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40 avenue Halley, 59650 Villeneuve d’Ascq, FRANCE
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Abstract—This paper deals with aspects related to modeling Il. M OTIVATIONS FOR CONFIGURATIONS INGASPARD2
of system configurations, which are very useful for describing
various states of an embedded system, from both structural
and operational viewpoints. We discuss in detail the current

proposition of the UML MARTE profile via some examples, and UML + MARTE Profile
point out some limitations of the current proposition, mainly N e
concerning the semantic aspects of the defined concepts. In @d \ /
to draw answering elements, we report our experiences about the

modeling of implementations and execution modes in Systems- <L
on-Chip, within the Gaspard2 SoC co-design framework.

I. INTRODUCTION m
Dynamic or run-time reconfiguration of a component or

12 ) Refactoring

platform-based system largely depends on the contextnestjui J,
by designer or environmental conditions. This adaptat@am c /4 N v
be determined and effectively linked to different Quality- [Luste ][ sonat ][ oiiche o D>
of-Service (QoS) criteria; such as energy consumption lev- A Y & [Sere]

. . . TLMPA
els, performance throughput etc. Run-time reconfiguration "\
requires the integration of an efficienbntroller component Key R Y
for managing different system configurations. Additiopathe ] : '

dependency A o @
semantics related to the component infrastructure musgt tak — transformtion

into consideration several key issues: such as instaiatid e
termination of system components, deletion in case of user
requirements. Components can be also homogeneous or het-
erogeneous in the context of a component framework, raising
additional issues. Nowadays, modern embedded systems areigure 1 shows a global view of the Gaspard2 framework.
mainly composed of heterogeneous components. Finally, keaspard2 enables to modsbftware applicationshardware
usability of systems components is also an important idsate tarchitecturesand their allocations in a concurrent manner.
cannot be left ignored. Once models of software applications and hardware archi-
Gaspard2 [1], [2] is a Systems-on-Chip (SoC) co-desidactures are defined, the functional parts (such as apiplicat
framework dedicated to parallel hardware and software andt@sks and data) can be mapped onto hardware resources (such
based on the classical Y-chart [3]. One of the most importa@$ processors and memories) wiocation(s) Gaspard also
features of Gaspard?2 is its ability for system co-modeling #troduces aleploymentevel that allows to link hardware and
an high abstraction level. Gaspard2 uses the Model-Driven Eoftware elementarycomponents with intellectual properties
gineering methodology to model real-time embedded systef8s); permitting re-utilization of IPs and enables to &irg
using the UML MARTE profile [4]; and UML graphical tools different execution platforms.
and technologies such as Papyrus [5] and Eclipse ModelingFor the purpose of automatic code generation from high
Framework [6]. level models, Gaspard adopts MDE model transformations
In this paper, we discuss the need of configuration modeliigmodel to modeland model to texttransformations) [7] to-
with respect to Gaspard2 at different SoC design levels. Wards different execution platforms, such as targeted ridsva
first present the current proposition of the MARTE specificaynchronous domain for validation and analysis purposes or
tions via some simple examples. Some limitations concgrnikfPGA synthesis, as shown in Figure 1. Model transformation
the current semantic aspects are also pointed out. As @rains permit moving from high abstraction levels to low
alternative solution, we present our contributions relate enriched levels. Usually, the initial high level models tzin
modeling of system implementations and execution modesadnly domain-specific concepts, while technological coteep
SoC, within the context of Gaspard2 framework. are introduced seamlessly in the intermediate levels.

Fig. 1: A global view of the Gaspard2 framework



Now, we illustrate the usefulness of configuration modelingrchitecture, among several possibilities present in an IP

at different system design levels in Gaspard?2. library. The reason is that in SoC design, a functionality ca
o be implemented in different ways. For example, an appbaoati
A. Software application functionality can either be optimized for a processor, thus

Considering different versions of an algorithm in a systemritten in C/C++, or implemented as an hardware accelerator
functionality is sometimes important, particularly whérese using Hardware Description Language@iDLs). Hence the
versions yield different degrees of precision concerning tdeployment level permits moving from platform-indeperden
computed results. For instance, in the video processing dogh level models to platform-dependent models for even-
main, it is usual to encounter multiple algorithms dedidateual implementation. Considering different modes for eyst
for the same purpose, e.g. video decoding or encoding, vidgeployment with IPs can also be seen as a way to deal
compression, etc. A very frequent transformation found imith QoS criteria such as consumed resources, latency,rpowe
these algorithms is the discrete cosine transformationT()DC consumption levels, etc. This change in IPs at the deploymen
which is normally a time-consuming process. Let us considiewvel may cause a global influence to the overall system desig
two different versions of a DCT that encode the same funetioaffering different end results based on the chosen QoSierite
ality, but are optimized differently. The choice betweerihbo
versions according to a required video processing pretisio
can be captured by considering the MARTE concepts for

Ill. THE MARTE PROPOSITION FOR MODE AND
CONFIGURATION MODELING

configuration modeling. A. Overall presentation
B. Hardware architecture T'
In a similar way, the configuration modeling concepts ¢} """
MARTE_couId be useful for the hardware archltec_ture of oSyt Bgﬂ;gﬁgﬂfﬂﬂ;:‘;:fe; ng:;gg;;g;;gi:;:;,,
system in order to change the structure of the architectyre St Tiznston StateMachine

modifying different parameters, such as the communicati ' ‘

interconnections, bus widths, etc. The configurations ¢sm a

be used to replace some hardware component by another, e ModeTranition ModeGehavior
a processor by an hardware accelerator, for better exacut
performances. Similarly, characteristics of a processam c

mode

be interchanged by uti!izing the characteristics fnamic e L UML: Gasses: Kerme

\oltage/Frequency Scalini@], [9]. Sitireci oo =

C. Software/Hardware allocation L\ [J
Considering different system configurations in terms of-sof « stereotype »

Configuration

ware/hardware allocations can be useful from several paiht
views: increasing the execution performances of the system

functionality, decreasing the number of active executiog€ Fig. 2: Modes and Configurations in MARTE profile
puting units to reduce the overall power consumption levels

etc. Tasks of an application that are executing parallely onThe current MARTE proposition for the modeling of em-
processing units may produce the desired computation atitided system configurations and their associated cansoll
optimal processing speed, but at a cost of increased poweglies respectively on the use of components and finite state
consumption levels. Modifying the allocation of the applic machines (FSMs), as illustrated in the following examples.
tion on to the architecture can produce different combameti This proposal has been inspired from AADL Architecture

and different end results. A task may be switched to anothgfalysis and design languaggl0]. Fig. 2 illustrates the
processing unit that consumes less power, similarly, akda MARTE profile concepts related to system modes and config-
can be associated on to a single processing unit resultingtions. It is evident that there is a one to one correspurele

in a temporal allocation as compared to a spatial one. Thjgtween the MARTE concepts and pure UML state machine
strategy reduces the power consumption levels along wiBmantics. A mode is related to a system configuration, and
decrease in the processing frequency. Thus allocatiorl leygode transitions represent the transitions between tFeretit
allows incorporation ofDesign Space Exploratiomspects, available configurations. Equally, a mode behavior reprisse
which in turn can be manipulated by the designers dependigigite machine responsible for switching between the difiier
upon their chosen QoS criteria. available configurations.

D. System deployment with intellectual properties (IPs)  B. Example of system configuration modeling

The deployment level considered in our framework enablesFig. 3 illustrates a component, named
one to express how a specific IP implements an associatedle SystemConfigurationl, with the sStereotype
(elementary) component of software application or haréwat<configuration>> that represents a configuration for an



allocation of an application functionality on an hardwareation functional components are allocated and subseguent
architecture. More generally, this component encapsailagxecuted on the processor.

a model in the form of a classifier or a package. The Now, Fig. 4 depicts another software/hardware allocation
mode value FullProcessorMode indicating when this scenario according to which only the quantizer and the Huff-
configuration is active is noted on the top right of thenan coding function are executed on the processor. The DCT

Mode SystemConfigurationl component.

<<configuration>> {mode=FullProcessorMode}

Mode_SystemConfiguration1

: Application

dct:DCT

[ quant:Quant | [ hc:HC |
{7 lum
gl

lum [ {3 lum lum lum lum lum
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bus
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SRAM

<<HWPLD>>
acc: HwAce

Fig. 3: Processor-based homogeneous allocation.

<<configuration>> {mode=Processor-AcceleratorMode}
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Fig. 4: Mixed processor/hardware accelerator allocation.

is now executed on a dedicated hardware accelerator tteas off
better execution performances than the processor, due to it
parallel regular execution. Indeed, it is well-known thiaé t
DCT is one of the most resource-demanding parts of video
encoding algorithms, and particularly of the H.263 encoder
The way mode values are produced for selecting configura-
tions is specified via an FSM, as modeled in Fig. 5. The FSM
contains two states corresponding to the two configurations
illustrated before. Each state of the FSM is associated with
some mode value specifications. An active configuration is
therefore the one associated with a mode value corresppndin
to the current state of the controller FSM. The transitiamfr
a configuration to another is captured via the transitionhef
states present in the FSM.

stm <<modeBehavior>> SystemModes )

<<modeBehavior>>
SystemModes

<<modeTransition>
[NodeCrash]/ReconfigtoProcAccmode

<<mode>>
ProcessorAccelerator
Mode

<<mode>>
FullProcessor
Mode

- /

Fig. 5: Mode specification with a FSM in MARTE.

C. Open questions about model semantics

Beyond the already identified unclarities [12], [13] in the
semantics of UML state machines on which the configuration
controller definition relies upon, there are further conser
during the interactions between a controller and its assedi
configurations, as discussed below.

1) Configuration switch:An important aspect that requires
further clarifications about configuration switch concetins
nature of transitions between the states of a controllesome
contexts, such transitions are not immediate. Typicallyew
considering a configuration switch at an hardware architect
level, the circuit needs to go through a stabilization phase
before changing its status. So at least, there should be a

More concretely, Fig. 3 shows the mapping of the intra-pactear distinction related taeakor strongtransitions between
of the H263 encoder dedicated to video processing [11]. Thenfiguration as in synchronous mode automata [14], [15].
software application part is composed of three main compReughly speaking, a weak transition delays the observation
nents: a DCT, a quantizer and a Huffman coding functiothe results from a suspended configuration to the moment at
The application is allocated onto an hardware architectundnich a new configuration becomes active. This delay may be
that is composed of a processor, an hardware acceleratbr, emerpreted as a stabilization phase before the produaifon
memory devices. Here, the allocation expresses that ali-apphe results in the suspended configuration. In contrasoagtr



transition makes the results of the suspended configuratimonfiguration gets suspended from a controller state at a sub
instantaneously available. level, how does one manages to resume this configuration?
These questions can be answered only if the semantics aspect

2) Multi-level configuration control:lt is possible to have are precised. In the literature, there are already sevevpbgal

multi-level controllers in a complex system. These coiférsl candidates for defining such a semantics, as illustratetih [
can be combined at different SoC levels to describe morez], [18], among other popular references.

complex configuration switches. Typically, controllersi@so
be composed in parallel, as illustrated in Fig. 6.

Here, two modes are available for both the application and
the architectural aspects of a given system; and a transitjo
can be carried out depending upon the given requirements, ?
Therefore, an expected behavior from this approach is that|a
controllers make their transitions in parallel, within th@me ?

global transition. These parallel controllers may synoime

through their event occurrences, the output from one cti@tro [ “Tow H o }

being an input of the other. Everey \Perormance
Another interesting scenario for composing controlleraris RTng;cP:'xd g)

hierarchic approach, where a state of a controller mayfitse \ J

consist of another controller. In simpler terms, that methas

a state may itself contain an embedded FSM. This scenario ] ) N )

is represented in Fig. 7. Her&ullProcessorMode itself ~ Fig. 7: Hierarchic mode composition for a given system.

contains two modes or states that correspond to different

behaviors related to the processor present in the systeus. TR need of guidelines for concept usage

the processor can either operate in a low energy consumptiorA bl ii bout the ab f .
mode, at the comprise of performance throughput or it can N arguablé position about the absence or a precise seman-

stm <<modeBehavior>> Sy )

<<modeBehavior>>

<<modeBehavior>>

FullProcessorMode <<modeTransition>

[NodeCrash]/
ReconfigtoProcAccmode

<<mode>>
Processor
AcceleratorMode

operate in an alternative manner.

stm <<modeBehavior>> SystemModes}

<<modeBehavior>>
SystemModes

<<modeTransition>

[NodeCrash]/ReconfigToAppMode2
<<mode>>

<<mode>>
ApplicationMode1

ApplicationMode2

<<modeTransition>
[NodeCrash]/ReconfigToArchMode2

<<mode>>
ArchitectureMode1

<<mode>>
ArchitectureMode2

. /

Fig. 6: A scenario with parallel composition of modes.

tics for the proposed configuration modeling concepts cbeld
justified by the need of generality, as for the UML language,
by leaving the semantics only partially defined. The adwgenta
is that the concepts are usable in different contexts aguprd
to suitable semantics.

However, one has to notice that the above concepts are de-
fined in a profile, which aims to add all necessary ingredients
to the more general UML language in order to be adequately
exploited by embedded system designers. So, in our opiimon,
absence of a precise semantics, there should be (at least) so
accompanying guidelines explaining possible relevantsaay
combining such concepts in practice. Typically, according
a given system design level, as mentioned in section Il, how
does one can use these concepts in the same way? We believe
that such guidelines could be a very worthy alternative to a
precise semantics.

IV. M ODE-ORIENTED DESIGN INGASPARD2

As an alternative to the solution presented in the MARTE
profile, here we present an interesting substitute, in order
to model multimode scenarios in Gaspard2. Our presented
approach shares some common concepts as presented in the
MARTE profile. We now introduce some of the main concepts

In the current proposition of MARTE, the semantics of sucks|ated to our contribution, as well as the adopted semsntic

multi-level compositions of configuration controllers i®tn

clearly discussed. For instance, in an hierarchical ctiatro A- Mode switch component
how does one synchronize the states at a given level withsstat A modeplays a role similar to a configuration illustrated
at the sub-levels? Should a state that itself contains ed®ukdearlier in the paper. Alode Switch Component contains at

states be stereotyped as eitheMale or a ModeBehavior?

least one mode; and offers a switch functionality that gelec

While in MARTE, the proposal specifies that the ownedne mode (or configuration) to be executed among several
states of a state machine must be stereotyped only as modeajlable modes [19]. For instance, in Fig. 8, Hogle Switch
what happens in the case of hierarchy? Equally, whenCamponent has an input mode value pdfbde. The switch



between the different modes is carried out according to tfa instance, a state graph component can control seveidd mo
value received through thBode port. The different modes switch components [21].
of theMode Switch Component are describe by using UML
collaboration diagrams associated with the components@he
instance level collaborations specify roles of componevits '\
usage of connectors and parts in composite structures. A \
collaboration specifies the relation between some colktbay
components (or roles). Each of these roles provides a specifi a | st La ]
function, and executes some required functionality in a co Hiacro
lective way. Only the concerned aspects of a role are indudé
in a collaboration while others are omitted.
The name of the collaborations correspond to the mod/
values and thus these collaborations define the activity of-
mode switch component upon receiving a particular mod

State Graph ]

‘ state_FullProc state_ProcAcc ‘

i_state: Statevalues [{}] State Graph Component
1 VJ‘ tatevalues [{}]

o_state: Statevalug

FullPr_e: Boolean [{}] s [

{ | Futroc_event: Boolean () modevalue: Modes (]

. ProcAcc_event: Boolean [(}]

value. For example, the collaborati®ml1ProcMode shows EEE—

the relationship between the mode switch component a —ﬁ]mmmmun

the mode/configuratioful1ProcessorConfiguration; in- , _

dicating that mode valuBullProcMode switches the current i
executing mode tdFullProcessorConfiguration. As in P
this mode only FullProcessorConfiguration is to be E \
executed, the second modrocessorAccConfiguration
is omitted along with the mode port of the mode switch

component, due to the semantics of UML collaborations. The S

collaboration is finally linked to the mode switch component Fig. 8: A UML example illustrating a macro component.
Additionally, each mode component can be hierarchical or

elementary in nature. Given a hierarchical level, all modes

have the same interface [20]. Finally, for a received modé Mode automata-based semantics

value, the mode run exclusively at any instant. For the semantics of Gaspard2 models including modes,
we have adopted the semantics of mode automata [18]. Mode
B. State graph automata are mainly composed of modes and transitions. In

A state graph in Gaspard2 is similar to a statechart VB automaton, each mode has the same interface. Transitions
term these state graphs @aspard state graphs Eacﬁ can be associated with conditions, which act as triggers.
state is associated with some mode value specifications tﬁfﬂa”y’ only weak tranS|t|on§ are considered. '\"0‘.’6‘ qutama
provide mode values for the state. The mode values allé@" be compos_e_d together in a _p_arallel way, which is cglled
to activate different exclusive modes in the associatedemo@ra/lél composition The composition result is the Cartesian
switch components. Similarly to the mode switch componer‘ﬂrOduct of th(_a.sets ?f mOdiS of.the aut.cgll"natﬁ to t?]e composed.
a Gaspard2 state graph component has an interfaces ir@lu&i—he composition aiso makes it possible that the automata

event inputs from the environment, source state inputgetarCommumc"’Ite with each other in a way that one output of
0§ automaton can be taken as an input of another automaton.

state outputs and mode value outputs. Event inputs are u% hical tion is based on the refi ¢ of Tert
to trigger transitions. The source state inputs determiige t \erarchica’ composition IS based on the retinement of gerta
modes in the automata. At each level, the variables in the

states from which the transitions take place, while tartges id bal h his level h
outputs determine the current destination states of the fir%taFeS are considergio a,.ast e state at this eve see;t ese
iables. However, a variable cannot be multiply defined at

transitions. The mode outputs are associated with a mggﬁ

switch component in order to select the right operating mo erent hierarchical Ieve.ls. ) )
The proposed semantics can be implemented at different

levels of a SoC co-design framework, as illustrated in secti

II. During the research works related to modes, we have
A Macro Component is used to compose mode switChohserved the integration at two levels, mainly the appbeat

components and state graph components together. A UMhd the IP deployment level, however, future works hope

representation of the macro component in Fig .8 illustratgs focus on other design levels such as the architecture and
one possible composition; and represents a complete GEspa{liocation level.

control structure. In this structure, the state graph camepo ) o

produces a mode value (or a set of mode values) and sendg-jtntégrating modes at the application level

(them) to the mode switch component. The latter switches theThe Gaspard control model has been implemented with
modes accordingly. The illustrated figure is used as a ba&lé/IL state machines and collaborations. A model transfor-
composition, however, other compositions are also passibination chain from high level MARTE models to synchronous

C. Combining modes switch and state graphs



languages can bridge the gap between these models anddhthis mode based approach has been explained briefly at two
geted synchronous language code. The model transformatitasign levels for different purposes and execution platfor

chain can be divided into several successive parts in order
to ease integration of new concepts in the chain [20]. B)(
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