61,453 research outputs found

    Data model and software prototype for antenna geometrical information

    Get PDF
    The standard electromagnetic language EDX is formed by three parts.One is a set of Electromagnetic Data Dictionaries, establishing the lexicon. This work concern the develpment of the Structure Data Dictionary, including all the geometrical information and the related physical details.In parallel a Python-based prototype tool, was created. This is able to manage the physical structure data model theoretically developed and has been exploited to generate some complex examples up to full satellitesope

    Developing geometrical reasoning in the secondary school: outcomes of trialling teaching activities in classrooms, a report to the QCA

    No full text
    This report presents the findings of the Southampton/Hampshire Group of mathematicians and mathematics educators sponsored by the Qualifications and Curriculum Authority (QCA) to develop and trial some teaching/learning materials for use in schools that focus on the development of geometrical reasoning at the secondary school level. The project ran from October 2002 to November 2003. An interim report was presented to the QCA in March 2003. 1. The Southampton/Hampshire Group consisted of five University mathematicians and mathematics educators, a local authority inspector, and five secondary school teachers of mathematics. The remit of the group was to develop and report on teaching ideas that focus on the development of geometrical reasoning at the secondary school level. 2. In reviewing the existing geometry curriculum, the group endorsed the RS/ JMC working group conclusion (RS/ JMC geometry report, 2001) that the current mathematics curriculum for England contains sufficient scope for the development of geometrical reasoning, but that it would benefit from some clarification in respect of this aspect of geometry education. Such clarification would be especially helpful in resolving the very odd separation, in the programme of study for mathematics, of ‘geometrical reasoning’ from ‘transformations and co-ordinates’, as if transformations, for example, cannot be used in geometrical reasoning. 3. The group formulated a rationale for designing and developing suitable teaching materials that support the teaching and learning of geometrical reasoning. The group suggests the following as guiding principles: • Geometrical situations selected for use in the classroom should, as far as possible, be chosen to be useful, interesting and/or surprising to pupils; • Activities should expect pupils to explain, justify or reason and provide opportunities for pupils to be critical of their own, and their peers’, explanations; • Activities should provide opportunities for pupils to develop problem solving skills and to engage in problem posing; • The forms of reasoning expected should be examples of local deduction, where pupils can utilise any geometrical properties that they know to deduce or explain other facts or results. • To build on pupils’ prior experience, activities should involve the properties of 2D and 3D shapes, aspects of position and direction, and the use of transformation-based arguments that are about the geometrical situation being studied (rather than being about transformations per se); • The generating of data or the use of measurements, while playing important parts in mathematics, and sometimes assisting with the building of conjectures, should not be an end point to pupils’ mathematical activity. Indeed, where sensible, in order to build geometric reasoning and discourage over-reliance on empirical verification, many classroom activities might use contexts where measurements or other forms of data are not generated. 4. In designing and trialling suitable classroom material, the group found that the issue of how much structure to provide in a task is an important factor in maximising the opportunity for geometrical reasoning to take place. The group also found that the role of the teacher is vital in helping pupils to progress beyond straightforward descriptions of geometrical observations to encompass the reasoning that justifies those observations. Teacher knowledge in the area of geometry is therefore important. 5. The group found that pupils benefit from working collaboratively in groups with the kind of discussion and argumentation that has to be used to articulate their geometrical reasoning. This form of organisation creates both the need and the forum for argumentation that can lead to mathematical explanation. Such development to mathematical explanation, and the forms for collaborative working that support it, do not, however, necessarily occur spontaneously. Such things need careful planning and teaching. 6. Whilst pupils can demonstrate their reasoning ability orally, either as part of group discussion or through presentation of group work to a class, the transition to individual recording of reasoned argument causes significant problems. Several methods have been used successfully in this project to support this transition, including 'fact cards' and 'writing frames', but more research is needed into ways of helping written communication of geometrical reasoning to develop. 7. It was found possible in this study to enable pupils from all ages and attainments within the lower secondary (Key Stage 3) curriculum to participate in mathematical reasoning, given appropriate tasks, teaching and classroom culture. Given the finding of the project that many pupils know more about geometrical reasoning than they can demonstrate in writing, the emphasis in assessment on individual written response does not capture the reasoning skills which pupils are able to develop and exercise. Sufficient time is needed for pupils to engage in reasoning through a variety of activities; skills of reasoning and communication are unlikely to be absorbed quickly by many students. 8. The study suggests that it is appropriate for all teachers to aim to develop the geometrical reasoning of all pupils, but equally that this is a non-trivial task. Obstacles that need to be overcome are likely to include uncertainty about the nature of mathematical reasoning and about what is expected to be taught in this area among many teachers, lack of exemplars of good practice (although we have tried to address this by lesson descriptions in this report), especially in using transformational arguments, lack of time and freedom in the curriculum to properly develop work in this area, an assessment system which does not recognise students’ oral powers of reasoning, and a lack of appreciation of the value of geometry as a vehicle for broadening the curriculum for high attainers, as well as developing reasoning and communication skills for all students. 9. Areas for further work include future work in the area of geometrical reasoning, include the need for longitudinal studies of how geometrical reasoning develops through time given a sustained programme of activities (in this project we were conscious that the timescale on which we were working only enabled us to present 'snapshots'), studies and evaluation of published materials on geometrical reasoning, a study of 'critical experiences' which influence the development of geometrical reasoning, an analysis of the characteristics of successful and unsuccessful tasks for geometrical reasoning, a study of the transition from verbal reasoning to written reasoning, how overall perceptions of geometrical figures ('gestalt') develops as a component of geometrical reasoning (including how to create the links which facilitate this), and the use of dynamic geometry software in any (or all) of the above.10. As this group was one of six which could form a model for part of the work of regional centres set up like the IREMs in France, it seems worth recording that the constitution of the group worked very well, especially after members had got to know each other by working in smaller groups on specific topics. The balance of differing expertise was right, and we all felt that we learned a great deal from other group members during the experience. Overall, being involved in this type of research and development project was a powerful form of professional development for all those concerned. In retrospect, the group could have benefited from some longer full-day meetings to jointly develop ideas and analyse the resulting classroom material and experience rather than the pattern of after-school meetings that did not always allow sufficient time to do full justice to the complexity of many of the issues the group was tackling

    Did Lobachevsky Have A Model Of His "imaginary Geometry"?

    Get PDF
    The invention of non-Euclidean geometries is often seen through the optics of Hilbertian formal axiomatic method developed later in the 19th century. However such an anachronistic approach fails to provide a sound reading of Lobachevsky's geometrical works. Although the modern notion of model of a given theory has a counterpart in Lobachevsky's writings its role in Lobachevsky's geometrical theory turns to be very unusual. Lobachevsky doesn't consider various models of Hyperbolic geometry, as the modern reader would expect, but uses a non-standard model of Euclidean plane (as a particular surface in the Hyperbolic 3-space). In this paper I consider this Lobachevsky's construction, and show how it can be better analyzed within an alternative non-Hilbertian foundational framework, which relates the history of geometry of the 19th century to some recent developments in the field.Comment: 31 pages, 8 figure

    Computational medical imaging for total knee arthroplasty using visualitzation toolkit

    Get PDF
    This project is presented as a Master Thesis in the field of Civil Engineering, Biomedical specialization. As the project of an Erasmus exchange student, this thesis has been under supervision both the Universite Livre de Bruxelles and the Universitat Politecnica de Catalunya. The purpose of this thesis to put in practice all the knowledges acquired during this Master in Industrial Engineering in UPC and to be a support for medical staff in total knee arthoplasty procedures. Prof. Emmanuel Thienpont has been working for years as orthopaedic surgeon at the Hospital Sant Luc, Brussels. His years of work and research have been mainly focused on Total Knee Arthroplasty or TKA. During one of the most important steps of this procedure, the orthopaedic surgeon has to cut the head of the femur following two perpendicular cutting planes. Nevertheless, the orientation of these planes are directly dependant of the femur constitution. This Master Thesis has been conceived in order to offer the surgeon a tool to determine the proper direction planes in a previous step before the surgical procedure. This project pretends to give the surgeon an openfree computational platform to access to patient geometrical and physiological information before involving the subject in any invasive procedure

    Higher gauge theory -- differential versus integral formulation

    Full text link
    The term higher gauge theory refers to the generalization of gauge theory to a theory of connections at two levels, essentially given by 1- and 2-forms. So far, there have been two approaches to this subject. The differential picture uses non-Abelian 1- and 2-forms in order to generalize the connection 1-form of a conventional gauge theory to the next level. The integral picture makes use of curves and surfaces labeled with elements of non-Abelian groups and generalizes the formulation of gauge theory in terms of parallel transports. We recall how to circumvent the classic no-go theorems in order to define non-Abelian surface ordered products in the integral picture. We then derive the differential picture from the integral formulation under the assumption that the curve and surface labels depend smoothly on the position of the curves and surfaces. We show that some aspects of the no-go theorems are still present in the differential (but not in the integral) picture. This implies a substantial structural difference between non-perturbative and perturbative approaches to higher gauge theory. We finally demonstrate that higher gauge theory provides a geometrical explanation for the extended topological symmetry of BF-theory in both pictures.Comment: 26 pages, LaTeX with XYPic diagrams; v2: typos corrected and presentation improve

    A generic formalism for the semantic modeling and representation of architectural elements

    Get PDF
    This article presents a methodological approach to the semantic description of architectural elements based both on theoretical reflections and research experiences. To develop this approach, a first process of extraction and formalization of architectural knowledge on the basis of the analysis of architectural treaties is proposed. Then, the identified features are used to produce a template shape library dedicated to buildings surveying. Finally, the problem of the overall model structuring and organization using semantic information is addressed for user handling purposes

    A Hybrid Neural Network and Virtual Reality System for Spatial Language Processing

    Get PDF
    This paper describes a neural network model for the study of spatial language. It deals with both geometric and functional variables, which have been shown to play an important role in the comprehension of spatial prepositions. The network is integrated with a virtual reality interface for the direct manipulation of geometric and functional factors. The training uses experimental stimuli and data. Results show that the networks reach low training and generalization errors. Cluster analyses of hidden activation show that stimuli primarily group according to extra-geometrical variables

    Classroom research as teacher-researcher

    Full text link
    In the field of education, research projects that involve both the researcher and teacher being the same person are common today, as attested by the significant number of teacher-researcher studies. One issue confronting the dual role of teacher-researcher is the nature of interaction between the underlying goals that come with each of these roles. There are some researchers who express concern that the combination of these goals within the teacher-researcher may compromise either or both of the work of teaching and research in an unproductive way. This paper is an account of my adventure in attempting to fulfil both teaching and research goals in my work as teacher-researcher in a year 7 (Secondary One) geometry class in Singapore. My experience is then re-interpreted in the context of the ongoing conflicting-versus-complementary talk on the interaction between teacher/researcher &lsquo;selves&rsquo;. A model is proposed to account for the seemingly opposite sides of the camp as reported in the literature on this issue.<br /
    corecore