1,329 research outputs found

    Reinforcement learning based local search for grouping problems: A case study on graph coloring

    Get PDF
    Grouping problems aim to partition a set of items into multiple mutually disjoint subsets according to some specific criterion and constraints. Grouping problems cover a large class of important combinatorial optimization problems that are generally computationally difficult. In this paper, we propose a general solution approach for grouping problems, i.e., reinforcement learning based local search (RLS), which combines reinforcement learning techniques with descent-based local search. The viability of the proposed approach is verified on a well-known representative grouping problem (graph coloring) where a very simple descent-based coloring algorithm is applied. Experimental studies on popular DIMACS and COLOR02 benchmark graphs indicate that RLS achieves competitive performances compared to a number of well-known coloring algorithms

    Algorithms for the minimum sum coloring problem: a review

    Get PDF
    The Minimum Sum Coloring Problem (MSCP) is a variant of the well-known vertex coloring problem which has a number of AI related applications. Due to its theoretical and practical relevance, MSCP attracts increasing attention. The only existing review on the problem dates back to 2004 and mainly covers the history of MSCP and theoretical developments on specific graphs. In recent years, the field has witnessed significant progresses on approximation algorithms and practical solution algorithms. The purpose of this review is to provide a comprehensive inspection of the most recent and representative MSCP algorithms. To be informative, we identify the general framework followed by practical solution algorithms and the key ingredients that make them successful. By classifying the main search strategies and putting forward the critical elements of the reviewed methods, we wish to encourage future development of more powerful methods and motivate new applications

    Gunrock: GPU Graph Analytics

    Full text link
    For large-scale graph analytics on the GPU, the irregularity of data access and control flow, and the complexity of programming GPUs, have presented two significant challenges to developing a programmable high-performance graph library. "Gunrock", our graph-processing system designed specifically for the GPU, uses a high-level, bulk-synchronous, data-centric abstraction focused on operations on a vertex or edge frontier. Gunrock achieves a balance between performance and expressiveness by coupling high performance GPU computing primitives and optimization strategies with a high-level programming model that allows programmers to quickly develop new graph primitives with small code size and minimal GPU programming knowledge. We characterize the performance of various optimization strategies and evaluate Gunrock's overall performance on different GPU architectures on a wide range of graph primitives that span from traversal-based algorithms and ranking algorithms, to triangle counting and bipartite-graph-based algorithms. The results show that on a single GPU, Gunrock has on average at least an order of magnitude speedup over Boost and PowerGraph, comparable performance to the fastest GPU hardwired primitives and CPU shared-memory graph libraries such as Ligra and Galois, and better performance than any other GPU high-level graph library.Comment: 52 pages, invited paper to ACM Transactions on Parallel Computing (TOPC), an extended version of PPoPP'16 paper "Gunrock: A High-Performance Graph Processing Library on the GPU

    Optimal Recombination in Genetic Algorithms

    Full text link
    This paper surveys results on complexity of the optimal recombination problem (ORP), which consists in finding the best possible offspring as a result of a recombination operator in a genetic algorithm, given two parent solutions. We consider efficient reductions of the ORPs, allowing to establish polynomial solvability or NP-hardness of the ORPs, as well as direct proofs of hardness results

    Proceedings of the 2nd Computer Science Student Workshop: Microsoft Istanbul, Turkey, April 9, 2011

    Get PDF

    Binary merge model representation of the graph colouring problem

    Get PDF
    This paper describes a novel representation and ordering model that, aided by an evolutionary algorithm, is used in solving the graph k-colouring problem. Its strength lies in reducing the number of neighbors that need to be checked for validity. An empirical comparison is made with two other algorithms on a popular selection of problem instances and on a suite of instances in the phase transition. The new representation in combination with a heuristic mutation operator shows promising result

    Modifying colourings between time-steps to tackle changes in dynamic random graphs

    Get PDF
    Many real world operational research problems can be formulated as graph colouring problems. Algorithms for this problem usually operate under the assumption that the size and constraints of a problem are fixed, allowing us to model the problem using a static graph. For many problems however, this is not the case and it would be more appropriate to model such problems using dynamic graphs. In this paper we will explore whether feasible colourings for one graph at time-step t can be modified into a colouring for a similar graph at time-step t+1 in some beneficial manner

    A grouping hyper-heuristic framework: application on graph colouring

    Get PDF
    Grouping problems are hard to solve combinatorial optimisation problems which require partitioning of objects into a minimum number of subsets while a given objective is simultaneously optimised. Selection hyper-heuristics are high level general purpose search methodologies that operate on a space formed by a set of low level heuristics rather than solutions. Most of the recently proposed selection hyper-heuristics are iterative and make use of two key methods which are employed successively; heuristic selection and move acceptance. In this study, we present a novel generic selection hyper-heuristic framework containing a fixed set of reusable grouping low level heuristics and an unconventional move acceptance mechanism for solving grouping problems. This framework deals with one solution at a time at any given decision point during the search process. Also, a set of high quality solutions, capturing the trade-off between the number of groups and the additional objective for the given grouping problem, is maintained. The move acceptance mechanism embeds a local search approach which is capable of progressing improvements on those trade-off solutions. The performance of different selection hyper-heuristics with various components under the proposed framework is investigated on graph colouring as a representative grouping problem. Then, the top performing hyper-heuristics are applied to a benchmark of examination timetabling instances. The empirical results indicate the effectiveness and generality of the proposed framework enabling grouping hyper-heuristics to achieve high quality solutions in both domains. ©2015 Elsevier Ltd. All rights reserved
    corecore