130 research outputs found

    A Comprehensive Survey of the Tactile Internet: State of the art and Research Directions

    Get PDF
    The Internet has made several giant leaps over the years, from a fixed to a mobile Internet, then to the Internet of Things, and now to a Tactile Internet. The Tactile Internet goes far beyond data, audio and video delivery over fixed and mobile networks, and even beyond allowing communication and collaboration among things. It is expected to enable haptic communication and allow skill set delivery over networks. Some examples of potential applications are tele-surgery, vehicle fleets, augmented reality and industrial process automation. Several papers already cover many of the Tactile Internet-related concepts and technologies, such as haptic codecs, applications, and supporting technologies. However, none of them offers a comprehensive survey of the Tactile Internet, including its architectures and algorithms. Furthermore, none of them provides a systematic and critical review of the existing solutions. To address these lacunae, we provide a comprehensive survey of the architectures and algorithms proposed to date for the Tactile Internet. In addition, we critically review them using a well-defined set of requirements and discuss some of the lessons learned as well as the most promising research directions

    Optimizing resource allocation in next-generation optical access networks

    Get PDF
    To meet rapidly increasing traffic demands caused by the popularization of Internet and the spouting of bandwidth-demanding applications, Passive Optical Networks (PONs) exploit the potential capacities of optical fibers, and are becoming promising future-proof access network technologies. On the other hand, for a broader coverage area and higher data rate, integrated optical and wireless access is becoming a future trend for wireless access. This thesis investigates three next-generation access networks: Time Division Multiplexing (TDM) PONs, Wavelength Division Multiplexing (WDM) PONs, and WDM Radio-Over-Fiber (RoF) Picocellular networks. To address resource allocation problems in these three networks, this thesis first investigates respective characteristics of these networks, and then presents solutions to address respective challenging problems in these networks. In particular, three main problems are addressed: arbitrating time allocation among different applications to guarantee user quality of experience (QoE) in TDM PONs, scheduling wavelengths optimally in WDM PONs, and jointly allocating fiber and radio resources in WDM RoF Picocellular networks. In-depth theoretical analysis and extensive simulations have been performed in evaluating and demonstrating the performances of the proposed schemes

    ACOA: application quality of service aware orchestration architecture for the Edge to Cloud continuum.

    Get PDF
    206 p.El continuo edge-cloud proporciona una infraestructura de nodos heterogéneos para ejecutar aplicaciones distribuidas. La calidad de servicio de estas aplicaciones está ligada a múltiples requisitos no funcionales, como el tiempo de respuesta o la eficiencia energética, que dependen en gran medida del despliegue de los componentes de la aplicación en los nodos de la infraestructura. En este contexto, se necesitan nuevas arquitecturas de orquestación para gestionar tanto las infraestructuras complejas como los requisitos no funcionales de las aplicaciones.Para hacer frente a estos retos se propone una novedosa arquitectura de orquestación centrada en las aplicaciones (ACOA : Application-Centric Orchestration Architecture) orientada al continuo edge-cloud. Esta arquitectura aprovecha el uso de múltiples planificadores para mejorar el rendimiento de la orquestación y proporcionar un algoritmo de planificación personalizado para cada aplicación. Propone un modelo de infraestructura para la caracterización de los nodos y la red, un modelo de carga de trabajo para la definición de las aplicaciones, y un conjunto de componentes de sistema interrelacionados necesarios para gestionar las tareas de orquestación. Uno de estos componentes implementa SWIM-NSM, un nuevo protocolo de monitorización de la red necesario para la gestión de la calidad de servicio de las aplicaciones

    Load Balancing Mechanisms in the Software Defined Networks: A Systematic and Comprehensive Review of the Literature

    Get PDF
    With the expansion of the network and increasing their users, as well as emerging new technologies, such as cloud computing and big data, managing traditional networks is difficult. Therefore, it is necessary to change the traditional network architecture. Lately, to address this issue, a notion named software-defined network (SDN) has been proposed, which makes network management more conformable. Due to limited network resources and to meet the requirements of quality of service, one of the points that must be considered is load balancing issue that serves to distribute data traffic among multiple resources in order to maximize the efficiency and reliability of network resources. Load balancing is established based on the local information of the network in the conventional network. Hence, it is not very precise. However, SDN controllers have a global view of the network and can produce more optimized load balances. Although load balancing mechanisms are important in the SDN, to the best of our knowledge, there exists no precise and systematic review or survey on investigating these issues. Hence, this paper reviews the load balancing mechanisms which have been used in the SDN systematically based on two categories, deterministic and non-deterministic. Also, this paper represents benefits and some weakness regarded of the selected load balancing algorithms and investigates the metrics of their algorithms. In addition, the important challenges of these algorithms have been reviewed, so better load balancing techniques can be applied by the researchers in the future. © 2018 IEEE

    A multi-objective particle swarm optimized fuzzy logic congestion detection and dual explicit notification mechanism for IP networks.

    Get PDF
    Thesis (M.Sc.Eng.)-University of KwaZulu-Natal, 2006.The Internet has experienced a tremendous growth over the past two decades and with that growth have come severe congestion problems. Research efforts to alleviate the congestion problem can broadly be classified into three groups: Cl) Router based congestion detection; (2) Generation and transmission of congestion notification signal to the traffic sources; (3) End-to-end algorithms which control the flow of traffic between the end hosts. This dissertation has largely addressed the first two groups which are basically router initiated. Router based congestion detection mechanisms, commonly known as Active Queue Management (AQM), can be classified into two groups: conventional mathematical analytical techniques and fuzzy logic based techniques. Research has shown that fuzzy logic techniques are more effective and robust compared to the conventional techniques because they do not rely on the availability of a precise mathematical model of Internet. They use linguistic knowledge and are, therefore, better placed to handle the complexities associated with the non-linearity and dynamics of the Internet. In spite of all these developments, there still exists ample room for improvement because, practically, there has been a slow deployment of AQM mechanisms. In the first part of this dissertation, we study the major AQM schemes in both the conventional and the fuzzy logic domain in order to uncover the problems that have hampered their deployment in practical implementations. Based on the findings from this study, we model the Internet congestion problem as a multi-objective problem. We propose a Fuzzy Logic Congestion Detection (FLCD) which synergistically combines the good characteristics of the fuzzy approaches with those of the conventional approaches. We design the membership functions (MFs) of the FLCD algorithm automatically by using Multi-objective Particle Swarm Optimization (MOPSO), a population based stochastic optimization algorithm. This enables the FLCD algorithm to achieve optimal performance on all the major objectives of Internet congestion control. The FLCD algorithm is compared with the basic Fuzzy Logic AQM and the Random Explicit Marking (REM) algorithms on a best effort network. Simulation results show that the FLCD algorithm provides high link utilization whilst maintaining lower jitter and packet loss. It also exhibits higher fairness and stability compared to its basic variant and REM. We extend this concept to Proportional Differentiated Services network environment where the FLCD algorithm outperforms the traditional Weighted RED algorithm. We also propose self learning and organization structures which enable the FLCD algorithm to achieve a more stable queue, lower packet losses and UDP traffic delay in dynamic traffic environments on both wired and wireless networks. In the second part of this dissertation, we present the congestion notification mechanisms which have been proposed for wired and satellite networks. We propose an FLCD based dual explicit congestion notification algorithm which combines the merits of the Explicit Congestion Notification (ECN) and the Backward Explicit Congestion Notification (BECN) mechanisms. In this proposal, the ECN mechanism is invoked based on the packet marking probability while the BECN mechanism is invoked based on the BECN parameter which helps to ensure that BECN is invoked only when congestion is severe. Motivated by the fact that TCP reacts to tbe congestion notification signal only once during a round trip time (RTT), we propose an RTT based BECN decay function. This reduces the invocation of the BECN mechanism and resultantly the generation of reverse traffic during an RTT. Compared to the traditional explicit notification mechanisms, simulation results show that the new approach exhibits lower packet loss rates and higher queue stability on wired networks. It also exhibits lower packet loss rates, higher good-put and link utilization on satellite networks. We also observe that the BECN decay function reduces reverse traffic significantly on both wired and satellite networks while ensuring that performance remains virtually the same as in the algorithm without BECN traffic reduction.Print copy complete; page numbering of 105-108 incorrect

    Application of learning algorithms to traffic management in integrated services networks.

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre-DSC:DXN027131 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Real-Time Guarantees in Routerless Networks-on-Chip

    Get PDF
    This paper considers the use of routerless networks-on-chip as an alternative on-chip interconnect for multiprocessor systems requiring hard real-time guarantees for inter-processor communication. It presents a novel analytical framework that can provide latency upper bounds to real-time packet flows sent over routerless networks-on-chip, and it uses that framework to evaluate the ability of such networks to provide real-time guarantees. Extensive comparative analysis is provided, considering different architectures for routerless networks and a state-of-the-art wormhole network based on priority-preemptive routers as a baseline
    corecore