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Abstract. OpenVX is increasingly gaining consensus as standard plat-
form to develop portable, optimized and power-efficient embedded vi-
sion applications. Nevertheless, adopting OpenVX for rapid prototyping,
early algorithm parametrization and validation of complex embedded ap-
plications is a very challenging task. This paper presents a comprehensive
framework that integrates Simulink, OpenVX, and ROS for model-based
design of embedded vision applications. The framework allows applying
Matlab-Simulink for the model-based design, parametrization, and vali-
dation of computer vision applications. Then, it allows for the automatic
synthesis of the application model into an OpenVX description for the
hardware and constraints-aware application tuning. Finally, the method-
ology allows integrating the OpenVX application with Robot Operating
System (ROS), which is the de-facto reference standard for developing
robotic software applications. The OpenVX-ROS interface allows co-
simulating and parametrizing the application by considering the actual
robotic environment and the application reuse in any ROS-compliant
system. Experimental results have been conducted with two real case
studies: An application for digital image stabilization and the ORB de-
scriptor for simultaneous localization and mapping (SLAM), which have
been developed through Simulink and, then, automatically synthesized
into OpenVX-VisionWorks code for an NVIDIA Jetson TX2 board.

1 Introduction

Computer vision has gained an increasing interest as an efficient way to auto-
matically extract of meaning from images and video. It has been an active field
of research for decades, but until recently has had few major commercial appli-
cations. However, with the advent of high-performance, low-cost, energy efficient
processors, it has quickly become largely applied in a wide range of applications
for embedded systems [1].

The term embedded vision refers to this new wave of widely deployed, prac-
tical computer vision applications properly optimized for a target embedded
system by considering a set of design constraints. The target embedded sys-
tems usually consist of heterogeneous, multi-/many-core, low power embedded
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Fig. 1. The embedded vision application design flow: the standard (a), and the ex-
tended with the model-based design paradigm (b)

devices, while the design constraints, beside functional correctness, include per-
formance, energy efficiency, dependability, real-time response, resiliency, fault
tolerance, and certifiability.

Developing and optimizing a computer vision application for an embedded
processor can be a non-trivial task. Considering an application as a set of com-
municating and interacting kernels, the effort for such application optimization
goes over two dimensions: the single kernel-level optimization and the system-
level optimization. Kernel-level optimizations have traditionally revolved around
one-off or single function acceleration. This typically means that a developer re-
writes a computer vision function (e.g., any filter, image arithmetic, geometric
transform function) with a more efficient algorithm or offloads its execution to
accelerators such as a GPU by using languages such as OpenCL or CUDA [2].

On the other hand, system-level optimizations pay close attention to the
overall power consumption, memory bandwidth loading, low-latency functional
computing, and Inter-Processor Communication overhead. These issues are typi-
cally addressed via frameworks [3], as the parameters of interest cannot be tuned
with compilers or operating systems.

In this context, OpenVX [4] has gained wide consensus in the embedded vi-
sion community and has become the de-facto reference standard and API library
for system-level optimization. OpenVX is designed to maximize functional and
performance portability across different hardware platforms, providing a com-
puter vision framework that efficiently addresses current and future hardware
architectures with minimal impact on software applications. Starting from a



graph model of the embedded application, it allows for automatic system-level
optimizations and synthesis on the HW board targeting performance and power
consumption design constraints [5–7].

Nevertheless, the definition of such a graph-based model, its parametriza-
tion and validation is time consuming and far from intuitive to programmers,
especially for the development of medium-complex applications.

Embedded vision finds a large use in the context of Robotics, where cameras
are mounted on robots and the results of the embedded vision applications are
analysed for autonomous actions. Indeed, Computer vision allows robots to see
what is around them and make decisions based on what they perceive. In this
context, Robot Operating System (ROS) [8] has been proposed as a flexible
framework for writing robot software. It is a collection of tools, libraries, and
conventions that aim to simplify the task of creating complex and robust robot
behaviour across a wide variety of robotic platforms. It is become a de-facto
reference standard for developing robotic applications. It allows for application
re-use and easy integration of software blocks in complex systems.

This paper presents a comprehensive framework that integrates Simulink,
OpenVX, and ROS for the model-based design of embedded vision applications
(see Figure 1). Differently from the standard approaches at the state of the art
that require designers to manually model the algorithm through OpenVX code
(see Figure 1(a)), the proposed approach allows for a rapid prototyping, algo-
rithm validation and parametrization in a model-based design environment (i.e.,
Matlab/Simulink). The framework relies on a multi-level design and verification
flow (see Figure 1(b)) by which the high-level model is then semi-automatically
refined towards the final automatic synthesis into OpenVX code. The integration
with ROS has two main goals: first, to allow co-simulating and parametrizing the
application by considering the actual robotic environment, and then, to allow
for application reuse in ROS-compliant systems.

The paper presents the results obtained by applying the proposed methodol-
ogy for developing and tuning two real-case applications. The first is an algorithm
for digital image stabilization for two different application contexts. The second
is the application implementing the the oriented fast and rotated brief (ORB) de-
scriptor for simultaneous localization and mapping (SLAM). The paper presents
the Simulink toolbox developed to support the NVIDIA OpenVX-VisionWorks
library, and how it has been used in the design flow to synthesize OpenVX code
for an NVIDIA Jetson TX2 embedded system board.

The paper is organized as follows. Section 2 presents the background and the
related work. Section 3 explains in details the model-based design methodology.
Section 4 presents the experimental results, while Section 5 is devoted to the
conclusions.

2 Background and Related work

OpenVX relies on a graph-based software architecture to enable efficient com-
putation on heterogeneous computing platforms, including those with GPU ac-
celerators. It provides a set of primitives (or kernels) that are commonly used



in computer vision algorithms. It also provides a set of data objects like scalars,
arrays, matrices and images, as well as high-level data objects like histograms,
image pyramids, and look-up tables. It supports customized user-defined kernels
for implementing customized application features.

The programmer defines a computer vision algorithm by instantiating ker-
nels as nodes and data objects as parameters. Since each node may use the mix
of the processing units in the heterogeneous platform, a single graph may be
executed across CPUs, GPUs, DSPs, etc. Figure 2 and Listing 1.1 give an ex-
ample of computer vision application and its OpenVX code, respectively. The
programming flow starts by creating an OpenVX context to manage references
to all used objects (line 1, Listing 1.1). Based on this context, the code builds
the graph (line 2) and generates all required data objects (lines 4 to 11). Then, it
instantiates the kernel as graph nodes and generates their connections (lines 15
to 18). The graph integrity and correctness is checked in line 20 (e.g., checking of
data type coherence between nodes and absence of cycles). Finally, the graph is
processed by the OpenVX framework (line 23). At the end of the code execution,
all created data objects, the graph, and the the context are released.

The definition of algorithms through primitives has two benefits: First, it
allows defining the application in an abstract way while preserving an efficient
implementation. Then, it allows enabling system-level optimizations, like inter-
node memory transfers, pipelining, concurrent and overlapped node execution.
To utilize the different accelerators on the board, data transfer management
needs to be addressed. Each operation requires time and power resources, and
this has to be considered in the mapping process. Pipelining and tiling techniques
can be efficiently utilized together to achieve better memory locality. This greatly
reduces the data transfer overhead between global and scratchpad memory [9].

Different works have been presented to analyse the use of OpenVX for em-
bedded vision [5–7, 11]. In [6], the authors present a new implementation of
OpenVX targeting CPUs and GPU-based devices by leveraging different ana-
lytical optimzation techniques. In [7], the authors examine how OpenVX re-
sponds to different data access patterns, by testing three different OpenVX
optimizations: kernels merge, data tiling and parallelization via OpenMP. In
[5], the authors introduce ADRENALINE, a novel framework for fast proto-
typing and optimization of OpenVX applications for heterogeneous SoCs with
many-core accelerators. The authors in [10] implemented a graphic interface that
allows computer vision developers to create visual algorithms in OpenVX. The
framework then automatically generates the corresponding OpenVX code, with
a translation back-end that creates all the glue code needed to correctly run the
OpenVX environment. This work extends the preliminary implementation of the
model-based design presented in [11] by including the interface towards ROS.
This allows co-simulating the OpenVX application with the external application
environment (e.g., input streams, concurrent interactive systems, etc.) and, as
a consequence, tuning more efficiently the SW parametrization. Results on a
more advanced Robotic application (ORB descriptor) underlines that making
any application ROS-compliant is strategic for IP-reuse.
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Fig. 2. OpenVX sample application (graph diagram)

1 vx_context c = vxCreateContext ();
2 vx_graph g = vxCreateGraph(context);
3 vx_enum type = VX_DF_IMAGE_VIRT;
4 /* create data structures */
5 vx_image in = vxCreateImage(c, w, h, VX_DF_IMAGE_RGBX);
6 vx_image gray = vxCreateVirtualImage(g, 0, 0, type);
7 vx_image grad_x = vxCreateVirtualImage(g, 0, 0, type);
8 vx_image grad_y = vxCreateVirtualImage(g, 0, 0, type);
9 vx_image grad = vxCreateVirtualImage(g, 0, 0, type);

10 vx_image out = vxCreateImage(c, w, h, VX_DF_IMAGE_U8);
11 vx_threshold threshold = vxCreateThreshold(c, VX_THRESHOLD_TYPE_BINARY ,

VX_TYPE_FLOAT32);
12 /* read input image and copy it into "in" data object */
13 ...
14 /* construct the graph */
15 vxColorConvertNode(g, in, gray);
16 vxSobel3x3Node(g, gray , grad_x , grad_y);
17 vxMagnitudeNode(g, grad_x , grad_y , grad);
18 vxThresholdNode(g, grad , threshold , out);
19 /* verify the graph*/
20 status = vxVerifyGraph(g);
21 /* execute the graph */
22 if (status == VX_SUCCESS)
23 status = vxProcessGraph(g);

Listing 1.1. OpenVX code of the example of Fig. 2

Differently from all the work of the literature, this paper presents an ex-
tension of the OpenvX environment to the model-based design paradigm. Such
an extension aims at exploiting the model-based approach for the fast proto-
typing of any computer vision algorithm through a Matlab/Simulink model, its
parametrization, validation, and automatic synthesis into an equivalent OpenVX
code representation.

3 The model-based design approach

Figure 3 depicts the overview of the proposed design flow. The computer vision
application is firstly developed in Matlab/Simulink, by exploiting a computer
vision oriented toolbox of Simulink1. Such a block library allows developers to
define the application algorithms through Simulink blocks and to quickly simu-
late and validate the application at system level. The platform allows specific and
embedded application primitives to be defined by the user if not included in the

1 In this work, we selected the Simulink Computer Vision toolbox (CVT), as it repre-
sents the most widespread and used toolbox in the computer vision community. The
methodology, however, is general and can be extended to other Simulink toolboxes.
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Fig. 3. Methodology overview

toolbox through the Simulink S-Function construct [12] (e.g., user-defined block
UDB Block4 in Figure 3). Streams of frames are given as input stimuli to the
application model and the results (generally represented by frames or streams
of frames) are evaluated by adopting any ad-hoc validation metrics from the
computer vision literature (e.g., [13]). Efficient test patterns are extrapolated,



by using any technique of the literature, to assess the quality of the application
results by considering the adopted validation metrics.

The high-level application model is then automatically synthesized for a
low-level simulation and validation through Matlab/Simulink. Such a simula-
tion aims at validating the computer vision application at system-level by using
the OpenVX primitive implementations provided by the HW board vendor (e.g.,
NVIDIA VisionWorks) instead of Simulink blocks. The synthesis, which is per-
formed through e Matlab routine, relies on two key components:

1. The OpenVX toolbox for Simulink. Starting from the library of OpenVX
primitives (e.g., NVIDIA VisionWorks [14], INTEL OpenVX [15], AMDOVX
[16], Khronos OpenVX standard implementation [17]), such a toolbox of
blocks for Simulink is created by properly wrapping the primitives through
Matlab S-Function, as explained in Section 3.1.

2. The OpenVX primitives-Simulink blocks mapping table. It provides the map-
ping between Simulink blocks and the functionally equivalent OpenVX prim-
itives, as explained in Section 3.2.

As explained in the experimental results, we created the OpenVX toolbox
for Simulink of the NVIDIA VisionWorks library as well as the mapping table
between VisionWorks primitives and Simulink CVT blocks. They are available
for download from https://profs.sci.univr.it/bombieri/VW4Sim.

The low-level representation allows simulating and validating the model by
reusing the test patterns and the validation metrics identified during the higher
level (and faster) simulation.

The low-level Simulink model is synthesized, through a Matlab script, into
an OpenVX model, which is executed and validated on the target embedded
board. At this level, all the techniques of the literature for OpenVX system-
level optimization can be applied. The synthesis is straightforward (and thus not
addressed in this paper for the sake of space), as all the key information required
to build a stand-alone OpenVX code is contained in the low-level Simulink model.
Both the test patterns and the validation metrics can be re-used for the node-
level and system-level optimization of the OpenVX application.

The proposed design flow also allows the embedded vision application to be
refined by considering the external Robotics system, which is supposed to be
implemented as ROS-compliant application. The OpenVX model is interfaced
to ROS through a set of interface templates, which implement the OpenV-ROS
communication based on message passing. A lightweight target I/O module is re-
sponsible to handle the information sent by the system (e.g., sensors, controllers,
etc.) and to translate it into an OpenVX data structure. A similar I/O mod-
ule implements the initiator interface, which allows sending information from
OpenVX (generally the results of a computation) to the ROS system. By rely-
ing on the ROS commuincation protocol, the embedded vision application can
easily interact with multiple external actors, allowing an easy integration and
reuse into real Robotics systems.



1 function s_colorConvert(block)
2 setup(block);
3
4 function setup(block)
5 % Number of ports and parameters
6 block.NumInputPorts = 1;
7 block.NumOutputPorts = 1;
8
9 block.RegBlockMethod(’Start’, @Begin);

10 block.RegBlockMethod(’Stop’, @End);
11 block.RegBlockMethod(’Outputs ’, @Outputs);
12 function begin(block)
13 %create vx_image
14 gray = m_vxCreateImage ();
15 function end(block)
16 %destroy vx_image
17 m_vxReleaseImage(gray);
18 function outputs(block) // computation phase:
19 in = block.InputPort (1).Data;
20 ret_val = m_vxColorConvert(in, gray);
21 block.OutputPort (1).Data = gray;

Listing 1.2. Matlab S-function Code for the Color Converter node

3.1 OpenVX toolbox for Simulink

The generation of the OpenVX toolbox for Simulink relies on the S-function con-
struct, which allows describing any Simulink block functionality through C/C++
code. The code is compiled as mex file by using the Matlab mex utility [18]. As
with other mex files, S-functions are dynamically linked subroutines that the
Matlab execution engine can automatically load and execute. S-functions use
a special calling syntax (i.e., S-function API ) that enables the interaction be-
tween the block and the Simulink engine. This interaction is very similar to the
interaction that takes place between the engine and built-in Simulink blocks.

We defined a S-function template to build OpenVX blocks for Simulink that,
as for the construct specifications, consists of four main phases (see the example
in Listing 1.2, which represents the Color Converter node of Figure 2):

– Setup phase (lines 4-11): it defines the I/O block interface in terms of number
of input and output ports and the block internal state (e.g., point list for
tracking primitives).

– Begin phase (lines 12-14): It allocates data structure in the Simulink memory
space for saving the results of the block execution. Since the block executes
OpenVX code, this phase implementation relies on a data wrapper for the
OpenVX-Simulink data exchange and conversion.

– End phase (lines 15-17): It deallocates the created data structures at the end
of the simulation (after the computation phase).

– Computation phase (lines 18-20): it reads the input data and executes the
code implementing the block functionality. It makes use of a primitive wrap-
per to execute OpenVX code.

Three different wrappers have been defined to allow communication and syn-
chronization between the Simulink and the OpenVX environments. They are



mex_function(	){
vx_context ctx =	vxCreateContext(	)
}

Matlab/Simulink context

…
//block1	execution:
m_vxCreateImage(	)

m_vxCreateContext(	)

…
m_vxNode(	)
//enf of	block1
…
//block2	execution
...
//end	of	block2

Context wrapper OpenVX context

mex_function(	ctx,	I/O	data	){
mem_lock()		
vx_image img =	vxCreateimage(	)
}

Data	wrapper

vxCreateContext(	 ){
…
}

vxCreateImage(	){
}

Primitive	wrapper

mex_function(	ctx,		img ){
context m_ctx =	ref_to_context(ctx)
vx_image m_vximg =	ref_to_image(img)
mem_lock()		
m_vxNode(	)
}

vxNode(	){
}

Fig. 4. Overview of the Simulink-OpenVX communication

summarized in Figure 4. The context wrapper allows creating the OpenVX con-
text (see line 1 of Listing 1.1), which is mandatory for any OpenVX primitive
execution. It is run once for the whole system application. The data wrapper
allows creating the OpenVX data structures for the primitive communication
(see in, gray, gradx, grady, grad, and out in the example of Figure 2 and lines
4-11 of Listing 1.1). It is run once for each application block. The primitive
wrapper allows executing, in the Simulink context, each primitive functionality
implemented in OpenVX. To speed up the simulation, the wrapped primitives
work through references to data structures, which are passed as function pa-
rameters during the primitive invocations to the OpenVX context. To do that,
the wrappers implement memory locking mechanisms (i.e., through the Mat-
lab mem lock()/mem unlock() constructs) to prevent data objects to be released
automatically by the Matlab engine between primitive invocations.

3.2 Mapping table between OpenVX primitives and Simulink
blocks

To enable the application model synthesis from the high-level to the low-level
representation, mapping information is required to put in correspondence the
built-in Simulink blocks and the corresponding OpenVX primitives. In this work,
we defined such a mapping table between the Simulink CVT Toolbox and the
NVIDIA OpenVX-VisionWorks library. The table, which consists of 58 entries
in the current release, includes primitives for image arithmetic, flow and depth,
geometric transforms, filters, feature and analysis operations. Table 1 shows, as
an example, a representative subset of the mapped entries.



Simulink block Visionworks primitive Notes to the developer

CVT/AnalysisAnd -Enhancement/
EdgeDetection

vxuCannyEdgeDetector If Simulink EdgeDetection set
as Canny

CVT/AnalysisAnd -Enhancement/
EdgeDetection

vxuSobel3x3 If Simulink EdgeDetection set
as Sobel

CVT/AnalysisAnd -Enhancement/
EdgeDetection

vxuConvolve If filter size different from 3x3

CVT/Morphological
operation/Opening

vxuErode3x3 +

vxuDilate3x3

CVT/Filtering/Median Filter vxuMedianFilter3x3

CVT/Filtering/Median Filter vxuNonLinearFilter If filter size different from 3x3

Math Op./Subtract +
vxuAbsoluteDifference

Math Op./Abs

CVT/Conversion/Color space con-
version

vxuColorConvert

CVT/Statistics/2D Mean

vxuMeanStdDev
Only mean and
standard deviation of
the entire image
supported

CVT/Statistics/2D StandardDev

Simulink/Math operations/Real/-
ComplexTo -Imag

vxuMagnitude
Gradient magnitude
computed through
complex numbers

Simulink/Math operations/Re-
al/Imag to Magnitude

Table 1. Representative subset of the mapping table between Simulink CVT and
NVIDIA OpenVX-VisionWorks

We implemented three possible mapping strategies:

1. 1-to-1: the Simulink block is mapped to a single OpenVX primitive (e.g.,
color converter image arithmetic).

2. 1-to-n: the Simulink block functionality is implemented by a concatenation
of multiple OpenVX primitives (e.g., the opening morphological operation).

3. n-to-1: a concatenation of multiple Simulink blocks are needed to implement
a single OpenVX primitive (e.g., subtract + absolute blocks).

For some entry, the mapping also depends on the Simulink block setting. As
an example, the OpenVX primitive for edge detection is selected depending on
the setting of the corresponding CVT block. The setting includes the choice of
the filter algorithm (i.e., Canny or Sobel) and the filter size.

The blocks listed in the left-most column of the table form the OpenVX
toolbox for Simulink. Any Simulink model built from them can undergo the
proposed automatic refinement flow. In addition, user-defined Simulink blocks
implemented in C/C++ are supported and translated into OpenVX user kernels.
They are eventually loaded and included in the OpenVX representation as graph
nodes. To do that, we defined the wrapper represented in Listing 1.3, which
follows the node implementation directives required by the standard OpenVX
for importing user kernels2. The wrapper invocation (i.e., vx userNode()) is

2 www.khronos.org/registry/OpenVX/specs/1.0/html/da/d83/group__group_

_user__kernels.html



1 vx_userNode (){
2 vx_status processingOpenVX(vx_node node , const vx_reference *parameters ,

vx_uint32 num)
3 {
4 // convert data in internal representation
5 SimulinkBlockFunctionality (); //C/C++ code of the UDB functionality
6 return VX_SUCCESS;
7 }
8 vx_status validationOpenVX(vx_node node , const vx_reference parameters [],

vx_uint32 num , vx_meta_format metas []))
9 {

10 // insert parameter validation
11 return VX_SUCCESS;
12 }
13
14 vx_status singleShotProcessing(vx_context context , parameters)
15 {
16 // create graph and execute it
17 }
18
19 vx_status registerCustomKernel(vx_context context)
20 {
21 vx_status = vxAddUserKernel(context , ...) ;// register kernel in context
22 return VX_SUCCESS;
23 }
24 }

Listing 1.3. Overview of wrapper for user-defined Simulink block implementations

similar to the invocation of any built-in OpenVX node (i.e., vxNode()) in the
OpenVX context through the previously presented context wrapper (see the righ-
most side of Figure 4).

Finally, some restrictions on the Simulink block interfaces are required to
allow the Simulink/OpenVX communication as well as the model synthesis. The
set of data types and data structures available for the high-level model is reduced
to the subset supported by OpenVX, whereby each I/O port of the Simulink
blocks consists of:

– Dimension d ∈ {1D, 2D, 3D, 3D + AlphaChannel}, e.g., greyscale, RGB or
YUV, and alpha channel for transparency.

– Size s ∈ {N ×M × 1, N ×M × 3, N ×M × 4}.
– Type t ∈ {uint8, f loat}, where uint8 is generally used for representing data

(pixels, colours, etc.) while float is generally used for representing interpo-
lation data.

3.3 ROS integration

The adoption of ROS provides different advantages. First, it allows the platform
to model and simulate blocks running on different target devices. Then, it im-
plements the inter-node communication in a modular way and by adopting a
standard and widespread protocol, thus guaranteeing code portability.

ROS implements the messages passing among nodes by providing a publish-
subscribe communication model. Every message sent through ROS has a topic,
which is a unique string known by all the communicating nodes. An initiator
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node assigns a topic to publish a message, and the receiving nodes subscribe to
the topic.

Based on such a message passing interface, the proposed design flow relies
on two communication models:

– Client model: The OpenVX application actively fetches inputs from a partic-
ular ROS node. It relies on a client communication wrapper, as shown in the
upper side of Figure 5. It is particularly suited for intensive yet synchronous
communication (e.g., data acquisition of the OpenVX application from an
input sensor).

– Server model: It allows the OpenVX application to be run on-demand. The
external environment, which is implemented as ROS node, sends an exe-
cution request through an input data structure. The OpenVX application
executes and returns the result as a response packet. It relies on a server
communication wrapper, as shown in the bottom side of Figure 5. It is well
suited to implement sporadic communication (e.g., interpretation of the map
built by a SLAM application by an external agent).

Figure 6(a) shows the skeleton implementation of the server interface. The
process init function is responsible to perform the node initialization in the ROS
framework. It adds the current process to the ROS node list in the master
server (lines 17-18). This node is sensitive to the topic specified in line 23. Line
24 specifies the function that will be called on the server invocation. Lines 1-13
provide the invocation of the OpenVX application. Two parameters are necessary
to the function: the request, which contains the input data, and the response,
which will be updated by the computing function. Conversion functions are
defined to convert the data format between ROS and OpenVX. Finally, line 26
implements the busy waiting until the ROS framework shuts down all the nodes.



1 bool function_service(
2 ServerType :: Request &req ,
3 ServerType :: Response &res )
4 {
5 // compute the results
6 res.output1 = openvx2ros(
7 wrapper_openvx
8 (ros2openvx(req.input1),
9 ros2openvx(req.input2))

10 );
11 if(errors) return false;
12 else return true;
13 }
14
15 int process_init ()
16 {
17 ros::init(0, [],
18 "service_server");
19 ros:: NodeHandle n;
20 // Inform that this server is up
21 ros:: ServiceServer service =
22 n.advertiseService(
23 "topic_service",
24 function_service
25 );
26 ros::spin();
27 }

(a)

1 int process_init ()
2 {
3 ros::init(0, [],
4 "service_client");
5 ros:: NodeHandle n;
6
7 ros:: ServiceClient client =
8 n.serviceClient <ServerType >(
9 "topic_service"

10 );
11 ros:: Publisher pub =
12 n.advertise <DataType >("

topic_out", 10);
13 ServerType srv;
14 //fill input data(opt. parameter)
15 srv.req.input1 = ...;
16 if (client.call(srv))
17 {
18 // processing went good
19 n.publish(
20 openvx2ros(wrapper_openvx(
21 ros2openvx(srv.res.output1)
22 )));
23 }
24 else
25 {
26 // processing fails
27 }
28 }

(b)

Fig. 6. Skeleton implementation for the (a) server model and the (b) client model
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Fig. 7. Server model time evolution

Figure 7 shows the temporal evolution of the OpenVX-ROS communication
based on the server model of Figure 6(a).
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Fig. 8. Client model time evolution

Figure 6(b) depicts the skeleton for the client interface. After adding the pro-
cess to the list of ROS nodes (lines 3-4), the system informs the ROS framework
that the client requests need to be forwarded to the topic service listener (lines
7-10). The wrapper creates the object to write the results of the computation
(lines 11-12). Parameters are filled in line 15, and the call to request data is
performed in line 16. In case of positive message receiving, the OpenVX com-
putation is called (lines 20-21), through ad-hoc functions to convert the data
format between ROS and OpenVX. The system publishes the results back to
the network (line 19). Figure 8 shows the temporal evolution of such a client
model process.

4 Experimental Results

We applied the proposed model-based design flow for the development of two em-
bedded software: the first one implements a digital image stabilization algorithm
for camera streams, while the latter calculate the ORB descriptor.

4.1 Image stabilization

Figure 9 shows an overview of the algorithm, which is represented through a
dependency graph. The input stream (i.e., sequence of frames) is taken from a
high-definition camera, and each frame is converted to the grayscale format to
improve the algorithm efficiency without compromising the quality of the result.
A remapping operation is then applied to the resulting frames to remove fish-
eye distortions. A sparse optical flow is applied to the points detected in the
previous frame by using a feature detector (e.g., Harris or Fast detector). The
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Fig. 9. Digital image stabilization algorithm

Context
Original input stream Selected test patterns

Video real
time (min)

Model
simulation
time (min)

Frames
(#)

Video real
time (min)

Model
simulation
time (min)

Frames
(#)

Indoor 364 492 1.296.278 20.5 30.5 72.112

Outdoor 192 263 648.644 11.0 13.0 36.935

Table 2. Experimental results: High-level simulation time in Simulink

resulting points are then compared to the original point to find the homography
matrix. The last N matrices are then combined by using a Gaussian filtering,
where N is defined by the user (higher N means more smoothed trajectory a the
cost of more latency). Finally, each frame is inversely warped to get the final
result. Dashed lines in Figure 9 denote inter-frame dependencies, i.e., parts of
the algorithm where a temporal window of several frames is used to calculate
the camera translation.

We firstly modelled the algorithm application in Simulink (CVT toolbox).
The nodes Optical flow and Filtering have been inserted as user-defined blocks,
since they implement customized functionality and are not present in the CVT
toolbox. We conducted two different parametrizations of the algorithm, and in
particular of the feature detection phase: For an indoor and for an outdoor appli-
cation context. The first targets a system for indoor navigation of an Unmanned
aerial vehicle (UAV), while the second targets a system for outdoor navigation
of an Autonomous Surface Crafts (ASCs) [19].

We validated the two algorithm configurations starting from input streams
registered by different cameras at 60 FPS with 1280x720 (1080P) and 1920x1080
wide angle resolution, respectively. Table 2 reports the characteristics of the in-
put streams (columns Video real time and #Frames) and the time spent for
simulating the high-level model on such video streams in Simulink (Model simu-
lation time). Starting from the original video streams, we extrapolated a subset
of test patterns, which consist of the minimal selection of video streams necessary
to validate the model correctness by adopting the Smith et al. validation met-



Validation level
Sim./Exec. time (min)

Indoor Outdoor

Simulink High-Level model 30.5 13.0

Simulink Low Level model 59.0 26.5

Software application on target embedded system device 20.5 11.0

Table 3. Experimental results: Comparison of the simulation time spent to validate
the software application at different levels of the design flow. The board level validation
time refers to real execution time on the target board

rics for light field video stabilization [13]. The table reports the characteristics
of such selected test patterns (sequences of frames).

We then applied the Matlab synthesis script to translate the high-level model
into the low-level model by using the OpenVX toolbox for Simulink generated
from the NVIDIA VisionWorks v1.6 [14] and the corresponding Simulink CVT-
NVIDIA OpenVX/VisionWorks mapping table, as described in Sections 3.1 and
3.2, respectively. In particular, the low level simulation in Simulink allowed us
to validate the computer vision application implemented through the primitives
provided by the HW board vendor (e.g., NVIDIA OpenVX-VisionWorks) instead
of Simulink blocks.

Finally, we synthesized the low-level model into pure OpenVX code, by which
we run the real time analysis and validation on the target embedded board
(NVIDIA Jetson TX1). Table 3 reports a comparison among the different simu-
lation time (real execution time for the OpenVX code) spent to validate the em-
bedded software application at each level of the design flow. At each refinement
step, we reused the selected test patterns to verify the code over the adopted
validation metrics [13] for both the contexts and by assuming a maximum devia-
tion of 5%. The results underline that the higher level model simulation is faster
as it mostly relies on built-in Simulink blocks. It is recommended for functional
validation, algorithm parametrization, and test pattern selection. It provides
all the benefits of the model-based design paradigm, while it cannot be used
for accurate timing analysis, power, and energy measurements. The low level
model simulation is much slower since it relies on actual primitive implementa-
tion and many wrapper invocations. However, it represents a fundamental step
as it allows verifying the functional equivalence between the system-level model
implemented through blocks and the system-level model implemented through
primitives. Finally, the validation through execution on the target real device
allows for accurate timing and power analysis, in which all the techniques at the
state of the art for system-level optimization can be applied.

4.2 ORB descriptor

In computer vision, visual descriptors or image descriptors represent visual fea-
tures of image or video contents captured by an input video sensor. One of the



most adopted is ORB [20], which is generally integrated in complex localiza-
tion and mapping systems (i.e., ORB-SLAM [21]). The ORB-SLAM algorithm
performs ORB computation at different levels, to detect both fine and coarse fea-
tures of images. The inputs generally consists of a gray-scale image, the number
of such levels, and the number of features to be analysed per level.

We applied the proposed model-based design flow to define the ORB algo-
rithm, which is depicted in Figure 10. For the sake of space, the figure shows
the implementation of a single level in the Simulink environment. The data-flow
oriented algorithm consists of 5 main steps: The input image is resized accord-
ing to the scale level with the nearest-neighbors interpolation. The interesting
points are detected by using the FAST corner detection algorithm with a spec-
ified threshold. Then, the computed keypoints are divided into a regular grid
where a pruning is applied to each cell by using an higher threshold. This step is
applied only to the cells where the results are non-empty (i.e., there exist at least
one keypoint for each cell). The algorithm organizes the keypoints in a quadtree
data structure, which allows achieving a uniform sampling of the keypoints in
the image, carrying out the final pruning, and obtaining final keypoints, where
as a result, an angle is computed (i.e., since FAST detector is not oriented).
The algorithm applies a gaussian blur operation to the resized image, in order
to improve the descriptor quality and to avoid artifacts that can be introduced
by the nearest neighbor interpolation. Finally, the ORB descriptor is computed
for each keypoint. The final coordinates of the keypoints are rescaled to the
corresponding location in the original image.

Along the design flow, we measured the execution time of the algorithm
implementations at different refinement steps, by using the KITTI dataset[22],
which is a standard set of benchmarks for SLAM and computer vision applica-
tions. We also adopted the ROS interfaces described in 3.3 to receive the video
stream (i.e., based on the slave model) and to integrate an external agent that
reads the ORB result (i.e., based on the server model).

Validation level Sim./Exec. time (seconds)

Simulink High-Level model 804.0

Simulink Low Level model 762.0

Software application on target embed-
ded system device (with accelerators)
and ROS interface overhead

30.0

Table 4. Experimental results: Comparison of the simulation time spent to validate
the software application at different levels of the design flow. The board level validation
time refers to real execution time on the target board including the ROS communication
overhead

Table 4 reports the execution time we obtained by running the application
on the input sequence 11 of the KITTI dataset at different refinement levels.



Fig. 10. ORB design in Simulink

We applied the semi-automatic translation process from Simulink to the final
implementation as explained in in section 4.1, targeting an NVIDIA Jetson TX2
embedded board. We observed a slightly reduced execution time for the Simulink
low-level model execution with respect to the high-level model despite the wrap-
per usage. This is due the fact that the algorithm implementation in Simulink
required specialized MATLAB code that was not available with Simulink CVT li-
brary as native blocks. As a consequence, we developed custom code in MATLAB
to meet the requirements, and imported such a code as user-defined Simulink
blocks using the level-2 S-functions. As for the model-based design flow, the main
focus of the Simulink implementation was to target the functional verification of
the embedded application, with little effort on performance optimizations. On
the other hand, such user-defined blocks were available in the OpenVX-Vision
Works library thorough GPU-accelerated primitives.

5 Conclusion

This paper presented a methodology to integrate model-based design to OpenVX.
It showed how such a design flow allows for fast prototyping of any computer



vision algorithm through a Matlab/Simulink model, its parametrization, valida-
tion, and automatic synthesis into an equivalent OpenVX code representation.
The paper presented the experimental results obtained by applying the pro-
posed methodology for the development of two embedded software. The first
implements a digital image stabilization, while the second implements an ORB
descriptor for SLAM applications. The applications have been modelled and
parametrized through Simulink for different application contexts. In particular,
the ORB application has been validated by considering an external typical and
dynamic Robotics environment. This has been done through the OpenVX-ROS
interface generated with the proposed design flow, which allows co-simulating
the OpenVX application with the external application environment (e.g., input
streams, concurrent interactive systems, etc.) and, as a consequence, tuning more
efficiently the SW parametrization. Both the applications have been automati-
cally synthesized into OpenVX-VisionWorks code for an NVIDIA Jetson TX2
board.
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