MM calculates the absolute 

distance of each feature between the median and mean values. Similarly, the Absolute Cosine 

(AC) (Yu and Liu 2003) method serves the same purpose as the MAD and MM methods. These 

unsupervised filter methods are statistical-based, and their performance relays on the intrinsic 

properties of the available data. Due to their simplicity and easy implementation, they can 

efficiently replace the role of classifiers with wrapper methods used in the supervised feature 

selection as explained in (Bharti and Singh 2014, Abualigah, Khader et al. 2016, Abualigah, 

Khader et al. 2016, Abualigah and Khader 2017). 

 

2.7.2.2 Approximation-Based Unsupervised Filter Methods 

Examples of another category of filter methods that uses optimization and approximation tools 

are the Simulated Annealing and Chaos theory-based methods, Gradient-based search, Steepest 

Descent, Newton Raphson, and Gauss-Newton methods (Choi and Lee 1998). All these 

methods are capable of local search (Jia, Zheng et al. 2011, Merendino and Celebi 2013, 

Saruhan 2014, Mafarja and Mirjalili 2017). Simulated annealing, for example, can be used for 

unsupervised feature selection. As an optimization method, simulated annealing iterates until 

it reaches the best representation of the solution. However, it differs from other optimization 

methods in that it is not a population-based method; instead, it works on only a single solution 

at a time, and that makes it a good candidate as a local searcher. 

More recently, a Wale Optimization Algorithm (WOA) was used in combination with 

Simulated Annealing in a hybrid wrapper-filter scheme (Mafarja and Mirjalili 2017). The 

WOA was hybridized with simulated annealing to improve the quality of the resulted features. 

Furthermore, simulated annealing was also used by (Mafarja and Abdullah 2013) in a genetic-

based wrapper for a hybrid feature selection method. The use of simulated annealing showed 

improvement using some benchmark datasets in comparison to other state-of-the-art methods. 

Also, in (Azmi, Pishgoo et al. 2010) a Farsi hand written printed character feature selection 

used a hybrid GA with a simulated annealing local search. Moreover, in (Manimala, Selvi et 

al. 2011) also a wrapper using a GA was combined with local simulated annealing to generate 

a feature selection method that helps in the classification of the Power Quality (PQ) problem, 

and to improve the parameters of the SVM classifier. It was also used in a timetabling problem 

along with the GA (Olabiyisi Stephen, Fagbola Temitayo et al.). It can be seen that simulated 
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annealing can be used as a local search in both supervised and unsupervised modes. However, 

as an unsupervised local searcher, simulated annealing has not been used for the problem of 

text feature selection.  

In summary, in most document clustering systems the issue of the high number of features 

could have an adverse impact on the clustering performance. With hyper-dimensionality, even 

good performing clustering methods could fail. Thus, besides intelligent centroids allocation 

methods, feature selection methods are still necessary (Khorsheed and Al-Thubaity 2013). 

Therefore, text feature selection methods are utilized to eliminate unnecessary text features 

(Diaz-Valenzuela, Loia et al. 2015). Feature selection methods select a smaller number of 

features without changing them, whereas feature extraction methods such as the PCA reduce 

features by changing them (Gui, Sun et al. 2017). After feature selection, the size of the selected 

feature groups becomes less than the original. Consequently, the storage, processing and time 

requirements of unnecessary features will be far less. Furthermore, feature selection enhances 

the model to perform and achieve a better clustering outcome, because redundancy and 

inconsistency is reduced (Gui, Sun et al. 2017). 

As in document clustering, documents are represented as a VSM. Every single document has 

a multi-dimensional feature space, and each dimension is characterized by a numerical weight 

that corresponds to a particular keyword in VSM. Different weighting schemes, such as the 

Term-Frequency Inverse Document Frequency (TF.IDF), have been used. Nonetheless, not all 

the weights are contributing. For that reason, feature selection methods explained in this 

chapter have been utilized. This chapter explained problems related to high feature 

dimensionality, such as the overfitting problem that occurs when all feature space is used, 

causing all documents to be returned as true positives. Moreover, there is a problem of 

inconsistency, which appears as a result of two objects having the same features whereas they 

are available in two different groups. Finally, the use of the entire feature space potentially 

degrades clustering performance, because of an increase in computational complexity (Zong, 

Wu et al. 2015). 
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Chapter 3 

Document Clustering Using Partitioning Methods with 
Supervised Feature Selection 

 

 

3.1 Introduction 

In this chapter, a memetic supervised scheme with both wrapper and filter methods for feature 

selection is discussed. The aim of this chapter is to propose an efficient way of text feature 

dimensionality reduction that helps to reduce the feature space by eliminating unnecessary text 

features. MA have been successfully applied to different optimization problems. The feature 

selection problem has been modeled as a population-based problem. This makes it solvable by 

optimization techniques to look for the best reduced feature space. The main objective of this 

process is to represent the document sets numerically with no major loss of meaning after post-

processing. The feature selection process becomes more important given the large amount of 

text documents being made available in various digital domains such as the Internet. 

The supervised feature selection depends on the availability of class labels which must be used 

by the classifiers; the class labels are used to group features according to their classification 

accuracy. The stochastic global search can be applied to perform both the supervised and the 

unsupervised feature selection. This chapter will focus on the stochastic search using MA to 

perform the supervised feature selection, and its effect on the document clustering. 

As was mentioned in Chapter 2, feature selection can be classified into filter (Nie 2005) and 

wrapper (Kohavi and John 1997, Maldonado and Weber 2009) methods. Filters are 

straightforward in implementation with a higher efficiency than wrapper methods. In most 

cases, filter methods rank features according to their significance in an ascending order (Souza, 

Japkowicz et al. 2005). Eventually, clustering or classification is applied to the filtered feature 

space (Saeys, Inza et al. 2007). Unlike filters, wrapper methods are implemented by using one 

of the machine learning methods and a classifier. Despite its advantages over filter methods, 

wrappers may suffer from the issue of overfitting (Saeys, Inza et al. 2007). Therefore, hybrid 

or memetic schemes that combine both wrapper and filter methods have been introduced 

(Vergara and Estévez 2014). The proposed memetic feature selection method uses Relief-F 
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filter and GA-based wrapper to perform the feature selection before the document clustering 

steps. The method that will be discussed in this chapter is named as Memetic Algorithm Feature 

Selection (MAFS). 

The following sections of this chapter are organized as follows.  

• Section 3.2. Feature selection using Memetic Wrapper-Filter hybridization is presented 

to explain the proposed MAFS method, which is a combination of the global search 

phase and local search phases.  

• Section 3.3. The baseline document clustering methods used to evaluate the resulted 

feature subsets are explained.  

• Section 3.4. The performance evaluation measures used to evaluate the clustering 

results using the selected feature subsets from the proposed method are explained.  

• Section 3.5. Explains the datasets and the experimental results used in this chapter.  

• Section 3.6. The document clustering technique using k-means and Spherical k-means 

is explained. 

• Section 3.7. Explains the impact of various parameter tunings in the proposed MAFS.  

• Section 3.8. A comparison between non-tuned MAFS vs. tuned MAFS is presented. 

• Section 3.9. Presents a summary of the findings in the chapter. 

 

3.2 Feature Selection Using Memetic Algorithm Feature Selection 

The approach for hybridizing a filter within a wrapper is to use the memetic hybridization 

approach to overcome the GA’s premature convergence (Lee and Kim 2015). The memetic 

search is composed of two components: the local and the global searches. The genetic inductive 

feature selection method is used to perform the global search while the Relief-F is utilized for 

fine-tuning the solution (Zhu, Ong et al. 2007). The GA iterates to generate the best feature 

subset, and Relief-F is used to rank each feature and then order the features in each solution 

according to their importance. 

The proposed hybrid system is illustrated in Figure 3.1. First, the original datasets are 

transformed into term-document-matrix format. In the next step, the solutions are randomly 

initialized (random feature subsets), and each solution is evaluated using the KNN classifier 

and Leave-One-Out Cross Validation. The resulting values represent the classification error 

ratio that measures the classification predictability of each solution. As illustrated in step 4 of 
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Figure 3.2, the meta-heuristic operations (Mutation and Crossover) are applied to produce new 

members of the population. Each newly generated solution will replace the older one if its 

fitness exceeds its ancestors. 

Consequently, the selection of the elite solutions is performed depending on their fitness value. 

The elite population includes the candidate solutions that undergo the local search (meme). 

Two parameters used to determine the intensity of applying the meme are the local search 

length (l) and the local search range (w) parameters. The first specifies the maximum number 

of the additions and deletions performed on the elite solutions, and w represents the highest 

number of local search calls to each solution iteratively. There are l2 times of addition and 

deletion operations. In other words, Relief-F local search that will be described later in this 

chapter is applied after selecting l2 adjusting operations on each solution. This process ends 

when the first newly produced solution has a lower classification error ratio in comparison to 

the older solution. 

In order to clarify this mechanism, it is important first to explain the local search role. We 

assume an individual v with two sets S1 and S2. S1 contains the number of the added features to 

v while S2 contains the number of the deleted features from v. Both lists are ordered based on 

the features’ significance ranks from the best (highest) to the worst (lowest). The deletion 

moves the features from S1 to S2 while the insertion moves features from S2 to S1. The deletion 

and insertion processes are determined by the rank of each feature. Finally, the stopping 

criterion is satisfied when the maximum number of generations reaches a specific number of 

iterations. The memetic feature selection in the proposed method works on two modes or 

phases, which are the wrapper and the filter modes. The wrapper mode is represented by the 

global search while the local mode is represented by the filter method. Figure 3.1 explain in 

details these two modes in details. 
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Figure 3.1 General Architecture of the Document Clustering and Feature Selection 

 

3.2.1 Global Search Phase 

The global search used the GA-based search, which involves the following three steps while 

Figure 3.2 explains the flowchart of these steps in details.  

A. Initialize the first population randomly; each solution in this population represents a 

random subset of features. A solution is a binary string with length n that represents, at 

the same time, the number of features. Each bit represents a presence or an absence of 

a feature. When the feature exists in the solution it is encoded by “1”. Otherwise, the 

feature is encoded by “0”. The number of the maximum allowed number of 1s is 

represented by m. In order to obtain a reduced number of features, those features should 

be less than m. 

B. Evaluate each one of these random solutions using the fitness function that is the KNN 

classifier; the resulting fitness values represent the classification error ratio of that 

solution, measuring its predictability. 

C. Apply the meta-heuristic operations (Mutation and Crossover) to produce new 

members of the population. The newly generated solutions will replace the older 

solutions if their fitness exceeds their ancestors. The meta-heuristic operations used in 

MAFS are the same as the operations used in the native GA.  
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3.2.2 Local Search Phase 

The local search is applied after the global search starts and initializes the first population as 

seen in Figure 3.1. This process starts by selecting the elite individuals, whose fitness values 

are the best among the entire population. Then the local search length (l) and local search 

interval values (w) are set to their initial values. Where l is the maximum number of feature 

addition and deletion operations, which are performed on the elite solutions, w is the maximum 

number of local search calls to each solution at a time. Later, the refinement process starts at 

the elite sub-population using local search. Consequently, the fitness values of the new 

individuals resulting from local search are calculated. Finally, the comparison of the new 

fitness values with their corresponding older counterparts is conducted. The classification 

performance is used to calculate the degree of discriminability of each solution, where the KNN 

classifier is used. The preceding solutions are replaced with the new optimized solutions if their 

fitness values are less than the older one, otherwise, the locally optimized solutions are 

discarded.  

The essential idea behind the local search used in this MAFS is based on the Relief-F filter, 

which is in turn based on the Relief ranking method. The latter estimates the quality of features 

in respect to how accurately they discriminate between objects, where each object has many 

features that need to be reduced. In our case the documents are the objects where each 

document contains many features (weighted keywords). For instance, if there is a random 

document Ri the local search using Relief-F will look for its closest document neighbors. The 

one that belongs to the same class of that document is named nearest hit H, and the other that 

belongs to the different class, is named nearest miss M. The features updating process involves 

the estimation of the quality vector W[A] for all features A with respect to their values in Ri, M, 

and H. Thus, if documents Ri and H have different values of feature W[Ai] then feature W[Ai] 

discriminates between two documents existing in the same class which is an unwanted case. 

Thus, that would decrease the quality estimation vector W[A]. Another scenario happens when 

documents Ri and M have different values of feature W[Ai]; feature W[Ai] separates two 

documents belonging to different classes which is the target case. Thus, that would increase 

the quality estimation vector W[A]. The entire update process continues for a particular number 

of times (m), where m is a predefined parameter. Algorithm 3.1 shows the relief-F steps in 

details.  
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Algorithm 3.1 Relief-F 

1. Input (for each training instance a vector of attribute values and the class 
2. Value).  
3. Output: the vector W of estimations of the qualities of attributes 
4. set all weights W[A],Ndc,NDA&dA:= 0, 
5. for i: = 1 to m do begin 
6. Randomly select document Ri 
7. Choose k documents I j closest to Ri ; 
8. for j: = 1 to k do begin 
9. NdC: = NdC + diff(t (・), Ri , I j ) ・ d(i, j ); 
10. for A: = 1 to a do  
11. NdC&dA[A] := NdC&dA[A] + diff(t(・), Ri , I j). diff(A, Ri , I j ) ・ d(i, j ); 
12. end; 
13. end 
14. end  
15. for A:=1 to a do 
16. W[A] := NdC&dA[A]/NdC - (NdA[A] − NdC&dA[A])/(m − NdC ); 
17. end 

The Relief-F is a modified version of the Relief, but it is not restricted to only two classes. 

Relief-F can deal with multiple classes, is more robust and is more capable of dealing with 

incomplete or noisy data. Relief-F randomly selects a document Ri. Unlike Relief, Relief-F 

looks for k-nearest documents of the same class of Ri, which are called nearest hits Hj and at 

the same time it looks for k-nearest documents existing in other classes which are called nearest 

misses Mj. The quality estimation W[A] is then updated for all features A according to their 

values for Ri and hits Hj and Mj. 

 

3.3 k-means and Spherical k-means Document Clustering 

The two baseline partitioning clustering algorithms used to test the proposed MAFS are the k-

means algorithm (Deelers and Auwatanamongkol 2007), and the Spherical k-means (Dhillon, 

Fan et al. 2001): 

A. The k-means algorithm initialized with a specific number of clusters determined by a 

randomly initialized centers points (centroids) represented by k that means each k refers 

to one cluster. Next, the Euclidian distance between each centroid and each document 

is calculated to associate each document with its nearest centroid. The next iteration 

involves a new k centroids set to be recalculated again. At this point, a new distance 

should be found between the documents and the new centroids. The distance 
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measurement and the centroids updating will continue until the k centroid values of the 

current step have the same positions as the previous step. The distance objective 

function is stated in equation(3.1): 

                                                     Equation (3.1)  

 

where D is the distance between any document (d) and centroid (c) while k and n are 

the number of centroids and the number of documents respectively. 

 

B. The Spherical k-means is an enhancement to the traditional k-means. It is developed to 

produce more stable results than the k-means. It is a fixed point heuristic clustering 

algorithm that minimizes the angular distance between two documents measured by the 

cosine similarity. Due to the overrepresentation of the highly weighted terms using the 

k-means, it is suggested in (Dhillon, Fan et al. 2001) to use the projections of the 

weighted vectors using the Euclidean distance onto a spherical space, or equally, using 

the cosine similarity which is equivalent to the first as shown in equation(3.2). 

 

                                        Equation(3.2)                          

     

  where, the xi is an ith document vector, pc is a centroid vector and c(i) is the cluster 

identifier. 
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Figure 3.2 MAFS Feature Selection 
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3.4 Performance Evaluation 

The evaluation measures are important to observe the performance of each feature selection 

method and its effect on the clustering algorithm. Two types of measurements are used in the 

experiments, which are the internal and the external evaluation measures (Aggarwal and Reddy 

2013). In the experiments, the F-measure is used as an external measure while the internal 

measure used is the Average-Document-Distance-to-the-Cluster-Centroid (ADDC). A 

thorough analysis is conducted in the next section by observing the maximization of the F-

measure and the minimization of ADDC measure using different methods. The F-measure and 

the ADDC are computed as follows: 

A. The F-measure, is calculated after computing the precision (P) and the recall (R). P is 

the proportion of documents in group A and still in class B whereas R is the proportion 

of documents in class B and group A. The precision and recall and the F-measure are 

computed as is shown in equations (3.3),(3.4), and (3.5), respectively. In equation 3.5, 

the value of the F-measure is calculated using the previous two values represented in 

equations 3.3 and 3.4. 

 

                                                                       Equation(3.3)     

                                                                     Equation (3.4)   

               Equation (3.5) 
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B. The Objective Function used for evaluation is the Average Distance of 

Documents to Cluster centroid (ADDC). The cosine similarity is used in ADDC 

to find the distance of the documents between each other and between themselves 

and their corresponding cluster centroids. The ADDC can be expressed as is 

shown equation (3.6): 

                         Equation (3.6)                                                              

   
 

where C is the number of centroids while the Pi is the number of documents in each 

cluster and the ci, and the dij are any particular centroid and document pair, and cos is 

the cosine similarity measure between any two vectors. 

 

3.5 Datasets and Experimental Results 

The datasets used in the next experiments are listed in Table 3.1 where the number of classes, 

instances and features of each dataset is shown in that Table.  

Table 3.1 Datasets 

Dataset D# #Classes Instances Features 
6 Event Crimes D1 6 223 3864 
10 Types Crime D2 10 2422 15601 
Reuters-21578, D3 10 2277 13310 
20news Groups D5 20 1489 6738 
Pair 20news Groups D4 2 1071 9497 

 

D1. 6 Event Crimes. This dataset is collected from the online news available at (http:// 

www. bernama. Com /bernama/v8/index.php). The first dataset has six classes of crimes 

whereas the other dataset has ten categories. In Table 3.1 the number of the documents and 

the number of classes in each of those datasets are reported. 

D2. 10 Types Crime. This contains ten types of criminal reports which contain 2,422 

documents and 15,601 features (keywords). 
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D3.Reuters. This dataset is available at Machine Learning Repository1. Although this 

dataset is diversified and challenging (Debole and Sebastiani 2005), many labels in the 

documents are missing. There is a large number of multi-labeled documents. Besides, the 

number of classes is skewed leading to inconsistent class sizes. In order to deal with these 

drawbacks, the same edition utilized in (Fodeh, Punch et al. 2011) is also used in this 

present research. The edition includes only the labeled documents and single-labeled 

documents. Furthermore, the number of documents chosen for each class is 200.  

D4. 20news Groups, This dataset consists collected from 20 news sources. It is also 

available at the Machine Learning Repository2.  

D5. Pair 20news Groups, This sub-dataset contains: the.talk.Politics, Mideast, and 

talk.Politics.Misc which is a subset of D4.  

 

3.6 Clustering Using k-means and Spherical k-means  

In this subsection, we describe the tests conducted on the datasets explained earlier. In the tests, 

the algorithms were run 20 times. Running the algorithms for one time is not enough to 

determine the performance of each clustering algorithm accurately, because of the randomness 

of the initial solutions of each run. This randomness can affect the results. When multiple runs 

are used, the general trend of each single algorithm will be identified. Table 3.2 shows the 

average F-measure results while Table 3.3 shows the average ADDC results after using the 

entire feature space. 

Table 3.2 illustrates the average F-measure values of 20 runs for the k-means and the Spherical 

k-means algorithms without a feature selection for each dataset and with feature selection in 

two cases once with using the Genetic feature selection and once again with the Memetic 

feature selection. When using the entire features without feature selection is referred as All 

method, in all the runs for all the datasets the Spherical k-means outperformed the traditional 

k-means regarding the F-measure. In D2, the k-means has slightly outperformed the Spherical 

k-means; the first achieved (0.33) while the second achieved (0.25). On the other hand, Table 

3.3 reports the ADDC values. Unlike the F-measure values, the ADDC values should be 

minimized, and that means less is better. It is evident that the ADDC measure is not highly 

                                            
1https://archive.ics.uci.edu/ml/machine-learning-databases/reuters21578-mld/ 
2 https://archive.ics.uci.edu/ml/datasets/Twenty+Newsgroups 
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correlated to the F-measure. However, there might be a slight correlation between these two 

measurements. For instance, the average F-measure of the D1 dataset is less than that of the 

Spherical k-means, while its ADDC value dropped slightly accordingly for the (All) method. 

Furthermore, the average F-measure value (0.33) of D2 dataset for the k-means is decreased in 

the Spherical k-means (0.25). But the average ADDC value of the D2 dataset (0.75) for the 

Spherical k-means has slightly increased over that of the k-means (0.68). That indicates there 

is only a slight correlation between the two measurements. In general, the ADDC values will 

be lowered (becomes better) if the feature selection is applied to the data by reducing the extra 

features.  

Table 3.2 Average ADDC Measure Values  
Using the Entire Feature Set 

 
 
 
ALL 

Datasets k-means Spherical k-means  
D1 0.57 0.56 
D2 0.68 0.75 
D3 0.5 0.85 
D4 0.59 0.82 
D5 0.65 0.68 

 
 
 
GA 

Datasets GA-k-means GA-Spherical k-means  
D1 0.219 0.24 
D2 0.17 0.84 
D3 0.41 0.75 
D4 0.55 0.63 
D5 0.48 1 

 
 
 
MAFS 
 

Datasets MAFS-k-means MAFS-Spherical k-means  
D1 0.23 0.24 
D2 0.15 0.38 
D3 0.35 0.62 
D4 0.63 0.80 
D5 0.34 0.52 

 

Table 3.3 Average F-measure Values After Applying GA 

 
 
ALL 

Datasets k-means Spherical k-means  
D1 0.62 0.72 
D2 0.33 0.25 
D3 0.30 0.68 
D4 0.51 0.95 
D5 0.64 0.87 
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GA 

Datasets GA-k-means GA-Spherical k-means  
D1 0.50 0.74 
D2 0.12 0.10 
D3 0.28 0.25 
D4 0.56 0.79 
D5 0.35 0.33 

 
 
MAFS 
 

Datasets MAFS-k-means MAFS-Spherical k-means  
D1 0.62 0.74 
D2 0.29 0.10 
D3 0.38 0.70 
D4 0.56 0.95 
D5 0.77 0.89 

 

Regarding the effect of applying the GA wrapper feature selection on the F-measure and the 

ADDC measurements, Table 3.2 clearly shows that the F-measure results have dropped in 

comparison to Table 3.3, which indicates important text features were lost through the process 

of feature selection. In contrast, the ADDC values of the GA method have dropped in 

comparison to those of the All method in the Table 2.3; that means the distance of the inter-

cluster similarity has been notably minimized. If ADDC values become less, it suggests more 

compact clusters are produced. In other words, ‘within cluster' similarities have been increased 

despite the fact that the F-measure has slightly dropped for most of the datasets. This is true 

for all datasets used in the Thesis for D5 (Reuters) dataset, in which the ADDC value increased 

to 1 for the Spherical k-means algorithm for the GA method while it was 0.68 for the All 

method in Table 2.3. That result is because the F-measure plummeted dramatically from 0.87 

for the All method to only 0.33 for the GA method in Table 3.2. The result is considered to be 

another example of the correlation between these two measurements in some cases. 

In Tables 3.2 and 3.3, the F-measure and the ADDC values of MAFS method was also reported 

similarly as the All and the GA methods. 

The MAFS-k-means F-measure values in Table 3.2 are higher than those obtained by the GA 

method in the same table that indicates the feature selection with the MAFS algorithm 

preserves the important features that are removed by the genetic feature selection that led to an 

improved F-measure. For instance, the F-measure of the D5 for the k-means has increased by 

almost double after using the MAFS method in comparison to the GA based method. Similarly, 

the F-measure values of D5 for the Spherical k-means increased sharply in the same table in 

compassion to values obtained by the All and the GA based methods. On the other hand, the 
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F-measure for D3 has slightly improved using the MAFS method in comparison to results 

obtained by the other methods in Table 3.2. 

With regard to the ADDC measure, the most striking result to emerge from the data in Table 

3.3 is that the ADDC values of the MAFS method have been dropped remarkably in 

comparison to the results of the other two methods. This finding shows that the resulting 

clusters became more compacted with reduced distances among the class members. It can also 

be observed that using the MAFS-k-means and the MAFS-Spherical k-means led to lower 

ADDC values even if the F-measure values slightly dropped. For example, the k-means F-

measure value for the D2 dataset has dropped from 0.33 for the All method to 0.29 for the 

MAFS method as is illustrated in Table 3.2, but the ADDC in for the MAFS shown in Table 

3.3 has halved. The most obvious observation is that the ADDC and the F-measure values are 

slightly dependent. That in turn could lead to the fact that the resulting clusters will be 

compacted further, if the feature selection is used, even if the F-measure values do not improve 

or slightly drop (in some cases). 

 

Besides using the average value to determine the best performing algorithm, Table 3.4 shows 

the best, worst and the difference (diff.) between the best and the worst F-measure values in 

each algorithm, while Table 3.5 reports the ADDC values. In both tables, the average best, 

average worst and average difference were calculated after running each clustering algorithm 

multiple times. Using the best, worst and the difference of the values is important to show the 

stability of the three algorithms throughout multiple runs after and before feature selection. In 

other words, discussing only the average might not show the individual performance of the 

algorithms in each single run. 

In Table 3.4 the k-means difference values between the best and the worst values are higher 

than the Spherical k-means in all datasets used except D5 for the All method. This implies that 

the values resulted from the k-means are more random, and the Spherical k-means appears to 

be more stable. On the other hand, the same observation can also be true after applying MAFS. 

Nonetheless, for the MAFS, the value difference for D4 slightly increased compared to the 

results of the All method for the Spherical k-means, while the performance was degraded in 

comparison to the k-means as can be seen in both tables. It was decreased for the best from 

0.99 to 0.95 and from 0.87 to 0.77 for the worst as reported in Tables 3.4. Also, the values were 

slightly decreased for D3 and D5, however D2 values plummeted for the best values (from 0.43 
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to 0.11) and for the worst (from 0.17 to 0.10). Moreover, the k-means also had slight 

degradation with some datasets, but substantial improvements with other datasets in Table 3.4. 

In general, the k-means performance was highly comparable to the performance of the 

Spherical k-means before using the MAFS. Although the external measurement via the F-

measure showed that the Spherical k-means is more stable than the k-means, it showed 

degradation in performance after using the MAFS. 

With regard to the internal measure when using ADDC, Table 3.5 gives a clear idea of the 

actual impact of using MAFS on the best and worst values of all datasets. The k-means 

algorithm was also improved notably after using MAFS. That is evident in all the datasets used 

except D4, which showed an insignificant increase for the worst (0.07) and for the best (0.01). 

In addition, the Spherical k-means also dropped noticeably in both tables. 

 

Table 3.4 The Best, Worst, Difference F-measure Values of k-means and 
Spherical k-means Algorithms Using Entire Feature Space 

Method 
 

k-means Spherical k-means 

 

 

 

All  

(All features) 

Datasets Best Worst Diff. Best Worst Diff. 

D1 0.89 0.32 0.57 0.84 0.54 0.29 

D2 0.54 0.15 0.39 0.43 0.17 0.26 

D3 0.84 0.42 0.69 0.94 0.46 0.48 

D4 0.51 0.30 0.21 0.99 0.87 0.12 

D5 0.33 0.25 0.8 0.95 0.55 0.40 

Average  0.62 0.29 0.39 0.83 0.52 0.31 

 

 

 

MAFS 

D1 0.69 0.21 0.47 0.89 0.56 0.33 

D2 0.51 0.11 0.40 0.11 0.10 0.1 

D3 0.88 0.42 0.45 0.90 0.47 0.43 

D4 0.61 0.51 0.9 0.95 0.77 0.18 

D5 0.45 0.33 0.12 0.96 0.45 0.51 

Average  0.63 0.32 0.31 0.76 0.47 0.29 

 

Table 3.5 The Best, Worst, Difference ADDC Values of k-means  
and Spherical k-means Algorithms using Entire Feature Space  

Method 
 

k-Means Spherical k-means 
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 Datasets Best Worst Diff. Best Worst Diff. 

 

 

 

All  

(All features) 

D1 0.55 0.59 0.04 0.66 0.71 0.05 

D2 0.66 0.71 0.11 0.75 0.75 0 

D3 0.64 0.68 0.04 0.59 0.69 0.1 

D4 0.54 0.6 0.14 0.78 0.83 0.12 

D5 0.47 0.64 0.17 0.86 0.87 0.01 

Average  0.57 0.64 0.10 0.73 0.77 0.06 

 

 

MAFS 

D1 0.20 0.29 0.09 0.09 0.29 0.2 

D2 0.13 0.19 0.06 0.47 0.48 0.01 

D3 0.34 0.45 0.11 0.50 0.57 0.07 

D4 0.56 0.67 0.11 0.74 0.84 0.10 

D5 0.34 0.50 0.16 0.54 0.54 0 

Average  0.31 0.42 0.11 0.47 0.54 0.08 

 

It is important to use the two measures for comparison as there is a small relationship between 

the internal and the external measures. If the external measures fail to give clear evidence of 

the performance, it is more reasonable to follow the results of the internal measures.  

 

3.7 The Impact of Various Parameter Tunings on MAFS Performance 

The next experiments are intended to show the results after parameter tuning, conducted as a 

series of empirical experiments on the same datasets used in the previous tests. All previous 

tests were based on the parameters set by (Zhu, Ong et al. 2007) and shown in Table 3.6. The 

FSGATC method that corresponds to the GA wrapper method is used for comparison purposes 

(Abualigah, Khader et al. 2016).  

 

Table 3.6 Parameters Used with MAFS 

Parameter  Value 
Search Strategy Genetic Search Method 
Population size  50 
Solution size 50 
Local search range  5 
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Local search length  8 
Number of generations:  200 
Probability of crossover: 0.6 
Crossover Type: Uniform Crossover 
Probability of mutation: 0.1 
Local Search:  TRUE 
Local Search Method:  Filter Ranking 
Local Search Strategy:  Improvement First 
Selection Type: Linear Rank Selection 
Stopping criterion  6000 Objective Function Evaluations 

 

In this section, various experiments are conducted using different parameter combinations to 

reveal the effects of them on feature subsets. Table 3.7 shows the parameters are tuned based 

on their significance to MAFS.  

The crossover type is tuned first, using the uniform, one-point, and multi-point crossover types. 

For the local search range w, five different values were compared. Similarly, for the local search 

length l, three different values were tested. The classification methods used with the wrapper 

as a fitness function were also tested with three different values. The compared classifiers were 

the lwl (Locally Weighted Learning) classifier, knn with k = 1 and k = 3. The knn classifier 

using k = 3 achieved the highest accuracy among the other two options. In order to measure 

the impact of the local search range, the best value of the local search range equaled 10 as it 

achieved the minimal error rate in the last generation in comparison to other methods.  

 

Table 3.7 Values Tested for the Parameters Tuning 

No. Crossover w l Classifier 

1 One-point 10 3 lwl (locally weighted learning) 

2 Multi points 1 8 knn, k = 3 

3 Uniform 15 1 knn, k = 1 

4 _ 5 _ _ 

5 _ 25 _ _ 

 

Regarding the local search length, the tested values were 3, 8, and 1. It is noteworthy that other 

values are selected within the range from 1 to 10, but the results were almost similar to the 
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results of the three tested values. Keeping the local search range to its best value selected 

previously, the best value chosen for the local search length was 8. Finally, the crossover 

experiments showed that using the multi-point crossover was more productive than the two 

counterparts. Moreover, as for the other parameters, they were kept as same as shown in Table 

3.6. 

From the results in Table 3.8 it can be concluded that by using the MAFS method, document 

clustering performance can be improved. The MAFS method achieved more accurate results 

for D2, D3, and D5 datasets, whereas the ADDC values of the MAFS method were increased 

slightly for D1 and D4. However, the corresponding F-measure values for D2 and D4 were 

much higher than those obtained by ALL and FSGATC methods. The slight increase of ADDC 

values for D1 and D4 could be tolerated in favor of the higher leap achieved by the MAFS 

method using the external measure. On the other hand, the external evaluation measures for the 

D2, D3, and D5 had a higher value for the F-measure after using the MAFS method. At the 

same time, results for these datasets generated by using MAFS methods provided smaller 

ADDCs in comparison to those generated by using FSGATC and ALL methods as mentioned 

earlier. 

The results in Table 3.8, it is also noted that in all datasets, the k-means performance improved 

after using the MAFS method by observing the F-measure. An improvement in performance 

was achieved by using the MAFS method for the k-means clustering. For the ADDC values 

and results of D2, D3, and D5, the MAFS method obtained smaller values but a higher F-

measure. On the other hand, for D1 and D4, although the FSGATC method obtained smaller 

ADDC values than the MAFS method, the corresponding FSGATC external measure values 

were still less than those achieved by MAFS for both D1 and D4.  

The clearest observation to make from Table 3.8 is that the proposed MAFS method is superior 

when compared to the ALL and FSGATC methods. It appears from the trends of both the 

ADDC measure and the F-measure that the relationship between them could be stated in three 

cases which are listed below:  

A. When the internal measure decreases the external measure increases, which is an ideal 

convergence state. For example, this happened with the MAFS method for the D2, D3, 

and D5 datasets using the spherical k-means while it is also clear for the D1, D3, and 

D5 using the k-means 
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B. The second case happens when the internal measure does not significantly decrease 

while the corresponding external measure increases significantly, which indicates a 

notable improvement in the clustering accuracy.  

C. Finally, the worst case that might happen is when there is no improvement in the 

external measure, but this was not visible in the results of the proposed MAFS method 

in any of the datasets used. It can be clearly concluded that the MAFS performed well 

with more stability than using ALL and FSGATC methods for all datasets. 

Table 3.8 Average Results of 20 Spherical k-means Runs  

  Spherical k-means k-means 
 Methods ADDC F-Measure ADDC F-measure 

D1  
ALL 0.57 0.69 0.56 0.52 
MAFS 0.24 0.81 0.22 0.70 
FSGATC 0.22 0.52 0.24 0.56 

D2  
ALL 0.67 0.31 0.20 0.15 
MAFS 0.15 0.36 0.54 0.66 
FSGATC 0.17 0.17 0.82 0.1 

D3  
ALL 0.54 0.20 0.86 0.27 
MAFS 0.26 0.28 0.47 0.33 
FSGATC 0.33 0.24 0.73 0.33 

D4  
ALL 0.85 0.94 0.82 0.83 
MAFS 0.82 0.94 0.76 0.89 
FSGATC 0.63 0.83 0.63 0.83 

D5  
ALL 0.65 0.74 0.69 0.92 
MAFS 0.37 0.75 0.48 0.93 
FSGATC 0.51 0.47 1 0.33 

 

 

 
3.8 Non-Tuned MAFS (MAFS1) vs. Tuned (MAFS2) 

The effect of the new parameter settings on the MAFS is shown in Tables 3.9 for the k-means 

and Spherical k-means respectively. MAFS1 represents the clustering results with original 

parameter settings shown in Table 3.6 while MAFS2 represents the results of the clustering 

after tuning the parameters as mentioned previously in section 3.6. 
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Table 3.9 Parameter Setting Effect on MAFS for k-means using F-
measure 

 k-means Spherical k-means 
Datasets MAFS1 MAFS2  MAFS1 MAFS2  
D1 0.23 0.70 0.24 0.81 
D2 0.15 0.66 0.38 0.36 
D3 0.35 0.33 0.28 0.62 
D4 0.63 0.89 0.80 0.94 
D5 0.34 0.93 0.52 0.75 

 

In Table 3.9 it can be noticed that using the parameters settings had a positive impact on the 

clustering results. The F-measure increased with almost all datasets except D3, which had only 

a small degradation. On the other hand, Table 3.9 shows the results increased with all datasets. 

Therefore, the parameter tuning of the MAFS2 is selected for further experiments presented in 

the next chapters. For simplicity, the MAFS2 will only be referred to as MAFS in subsequent 

chapters, which is the tuned version of MAFS.  

 

3.9 Summary 

Supervised memetic hybridization between filter and wrapper feature selection methods, 

identified as MAFS, was presented in this chapter. Traditional clustering methods including 

the k-means and Spherical k-means were used to examine the performance of the proposed 

feature selection method. One of the significant findings to emerge from this study is that the 

ADDC measure is minimized while the F-measure is maximized with most of the cases after 

using the MAFS hybrid memetic feature selection method. Moreover, the memetic 

hybridization using the proposed MAFS performed better than the wrapper feature selection 

using the genetic wrapper search. In addition, the results showed that the clustering results after 

using MAFS outperformed those using the entire feature space (ALL). The test results also 

showed that using the proposed feature selection can enhance the performance of traditional 

clustering. In the comparison study, the proposed MAFS method outperformed the results 

obtained by the recently proposed method named FSGATC. The proposed MAFS method also 

performed better when compared to the results generated using the ALL feature space. The 

experiments also found a slight correlation between the ADDC and the F-measure. Finally, 
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tuning of the parameters in MAFS had a positive effect on the results, and was selected for 

subsequent testing that is reported in following chapters. 
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Chapter 4 

An Unsupervised Feature Selection Using a Memetic 
Hybridization of a Wrapper and Filter Methods 

 

 

4.1 Introduction 

In chapter 3 a supervised method was proposed for feature selection and results of testing were 

reported. It was seen that a combination of wrapper and filter methods can help to produce 

better document clustering results in terms of higher accuracy than wrapper or filter methods 

alone. In chapter 3, the proposed method handled the feature selection for cases where class 

labels are available. In this chapter, the method proposed is applied to cases where class labels 

are missing. The aim of the unsupervised approach is to achieve equivalent performance when 

class labels could be present. 

The method presented in this chapter is an unsupervised feature selection method that combines 

the DE with simulated annealing. The presented method is named DESA. The challenge of 

performing unsupervised feature selection is associated with the absence of referencing class 

labels, which makes it impossible to utilize the same validation criteria used in the supervised 

FS for classification. Moreover, there are no standardized measures to assess the performance 

of unsupervised methods, because of a lack of research in this domain, as the meaning of the 

best feature subsets might differ across different methods. In effect, the limited literature on 

unsupervised FS methods has only reported wrapper unsupervised FS. In order to address the 

gaps in the unsupervised FS area, this chapter discusses details of the DESA FS method. SA is 

used to improve the exploitation aspect and DE is used as a global search to perform the 

explorative aspect. The MAD filter is used as feature subset internal evaluation criterion. Class 

labels are not required by the MAD as it is a data-driven evaluation measure that discovers 

similarities between features according to their intrinsic properties. The MAD resembles the 

classifier in the supervised feature selection. This paper also investigates ways of generating 

the performance measure that can be used to assist the optimization process using the internal 

and the external clustering evaluation measures. 
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However, another modification to the DESA is also presented in this chapter which uses the 

dichotomous mutation, which is named Dichotomous DESA (DDESA). This version uses the 

dichotomous mutation that eliminates the need to use the F probability, which can be used for 

situations such as knapsack problems reported in (Peng, Wu et al. 2016). The same concept is 

used with the DDESA method for the centroids allocation problem of document clustering. An 

extensive explanation of DESA and DDESA is given in this chapter with examples that show 

the workability of these methods. Later, the experimental results of using these methods in 

comparison to several other methods are also presented. 

 

4.2 Differential Evolution for Feature Selection 

The DE is a population-based evolutionary optimization method that was explained in chapter 

two (Chunming, Yadong et al. 2017). In feature selection, all the generated solution values 

should be distributed in the range between two values which are either 0 or 1. The values will 

be rounded to the nearest integers toward 0 using the fix function3. For instance, in Y = fix( X 

) it rounds each element of X to the nearest integer toward zero. For positive X , the behavior 

of fix is the same as floor .  The memetic DE is used in this chapter to perform the unsupervised 

feature selection. Two versions of the memetic DE used in this chapter. The first is the DESA 

that uses the standard DE combined with the SA. However, another version of the DESA is 

also experimented with in this chapter, which is named Dichotomous DESA (DDESA). This 

version uses the Dichotomous mutation that eliminates the need to use the F probability. This 

method was used in (Peng, Wu et al. 2016) to solve binary Knapsack problems. The 

dichotomous mutation is expressed as equation (4.2). This equation shows the new offspring 

solution vij is generated using the three existing solutions xr1, xr2, and xr3. The logical operators 

were used to in the dichotomous mutation. The example explained in Table 4.1 shows how old 

solutions are used to generate the new offspring solution. 

vi,j =((xr1 xor xr2) and rand{0,1}) or (not(xr1 xor xr2) and xr1)        Equation(4.2) 

Table 4.1 shows an example to generate a new solution using the dichotomous mutation.  In 

Table 4.1, where x1 and x2 are two random vectors selected from the DE population, r is a 

random vector, x3 = (x1 or x2), x4 = not (x3), x5 = (x4 and x1), and x6 = (x4 or x5). The crossover 

for both methods is applied later, to diversify the population by the perturbation of the current 

                                            
3 https://au.mathworks.com/help/fixedpoint/ref/fix.html 
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population. The crossover in DE is performed as shown in the following equation (2.3). Figure 

4.1 shows an example of the DE crossover. The target solution xk is then compared with vector 

u and evaluated using equation (2.4). 

 

 

Table 4.1 Example of Dichotomous Mutation 

x1 x2 r x3 x4 x4 x5 x6 

1 1 1 0 0 1 1 1 
1 0 1 1 1 0 0 1 
0 1 0 1 0 0 1 1 
0 1 0 1 0 0 1 1 
1 0 0 1 0 0 0 0 
1 1 0 0 1 1 1 1 

 

4.3 Unsupervised Text Feature Selection Using Memetic Optimization 

The proposed method has four phases. First, the text documents corpus is transformed into 

numerical data in the pre-processing phase as was described in section 3.2 in chapter 3. Second, 

the resulting data are fed into the proposed feature selection method. Third, document 

clustering is performed using the resulting features. Finally, evaluation measures are used to 

assess the resulting clusters. In this subsection, the main steps of the proposed method of feature 

selection are described.  
1) The population is first randomly initialized, and then the solutions are refined in each 

generation. Each solution consists of a random subset of features as shown in Table 4.2. 

All solutions are encoded using a binary encoding scheme. As the unsupervised feature 

selection is a discrete binary-based optimization problem, the values range of every 

solution is limited to only [0, 1]. Each solution is represented as a string of random binary 

values, and the length of each solution represents features numbers. The presence of a 

feature is represented by 1 while the absence of it is represented by 0. Although DE uses 

floating numbers to generate the initial solutions all the values will be rounded to their 

nearest integers, which are limited to 0 and 1. 
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2) The fitness calculation is performed first using the MAD. The mean absolute deviation 

is the average distance runs between each feature and its mean. The MAD fitness is 

calculated using these steps: 

Step 1: compute the average of all features through all documents. 

Step 2: compute how far each feature is from the mean using positive distances 

through the absolute deviations. 

Step 3: sum out all resulted deviations. 

Step 4: divide the sum by the number of the non-zero features. 

Below is explained how the MAD is computed as shown in the equation (4.3). 

    

                                                                                                                               Equation (4.3) 

where 

m is the number of features (one valued in any particular solution). 

fi,j is the value of feature i that appears in document j. 

n is the number of documents containing feature i. 

is the average number of features appearing in documents n which is calculated 

as shown in the equation (4.4). 

 

                        Equation (4.4) 

 

The reason behind using the MAD fitness function is to find the score of each feature and 

to find its distance from the mean values of that feature in all documents with no 

consideration to the original class labels using a data-driven scheme. 

3) Each solution is modified using the DE mutation and crossover operators as shown in 

section 4.2. 

4) Simulated annealing (SA) is used as a local search modifier; it resembles the meta-

heuristic operators when applied as a local search in the memetic search. Almost the same 

idea of using mutation and crossover is followed in the local search. The solution chosen 

for the local search will have the highest MAD fitness value. SA is used to guide the DE 

search in the search space. It accepts all new solutions as long as the temperature is high, 

meaning a random-like search is conducted when the temperature reaches a certain 

degree. In contrast, when the temperature cools down to near 0, the acceptability of 
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solutions will be reduced, because the movement of atoms become more restricted. Using 

the synergy of melting metals in SA works on a particular solution to search in the 

vicinity of its neighboring area.  

A neighboring solution will be created after perturbation of the solution undergoing the 

local search using SA. The perturbed solution could be considered as a neighboring 

solution to the original one. The MAD scores of both the original and perturbed solution 

are calculated. If the neighboring solution outperforms the original, this case is always 

accepted. However, when the neighboring solution is worse, the acceptance of the new 

solution would be determined by a particular probability, the Boltzmann probability, 

which equals B = e- θ/T where θ is the difference of the original and the perturbed solution 

while T is the temperature parameter whose value decreases while the search advances. 

Figure 4.1 shows the use of SA within the DESA and DDESA feature selection. The 

control parameters required for the SA are the initial temperature (T0) and the cooling 

schedule (T), adopted from (Mafarja and Mirjalili 2017). 

 

 
Figure 4.1 Local Search using SA 

 

Input the Best solution  (x)

X*= Perturb(x)

F= ADDC (x) 

F*= ADDC (X*)

If (F*<F) X=X*,
F=F*

YES

Θ=|F*-F|

NO

P=Rand (0,1)

If (P<e- θ/T ) 

YES T=T*0.93

No ChangeNo

While T<=T0 Terminateyes

NO
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5) After steps 3 and 4, the new solution will be re-evaluated using the fitness function. Its 

fitness will be compared with the older solution using the following equation(4.5). 

   

   

   

 

          Equation (4.5) 

 

where snew, is the newly generated solution and sold is the old solution, while g is the 

generation number and xg+1 is the solution that survived into the next generation. 

 

Table 4.2 shows an example of the representation of each solution in the initial population 

of the features. In this table the rows (Si) represents the solutions where each solution is 

a vector that has a number of indexes (n). Each index represents the existence or the 

absence of that feature. In the case that the feature exists, the index will be 1 whereas 0 

represents the absence of that feature. In the last column of Table 4.2 the fitness values 

of each solution were reported. The number of the fitness values (MADi) equals to the 

number of the solutions (Si). It is important to mention that the number of MAD is a 

maximization optimizer. It means that the quality of the corresponding solution increases 

when the MAD score increases.  

 

Table 4.2 Initial Population of Features, Each Row (Si) is a Solution, and Each 
Column is a Feature  

Solution Index1 Index2 Index3 …  Index n Fitness  
S1 0 1 1   1 MAD1 

S2 1 0 1   1 MAD 2 
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S3 1 1 1   0 MAD3 
       . 
       . 

Sn 0 0 0   1 MADn 
 

The evaluation measures are important for observing the performance of each feature selection 

method and its effect on the clustering algorithm. Two types of measurements are used in the 

experiments: internal and external evaluation measures (Aggarwal and Reddy 2013). The F-

macro and F-micro are used as external measures, and the internal measure is the Average-

Document-Distance-to-the-Cluster-Centroid (ADDC) (Al-Jadir, Wong et al. 2017) as 

explained in chapter 3. It is noteworthy that the F-micro resembles the F-measure reported in 

the previous chapter. The next section reports a thorough analysis that was conducted by 

observing the maximization of the F-scores and the minimization of the ADDC measure using 

different feature selection methods. The relationship between the number of features and F-

measure is also considered as these factors directly affects the performance. Thus, The 

Reduction Rate (RR) is also used as a measure to observe how many irrelevant features are 

dropped in relation to internal and external measurements. The RR can be calculated as is 

shown in equation (4.6)  

                                                           Equation (4.6) 

where, RR is the reduction rate, m is the total number of features after applying the feature 

selection, and n is the number of original features.  

The F-macro and F-micro (F-measure) measures, are calculated after computing the precision 

(P) and the recall(R) the two measurements that are extensively used in the Information 

Retrieval. P is the proportion of documents in group A and still in class B whereas R is the 

proportion of documents in class B and group A. The precision and recall measures are 

calculated as is shown in equations (4.7) and (4.8) and in equations (4.9) and (4.10), we obtain 

the F-micro and F-macro, respectively.  

 

                                                                                          Equation (4.7)              
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                                                                                          Equation (4.8)          

                                                                                                                                                                                                
 

                                                                 Equation (4.9)           

                                                                                                                                                                                                  

                                                                                                            Equation (4.10)                                                                                                                                              

 

Figure 4.2 shows the entire architecture of the proposed method for the unsupervised feature 

selection. 

 

 
Figure 4.2 Memetic Unsupervised Feature Selection 

An example of how the fitness function MAD is calculated for each solution and how the 

features are reduced is explained below. If there is a document set with eight documents and 
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seven features, the features are produced after using the Term Frequency. Inverse Document 

Frequency TF.IDF weight scheme (explained in chapter 2). Each weight is normalized between 

0 and 1. The document corpus will be represented as shown in Table 4.3. 

 

Table 4.3 Features Representation 
 

F1 F2 F3 F4 F5 F6 F7 
Doc 1 0.1 0.2 1 0 0.87 0.21 0.3 
Doc 2 0.9 0.9 0 0 0 1 0 
Doc 3 0 0 0.8 0 0 0.98 0 
Doc 4 0 0 0 0 0 0 0 
Doc 5 0 0 0 0.1 0 0 0 
Doc 6 0 1 0 0.98 1 0 0 
Doc 7 1 0.98 0.8 1 0.9 0 0 
Doc 8 0 1 0.55 0.8 0.3 0 0.56 

 

As explained earlier, each solution is considered a binary string where each feature is identified 

by an index. When the index value equals 1, it means the feature is selected, whereas the 0 

value means this feature is discarded. In the example shown in Table 4.2, the length of each 

solution would be 7 (the same size of features). Table 4.4 represents a random solution. 

Table 4.4 An Example Solution 

F1 F2 F3 F4 F5 F6 F7 
0 1 1 0 1 0 1 

 

The example solution in Table 4.4 shows that F1, F4, F6 feature are not selected while other 

features are selected as their index values equal 1. In order to measure the viability of the 

solution shown in Table 4.4, the MAD is calculated by considering the selected features (i.e. 

F2, F3, F5, and F7). Table 4.5 shows the values of the selected features throughout the 8 

document. 

Before calculating the MAD for the solution shown in Table 4.4, documents are discarded 

when the features equal 0 (Table 4.5). Thus, the average values of these features will be 

calculated according to the non-zero values. For instance, for F2 the values used to compute 

the mean are [0.2, 0.9, 1, 0.98, 1]; for F3 the values used to compute the mean are [1, 0.8, 0.8, 

0.55 ]; for F5 the values used to compute the mean value are [0.87, 1, 0.9, 0.3]; and the values 
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used to compute the mean value of F7 are [0.3, 0.65]. Thus, the average value of each will be 

F2 = 0.77, F3 = 0.78, F5 = 0.76, F7 = 0.45.  

Table 4.5 Features Selected in the Example Solution  
 

F2 F3 F5 F7 
Doc 1 0.2 1 0.87 0.3 
Doc 2 0.9 0 0 0 
Doc 3 0 0.8 0 0 
Doc 4 0 0 0 0 
Doc 5 0 0 0 0 
Doc 6 1 0 1 0 
Doc 7 0.98 0.8 0.9 0 
Doc 8 1 0.55 0.3 0.56 

 

According to the MAD equation shown earlier, the values of the MAD scores can be calculated 

as follows: 

For F2: |0.2-0.77|+|0.9-0.77|+|1-0.77|+|0.98-0.77|+|1-0.77|/5 

= 0.75+0.13+0.23+0.21+0.23/5 = 0.275 

 

For F3: |1-0.78|+|0.8-0.78|+|0.8-0.78|+|0.55-0.78|/4 

= 0.22+0.02 +0.02+0.23/4 = 0.49/4 = 0.1225 

 

For F5: |0.87-0.76|+|1-0.76|+|0.9-0.76|+|0.3-0.76|/4 

= 0.11+0.24+0.14+0.46/4 = 0.2375 

 

For F7: |0.3-0.45|+|0.65-0.45|/2 = 0.15+0.2/2 = 0.085 

MAD= 0.275+0.1225+0.2375+0.085 = 0.75 

Thus, the final MAD score of the solution shown in Table 4.4 is 0.75, which equals the sum of 

all the values resulting from the calculated values of features F2, F3, F5, and F7. It is 
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noteworthy to mention that the optimization of the MAD among features is a maximization 

problem: whenever the MAD score increases, the quality of the corresponding solution 

increases as well.  

 

4.4 Test Results and Experimental Strategy 

The tests were conducted by using the retrieved features for the k-means clustering and the 

same test strategy to test the method presented in chapter 3. The datasets presented in chapter 

3 are used again for the test reported in this chapter, but the labels are not used. For the purpose 

of comparison, all features (ALL), FS Harmony Search Document Clustering (FSHSTC) 

(Abualigah, Khader et al. 2016), and the Feature Selection Genetic Algorithm Document 

Clustering (FSGATC) methods are used. The ALL represents the original feature space without 

reduction, and FSHSTC and FSGATC are two recently proposed unsupervised feature 

selection methods. Moreover, the native DE is also used as a FS method in the comparisons. 

Each of these are compared with the DESA and DDESA methods. 

An indirect evaluation of features is conducted with the use of clustering evaluation measures 

after using the k-means, as seen in Table 4.6. The number of runs of the k-means is set to be 

more than one run for the same reasons mentioned in chapter 3. This number can be increased 

or decreased. Consequently, taking the average of all the runs is more reliable than dependence 

on only one run, because the k-means is highly sensitive to the initial centroid representation. 

On the other hand, a direct evaluation of feature subsets via RR also reported in Table 4.7. 

Table 4.6 Internal and External Evaluation Measures 

    Minimum Maximum Mean 

  Method F-
Macro 

F-
Micro ADDC F-

Macro 
F-

Micro ADDC F-
Macro 

F-
Micro ADDC 

6Events 

All 0.346 0.371 0.503 0.750 0.779 0.573 0.623 0.655 0.546 
DE 0.238 0.259 0.539 0.781 0.803 0.584 0.626 0.665 0.561 

FSGATC 0.335 0.359 0.543 0.876 0.889 0.587 0.659 0.693 0.567 
FSHSTC 0.371 0.388 0.525 0.655 0.701 0.558 0.542 0.582 0.544 
 DESA 0.541 0.568 0.539 0.860 0.870 0.596 0.710 0.732 0.577 

  DDESA 0.573 0.608 0.554 0.887 0.897 0.629 0.761 0.779 0.491 
                      

Classic 3 
All 0.416 0.484 0.524 0.735 0.766 0.627 0.617 0.661 0.595 
DE 0.462 0.510 0.509 0.691 0.732 0.610 0.553 0.587 0.583 

FSGATC 0.399 0.476 0.470 0.599 0.676 0.791 0.473 0.533 0.776 
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FSHSTC 0.492 0.528 0.620 0.716 0.756 0.694 0.597 0.637 0.654 
DESA 0.416 0.484 0.484 0.760 0.786 0.552 0.639 0.691 0.509 

  DDESA 0.606 0.567 0.424 0.795 0.767 0.486 0.717 0.691 0.449 
                      

Pair of 
20news 

All 0.515 0.673 0.539 0.520 0.675 0.605 0.519 0.675 0.591 
DE 0.538 0.684 0.649 0.543 0.686 0.670 0.542 0.686 0.666 

FSGATC 0.505 0.669 0.422 0.515 0.673 0.566 0.511 0.672 0.498 
FSHSTC 0.524 0.678 0.685 0.529 0.680 0.720 0.528 0.679 0.710 

DESA 0.524 0.678 0.428 0.524 0.678 0.428 0.524 0.678 0.428 
  DDESA 0.560 0.675 0.304 0.560 0.675 0.304 0.560 0.675 0.304 
                      

Reuters 

All 0.177 0.194 0.403 0.559 0.616 0.536 0.280 0.308 0.476 
DE 0.205 0.212 0.395 0.345 0.366 0.477 0.260 0.283 0.438 

FSGATC 0.181 0.196 0.450 0.426 0.467 0.493 0.290 0.320 0.468 
FSHSTC 0.179 0.232 0.416 0.280 0.309 0.504 0.238 0.267 0.474 

DESA 0.200 0.228 0.396 0.294 0.331 0.466 0.241 0.269 0.420 
  DDESA 0.308 0.310 0.157 0.398 0.387 0.181 0.355 0.334 0.163 
                      

Ten Types 

All 0.115 0.145 0.413 0.386 0.424 0.559 0.261 0.296 0.499 
DE 0.104 0.135 0.434 0.307 0.326 0.526 0.196 0.229 0.477 

FSGATC 0.104 0.135 0.363 0.383 0.410 0.606 0.220 0.241 0.454 
FSHSTC 0.143 0.160 0.501 0.334 0.349 0.609 0.215 0.237 0.549 

DESA 0.115 0.140 0.476 0.425 0.453 0.560 0.214 0.255 0.528 
  DDESA 0.235 0.225 0.308 0.392 0.406 0.540 0.340 0.324 0.386 
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Table 4.7 Reduction Rate Table 

Method Dataset Old Features New Features Reduction Rate 
DE 6 Events 3863 1936 0.5 

Classic 3 362 141 0.61 
Pair of 20news 9496 4688 0.51 
Reuters 507 189 0.63 
Ten Types 15600 3697 0.76 

FSGATC 6 Events 3863 1920 0.5 
Classic 3 362 183 0.49 
Pair of 20news 9496 4758 0.5 
Reuters 507 235 0.54 
Ten Types 15600 3670 0.76 

FSHSTC 6 Events 3863 1924 0.5 
Classic 3 362 186 0.49 
Pair of 20news 9496 4770 0.5 
Reuters 507 250 0.51 
Ten Types 15600 3710 0.76 

DESA 6 Events 3863 1910 0.51 
Classic 3 362 108 0.7 
Pair of 20news 9496 4600 0.52 
Reuters 507 174 0.66 
Ten Types 15600 3653 0.77 

DDESA 6 Events 3863 1892 0.51 
Classic 3 362 94 0.74 
Pair of 20news 9496 3780 0.6 
Reuters 507 160 0.68 
Ten Types 15600 3528 0.77 

 

The RR, the fitness convergence, and the internal and external clustering evaluation measures 

can give a complete view of the reduced features subset. Comparing the F-macro, F-micro, and 

ADDC results with the RR can demonstrate the effectiveness of feature selection methods used. 

Theoretically, if a particular method achieved a higher RR with higher F-macro and F-micro 

scores, it can be concluded that the method is more effective than one that might achieve 

comparable F-scores or ADDC score while, at the same time, achieving features with less RR. 

 

4.5 F-Scores and ADDC Measure 

In this subsection, the RR, the ADDC and the F-macro and F-micro (F-measure) results are 

given. It is important to mention that the F-macro and F-micro are referred to as F-scores. In 
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the tests, the highest F-scores after the clustering indicates the higher accuracy of the resulting 

features. On the other hand, the ADDC score is used to measure the compactness of the clusters, 

as used to evaluate the clusters in the tests reported in the previous chapter. In the tests reported 

in this chapter, we are looking for the features that shorten distances between documents with 

any particular cluster. 

Ideally, the ADDC score should be minimized while the F-scores should be maximized. The 

relationship between the internal and external evaluation measures represented by the ADDC 

and the F-scores seems to have complex incremental and decrement trends. From experience, 

it can be said that the performance of these measures can be classified into three categories. 

First is the ideal case where the internal (ADDC) is minimized and the external (F-scores) is 

maximized with the same amount but in opposite directions. The second case occurs when the 

internal measure remains the same or slightly fluctuates while the F-scores move significantly. 

This case can be accepted because the F-scores variation can give a clue of the positive or 

negative algorithm's performance despite the stability (or the slight variation) of the internal 

measure. 

The last case, which is the worst case, occurs when both criteria have similar trends. In other 

words, when the ADDC and the F-scores either increase or decrease both in one direction. This 

implies the method that exhibits such behavior could be considered an ill-performed method 

due to the instability of the internal measure. Further details about the relationship between 

internal and external evaluation measures are explained in chapter 3. 

It follows that the internal and external measures have two different goals in data-driven 

problems such as document clustering, which means both the internal and external measures 

should be taken into account. The relationship between these two measures needs more in-

depth research to understand their behavior and how results can be predicted for one measure 

by observing the performance of the other. Studying this relationship is beyond the scope of 

this present research and thesis. The explanation above is intended to make clear the nature of 

the performance of both F-scores and the ADDC in the text feature selection as reported in 

Table 4.6. 

Table 4.6, lists the values of the minimum, maximum and average ADDC and F-scores for 

different runs. The 6-events crimes dataset has the minimum, maximum and the average scores 

of the F-scores and the ADDC. It can be seen that the results of the F-micro and F-macro values 

of all runs for the proposed DDESA method are 0.573 and 0.608 for the minimum, 0.886 and 
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0.897 for the maximum, and 0.761 and 0.778 for the average values. All these scores are higher 

than those obtained by other competent methods including the ALL. The ADDC measure of 

the average values of the six events crimes obtained by the DESA is slightly higher than the 

average ADDC obtained by the DESA method. The slight increase of the ADDC is acceptable 

as the corresponding F-scores are much higher than those achieved by other methods in relation 

to their ADDC scores. 

The results for Classic 3 are similar to the 6-events crimes dataset. Again, it can be seen that 

the DDESA achieved higher results of clustering in terms of the F-scores in comparison to the 

other methods including the ALL method. The ADDC values of the DDESA method also show 

an improvement by obtaining the least values among other methods. However, the ADDC 

values are still insignificant when compared to the other methods. Therefore, the use of the 

external measures will be considered. 

The Pair of the 20news group is the third dataset used. It is distinctive and different from other 

datasets because it has only two classes. Undoubtedly, the lower class number makes it much 

easier for the clustering algorithm to predict the right class for each document without the 

confusion of dividing features into multiple classes. Therefore, it can be seen that all the feature 

selection methods tested have compatible behaviors. There are no significant changes in the 

performance of the DESA method and the other methods in terms of the external and the 

internal measures. Due to the lower class number, the feature selection does not seem to play 

a notable role. 

Reuters is one of the widely used benchmark datasets. In this dataset, the values achieved by 

the DDESA are comparable to those achieved by the FSGATC method for the maximum. 

Correspondingly, the ADDC values of the DDESA were less than the other methods including 

the ALL with the minimum, maximum and average values.  

Finally, the Ten Types of crimes values of the DDESA are comparable to the other methods 

in terms of the F-scores and ADDC including the ALL method.
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The results presented in Table 4.6 make it possible to conclude that using feature selection can 

improve the performance of the internal and external evaluation measures. However, due to the 

existence of some similarities between the results obtained using different feature selection 

methods in terms of the internal evaluation measure ADDC, it becomes necessary to use 

another measurement that can determine the effectiveness of each method in relation to the 

information shown in Table 4.6. Therefore, the use of the RR of features can be used in 

conjunction with the information provided in Table 4.7 to determine which method achieved 

the highest F-scores, the lowest ADDC, and the highest RR. 

In this subsection, the RR of each feature selection method is explained. Table 4.7 lists the total 

number of the original features, the total number of the selected features and the relationship 

between them, which was explained earlier. Table 4.7 shows the RR of both DDESA and 

DESA methods exceed those achieved by other methods. The clustering performance after 

using the DESA FS in both versions remains at an equal or better performance state than using 

the ALL features or using other state-of-the-art methods as shown in Table 4.6. Furthermore, 

it can be noted in Table 4.7 that DESA and DDESA RRs are more than the half of the features 

ranging between 0.51 and 0.77. The F-scores and the ADDC achieved by the DDESA method 

are still comparable with the scores achieved by the other methods including the ALL method.  

  

4.6 Summary 

This chapter presented a feature selection method capable of detecting informative features by 

using the hybridization of a wrapper and filter methods in an unsupervised memetic feature 

selection manner. The proposed method combines SA to the global search using the DE. SA is 

used as a filter method to refine the best solution that resulted from the global search. Two 

versions of this hybridization were presented in this chapter. First, DESA, which uses the 

standard mutation of Differential Evolution. Second, DDESA, which uses the dichotomous 

mutation used in (Peng, Wu et al. 2016) to solve knapsack optimization problems. The DDESA 

outperformed the performance of DESA. However, both methods were compared against the 

DE wrapper, and also against two other state-of-the-art unsupervised feature selection methods, 

namely FSGATC and FSHSTC methods. The performance of the DDESA and other compared 

methods were evaluated indirectly via external and internal evaluation of the clustering. The 

RR was also taken into account; the RR measures the percentage of feature reduction for each 

method while MAD measures the convergence of each of the tested methods. The method that 
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achieves the highest RR and the highest MAD is considered the best. When it comes to the 

clustering results using feature subsets resulting from different methods, the minimum internal 

measure values using the ADDC and the maximum external measure values using the F-score 

indicate the superiority of that method. As mentioned earlier, the DDESA method achieved the 

highest F-scores in the majority of the datasets. It also achieved the least ADDC values with 

the majority of the datasets. The RR values also suggest that the DDESA outperformed other 

tested methods. Therefore, the DDESA method will be used in test for centroids allocation of 

document clustering of unlabeled document, reported in the next chapter. 
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Chapter 5 

Document Clustering Using Memetic Optimization 
 

 

5.1 Introduction 

In this chapter, the same concept used for feature selection (chapter 4) is used, however the 

proposed memetic optimization techniques are intended to allocate clusters centroids optimally 

within the search space for document clustering instead of doing feature selection. In that case, 

the fitness function (e.g. distance measure) is used to find the distance between each cluster 

center and its surrounding documents. The aim of using memetic optimization here is to 

minimize distances between those cluster centers (centroids) and their relevant documents by 

positioning these centroids in the right location in the search space. 

The usage of the memetic concept in feature selection differs from its usage in centroids 

allocation in many aspects. Both problems are considered NP-hard optimization problems, but 

the main distinction between them is in the calculation of their objective functions and local 

search methods. The main aim of this chapter is to present a method capable of allocating 

cluster centroids using memetic optimization, by using different combinations of global and 

local searchers in a memetic context. The first combination presented in this chapter is the use 

of the approximation methods via the CLS and the Discrete Differential Evolution (DDE) 

global search. The second combination is based on the gradient search using the k-means as a 

local search and the DHS as a global search. An extensive explanation is given regarding these 

two memetic combinations showing the advantages and the disadvantages of each in terms of 

the accuracy of the obtained results. The reason for this comparison is to find the most efficient 

method that provides optimal solutions to the problem of text document clustering. 

The two combinations explained in this chapter are DEMC and MDHS. Later, two modified 

versions to the MDHS are presented; they are the CMDHS and the ACMDHS as there are two 

possible ways to enhance the MDHS. This chapter is constructed as follows. 
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Section 5.2. Intended to explain how the cluster centroids are generated and evaluated, which 

includes document corpus representation, solutions initialization, initial solution evaluation, 

centroids calculation and fitness evaluation.  

Section 5.3. The clustering using HS is discussed as it is the base method of MDHS clustering 

methods presented in the next section.  

Section 5.4. The main distinction between DEMC vs. Memetic Differential Evolution 

Harmony Search (MDHS) clustering is stated.  

Sections 5.5 and 5.6. Both DEMC and document clustering using MDHS are detailed.  

Section 5.7. An adaptive version of the Crossover MDHS is explained.  

 

5.2 Documents, Solutions and Centroids Representation and Evaluation 

This section is intended to highlight the important concepts used in optimizing cluster centroids 

for the proposed document clustering approaches presented in this chapter. This section will 

explain first the representation of the documents corpus. It also describes how the solutions are 

initialized, modified and evaluated. Furthermore, the centroids calculation process of each 

solution is explained.  

 

5.2.1 Document Corpus Representation 

The datasets are first uploaded in a text format. After pre-processing, datasets are transformed 

into a Term-Document Matrix format (TDM). It is also valid if the TDM matrix is expressed 

as a Document-Term Matrix (DTM). Table 5.1 shows an example of a dataset containing six 

documents, seven features (keywords) and three classes (these classes are only included in 

order to explain the concepts). 
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Table 5.1 Relationship Between Features,  
Documents, and Classes 

  
F1 F2 F3 F4 F5 F6 F7 

Doc1 c1 0 0.1 0.2 0 0.2 1 0 
Doc2 c1 0 1 2 0 0.2 1 0 
Doc3 c3 0 3 0.1 0 0.4 0.5 0 
Doc4 c3 0 3 1 0 0.4 0.5 0 
Doc5 c2 7 0.1 2 0 0.1 0.2 0.1 
Doc6 c2 7 0.9 2 0 0.1 0.2 0.1 

 

As the main distinction between the clustering and classification problems is the availability of 

the class labels in classification problems, their existence is not necessary for any true 

clustering problems. However, with benchmark datasets the availability of these labels is 

important only for the purpose of system evaluation. This is essential to validate the system to 

be used later for unlabeled datasets. The actual representation of TDM used in the clustering 

systems is shown in Table 5.2. 

Table 5.2 Small Dataset Without Class Labels 
 

F1 F2 F3 F4 F5 F6 F7 
Doc1 0 0.1 0.2 0 0.2 1 0 
Doc2 0 1 2 0 0.2 1 0 
Doc3 0 3 0.1 0 0.4 0.5 0 
Doc4 0 3 1 0 0.4 0.5 0 
Doc5 7 0.1 2 0 0.1 0.2 0.1 
Doc6 7 0.9 2 0 0.1 0.2 0.1 

 

For text data produced from real world applications, a classified dataset such as the one 

presented in Table 5.1 is unlikely. Unsupervised learning problems are concerned with label-

free data. For instance, the external evaluation measures are dependent on the availability of 

the original class labels. These measures match the new documents’ configurations after 

clustering with the original ones. More researchers use this kind of evaluation because more 

accurate results can be achieved compared to internal measures such as the F-measure, to be 

explained later. The only limitation that restricts use of this measure is the unavailability of the 

previous categorization of the documents. Therefore, it can be used with benchmark datasets 

to validate the assessment performed by the internal measure. As the performance of these 

datasets is evaluated using the external measures and the internal measures, it becomes easier 
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to predict the accuracy of the clustering with other datasets when only the internal measures 

can be used, which assess only the generated clusters, depending on the intrinsic properties of 

them. 

 

5.2.2 Solutions Initialization 

The ‘solution’ definition in optimization-based document clustering is a set of centroids that 

needs to be distributed accurately. To allocate the centroids efficiently, each centroid is 

supposed to be positioned at the nearest distance to all relevant documents. Such is the case of 

the example in Table 5.3, in which the number of documents is 7 (n = 7) and these documents 

need to be distributed among three clusters [c1, c2, c3]. That can be stated as permutations of n 

documents allocated at a time to r clusters which can be represented in equation (5.1). 

                                     Equation (5.1) 

Thus, the number of possible solutions would be 210 for this small example, yet only one 

feasible solution should be considered from those solutions. This simple example is only 

intended to show the relationship between each document and its corresponding document. The 

increasing number of documents and centroids requires more intelligent methods to find the 

best centroids allocation. Consequently, the selection of the best solution will become more 

complicated. Therefore, intelligent methods such as the memetic algorithm could provide a 

faster convergence to the best solution (Neri and Cotta 2012). In addition, the problem is not 

only limited to the selection of the best solution in the search space, it is equally important to 

employ efficient techniques that are capable of modifying solutions on a local search basis. 

Such techniques should be capable of avoiding local optima where all solutions become non-

productive. In typical optimization problems, a random initial population is first generated by 

using the random number generator function. For document clustering centroids allocation 

methods presented in this chapter, the initial population uses this technique. However, using 

other techniques to initialize the population could be more productive currently, but that 

exploration is beyond the scope of this present research. The size of the population and the 

initial assignments of documents are random and should be less than or equal to the desired 

number of clusters. The example in Table 5.3 shows only 10 sample solutions represented by 
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the columns (sol1 . . . sol10). Each solution has the same number of documents in the original 

dataset. 

 

5.2.3 Initial Solution Evaluation 

A random initialization of solutions is first conducted (Table 5.3). The viability of each solution 

is calculated by using a fitness function. 

 

Table 5.3 Solutions Matrix 
 

Doc1 Doc 2 Doc 3 Doc 4 Doc 5 Doc 6 Doc 7 
sol1 2 1 1 3 3 1 3 
sol2 2 3 3 3 2 1 1 
sol3 1 1 1 1 2 2 2 
sol4 1 2 3 2 1 1 3 
sol5 2 1 2 1 3 3 3 
sol6 3 2 3 3 2 3 3 
sol7 3 1 1 2 2 2 1 
sol8 1 2 2 3 2 2 1 
sol9 2 3 1 1 2 2 2 
so110 2 3 3 1 1 3 1 
so111 1 2 1 1 1 2 2 
so112 2 1 3 1 1 1 1 

 

Each sol row in Table 5.3 represents a random solution that contains indices of clusters. For 

instance, the intersection of (d1, sol4) means that document d1 belongs to cluster index 1 while 

the intersection of (d4, sol4) means that document d4 belongs to the second cluster and so on. 

The fitness function, which is used to evaluate the quality of each solution, aims to find the 

highest number of true positives by correctly allocating each document to its proper class. In 

the example in Table 5.3, if we assume that the right allocation of documents is d1 ∈ 2, d2 ∈ 1, 

d3 ∈ 3, d4 ∈ 1, d5 ∈ 6, d6∈ 1, that means the best solution vector is [2, 1, 3, 1, 6, 1], which 

obtains the least fitness function score (assuming that the least is the best). The fitness function, 

objective function or simply the cost are all interchangeable. The parameters required by the 

fitness function are the number of clusters, the original dataset shown in Table 5.2 and the 

initial solutions as reported in Table 5.3. 
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5.2.4 Centroids Calculation and Fitness Evaluation 

This process uses the solutions existing in the solutions matrix sequentially to generate a 

specified number of centroids. For our example, each solution is used to create three centroid 

vectors. Each centroid vector has the same size of solutions. The use of optimization methods 

is vital to find the best solution that returns the best centroids. In order to perform the clustering 

of the documents, all document vectors stored in the TDM shown in Table 5.2 are compared 

to the centroids resulted from each solution. The comparison is based on distance measures. 

The comparison of n documents to c clusters (of one solution) is refered to as the fitness of 

score of that solution calculated by the ADDC. In other words, a good solution would generate 

good centroids; that solution minimizes the distance between each document to its 

corresponding centroids. We understand, then, that the locations of centroids are dynamic while 

documents are static in the search space.  

The number of desired clusters will determine the size of the centroids matrix to be constructed. 

For instance, Table 5.4 shows what the centroid matrix would look like if three clusters were 

to be formed.  

Table 5.4 Centroids Matrix 

C1 3.5 2 1.5 0 2.5 2 3.5 
C2 3.5 2 1.5 0 2.5 1.5 3.5 
C3 0 1 3.5 0 2 2.5 1.5 

 

Thus, the main idea behind using optimization methods is to find the best positions of centroids 

by adjusting their location in every iteration. The fitness function measures the effectiveness 

of each solution. The solution that can update the centroids with the highest fitness score is 

considered the most fitted, and it will be chosen for the next round. Algorithm 5.1 shows the 

centroid’s calculation steps. 
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Algorithm 5.1. The centroid calculation 

1. Input (C, row, TDM, x) 
2. C: number of clusters,  
3. Nc: number of documents 
4. TDM: the documents matrix 
5. x: the solution that is wanted to be evaluated.  
6. Output (the centroids matrix)  
7. Centroids (:,:) =0 // initialize the centroids matrix as an empty matrix. 
8. for i=1to C                  //the number of clusters(classes)                                     
9. w=0;                    //counter 
10. for j=1:Nc        
11. if x(:,j)=i         
12. w=w+1; 
13. Centroids (i,:)=TDM (j,:)+Centroids (i,:);   // the centroids matrix C is  represented    in 

the above table 
14. end 
15. end 
16. Centroids (i,:)=C(i,:)/w 
17. end 
18. end //algorithm 

In algorithm 5.1 and next algorithms, the (:) notion refers to the all rows or columns. For 

instance, x(:,j) means for all rows of  x select the jth column.  

 

5.3 Differential Evolution Memetic Clustering vs. Memetic Differential Evolution 
Harmony Search 

The first memetic-based document clustering method introduced in this chapter uses the DE 

global search with a CLS. It performs step-wise optimization moves via the logistic function. 

This method, the DEMC, has been introduced in the present researcher’s published paper (Al-

Jadir, Wong et al. 2017). The test results show that the DEMC outperformed other clustering 

methods such as the Chaotic Gradient Artificial Bee Colony (CGABC), Differential Evolution 

Simulated Annealing (DESA) and the Differential Evolution K-Means (DEKM). However, the 

obtained results are regarded as not yet satisfactory. Therefore, a second approach, MDHS is 

proposed. Two different experiments tested this method. The proposed MDHS was tested 

without the differential crossover operator (resembling the standard DHS, explained 

extensively in chapter 2). 

The proposed method is then modified to add the crossover to MDHS, named as Crossover 

Memetic Differential Harmony Search (CMDHS), which is used later to observe the effect on 
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the exploitation aspect of the DHS global search. The memetic clustering using MDHS or 

CMDHS methods is based on the idea of cooperation between the global search and local 

search performed by the k-means. The ability of the k-means to search the vicinity of local 

areas makes it ideal for enhancing the solutions produced by the DHS global search where the 

k-means performs the clustering using the best solution produced by the global search. 

Following this, a greedy selection is conducted to check if the new solution outperforms the 

best solution in the HM. 

One more enhancement of the CMDHS, the parameter adaptation property, has been added. 

The use of the adaptive parameter settings can also enhance the performance in comparison to 

the performance of static parameter settings (Wang, Li et al. 2017). These improvements can 

all be combined to produce an efficient method for document clustering. An Adaptive 

Crossover Memetic Differential Harmony Search (ACMDHS) method was developed for the 

purpose of optimizing document clustering. 

 

5.4 Differential Evolution Memetic Clustering  

The DEMC method incorporates a DE global search with a chaotic logistic local search. DE 

has a self-organization behavior, and performs well for many multi-modal optimization 

problems (Chunming, Yadong et al. 2017). The method that forms a part of this present 

research utilizes the DE combined with a CLS local search. The shrinking strategy is used to 

reduce CLS execution as the generation number increases to improve its efficiency (Jia, Zheng 

et al. 2011). 

 

5.4.1 Differential Evolution Clustering Global Search 

Like many other evolutionary methods of optimization, DE has two phases: population 

initialization and agents’ evolution. However, the present research integrates those two phases 

with a local search, forming three phases instead of just two. The steps of the proposed DEMC 

are as follows. 

A. The initialization phase, is conducted as described in chapter 4, section 4.2. However, 

the solutions boundary in this method will be set to match the number of clusters.  
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B. For the solutions evaluation, the same ADDC and cosine equations explained in previous 

chapters are used.  

C. In order to update the solutions, the mutation and crossover steps will be used as was 

explained in section 4.2 in chapter 4. Figure 5.1 and Figure 5.2 show examples of the 

differential evolutions and mutations used for a clustering problem of three clusters. In 

Figure 5.1 it is clear that xr1, xr2 and xr3 are the input vectors. Vectors xr1 and xr2 are 

subtracted and the result is added to xr3. The absolute values of the resulted vector is 

taken and finally the values were rounded.  

D. In the selection step, the most fitted solutions resulting from the mutation, crossover or 

local search are substituted by the least fitted ones. 

 
Figure 5.1 DE Mutation Example 
 

5.4.2 Chaotic Logistic Search Shrinking Strategy 

Chaos is typically a non-linear phenomenon that has two properties: randomicity and 

ergodicity. Due to randomicity and ergodicity, chaotic systems are updated randomly. This 

property of chaos systems could be used to optimize the distribution of the cluster centroids 

by optimizing the ADDC fitness function. However, chaos optimization performs efficiently 

with limited search spaces, whereas its performance could take a longer time with larger 

search spaces. 
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Figure 5.2 DE Crossover Example 

 

Thus, chaotic optimization is usually combined with global search optimization methods to 

converge faster (Gwo-Ching and Ta-Peng 2006). In DEMC, the CLS is the final step of the 

clustering method. It is used to refine the best resulting solution(s). Algorithm 5.2 shows the 

main steps of applying a CLS local search while equation (5.2) represents the logistic function 

responsible for updating β, which is the chaotic variable required to update solutions. 

                                              Equation (5.2) 

where βjk is randomly distributed number between [0,1] which is a particular chaotic variable 

in the jth iteration, and μ is a control parameter used to update βjk. 

 

The current research method being tested used the same shrinking strategy used in (Jia, Zheng 

et al. 2011) to avoid any premature convergence, in order to stabilize the algorithm within 

later generations. Shrinking the search to only local spaces can be useful and that is conducted 

by applying equation (5.3) that calculates the shrinking factor λ. 

 

                                                 Equation (5.3) 
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After β, λ have been calculated, the new solution xg+1 is generated by equation (5.4). 

                            Equation(5.4) 

 

where n is the current local search iteration number while q is the shrinking exponent that 

determines the speed of convergence. When q becomes larger, the convergence will go 

slower. 

 

5.4.3 Differential Evolution Memetic Clustering Evaluation Metrics 

For the evaluation of the experimental results, internal and external clustering evaluation 

measures are used (Forsati, Mahdavi et al. 2013). The internal evaluation measure is 

responsible for assessing the internal characteristics of resulting clusters, computed by the 

fitness function; the external measure computes the matching degree between classes and their 

corresponding clusters. The macro-F and micro-F measures (F-measure) are used as an external 

evaluation measure (Bharti and Singh 2016), and the ADDC is used as an internal measure. 

The values of the macro-F and micro-F range between [0,1] and the highest set of these values 

refers to the best set of the resulting clusters and vice versa, while the ADDC looks for the 

minimum, as seen in chapter 3. 

 

Algorithm 5.2 Chaotic Logistic Search local search 
1. Input: Objective function ADDC (x), Harmony Memory size HMS, Local search 

iteration number, the solutions size Dim, initialized random number 
β0(0,1)/0.25,0.5,0.75 

2. Begin  
3. i = 0 
4. while i < iter do 
5. Select the best solution in the population xij 
6. for j = 1 to Dim do 
7. x`ij 

(g) = (1-λ)xij 
(g) + λβ(g) 

8. end for 
9. compute λ g+1 
10. compute βj g+1  
11. i = i + + 
12. if f (xij`) < f (xij ) then 
13. xi = x`ij 
14. f (xi) = f (xij`) 
15. end if 

11 )1( ++ +-= kgg xx lbl
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16. end while 
17. the new x will be updated in the HMS along with its fitness function 
18. end  

 

5.4.4 Differential Evolution Memetic Clustering Experimental Results 

The present experiments used the same datasets reported in chapter 3. Those datasets are 

diversified in terms of their number of classes, document lengths, topics and the number of 

documents. In order to verify the accuracy of the results using the DEMC method, a comparison 

was made with a number of other variants, namely the classical DE, the DESA (Saruhan 2014) 

and DEKM (Kwedlo 2011). DESA was used for a non-clustering purpose while DEKM was 

used for data clustering. However, these two methods were adapted for the present research as 

document clustering methods. Furthermore, traditional clustering using the k-means method is 

also used in the comparison. 

Finally, DEMC is also compared to the method proposed in (Bharti and Singh 2016), the 

CGABC method. The CGABC parameters are the colony size (CS), set to 160; a1,b1 were 

limited to [−1.2, 1.2]; the number of food sources is CS/2=80; ϕ is ranged between [0,1.5] and 

φ is between [-1,1] while the G-cycle is 10. All these parameter values were set in the original 

paper. In the experiments, the algorithms were tested 20 times to reduce the effect of the 

random nature of the k-means and the random initial generations of the other methods. 

The average results of all runs are taken in to account for both F-scores and ADDC. Tables 5.5, 

5.6 and 5.7 report the values of the external and internal evaluation (fitness values) measures 

respectively after applying the algorithms on the five datasets. In Tables 5.5 and 5.6, it can be 

observed that DEMC provided better scores in comparison to other competent methods. 

Nonetheless, only in D4 can it be observed that the CGABC method achieved better results in 

terms of the evaluation measures used. This might be because of a small number of classes in 

the D4 dataset. Although the performance of CGABC was higher than the DEMC for that 

dataset, the difference is insignificant. 

The proposed DEMC obtained better results for other datasets as shown in Table 5.5 and Table 

5.6. On the other hand, Table 5.7 shows that the DESA, DE, CGABC methods, as well as the 

method being tested, have compatible ADDC results, whereas both DEKM and k-means 

methods obtained almost similar results. From the internal measure point of view, it is unclear 

which method performed better. However, by following the rules established in chapter 3 
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regarding the relationship between the internal and external evaluation measures, the external 

measure is considered a decisive measure in that situation. Indeed, the external measure uses 

the actual truth data (class labels) and that would give a more accurate description of the formed 

clusters than the internal measures. This also agrees with the use of external measures by other 

researchers in the field of document clustering such as in (Forsati, Mahdavi et al. 2013) and 

(Bharti and Singh 2016). In the next section, another method that aims to minimize the ADDC 

and maximize the F-scores will be discussed. 

 

Table 5.5 Clustering Results Using F-macro Measure 

 DESA DEKM DEMC DE           CGABC k-means 
D1 0.1764 0.5986 0.8795 0.7230 0.7927 0.6502 
D2 0.8579 0.7295 0.9470 0.9454 0.9408 0.7211 
D3 0.5976 0.5196 0.9875 0.5493 0.6330 0.0634 
D4 0.6024 0.3294 0.9849 0.0036 0.9894 0.5196 
D5 0.3333 0.0628 0.5813 0.5523 0.4938 0.0550 

 

 

Table 5.6 Clustering Results Using F-micro Measure 

 DESA DEKM DEMC DE CGABC k-means 
D1 0.2266 0.6291 0.8900 0.7545  0.8265 0.6800 
D2 0.8679 0.7711 0.9480 0.9465  0.9428 0.7509 
D3 0.6024 0.6755 0.9877 0.5830  0.6617 0.0698 
D4 0.6020 0.3635 0.9853 0.0036  0.9896 0.6755 
D5 0.3333 0.0695 0.6144 0.5865  0.5341 0.0698 

 

 

Table 5.7 ADDC Values 

 DESA DEKM DEMC DE CGABC 
D1 0.5638 0.5700 0.7217 0.7039 0.7222 
D2 0.8591 0.7982 0.8605 0.8605 0.8606 
D3 0.8326 0.6046 0.8445 0.8450 0.7827 
D4 0.8265 0.6013 0.8304 0.8130 0.8450 
D5 0.8562 0.4069 0.7827 0.7830 0.8306 

 



 

100 
 

5.5 Document clustering using Memetic Differential Harmony Search 

The HS was proposed first by Geem (Geem, Kim et al. 2001) as an optimization method. In 

chapter 2 it was extensively explained in section 2.3.1.3. The population in a HS is represented 

as a set of harmonies stored in a data structure, such as a matrix, called Harmony Memory 

(HM), and each harmony represents one solution. The method uses the following parameters: 

HMS, that is the number of solutions in HM, HMCR that controls the selection of the solutions 

from HM, and PAR that resembles mutation in the GA. Furthermore, the BW parameter is used 

to modify harmonies. The optimal value of BW is not yet determined. Therefore, DE operators 

could eliminate the need to set up the BW parameters. In contrast to the traditional HS 

explained earlier, the proposed method substitutes DE mutation for the PAR phase. In contrast 

to the conventional PAR step that changes only one solution at a time with no interaction with 

other solutions, the use of DE operators could find the relationship between several solutions. 

A modification to DHS, using the differential binomial crossover (Lin, Qing et al. 2011), could 

contribute to further exploitation than by utilizing the mutation alone. Thus, a modified version 

of DHS was tested. That modification was named Crossover CDHS (CDHS), and is shown in 

Algorithm 5.3. Both DHS and CDHS are global search methods that mean these two methods 

might have a limited ability in a local search. The memetic optimization could be used to 

enhance their local search capability for a clustering centroid distribution. That involves 

modifying each solution locally using k-means to rearrange the cluster centroids. 

 

5.5.1 Memetic Differential Harmony Search vs. Crossover Memetic Differential 

Harmony Search  

The combination of DHS and CDHS with the local search resulted in the MDHS and the 

CMDHS. The main steps are summarized below: 

A. The first step begins by transforming the text documents into a numeric format using 

the same techniques explained in section 3.1. 

B. The HM in both DHS and CDHS is initialized using the same technique as the 

initialization of the standard HS. The method sets a predefined number of clusters: c. 

HM contains a list of potential solutions, which is normally represented by a matrix as 

shown in Figure 5.3. Each row of the matrix is a solution that includes an assignment 
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of documents to cluster numbers. For instance, if there are six clusters, values in a 

solution will be between 1 and 6. The length of each solution is the same as the number 

of the documents while the number of solutions in HM or HMS can be set to any 

number, normally to twice the number of clusters. 

 

Figure 5.3 Harmony Memory  

 

The initialization of HM is performed using the following equation, which randomly sets 

the initial population in a particular range. 

   ,   

     i = 1 , 2 , 3, HMS and j = 1 , 2 , 3  , N          Equation (5.5) 

         where c is the predefined number of clusters and  represents the assignment of a cluster 

index. 

Each row of the HM is a solution (harmony) that contains an assignment of documents 

to cluster numbers, and the length of each solution is fixed to the number of documents. 

C. Every single solution is evaluated using an objective function. The objective function 

used for evaluation is the ADDC. 

D. Harmony Improvising. This step is responsible for modifying the HM in the standard 

HS. The improvising step is shown in Algorithm 5.3 while the improvising of DHS and 

CDHS is shown in Algorithms 5.4 and 5.5 respectively.  

E. Memetic Optimization. In order to apply the local search for the best solution in the 

harmony memory, the HM is ranked first to retrieve the best solution according to its 

ADDC fitness value. The best solution is then locally searched using the k-means 

method. Each time the local search is applied the new modified solution will be 

compared to its original version. If the resulting solution is given a better fitness score, 

1)1()1,0( +-´= crandxij

i
jx
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it will replace the original solution. For instance, if nine documents are to be distributed 

among three clusters, the length of the solution will be 9 while the range values of each 

bit in that solution is between [1,3] (assuming that the number of solutions is any 

number more than 3). The local search process will be conducted as is shown in Figure 

5.4. 

F. In Figure 5.4 it can be seen that in step 1 the local search is applied on the best solution 

(sol) while in steps 2 and 3 the evolution of the original solution and the modified 

solution is respectively completed. A comparison between both solutions is conducted 

according to the fitness values obtained by steps 2 and 3. In the method being tested for 

the present research, comparison is based on the minimization of the average distance 

of documents to clusters using the ADDC measure. Thus, if the modified solution 

obtained the minimum ADDC, it will replace the original solution. 

G. The next step is to update HM. A comparison is done by checking the fitness value of 

an improvised solution with the older one. If the fitness value of the newly improvised 

solution is higher than the older one, the newly updated solution will replace the older 

one. 

H. The termination condition is satisfied when the maximum number of iterations is 

reached, or no further improvement is observed.  

 

Figure 5.4 Local Search Modification 
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Algorithm 5.3 Improvising the population 

1. Input Harmony Memory HM, HM size, PAR, HMCR and the modified solution X.  
2. Begin 
3. for i = 1 to HMS do  
4. for j = 1 to N do 
5. if rand (0, 1) ≤ HMCR then  
6. x =HM(i, j); 
7. if rand (0, 1) ≤ PAR then 
8. x =x + rand( 0 , 1 ) × BW  
9. else  
10. x =x - rand( 0 , 1 ) × BW  
11. end if 
12. else 
13. x = rand(0,1)*(c-1) + 1; 
14. end if 
15. HM(i, j) = x ; 
16. end for 
17. end for 
18. end  

5.5.2 Test Strategy  

In this section, the comparison results of the proposed MDHS and CMDHS methods are 

reported. The comparison involved the standard HS (Geem, Kim et al. 2001, Forsati, Mahdavi 

et al. 2013), k-means (Jain 2010), Memetic HS (Gao, Wang et al. 2015) and DHS 

(Abedinpourshotorban, Hasan et al. 2016) methods. The best performing method was 

compared with two state-of-the-art methods found in recent literature. The first is a KH method 

proposed by (Abualigah, Khader et al. 2016) while the second is an ABC-based method, named 

Chaotic Gradient ABC (CGABC) (Bharti and Singh 2016). In all tests, the external and internal 

evaluation measures of clustering were used. The F-measure is used as an external measure 

while the ADDC is used as an internal measure. The Friedman test for statistical significance 

is utilized to analyse the performance of the competent methods. 

 

5.5.3 Parameter Tuning 

The parameters used in these methods are a combination of the Differential Evolution (DE) 

parameters which are the mutation scaling factor F and crossover parameter Cr and the 

Harmony Search (HS) which were setup in the same way as they were set in (Forsati, Mahdavi 

et al. 2013) and (Abedinpourshotorban, Hasan et al. 2016). As these two methods were 

combined into one method therefore these parameters will be used together in one method. For 
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the sake of simplicity, we specifiy each methods’ parameters in separate table where Table 

5.8(a) shows the DE parameters. In Table 5.8(a) these parameters were tuned while in Table 

5.8 (b) the HS parameters were used the same way as they were used in these two 

papers(Forsati, Mahdavi et al. 2013) and (Abedinpourshotorban, Hasan et al. 2016). 

 Three values were tested for the Cr and F parameters.  For Cr, the three selected values were 

0.2, 0.5 and 0.9 while for F the values tested were 0.8, 0.1 and 0.5. These two parameters should 

be between [0,1]. If a specific parameter generated the highest performance with the majority 

of datasets it is used for later tests. After the selection of the best value of the Cr parameter, the 

F parameter is tested. As can be seen in Table 5.8, the Cr value that helped to obtain the highest 

F-measure and lowest ADDC was 0.5. Therefore, the other two values were discarded. From 

Table 5.8 it becomes evident that the use of 0.5 for the Cr has 5 out of the six highest F-measure 

scores. The values of all runs for the ADDC measure are almost consistent, with minimal 

differences. Thus, depending on the F-measure values the best parameter will be chosen. 

Regarding the F parameter, 0.1 achieved the highest scores with 4 out of six datasets. In all of 

D1, D3, D4, and D5, the F-measure was the highest. For D2 and D5, in both datasets, the 0.1 

F-measure score for the F parameter was higher after using 0.5, but both scores were lower 

than that using 0.8 for the F. The ADDC values were not greatly different in all parameter tests. 

Therefore, the F-measure values were considered to determine the best values of the F 

parameter in all cases. 

 

Table 5.8 (a) Cr and F Parameter Tuning Table 

 Cr=0.2 Cr=0.5 Cr=0.9 
Dataset F-Measure ADDC F-Measure ADDC F-Measure ADDC 
D1 83.90945 0.718938 85.81185 0.714983 79.866677 0.714957 
D2 94.540028 0.748749 98.429393 0.74538 96.452157 0.74342 
D3 88.05235 0.711795 89.205819 0.711147 92.794232 0.707603 
D4 94.953637 0.842767 96.090954 0.843154 94.857401 0.839821 
D5 66.480562 0.847179 99.547975 0.846073 66.666667 0.848331 

 F=0.1 F=0.5 F=0.8 
Dataset F-Measure ADDC F-Measure ADDC F-Measure ADDC 
D1 89.732655 0.721584 77.772432 0.719301 85.81185 0.714983 
D2 97.834008 0.749086 96.460589 0.747813 98.429393 0.74538 
D3 92.757559 0.711581 90.263957 0.708986 89.205819 0.711147 
D4 98.230616 0.842119 90.055755 0.823152 94.953637 0.842767 
D5 99.646309 0.846778 99.176776 0.846605 99.547975 0.846073 
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Table 5.8 (b) HS Parameters used in the proposed MDHS and CMDHS methods 

Parameter Description   
Harmony Memory (HM) Population (Harmony vectors) 
Harmony Memory Size(HMS) Twice the number of clusters. 
Bandwidth (BW)  Not used  
Pitch Adjustment Rate (PAR) 0.99 
Harmony Memory Consideration Rate (HMCR) 0.9 

 

 

Algorithm 5.4: Improvising the population in DHS  

1. Input Harmony Memory HM, HM size, F, HMCR and the modified solution X.  
2. Begin  
3. for j = 1 to N do 
4. if rand (0, 1) ≤ HMCR then  
5. r1 =rand (1,HMS); r2 =rand (1,HMS); r3 =rand (1,HMS); 
6. while (r1=r2 or r2=r3 or r1=r3) 
7. r1 =rand (1,HMS); r2 =rand (1,HMS); r3 =rand (1,HMS); 
8. end  
9. x1 =HM( r1,:);   x2 =HM(r2,:);  x3 =HM(r3,:) 
10. v(j)=x1(j)  +F*( x2(j)- x3 (j)) 
11. if  v(j) < 1  or v(j)> c  then 
12. v(j) = rand(0,1)*( c-1) + 1; 
13. end if 
14. else 
15. v(j) = rand(0,1)*(c  -1) + 1; 
16. end if 
17. end for 
18. let k be the index of the solution with the best fitness value in the population 
19. xk =HM(k,:)   
20. if fitness(HMk,:))>fitness(v) then 
21. HM(k,:)=v; 
22. end if 
23. end 
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Algorithm 5.5: Improvising the population in CDHS 

1. Input Harmony Memory HM, HM size, F, Cr, HMCR and the modified solution X. 
2. Begin 
3. for j = 1 to N do 
4. if rand (0, 1) ≤ HMCR then  
5. r1 =rand (1,HMS); r2 =rand (1,HMS); r3 =rand (1,HMS); 
6. while (r1=r2 or r2=r3 or r1=r3) 
7. r1 =rand (1,HMS); r2 =rand (1,HMS); r3 =rand (1,HMS); 
8. end  
9. x1 =HM( r1,:);   x2 =HM(r2,:);  x3 =HM(r3,:); 
10. v(j)=x1(j)  + F*( x2(j)-- x3 (j)); 
11. if  v(j) < 1 or v(j)> c  then 
12. v(j) = rand(0,1)*(c-1) + 1; 
13. end if 
14. else 
15. v(j) = rand(0,1)*( c -1) + 1; 
16. end if 
17. xk =HM(k,:)   
18. if rand (0,1) <=Cr 
19. u(j)= v(j); 
20. else  
21. u(j)=xk(j);  
22. end if 
23. end for 
24. if fitness(HM(k,:))>fitness(u) then 
25. HM(k,:)=u;  
26. end if 
27. end 

5.5.4 Comparisons of MDHS and CMDHS 

As the F-measure is used as an external evaluation measure, the original labels of documents 

are required. In that sense, Table 5.9 shows the F-measure results of each of the competent 

methods. Making a distinction between runs and iterations is important: each run might have 

hundreds of iterations. In the experiments, the maximum number of iterations was set at 100, 

and the number of runs set at 20. Table 5.9 shows that with all datasets the proposed CMDHS 

method achieved the best results in terms of the F-measure. On the other hand, MDHS 

performance was always less than CMDHS. Unsurprisingly, the results show a large gap 

between CMDHS and other methods. The effect of intensifying the exploitation through 

binomial crossover and local search can be seen from the results listed in Table 5.9. As for 

ADDC, Table 5.10 shows that despite the different results obtained by F-measures shown in 

Table 5.9, the ADDC differences are insignificant. The ADDC is a measurement that shows 
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the intra-cluster coherity of the clusters. If the differences of this measure are not significant it 

means that the algorithms are arranging the documents in a similar way within their classes. In 

that case, using the external measure will give us the understanding of how these clusters are 

different from each other. 

The aim of observing ADDC was to see the stability of convergence through generations in 

relation to the F-measure values. Three observations can be drawn from the relationship 

between the external and internal measures as summarized by this researcher’s previous study 

with colleagues (Al-Jadir, Wong et al. 2017). These observations were also detailed in chapter 

3. The first observation is a decrease for both measures, which indicates a flaw in convergence 

as the external measure should always be maximized, otherwise, the algorithm might 

potentially be stagnated. The second observation is that the internal measure decreases while 

the external measure increases, which is a typical state. The last observation is that the internal 

measure does not change much, whereas the external measure increases, which might indicate 

the convergence is going toward optimality. 

Among the plausible explanations for the above observations, the test results shown in Table 

5.10 are categorized under the third observation, as the ADDC values of the CMDHS are 

almost similar with other compared methods, while the corresponding F-measure values are 

significantly higher for the CMDHS method than other methods. The single most striking 

observation to emerge from the comparsion conducted in Table 5.10 is that there is a 

remarkable improvement for the clustering results that maximized the external measure. On 

the other hand, other methods with a similar ADDC showed F-measure ranks deteriorated in 

comparison to the CMDHS shown in Table 5.9. 

 

Table 5.9 F-measure Values 

Method D1 D2 D3 D4 D5 
HS 0.70556 0.94054 0.96620 0.50888 0.91942 
DHS 0.56283 0.88646 0.95662 0.6054 0.83843 
MHS 0.76712 0.91839 0.97732 0.5353 0.88006 
MDHS 0.66771 0.92625 0.96082 0.6379 0.88753 
k-means 0.40273 0.44380 0.51477 0.18044 0.16367 
CDMHS       0.88500       0.98695 0.100 0.98429 0.99912 
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Table 5.10 ADDC values 

Method D1  D2 D3 D4 D5 
HS 0.72 0.74 0.7 0.84 0.73 
DHS 0.71 0.74 0.7 0.84 0.73 
MDHS 0.71 0.74 0.68 0.84 0.73 
MHS 0.72 0.74 0.7 0.84 0.73 
k-means _ _ _ _ _ 
CMDHS 0.72 0.74 0.7 0.84 0.72 

 

After comparing the MDHS and CMDHS methods with baseline methods represented by the 

HS, DHS, MHS, and k-means, the CMDHS method that obtained the highest F-measure was 

compared again with other counterparts. The CMDHS was compared with the KH method 

proposed by (Abualigah, Khader et al. 2016), and the ABC-based method, named Chaotic 

Gradient ABC (CGABC) proposed by (Bharti and Singh 2016). It was also compared with the 

DEMC method explained earlier in this chapter. In Table 5.11, the F-measure and ADDC 

values of the comparison results are listed. The method that achieves the highest F-measure 

and the lowest ADDC are considered the best results. Table 5.11(a) shows the proposed 

CMDHS obtained the highest F-measure scores for D2, D3, D4, and D5. However, for D1, the 

CMDHS provided a comparable rating when compared to the DEMC. On the other hand, the 

ADDC results show that the KH and CGABC methods have increased ADDC values when 

compared with the CMDHS for the D4 dataset. 

This finding is evidence that despite the slight increase of the F-measure achieved by the KH 

method for D4 in Table 5.11(a), the alleviated ADDC means that there is a slow convergence 

for KH. However, with D2, D3, D5 it can be noticed that the ADDC values of the KH were 

slightly less than the CMDHS, but if one looks to the F-measure improvements achieved by 

the CMDHS, then these small ADDC differences can be considered insignificant.  

In Table 5.11(b), for the DEMC, the ADDC score for D4 is the highest, but at the same time 

has the lowest F-measure for the same dataset as seen in Table 5.11(a). That means the DEMC 

cannot be efficient when the number of clusters increases as the number of clusters for D4 

equals 10. Interestingly, the similarities of other values for the ADDC lead to the conclusion 

that the F-measure determines the superiority of all methods. 
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5.6 Statistical Significance Test 

The results shown in Table 5.9 demonstrated that the CMDHS had higher F-measure values 

than other methods. To verify the reliability of the results, and to analyze these results 

statistically, it was necessary to run the competent algorithms more than once, and compare the 

average of the F-measure scores of the CMDHS against the average accuracy of the other 

competent methods. 

5.6.1 Statistical SignificanceTest 

The Friedman test is used for performance evaluation to evaluate the performance of the 

algorithms (Bharti and Singh 2016). The Friedman test is a non-parametric two–way analysis 

of ranks variance (Derrac, García et al. 2011). This thesis applies the Friedman test to the F-

measure results, because it is a standardized evaluation measure used by other researchers in 

this domain. 

The Friedman test performs N*N number of comparisons by ranking the tested algorithms. It 

then highlights the differences between the test algorithms and determines if their differences 

are statistically significant. The test first approves or rejects the null hypotheses. If the null 

hypothesis is denied, the highest ranked algorithms are considered the best. The null hypothesis 

states that all the tested algorithms are equally accurate. That means there are no significant 

differences between the tested methods. 

From the mathematical point of view, the Friedman test can be formulated in 

equations(5.6),(5.7),(5.8) and (5.9): 

             Equation (5.6)  

                                   Equation (5.7)      

                                 Equation (5.8)       
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                  Equation (5.9)     

In the above, Rij is the algorithms’ rank while b is the number of blocks (runs number) and k is 

the number of groups (tested methods). To refute the first hypothesis that assumes all methods 

have the same accuracy, the p-values from the Friedman test should be equal to or higher than 

α, which represents the level of significance. The score should be equal to either 0.05 or 0.01. 

For these comparisons, α was set to 0.01. The first hypothesis (H0) can be rejected using the p-

values. Table 5.12 shows that all the p-values are less than the significance level of α value (p 

values < 0.01). Thus, there is a significant difference between the competent methods in all 

runs. As all the values were less than the significance level of α, this gives a clear indication 

that the differences of the performance of the different methods are not similar.  

After rejecting the null hypothesis, it is essential to know which algorithm achieved the highest 

ranks. In Table 5.13, Friedman ranks are listed according to the mean values of runs. The 

CMDHS achieved the highest rank among other methods with all datasets. For the other 

methods, the ranks were ordered from best to worst in the following order: HS, MHS, MDHS, 

DHS, and k-means. The test strategy was based on observing the maximization of the rank 

values of the average external F-measure presented in Table 5.9 with respect to their 

corresponding ADDC values presented in Table 5.10. By looking at the values depicted in 

Table 5.10, it can be noticed that nearly all methods converged to the same point. Even so, that 

result would not suggest the performance of these methods is equal, because the null hypothesis 

H0 was rejected. 

The statistical significance test of the state-of-the-art methods in comparison to CMDHS was 

also conducted, but this time the tests were based on F-measure values shown in Table 5.11. 

The ranks shown in Table 5.14 suggested the superiority of the CMDHS method over the other 

state-of-the-art methods. The null hypotheses can be rejected if the p-value is higher than 0.01. 

However, if the alpha value increased to 0.05 then the p-value becomes less, which indicates 

that the results are still significant. As is shown in Table 5.15, the Friedman test evaluated the 

differences in median values among the four tested methods, and the results were significant 

with X2 (2, N = 6) = 7, p <.05. Where X2 is the Chi-Square in Table 9 and N is the number of 

the Datasets, P is the significance level that equals 0.03 and finally, df is the test degree of 

freedom that equals 2 in Table 5.15. 
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Table 5.11 F-measure and ADDC Results of CMDHS and other State-of-the-Art 
Methods 

5.11(a) F-measure 
Criteria Method D1 D2 D3 D4 D5 

 
F-

measure 

CMDHS 88.5003 98.6959 100 98.4293 99.9127 
KH 79.0762 85.4340 94.5528 98.71794 98.7804 

CGABC 84.6594 91.9599 95.4821 97.2078 99.1360 
 DEMC 89 94.8054 81.9491 50.09021 98.4943 

  
 

5.11(b) ADDC 
Criteria Method D1 D2 D3 D4 D5 

 
ADDC 

CMDHS 0.7209 0.7092 0.8219 0.7228 0.8463 
KH 0.7212 0.6793 0.8043 0.7478 0.8448 

CGABC 0.7228 0.7233 0.8375 0.7489 0.8450 

 DEMC 0.7217 0.8605 0.8032 0.8479 0.8304 

 

 

 

 

Table 5.12 Friedman’s P-Values 

D# P-Values < α 

D1 1.3068E-16 

D2 1.3371E-20 

D3 3.4E-17 

D4 1.6803E-18 

D5 3.644E-21 

 
 

Table 5.13 Ranks Table 

Method D1 D2 D3 D4 D5 

HS 5.10 4.19 4.86 4.71 4.24 

DHS 2.52 1.24 2.86 2.00 2.52 

MHS 4.19 4.38 5.00 4.29 4.00 
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MDHS 2.38 2.48 2.29 3.00 3.43 

k-means 1.14 2.76 1.00 1.00 1.05 

CMDHS 5.67 5.95 5.00 6.00 5.76 

 

Table 5.14 Mean Ranks 

Method Value 
CMDHS 2.83 
KH 1.33 
CGABC 
DEMC 

1.83 
1.14 

 

Table 5.15 Test Statistics 

Parameter Value 
N 6 
Chi-Square 7.000 
df 2 
p .030 

 

 

 

 
Friedman Post Hoc test using Holm’s method is used to test the statistical significance of tests 

among different methods. In this situation the adjusted alpha value was calculated as shown in 

equation 13. 

 

                                                                                                              (5.10) 

 

Where α is the significance factor while i is the rank of that method. 

 

It is clear from Table 9 that the Holm’s method rejects all hypotheses. Thus, in relation to this 

procedure, the proposed method is statistically more significant than other methods in terms of 

clustering accuracy using the F-measure ranks.  

i
adjusted a

a =_
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Table 5.16 Post Hoc values of Friedman Test for the Base-line methods 

	
D# i Algorithm p_value α(0.05)/i Hypothesis 
D1 5.71 HS 5.24E-23 0.008756567  Rejected 
  2.14 DHS 5.24E-23 0.023364486 Rejected 
  6.33 MHS 5.24E-23 0.007898894 Rejected 
  3.24 MDHS 5.24E-23 0.015432099 Rejected 
  5 K-means 5.24E-23 0.01 Rejected 
  7.95 CDMHS 5.24E-23 0.006289308 Rejected 
            

D2 6.48 HS 3.98E-26 0.007716049 Rejected 
  3.57 DHS 3.98E-26 0.014005602 Rejected 
  5.57 MHS 3.98E-26 0.008976661 Rejected 
  3.43 MDHS 3.98E-26 0.014577259 Rejected 
  6.29 K-means 3.98E-26 0.007949126 Rejected 
  7.67 CDMHS 3.98E-26 0.006518905 Rejected 
            

D3 6.14 HS 5.05E-29 0.008143322 Rejected 
  3.71 DHS 5.05E-29 0.013477089 Rejected 
  6 MHS 5.05E-29 0.008333333 Rejected 
  3.05 MDHS 5.05E-29 0.016393443 Rejected 
  7.9 K-means 5.05E-29 0.006329114 Rejected 
  6 CDMHS 5.05E-29 0.008333333 Rejected 
            

 
D4 5.24 HS 5.01E-24 0.009541985 Rejected 
  3.52 DHS 5.01E-24 0.014204545 Rejected 
  5.05 MHS 5.01E-24 0.00990099 Rejected 
  4.43 MDHS 5.01E-24 0.011286682 Rejected 
  7.71 K-means 5.01E-24 0.006485084 Rejected 
  6.95 CDMHS 5.01E-24 0.007194245 Rejected 
      

D5 6.31 HS 1.76E-27 0.00792393 Rejected 
  3 DHS 1.76E-27 0.016666667 Rejected 
  5.43 MHS 1.76E-27 0.009208103 Rejected 
  4 MDHS 1.76E-27 0.0125 Rejected 
  6.26 K-means 1.76E-27 0.00798722 Rejected 
  8 CDMHS 1.76E-27 0.00625 Rejected 

D6 6.82 HS 4.58E-28 0.007331378 Rejected 
  3 DHS 4.58E-28 0.016666667 Rejected 
  5.86 MHS 4.58E-28 0.008532423 Rejected 
  4.27 MDHS 4.58E-28 0.011709602 Rejected 
  4.86 K-means 4.58E-28 0.010288066 Rejected 
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The post hoc values using the Holm’s method was also used to measure the statistical 

significance of the state-of-the-art method. The comparisons of Table 12 clearly shows that all 

the values are  much smaller than the adjusted α values. 

 

 
Table 5.17 Post Hoc values of Friedman Test for the state-of-the-art methods 

 
 

 
 
 

 
 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5.7 Adaptive CMDHS 

The CMDHS was successful in all of the previous experiments. However, the proposed method 

still needs an accurate tuning of the DE parameters as the DE is sensitive to the settings of its 

control parameters. The adaptive version of the CMDHS is proposed to overcome the need to 

D# i Algorithm p_value α(0.05)/i Hypothesis 
D1 1.05 KH 1.81741782409671E-09 0.047619048  Rejected 
  2.45 CGABC 1.81741782409671E-09 0.020408163 Rejected 
  3.70 DEMC 1.81741782409671E-09 0.013513514 Rejected 
  2.80 CMDHS 1.81741782409671E-09 0.017857143 Rejected 
         

D2 2.71 KH 8.8191106725875E-12 0.018450185 Rejected 
  2.38 CGABC 8.8191106725875E-12 0.021008403 Rejected 
  1.00 DEMC 8.8191106725875E-12 0.05 Rejected 
  3.90 CMDHS 8.8191106725875E-12 0.012820513 Rejected 
         

D3 3.45 KH 1.81741782409671E-09 0.014492754 Rejected 
  3.40 CGABC 1.81741782409671E-09 0.014705882 Rejected 
  1.25 DEMC 1.81741782409671E-09 0.04 Rejected 
  1.90 CMDHS 1.81741782409671E-09 0.026315789 Rejected 
         

D4 2.70 KH 8.10650901638872E-09 0.018518519 Rejected 
  2.80 CGABC 8.10650901638872E-09 0.017857143 Rejected 
  1.00 DEMC 8.10650901638872E-09 0.05 Rejected 
  3.50 CMDHS 8.10650901638872E-09 0.014285714 Rejected 
      

D5 1.69 KH 0 0.029585799 Rejected 
  2.48 CGABC 0 0.02016129 Rejected 
  2.10 DEMC 0 0.023809524 Rejected 
  3.74 CMDHS 0 0.013368984 Rejected 
         

D6 2.19 KH 0 0.02283105 Rejected 
  2.86 CGABC 0 0.017482517 Rejected 
  1.00 DEMC 0 0.05 Rejected 
  3.95 CMDHS 0 0.012658228 Rejected 
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statically tune the DE parameters using the same method of parameter adaptation proposed in 

(Cui, Li et al. 2016). This method updates the F and Cr parameters that control the mutation 

and crossover operators to their optimal selection. 

In this section, a comparison between CMDHS and ACMDHS is conducted. The ADDC values 

need to be minimized while the F-measure values need to be maximized, as shown in the 

previous sections. The values of both measures are listed in Table 5.16 and Table 5.17. Table 

5.16 depicts the external measure values using the F-measure while Table 5.17 shows the 

internal measure values using ADDC. It becomes clear that the statically-based parameter 

tuned version (CMDHS) outperformed the dynamically-based ACMDHS. The single most 

striking observation to emerge from that comparison is the tuned parameters. That is, F for the 

mutation and Cr for the crossover have only a minor effect on the performance of the centroids 

allocation. Table 5.17 shows the general trend of all results for both CMDHS and ACMDHS 

are compatible. The stability of the ADDC in comparison to  

 

 

 

 

 

 

 

 

 

the F-measure did not mean that both methods performed equally. That is because the F-

measure values were changing when ADDC values were almost steady, but both methods are 

highly competitive nonetheless. 

 

 
Table 5.16 F-measure Values 

Dataset CMDHS ACMDHS 

D1 88.50 85.97 

D2 98.69 96.03 

D3 96.94 97.56 

D4 97.56 98.84 

D5 99.91 98.92 
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Table 5.17 F-measure Values 

Dataset CMDHS ACMDHS 

D1 88.50 85.97 

D2 98.69 96.03 

D3 96.94 97.56 

D4 97.56 98.84 

D5 99.91 98.92 

 

Table 5.18 ADDC Values 

Dataset CMDHS ACMDHS 
D1 0.72 0.72 
D2 0.74 0.71 
D3 0.73 0.71 
D4 0.82 0.75 
D5 0.72 0.73 

 

5.8 Summary 

The clustering of the text documents is an important process for document categorization, 

archiving, summarization and retrieval. After the pre-processing of the text documents and 

feature selection using the supervised and unsupervised methods presented in chapters 3 and 

4, the unsupervised feature selection method (DDESA) presented in chapter 4 was used to 

reduce the features for the text clustering. This chapter presented two different hybrid 

document clustering approaches, which are capable of distributing the cluster centroids using 

memetic optimization in the search space. 

The first approach is the DEMC. This method combines the DE global search with the 

simulated anealing local search. The research found the DEMC to be superior to the k-means, 

DE, DEKM, DESA and CGABC methods in terms of the clustering internal and external 

evaluation measures. 

Another memetic document clustering that fuses the global search using the DHS with the 

traditional clustering using the k-means was proposed. DHS was applied successfully as a 

global search and was successfully combined with the k-means to produce the MDHS method. 

However, this present study experimented with a combination of the binomial DE crossover 
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with the MDHS to produce the CMDHS method. It can be concluded from the results of the 

experimental study that the proposed CMDHS successfully outperformed other methods that 

were compared for document clustering. The test results using the F-measure, ADDC and the 

non-parametric statistical tests showed the superiority of the CMDHS over the baseline 

methods, namely the HS, DHS, k-means and the Memetic HS. The proposed CMDHS also 

outperformed two current state-of-the-art methods in most cases. In addition it was better than 

the Differential Evolution Memetic Clustering proposed earlier.  

Finally, an enhancement was made to CMDHS, using the adaptive parameter tuning of the 

differential control parameters. The resultant method was named the Adaptive CMDHS 

(ACMDHS) that updates DE control parameters to their best values. The test results indicate 

that CMDHS and the ACMDHS are both highly competitive methods. 
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Chapter 6 

Conclusion and Future Research 
 

 
6.0 Introduction 

This present research addressed the issues of centroids allocation and text feature selection for 

document clustering. Memetic optimization was proposed to manage these two issues and find 

a more efficient method to cluster the results of text documents than existing methods. This 

thesis first discussed the use of memetic optimization to resolve the problem of centroids 

distribution. As was observed in the literature review (chapter 2), the majority of optimization 

methods used for centroids allocation perform only a global search, using methods such as the 

EA, SI or HS. Despite the ability of these methods to perform a global search, they are not 

capable of performing the exploitation aspect in the local areas within the search space. 

Therefore, the memetic optimization was used to resolve this problem, because it combines the 

global and local searches. The research extensively explored memetic optimization in terms of 

the clustering centroids allocation of document clustering.  

As reported in this thesis, the problem of document clustering was not limited to the distribution 

of the cluster centroids. The other focus of the research was text feature selection, because high 

text dimensionality affects the clustering system negatively. The thesis discussed supervised 

and unsupervised feature selection methods in terms of filter, wrapper, and hybrid techniques. 

Hybrid feature selection techniques were discussed extensively. In this context, the hybrid 

methods of feature selection are equivalent to memetic optimization with regard to centroids 

allocation. However, global and local searches have a different meaning in feature selection 

methods. The wrapper and filter methods are equivalent to global and local searches in 

optimization, respectively. The final aim of this thesis was to combine hybrid feature selection 

and hybrid centroids allocation for more efficient document clustering. 

 

6.1 Research Summary and Contributions 

The problems of missing labels of text features, local optima in feature selection, and poor 

centroids allocation were addressed to achieve the research aims and objectives (chapter 1, 
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section 1.3). This thesis contributed to solutions for each of these problems in the following 

ways.  

 

6.1.1 Memetic Feature Selection for Text Document Clustering 

A supervised memetic combination between filter and wrapper feature selection methods was 

applied to reduce extra text features. The traditional clustering methods, k-means and Spherical 

k-means, were utilized to examine the performance of the proposed feature selection methods. 

The research found these methods minimized the Average Document to Centroid Distance 

(ADDC), and in most cases the F-measure was maximized after using the experimental MAFS. 

Another major finding was that the memetic combination with MAFS performed better than 

the wrapper feature selection using GA.  

Test results also revealed that using the proposed feature selection can improve the 

performance of traditional clustering. Comparisons showed that the proposed MAFS method 

performed better than the recently proposed Feature Selection Genetic Algorithm Text 

Clustering (FSGATC) method reported in the literature. The proposed MAFS method also 

performed better when it was compared to the results generated when using the ALL feature 

space. Moreover, the experiments also found a slight correlation between ADDC and F-

measures. Finally, tuning the parameters has a positive impact on the accuracy of resulted 

clusters. Due to the fact that some of the datasets could not be labelled, it becomes necessary 

to find a method that deals with the unlabelled documents.  

An unsupervised feature selection method was proposed to select informative features without 

using class labels and classifiers. The unsupervised method combined wrapper and filter 

methods, through the combination of a global search (using DE) and a local search (using SA). 

SA was utilized as a filter method to refine the best solution obtained by DE, because it is 

capable of modifying the solutions (feature subsets) without referencing class labels. The 

resultant method was named DESA. A variation of DESA was also presented, being the 

Dichotomous DESA (DDESA) that used the dichotomous mutation. This modification was 

necessary, for the purpose of demonstrating the impact of two different types of mutations on 

the feature selection results. The test results showed that DDESA outperformed DESA. 

DDESA was also compared to DE, FSGATC and FSHSTC methods, again showing a better 

performance. 
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6.1.2 Centroids Allocation for Document Clustering 

The centroids allocation of document clustering was the second aim of the research. On that 

basis, two different methods were proposed to discover the prospects of using different 

memetic combinations for the centroids allocation process. The first method proposed for text 

document clustering was DEMC. It was found that DEMC was superior to the k-means, DE, 

DEKM, DESA and CGABC methods. Another memetic document clustering that combined 

the global search using DHS with the traditional clustering using k-means was also proposed 

and the results of experiments reported in this thesis. DHS was applied successfully as a global 

search, and was successfully combined with k-means to produce the MDHS method. Further 

experimentation on the use of the binomial crossover with MDHS produced the CMDHS 

method. It can be concluded that CMDHS outperformed other methods in the comparison tests. 

The results using F-measure, ADDC and non-parametric statistical measures demonstrated the 

superiority of CMDHS over the HS, DHS, k-means and the Memetic HS. The proposed 

CMDHS also outperformed two of the state-of-the-art methods as well as the DEMC method.  

An enhancement was made to CMDHS by using the adaptive setting of the differential control 

parameters. The resultant method was named Adaptive CMDHS (ACMDHS). This method 

was capable of retaining the best values of these parameters, however, the test results indicated 

that CMDHS provided the best F-measure values in comparison to the ACMDHS method. 

In conclusion, this thesis has made a significant contribution by identifying and demonstrating 

a way to distribute cluster centroids for text documents with a minimal number of labled or 

unlabled text features. This thesis met its aims by developing supervised and unsupervised text 

feature selection methods, and by using memetic optimization to find the optimal distribution 

of the clusters centroids. 

 

6.2 Recommendations and Future Work 

Several possible research directions could be pursued for future studies.  

A. In this study the method used for the text features weighting is the Term-Frequency 

Inverse Document Frequency (TF.IDF). The TF.IDF could be considered if using other 

weighting schemes that work on a semantic level.  
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B. Although the main focus of this thesis was text data, the methods developed to perform 

centroids allocation and feature selection could be used with other data types. 

C. For future research, it would be valuable to set up the number of clusters automatically. 

Also, the current feature selection and clustering methods initialize the population 

randomly. Finding a less random method could be worthy of research.  

D. The use of the embeddings (doc2vec) that is based on neural networks could be used. 

This method is used to add more understandability to the text by the machine. TF.IDF 

is based on a word level while the doc2vec is based on a semantic level which is more 

specified.  
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Appendix A 

 

F-measure Values of the MAFS method (A) 

6 event crimes 10 Types crimes 
K-means spk K-means spk 
67.7 54.68 39.03 29.26 
40.86 54.68 28.05 29.26 
89.48 54.68 15.06 43.75 
68.42 54.68 24.65 43.75 
76.58 54.68 15.95 43.75 
41.9 54.68 54.85 43.75 
73.88 54.68 40.3 43.75 
32.28 67.39 52.01 17.5 
49.86 67.39 22.81 17.5 
53.52 84.42 43.41 17.5 
82.57 84.42 40.72 17.5 
75.12 84.42 46.35 17.5 
58.87 84.42 38.31 17.5 
43.56 84.42 23.6 17.5 
74.5 84.42 21.23 17.5 
52.18 84.42 25.97 17.5 
89.45 84.42 32.56 17.5 
39.01 84.42 35.37 17.5 
63.47 84.42 36.54 17.5 
62.5885 72.308 33.51421 25.65 
89.48 84.42 54.85 43.75 
32.28 54.68 15.06 17.5 
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F-measure Values of the MAFS method (B) 

Pair 20news Reuters 20 News Groups 
K-means spk K-means spk K-means spk 

51.96 94.44 77.387553 46.24 27.51 95.804 
51.96 94.44 68.307948 94.452 27.51 95.804 
51.96 94.44 54.310501 94.452 31.94 95.804 
51.96 99.49 70.916386 94.452 31.99 70.713 
51.96 80.07 75.416908 89.25 25.13 70.713 
51.48 79.08 77.332688 89.25 26.27 70.713 
51.96 91.69 77.426602 89.25 30.52 70.713 
51.96 91.69 77.274145 89.25 30.94 70.713 
51.96 91.69 62.898253 89.25 30.47 70.713 
51.96 99.49 42.879747 83.668 26.65 70.713 
51.96 99.49 75.09245 83.668 31.59 70.713 
51.96 99.49 62.532434 89.423 29.20 92.285 
51.96 99.49 73.965092 89.423 31.67 92.285 
51.96 99.49 43.900544 89.423 31.06 55.612 
51.96 99.49 43.725643 89.423 31.98 55.612 
51.96 99.49 62.474012 89.423 31.89 55.612 
51.96 99.49 84.784785 89.423 33.92 80.623 
51.96 99.49 62.493506 89.423 32.28 80.623 
51.96 99.49 62.532434 89.423 26.96 80.623 

51.93474 95.365 42.101043 89.423 26.23 80.623 
51.96 99.49 84.784785 94.452 32.30 80.623 
51.48 99.49 42.101043 46.24 33.92 95.804 

    25.13 55.612 
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Appendix B  

 

ADDC values for the MAFS (A) 

6Event Crime 10 types of crime  
K-means spk spk K-means 

0.58 0.55 0.75 0.74 
0.56 0.55 0.75 0.8 
0.58 0.55 0.75 0.75 
0.56 0.55 0.75 0.8 
0.58 0.55 0.75 0.8 
0.59 0.55 0.75 0.75 
0.59 0.55 0.75 0.8 
0.58 0.55 0.75 0.74 
0.55 0.55 0.75 0.79 
0.58 0.56 0.75 0.76 
0.59 0.56 0.75 0.8 
0.57 0.56 0.75 0.74 
0.55 0.56 0.75 0.8 
0.57 0.56 0.75 0.8 
0.58 0.56 0.75 0.8 
0.58 0.56 0.75 0.76 
0.55 0.56 0.75 0.76 
0.58 0.56 0.75 0.75 
0.57 0.56 0.75 0.77 
0.59 0.56 0.75 0.8 

 

ADDC Values of the MAFS method (B) 

Pair of 20 News Groups 20News Groups  Reuters 
K-means spk K-means spk K-means spk  

0.54 0.83 0.47 0.47 0.66 0.59  
0.6 0.83 0.47 0.47 0.64 0.69  
0.6 0.83 0.47 0.47 0.66 0.69  
0.6 0.82 0.47 0.47 0.65 0.69  
0.6 0.78 0.47 0.47 0.66 0.69  
0.6 0.78 0.47 0.47 0.66 0.69  
0.6 0.83 0.47 0.47 0.66 0.69  
0.6 0.83 0.47 0.47 0.66 0.69  
0.6 0.83 0.47 0.47 0.68 0.69  
0.6 0.83 0.47 0.47 0.65 0.69  
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0.6 0.83 0.47 0.47 0.66 0.69  
0.54 0.83 0.47 0.47 0.65 0.69  
0.6 0.83 0.47 0.47 0.65 0.69  
0.6 0.83 0.47 0.47 0.66 0.69  
0.6 0.83 0.47 0.47 0.66 0.69  
0.6 0.83 0.47 0.47 0.65 0.69  
0.6 0.83 0.47 0.47 0.65 0.69  
0.6 0.83 0.47 0.47 0.65 0.69  
0.59 0.82 0.47 0.47 0.65 0.69  
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Appendix C 

Convergence of the Memetic based Unsupervised feature selection and the Memetic based 
Unsupervised methods.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig1 a: 6 events crimes (no memetic)                                             Fig1 b: 6 events crimes (Memetic) 

 
Fig2 a: 10 Types (no memetic)                                             Fig2 b: 10 Types (Memetic) 
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Fig3 a: Pair of 20 news (No Memetic)                                          Fig3 b: Pair of 20 news (Memetic) 

  
Fig4 a: Reuters (No Memetic)                                          Fig4 b: Reuters (Memetic) 

  

Fig5 a: 20 News Group (no memetic)                                             Fig5 b: 20 News Group (Memetic) 
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