The invention of non-Euclidean geometries is often seen through the optics of
Hilbertian formal axiomatic method developed later in the 19th century. However
such an anachronistic approach fails to provide a sound reading of
Lobachevsky's geometrical works. Although the modern notion of model of a given
theory has a counterpart in Lobachevsky's writings its role in Lobachevsky's
geometrical theory turns to be very unusual. Lobachevsky doesn't consider
various models of Hyperbolic geometry, as the modern reader would expect, but
uses a non-standard model of Euclidean plane (as a particular surface in the
Hyperbolic 3-space). In this paper I consider this Lobachevsky's construction,
and show how it can be better analyzed within an alternative non-Hilbertian
foundational framework, which relates the history of geometry of the 19th
century to some recent developments in the field.Comment: 31 pages, 8 figure