
Elhag, Anas and Özcan, Ender (2015) A grouping hyper-
heuristic framework: application on graph colouring.
Expert Systems with Applications, 42 (13). pp. 5491-
5507. ISSN 0957-4174

Access from the University of Nottingham repository:
http://eprints.nottingham.ac.uk/32183/1/groupingGC.pdf

Copyright and reuse:

The Nottingham ePrints service makes this work by researchers of the University of
Nottingham available open access under the following conditions.

· Copyright and all moral rights to the version of the paper presented here belong to
the individual author(s) and/or other copyright owners.

· To the extent reasonable and practicable the material made available in Nottingham
ePrints has been checked for eligibility before being made available.

· Copies of full items can be used for personal research or study, educational, or not-
for-profit purposes without prior permission or charge provided that the authors, title
and full bibliographic details are credited, a hyperlink and/or URL is given for the
original metadata page and the content is not changed in any way.

· Quotations or similar reproductions must be sufficiently acknowledged.

Please see our full end user licence at:
http://eprints.nottingham.ac.uk/end_user_agreement.pdf

A note on versions:

The version presented here may differ from the published version or from the version of
record. If you wish to cite this item you are advised to consult the publisher’s version. Please
see the repository url above for details on accessing the published version and note that
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Nottingham ePrints

https://core.ac.uk/display/33576016?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://eprints.nottingham.ac.uk/Etheses%20end%20user%20agreement.pdf
mailto:eprints@nottingham.ac.uk

A Grouping Hyper-Heuristic Framework: Application on Graph

Colouring

Anas Elhag, Ender Özcan

ASAP Research Group

School of Computer Science

University of Nottingham

Jubilee Campus, NG8 1BB Nottingham, UK

Abstract

Grouping problems are hard to solve combinatorial optimisation problems which require parti-

tioning of objects into a minimum number of subsets while a given objective is simultaneously

optimized. Selection hyper-heuristics are high level general purpose search methodologies that

operate on a space formed by a set of low level heuristics rather than solutions. Most of the re-

cently proposed selection hyper-heuristics are iterative and make use of two key methods which

are employed successively; heuristic selection and move acceptance. At each step, a new solu-

tion is produced after a selected heuristic is applied to the solution in hand and then the move

acceptance method is used to decide whether the resultant solution replaces the current one or

not. In this study, we present a selection hyper-heuristic framework including a fixed set of low

level heuristics specifically designed for grouping problems. The performance of different hyper-

heuristics using different components within the framework is investigated on a representative

grouping problem of graph colouring. Additionally, the hyper-heuristic performing the best on

graph colouring is applied to a benchmark of examination timetabling instances. The empirical

results shows that the proposed grouping hyper-heuristic is not only sufficiently general, but also

able to achieve high quality solutions for graph colouring and examination timetabling.

Keywords: hyper-heuristics, grouping problems, graph colouring, timetabling

1. Introduction

The task of partitioning a large set of items into a collection of mutually disjoint subsets is

a common task in a variety of real-world problems. In a grouping problem, the goal is to opti-

mise a given objective (cost, penalty) while achieving the minimum number of subsets (groups).

Hence, grouping problems can be formulated as a multi-criteria discrete combinatorial optimisa-

tion problem, considering that there is a trade-off between minimizing cost and number of groups,

as in graph colouring (Saha et al., 2013), timetabling (Qu et al., 2009) and packing (Falkenauer,

1998).

Email addresses: axe@cs.nott.ac.uk (Anas Elhag), exo@cs.nott.ac.uk (Ender Özcan)

Preprint submitted to Expert Systems with Applications December 22, 2014

Two crucial components in the design of grouping algorithms for solving grouping problems

are the candidate solution representation and neighbourhood/move operator(s). A redundant

representation scheme which allows equivalent solutions yielding the same grouping creates a

huge search space that might impair even the most powerful search algorithm. Many grouping

approaches based on genetic algorithms (GAs) have been explored in the scientific literature

providing various degrees of success (Falkenauer, 1998; Korkmaz, 2010). In previous studies,

it has been observed that traditional operators are rather disruptive and, in many cases, counter

productive, hence special operators that are tailored for grouping problems are needed.

There is a growing number of studies on more general and reusable search methodologies

applicable to multiple problem domains than the existing specifically tailored solutions to a sin-

gle problem. Hyper-heuristics are such high level search methodologies that search the space

formed by low level heuristics, instead of solutions directly for solving hard problems (Burke

et al., 2013). There are different types of hyper-heuristics. The focus of this study is selection

type of high level search methods that mix and control a pre-defined set of low level perturba-

tive heuristics (operators) processing complete solutions at each step under a single-point based

search framework.

In this study, we describe a selection hyper-heuristic framework for grouping problems. The

framework embeds a set of tailored low level grouping heuristics based on a restricted version

of grouping representation, referred to as the Group Encoding (Falkenauer, 1998). In contrast to

traditional selection hyper-heuristics that use a different set of low level heuristics provided for

each different problem domain, in our proposed framework the set of low level heuristics is fixed

and the same framework can be used for solving various grouping problems. This adds another

level of generality when compared to generic selection hyper-heuristics.

We have investigated the performance of the framework using different selection hyper-

heuristic components on a set of well known graph colouring benchmark instances 1. Addi-

tionally, we applied the same hyper-heuristic without any modification to a benchmark of exam-

ination timetabling instances in order to examine the generality of the framework. The empirical

results show that a learning selection hyper-heuristic developed using the framework turns out

to be indeed sufficiently general and reusable. This hyper-heuristic either beats most of the pre-

viously proposed approaches tailored for the specific problem in hand or shows that it is highly

competitive.

The paper is organised as follows. Section 2 provides an overview of grouping problems,

different representation schemes for grouping problems and hyper-heuristics. The details of the

proposed selection hyper-heuristic framework including all low level heuristics and different

components are given in Section 3. The experimental design and results are discussed in Section

4, while the last section presents concluding remarks and future work.

2. Background

2.1. Grouping Problems

Grouping problems are combinatorial optimisation problems in which a large group of n

items, U = {x1, x2, x3, ..., xn}, is to be divided into a collection of k (2 ≤ k ≤ n − 1) subgroups,

ui (1 ≤ i ≤ k); such that each item x ∈ U belongs to exactly one subgroup minimizing a given

objective (cost/penalty/fitness) and k. Different grouping problems have different constraints, and

1ftp://dimacs.rutgers.edu/pub/challenge/graph/benchmarks/color/

2

introduce different objective (cost) functions, as in graph colouring, timetabling, data clustering

and packing (Falkenauer, 1998). In our formulation, we denote a cost function as a decomposable

function, f (). For a subgroup ui, the partial cost is denoted as f (ui), and for a complete solution

Ug = {u1, ..., uk}, f (Ug) is the total cost.

minimise Z =

f (Ug) =

k
∑

i=1

f (ui), k

(1)

sub ject to

k
⋃

i=1

ui = U (2)

ui

⋂

u j = ∅ ∀i, j where i , j (3)

ui , ∅ ∀i (4)

In this study, we represent the grouping problem as a discrete two objective multi-criteria

problem in which the goal is to optimize the two conflicting objectives in equation (1) above,

namely the number of groups which can only take discrete values; and the cost which can take

discrete or continuous values depending on the problem. Ideally, these two objectives should be

simultaneously optimised, although they are clearly conflicting; i.e. a decrease in the number

of groups k leads to an increase in the cost. In some cases, there might not be a single optimal

solution. Instead, there could be multiple solutions with a trade-off from which a decision maker

can choose. Those solutions are identified using the concept of dominance (Zitzler and Thiele,

1998) as illustrated in Figure 1.

Pareto front

Dominated solutions

Number of groups in the solution (k)

Fi
tn

es
s

va
lu

e
(f

(U
k)

)

Figure 1: The Dominance concept in Multi-objective optimisation.

A solution x is considered to dominate another solution y, (x ≻ y) if, and only if, x is better

than y in at least one objective, and x is not worse than y in any of the objectives. The set of

the non-dominated solutions is known as the Pareto optimal set, and its image in the objective

3

domain is known as the Pareto optimal front. This problem is different than a generic multi-

objective problem where mostly, there is a region where the Pareto front is driven automatically

via a multi-objective algorithm, however, in grouping problems the range of groups is fixed,

hence the search methodology can focus on a single objective without ignoring the second one.

We use some basic ideas from multi-objective optimisation, but the proposed approach is not a

generic multi-objective algorithm as described in Section 3. For more on multi-objective optimi-

sation, readers can refer to (Zitzler and Thiele, 1998; Coello et al., 2007), which is not the focus

of this study.

2.1.1. Grouping Representations

Almost all previously proposed grouping approaches are genetic algorithms utilizing various

encoding schemes for grouping problems. Those schemes can be classified as fixed and variable

length representations. A fixed-length representation is based on an array of values associated

in some way with each item in a set of objects, such as, Group Numeric Encoding (GNE) and

Permutation with Separators Encoding (PWS) (Jones and Beltramo, 1991) which are widely

used in the literature. Each location in the array is associated with an item and in GNE, the

value at a location indicates the group that the item belongs to, whereas in PWS, that value

represents the relative positions of the objects with respect to each other. However, many studies

have concluded that such representations have some deficiencies. One of the crucial flaws is the

redundancy in the representation. Different candidate solutions under a redundant representation

could yield the same grouping of items. For example, assuming that we have 3 objects for

grouping under GNE, <1, 1, 2> indicates that there are two subgroups, first and second items

form a subgroup while the third item forms another subgroup. <2, 2, 1>, <3, 3, 1>, <1, 1, 3>, <3,

3, 2> and <3, 3, 1> also represent the same grouping. This type of redundancy in return creates

a larger search space potentially impairing the search algorithms (Falkenauer, 1992). Also, if the

traditional genetic operators are used with those representations, they could significantly damage

the good solutions that are being developed during the search. For example, (Du et al., 2004)

showed that the standard one-point crossover has various disadvantages and is not suitable for

grouping problems.

In (Park and Song, 1998), a linkage-based representation has been proposed, known as the

Locus-Based Adjacency (LBA) representation, which is a fixed-length representation in which

each location represents one object and stores an integer value that represents a link to another

object in the same group. This representation has been applied in many grouping problems

(Handl and Knowles, 2007), but it still suffers the same issues of redundancy and lack of ap-

propriate operators as the former representations. In (Du et al., 2004), a restricted version of

the LBA known as the Linear Linkage Encoding (LLE) has been proposed, in which backward

links are not allowed and, apart from an ending node, each node has only one node pointing to

it. LLE successfully eliminates the redundancy problem that debilitates former representations,

and has been applied to a variety of grouping problems such as Bin Packing, Graph Colouring

and Timetabling (Ülker et al., 2006; Ülker et al., 2008). However, maintaining the LLE links

during the search process is costly, particularly while using some genetic operators (Yılmaz and

Korkmaz, 2010).

A variable-length representation referred to as the Grouping Encoding (GE) has been pro-

posed in (Falkenauer, 1992), along with some suggested tailored genetic operators to be used

with it. The basic argument behind the GE is that the grouping representations and associated

operators should be carefully designed such that they are aware of the nature of the underlying

problem; i.e constructing groups that maximise the fitness values of the solutions. Individuals

4

in the GE are separated into two parts, Ug = {x1, x2, x3, ..., xn | u1, u2, ..., uk}. The first part is

referred to as the elements section and is only used to identify the group to which each item be-

longs. No genetic operators are applied to this part. The second part is referred to as the groups

section, in which a list of the groups in the individual is maintained. This is the part to which the

genetic operators are applied, and then, all the changes that happen in this section are reflected

back on the elements section.

For example, the individual {1 4 2 3 4 4 1 3 2 2 | 1 2 3 4} shows a grouping of 10

items into 4 groups, where the actual grouping is {x1, x7}, {x3, x9, x10}, {x4, x8}, {x2, x5, x6}. Note

that, for a given problem instance, the length of the elements section is fixed, whereas the length

of the groups section is not. The GE has been applied in many real world grouping problems

including data clustering (Agustı́n-Blas et al., 2012) and machine-part cell formation (Brown

and Sumichrast, 2003). A useful aspect of the GE representation is its ability to address the

underlying problem of constructing fit subgroups (with potentially reduced cost). However, the

redundancy issue still remains, since more than one solution could represent the same grouping.

For example, the solution {1 3 2 4 3 3 1 4 2 2 | 1 2 3 4} produces the same grouping

as the solution provided at the beginning of this paragraph. In this study, we used a slightly

modified version of the GE representation that is structured to overcome the redundancy issue.

Two well-known restrictions are introduced to the standard Falkenauer’s GE in order to eliminate

this redundancy:

• In an encoding with k groups, subgroups are enumerated using values 1 through k, only.

• Subgroups containing items with lower indices are enumerated first.

Applying these two restrictions, the solution {x1, x7}, {x3, x9, x10}, {x4, x8}, {x2, x5, x6} can only

be represented as {1 2 3 4 2 2 1 4 3 3 | 1 2 3 4}.

2.2. Graph Colouring and Examination Timetabling

Given a an undirected graph G = (V, E) with a set of vertices V = {x1, x2, x3, ..., xn}, and a set

of edges E, where exp,xq
∈ {0, 1} represents whether there is an edge between two given vertices

(1) (xp, xq ∈ V) or not (0), Graph Colouring Problem (GCP) requires colouring of vertices using

a given number of colours such that none of the adjacent vertices (connected with an edge) are

in the same colour, hence conflict free. The minimum number of colours that achieves a conflict

free colouring is also referred to as the chromatic number (χ(G)). Determining the chromatic

number of a given graph G, and finding out whether G is k-colourable (whether k colours are

sufficient to create a conflict free graph) are well-known variants of the GCP which are NP-hard

and NP-complete, respectively (Saha et al., 2013).

In this study, we formulate minimum colouring variant of GCP as a multi-criteria grouping

problem. Assuming that the number of colours is denoted as k, where 2 ≤ k ≤ n − 1, and vi

represents a subgroup of V in which the vertices are assigned to the same colour i, (1 ≤ i ≤ k),

the definition of the grouping problem defined in section 2.1 follows, taking colours⇔ groups,

V ⇔ U, and vi ⇔ ui. The cost can be measured using the equation 5.

f (ui) = f (vi) =
∑

p,q

exp,xq
,∀xp, xq ∈ vi and exp,xq

∈ {0, 1},where p < q (5)

Graph colouring is one of the extensively studies areas of research, yet many studies have

been emerging. Many techniques have been proposed for solving many variants of GCP. Exact

5

approaches tend to fail particularly while solving large instances, hence many researchers have

been working on heuristic approaches. For example, recursive largest fit is a well-known greedy

heuristic introduced by (Leighton, 1979). Hertz and Werra (1987) presented the first tabu search

implementation which outperforms another local search method, simulated annealing on random

dense graph instances. Davis and Mitchell (1991) proposed a coding as an ordering of vertices

which could be used in a genetic algorithm. Johnson et al. (1991) presented three simulated

annealing implementations based on three neighbouring approaches. Galinier and Hao (1999)

have shown that hybridisation of GAs with local search methods are more promising than GAs

on their own. In such hybridisation, local search operators are used as intensification methods

to explore promising areas of the search space that have found by the GA operators. Avanthay

et al. (2003) proposed a variable neighbourhood search algorithm for graph colouring problem.

Studies in (Ülker et al., 2006; Ülker et al., 2008; Korkmaz, 2010) and (Kirovski and Potkonjak,

1998) apply generic GAs using some of the genetic representations discussed in section 2.1.1 to

solve graph colouring problem. Ülker et al. (2006) proposed special crossover operators for graph

colouring, namely Lowest Index Max Crossover (LIMX), Greedy Partition Crossover Lowest In-

dex (GPX-LI) and Greedy Partition Crossover Cardinality Based (GPX-CB). Külahçıoğlu (2007)

proposed two modified versions of the LLE representation which are Linear Linkage Encoding

With Ending Node Links (LLE-e) and Linear Linkage Encoding With Backward Links (LLE-b),

and both of them are tested using genetic operators.

Graph colouring underpins a variety of real-world problems. Examination timetabling is one

of those problems which requires allocation of periods/time-slots and other available resources to

a given set of examinations taken by a number of students subject to a set of certain constraints.

This problem can be formulated as a graph colouring problem, considering that the examinations

are the nodes of a graph while the edges are formed using the the examinations that will be taken

by each student, since those examinations taken by each student cannot be allocated the same

time-slot (colour). Johnson and Trick (1996) showed that the exam timetabling problem can be

reduced to graph colouring problem if the task of minimizing the number of exam periods and

removing the clashes are considered.

There are many variants of examination timetabling problems. Again, many different heuris-

tic approaches have been the focus of previous studies due to inherent difficulty in solving

timetabling problems, ranging from ordering of graph colouring heuristics (Carter and Laporte,

1996) to evolutionary approaches (Burke and Newall, 1998; Paquete et al., 2001). The same

formulation of an examination timetabling problem in (Carter et al., 1996) is used in this study.

The relevant instances are identified as Toronto a in (Qu et al., 2009). Caramia et al. (2001)

proposed a family of local search-based timetabling algorithms that apply an optimisation step

after each exam allocation attempting to minimize the number of time slots (groups) and the

overall penalty simultaneously. Merlot et al. (2002) presented a hybrid algorithm in which a hill

climbing phase and a simulated annealing phase are used to improve an initial solution that was

developed using a constraint programming phase. Ülker et al. (2006) formulated the problem

as a grouping problem and used the linear linkage encoding presented in section 2.1.1 to test a

variety of evolutionary approaches on this problem. More on examination timetabling can be

found in (Carter et al., 1996; Qu et al., 2009).

2.3. Selection Hyper-Heuristics

A selection hyper-heuristic is a heuristic that explores the space of heuristics formed by set

of low level heuristics, each of which performs a search over the solutions while solving a given

6

problem. Özcan et al. (2008) identified the importance of two successive tasks that a selection

hyper-heuristic performs:

1. Heuristic selection: a low level heuristic is selected from the low level heuristics set and

applied to the current solution, and

2. Move acceptance: a decision is made about whether to accept or reject the resulting solu-

tion.

Different combination of selection hyper-heuristic components could yield a different overall

performance.

High Level Strategy: Manages the sets of low level heuristics.

Domain barrier

Problem Domain n:Problem Domain 1:

Heuristics
set:

H1 H2

Hp

>Representation
>Instances
>Evaluation
Function
>Others..

Heuristics
set:

H1 H2

Hq

>Representation
>Instances
>Evaluation
Function
>Others..

...

Figure 2: A typical selection hyper-heuristic framework.

There is a conceptual “domain barrier” between the high level selection hyper-heuristic and

domain as illustrated in Figure 2. This barrier acts as an information filter and does not allow

any problem specific information flow from the low level to high level. This feature is impor-

tant, since it raises the level of generality of the designed approach operates at and supports

re-usability of selection hyper-heuristics and their components, directly.

Various learning and non-learning methods have been suggested for the heuristic selection

task. The simplest method used in the literature within the context of selection hyper-heuristics

is based on random choice. Simple Random (SR) selects one low level heuristic at each iteration

purely randomly; i.e. each low level heuristic has an equal chance of being selected regardless to

its previous performance. There are some variants of SR. For example, random permutation (RP)

applies the low level heuristics in a specific order that is randomly determined at the beginning

of the search (Bai and Kendall, 2005; Burke et al., 2005; Cowling and Chakhlevitch, 2003).

Some heuristic selection methods utilise learning approaches that use feedback during the

search process while the algorithm is running, such as the reinforcement learning (RL) (Burke

and Soubeiga, 2003). RL assigns a score to each low level heuristic, and then rewards the low

level heuristics which improve the current solution and punishes those which do not. This is

achieved by means of increasing or decreasing the scores of heuristics. There are different ways

of using the scores for choosing a low level heuristic (Burke et al., 2013; Chakhlevitch and Cowl-

ing, 2008). One common method is making this decision using max utility function. At each

7

decision point, the low level heuristic with the highest score is chosen. If more than one heuristic

share the same score, then one of them is selected at random. A modified version of the reinforce-

ment learning (RLM) gives an extra reward to the low level heuristic, if the produced solution

was accepted by the move acceptance criteria. Other than these two approaches, researchers

have used more sophisticated low level heuristic selection approaches, including meta-heuristics

such as GAs, tabu search and great deluge. Hyper-heuristics embedding meta-heuristic com-

ponents are shown to be very effective and often beat state-of-the-art problem-tailored methods

(Chakhlevitch and Cowling, 2008).

Another learning heuristic selection method is referred to as the Adaptive Dynamic Heuristic

Set selection (DH), which was a component used under an Intelligent Hyper-heuristic Framework

built as a general problem solver (Misir et al., 2013). The importance of this hyper-heuristic

stems from the fact that it was the winner of an international competition: The First Cross-

Domain Heuristic Search Challenge (CHeSC2011) (Burke et al., 2011) that was based on a

software benchmark framework known as HyFlex (Burke et al., 2009). Hyflex is a modular Java

class library that has recently been implemented to facilitate the development of hyper-heuristics

and the design of cross-domain heuristic search methods. DH uses several adaptive features to

eliminate subsets of the low level heuristics given, determine effective heuristic pairs and adapt

the parameters of some heuristics online in order to cope with the requirements of managing

different heuristic sets.

Similarly, various methods are suggested to perform move acceptance. Some of those meth-

ods are fairly simple and deterministic mechanisms, such as the (AM) method accepts all moves,

(OI) accepts only improving moves; and (IEQ) accepts improving or equal moves (Bilgin et al.,

2007; Cowling et al., 2000). There are other successful move acceptance methods used within

hyper-heuristics which are based on meta-heuristic approaches.

The Great Deluge (GDEL) acceptance attempts to escape local optima by accepting moves

that worsens the current solution within a range that is determined by a time-varying threshold,

τt. This threshold starts with a certain value and decreases with time.

τt = f0 + ∆F × (1 −
t

T
) (6)

In Equation 6, T is the maximum number of steps, ∆F is an expected range for the maximum

fitness change, and f0 is the final objective value (Dueck, 1993). The Late Acceptance (LACC)

method is an iterative search technique that was proposed in (Burke and Bykov, 2008). In LACC,

improving solutions are directly accepted, while a new worsening solution is compared to an old

solution which was visited a fixed number of steps before for acceptance. If the new solution is

better than that old solution, it is accepted, even if it could be worse than the current solution from

which the new solution is produced. LACC maintains a queue (FIFO list) with a fixed length of

solution costs. The initial queue is completely filled by replicating the initial solution’s cost.

After each improving solution, its cost is enqueued (inserted). Whenever a worsening solution is

encountered, then the cost of the best solution is enqueued. The front item always gets deleted

after an enqueue operation.

The Iteration Limited Threshold Accepting (ILTA) is the acceptance method used in the In-

telligent Hyper-heuristic Framework (Misir et al., 2013). ILTA is a list-based threshold move

acceptance mechanism that provide an adaptive diversification strategy in connection with the

quality of the explored new best solutions. Instead of immediately accepting a worsening solu-

tion either within a given range of cost such as is the case in the GDEL, or by comparing it to

an old solution such as in the LACC, ILTA waits for a predetermined number of iterations, and

8

if no new best solutions can be found during this waiting period, then a worsening solution is

accepted. Moreover, the algorithm adaptively changes the waiting times and the length of the

list during the search in order to fully capture the nature of the problem being solved. More on

hyper-heuristics can be found in (Burke et al., 2013; Chakhlevitch and Cowling, 2008).

3. Grouping Hyper-heuristic Framework

In this study, we describe a single-point based selection hyper-heuristic framework for group-

ing problems that keeps track of the non-dominated solutions, inspired from the multi-objective

optimisation approaches, at each step. Figure 3 shows the layout of our framework. In addition

to the common hyper-heuristic domain barrier that ensures the generality of the hyper-heuristic

approach, we added the solution representation barrier at which all different types of grouping

problems are encoded using a particular representation, and hence they are all treated the same

way by the hyper-heuristic framework. As a result, only the definition of the cost function and

the problem instances need to be fixed when applying the framework to a grouping problem. The

solutions representation along with the low level heuristics remain the same across all domains.

Domain Barrier

High Level

Strategy
Move AcceptanceHeuristic Selection

Low Level

Heuristics

Grouping Solver

Solution Representation

Problem Domain

Domain 1:

> Instances.

> Evaluation Function

Domain n:

Current Solutions

Pareto Front

Best Solutions

Pareto Front

Initialization Heuristic Delta Evaluation

…….

> Instances.

> Evaluation Function

> Instances.

> Evaluation Function

Domain 2:Domain 1:

Figure 3: Framework of Hyper-heuristics for Grouping Problems.

Single point-based selection hyper-heuristic frameworks start the search process from an

initial solution and deal with a single solution to the problem being solved at each step. On the

other hand, most of the multi-objective optimisation algorithms are population-based approaches

(Zitzler and Thiele, 1998; Coello et al., 2007). While designing our framework, we have made

an attempt to exploit the bi-objective nature of the grouping problems in order to capture the best

of the two worlds. The proposed framework is appropriate only for grouping problems not for

multi-objective optimisation (which is not within the scope of this study).

9

3.1. Delta Evaluation

In the context of grouping problems as well as many similar combinatorial optimisation prob-

lems, computing the cost of new solutions is the most time consuming part of the hyper-heuristic

run. At each decision point, the solution resulting from the application of the selected heuristic

has to be evaluated before a decision about whether to accept or reject it is made. Typically,

this evaluation is carried out using the whole solution; i.e. calculating the partial cost of each

group in the given solution. However, especially with large problem instances, this process is

time consuming and greatly affects the solvers with time-based stopping criteria.

In this study, we used delta evaluation, which requires computation of partial cost contribu-

tions of the groups that have been affected by the application of the selected low level heuristic.

This would give a significant time advantage and consequently allow more iterations in each

step. For example, if a change heuristic is applied on a solution Uold, and ui and u j are the groups

that are involved in the process, the overall cost value f (Unew) of the resulting solution, Unew, is

calculated using the equation below, where u
′

i
and u

′

j
are the resulting groups after the heuristic

is applied:

f (Unew) = f (Uold) − (f (ui) + f (u j)) + (f (u
′

i) + f (u
′

j))

3.2. Low Level Heuristics

It has been observed that the use of crossover operators are found to be very disruptive and

tends to impair the search rather than guide it for grouping problems in (Falkenauer, 1998; Ko-

rkmaz, 2010). Additionally, the proposed framework performs single-point based search, hence,

crossover operators are ignored. We have considered a set of effective mutation operators that

process complete solutions. Some of them are able to create reasonably large changes on a given

solution, diversifying the search process. Some of them are smart operators which are enabled to

make small modifications on a given solution leading to a potentially better/improved solution,

intensifying the search process. Three different types of mutation operators were consequently

developed: merge, divide and change.

Merge Heuristics. The concept of this family of heuristics is to merge two groups, ui and u j,

into one, ul. This operation results in decreasing the number of grouping in the selected solution.

The cost value of the new subgroup ul is greater than or equal to the combined cost values of ui

and u j; i.e. f (ul) ≥ f (ui) + f (u j). We implemented three versions of the merge heuristic in this

study, which differ from each other in the way they choose the groups to be merged in a given

solution.

• M1 merges two randomly selected groups,

• M2 merges two groups that contain the least number of items, and

• M3 merges two groups with the lowest partial cost values.

Hence, merge heuristics can be considered as diversifying components.

Divide Heuristics. In a similar fashion, three divide heuristics were implemented in this study,

each of which divides a selected group ui into two groups, ui1 and ui2. Applying a divide heuristic

results in increasing the number of grouping in the selected solution. Also, some of the conflict-

ing items in ui may end up in different groups, which leads to the elimination of some conflicts.

Consequently, the combined cost values of ui1 and ui2 is less than or equal to the cost value of ui;

i.e. f (ui1) + f (ui2) ≤ f (ui).

10

• D1 divides a randomly selected group,

• D2 divides the group which contains the largest number of items and,

• D3 divides the group with the highest partial cost value in the selected solution.

In all the divide heuristics, each item has equal probability of ending up in either group. Applying

any of these heuristics result in increasing the number of the groups and, hopefully, decreasing the

number of conflicts in the selected solution. This characteristic of divide heuristics is of interest

as an intensification component and it is used to design a local search algorithm to improve the

non-dominated set of solutions within our methodology (see Section 3.3).

Change Heuristics. Merge and divide heuristics produce relatively big jumps in the search space

considering that they definitely influence the number of resultant groups for a given solution.

However, the change heuristics attempts to make small modifications in a given solution by

changing the group of a selected item while maintaining the same number of the groups after

they are employed. This family of heuristics has four members.

• C1 takes a random item xm from a randomly selected group ui and moves it into another

randomly selected group u j.

• C2 finds the item that is causing the highest number of conflicts in a randomly selected

group and moves it to another random group.

• C3 finds the group with the highest number of conflicts, and from that group it takes the

item that is causing the highest number of conflicts and moves it to a randomly selected

group.

• C4 is similar to the previous one, except that the item is moved to the group with the

minimum number of conflicts rather than a random one.

3.3. Methodology

The pseudo-code of the proposed approach is provided in Algorithm 1.

Firstly, a random solution is created for each k in a given range [LB,UB] in order to have a

set of initial solutions with different number of groupings. This range is arbitrarily decided in

our experiments aligned with previous work (Ülker et al., 2006). Depending on the particular

grouping problem being solved, reasonable upper and lower bounds can automatically be found

by using problem-specific knowledge. For instance, for graph colouring problems, these bounds

can be determined using algorithms such as the fast maximal clique approximation algorithm or

by finding the maximal degree of the graph (the degree of the vertex with the maximum number

of neighbours), as discussed in (Ülker et al., 2006). The initialisation heuristic as a part of the

problem domain implementation can be a “smart” problem-specific algorithm. However, in order

to maintain a high level of generality, we have not used any such problem-specific initialisation.

On the other hand, we aimed at creating a non-dominated initial set of solutions by using an

initialisation heuristic embedding a problem independent “smart” move appropriate for grouping

problems. Starting from k = LB through k = UB, a population of (UB − LB + 1) non-dominated

solutions are produced, where each solution is created for each integer value of k ∈ [LB,UB].

In order to guarantee non-dominance, each solution for a given k = i is generated at random

by assigning each item to one of the groups, initially. The cost for the solution is immediately

11

computed and compared to the cost of the solution at k = i − 1. Since the solution at k = i

is already worse in terms of the number of groups compared to the solution at k = i − 1, its

cost value must be better. If this is not the case, that solution is discarded and re-created either

randomly or by dividing one of the groups of the solution at k = i − 1. The final outcome of the

initialisation phase is a non-dominated set of solutions (lines 1-3). Once the initialisation phase

is over, the framework proceeds to select one of the low level heuristics (section 3.2) and apply

it on a random solution from the set of non-dominated solutions (Algorithm 1, lines 5-8).

Maintaining the non-dominated set during the search requires that, when comparing any two

solutions, the solution with the worse (better) number of groups should have the better (worse)

cost value, i.e. f (Ui) > f (U j),∀ i < j, (∀i, j ∈ [LB,UB]). However, during the search (Algorithm

1, lines 5-8), it is possible that a newly created solution might violate this requirement when

compared to the other solutions in the non-dominated set, i.e. the new solution might be either

better or worse in both objectives when compared to some other solutions in the non-dominated

set. We overcome this problem by introducing a case-based acceptance mechanism. The move

acceptance of the hyper-heuristic component does not make the final call for the acceptance of a

solution and can be considered as a pre-test component for final acceptance. The new solution is

only accepted after passing multiple tests.

Firstly, the hyper-heuristic move acceptance criteria compares the new solution snew to the

current solution si in order to make a decision regarding whether to consider the new solution for

acceptance or reject it immediately (Algorithm 1, line 9). This is different from how the tradi-

tional hyper-heuristic framework operate, in which the decision made by the move acceptance is

final. The hyper-heuristic move acceptance methods we used in this study are non-deterministic,

i.e. all improving solutions are considered for acceptance, while some of the worsening ones

may or may not be considered. We differentiate between two main cases and the second case

allows the use of local search to improve the non-dominated set of solutions further:

1. If snew is considered for acceptance despite being worse than si in terms of cost value

(Algorithm 1, line 10), then it is compared to si−1. snew is rejected if it is worse than si−1.

Otherwise, it is accepted and inserted into the non-dominated set to replace si (Algorithm

1, lines 11-16).

2. If snew is considered for acceptance and its cost value is better than, or equal to, the cost

value of si (Algorithm 1, line 17), then it is accepted and inserted into the non-dominated

set to replace si. A violation to the dominance rule may occur if si+1, which is already

worse than si in terms of the number of groups, turns out to be also worse in terms of the

cost value. In order to avoid this, snew is then compared to si+1 (Algorithm 2, line 2), which

creates two cases:

2.1 If snew is worse than si+1, then there are no violations in the dominance rule, and no

more action is needed (Algorithm 2, lines 2-3).

2.2 If snew is better than si+1, then si+1 is in violation of the dominance rule and conse-

quently it is removed from the non-dominated set. A replacement solution is created

by dividing a group in snew using any of the divide heuristics (Algorithm 2, lines 4-8).

The only remaining issue is that, this replacement solution at i+1 might have a better

cost value than the solution at i + 2, hence, the f or loop in Algorithm 2. In the worst

case scenario, this algorithm will be applied on all the solutions in the non-dominated

set between i and UB. This process can be considered as local search.

12

Algorithm 1 Hyper-heuristic framework for grouping problems

1: Generate an initial non-dominated set that contains a solution for each value of k ∈ [LB,UB].

2: Compute the cost value of each solution in the initial non-dominated set.

3: Copy the initial non-dominated set into a an external archive to keep track of the best non-

dominated solutions.

4: while (elapsedTime < maxTime) do

5: Choose a random solution s j from the current non-dominated set by

j← Uni f ormRandom(LB,UB).

6: Choose a low level heuristic, LLH.

7: snew ← Apply(LLH, s j) {snew will have i =(j − 1) or j or (j + 1) number of groupings

depending on the nature of LLH (merge or change or divide, respectively)}.

8: Compute f (snew) using delta evaluation.

9: result ← moveAcceptance(snew, si) {Use the hyper-heuristic acceptance method to com-

pare the cost of snew to the cost of si from the current non-dominated set}.

{Following is the case when new solution is a worsening solution which is accepted by

moveAcceptance}

10: if ((result is ACCEPT) and (f (snew) > f (si))) then

11: if (f (snew) > f (si−1)) then

12: Do nothing {snew is rejected}

13: else

14: si ← snew {snew is placed in the non-dominated set at grouping i, replacing si}.

15: end if

16: end if

17: if ((result is ACCEPT) and (f (snew) ≤ f (si))) then

18: si ← snew {snew is placed in the non-dominated set at grouping i, replacing si}.

19: improveNonDominatedS et(i)

20: end if

{if result is REJECT then do nothing and continue}

21: end while

Algorithm 2 improveNonDominatedS et(i): Attempts to improve upon the cost of solutions in

the non-dominated set starting from ith solution to UBth solution using a divide heuristic

1: for (j = i,UB) do

2: if (f (s(j+1)) ≤ f (s j)) then

3: BREAK {Further improvement is not possible}

4: else

5: Choose a random divide heuristic, LLDH

6: snew ← Apply(LLDH, s j)

7: s(j+1) ← snew {snew is placed in the non-dominated set at grouping j, replacing s(j+1)}.

8: end if

9: end for

13

4. Experimental Results

4.1. Experimental Design and Evaluation Criteria

In this study, we investigated the performance of nine selection hyper-heuristics, using all

the combinations of the heuristic selection {SR, RL, DH} and move acceptance methods {ILTA,

LACC, GDEL} on benchmark instances from the graph colouring and examination timetabling

domains. RL uses increment and decrement score operations as a reward and punishment scheme,

respectively. A heuristic with the maximum score is selected at each decision point. The incre-

ment and decrement scores are set to 1. The upper and lower bounds for the score of any low

level heuristic are set to 40 and 0 respectively. The initial score of each one of the low level

heuristics is set to (upper bound − 2 ∗ number o f heuristics). DH and ILTA are implemented

using the exactly the same suggested settings as in (Misir et al., 2013). LACC uses a queue of

fixed size of 50 for each k ∈ [LB,UB]. The GDEL parameters shown in equation 6 are set to

the following values: T is set to the maximum duration of a trial, ∆F is set to the minimum

cost value in the initial non-dominated set and f0 is set to 0. Each experiment is repeated for 30

runs (trials), each of which stops when the best known colouring/timetable is attained or a time

limit of 3600 seconds is exceeded. All initial solutions are created randomly. Experiments were

conducted on 3.6GHz Intel Core i7−3820 machines with 16.0GB of memory, running Windows

7 operating system.

The proposed approach cannot be used for multi-objective optimisation, but it operates based

on the dominance concept from the multi-objective optimisation. In minimum colouring, the aim

is not just minimise the violations, the aim is get rid of all violation yielding 0 as the objective

value. Still, in our approach we have archived a set of non-dominated solutions for a given range

of number of colours/groupings. Hence, the performance of a given algorithm is evaluated based

on the best (minimum) number of colours achieved with no violation and hyper-volume (Zitzler

and Thiele, 1998) of the non-dominated solutions obtained by that algorithm. The hyper-volume

is a commonly used metric to evaluate the spread of the solutions along the Pareto front, as well

as the closeness of the solutions to the Pareto-optimal front. We used the cost of a fixed solution

produced for the smallest allowed colouring for a given instance as a reference to compute the

hyper-volume of the best non-dominated solutions obtained by each algorithm. The larger the

hyper-volume, the larger the size of the space covered by the non-dominated set and better the

corresponding hyper-heuristic approach.

The Wilcoxon Signed Rank test is used as a statistical test for the average pairwise perfor-

mance comparison of algorithms based on the minimum colouring they obtain over 30 runs.

We have also used success rate (SRate%) as a performance indicator of a hyper-heuristic.

SRate% indicates the percentage of 30 runs for which expected number of groups has been

obtained by the given algorithm.

4.2. Experimental Data

The characteristics of the benchmark instances used during the experiments are summarised

in Table 1. For graph colouring, 19 benchmark instances are used in which the number of colours,

vertices, edges as well as edge densities vary. The instances in the upper half of the table are from

the COLOR02 website 2, which was initially compiled for a competition. Myciel graphs are

based on Mycielski transformation and are considered to be difficult to solve and the colouring

2http://mat.gsia.cmu.edu/COLOR02/

14

number increases in problem size. A queenn.n graph is a graph on n2 nodes, each represents a

square on an n by n chessboard. If two squares are in the same row, column, or diagonal, then

their corresponding nodes on the graph are considered to be connected. The objective is to place

n sets of n queens on the board so that no two queens of the same set can capture one another,

which could be achieved only if the graph has a colouring number n. In addition to these data sets,

problem instances in the bottom half of the table are from the well known DIMACS3 challenge

suite. For examination timetabling, we used a subset from the Toronto benchmark suite referred

to as Toronto a instances (Qu et al., 2009). Table 1 also shows the range of k values used during

the experiments for each instance.

Initial experiments were conducted to observe the behaviour of the hyper-heuristic approach

considering different k values for each problem instance, as specified in Table 1, while the heuris-

tic selection is fixed from {SR, RL, DH} and the heuristic acceptance is fixed from {ILTA, LACC,

GDEL}. A thorough performance analysis of the hyper-heuristics is performed. Then the per-

formance of the hyper-heuristic with the best mean is compared to the performance of some pre-

viously proposed approaches. The same framework using the top two hyper-heuristics, namely

RL − ILT A and DH − ILT A, are tested further on examination timetabling problem.

Table 1: The characteristics of the COLOR02, DIMACS and Toronto problem instances used during the experiments.

|V | represents the number of vertices, |E| the number of edges, % the edge density and k∗/χ(G) represent the best known

number of colours (or time-slots) and the chromatic number respectively Wu and Hao (2012). L and U represent the

lower and upper bounds for the k values used during the experiments.
Graph Colouring Range

Instance |V | |E| % k∗/χ(G) L U

C
O

L
O

R
0
2

myciel3 11 20 0.40 4/4 2 9

myciel4 23 71 0.28 5/5 2 10

myciel5 47 236 0.22 6/6 3 11

queen5.5 25 160 0.53 5/5 2 10

queen6.6 36 290 0.46 7/7 4 12

queen7.7 49 476 0.40 7/7 2 12

queen8.8 64 728 0.36 9/9 6 14

D
IM

A
C

S

le450 25a 450 8260 0.08 25/25 20 30

le450 25b 450 8263 0.08 25/25 20 30

le450 25c 450 17343 0.17 25/25 20 30

le450 25d 450 17425 0.17 25/25 20 30

DSJC125.1 125 736 0.09 5/? 2 10

DSJC125.5 125 3891 0.50 17/? 13 23

DSJC125.9 125 6961 0.89 44/? 40 50

DSJC250.1 250 3218 0.10 8/? 4 14

DSJC250.5 250 15668 0.50 28/? 24 34

DSJC250.9 250 27897 0.90 72/? 68 78

DSJC500.1 500 12458 0.10 12/? 7 17

DSJC500.5 500 62624 0.50 48/? 43 53

Examination Timetabling Range

Instance |V | |E| % k∗ L U

T
O

R
O

N
T

O hec92 81 1363 0.42 17 12 22

sta83 139 1381 0.14 13 8 19

yor83 181 4691 0.29 19 13 25

ute92 184 1430 0.08 10 6 15

rye93 486 8872 0.08 21 16 27

4.3. Selection Hyper-heuristics for Graph Colouring

Tables 2, 3 and 4 show the success rate of each hyper-heuristic approach for different values

of k with each problem instance. All those results are obtained while optimising a given instance

3ftp://dimacs.rutgers.edu/pub/challenge/graph/benchmarks/color/

15

Table 2: Reinforcement learning based selection hyper-heuristics: The success rate (sRate%) of each hyper-heuristic on

the graph colouring problem instances and the average time (µt(s)) taken to achieve that success rate for a given number

of colourings, k over 30 runs.

RL-ILTA RL-LACC RL-GDEL

Instance k sRate% µt(s) sRate% µt(s) sRate% µt(s)

C
O

L
O

R
0
2

myciel3 4 100.00 0.003 100.00 0.004 93.33 0.002

myciel4 5 100.00 0.005 100.00 0.005 100.00 0.006

myciel5 6 100.00 0.009 100.00 0.011 100.00 0.069

queen5.5 5 100.00 0.034 90.00 0.037 100.00 0.194

queen6.6 7 100.00 0.786 20.00 1.449 100.00 111.831

queen7.7 7 100.00 0.900 16.67 0.040 100.00 39.350

queen8.8 9 100.00 4.110 3.33 0.150 100.00 74.530

D
IM

A
C

S

DSJC125.1

5 96.67 113.20 6.67 6.71 100.00 295.58

6 100.00 0.09 100.00 0.17 100.00 55.02

7 100.00 0.03 100.00 0.04 100.00 50.18

DSJC125.5

17 33.33 470.96 0.00 − 0.00 −

18 100.00 5.68 60.00 115.70 66.67 655.66

19 100.00 0.85 100.00 1.80 100.00 82.63

DSJC125.9

44 100.00 40.02 80.00 69.40 0.00 −

45 100.00 4.50 100.00 27.05 10.00 538.47

46 100.00 1.58 100.00 3.90 86.67 422.53

DSJC250.1

8 10.00 1131.10 0.00 − 0.00 −

9 100.00 2.35 100.00 7.46 100.00 194.28

10 100.00 0.44 100.00 0.60 100.00 175.16

DSJC250.5

28 0.00 − 0.00 − 0.00 −

29 20.00 2132.40 0.00 − 0.00 −

30 100.00 288.20 20.00 1164.80 0.00 −

DSJC250.9

72 10.00 3301.23 0.00 − 0.00 −

73 100.00 811.32 40.00 886.41 0.00 −

74 100.00 177.44 80.00 648.03 0.00 −

DSJC500.1

12 0.00 − 0.00 − 0.00 −

13 60.00 1115.87 20.00 1331.99 0.00 −

14 100.00 26.49 100.00 43.70 0.00 −

DSJC500.5

48 0.00 − 0.00 − 0.00 −

49 0.00 − 0.00 − 0.00 −

50 0.00 − 0.00 − 0.00 −

52 10.00 1797.03 0.00 − 0.00 −

le450 25a

25 100.00 7.85 100.00 25.33 0.00 −

26 100.00 1.56 100.00 2.81 83.33 472.34

27 100.00 0.82 100.00 1.94 100.00 109.32

le450 25b

25 100.00 11.85 100.00 6.22 6.67 569.68

26 100.00 1.19 100.00 2.55 100.00 223.61

27 100.00 0.65 100.00 1.66 100.00 73.37

le450 25c

25 0.00 − 0.00 − 0.00 −

26 0.00 − 0.00 − 0.00 −

27 76.67 565.69 40.00 873.93 0.00 −

le450 25d

25 0.00 − 0.00 − 0.00 −

26 0.00 − 0.00 − 0.00 −

27 70.00 654.47 30.00 906.22 0.00 −

within the associated range as provided in Table 1. For example, the best known colouring for

the DSJC500.1 problem instance is 12 and the algorithms are tested with 7 ≤ k ≤ 17. From

Table 2, out of the 30 runs performed using the RL-ILTA hyper-heuristic on DSJC500.1 problem

instance, the percentage of the runs in which solutions with the best colourings (k = 12) were

found is 0%, while the percentage of the runs in which solutions with k = 13 colours are found

is 60% and the percentage of the runs in which solutions with k = 14 colours are found is 100%.

These tables also show the average time (in seconds) taken to achieve those success rates. Only

the durations of the successful runs were taken into consideration when the average times were

calculated.

Most of the tested hyper-heuristic approaches successfully found the best colourings of the

selected COLOR02 problem instances in a reasonable amount of time, and hence, we provide

16

Table 3: Adaptive dynamic heuristics set based selection hyper-heuristics: The success rate (sRate%) of each hyper-

heuristic on the graph colouring problem instances and the average time (µt(s)) taken to achieve that success rate for a

given number of colourings, k over 30 runs.

DH-ILTA DH-LACC DH-GDEL

Instance k sRate% µt(s) sRate% µt(s) sRate% µt(s)

C
O

L
O

R
0
2

myciel3 4 100.00 0.006 100.00 0.006 96.67 0.004

myciel4 5 100.00 0.015 100.00 0.018 100.00 0.016

myciel5 6 100.00 0.044 100.00 0.054 100.00 3.592

queen5.5 5 100.00 0.167 100.00 1.053 100.00 5.532

queen6.6 7 56.67 290.060 43.33 86.180 93.33 204.640

queen7.7 7 50.00 304.040 10.00 432.160 86.67 152.420

queen8.8 9 60.00 305.880 26.67 224.680 86.67 335.830

D
IM

A
C

S

DSJC125.1

5 30.00 618.95 6.67 112.04 90.00 533.55

6 100.00 0.48 100.00 12.93 100.00 39.25

7 100.00 0.16 100.00 0.37 100.00 32.14

DSJC125.5

17 13.33 821.69 0.00 − 0.00 −

18 93.33 228.10 76.67 146.32 60.00 562.04

19 100.00 14.66 100.00 12.02 96.67 226.22

DSJC125.9

44 86.67 146.55 63.33 183.39 0.00 −

45 100.00 29.08 93.33 32.98 10.00 537.80

46 100.00 9.76 100.00 7.67 43.33 464.38

DSJC250.1

8 30.00 1047.59 0.00 − 0.00 −

9 100.00 71.23 100.00 59.16 100.00 355.09

10 100.00 1.99 100.00 1.90 100.00 168.32

DSJC250.5

28 0.00 − 0.00 − 0.00 −

29 20.00 3042.47 0.00 − 0.00 −

30 80.00 1704.74 40.00 913.88 0.00 −

DSJC250.9

72 0.00 − 0.00 − 0.00 −

73 60.00 2281.95 50.00 1357.03 0.00 −

74 90.00 865.49 90.00 667.89 0.00 −

DSJC500.1

12 0.00 − 0.00 − 0.00 −

13 70.00 1115.84 80.00 496.77 0.00 −

14 100.00 23.69 100.00 53.11 0.00 −

DSJC500.5

48 0.00 − 0.00 − 0.00 −

49 0.00 − 0.00 − 0.00 −

50 0.00 − 0.00 − 0.00 −

52 3.33 2553.04 0.00 − 0.00 −

le450 25a

25 100.00 85.82 96.67 36.19 3.33 1019.41

26 100.00 3.15 100.00 5.27 86.67 345.32

27 100.00 1.80 100.00 3.38 100.00 147.13

le450 25b

25 100.00 7.58 100.00 29.14 20.00 649.71

26 100.00 2.13 100.00 3.75 100.00 211.16

27 100.00 1.40 100.00 3.16 100.00 101.29

le450 25c

25 0.00 − 0.00 − 0.00 −

26 0.00 − 0.00 − 0.00 −

27 83.33 626.85 30.0 2346.70 0.00 −

le450 25d

25 0.00 − 0.00 − 0.00 −

26 0.00 − 0.00 − 0.00 −

27 63.33 704.38 36.67 665.24 0.00 −

the success rates and average times for only the best known value of k for these instances. The

RL-ILTA and the SR-GDEL hyper-heuristics successfully found the best colouring for each data

set in each one of the 30 runs, achieving 100.0% success rate across the board, with a maximum

average time of 4.1 seconds for the RL-ILTA approach. On the other hand, hyper-heuristics with

LACC acceptance failed to find the best colourings for some problem instances in most of the

runs. For example, the SR-LACC and the RL-LACC hyper-heuristics found the best colourings

of queen7.7 and queen8.8 problem instances respectively in only one of the 30 runs performed.

The performances of the hyper-heuristic approaches were much varied and less successful

when applied on the selected DIMACS problem instances, and much longer periods of times

were needed to find the best solutions in most of the cases. Generally, hyper-heuristics with ILTA

acceptance have better success rates than hyper-heuristics with LACC and GDEL acceptance

17

Table 4: Simple random based selection hyper-heuristics: The success rate (sRate%) of each hyper-heuristic on the

graph colouring problem instances and the average time (µt(s)) taken to achieve that success rate for a given number of

colourings, k over 30 runs.

SR-ILTA SR-LACC SR-GDEL

Instance k sRate% µt(s) sRate% µt(s) sRate% µt(s)

C
O

L
O

R
0
2

myciel3 4 100.00 0.007 100.00 0.004 100.00 0.004

myciel4 5 100.00 0.007 100.00 0.003 100.00 0.008

myciel5 6 100.00 0.011 100.00 0.015 100.00 0.398

queen5.5 5 100.00 0.016 96.67 0.017 100.00 0.687

queen6.6 7 33.33 0.157 20.00 0.780 100.00 83.140

queen7.7 7 16.67 0.261 3.33 0.038 100.00 43.669

queen8.8 9 30.00 2.032 10.00 1.232 100.00 69.154

D
IM

A
C

S

DSJC125.1

5 3.33 450.25 0.00 − 96.67 374.43

6 100.00 0.13 100.00 0.14 100.00 53.92

7 100.00 0.06 100.00 0.07 100.00 51.31

DSJC125.5

17 20.00 756.87 0.00 − 0.00 −

18 93.33 117.65 53.33 41.71 90.00 480.85

19 100.00 1.06 100.00 1.88 100.00 92.52

DSJC125.9

44 90.00 72.28 86.67 57.01 0.00 −

45 100.00 13.79 100.00 5.28 23.33 340.94

46 100.00 1.87 100.00 3.20 96.67 432.36

DSJC250.1

8 0.00 − 0.00 − 0.00 −

9 100.00 5.58 100.00 4.36 100.00 176.98

10 100.00 0.57 100.00 0.74 100.00 175.51

DSJC250.5

28 0.00 − 0.00 − 0.00 −

29 0.00 − 0.00 − 0.00 −

30 60.00 1350.55 20.00 650.08 0.00 −

DSJC250.9

72 0.00 − 0.00 − 0.00 −

73 50.00 2264.24 60.00 1547.57 0.00 −

74 100.00 649.87 90.00 668.56 0.00 −

DSJC500.1

12 0.00 − 0.00 − 0.00 −

13 30.00 1005.16 40.00 913.15 0.00 −

14 100.00 27.99 100.00 30.55 0.00 −

DSJC500.5

48 0.00 − 0.00 − 0.00 −

49 0.00 − 0.00 − 0.00 −

50 0.00 − 0.00 − 0.00 −

53 3.33 1944.04 0.00 − 0.00 −

le450 25a

25 100.00 6.36 100.00 33.61 0.00 −

26 100.00 1.52 100.00 3.34 76.67 518.65

27 100.00 0.89 100.00 2.52 100.00 99.39

le450 25b

25 100.00 3.10 100.00 7.70 0.00 −

26 100.00 1.16 100.00 3.03 100.00 221.37

27 100.00 0.67 100.00 1.95 100.00 83.17

le450 25c

25 0.00 − 0.00 − 0.00 −

26 0.00 − 0.00 − 0.00 −

27 40.00 1395.13 16.67 783.49 0.00 −

le450 25d

25 0.00 − 0.00 − 0.00 −

26 0.00 − 0.00 − 0.00 −

27 60.00 2326.19 30.00 2230.95 0.00 −

methods in most of the cases. ILTA based hyper-heuristics have outperformed their LACC and

GDEL counterparts in all problem instances for all values of k with the exception of DSJC125.1

at k = 5, DSJC250.9 at k = 73 and DSJC500.1 at k = 13. In the same way, GDEL hyper-

heuristics have the worst average times and success rates on most of the DIMACS instances

compared to the rest of the hyper-heuristics.

Table 5 and shows the average best colouring and standard deviation for each hyper-heuristic

approach on each problem instance across the 30 runs. ±0.0 standard deviation corresponds

to 100.0% success rate. The row denoted ‘Wins’ shows the number of problem instances in

which the corresponding hyper-heuristic approach achieved the best average colouring including

ties with the other algorithms. From this table it can be seen that RL-ILTA hyper-heuristic has

the most number of wins across all the tested approaches. Hence, we used the performance of

18

the RL-ILTA hyper-heuristic as a reference to carry out statistical tests in order to determine

how significant the differences in the best colourings found by each of the tested hyper-heuristic

approaches with regard to the RL-ILTA approach are.

●

●● ●●

●●●

●

●

RL1 RL2 RL3 DH1 DH2 DH3 SR1 SR2 SR3

5.0

5.2

5.4

5.6

5.8

6.0

DSJC125.1.col

●●●●

●● ●●●●●●●

●●●●●●

●● ●●●

RL1 RL2 RL3 DH1 DH2 DH3 SR1 SR2 SR3

17.0

17.5

18.0

18.5

19.0

19.5

20.0

DSJC125.5.col

●●●●●● ●●●

●●●●

●●●● ●●● ●●●● ●●●●●●●

●

RL1 RL2 RL3 DH1 DH2 DH3 SR1 SR2 SR3

44

45

46

47

48

DSJC125.9.col

●●●

RL1 RL2 RL3 DH1 DH2 DH3 SR1 SR2 SR3

8.0

8.2

8.4

8.6

8.8

9.0

DSJC250.1.col

●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●

●●●●●●

●●●

RL1 RL2 RL3 DH1 DH2 DH3 SR1 SR2 SR3

29

30

31

32

33

34

DSJC250.5.col

●●●

RL1 RL2 RL3 DH1 DH2 DH3 SR1 SR2 SR3

72

74

76

78

80

82

DSJC250.9.col

●●●●●●

●●●●●●

RL1 RL2 RL3 DH1 DH2 DH3 SR1 SR2 SR3

13

14

15

16

17

18

DSJC500.1.col

●●●

●●●

●●●

●●●

RL1 RL2 RL3 DH1 DH2 DH3 SR1 SR2 SR3

52

54

56

58

60

DSJC500.5.col
●●●●●

●

●

●●●● ●●●●●●●

RL1 RL2 RL3 DH1 DH2 DH3 SR1 SR2 SR3

25.0

25.5

26.0

26.5

27.0

le450_25a.col

●● ●●●●●●

RL1 RL2 RL3 DH1 DH2 DH3 SR1 SR2 SR3

25.0

25.2

25.4

25.6

25.8

26.0

le450_25b.col

●●●●●●● ●●●●●

●●●●●

RL1 RL2 RL3 DH1 DH2 DH3 SR1 SR2 SR3

28

30

32

34

le450_25c.col

RL1 RL2 RL3 DH1 DH2 DH3 SR1 SR2 SR3

28

30

32

34

le450_25d.col

Figure 4: Box plots of the best number of colours achieved by each hyper-heuristic approach on selected DIMACS

data sets. 1, 2 and 3 in the hyper-heuristic approaches names refer to ILTA, LACC and GDEL acceptance methods

respectively

Table 6 shows the pairwise performance comparison of hyper-heuristics based on the Wilcoxon

Signed Rank statistical test using best colourings attained by RL-ILTA hyper-heuristic as a ref-

erence. Almost all the results obtained by the GDEL based hyper-heuristics are significantly

worse than the results of the RL-ILTA hyper-heuristic, with the exception of RL-GDEL on

DSJC125.1, for which case, RL-GDEL performs significantly better than RL-ILTA. Similarly,

the RL-ILTA hyper-heuristic performs either significantly or slightly better than the LACC based

hyper-heuristics in almost all of the cases with the exception of DH-LACC on DSJC500.1, for

which case DH-LACC performs significantly better than the RL-ILTA.

One of the observations is that the DH-ILTA and RL-ILTA hyper-heuristics deliver a compet-

itive performance. On DSJC250.1, DSJC500.1 and le450 25c, DH-ILTA performs significantly

better than RL-ILTA. This has been expected bearing in mind that the DH-ILTA is known to be a

very powerful algorithm in cross domain search (Misir et al., 2013). However, on more instances,

namely DSJC125.1, DSJC125.9, DSJC250.9, DSJC500.5 and le450 25d, RL-ILTA outperforms

DH-ILTA. This performance difference is statistically significant. Additionally, on 4 other in-

stances, RL-ILTA performs slightly better than DH-ILTA. They have a tie on six benchmark

instances.

To better evaluate the differences between the performances of the 9 hyper-heuristics on the

19

Table 5: Average best colouring and standard deviation of each hyper-heuristic approach on each problem instance across

the 30 runs.

RL-ILTA RL-LACC RL-GDEL

Instance k∗ µ(kbest) σ(kbest) µ(kbest) σ(kbest) µ(kbest) σ(kbest)

myciel3 4 4.0 ±0.0 4.0 ±0.0 4.07 ±0.25

myciel4 5 5.0 ±0.0 5.0 ±0.0 5.0 ±0.0

myciel5 6 6.0 ±0.0 6.0 ±0.0 6.0 ±0.0

queen5.5 5 5.0 ±0.0 5.1 ±0.31 5.0 ±0.0

queen6.6 7 7.0 ±0.0 7.8 ±0.41 7.0 ±0.0

queen7.7 7 7.0 ±0.0 8.4 ±0.77 7.0 ±0.0

queen8.8 9 9.0 ±0.0 9.97 ±0.18 9.0 ±0.0

DSJC125.1 5 5.03 ±0.18 5.93 ±0.25 5.0 ±0.0

DSJC125.5 17 17.67 ±0.48 18.4 ±0.50 18.33 ±0.48

DSJC125.9 44 44.0 ±0.0 44.2 ±0.41 46.03 ±0.49

DSJC250.1 8 8.9 ±0.30 9.0 ±0.0 9.0 ±0.0

DSJC250.5 28 29.8 ±0.41 30.8 ±0.41 32.6 ±0.50

DSJC250.9 72 72.9 ±0.31 73.8 ±0.76 79.4 ±0.50

DSJC500.1 12 13.4 ±0.50 13.8 ±0.41 15.5 ±0.51

DSJC500.5 48 53.6 ±0.67 56.5 ±0.51 57.4 ±0.50

le450 25a 25 25.0 ±0.0 25.0 ±0.0 26.17 ±0.38

le450 25b 25 25.0 ±0.0 25.0 ±0.0 25.93 ±0.25

le450 25c 25 27.23 ±0.43 27.6 ±0.50 32.6 ±0.50

le450 25d 25 27.3 ±0.47 27.7 ±0.47 33.4 ±0.50

Wins 18 5 7

DH-ILTA DH-LACC DH-GDEL

Instance k∗ µ(kbest) σ(kbest) µ(kbest) σ(kbest) µ(kbest) σ(kbest)

myciel3 4 4.0 ±0.0 4.0 ±0.0 4.1 ±0.55

myciel4 5 5.0 ±0.0 5.0 ±0.0 5.0 ±0.0

myciel5 6 6.0 ±0.0 6.0 ±0.0 6.0 ±0.0

queen5.5 5 5.0 ±0.0 5.0 ±0.0 5.0 ±0.0

queen6.6 7 7.43 ±0.50 7.57 ±0.50 7.07 ±0.25

queen7.7 7 7.7 ±0.79 8.37 ±0.67 7.17 ±0.46

queen8.8 9 9.4 ±0.50 9.73 ±0.45 9.13 ±0.35

DSJC125.1 5 5.7 ±0.47 5.93 ±0.25 5.1 ±0.31

DSJC125.5 17 17.93 ±0.45 18.23 ±0.43 18.43 ±0.57

DSJC125.9 44 44.13 ±0.35 44.43 ±0.63 46.6 ±0.86

DSJC250.1 8 8.7 ±0.47 9.0 ±0.0 9.0 ±0.0

DSJC250.5 28 30.0 ±0.64 30.6 ±0.50 32.2 ±0.89

DSJC250.9 72 73.5 ±0.68 73.6 ±0.67 80.57 ±0.57

DSJC500.1 12 13.3 ±0.47 13.2 ±0.41 16.3 ±0.65

DSJC500.5 48 53.67 ±0.71 54.5 ±0.82 58.77 ±1.01

le450 25a 25 25.0 ±0.0 25.03 ±0.18 26.1 ±0.40

le450 25b 25 25.0 ±0.0 25.0 ±0.0 25.8 ±0.41

le450 25c 25 27.17 ±0.38 27.7 ±0.47 33.97 ±0.81

le450 25d 25 27.4 ±0.56 27.63 ±0.49 34.13 ±0.68

Wins 14 6 7

SR-ILTA SR-LACC SR-GDEL

Instance k∗ µ(kbest) σ(kbest) µ(kbest) σ(kbest) µ(kbest) σ(kbest)

myciel3 4 4.0 ±0.0 4.0 ±0.0 4.0 ±0.0

myciel4 5 5.0 ±0.0 5.0 ±0.0 5.0 ±0.0

myciel5 6 6.0 ±0.0 6.0 ±0.0 6.0 ±0.0

queen5.5 5 5.0 ±0.0 5.03 ±0.18 5.0 ±0.0

queen6.6 7 7.67 ±0.48 7.8 ±0.41 7.0 ±0.0

queen7.7 7 8.23 ±0.73 8.53 ±0.57 7.0 ±0.0

queen8.8 9 9.7 ±0.47 9.9 ±0.31 9.0 ±0.0

DSJC125.1 5 5.97 ±0.18 6.0 ±0.0 5.03 ±0.18

DSJC125.5 17 17.87 ±0.51 18.47 ±0.51 18.1 ±0.31

DSJC125.9 44 44.1 ±0.31 44.13 ±0.35 45.8 ±0.48

DSJC250.1 8 9.0 ±0.0 9.0 ±0.0 9.0 ±0.0

DSJC250.5 28 30.4 ±0.50 30.9 ±0.55 31.9 ±0.55

DSJC250.9 72 73.5 ±0.51 73.5 ±0.68 80.5 ±0.51

DSJC500.1 12 13.7 ±0.47 13.6 ±0.50 16.9 ±0.71

DSJC500.5 48 54.57 ±0.73 54.9 ±0.71 59.0 ±0.64

le450 25a 25 25.0 ±0.0 25.0 ±0.0 26.23 ±0.43

le450 25b 25 25.0 ±0.0 25.0 ±0.0 26.0 ±0.0

le450 25c 25 27.6 ±0.50 27.83 ±0.38 34.13 ±0.73

le450 25d 25 27.4 ±0.50 27.7 ±0.47 34.2 ±0.61

Wins 14 8 9

20

Table 6: Wilcoxon Signed Rank statistical test using RL-ILTA as a reference for the comparison: ‘>’ (‘<’) denotes that

RL-ILTA is significantly better (worse) than the corresponding approach in that column, ‘≥’ means that RL-ILTA is

slightly better, and ‘=’ means that there is no difference between the two hyper-heuristic approaches across the 30 runs.

Instance
RL RL DH DH DH SR SR SR

LACC GDEL ILTA LACC GDEL ILTA LACC GDEL

myciel3 = > = = > = = =

myciel4 = = = = = = = =

myciel5 = = = = = = = =

queen5.5 > = = = = = > =

queen6.6 > = ≥ > > > > =

queen7.7 > = > > > > > =

queen8.8 > = ≥ > > > > =

DSJC125.1 > < > > > > > =

DSJC125.5 > > ≥ > > ≥ > ≥

DSJC125.9 ≥ > > ≥ > > > >

DSJC250.1 > > < > > > > >

DSJC250.5 > > ≥ > > > > >

DSJC250.9 > > > > > > > >

DSJC500.1 ≥ > < < > ≥ ≥ >

DSJC500.5 > > > > > > > >

le450 25a = > = > > = = >

le450 25b = > = = > = = >

le450 25c ≥ > < > > ≥ > >

le450 25d ≥ > > ≥ > > ≥ >

selected problem instances, we carried out another comparison using the hyper-volume measure

in which the performance of different algorithms is given in terms of the size of the search space

that is covered by the final Pareto front of each hyper-heuristic. Figure 5 shows the box plots

of the 30 hyper-volume values produced by each hyper-heuristic on each problem instance. A

quick glance at the figure exposes the fact that hyper-heuristics with GDEL acceptance cover the

least size of the search space compared to the other hyper-heuristics in most of the selected data

sets.

4.4. Performance Comparison to Previously Proposed Approaches

In Table 7, we compare the performance of our approach, RL-ILTA to some previously pro-

posed approaches form the literature for graph colouring. In the table, the results denoted as

RL-ILTA are the best colourings obtained by our framework. The results under M-LLE are ob-

tained by a multi-objective genetic grouping algorithm described in (Korkmaz, 2010). Lowest

Index Max Crossover (LIMX), Greedy Partition Crossover Lowest Index (GPX-LI) and Greedy

Partition Crossover Cardinality Based (GPX-CB) graph colouring algorithms are proposed in

(Ülker et al., 2006). Külahçıoğlu (2007) proposed two modified versions of the LLE representa-

tion which are Linear Linkage Encoding With Ending Node Links (LLE-e) and Linear Linkage

Encoding With Backward Links (LLE-b), and both of them are tested using genetic operators.

This last study also tested these operators with classical Linear Linkage Encoding (LLE). The

results in the last two columns denoted (Kir-B) and (Kir-C) are graph colouring algorithms pro-

posed in (Kirovski and Potkonjak, 1998). Fields marked as ‘−’ means that the solution for that

problem instance with that specific algorithm is not reported. The ‘wins’ row shows the number

of instances in which the corresponding approach hit the best known colouring. As it can clearly

be seen in the table, our proposed approach is not only competitive with the previous algorithms,

but also it outperforms the previously proposed approaches almost in all cases.

21

●

●

●

●

●

●

●

●

RL1 RL2 RL3 DH1 DH2 DH3 SR1 SR2 SR3

2200

2400

2600

2800

DSJC125.1.col

RL1 RL2 RL3 DH1 DH2 DH3 SR1 SR2 SR3

2500

2600

2700

2800

2900

3000

3100

DSJC125.5.col
●

RL1 RL2 RL3 DH1 DH2 DH3 SR1 SR2 SR3

800

1000

1200

1400

1600

DSJC125.9.col

●
●

● ●

RL1 RL2 RL3 DH1 DH2 DH3 SR1 SR2 SR3

6500

7000

7500

DSJC250.1.col

RL1 RL2 RL3 DH1 DH2 DH3 SR1 SR2 SR3

5800

6000

6200

6400

6600

DSJC250.5.col

RL1 RL2 RL3 DH1 DH2 DH3 SR1 SR2 SR3

3400

3500

3600

3700

3800

3900

4000

DSJC250.9.col

●

RL1 RL2 RL3 DH1 DH2 DH3 SR1 SR2 SR3

2000

2500

3000

3500

4000

le450_25b.col
●

●

●

●

●

●

●

●

●

●

RL1 RL2 RL3 DH1 DH2 DH3 SR1 SR2 SR3

2000

2500

3000

3500

4000

le450_25a.col

Figure 5: Box plots of the hyper-volume value of all the final Pareto fronts achieved by each hyper-heuristic approach

on selected DIMACS data sets. 1, 2 and 3 in the hyper-heuristic approaches names refer to ILTA, LACC and GDEL

acceptance methods respectively

Table 7: Performance comparison for different approaches based on the best result. The entries in bold indicates the best

result obtained by the associated algorithm for a given instance.

Instance k∗ RL-ILTA M-LLE LIMX GPX-LI GPX-CB LLE-e LLE-b LLE Kir-B Kir-C

DSJC125.1 5 5 − − − − − − − − −

DSJC125.5 17 17 18 18 18 18 19 19 18 19 18

DSJC125.9 44 44 44 44 44 44 44 44 44 45 45

DSJC250.1 8 8 9 9 9 9 9 9 9 9 9

DSJC250.5 28 29 − 31 31 31 − − − 30 30

DSJC250.9 72 72 75 75 75 74 74 74 74 77 77

DSJC500.1 12 13 − 14 14 14 − − − 14 14

DSJC500.5 48 52 55 − − − − − − − −

le450 25a 25 25 − 25 25 25 − − − 25 25

le450 25b 25 25 − 25 25 25 − − − 25 25

le450 25c 25 27 29 28 28 28 29 29 29 28 28

le450 25d 25 27 − 28 28 28 − − − − −

Wins 12 1 3 3 3 1 1 1 2 2

4.5. Grouping Hyper-heuristics for Examination Timetabling

Finally, in order to show that the framework is generic and can be applied to other domains

of grouping problems, we tested the most successful hyper-heuristics, namely the RL-ILTA and

the DH-ILTA, on selected instances from the Examination Timetabling domain. In (Johnson and

Trick, 1996), it has been shown that the exam timetabling problem can be reduced to a grouping

problem if the task of minimising the number of exam periods and removing the clashes are

considered. The size of the selected ETT problem instances subset was kept small since the main

22

objective of testing the ETT domain is to show the generality of the framework. Table 8 shows the

results of applying the RL-ILTA and DH-ILTA hyper-heuristics. Both hyper-heuristics perform

well on all instances and successfully managed to find the best colourings for each instance. Table

9 provides the average best results obtained using RL-ILTA over 30 runs. RL-ILTA achieves the

best known result for all instances. Moreover, RL-ILTA detects the best number of time-slots

consistently for three large size examination timetabling benchmark instances of ute92, sta83

and hec92 under a second in all runs.

Table 8: The results obtained from the application of RL-ILTA and DH-ILTA hyper-heuristics on Toronto a benchmark.

sRate% and µt(s) are the success rates and the average time taken by each hyper-heuristic on each problem instance over

30 runs.

RL-ILTA DH-ILTA

Instance k sRate% µt(s) sRate% µt(s)

hec92

17 100.00 4.547 93.33 345.171

18 100.00 0.328 100.00 1.911

19 100.00 0.120 100.00 0.928

sta83

13 100.00 0.456 100.00 9.068

14 100.00 0.089 100.00 0.448

15 100.00 0.053 100.00 0.303

yor83

19 16.67 583.031 46.67 598.321

20 100.00 27.724 100.00 41.306

21 100.00 2.829 100.00 6.830

ute92

10 100.00 0.134 100.00 0.431

11 100.00 0.059 100.00 0.206

12 100.00 0.040 100.00 0.161

rye93

21 20.00 1320.075 50.00 1619.851

22 100.00 82.934 100.00 103.213

23 100.00 12.399 100.00 19.178

The performance of RL-ILTA is compared against the best results obtained by some pre-

viously proposed approaches including (Carter et al., 1996) (Carter), (Caramia et al., 2001)

(Caramia) and (Merlot et al., 2002) (Merlot). The approaches in (Ülker et al., 2006) includ-

ing Greedy Partition Crossover Lowest Index (GPX-LI), Greedy Partition Crossover Cardinality

Based (GPX-CB) and Lowest Index Max Crossover (LIMX) algorithms are also considered in

our comparison. Table 10 shows that the performance of RL-ILTA is competitive. It performs as

good as the Carter and Caramia approaches. Moreover, it is better than the previously proposed

population based grouping algorithms, including LIMX, GPX-LI and GPX-CB on most of the

instances, particularly yor83 and rye93.

5. Conclusions

Designing an automated intelligent search methodology which can be applied to the unseen

problem instances with different characteristics without requiring a change is an extremely chal-

lenging task. Selection hyper-heuristics have emerged as such flexible search methodologies

Table 9: Average best colouring and associated standard deviation obtained by RL-ILTA over 30 runs.

RL-ILTA

Instance k∗ µ(kbest) σ(kbest)

hec92 17.0 17.0 ±0.0

sta83 13.0 13.0 ±0.0

yor83 19.0 19.83 ±0.38

ute92 10.0 10.0 ±0.0

rye93 21.0 21.8 ±0.41

23

Table 10: Performance comparison for different approaches based on the best result. The entries in bold indicates the

best result obtained by the associated algorithm for a given instance.

Instance k RL-ILTA LIMX GPX-LI GPX-CB Carter Caramia Merlot

hec92 17 17 17 17 17 17 17 18

sta83 13 13 13 14 14 13 13 13

yor83 19 19 20 20 20 19 19 23

ute92 10 10 10 10 10 10 10 11

rye93 21 21 23 23 23 21 21 22

Wins 5 3 2 2 5 5 1

supporting re-usability and component based development (Burke et al., 2013). Most of the

previously proposed general purpose hyper-heuristics contain two main reusable components:

heuristic selection and move acceptance. This study describes a general hyper-heuristic frame-

work for solving grouping problems, employing generic components as well as a fixed set of low

level heuristics and a slightly modified version of the grouping representation in (Falkenauer,

1998)4.

A performance comparison of nine different hyper-heuristics using different components

under this framework is presented on various graph colouring benchmark instances. The re-

sults indicates the success of an online learning hyper-heuristic which uses feedback during

the search process. The selection hyper-heuristic combining the reinforcement learning (RL)

heuristic selection and ILTA move acceptance (Misir et al., 2013) methods even outperforms

some previously proposed approaches. RL-ILTA is further tested on an examination timetabling

benchmark. This hyper-heuristic without requiring any change again yielded successful results.

The proposed framework is indeed flexible allowing different hyper-heuristic components to be

brought together and sufficiently general. The RL-ILTA hyper-heuristic implemented under the

proposed framework performs slightly better than the selection hyper-heuristic which won a

hyper-heuristic competition (Burke et al., 2011). This previously proposed method contains

many parameters which were tuned and complicated subcomponents for heuristic selection. The

RL-ILTA hyper-heuristic implemented under the proposed framework conforms to one of the

crucial properties of a reusable hyper-heuristic, that is the simplicity. The heuristic selection

component has only one parameter, that is the memory length and that is set to a fixed value as

suggested in (Burke and Soubeiga, 2003).

Our observations in this study are consistent with the previous findings from the literature

(Burke et al., 2012; Özcan et al., 2009; Özcan et al., 2010). The use of a different component

in a hyper-heuristic could lead to a different performance of the overall algorithm. Learning

during the heuristic selection process definitely helps, and the move acceptance plays a major

role in the performance of hyper-heuristics. It is crucial to employ compatible and synergistic

components yielding an improved performance and RL performed well with ILTA under the

proposed grouping hyper-heuristic framework.

Acknowledgements: This work was funded in part by the EPSRC grant EP/F033613/1.

4The grouping hyper-heuristic tool will be made publicly available from http://www.cs.nott.ac.uk/~axe/

24

References

Agustı́n-Blas, L., Salcedo-Sanz, S., Jimnez-Fernndez, S., Carro-Calvo, L., Ser, J.D., Portilla-Figueras, J., 2012. A new

grouping genetic algorithm for clustering problems. Expert Systems with Applications 39, 9695 – 9703. doi:http:

//dx.doi.org/10.1016/j.eswa.2012.02.149.

Avanthay, C., Hertz, A., Zufferey, N., 2003. A variable neighborhood search for graph coloring. European Journal of

Operational Research 151, 379–388.

Bai, R., Kendall, G., 2005. An investigation of automated planograms using a simulated annealing based hyper-heuristics,

in: Ibaraki, T., Nonobe, K., Yagiura, M. (Eds.), Metaheuristics: Progress as Real Problem Solver - (Operations

Research/Computer Science Interface Serices, Vol.32). Springer, pp. 87–108.

Bilgin, B., Özcan, E., Korkmaz, E.E., 2007. An experimental study on hyper-heuristics and exam timetabling, in:

Proceedings of the 6th international conference on Practice and theory of automated timetabling VI, Springer-Verlag,

Berlin, Heidelberg. pp. 394–412.

Brown, C.E., Sumichrast, R.T., 2003. Impact of the replacement heuristic in a grouping genetic algorithm. Computers

& OR 30, 1575–1593.

Burke, E.K., Bykov, Y., 2008. A Late Acceptance Strategy in Hill-Climbing for Exam Timetabling Problems, in: PATAT

’08 Proceedings of the 7th International Conference on the Practice and Theory of Automated Timetabling. URL:

http://w1.cirrelt.ca/\~{}patat2008/PATAT_7_PROCEEDINGS/Papers/Bykov-HC2a.pdf.

Burke, E.K., Curtois, T., Hyde, M., Kendall, G., Ochoa, G., Petrovic, S., Vazquez-Rodriguez, J., 2009. Hyflex: A flexible

framework for the design and analysis of hyper-heuristics., in: Proceedings of the Multidisciplinary International

Scheduling Conference (MISTA09), pp. 790–797.

Burke, E.K., Gendreau, M., Hyde, M., Kendall, G., McCollum, B., Ochoa, G., Parkes, A., Petrovic, S., 2011. The

cross-domain heuristic search challenge - an international research competition, in: Yao, X., Coello, C.A.C. (Eds.),

Proceedings of Learning and Intelligent Optmization (LION5), pp. 631–634.

Burke, E.K., Gendreau, M., Hyde, M.R., Kendall, G., Ochoa, G., Özcan, E., Qu, R., 2013. Hyper-heuristics: a survey of

the state of the art. JORS 64, 1695–1724.

Burke, E.K., Kendall, G., Misir, M., Özcan, E., 2012. Monte carlo hyper-heuristics for examination timetabling. Annals

of Operations Research 196, 73–90. doi:10.1007/s10479-010-0782-2.

Burke, E.K., Landa-Silva, J.D., Soubeiga, E., 2005. Multi-objective hyper-heuristic approaches for space allocation

and timetabling, in: Ibaraki, T., Nonobe, K., Yagiura, M. (Eds.), Meta-heuristics: Progress as Real Problem Solvers.

Springer. 5th Metaheuristics International Conference (MIC 2003), pp. 129–158.

Burke, E.K., Newall, J.P., 1998. A multi-stage evolutionary algorithm for the timetable problem. IEEE Transactions on

Evolutionary Computation .

Burke, E.K., Soubeiga, E., 2003. Scheduling nurses using a tabu-search hyperheuristic, in: Proc. of the 1st MISTA, pp.

197–218.

Caramia, M., Dell’Olmo, P., Italiano, G.F., 2001. New algorithms for examination timetabling, in: Algorithm Engineer-

ing 4th International Workshop 2000, Springer-Verlag, Berlin Heidelberg New York. pp. 230–241.

Carter, M.W., Laporte, G., 1996. Recent developments in practical examination timetabling, in: Practice and Theory of

Automated Timetabling, pp. 3–21.

Carter, M.W., Laporte, G., Lee, S.T., 1996. Examination timetabling: algorithmic strategies and applications. Journal of

the Operational Research Society 47, 373–383.

Chakhlevitch, K., Cowling, P.I., 2008. Hyperheuristics: Recent developments, in: Cotta, C., Sevaux, M., Sörensen, K.

(Eds.), Adaptive and Multilevel Metaheuristics. Springer. volume 136 of Studies in Computational Intelligence, pp.

3–29.

Coello, C.C., Lamont, G., van Veldhuizen, D., 2007. Evolutionary Algorithms for Solving Multi-Objective Problems.

Genetic and Evolutionary Computation. 2nd ed., Springer, Berlin, Heidelberg.

Cowling, P., Chakhlevitch, K., 2003. Hyperheuristics for managing a large collection of low level heuristics to schedule

personnel, in: Proceedings of the IEEE Congress on Evolutionary Computation (CEC2003), IEEE Computer Society

Press, Canberra, Australia. pp. 1214–1221.

Cowling, P., Kendall, G., Soubeiga, E., 2000. A hyperheuristic approach to scheduling a sales summit, in: Selected

Papers of the Third International Conference on the Practice And Theory of Automated Timetabling, PATAT 2000,

Springer, Konstanz, Germany. pp. 176–190.

Davis, L.D., Mitchell, M., 1991. Handbook of Genetic Algorithms. Van Nostrand Reinhold.

Du, J., Korkmaz, E.E., Alhajj, R., Barker, K., 2004. Novel clustering that employs genetic algorithm with new repre-

sentation scheme and multiple objectives., in: Kambayashi, Y., Mohania, M.K., W, W. (Eds.), DaWaK, Springer. pp.

219–228.

Dueck, G., 1993. New optimization heuristics: The great deluge algorithm and the record-to-record travel. Journal of

Computational Physics 104, 86–92. doi:10.1006/jcph.1993.1010.

25

Falkenauer, E., 1992. The grouping genetic algorithms: Widening the scope of the GAs. Belgian Journal of Operations

Research, Statistics and Computer Science (JORBEL) 33, 79–102.

Falkenauer, E., 1998. Genetic Algorithms and Grouping Problems. John Wiley & Sons, Inc., New York, NY, USA.

Galinier, P., Hao, J.K., 1999. Hybrid evolutionary algorithms for graph coloring. J. Comb. Optim. 3, 379–397.

Handl, J., Knowles, J.D., 2007. An evolutionary approach to multiobjective clustering. IEEE Trans. Evolutionary

Computation 11, 56–76.

Hertz, A., Werra, D.D., 1987. Using tabu search techniques for graph coloring. Computing 39, 345–351. URL:

http://dx.doi.org/10.1007/BF02239976, doi:10.1007/BF02239976.

Johnson, D.J., Trick, M.A. (Eds.), 1996. Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Chal-

lenge, Workshop, October 11-13, 1993. American Mathematical Society, Boston, MA, USA.

Johnson, D.S., Aragon, C.R., Mcgeoctt, L.A., Schevon, C., 1991. Optimization by simulated annealing: an experimental

evaluation; part ii. Operational Research .

Jones, D.R., Beltramo, M.A., 1991. Solving partitioning problems with genetic algorithms, in: Belew, R.K., Booker,

L.B. (Eds.), ICGA, Morgan Kaufmann. pp. 442–449.

Kirovski, D., Potkonjak, M., 1998. Efficient coloring of a large spectrum of graphs, in: 35th Design Automation Confer-

ence Proceedings, pp. 427–432.

Korkmaz, E.E., 2010. Multi-objective genetic algorithms for grouping problems. Appl. Intell. 33, 179–192.

Külahçıoğlu, B., 2007. Multiobjective Hyperheuristic for Data Clustering and Linear Linkage Encoding. Master’s thesis.

Yeditepe University.

Leighton, F.T., 1979. A graph coloring algorithm for large scheduling problems, in: Journal of Reasearch of the National

Bureau of Standards, pp. 489–506.

Merlot, L.T.G., Boland, N., Hughes, B.D., Stuckey, P.J., 2002. A hybrid algorithm for the examination timetabling

problem., in: Burke, E.K., De Causmaecker, P. (Eds.), Proceedings of Practice and Theory of Automated Timetabling,

Fourth International Conference, Gent, Belgium. pp. 348–371.

Misir, M., Verbeeck, K., Causmaecker, P.D., Berghe, G.V., 2013. A new hyper-heuristic as a general problem solver: an

implementation in hyflex. J. Scheduling 16, 291–311.

Özcan, E., Bilgin, B., Korkmaz, E., 2008. A comprehensive analysis of hyperheuristics. Intelligent Data Analysis 12,

1–21.

Özcan, E., Bykov, Y., Birben, M., Burke, E.K., 2009. Examination timetabling using late acceptance hyper-heuristics,

in: Proceedings of IEEE Congress on Evolutionary Computation (CEC 2009), pp. 997–1004.

Özcan, E., Mısır, M., Ochoa, G., Burke, E.K., 2010. A reinforcement learning - great-deluge hyper-heuristic for exami-

nation timetabling. Int. J. of Applied Metaheuristic Computing 1, 39–59.

Paquete, F.L., Fortseca, C.M., Pt, E.L., 2001. A study of examination timetabling with multiobjective evolutionary

algorithms, in: Proc. of the 4th Metaheuristics International Conference (MIC 2001, pp. 149–154.

Park, Y.J., Song, M.S., 1998. A genetic algorithm for clustering problems, in: Koza, J.R., Banzhaf, W., Chellapilla,

K., Deb, K., Dorigo, M., Fogel, D.B., Garzon, M.H., Goldberg, D.E., Iba, H., Riolo, R. (Eds.), Genetic Program-

ming 1998: Proceedings of the Third Annual Conference, Morgan Kaufmann, University of Wisconsin, Madison,

Wisconsin, USA. pp. 568–575.

Qu, R., Burke, E.K., McCollum, B., Merlot, L., Lee, S., 2009. A survey of search methodologies and automated system

development for examination timetabling. Journal of Scheduling 12, 55–89.

Saha, S., Kumar, R., Baboo, G., 2013. Characterization of graph properties for improved pareto fronts using

heuristics and EA for bi-objective graph coloring problem. Applied Soft Computing 13, 2812 – 2822. URL:

http://www.sciencedirect.com/science/article/pii/S1568494612003018, doi:http://dx.doi.org/

10.1016/j.asoc.2012.06.021.

Ülker, O., Korkmaz, E.E., Özcan, E., 2008. A grouping genetic algorithm using linear linkage encoding for bin packing,

in: Parallel Problem Solving from Nature, pp. 1140–1149.

Ülker, Ö., Özcan, E., Korkmaz, E.E., 2006. Linear linkage encoding in grouping problems: Applications on graph

coloring and timetabling, in: Burke, E.K., Rudová, H. (Eds.), PATAT, Springer. pp. 347–363.

Wu, Q., Hao, J.K., 2012. An effective heuristic algorithm for sum coloring of graphs. Computers & OR 39, 1593–1600.

Yılmaz, B., Korkmaz, E.E., 2010. Representation issue in graph coloring, in: ISDA, IEEE. pp. 1171–1176.

Zitzler, E., Thiele, L., 1998. Multiobjective optimization using evolutionary algorithms - a comparative case study, in:

Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.P. (Eds.), PPSN, Springer. pp. 292–304.

26

