11,960 research outputs found

    Modeling of Configurations for Embedded System Implementations in MARTE

    Get PDF
    International audienceThis paper deals with aspects related to modeling of system configurations, which are very useful for describing various states of an embedded system, from both structural and operational viewpoints. We discuss in detail the current proposition of the UML MARTE profile via some examples, and point out some limitations of the current proposition, mainly concerning the semantic aspects of the defined concepts. In order to draw answering elements, we report our experiences about the modeling of implementations and execution modes in Systemson- Chip, within the Gaspard2 SoC co-design framework

    Integrating Simulink, OpenVX, and ROS for Model-Based Design of Embedded Vision Applications

    Get PDF
    OpenVX is increasingly gaining consensus as standard platform to develop portable, optimized and power-efficient embedded vision applications. Nevertheless, adopting OpenVX for rapid prototyping, early algorithm parametrization and validation of complex embedded applications is a very challenging task. This paper presents a comprehensive framework that integrates Simulink, OpenVX, and ROS for model-based design of embedded vision applications. The framework allows applying Matlab-Simulink for the model-based design, parametrization, and validation of computer vision applications. Then, it allows for the automatic synthesis of the application model into an OpenVX description for the hardware and constraints-aware application tuning. Finally, the methodology allows integrating the OpenVX application with Robot Operating System (ROS), which is the de-facto reference standard for developing robotic software applications. The OpenVX-ROS interface allows co-simulating and parametrizing the application by considering the actual robotic environment and the application reuse in any ROS-compliant system. Experimental results have been conducted with two real case studies: An application for digital image stabilization and the ORB descriptor for simultaneous localization and mapping (SLAM), which have been developed through Simulink and, then, automatically synthesized into OpenVX-VisionWorks code for an NVIDIA Jetson TX2 boar

    A model-based design flow for embedded vision applications on heterogeneous architectures

    Get PDF
    The ability to gather information from images is straightforward to human, and one of the principal input to understand external world. Computer vision (CV) is the process to extract such knowledge from the visual domain in an algorithmic fashion. The requested computational power to process these information is very high. Until recently, the only feasible way to meet non-functional requirements like performance was to develop custom hardware, which is costly, time-consuming and can not be reused in a general purpose. The recent introduction of low-power and low-cost heterogeneous embedded boards, in which CPUs are combine with heterogeneous accelerators like GPUs, DSPs and FPGAs, can combine the hardware efficiency needed for non-functional requirements with the flexibility of software development. Embedded vision is the term used to identify the application of the aforementioned CV algorithms applied in the embedded field, which usually requires to satisfy, other than functional requirements, also non-functional requirements such as real-time performance, power, and energy efficiency. Rapid prototyping, early algorithm parametrization, testing, and validation of complex embedded video applications for such heterogeneous architectures is a very challenging task. This thesis presents a comprehensive framework that: 1) Is based on a model-based paradigm. Differently from the standard approaches at the state of the art that require designers to manually model the algorithm in any programming language, the proposed approach allows for a rapid prototyping, algorithm validation and parametrization in a model-based design environment (i.e., Matlab/Simulink). The framework relies on a multi-level design and verification flow by which the high-level model is then semi-automatically refined towards the final automatic synthesis into the target hardware device. 2) Relies on a polyglot parallel programming model. The proposed model combines different programming languages and environments such as C/C++, OpenMP, PThreads, OpenVX, OpenCV, and CUDA to best exploit different levels of parallelism while guaranteeing a semi-automatic customization. 3) Optimizes the application performance and energy efficiency through a novel algorithm for the mapping and scheduling of the application 3 tasks on the heterogeneous computing elements of the device. Such an algorithm, called exclusive earliest finish time (XEFT), takes into consideration the possible multiple implementation of tasks for different computing elements (e.g., a task primitive for CPU and an equivalent parallel implementation for GPU). It introduces and takes advantage of the notion of exclusive overlap between primitives to improve the load balancing. This thesis is the result of three years of research activity, during which all the incremental steps made to compose the framework have been tested on real case studie

    Feedback Control Goes Wireless: Guaranteed Stability over Low-power Multi-hop Networks

    Full text link
    Closing feedback loops fast and over long distances is key to emerging applications; for example, robot motion control and swarm coordination require update intervals of tens of milliseconds. Low-power wireless technology is preferred for its low cost, small form factor, and flexibility, especially if the devices support multi-hop communication. So far, however, feedback control over wireless multi-hop networks has only been shown for update intervals on the order of seconds. This paper presents a wireless embedded system that tames imperfections impairing control performance (e.g., jitter and message loss), and a control design that exploits the essential properties of this system to provably guarantee closed-loop stability for physical processes with linear time-invariant dynamics. Using experiments on a cyber-physical testbed with 20 wireless nodes and multiple cart-pole systems, we are the first to demonstrate and evaluate feedback control and coordination over wireless multi-hop networks for update intervals of 20 to 50 milliseconds.Comment: Accepted final version to appear in: 10th ACM/IEEE International Conference on Cyber-Physical Systems (with CPS-IoT Week 2019) (ICCPS '19), April 16--18, 2019, Montreal, QC, Canad

    Safe, Remote-Access Swarm Robotics Research on the Robotarium

    Get PDF
    This paper describes the development of the Robotarium -- a remotely accessible, multi-robot research facility. The impetus behind the Robotarium is that multi-robot testbeds constitute an integral and essential part of the multi-agent research cycle, yet they are expensive, complex, and time-consuming to develop, operate, and maintain. These resource constraints, in turn, limit access for large groups of researchers and students, which is what the Robotarium is remedying by providing users with remote access to a state-of-the-art multi-robot test facility. This paper details the design and operation of the Robotarium as well as connects these to the particular considerations one must take when making complex hardware remotely accessible. In particular, safety must be built in already at the design phase without overly constraining which coordinated control programs the users can upload and execute, which calls for minimally invasive safety routines with provable performance guarantees.Comment: 13 pages, 7 figures, 3 code samples, 72 reference

    Rethinking affordance

    Get PDF
    n/a – Critical survey essay retheorising the concept of 'affordance' in digital media context. Lead article in a special issue on the topic, co-edited by the authors for the journal Media Theory

    高速ビジョンを用いたリアルタイムビデオモザイキングと安定化に関する研究

    Get PDF
    広島大学(Hiroshima University)博士(工学)Doctor of Engineeringdoctora

    Multisensor Avionics Architecture for BVLOS Drone Services

    Get PDF
    This ADACORSA demonstrator focuses on the implementation of a failoperational avionics architecture combining Commercial Off-The-Shelf (COTS) elements from the automotive, the aerospace and the artificial intelligence world. A collaborative sensor setup (Time-of-Flight camera and FMCW RADAR from Infineon Technologies, stereo camera, LiDAR, IMU and GPS) allows to test heterogeneous sensor fusion solutions. A Tricore Architecture on AURIXTM Microcontroller supports the execution of safety supervision tasks as well as data fusion. A powerful embedded computer platform (NVIDIA Jetson Nano) accelerates AI algorithms performance and data processing. Furthermore, an FPGA enables power optimization of Artificial Neural Networks. Finally, a Pixhawk open-source flight controller ensures stabilization during normal flight operation and provides computer vision software modules allowing further processing of the captured, filtered and optimized environmental data. This paper shows various hardware and software implementations highlighting their emerging application within BVLOS drone services.EU-funded project ADACORSAECSEL Joint Undertaking (JU) under grant agreement No 876019European Union’s Horizon 2020German Federal Ministry of Education and Researc
    corecore