
Department of Automatic Control and Systems Engineering

ACOA: application quality of
service aware orchestration
architecture for the Edge to

Cloud continuum

Adrián Orive Oneca

Supervisors:

Mª Isabel Sarachaga González

Aitor Agirre Andueza

February, 2023

(c)2023 ADRIAN ORIVE ONECA

Acknowledgements

These lines are dedicated to all those people who have made pos-
sible the completion of this thesis.

First of all, I would like to thank my thesis supervisors: Marga
Marcos, who started this journey with me and provided valuable
experience, Aitor Agirre, for his practical and down-to-earth ap-
proach, and Isabel Sarachaga, who joined halfway through but was
essential for this outcome.

I would also like to thank all my colleagues from Ikerlan, my
experience there has left memories that I will remember with joy.
Especially to all the other PhD students, without their support it
would have been much more difficult to overcome the gray days.

Finally, to my family and friends, who have been a fundamental
pillar in overcoming all the obstacles that have appeared along the
way.

From the bottom of my heart, thank you very much.

i

Abstract

Edge to Cloud continuum provides an infrastructure of heteroge-
neous nodes to execute distributed applications. The quality of
service of these applications is tied to multiple non-functional re-
quirements, such as response time or energy efficiency, which highly
depends on the actual deployment (mapping) of the application
components into the infrastructure nodes. In this context, new
orchestration architectures are needed to manage both complex
infrastructures and application non-functional requirements.

A novel Application-Centric Orchestration Architecture oriented
to the Edge to Cloud continuum is proposed to address these chal-
lenges. This architecture takes advantage of multiple schedulers
in order to improve the scheduling throughput and to provide a
finer-tuned scheduling algorithm for each application. It proposes
an infrastructure model used for node characterization, a workload
model for application definition, and a set of interrelated system
components needed to handle the orchestration tasks.

One of these system components implements a new protocol to
monitor the network state. Latency, jitter, and packet-loss ratio
measurements are obtained, focusing on having a minimal impact
in both nodes and the network itself. These measurements are con-

iii

sumed by the scheduling algorithms to manage application quality
of service requirements.

Several tests have been performed to validate the architecture.
On the one hand, parts of the architecture have been tested in iso-
lation, such as the network monitoring protocol and the increased
throughput of the multiple schedulers approach. On the other
hand, a use case with two different applications from the railway
domain has been used to assess the suitability of this architecture
for applications with non-functional requirements. Furthermore, a
theoretical analysis of the used scheduling algorithm has also per-
formed and compared with the experimental results from the use
case.

iv

Index

1 Introduction 1
1.1 Motivation . 3
1.2 Objectives . 8
1.3 Layout . 9

2 Network state monitoring 13
2.1 Introduction . 15
2.2 Network state characterization 15
2.3 Requirement identification 17
2.4 Related work . 18
2.5 Network state monitoring protocol 23

2.5.1 SWIM protocol viability assessment 24
2.5.2 Network State Monitoring mechanism 28
2.5.3 Implementation of SWIM-NSM 32
2.5.4 Assessment of SWIM-NSM 35

2.6 Conclusions . 38

3 Application-Centric Orchestration Architecture 41
3.1 Introduction . 43
3.2 Requirement identification 44
3.3 Scheduling schemes 47

vii

Index

3.3.1 Monolithic scheme 48
3.3.2 Partitioned scheme 49
3.3.3 Two-level scheme 51
3.3.4 Shared state scheme 53
3.3.5 Distributed scheme 54
3.3.6 Comparison of scheduling schemes 55

3.4 Related work . 56
3.5 Application-Centric Orchestration Architecture . . 60

3.5.1 Infrastructure model 62
3.5.2 Workload model 64
3.5.3 Architecture Components 66

3.6 Conclusions . 75

4 Implementation of ACOA 79
4.1 Introduction . 81
4.2 State of the technology 81

4.2.1 Kubernetes 83
4.2.2 Docker Swarm 90
4.2.3 Kubernetes vs Docker Swarm 94

4.3 ACOA implementation over Kubernetes 97
4.3.1 Extended Kubernetes infrastructure model . 97
4.3.2 Extended Kubernetes workload model . . . 98
4.3.3 Extended Kubernetes architecture 103

4.4 Conclusion . 107

5 ACOA assessment 111
5.1 Introduction . 113
5.2 Shared-state scheme validation 113
5.3 Railway use case 115

5.3.1 Infrastructure description 116

viii

Index

5.3.2 Workload characterization 119
5.3.3 Deployment evaluation 132

5.4 Theoretical bounds for e2e response time scores . . 137
5.5 Conclusions . 141

6 Conclusions and future lines 145
6.1 Conclusions . 147
6.2 Future lines . 149

A SWIM-NSM wire protocol 153
A.1 Introduction . 154
A.2 Header . 154

A.2.1 Version block 154
A.2.2 Additional blocks 155

A.3 Detection message 155
A.3.1 Common detection message blocks 156
A.3.2 Ping detection message 157
A.3.3 Ping request detection message 158
A.3.4 Ack detection message 160
A.3.5 Forward ack detection message 161

A.4 Dissemination messages 162
A.4.1 Common dissemination message blocks . . . 162
A.4.2 Alive dissemination message 164
A.4.3 Suspect dissemination message 166
A.4.4 Confirm dissemination message 168

References 173

Glossary 183

ix

List of Figures

1.1 Fog/Edge layers different representations. 4
1.2 IoT domains. 6

2.1 SWIM-NSM ping interaction. 31
2.2 SWIM-NSM ping request interaction. 32
2.3 Number of messages required by SWIM-NSM. 37

3.1 Monolithic scheduling scheme. 48
3.2 Partitioned scheduling scheme. 50
3.3 Two-level scheduling scheme. 52
3.4 Shared-state scheduling scheme. 53
3.5 Distributed scheduling scheme. 55
3.6 Infrastructure model. 63
3.7 Workload model. 64
3.8 ACOA architecture. 67
3.9 ACOA data flow. 68
3.10 Management of application schedulers. 71
3.11 Management of application components. 74

4.1 Kubernetes Replica Set, Deployment and Daemon Set. 84
4.2 Kubernetes components. 86
4.3 Kubernetes HA setup components. 87
4.4 Docker Swarm components. 91

xi

List of Figures

4.5 Docker Swarm HA setup components. 93
4.6 ACOA abstractions. 98
4.7 UML component diagram of ACOA architecture over

K8s. 106

5.1 Deployment time depending on the number of schedulers.115
5.2 Smoke monitoring application components. 121
5.3 Speed profiling application components. 127
5.4 Smoke monitoring application best-case deployment. . 136
5.5 Smoke monitoring application worst-case deployment. . 136
5.6 Speed profiling application best case deployment. . . . 137
5.7 Speed profiling application worst case deployment. . . 137
5.8 Theoretical worst-case score. 140

xii

List of Tables

2.1 Network state monitoring methods metrics. 22
2.2 Network state monitoring methods comparison. 22
2.3 Raspberry Pi 3 Model B characteristics. 35

3.1 Scheduler schemes requirement fulfillment. 56
3.2 Identified requirements fulfillment by related work. . . 61
3.3 ACOA requirement fulfillment. 76

4.1 Kubernetes and Docker Swarm requirement fulfillment. 96
4.2 Kubernetes extended components for ACOA. 104

5.1 Collisions during component deployment. 115
5.2 Emulated railway infrastructure. 118
5.3 Train node labels. 118
5.4 Network metric bounds. 120
5.5 Smoke monitoring deployment nodes selection. 134
5.6 Speed profiling deployment nodes selection. 135

A.1 Maximum major and minor version values per block size.155
A.2 Version block for v1.0. 155
A.3 Detection message header block. 156
A.4 Ping detection message header block. 157
A.5 Ping request detection message header block. 158

xiii

List of Tables

A.6 Ack detection message header block. 160
A.7 Forward ack detection message header block. 161
A.8 Dissemination message header block. 163
A.9 Variable length encoding of 1. 163
A.10 Variable length encoding of 127. 164
A.11 Variable length encoding of 128. 164
A.12 Variable length encoding of 72 057 594 037 927 936. . . 165
A.13 Alive dissemination message header block. 165
A.14 Suspect dissemination message header block. 166
A.15 Confirm dissemination message header block. 168

xiv

List of Code Snippets

4.1 Example YAML definition of an application in ACOA. 99

4.2 Example YAML definition of an application scheduler
configuration in ACOA. 100

4.3 Example YAML definition of an application compo-
nents in ACOA. 100

4.4 Example YAML definition of an application channels in
ACOA. 101

4.5 Example YAML definition of an application paths in
ACOA. 101

4.6 Example YAML definition of an application constraints
and criteria in ACOA. 103

5.1 YAML file structure for the smoke monitoring application.121

5.2 YAML file fragment for the components definition of
the smoke monitoring application. 122

5.3 YAML file fragment for the channels definition of the
smoke monitoring application. 123

5.4 YAML file fragment for the paths definition of the smoke
monitoring application. 124

5.5 YAML file fragment for the constraints definition of the
smoke monitoring application. 124

xv

List of Code Snippets

5.6 YAML file fragment for the criteria definition of the
smoke monitoring application. 125

5.7 YAML file structure for the speed profiling application. 127
5.8 YAML file fragment for the components definition of

the speed profiling application. 128
5.9 YAML file fragment for the channels definition of the

speed profiling application. 129
5.10 YAML file fragment for the paths definition of the speed

profiling application. 130
5.11 YAML file fragment for the constraints definition of the

speed profiling application. 130
5.12 YAML file fragment for the criteria definition of the

speed profiling application. 131
5.13 Pod declaration for the smoke monitoring application

measurement component. 132

xvi

CHAPTER 1
Introduction

“The first step in solving a problem is to recognize that it does exist.”

- Zig Ziglar

1

1.1. Motivation

1.1 Motivation

Computing paradigms have been swinging back and forth between
centralized and distributed computing [1]. Initially, data storage
and processing capabilities were centralized in mainframes and ac-
cessed by terminals. Personal computers did not replace main-
frames until late 1980s or early 1990s, representing the first pendu-
lum swing from centralized to distributed computing. Distribution
is enabled by the computing power and storage capacity increment
due to Moore’s law [2][3]. The underlying argument was moving
data and computing closer to the user, thus allowing the usage of
the data in a timely manner.

The opposite swing happened in the mid 2000s, centralizing
data and applications in cloud data centers. These data centers are
made of clusters of powerful devices with high aggregated comput-
ing and storage capacities. Tasks from multiple users are executed
in the same devices, allowing a higher resource utilization. The
cloud computing paradigm reduces the Total Cost of Ownership
(TCO), benefits from Economies of Scale (EoS), improves energy
efficiency and reduces maintenance costs.

Currently the next swing towards distributed computing is tak-
ing place as highlighted by technologies such as Cyber-Physical
Systems (CPSs) [4] or Wireless Sensor Networks (WSN) [5]. This
allows time-constrained or energy-aware applications benefit from
the processing, storage, and networking capabilities of distributed
computing, giving birth to new paradigms: fog and edge com-
puting. As a relevant difference with the precedent swing towards
distribution, where personal computers made mainframes obsolete,

3

1. Introduction

these new paradigms do not completely replace the cloud comput-
ing paradigm, they extend it (figure 1.1A).

Figure 1.1: Fog/Edge layers different representations.

The term fog computing comes from the analogy with cloud
computing, representing a thinner cloud closer to the physical world.
The fog layer lies between the edge and cloud layers. It provides
interconnectivity and processing capabilities. Compared to the de-
vices found in the cloud layer, fog layer devices are smaller, but
they still offer considerable computing and storage capabilities.

The term edge computing is due to the fact that this new
paradigm operates in the frontier between the physical and the
virtual worlds. It is formed by sensors and actuators that act as
CPSs, giving virtual capacities to otherwise physical objects. De-
vices in this layer are usually resource-constrained but they can be
found in high quantities.

However, the bounds between these three layers are fuzzy. A
device that belongs to a layer from the point of view of one of the

4

1.1. Motivation

applications in the system may belong to a different layer from
the point of view of another application. This is the reason why,
recently, the three layers are considered as a single Edge to Cloud
continuum, without categorizing devices explicitly into any of the
layers (figure 1.1B).

In this context, applications are realized by different compo-
nents that exchange messages among them. These components
are placed in the different devices of the system, also known as
nodes. Properly selecting where to deploy each component in or-
der to meet the application requirements is refer to as orchestrating
these applications. This process can be performed manually, but
as the number of nodes and applications in the system increases, it
becomes increasingly difficult. Orchestration tools that determine
the component deployments automatically are used instead.

Cloud environments are a perfect fit for some of the common
applications of Internet of Things (IoT) [6] such as big data storage,
historic data analysis or online monitoring. Deploying these appli-
cations require to take into consideration their CPU time, memory
usage or disk space requirements. However, the broad set of IoT
domains (figure 1.2) also imposes additional needs for some of their
applications that cannot be fully fulfilled by the cloud. Orchestrat-
ing these new applications require to factor other non-functional
requirements such as low response time, energy-awareness, or mul-
tiple working modes.

Some IoT applications need low response time. Orchestration
tools were designed for environments where all the nodes in the
cluster have similar computing power and negligible latency among
them in comparison with the user-cloud latency. Thus, network
parameters are not being considered at the scheduling algorithm

5

1. Introduction

Figure 1.2: IoT domains.

that selects the node where each component of the application is
going to be executed.

An example of an application where time reactivity (i.e., low
response time) is of high importance could be the speed profiling
algorithms that are used by trains. In order to optimize the fuel
consumption, these profilers determine the speed that each train
needs to have in each moment according to the railway conditions
(slopes, turns), the desired goals (reach the next station in a cer-
tain time window) and the state of the rest of the trains in the
surroundings. While the first two factors are mainly static, the last
one makes this application highly dynamic. Additionally, failing to
compute the updated profile in time can result in user experience
degradation, e.g., delays due to train congestion. Therefore, the
need of in time reaction within a dynamic environment arises in
some of the IoT applications.

Some other IoT applications have the need of reducing the
computing-related energy costs. In a cloud data center, the cost
associated to the different nodes is considered to be the same as
the nodes have similar hardware characteristics and the electric-
ity cost is the same. Systems with nodes in different geographical

6

1.1. Motivation

places can take advantage of night electric prices that are usually
lower. Energy efficiency is also relevant as the source is not always
the electric network; some devices may be battery-powered. Addi-
tionally other factors such as energy provenance (e.g., fossil fuels,
green or nuclear energy) may be of interest. These parameters are
not being considered in current scheduling algorithms.

Application examples that would benefit from these energy-
aware algorithms could be those that involve unmanned ground
vehicles (UGVs) powered by electric batteries. Computationally
expensive loads executed at UGVs, such as path finding or mapping
algorithms, could be offloaded to nodes connected to the electric
network. Thereby, the duration of the batteries of the UGVs would
be increased, reducing the time they need to expend charging and
increasing their uptime. However, offloading these computationally
expensive loads to cloud servers may take too much time, increasing
the time the UGV would be waiting for a response and reducing
the uptime. An increase of the uptime of each UGV directly relates
with a reduction of the amount of UGVs needed. Therefore, there
is also a need of algorithms that are not only network-aware, but
also energy-aware, in order to maximize the UGV uptime.

There are also IoT applications that have multiple working
modes. Each of these modes may impose different requirements.
Current scheduling algorithms are not able to modify their deploy-
ment strategies based on the application requirements.

An example of applications with unique needs for different work-
ing modes can be found in vertical transportation. Modern lift sys-
tems in big buildings use traffic algorithms that assign lifts to each
of the users, optimizing the energy consumed by the lifts and the
overall transit time to destination. These algorithms are consid-

7

1. Introduction

ered a premium feature and do not offer any noticeable advantage
in house buildings. However, in big buildings, these algorithms of-
fer a real advantage during high traffic peaks, but the constrained
resources of embedded lift controllers are not always enough. They
also require a timely response, thus not being addressable in the
cloud either. These scenarios raise different deployment require-
ments in each case, and therefore, modifying the scheduling and
deployment strategies in a per application basis is also needed.

The Edge to Cloud continuum takes advantage of the benefits
of cloud, fog, and edge computing, being able to fulfill the Quality
of Service (QoS) requirements of IoT applications. These applica-
tions will be deployed throughout the continuum, by selecting the
nodes that better fit their QoS requirements. The infrastructure
management in this continuum is more complex as it involves a
variety of node types with different capabilities and available re-
sources.

This new paradigm requires new orchestration architectures
that manage these complex infrastructures. They should take care
of distributing these applications among the cluster nodes accord-
ing to each application QoS requirements. End users need to be
abstracted of all this complexity, and provided with a straightfor-
ward way of defining their applications.

1.2 Objectives

In this context, the main objective of this research work is to design
and develop an orchestration architecture that enables the runtime
management of distributed containerized applications running on
the Edge to Cloud continuum. This architecture should consider

8

1.3. Layout

the QoS characterization of the applications in order to dynami-
cally reconfigure the deployment of their components over the clus-
terized infrastructure nodes. To achieve this main objective, some
partial objectives have been identified:

1. Propose mechanisms to customize scheduling and deploy-
ment strategies based on non-functional requirements of ap-
plications.

2. Explore the viability of distributed or hybrid scheduling al-
gorithms as an alternative to centralized ones in order to get
rid of bottlenecks that hinder scalability.

3. Propose mechanisms to monitor network status. The network
state will serve as an input for the dynamic scheduling and
deployment algorithms in order to guarantee non-functional
requirements.

1.3 Layout

The document has been structured in a total of six chapters includ-
ing the current one. The layout used in the rest of the chapters is
as follows.

Since the application QoS is affected by the state of the net-
work, the second chapter focuses on network state monitoring. The
properties that need to be measured are defined and the relevant
requirements in the Edge to Cloud continuum context are identi-
fied. Current monitoring approaches are evaluated before present-
ing an alternative protocol that better addresses the requirements

9

1. Introduction

imposed by the Edge to Cloud continuum, as well as its implemen-
tation and assessment.

This network state monitoring protocol is included in ACOA
(Application-Centric Orchestration Architecture), that is presented
in chapter three. First, the requirements for an orchestration ar-
chitecture oriented towards the Edge to Cloud continuum are iden-
tified. These requirements are used to evaluate different schedul-
ing schemes and related works to assess their suitability for this
context. Finally, a novel orchestration architecture is presented
to address all these requirements. ACOA’s design includes an in-
frastructure model to characterize the nodes, a workload model to
define the applications that will be executed, and a set of system
components required to implement such an architecture.

The implementation of ACOA is detailed in the fourth chapter.
The state of the technology is analyzed in order to take advantage
of already existing tools. One of these tools has been selected to
implement the new Edge to Cloud orchestration architecture.

The assessment of ACOA is presented in chapter five. First, the
suitability of the shared-state schema is evaluated regarding the
scalability improvement. Second, a use case in the railway domain
with two different applications allows assessing ACOA’s suitability
to satisfy their QoS requirements. Third, a theoretical analysis of
the response time is performed to measure the influence of different
application and infrastructure properties, and it is compared with
the previous results.

The sixth chapter highlights the main contributions of this work
and outlines some potential future research lines.

10

CHAPTER 2
Network state monitoring

“Make it simple, but significant.”

- Don Draper

13

2.1. Introduction

2.1 Introduction

The network state among all the nodes that constitute an Edge to
Cloud infrastructure directly impacts the QoS of the applications
running on them. Taking this state into account when orches-
trating where each component should be executed allows selecting
better suited nodes. Therefore, the applications performance is
improved based on their QoS needs.

The state of communication networks varies over time. Mea-
surements taken an hour ago do not properly characterize the cur-
rent state of the network. Therefore, this state needs to be contin-
uously monitored.

The current chapter defines the different metrics that charac-
terize the state of the network and identifies the requirements of
a network monitoring system targeted at Edge to Cloud archi-
tectures. Next, the fulfillment of current monitoring approaches
is checked against these metrics and requirements. Finally, the
proposed network state monitoring approach is designed, imple-
mented, and assessed.

2.2 Network state characterization

A communication network connects all the nodes in the cluster to
enable them to exchange messages. The connection between any
two nodes in the network is known as “link”. In order to monitor
the state of a network, several metrics need to be considered for
each link.

The organization responsible for the standardization of the In-
ternet is called IETF (Internet Engineering Task Force) [7]. "The

15

2. Network state monitoring

mission of the IETF is to produce high quality, relevant technical
and engineering documents that influence the way people design,
use, and manage the Internet in such a way as to make the In-
ternet work better" [8]. Some of these documents formally define
the main properties of a link: latency, jitter, packet-loss rate, and
bandwidth.

• The latency is defined as the time needed for a packet to
travel from a source node to a destination node. It measures
the delay incurred in sending a message from one node to
another. It was first defined in RFC 2679 [9], which was
later obsoleted by RFC 7679 [10].

• The jitter represents the variability of the latency between
different packet transmissions. It provides a measure of the
stability of the link. It is defined in RFC 3393 [11].

• The packet-loss rate measures the amount of unsuccessful
packet transmissions between two nodes. It reflects the relia-
bility of the link. It was first defined in RFC 2680 [12], which
was later obsoleted by RFC 7680 [13].

• The bandwidth represents the amount of data that can be
transmitted per time unit. It provides a measure of the ca-
pacity of a link. It is defined in RFC 5136 [14].

These four properties characterize the state between any pair of
nodes. The state of the whole set of links constitutes the network
state, and it needs to be monitored.

16

2.3. Requirement identification

2.3 Requirement identification

Monitoring network properties in the context of an Edge to Cloud
orchestration architecture raises some important requirements that
need to be fulfilled.

The main goal of an Edge to Cloud architecture is to run the
user applications in a distributed fashion. Monitoring the net-
work state is a system process, and accordingly, it cannot hoard
too many resources. This applies to both the CPU and memory
resources of the nodes as well as the network resources.

This problem is even more relevant for clusters with a vast
number of nodes, as the ones that can be found in the Edge to
Cloud continuum context. The number of links (L) has a quadratic
relation (2.1) with the number of nodes in the cluster (N).

L = f(N) = 0 + 1 + 2 + ...+ (N − 1) =
N−1∑
i=0

i =
N2 −N

2
(2.1)

Additionally, these links are not limited to a local network, they
can span multiple networks with several routers. As some of these
routers are not owned by the same company, the needed solution
cannot require modifying their behavior.

In this context, the following requirements for Edge to Cloud
continuum network state monitoring can be extracted:

• The CPU time required should be low, in order to leave as
much CPU time available to the execution of the user appli-
cations.

17

2. Network state monitoring

• The number and size of the exchanged messages should be
small so that they do not interfere with the foreground pro-
cesses.

• Scalability is also a major concern, due to the quadratic rela-
tion between the number of links and nodes. The measuring
tools should comply with the above two requirements even
for a vast number of nodes.

• Only nodes owned by the architecture can be modified, as
the routers may not be owned by the same company.

Existing monitoring approaches need to fulfill these require-
ments in order to be a good fit for the Edge to Cloud continuum.

2.4 Related work

The most basic method to obtain network metrics, which is used
as a reference for the following ones, is to use a heartbeat-based
protocol with acknowledgment [15]. Latency measurements can be
obtained by measuring the time elapsed between the sent message
and the received response. Jitter can be easily computed from the
latency measurements. Packet-lose rate can also be calculated by
tracking the amount of successful and failed messages. Bandwidth,
however, cannot be measured with this method.

Heartbeat-based protocol requires a low amount of CPU time
since the involved math is simple. It is very lightweight as nodes
do not require to exchange data, and thus, the size of the messages
is basically the overhead of the used transport protocol. Regarding

18

2.4. Related work

scalability, the number of messages exchanged every period grows
quadratically with the number of nodes, which is not desired.

In order to improve the scalability, several approaches have been
followed in the related work. They can be categorized in active or
passive methods. Active methods inject new messages to the net-
work in order to obtain the measurements, while passive methods
use the existing packets of the network.

In [16], the authors propose a centralized network measuring
method. Each node in the cluster reports timestamps and message
sizes aggregated per flow to a centralized node. A flow is defined
as the messages of a specific protocol exchanged from a certain
endpoint (address and port) to a different one. These timestamps
and message sizes are used to compute latency, packet-lose rate,
and consumed bandwidth in a central processing unit. It must
be noted that the consumed bandwidth only allows establishing a
lower bound for the link bandwidth. Capturing timestamps and
message sizes is done in a passive way, not requiring additional
packets to be sent. However, the transmission of this data to the
centralized processing unit requires new packets. The size of these
messages is small, but the amount is directly proportional to the
load of the network. In order to reduce the impact, the authors pro-
vide a deterministic sampling mechanism that filters which packets
should be reported to the centralized processing unit.

A different approach is taken in [17]. The authors propose a
network monitoring design that extends NetQuest, a framework
for inferring the network state based on measurements on a subset
of the available links. They use it to obtain latency and packet-
lose metrics. Individual metrics are obtained in an active manner,
and sent to a central node to infer the metrics of the rest of the

19

2. Network state monitoring

links. The framework requires knowledge of the topology of the
network, and uses a Bayesian algorithm to solve a NP-Complete
problem in order to select the most adequate paths to measure.
Additionally, their proposed modification performs a 20-minute-
long process on each new node that is later used to restrict how
many paths can start in that node. The node and network resources
used by this approach are small. However, all the inferring is done
in a centralized node impacting scalability, and a 20-minute-long
warm up plus solving an NP-Complete problem is required for each
node addition.

A Network Bandwidth Predictor (NBP) is developed in [18].
The authors propose a neural network-based predictor for the band-
width that relies on continuous active measurements of the through-
put of each link. The throughput is measured by sending a pair
of messages in a periodic fashion. A first small message is used to
measure the latency between the nodes and a second large message
measures the throughput. The size of the network is not consid-
ered, and no method is provided to enhance the scalability.

A segmented approach is followed in [19]. The links between
all nodes in the system are split into segments considering the net-
work switches. The measurement mechanism is deployed in all
the switches that are part of the network and introduce times-
tamps into existing traffic packets. These timestamps are used to
compute aggregated latency, jitter, and packet-loss rates for each
segment. Further investigation in [20] allowed to estimate these
network properties in a per-flow basis instead of aggregated per seg-
ment. Unlike the previous approaches, in both cases the switches
that conform the network need to be modified; therefore, they are
not a good fit for the Edge to Cloud continuum where the vast ma-

20

2.4. Related work

jority of the switches are not property of the company interested
in the network measurements.

A new measuring architecture called MAPLE (Measurement
Architecture for Packet LatEncies) is proposed by the same au-
thors in [21]. It provides a finer-grained measuring mechanism
that stores latencies per packet instead of per-segment or per-flow
basis. It also provides a querying mechanism so that nodes can ob-
tain the network state metrics that are being stored in the switches.
However, MAPLE still requires the switches of the network to be
modified to implement the measuring mechanism, which will usu-
ally not be doable in the target scenarios,

Table 2.1 shows which metrics can be obtained with each of the
discussed methods. As it can be observed, only the last presented
approach is able to measure the bandwidth. Large messages need
to be sent for every pair of nodes which makes this method very
intrusive.

Table 2.2 shows the behavior of each of the discussed methods
related to the requirements highlighted in section 2.3: low CPU
time, lightweight messages, scalability and using only owned nodes.
Two values are provided for [17], the left one corresponds to each
of the nodes, and the right one to the centralized inferring process.

The presented approaches do not fulfill the identified require-
ments. Measuring the bandwidth in a lightweight fashion is still
an unresolved challenge. But even if only considering the other
three properties, the scalability and the lightweight-ness need to
be tackled. Furthermore, the simplest approach, heartbeats, is one
of the most complying of the listed approaches.

21

2.
N

et
w

o
r
k

stat
e

m
o
n
it

o
r
in

g

Table 2.1: Network state monitoring methods metrics.

Monitoring Metric
Methods Latency Jitter Packet-lose rate Bandwidth

Heartbeat [15] 3 3 3 7

Serral, Cabellos, and Domingo [16] 3 7 3 7

Song and Yalagandula [17] 3 7 3 7

Eswaradass, Sun, and Wu [18] 3 7 7 3

Kompella et al. [19] 3 3 3 7

Lee, Duffield, and Kompella [20] 3 3 3 7

Lee, Duffield, and Kompella [21] 3 3 3 7

Table 2.2: Network state monitoring methods comparison.

Monitoring Methods Low CPU time Lightweight Scalable Owned nodes
Heartbeat [15] 3 3 7 3

Serral, Cabellos, and Domingo [16] 3 3 7 3

Song and Yalagandula [17] 3/ 7 7 3/ 7 3

Eswaradass, Sun, and Wu [18] 3 7 7 3

Kompella et al. [19] 3 3 7 7

Lee, Duffield, and Kompella [20] 3 3 7 7

Lee, Duffield, and Kompella [21] 3 3 7 7

22

2.5. Network state monitoring protocol

2.5 Network state monitoring protocol

The presented related work approach towards scalability relies on
reducing the amount of network state measurements by inferring
some of these metrics from a smaller sample in a centralized unit.
This approach presents two main drawbacks: precision and cen-
tralization.

Inferring metrics will not yield results as precise as measuring
them. This issue has even more importance in Edge to Cloud
scenarios, where the network connections are very heterogeneous,
and therefore, it is harder to infer an accurate value for the network
properties of each link.

The centralized inferring approach allows increasing the scala-
bility by reducing the number of measurements needed. However,
the load imposed to this centralized node will increase as the num-
ber of nodes, and consequently links, increases.

Since Edge to Cloud scenarios are expected to support architec-
tures with a high number of nodes, a distributed approach may fit
this paradigm better. In distributed processing systems, detecting
the potential failures of the cluster nodes is of vital importance, as
the tasks that were being performed by these failing nodes need to
be handled by other working nodes.

This section presents a distributed network state monitoring
approach targeted at the Edge to Cloud continuum that focuses
on the aforementioned requirements: low CPU time, lightweight
messages, scalability and using only owned nodes. It is based on
the scalability approach followed in group membership protocols,
whose goal is to maintain an up-to-date list of the properly working

23

2. Network state monitoring

nodes in the cluster, by detecting node failures and removing them
from the list.

Group membership and network state monitoring protocols ful-
fill two different tasks. For both cases, the most basic protocol relies
on heartbeats, which has been used in group membership field for
over 35 years [22]. However, the approach followed to improve the
scalability in the group membership field differs. It reduces the
amount of network load by only targeting one node at each period
instead of all of them. This approach can be used to provide a
better scalability for Edge to Cloud network state monitoring.

This section describes a scalable group membership protocol,
and compares it to heartbeat-based ones. This protocol is then
extended in order to provide network state monitoring mechanisms.
A library implementing this protocol is developed and its viability
is assessed.

2.5.1 SWIM protocol viability assessment

SWIM stands for Scalable Weakly-consistent Infection-style pro-
cess group Membership protocol [23]. It was designed to solve the
scalability issues that heartbeat-based group membership protocols
have when the number of nodes grows significantly.

The SWIM protocol is split into two separate mechanisms1:
failure detection and dissemination. The first one oversees other
nodes in order to detect when they are no longer available and
modify its internal list accordingly. The second one propagates

1The authors originally call both of these parts components. In this docu-
ment, the term mechanism will be used instead to avoid confusion with appli-
cation components.

24

2.5. Network state monitoring protocol

these internal list state changes in an infectious style so that all
nodes in the group are informed in logarithmic time.

The failure detection mechanism checks the state of a node by
sending a ping message. An acknowledgement message is expected
before a configured deadline. If this deadline is not met, the node
will try to perform an indirect check, by requesting several nodes to
perform a check on its behalf with a ping request message. They
will send a normal ping message to the specified node and will
only acknowledge the ping request if they are able to successfully
receive an acknowledgement message from the target node. These
requested ping messages will not trigger additional ping request
delegation nor will change the state of the internal list of the re-
quested node.

When neither the original node nor the delegated nodes are
able to successfully ping the target node, it will not be immedi-
ately removed from the group membership list. Instead, it will be
marked as suspicious. If the suspected node is not able to prove
that it is alive after a certain number of intervals, the suspicion
will be confirmed, and the node will be removed from the group
membership list.

Three state changes can be performed to the internal group
membership lists: marked as alive, marked as suspicious and con-
firmed the suspicion, i.e., marked as dead. The dissemination
mechanism is in charge of transmitting these state changes to the
rest of the nodes. In order to do so, all three above-described mes-
sages (ping, ping request and acknowledgement) will contain state
change information attached. Each state change will be transmit-
ted several times. State changes received from other nodes will also

25

2. Network state monitoring

be transmitted, achieving the infectious style spread that grants the
logarithmic propagation time.

As several state changes related to the same node can be spread
simultaneously, a priority needs to be defined. State changes in-
clude an incarnation number and those with higher values take
priority. If both state changes have the same incarnation number,
marking as dead takes priority over both other types, and marking
as suspicious takes priority over marking as alive. Therefore, the
incarnation number only needs to be increased when a node wants
to claim that a suspicion made by another node was incorrect.

The target node at each interval is extracted from a queue.
This queue is initially filled with some members, known as seeds.
Once this queue is empty, it is populated with all the nodes in the
group membership list in a random order. This ensures that each
time the queue is fully consumed, all nodes have been pinged, i.e.,
it guarantees that they are all checked in a time-bounded fashion
despite being in a pseudo-random order.

There are several parameters that need to be adjusted to each
use case: the interval, the ping acknowledge deadline, the ping
request acknowledge deadline, the number of nodes to delegate
the ping in case of direct ping failure, the number of times a state
change is gossiped by each node, and the number of intervals before
a node is removed from the group after it is marked as suspicious.

In order to evaluate the scalability, the number of interactions
between nodes and its relationship with the total number of nodes
needs to be considered. In heartbeat-based protocols, each node in-
teracts with every node in the cluster every period (2.2). Mheartbeat

26

2.5. Network state monitoring protocol

denotes the number of exchanged messages in a heartbeat-based
protocol, and N the number of nodes in the cluster.

Mheartbeat(N) = N(N − 1) = N2 −N −→ O(N2) (2.2)

SWIM reduces the number of node interactions to one per in-
terval. These interactions may require multiple messages but the
relationship with the number of nodes is linear as it can be seen
in equation (2.3). MSWIM

max denotes the maximum number of mes-
sages exchanged in SWIM, and k a single-digit integer constant
that depends on the parameterization of the protocol.

MSWIM
max (N) = kN −→ O(N) (2.3)

The main drawback of the reduction of interactions is the in-
crement in failure propagation time. It measures how long it takes
for the whole cluster to detect a node failure. In heartbeat-based
protocol where nodes interact with every node in the cluster, fail-
ures are detected in constant time as shown in equation (2.4), where
theartbeat is the propagation time, T the heartbeat period, and d the
number of periods that nodes will wait to prevent false positives.

theartbeat(N) = dT −→ O(0) (2.4)

As demonstrated by the authors in [23], the infection-style prop-
agation mechanism of SWIM achieves a logarithmic failure propa-
gation time relationship with the number of nodes. This relation-
ship is shown in equation (2.5), where tSWIM is the propagation

27

2. Network state monitoring

time, and λ is a parameter related to the number of times each
state change needs to be gossiped to the rest of the nodes.

tSWIM(N) = λ logN −→ O(logN) (2.5)

SWIM achieves a better scalability regarding the number of
exchanged messages by sacrificing propagation time compared to
heartbeat-based protocols. The propagation time is not as relevant
for network monitoring as it is for group membership. Therefore,
the improvement offered by SWIM compared to heartbeat proto-
cols is even more relevant in the desired context.

2.5.2 Network State Monitoring mechanism

SWIM fulfills the low resource utilization, lightweight messages,
and scalability requirements; but it does not offer network measur-
ing capabilities. However, an extended protocol called SWIM-NSM
(Network State Monitoring) has been designed to allow capturing
network metrics for every link [24].

While SWIM provides the failure detector and dissemination
mechanisms, SWIM-NSM extends these with a third monitoring
mechanism that is in charge of network state monitoring. This
mechanism performs latency, jitter, and packet-loss ratio calcula-
tions. Bandwidth is not measured by SWIM-NSM, as it would
require more intrusive measuring techniques.

Directly computing the latency of two nodes requires know-
ing the time a message was sent and the time it was received in
the same time reference system. As each of these timestamps are
measured in different nodes, a single time reference cannot be guar-

28

2.5. Network state monitoring protocol

anteed. Therefore, computing the latency would require knowing
the difference between both time systems (δt), as seen in equation
(2.6). t is used to refer to the sending and t′ to the receiving node’s
time references. Hence, it would require a time synchronization
mechanism.

latency = trec − tsent = t′rec − tsent + δt (2.6)

An alternative solution is to approximate the latency as half
of the round-trip time (RTT). Despite being in two different time
system references, δt can be simplified as shown in equation (2.7).
D is the time elapsed between the ping reception in the ping re-
ceiving node until the acknowledge was sent, and it is specially
important for ping request delegation as another ping is performed
before the corresponding acknowledgement message is sent. This
duration needs to be provided to the ping sending node to calculate
the RTT.

RTT = tpingrec − t
ping
sent + tackrec − tacksent

= t′pingrec − t
ping
sent + δt + tackrec − t′acksent − δt

= tackrec − t
ping
sent + t′pingrec − t′acksent

= tackrec − t
ping
sent +D ≈ 2 ∗ latency (2.7)

In order to monitor the network state metrics described above,
each node keeps track of the results of every ping and ping request
interactions with every other node during the time window of inter-
est. This includes if the message exchange succeeded or failed, and
in case it succeeded, the latency of that transmission. The failure

29

2. Network state monitoring

detection mechanism of the SWIM protocol needs to be modified
to enable the monitoring mechanism.

In SWIM, when a ping request message is sent, the receiving
node only answer with an acknowledge message in case it was able
to successfully ping the target node. This does not allow distin-
guishing which node failed, the one receiving the ping request or
the target of that ping request. However, SWIM-NSM tracks which
messages failed, so it needs to differentiate those two cases.

For this purpose, a fourth message type is introduced: the for-
ward acknowledge. This new message differs from the acknowledge
message by a single additional flag. In SWIM-NSM, when a node
is requested to ping a target, it will always answer with a forward
acknowledge message instead of only answering in case it could
successfully communicate with the target of the ping request. The
outcome of the requested ping is encoded in the additional flag.

Additionally, computing the RTT (as described in equation 2.7)
requires a new duration field to be added to both acknowledge and
forward acknowledge messages. Duration is encoded as a 4-byte
unsigned integer representing the number of microseconds elapsed.
The maximum value of this field is 4 294 967 295 µs, i.e., 1 h 11
min 34 s 967 ms 295 µs.

With these modifications to the failure detection mechanism,
the monitoring mechanism is able to obtain the raw metrics re-
quired to compute the latency, jitter, and packet-loss ratio metrics.

On the one hand, on a successful ping transmission between
nodes Ni and Nj (figure 2.1 A), a success state and the latency
are stored in the source node Ni. The target node Nj cannot
update any metric as the acknowledge message could have failed

30

2.5. Network state monitoring protocol

and cannot compute the RTT either way. On the other hand, on a
failed ping transmission (figure 2.1 B), node Ni will detect the lost
packet after a certain timeout, and it can therefore store a fail state.
Node Nj will not be able to update any metric, as it either failed to
receive the ping in the first instance, or its acknowledgement was
lost but it is unable to detect it.

NI NJ

ping

ack

R
T

T
 +

 D

D
NI NJ

ping

ack

Ti
m

eo
ut

D

A B

Figure 2.1: SWIM-NSM ping interaction.

Ping request and forward acknowledge message pairs also pro-
vide the opportunity to store metrics similar to ping and acknowl-
edge pairs as depicted in figure 2.2. Node Ni, after failing a ping
transaction with node Nj, requests nodes Nk1, Nk2, and Nk3. Node
Nk1 is able to ping successfully node Nj, and thus can store a suc-
cess state and a latency value. Node Nk2, however, is unable to
ping Nj and therefore only stores a fail state. Both answer the
ping request with a forward acknowledge, allowing Ni to store a
success state and a latency for each of those links. However, the
ping request transmission with node Nk3 was not successful, and
therefore a fail state is stored for this link.

31

2. Network state monitoring

NI NJ

forward ack

NK2 NK3

ping

ack

NK1

D
1

D
J

R
T

T
 +

 D
J

ping requests

D
2

forward ack

Ti
m

eo
ut

J

ping

ack

 T
im

eo
ut

K
3

R
T

T
 +

 D
2

R
T

T
 +

 D
1

Figure 2.2: SWIM-NSM ping request interaction.

With these raw latency, success state and fail state measure-
ments; the latency, jitter, and packet-loss rate properties for every
link can be calculated.

The full specification of the wire protocol for SWIM-NSM v1.0
is detailed in appendix A.

2.5.3 Implementation of SWIM-NSM

A SWIM-NSM protocol library over TCP has been developed in
Go. This library creates the background processes that implement
the protocol (SWIM-NSM daemons). They are deployed in every
node in the cluster. Each of these daemons requests confirmations

32

2.5. Network state monitoring protocol

periodically from the rest of them and it also answers the confir-
mation requests from other daemons.

Raw latency, success state and fail state measurements are
stored for a moving time window. The raw measurements during
the validity time window are used to compute the latency, jitter,
and packet-loss ratio of each link.

When creating a daemon using this library, the means to pro-
vide the input and obtain the outputs need to be adapted for each
use case. As an input, it requires the seeds to start building the
internal list. A full list of members is not required as the gossip
mechanism will be able to build this full list from just some start-
ing seeds. The outputs are the latency, jitter, and packet-loss ratio
measurements for every link. For example, the daemon used for
this protocol assessment (following section) is executed from the
console, so the input is provided as a terminal argument and the
output is printed to the console.

Additionally, the library provides several configuration param-
eters for the daemons in order to facilitate a better adaptation to
every network. The most relevant parameters are the following
ones:

• Period: interval between the daemon ping messages. On the
one hand, a higher period imposes a lower load to the net-
work. On the other hand, a lower period achieves a shorter
failure detection and propagation time, and increases the net-
work state monitoring sample size.

33

2. Network state monitoring

• Ping timeout: deadline for direct pings. A higher timeout
slightly delays the failure detection, but it reduces the num-
ber of false positives in busy networks.

• Ping request timeout: deadline for ping request. As a ping
interaction has to be made, a sensible value is double or triple
the ping timeout.

• Number of ping requests: number of nodes requested for del-
egated pings. A value of 3 was considered as optimal by [25]
for thousands of nodes. Lower values can be used for smaller
groups. A function based on the number of nodes can be
used.

• Gossip transmission times: number of times each state change
is transmitted by each node. A higher number increases the
mean size of each message, but it provides a more stable
start for the dissemination messages. A function based on
the number of nodes can be used.

• Suspicion confirmation periods: number of intervals that a
node will wait after marking another node as suspicious be-
fore it is finally removed from the group. A higher value
delays failure detection time, but it reduces false positives.
A function based on the number of nodes can be used.

• Metrics buffer characteristics: both the size and the valid
time window for the buffers that store network state metrics.
Metrics are automatically discarded after the time window
has elapsed. If a new measurement cannot be stored because
the buffer is full, the oldest measurement will be discarded.

34

2.5. Network state monitoring protocol

2.5.4 Assessment of SWIM-NSM

The protocol was assessed on a testbed of 9 Raspberry Pi 3 Model B
(table 2.3), connected through a high-latency office Wi-Fi network.
The conditions of the network differ from the ideal ones. This
choice was made on purpose to assess the behavior of the protocol
in a more hostile environment.

Table 2.3: Raspberry Pi 3 Model B characteristics.

Property Value
Processor Quad Core ARM Cortex A35
Processor speed 1.2 GHz
RAM 1 GB
OS Raspbian (November 17)
SD card 16 GB class 10

Daemons were created with the SWIM-NSM library with a pe-
riod of 200 ms. 500 ms and 1500 ms were parameterized for the ping
timeout and ping request timeout respectively. In case of a node
being unable to ping its target, 2 additional nodes were requested
to ping it. Each gossip was transmitted 5 times by each node, and
10 periods were waited before confirming as dead a node that was
suspicious. The metrics buffers were limited to ten minutes, and
any older measurement was dropped.

The test included several forced scenarios to check the behavior
of the daemons under those circumstances. The steps below were
followed:

1. A first daemon was initiated.

2. Seven of the remaining daemons were initiated immediately
afterwards with the address of the first one.

35

2. Network state monitoring

3. The last of the daemons was delayed to verify that nodes
could join an already running group seamlessly.

4. One of the running daemons was forcefully shut down to ver-
ify that the cluster was able to recognize that this node left
the group.

5. The "failed" node was started again to verify that a node that
was removed from the cluster could join the group again.

6. The daemons were shut down after an hour.

The protocol was able to maintain an up-to-date list of the ac-
tive members in the group under all of the above circumstances.
Latency, jitter, and packet-loss rate properties were being moni-
tored successfully. The exact numeric values are not indicative of
the performance of the protocol because they are related to the
state of that network in that moment.

In order to evaluate the scalability, the number of exchanged
messages by SWIM-NSM per period is compared to heartbeat-
based protocols, both with acknowledge and without it. The exact
number of messages exchanged by SWIM-NSM depends on the
number of successful pings, therefore a lower and an upper bound
are provided, corresponding to the best and the worst-case scenar-
ios. Figure 2.3 shows these number of messages up to 300 nodes.
A zoom of the first 20 nodes is also provided, showing that even for
a small number of nodes in the cluster, SWIM-NSM requires less
messages; and this difference greatly increases with the number of
nodes. Once eleven or more nodes are part of the cluster, even the
worst-case scenario for SWIM-NSM requires less exchanged mes-
sages than a heartbeat-based protocol.

36

2.6.
C
onclusions

Figure 2.3: Number of messages required by SWIM-NSM.

37

2. Network state monitoring

2.6 Conclusions

SWIM-NSM offers a distributed, scalable, and lightweight network
state monitoring approach oriented at Edge to Cloud continuum
clusters.

The proposed protocol extends SWIM by enabling the recol-
lection of latency, and success or fail state for each link of the
network. These raw metrics can be used to compute three of the
properties that characterize a link: latency, jitter, and packet-loss
ratio. Bandwidth, the fourth property, cannot be collected with
SWIM-NSM as it would require a more intrusive probing mecha-
nism that would use more network resources.

Computing the properties from the raw metrics captured by
the protocol requires very simple operations, thus requiring very
low CPU time. A small 4-byte field was added to some of the
messages, keeping the messages as lightweight as possible. The
distributed approach of this protocol provides a scalability advan-
tage compared with the approaches studied in the related work.
The reduced number of messages exchanged (linear relationship to
the number of nodes instead of quadratic in heartbeat-based pro-
tocols) reduces the impact on the network even in Edge to Cloud
continuum scenarios with a high number of nodes. The daemons
required for SWIM-NSM only need to be deployed in the nodes
that are part of the orchestration architecture, without requiring to
affect any device that is not owned by the company. These charac-
teristics enable SWIM-NSM to fulfill all the identified requirements
for network state monitoring in the Edge to Cloud continuum.

The SWIM-NSM protocol has been assessed in a test-bed clus-
ter, properly capturing the network state metrics while nodes join

38

2.6. Conclusions

and leave the cluster seamlessly. The daemons were able to success-
fully keep an updated group membership list, while latency, jitter
and packet-loss rate properties for each link were being measured
by the network state monitoring mechanism.

39

CHAPTER 3
Application-Centric

Orchestration Architecture

“Have no fear of perfection - you will never reach it.”

- Salvador Dali

41

3.1. Introduction

3.1 Introduction

An orchestration architecture is responsible for the execution life
cycle of the application components, from their deployment to their
execution end. Therefore, the architecture needs to be aware of the
hardware resources that it has available (infrastructure model) and
the applications to be executed (workload model).

The infrastructure model characterizes the nodes that take part
in the cluster managed by the orchestration architecture. These
nodes provide the hardware resources where the applications will
be executed. The architecture needs to know, additionally to the
characteristics of these nodes, their resource usage.

The workload model defines the applications that the orchestra-
tion architecture manages. This model should describe not only the
applications and all their constraints, but also their QoS require-
ments. Furthermore, the current state of the applications execution
also needs to be stored in this model.

In order to deploy these applications in the infrastructure nodes,
several system components work together to perform all the man-
agement tasks of the orchestration architecture.

In this chapter, the set of requirements for an Edge to Cloud
continuum-oriented orchestration architecture are identified. Next,
different centralized and distributed scheduling schemes are ana-
lyzed, highlighting their main advantages and drawbacks. From
this analysis, the most appropriate scheme for a new orchestration
architecture is selected. The related work is then evaluated against
the identified requirements in order to assess their viability. Fi-
nally, ACOA (Application-Centric Orchestration Architecture) is
presented. It is a novel orchestration architecture designed for the

43

3. Application-Centric Orchestration Architecture

Edge to Cloud continuum, fulfilling the identified requirements.
The models used by ACOA to represent the infrastructure and
the workload are introduced and the components that enable the
orchestration of applications in the target scenario are described.

3.2 Requirement identification

The Edge to Cloud continuum introduces a new set of challenges.
Identifying these challenges is needed to evaluate the validity of
existing orchestration approaches for this scenario.

As the target is the Edge to Cloud continuum, the nodes that
are used to form this kind of infrastructures are very heterogeneous:
from powerful nodes in Cloud datacenters to resource-constrained
devices distributed geographically. The orchestration architecture
needs to support this infrastructure heterogeneity to take advan-
tage of the characteristics that each of these nodes offers (R1 -
Heterogeneous infrastructure).

Edge to Cloud continuum-oriented applications are generally
formed by components that are executed in the infrastructure nodes.
These components work together to perform the application tasks.
Therefore, the most common processes that need to be orchestrated
are expected to be running continuously, as opposed to batch jobs
(R2 - Long-lived components).

The diversity of the infrastructure in the Edge to Cloud con-
tinuum enables its use for multiple vertical domains: from smart
factories and logistics to smart homes and buildings. These ap-
plications have very different QoS requirements. Scheduling each

44

3.2. Requirement identification

of these applications needs to be tailored to their needs (R3 -
Scheduling customization).

All the above requirements, defining applications and compo-
nents that need to be distributed among several nodes and with
different QoS requirements, increase the complexity of the system.
This complexity needs to be abstracted from the end user. The
applications definition should be provided in a human-readable for-
mat (R4 - Ease of use).

Managing the infrastructure is also a complex task. New nodes
need to be able to join the cluster seamlessly, as well as leaving
it. The orchestration architecture should provide enough tools to
manage the whole distributed infrastructure in a simple fashion
(R5 - Infrastructure management).

Additionally, nodes need to be monitored continuously (R6 -
Infrastructure monitoring). Detecting node failures allows the
orchestration architecture to move the components that were being
executed in them to other nodes. It also allows measuring different
metrics, such as available memory or disk space, that are relevant
for scheduling.

Similarly, network metrics also need to be monitored (R7 -
Network monitoring). Applications may have QoS requirements
that rely on the network state, such as end-to-end response time or
reliability constraints. Latency between the nodes where an appli-
cation is being executed directly impacts the end-to-end response
time. The packet loss rate may also impact the reliability of an
application.

Scheduling algorithms need to take into account both node and
inter-node metrics, as they may impact the QoS of Edge to Cloud

45

3. Application-Centric Orchestration Architecture

continuum-oriented applications. This means that scheduling de-
cision can no longer be made on a per component basis, the whole
application needs to be scheduled as the relative position of compo-
nents affects the QoS of the application (R8 - QoS awareness).

The complexity of these algorithms, added to the increasing
number of nodes that these architectures need to support, makes
scalability a real concern for these orchestration architectures. Large
infrastructures and workloads should not affect the system perfor-
mance (R9 - Scalability).

All the above identified requirements can be summarized in the
following list:

1. Heterogeneous infrastructure: support Edge to Cloud
continuum infrastructures and the diversity of nodes that can
be part of them.

2. Long-lived components: support long-lived components
as the building block for Edge to Cloud continuum-oriented
applications.

3. Scheduling customization: scheduling needs to be tai-
lored to different applications from different vertical domains.

4. Ease of use: workload definition in a human-readable for-
mat.

5. Infrastructure management: nodes dynamically join/leave
the cluster.

6. Infrastructure monitoring: detect node failures and mon-
itor node resources (CPU usage, available memory, disc space,
...).

46

3.3. Scheduling schemes

7. Network monitoring: monitor network metrics (latency,
jitter, packet-loss rate).

8. QoS awareness: scheduling decisions must take into ac-
count the QoS requirements of Edge to Cloud continuum-
oriented applications.

9. Scalability: handle large infrastructure and workload with-
out considerable penalty to system performance.

3.3 Scheduling schemes

The scheduling process is one of the core orchestration architec-
ture tasks. It allocates each of the application components to an
infrastructure node where it will be executed, based on the com-
ponent specification extracted from the user-provided application
definitions.

Different scheduling algorithms can be implemented; the higher
the complexity, the longer they take to make a decision. The
scheduling process will observe the current system state, but it
may change during the time required to run the scheduling algo-
rithm. Nodes leaving the cluster or node failures may result in
a scheduling decision that assigns a component to a non-available
node. Multiple schedulers running concurrently can also make con-
flicting decisions which are denoted as scheduling collisions. These
conflicting scheduling decisions need to be processed again, despite
they happen rarely.

Different schemes have been used historically, with different de-
grees of decentralization. The following section describes them
and lists their main advantages and drawbacks. The capability of

47

3. Application-Centric Orchestration Architecture

running long-lived components (R2), taking into account applica-
tions’ QoS (R8) and the scalability (R9) that each of these schemes
presents will be evaluated, as these are the requirements that are
most directly affected by the chosen scheduling scheme.

3.3.1 Monolithic scheme

The monolithic scheme is a fully centralized approach depicted in
figure 3.1. A single scheduler process handles all the scheduling
and needs to implement all the policies supported by the system.
The components that need to be scheduled are queued and handled
sequentially.

Figure 3.1: Monolithic scheduling scheme.

The monolithic approach is the most used scheduling scheme
among both High-Performance Computing (HPC) systems and
Container Orchestration Engines (COEs). Some examples of this
approach are Borg [26], one of the first COE used internally by
Google, or Hadoop’s early version schedulers. Kubernetes [27] and
Docker Swarm [28] also follow this scheduling scheme.

48

3.3. Scheduling schemes

This scheme does not present scheduling collision, as all the
scheduling decisions are made in a centralized process sequentially.
The only state changes that may happen during the scheduling
algorithm execution are the infrastructure changes related to nodes
leaving the cluster or node failures.

The centralized scheduler is in charge of all the infrastructure
resources. Therefore, the whole infrastructure cluster is electable
as a target node by the monolithic scheduler. The best node among
all the infrastructure can be selected based on the scheduling algo-
rithm and configured policies, achieving optimal placement.

Regarding the scalability, a single centralized process evaluates
the scheduling algorithm sequentially. This is known as HoL (Head
of Line) blocking. Scheduling becomes the bottle neck of the COE,
limiting the number of applications that can be handled in larger
clusters without affecting the performance. This is the main draw-
back that this scheduling scheme presents.

3.3.2 Partitioned scheme

The partitioned scheme splits the infrastructure in different subsets
of nodes. These subsets are called partitions and are managed by
a separate scheduler. The components to be scheduled are routed
to one of the partition schedulers by a centralized process as il-
lustrated in figure 3.2. The partitioning and routing policies can
be very diverse, including geographical distribution, partition load
balancing, etc. An example of a partitioned scheme can be found
in Dryad’s Quincy [29].

On the one hand, the partitioned scheme does not present col-
lisions even with multiple schedulers executed concurrently. Each

49

3. Application-Centric Orchestration Architecture

Figure 3.2: Partitioned scheduling scheme.

scheduler owns its infrastructure subset, and no other scheduler can
schedule in that partition. Similar to the monolithic scheme, only
infrastructure related changes may result in conflicting scheduling
decisions.

On the other hand, each scheduler can only select some nodes
as target for their scheduling components. While a node in a dif-
ferent partition may be a better fit for certain condition, a node
with worse conditions for this specific component will be selected
from the nodes in the corresponding partition. This may lead to
sub-optional placement of application components in the whole in-
frastructure. This drawback is more evident with a higher number
of partitions of the infrastructure.

The scalability issue is tackled by the partitioned approach.
As the number of partitions increases, this scheme will be able to

50

3.3. Scheduling schemes

handle a larger number of applications. Moreover, HoL blocking is
reduced as several concurrent schedulers can make decisions.

Although the main drawback of the partitioned approach is the
sub-optimal placement mentioned above, another issue is its lower
adaptability, as partitions need to be defined statically.

3.3.3 Two-level scheme

The two-level scheduling scheme tackles the adaptability issue from
the previous approach. Similar to the partitioned scheme, multiple
schedulers handle separate subsets of the infrastructure nodes, but
these nodes are not defined statically. A new system component,
called resource manager, is in charge of assigning nodes to each
scheduler, as seen in figure 3.3.

Different approaches for the resource manager are followed. In
Mesos [30], the resource manager offers a set of resources to the
scheduler, which picks among them. YARN (Yet Another Re-
source Negotiator) [31] can also be configured to follow the two-
level scheme, where each scheduler negotiates resources with the
centralized resource manager.

Similar to the partitioned scheme, there are no scheduling col-
lisions in a two-level architecture, as resources are managed in a
centralized component. Once the resources have been allocated
to a scheduler, it owns them until they are released. Infrastruc-
ture related state changes can still result in conflicting scheduling
decision, as in previous schemes.

While the resources of each scheduler are no longer static parti-
tions, they still have access to a limited subset of the infrastructure.
Despite scheduling components in the best possible node for that

51

3. Application-Centric Orchestration Architecture

Figure 3.3: Two-level scheduling scheme.

subset, it still may not be the best possible node in the whole in-
frastructure. Therefore, this scheme also suffers from sub-optimal
placement.

HoL blocking is solved in a similar way as in the partitioned
scheme. Multiple concurrent schedulers considerably improve the
scalability capability of the two-level scheme.

The two-level approach solves the statically defined partitions
issue from the partitioned scheme, but its main drawback still re-
mains: sub-optimal placement.

52

3.3. Scheduling schemes

3.3.4 Shared state scheme

The previous two schemes only make scheduling decisions on nodes
they own. Thus, they are certain that no scheduling collision
can happen. The shared state scheme uses optimistic placement
instead. Every scheduler places its components in any node in
the cluster according to the state when the scheduling algorithm
started. In case the state changes due to a scheduling decision from
one of the concurrent schedulers, a collision may happen. This re-
quires a new component, the collision solver, as seen in figure 3.4.
The collision solver will make sure that the conflicting scheduling
decisions are re-scheduled.

Figure 3.4: Shared-state scheduling scheme.

53

3. Application-Centric Orchestration Architecture

This scheme is followed by Omega [32], a COE used at Google
internally, Apollo [33], a COE used by Microsoft internally, and
Nomad [34], a container scheduler by HashiCorp.

Unlike the previous ones, this scheme may present scheduling
collisions. Multiple concurrent schedulers may result in a set of
scheduling decisions that exceed the available resources of some
of the target nodes. This requires re-evaluating the scheduling
algorithm.

Regarding the infrastructure, this scheme uses a single cluster
without partitions. Any scheduler may assign components to any
node in the cluster, therefore not suffering from the sub-optimal
placement issue of the previous approaches.

Similar to the other distributed approaches, the HoL blocking
issue is solved. The scalability of this scheme can be enhanced by
increasing the number of concurrent schedulers.

The shared state solves both the HoL blocking from the mono-
lithic approach and the sub-optimal placement issue from the par-
titioned and two-level schemes. Its main drawback is the intro-
duction of scheduling collisions. These collisions require to run the
scheduling algorithm again.

3.3.5 Distributed scheme

A fully distributed approach, as the one illustrated in figure 3.5,
is also used by schedulers such as Sparrow [35]. Instead of solv-
ing scheduling collisions, components scheduled in a node without
enough resources are queued and executed when enough resources
become available.

54

3.3. Scheduling schemes

Figure 3.5: Distributed scheduling scheme.

This is only possible if the components that are being scheduled
are short-lived. It relies on the fact that, even if more short-lived
components are scheduled to a node than what it can handle con-
currently, the components will eventually finish their job, allowing
the rest of the scheduled tasks.

HoL blocking, sub-optimal placement or the need to solve sche-
duling collisions are issues that are not found in this scheme. Its
main drawback is its limitation to short-lived components.

3.3.6 Comparison of scheduling schemes

The requirement fulfillment of each scheme has been summarized
in table 3.1. The distributed scheme does not allow scheduling
long-lived processes (R2). Therefore, this kind of scheme cannot
be used for Edge to Cloud continuum-oriented applications.

The HoL blocking issue of the monolithic scheme negatively
affects the scheme’s scalability (R9). Furthermore, scheduling al-
gorithms that are QoS-aware (R8) increase the complexity, and

55

3. Application-Centric Orchestration Architecture

consequently, the processing time required. This further exacer-
bates the HoL blocking issue of this scheme.

Both partitioned and two-level schemes split the infrastructure
in different subsets, either statically or dynamically. This limits the
nodes that can be selected as targets for each of the components
of an application. This sub-optimal placement issue affects the
QoS-awareness of the scheduling decisions (R8).

Table 3.1: Scheduler schemes requirement fulfillment.

Scheme R2 R8 R9 Drawbacks
Monolithic 3 3 7 HoL blocking

Partitioned 3 7 3
Static partitions &
sub-optimal placement

Two-level 3 7 3 Sub-optimal placement
Shared state 3 3 3 Scheduling collisions
Distributed 7 3 3 Short-lived components only

The shared state scheme introduces scheduling collisions. These
collisions need to be solved requiring to process the scheduling
algorithm an additional time. However, this scheme enables the
use of multiple concurrent schedulers with a single infrastructure
partition. Therefore, the shared state scheme arises as the best
fit for orchestration architectures that target the Edge to Cloud
continuum, in order to achieve the long-lived components (R2),
QoS-awareness (R8) and scalability (R9) requirements.

3.4 Related work

Several orchestration architectures with similar goals can be found
in the literature. The most relevant ones are described in this
section.

56

3.4. Related work

An orchestration architecture for the Fog using a hybrid ap-
proach is proposed in [36]. It highlights the heterogeneity of the
infrastructure and divides it into three different layers: the Cloud
level, the Fog level and the IoT level. It also provides some sys-
tem components in charge of managing and monitoring this in-
frastructure, as well as mechanisms to customize orchestration in
a per-application basis. It does not provide any network moni-
toring mechanism, nor considers these metrics when selecting the
deployment, despite mentioning it as future work.

Another orchestration architecture for the Fog is presented in
[37]. The heterogeneous infrastructure is characterized by the re-
sources each node has. It provides different components to manage
and monitor the infrastructure. However, scheduling decisions can-
not be customized per application nor take into account network
metrics.

A Fog computing orchestration framework is proposed in [38].
The infrastructure is partitioned in different "domains", each one
with its own controller. Controllers monitor the latency among
them, and these metrics are used in the offloading of segments of
the applications to other clusters. However, it does not take this
into account inside each "domain".

A similar approach that only considers network metrics among
datacenters is used for the algorithm presented in [39]. Its goal is to
optimize the number of applications that can be deployed in the in-
frastructure based on the required throughput of each application.
It divides the infrastructure in a single Cloud and multiple Fog
datacenters, and the applications in a Fog and a Cloud "chunk".
While this approach targets network-related application quality of
service, it lacks the generality in both the infrastructure and the

57

3. Application-Centric Orchestration Architecture

workload model required for an Edge to Cloud orchestration archi-
tecture.

Fogernetes, a Fog-oriented orchestration architecture based on
Kubernetes, is presented in [40]. It uses a qualitative description of
the infrastructure through labels, which specify information such as
the location of the node, the layer it belongs to, or the capabilities
of the node. These labels are also set as part of the requirements of
each application component, and a simple match is performed to
deploy these components. However, these labels are not being up-
dated dynamically as the state of the infrastructure and workload
evolves.

Another orchestration architecture based on Docker Swarm is
proposed in [41]. An agent called OpenIoTFog is installed in ev-
ery node in the system to provide infrastructure management and
monitoring capabilities. However, this approach does not consider
network metrics.

A parallel genetic algorithm to orchestrate Fog applications is
proposed in [42]. It tackles scalability by partitioning the infras-
tructure. These partitions are merged and split again dynamically
based on monitored data. It does not provide any detail on which
metrics are being monitored or considered during scheduling, nor
provides any mean to customize them in a per-application basis.
It is compared with a non-parallel genetic algorithm, which it out-
performs. However, it claims to still have scalability issues when
increasing the number of total components.

A QoS-aware algorithm for the Fog is designed in [43]. It pro-
vides an infrastructure and workload model to characterize both
nodes and the applications. The algorithm uses these models’ data

58

3.4. Related work

to provide a set of potential deployments that accomplished their
specified requirements. A tool is developed to execute this algo-
rithm, but it does not manage the infrastructure nor monitors any
of the metrics required for the provided models in order to be con-
sidered a full architecture.

Two more algorithms are developed in [44]. It describes the
different system components required to orchestrate services in the
Fog and provides the workload model to characterize the services.
The algorithms use this model to orchestrate services taking into
account the different QoS requirements. The performance of these
algorithms is then evaluated.

A microservice orchestration for the Cloud-Edge continuum
called Nautilus is described in [45]. Based on the application def-
initions, it groups components so that they are deployed in the
same node to minimize the data transfer between them. These
component groups are then deployed based on the available node
resources. It also dynamically migrates these components from
busy nodes to idle ones to guarantee QoS requirements. However,
it does not consider the network state among nodes in the schedul-
ing decision.

A capillary orchestration architecture is proposed in [46]. The
infrastructure is divided in three layers: Cloud, Fog, and Edge.
The main goal of the architecture is to offload containers from
the Edge nodes to Fog or Cloud nodes when the first ones do not
have the required resources available. For this purpose, it uses
infrastructure and network metrics to select the Cloud Fog node
where the container should be moved to. The scalability of the
different system components is not considered.

59

3. Application-Centric Orchestration Architecture

An agent-based architecture is presented in [47]. The infras-
tructure is divided in three layers, where the Edge nodes offload
their services to Fog or Cloud nodes based on each service’s QoS
requirements. This architecture is specifically designed for stan-
dalone services, and does not take into account the interrelations
of the components in each application. The deployment decision is
made by negotiation between the different agents.

All the above research efforts handle some of the identified re-
quirements but none of them solves them all. The fulfillment of
the identified requirements is summarized in table 3.2.

3.5 Application-Centric Orchestration

Architecture

A novel orchestration architecture called ACOA, which stands for
Application-Centric Orchestration Architecture, is designed to ful-
fill the identified requirements for an Edge to Cloud continuum-
oriented architecture. It follows a modified shared state scheme,
where the infrastructure is divided in two different planes: the con-
trol plane and the execution plane. The execution plane is where
the different application components are deployed, while the con-
trol plane is in charge of managing the entire system. The control
plane is further divided in two different layers: the system con-
trol layer and the application control layer. The application con-
trol layer is dedicated to application scheduling, while the rest of
the system management tasks are performed in the system control
layer, including state data storage or handling the communication
among system components and with the users.

60

3.5.
A
pplication-C

entric
O
rchestration

A
rchitecture

Table 3.2: Identified requirements fulfillment by related work.

Authors Ref. R1 R2 R3 R4 R5 R6 R7 R8 R9

K. Velasquez et al. [36] 3 3 3 - 3 3 7 7 -

M. S. de Brito et al. [37] 3 3 7 3 3 3 7 7 -

Y. Jiang et al. [38] 3 3 7 3 3 3 7 3 -

F. Faticanti et al. [39] 7 3 3 7 - - - 3 -

C. Wöbker et al. [40] 3 3 3 3 3 7 7 3 -

S. Hoque et al. [41] 3 3 - 3 3 3 7 7 -

Z. Wen et al. [42] 3 3 7 - - - - - 7

A. Brogi et al. [43] 3 3 3 3 7 7 7 3 -

J. Tsai et al. [44] 3 3 3 3 7 7 7 3 3

K. Fu et al. [45] 3 3 7 - 3 3 7 7 -

S. Taherizadeh et al. [46] 3 3 3 - 3 3 3 3 7

Z. Nezami et al. [47] 3 7 3 - 3 3 3 3 -

61

3. Application-Centric Orchestration Architecture

When a node joins the cluster, it specifies which planes and
layers it is part of (R5). There is no limitation on the number of
planes or layers a single node can belong to. Big infrastructures
with a large number of nodes will use specialized nodes for each
plane and layer, while smaller infrastructures with a more limited
amount of nodes will perform system management and execution
tasks in the same node. This division in planes and layers allows for
a better control on the resources used for each task type: system
management, application scheduling and application execution.

This section starts by providing an infrastructure and workload
model. The infrastructure model describes the nodes, and therefore
the resources that ACOA will have available. The workload model
characterizes the applications that will be orchestrated. ACOA will
use this information to assign resources to each of the applications.
All the system components needed for this orchestration are also
listed, detailing their tasks and the interactions among them.

3.5.1 Infrastructure model

The infrastructure model depicted in figure 3.6 aims to represent
nodes throughout the Edge to Cloud continuum (R1). It provides
a generic definition that enables nodes to join the system by pro-
viding these data (R5). The whole infrastructure is modeled as a
cluster, which contains several nodes and links.

Each node is identified by a unique name within the cluster,
and is defined by a set of static and dynamic properties. On the
one hand, static properties represent characteristics that do not
change or, at least, do not change often, e.g., the operating sys-
tem, whether a disk is encrypted, or the datacenter which the node

62

3.5. Application-Centric Orchestration Architecture

Figure 3.6: Infrastructure model.

belongs to. On the other hand, dynamic properties represent char-
acteristics that experiment variations over time, such as the avail-
able memory or the CPU load.

The network is modeled by a set of network links between a
source node and a sink node. The need of a link model is raised
by the inclusion of the network state. The direction of the link
is important to represent the network asymmetry, thus the total
number of links is two times the square of the number of nodes.
Each network link has a set of properties, e.g., latency, jitter, or
the transmission success rate.

Dynamic properties, for both nodes and network links, need
to be updated continuously to ensure that their values are up to
date (R6 & R7). All these properties are required as inputs to
the scheduling algorithm in order to make the optimal deployment
decision.

63

3. Application-Centric Orchestration Architecture

3.5.2 Workload model

The workload model provides a full definition of the applications
(R4) that will be executed in the infrastructure. It has been de-
signed taking into account the heterogeneous applications that can
be executed in the Edge to Cloud continuum, and their QoS re-
quirements (R8). Figure 3.7 shows the workload model, a collec-
tion of applications that will be executed by ACOA.

Figure 3.7: Workload model.

Multiple applications will be run by ACOA, so they need a
unique name that will act as an identifier. They are composed
of components which represent the executable pieces that will
perform the application’s tasks. The communication between two
components is defined via channels. When the components are
deployed to nodes, channels indicate which links are relevant for
the application, as these links will be used to send messages. These
channels are grouped in paths that will be used as targets by the

64

3.5. Application-Centric Orchestration Architecture

scheduling policies (constraints and criteria) in order to fulfill
the application QoS requirements.

Components, channels, and paths require a name that will
be used as a unique identifier. Additionally, components are im-
plemented as containers, thus, the container image they use needs
to be specified. Channels identify the source and the sink com-
ponents, defining the direction of the messages, as the network
cannot be assumed to be symmetric. Paths are characterized by
the channels that join a set of components. Both paths and the
whole application can be represented as DGs (Directed Graphs),
where components are the graph’s vertices and channels are the
edges.

Two different kinds of policies are considered in order to cus-
tomize the application scheduling (R3): constraints and criteria.
Constraints filter the potential nodes where each component can
be deployed. Several types of constraints have been defined: requir-
ing a certain hardware (sensor/actuator) or software (database)
component, or a certain amount of free disk space. Optimization
criteria implement application QoS requirements by configuring
how the exact node from the set of potential targets is chosen. Mul-
tiple optimization criteria can be provided with different weights
to achieve the desired deployment behavior for each application
separately. Several optimization criteria types have been defined:
prioritizing the nodes with the smaller number of containers or
the highest percentage of free memory, minimizing the end-to-end
(e2e) response time for a certain path, or maximizing the message
transmission success rate. As the architecture evolves, new poli-
cies, both constraints and optimization criteria, will be defined to
represent other types of applications’ QoS. Both constraints and

65

3. Application-Centric Orchestration Architecture

optimization criteria need to define their targets. They can be
applied in a per-component basis or to subsets of the application
(e.g., minimizing the e2e response time of an application critical
path needs to define the critical path).

3.5.3 Architecture Components

The goal of ACOA is to use the resources characterized in the
infrastructure model to execute the desired applications defined in
the workload model. This goal is achieved by the combined effort
of several system components. These system components can be
divided in three categories:

• System control components: deployed in every node that
joins the homonymous layer. There are three system com-
ponents belonging to this category: the API server, the state
database, and the system scheduler.

• Application control components: deployed in the correspond-
ing layer as required by the desired workload. Application
schedulers are the only system component that belongs to
this category.

• System daemons: deployed in every node that joins the clus-
ter, independently of which layers it is part of. There are
two types of system components that belong to this category:
node daemons and monitoring daemons.

Figure 3.8 illustrates these components and their location among
ACOA’s planes and layers. Only one instance of the three system
control components is needed, while multiple application control

66

3.5. Application-Centric Orchestration Architecture

components (one scheduler per application) and system daemons
will be present. In cases where greater resilience is desired, High
Availability (HA) setups can be used. These setups specify multi-
ple nodes as part of the system control layer, and therefore multiple
instances of the system control components will be present in the
system, as depicted with dashed lines in the figure.

Figure 3.8: ACOA architecture.

The application definition from the users is stored in the state
database through the API server according to ACOA’s workload
model. The data gathered by the system daemons is also stored in
the state database through the API server. Node daemons provide
static data about their corresponding nodes as part of the infras-
tructure model, as well as the status of the application software
being executed in them. Monitoring daemons provide the dynamic
data of the infrastructure models, both for nodes and links. Sys-
tem and application schedulers obtain the required information
from the state database in order to perform the orchestration. The
data flow among system components is illustrated in figure 3.9. All

67

3. Application-Centric Orchestration Architecture

these system components, and their contributions to ACOA’s final
goal, are detailed in the following sections.

Figure 3.9: ACOA data flow.

3.5.3.1 API Server

The API server is a system control component that exposes a REST
(Representational State Transfer) API used by the rest of the sys-
tem components to interact among them. This interface is also
used by the users to register their applications according to the
workload model.

When the system control layer is implemented by several nodes,
each of them will have an instance of the API server component.
Placing a load balancer in front of all these API server instances
will not only improve the resilience of the architecture, but also
increase the scalability of this component (R9).

3.5.3.2 State database

All the system’s data will be stored in the state database. This
information comprises both the current state of the cluster as re-

68

3.5. Application-Centric Orchestration Architecture

ported by different daemons (R6 & R7), as well as the user-provided
application definitions that represent the desired state. The end
goal of the whole architecture is to reconcile both states, i.e., per-
form all the necessary actions so that the current state of the system
complies with the desired state obtained from the user input. All
this information is stored according to both the infrastructure and
workload model previously defined.

If several nodes are part of the system control layer, multiple
instances of the state database component will be present. By
using a distributed database in order to store the state of the sys-
tem, ACOA benefits from the failure tolerance and scalability (R9)
guarantees that these databases offer.

3.5.3.3 System scheduler

The system scheduler’s task is to determine the location of the
application schedulers among the application control layer nodes.
The application scheduler location does not require complex schedul-
ing algorithms because it does not directly affect the QoS of the
target application.

When multiple instances of the system scheduler are present
in the cluster, only one of them is active while the rest are idle,
ready to take the lead if the active one fails. This component is not
a scalability bottleneck. It is only needed when new applications
are registered by the user, and it only needs to schedule a single
component, the application scheduler, among a limited set of nodes
in the application control layer.

When the system scheduler is initialized, it requests the API
server to be notified whenever the workload definition is changed.

69

3. Application-Centric Orchestration Architecture

Changes to the workload definition are applied through the API
server. The API server identifies which changes need to be per-
formed based on the workload state stored in the database and it
updates the state database accordingly. These changes may consist
of new applications being created or existing ones being modified
or deleted. When an application is created, it requires a new appli-
cation scheduler. This application scheduler is removed when the
application is deleted. These two processes are illustrated in figure
3.10. Modifications to already existing applications do not require
to create or remove the application scheduler.

If a new application scheduler needs to be created, the API
server notifies the system scheduler. Based on the data of the
state database, the system scheduler will select the target node
(among the application control layer nodes) for the application
scheduler. The system scheduler informs the API server about the
selected node and the API server sends the corresponding order to
the node’s daemon which runs the corresponding container.

If the application scheduler needs to be removed, the API server
sends the corresponding order to the selected node’s daemon which
stops the corresponding container.

3.5.3.4 Application schedulers

Application schedulers execute the scheduling algorithm customized
for each application (R3). They use the information from the state
database to execute any kind of scheduling algorithm, tailored to
the QoS requirements of that specific application (R8).

Application schedulers are part of the application control layer;
therefore, they are distributed among the application control layer

70

3.5. Application-Centric Orchestration Architecture

Figure 3.10: Management of application schedulers.

nodes. This enables a shared-state scheduling approach that im-
proves the scalability of the architecture (R9). One of these sched-
ulers will be running for each application. If considered necessary,
multiple instances of each application scheduler can be used, but
only one per application will be active while the rest remain idle.
This should not be needed as application schedulers benefit from
the resilience of any other deployed component. If the node where
the application scheduler fails, all the components that were being

71

3. Application-Centric Orchestration Architecture

executed in the node, including the application scheduler, will be
orchestrated again.

When the application scheduler is initialized, it requests the
API server to be notified when its application definition is changed.
Changes to its application definition are applied through the API
server. The API server identifies which changes need to be per-
formed based on the application state stored in the database and it
updates the state database accordingly. These changes may consist
of new components being created or existing ones being modified
or deleted. When an application is created, all its components are
created. When the application is deleted, all its components are
removed. Modifications to already existing applications may need
to create certain components that were previously not present and
delete other components that are no further required. These pro-
cesses are depicted in figure 3.11.

If a new application component needs to be created, the API
server notifies the application scheduler. Based on the data of the
state database, the application scheduler will select the target node
(among the execution plane nodes) for the application component.
The application scheduler informs the API server about the se-
lected node and the API server sends the corresponding order to
the node’s daemon which runs the corresponding container. The
scheduling algorithm is not executed again if the application state
has not changed, since the algorithm selects target nodes for all
the components in an application in a single execution.

If an application component needs to be removed, the API
server sends the corresponding order to the selected node’s dae-
mon which stops the corresponding container.

72

3.5. Application-Centric Orchestration Architecture

3.5.3.5 Node daemons

Node daemons are in charge of managing the containers of their
corresponding node. They are notified by the API server when
new containers need to be executed or already existing ones need
to be removed (R2). They also monitor these containers and report
back their state to the API server, that stores them in the state
database.

Additionally, node daemons also provide the characteristics of
the node as part of the infrastructure model. This includes infor-
mation like the OS, architecture, total RAM, or disk space. It also
reads a configuration file that allows to specify additional data like
the availability of a certain hardware sensor or actuator.

Node daemons are executed in every node in the cluster, inde-
pendently of which plane they are part of. The system components
are also containers, even if they do not need to be orchestrated, and
therefore control plane nodes also need node daemons to manage
their own containers.

3.5.3.6 Monitoring daemons

These daemons monitor the state of the system and report their
measurements to the API server that stores them in the state
database. This allows keeping an up-to-date representation of the
current state of nodes and the surrounding network. Node state
is defined by properties, such as the amount of available mem-
ory or the CPU load of a node (R6). Network state is collected by
the SWIM-NSM protocol, providing latency, jitter, and packet-loss
rate measurements for every pair of nodes (R7).

73

3. Application-Centric Orchestration Architecture

Figure 3.11: Management of application components.

74

3.6. Conclusions

Similar to the previous component, monitoring daemons are
deployed in every node in the system, independently of which plane
they are part of. All the nodes, and their surrounding network,
need to be monitored.

3.6 Conclusions

ACOA is an orchestration architecture targeted to the Edge to
Cloud continuum and its challenges. It follows the shared-state
scheme, but the schedulers are dynamically deployed as new ap-
plications are deployed. It also provides an infrastructure and a
workload model in order to characterize Edge to Cloud continuum
nodes and applications.

The infrastructure model provides a single generic node model
that can represent any node (R1), instead of several more special-
ized models as found in the related work. This enables any node
to seamlessly join the cluster (R5). Dynamic properties enable the
monitoring of both nodes (R6) and the network (R7).

The workload model allows the users to define the components,
relations, and QoS requirements of each application (R3 & R4).
This application definition will be used by the scheduling algorithm
in conjunction with the monitored data from the infrastructure
model to determine the optimal deployment for each component
(R8).

The system components perform the system management tasks
needed for the correct behavior of the orchestration architecture.
Additionally, they also contribute to fulfill some of the identified
requirements. The API server and the state database are repli-

75

3. Application-Centric Orchestration Architecture

cated on all the system control layer nodes in order to achieve a
better scalability (R9) for HA setups. Scalability is also enabled
by the shared state scheduling approach followed by application
schedulers. These schedulers allow a per application customization
(R3) and take into account the corresponding QoS requirements
(R8). Their scheduling algorithms make use of the node and net-
work metrics available in the state database. These metrics are
kept up to date by the monitoring daemons (R6 & R7). Once or-
chestrated, the node daemon is in charge of executing the different
application components (R2).

The participation of each model and component on the fulfill-
ment of these requirement is summarized in table 3.3. The system
scheduler, despite not participating directly in any of the require-
ments, it is needed to deploy the application schedulers.

Table 3.3: ACOA requirement fulfillment.

Requirement 1 2 3 4 5 6 7 8 9
Infrastructure model 3 3 3 3

Workload model 3 3 3

API server 3

State database 3 3 3

System scheduler
Applications scheduler 3 3 3

Node daemon 3

Monitoring daemon 3 3

76

CHAPTER 4
Implementation of ACOA

“Tell me and I forget.
Teach me and I remember.
Involve me and I learn.”

- Benjamin Franklin

79

4.1. Introduction

4.1 Introduction

In order to implement ACOA, already existing COEs will be con-
sidered first. The use of one of these engines as a base for ACOA’s
implementation allows benefiting from already implemented and
thoroughly tested features. Therefore, the most used COEs have
been reviewed in order to evaluate which one offers a set of features
that better aligns with ACOA’s requirements.

Once an already existing COE is selected, it needs to be ex-
tended to fully implement ACOA architecture. This includes ex-
tending both the infrastructure and workload models, and devel-
oping new system components. These new components have been
implemented in Go, a modern programming language developed
by Google whose first version was released in 2012.

4.2 State of the technology

Several COEs have been developed throughout the last decade.
Kubernetes and Docker Swarm are the ones with a higher traction
from the community [48, 49]. Therefore, these two COEs will be
considered as a basis for ACOA.

Kubernetes [27, 50], usually shortened to K8s, is a COE that
was initially developed by Google. It is based on previously con-
tainer management tools used internally by the company called
Borg and Omega. Departing from the more classic programming
languages, Kubernetes was entirely developed using Go. The first
version of K8s was released on July 21, 2015, as part of the Cloud
Native Computing Foundation initiative.

81

4. Implementation of ACOA

Being a completely open-source project, Kubernetes’ GitHub
repository quickly became one of the most popular ones in the
platform. This community contribution, in addition to the traction
of several companies such as Google, IBM or Red Hat, has made
Kubernetes a very flexible and customizable framework capable of
handling a wide variety of workloads. Kubernetes is offered by all
mayor Cloud providers such as Google (Google Kubernetes Engine,
GKE [51]), Amazon Web Services (AWS Elastic Kubernetes Ser-
vice, EKS [52]) or Azure (Azure Kubernetes Service, AKS [53]).
The ecosystem around Kubernetes includes other COEs that are
based on it, such as RedHat’s OpenShift, or that can be integrated
with it, e.g., Twitter’s Mesos.

Docker Swarm [28] is the COE developed by the company of the
most used container virtualization technology, Docker. This COE
was released in 2016 and was also programmed in Go language.

Docker Swarm is also an open-source project. In comparison
to Kubernetes, it aims to be easier to use. It is integrated with
Docker and uses a similar user interface, simplifying the learning
process for those that already used Docker to run containers in a
single machine.

The following sections will provide a general overview of how
Kubernetes and Docker Swarm work. Both share conceptual simi-
larities, but they are implemented through different workload and
infrastructure models, and a different set of system components.
The workload model is the abstract representation for the user
applications that need to be executed. The infrastructure model
represents the physical nodes in the cluster. The system compo-
nents are in charge of performing all the orchestration related tasks.
These two COEs will be evaluated against the identified require-

82

4.2. State of the technology

ments in order to use one of them as a basis for the implementation
of ACOA.

4.2.1 Kubernetes

Kubernetes does not provide explicitly separated infrastructure
and workload models. All its objects are defined by five fields.
The first two, apiVersion and kind, identify the type of the ob-
ject. The third one contains metadata information, i.e., the name
of the object. The last two fields, spec and status, are specific
to each type of object, and they contain the characterization and
runtime information of the object respectively. In order to create
any object, the four first fields need to be provided, while the last
one is created and updated by Kubernetes internally.

Kubernetes provides several abstractions that compose its work-
load model. The first of these abstractions is called Pod. Pods are
a light wrapper over containers and are the scheduling unit used
by Kubernetes. A Pod represents one or several containers that
will be deployed to one of the nodes in the infrastructure. Aside
from specifying which containers are part of it, additional informa-
tion that needs to be taken into account by the scheduler can be
specified, like node requirements.

These Pods are not usually directly defined by the end users. In-
stead, higher abstraction layers are provided by Kubernetes, which
will be turned into Pods internally. These abstractions will have
a pod specification field inside their own spec field, which will
be used as the spec field for the Pods they create. The three
most common abstractions are called ReplicaSets, Deployments
and DaemonSets, as it can be seen in figure 4.1.

83

4. Implementation of ACOA

Figure 4.1: Kubernetes Replica Set, Deployment and Daemon Set.

ReplicaSets allow specifying the number of replicas of a certain
Pod type that there should be present in the system. Kubernetes
will create as many Pods as required and each one will be handled
separately.

Deployments are an additional layer of abstraction over Repli-
caSets, therefore requiring both the number of replicas and the
pod specification. Deployments will create a ReplicaSet, but when
a modification is performed on the pod specification, they will not
modify that ReplicaSet. They will create a second one with the new
specification and start migrating replicas from one to the other.
The way they migrate can be configured, preventing downtime as
the replicas are not stopped simultaneously.

DaemonSets define Pods that should be run in every node in
the system. The pod specification must be provided. The Pods
created from DaemonSets already have a fixed node where they
should be run, so they do not require to be further scheduled.

Additional abstractions are provided to run containers as fi-
nite jobs. This aspect increases Kubernetes flexibility by enabling
batch processing patterns to be executed, additionally to the more
traditional microservice-oriented patterns followed by this engine.

84

4.2. State of the technology

Regarding the infrastructure model, Kubernetes only specifies
a Node object. It represents a physical node in the cluster and its
current state. Node objects are created and removed automatically
when nodes join and leave the cluster.

Kubernetes divides the infrastructure into two separate planes:
control and execution. The control plane contains the different
system components required for the proper operation of the archi-
tecture. The execution plane is in charge of executing the workload
that is deployed on the system. Each of these planes comprises sev-
eral components that are distributed among several nodes. Figure
4.2 shows all the system components of both planes.

The execution plane, also called data plane, is formed by all
the nodes that can be selected to run containers corresponding to
the user defined workload.

The control plane is formed by a minority of the nodes, but their
tasks are fundamental for the proper functioning of the whole ar-
chitecture. Nodes that are part of this plane are usually dedicated
to running the system components. However, for setups with a
smaller number of nodes, these control plane nodes can also take
part in the execution plane.

At least a single node is required to be part of the control
plane, but HA setups with multiple nodes are recommended for
bigger systems. Additional control plane nodes provide increased
performance and resilience to the system components. Figure 4.3
illustrates an example of a HA setup with three control plane nodes.

There are four types of system components that are executed
in the control plane: etcd database, API server, scheduler, and
controllers. One instance of each of these components is executed in

85

4. Implementation of ACOA

Figure 4.2: Kubernetes components.

86

4.2.
State

ofthe
technology

Figure 4.3: Kubernetes HA setup components.

87

4. Implementation of ACOA

each of the control plane nodes. HA setups may have an additional
component: a load balancer in front of the API servers.

The etcd database is a distributed database that stores all the
state data that K8s needs for its operation. It contains information
about the workload that the user wants to execute in the system,
the workload that is currently being executed or the different nodes
that are part of the infrastructure. While etcd database is used by
default, it can be replaced by other distributed databases. In setups
with multiple control plane nodes, the multiple database instances
allow the system to benefit from the capabilities of a distributed
database, improving the resilience of the system.

The API server exposes the Kubernetes API. It handles the re-
quests, both from users and other system components, and updates
the state of the etcd database accordingly. Placing multiple API
server instances behind a load balancer in HA setups increases not
only the resilience of the system, but also its performance, as it
can handle an increased number of simultaneous requests.

The scheduler determines the location where each Pod will be
executed. In order to make these decisions, the default scheduler
can take into account the available resources or the rest of the
components that are also being executed in each node. If more
complex scheduling algorithms are required, alternative schedulers
can be developed. Kubernetes follows a centralized scheduling pro-
cess, and uses a leader selection algorithm so that only one instance
is running in HA setups. Additional instances from other control
plane nodes will be in an idle state, ready to take the leadership if
the current active instance can no longer perform its tasks. This

88

4.2. State of the technology

increases the resilience of the system, but it does not increase the
performance of the scheduling process in HA setups.

The controllers are in charge of implementing the Kubernetes
workload model. There is one controller per abstraction in Ku-
bernetes model. They process the different objects that the users
declare as part of their workload definition and transform them
to Pods that the scheduler is able to understand. In order to ex-
tend this workload model, additional controllers can be developed.
Similar to the scheduler component, controllers are centralized, us-
ing a leadership process to determine which instance is active and
which are idle in HA setups with multiple instances of each con-
troller. This results in a resilience increment without increasing
the performance.

There are two additional system components that run in every
node of the system, independently of which plane they belong to:
the kubelet and kube-proxy.

The kubelet is in charge of supervising that its node is executing
the Pods that were assigned to it by the scheduler. The scheduling
decisions with all the required information to execute a container
is sent from the scheduler to each kubelet through the API server.
After that, it is the responsibility of the kubelet to supervise the
proper functioning of each container, informing the control plane
components of any non-compliance.

The kube-proxy task is to implement the virtual network that
workload containers will use to communicate among themselves.
This virtual network allows for easy communication among con-
tainers even for very complex infrastructure setups with geograph-

89

4. Implementation of ACOA

ically distributed nodes or over different cloud providers’ data cen-
ters.

The collaboration of all these system components enables a
declarative approach: instead of specifying which actions need to
be performed, the user defines the desired workload, and the sys-
tem is able to determine which actions need to be performed.

4.2.2 Docker Swarm

Docker Swarm does not provide explicit infrastructure or workload
models. The definition of each object type requires specific fields.

Its workload model is based on tasks. A task is a light wrapper
around a container and is the scheduling unit used by this COE.
These tasks are not expected to be defined directly by the end users,
Docker Swarm provides a higher-level abstraction called services.
Two different service types can be defined by the user: replicated
and global services. Replicated services allow specifying the num-
ber of instances of each container that need to be executed, and
the policy to use when updating them. Global services represent
containers that need to be run in every node in the cluster.

Regarding the infrastructure model, Docker Swarm provides
a node object. These objects are created and deleted automati-
cally. They contain all the relevant information about their phys-
ical counterparts. This COE also includes a swarm object, which
represents the whole set of nodes that are part of the infrastructure.

In Docker Swarm, the infrastructure is divided in two types of
nodes: manager and worker nodes. Manager nodes perform the
system related tasks. Worker nodes execute the workload that
is deployed on the system. By default, manager nodes also act

90

4.2. State of the technology

as worker nodes. The whole set of nodes is denoted as a swarm.
Figure 4.4 illustrates these node types.

Figure 4.4: Docker Swarm components.

A swarm without any manager node alive still is able to run
the ongoing workload, but it is unable to modify this workload or
recover from failures. Deploying multiple manager nodes provides
resilience as the system would tolerate the loss of some of the man-
ager nodes without losing its capabilities. A swarm with multiple
manager nodes uses a consensus protocol to elect a leader that will
perform all the orchestration tasks. The rest of the nodes will act

91

4. Implementation of ACOA

as proxies for incoming requests and one of them will be elected as
the new leader in case of a failure of the previous one. As a con-
sensus is required, the optimal amount of manager nodes should
be odd. The official documentation recommends keeping the num-
ber of manager nodes lower or equal to seven, as having multiple
manager nodes hinders the performance of the system. Figure 4.5
depicts a swarm with three manager nodes. Communication with
each worker node is done through a single manager node. When
one of the manager nodes fails, the orphaned worker nodes are
divided among the remaining manager nodes.

Five main component types are executed in manager nodes:
state store, API server, one orchestrator per service type, scheduler,
and dispatcher. HA setups may have an additional component: a
load balancer in front of the API servers. As Docker Swarm uses
a leader election mechanism among the available manager nodes,
only the instances of these components in the leader are active,
except for the state store and the API server. This increases the
resilience of the architecture, but it does not affect the performance.

An internal distributed state store is maintained throughout all
the manager nodes of a swarm based on a consensus protocol. This
state store contains information about the desired workload as well
as the current state of the system. As all the state is stored in every
manager node, any manager node can take the place of a failing
leader manager node, increasing the resilience of the system.

The API server exposes Docker Swarm’s API to the users and
other system components. In swarms with multiple manager nodes,
the non-leader API servers act as proxies that forward the requests
to the leader manager node, not affecting the performance of the
system.

92

4.2.
State

ofthe
technology

Figure 4.5: Docker Swarm HA setup components.

93

4. Implementation of ACOA

There are two different orchestrators, one for each service type.
The replicated orchestrator creates all the different replicas of each
container and prepares them to be scheduled. The global orches-
trator also creates all the corresponding replicas.

The scheduler selects the worker node that executes each of
the workload components defined by the user through replicated
services. After filtering the nodes that have available the required
resources, it selects the one with the smaller number of running
containers among them. This way, it spreads the containers evenly
among all worker nodes. In contrast with the replicated services,
the global services are assigned a node by the orchestrator, thus
not requiring to be processed by the scheduler.

The dispatcher is in charge of interacting with the worker nodes.
It sends all the required containers’ information to the nodes where
they should be executed.

Every node, including managers and workers, require one ad-
ditional system component: the agent. It receives the information
from the dispatcher, executes the corresponding containers, and
notifies any status update to the manager node.

All these system components handle the distributed execution
of the workload defined by the user in the swarm.

4.2.3 Kubernetes vs Docker Swarm

Both Kubernetes and Docker Swarm provide similar tools as COEs.
They are both open-source projects with a lot of traction from the
community.

94

4.2. State of the technology

Kubernetes and Docker Swarm are supported on a wide variety
of hardware systems (R1). Nodes can seamlessly leave and join the
clusters (R5) and they will be monitored without any additional
configuration (R6).

Both platforms support long-lived processes natively (R2). They
both define their workload in YAML (Yet Another Markup Lan-
guage) files. YAML is a markup language that focuses on having a
human-readable format (R4), while still being specific enough for
computers to process fast.

Kubernetes’ scheduling algorithm can be customized by execut-
ing separate schedulers and specifying if these alternative sched-
ulers should be used in a component basis (R3). Docker Swarm
does not offer this customization level.

None of them monitors the network state connecting all the in-
frastructure nodes (R7), and therefore scheduling decisions cannot
take into account the network state to optimize the QoS of the
applications (R8).

Both platforms allow HA setups. These setups can handle a
considerable number of nodes and applications. However, none
of them takes this scalability requirement (R9) into consideration
with the scheduling scheme they use, which is important in Edge
to Cloud scenarios. They both use a monolithic scheduling scheme
where a single process handles all the scheduling decisions, as the
other ones are idle.

Kubernetes can be customized in multiple ways: from the un-
derlying virtual network plugin that nodes use to communicate
among them, to the database used to store the state. This high
level of customization increases the complexity of the COE. In com-

95

4. Implementation of ACOA

parison, Docker Swarm focuses on ease of use as one of its main
goals, reducing the customization capabilities of this platform.

Table 4.1 contains the identified requirement fulfillment of these
two COEs. There are two aspects in Kubernetes that are spe-
cially relevant for the needs of ACOA: customizable scheduling
and extendable infrastructure and workload models. Each pod
definition can specify which scheduler should determine where the
corresponding container should be executed. Additionally, the in-
frastructure and workload models of Kubernetes can be extended
by developing new controllers which can implement abstractions
such as applications or their components. The customization ca-
pability makes Kubernetes a better fit that Docker Swarm as a
basis for ACOA’s implementation, using all the deployment-grade
tested features of this platform and focusing on developing the new
ones required for the Edge to Cloud continuum.

Table 4.1: Kubernetes and Docker Swarm requirement fulfillment.

Requirement Kubernetes Swarm
R1 - Heterogeneous infrastructure 3 3

R2 - Long-lived components 3 3

R3 - Scheduling customization 3 7

R4 - Ease of use 3 3

R5 - Infrastructure management 3 3

R6 - Infrastructure monitoring 3 3

R7 - Network monitoring 7 7

R8 - QoS awareness 7 7

R9 - Scalability 3/7 3/7

96

4.3. ACOA implementation over Kubernetes

4.3 ACOA implementation over

Kubernetes

ACOA has been implemented on top of Kubernetes, by extending
its features in order to fulfill the identified requirements. This
includes:

1. Extending Kubernetes infrastructure model with the link ab-
straction.

2. Extending Kubernetes workload model with the application
and component abstractions.

3. Extending Kubernetes architecture by splitting Kubernetes’
control plane into two different layers and introducing new
system components.

4.3.1 Extended Kubernetes infrastructure

model

Kubernetes already provides a Node object, that can be used to
implement ACOA’s node model. Node’s metadata already con-
tains a name field that can be mapped to ACOA’s node name. It
also contains a labels field, which is a map of strings to strings
that can be used to store ACOA’s node properties. Node instances
are automatically created and deleted when new nodes join or leave
the system.

However, Kubernetes’ infrastructure model does not provide a
Link object, so it needs to be extended for this purpose. Links will
also be automatically created when nodes join or leave the system.

97

4. Implementation of ACOA

Their spec field will store both the source and sink nodes, while
the same labels field mentioned for nodes will be used to store its
properties.

4.3.2 Extended Kubernetes workload model

The abstraction level provided by Kubernetes is insufficient to de-
scribe ACOA’s workload model. It needs to be extended to follow
the application-centric approach of ACOA. This requires the intro-
duction of two new abstractions: application and component.

When an application is defined, it will create a Pod for its appli-
cation scheduler and as many Components as needed. Components
are not expected to be created by the user directly, they will be cre-
ated automatically from the application definitions. Components
will also create their corresponding Pod. The rest of the elements
from ACOA’s workload model do not require specific abstractions,
but they need to be considered as part of the application proper-
ties. The extended workload model is depicted in figure 4.6, where
the new introduced abstractions are shadowed in green.

Figure 4.6: ACOA abstractions.

Applications are defined in YAML files (R4) with the syntax
illustrated in code snippet 4.1. It follows Kubernetes syntax, where

98

4.3. ACOA implementation over Kubernetes

the two first fields, apiVersion and kind, specify which kind of
object is being created, and the next two, metadata and spec,
provide the definition of the object.

Code snippets 4.1: Example YAML definition of an application in
ACOA.
ap iVers ion : a c o a / v1
kind : A p p l i c a t i o n
metadata :

name: a p p l i c a t i o n −1
spec :

s chedu le r :
...

components :
...

channe l s :
...

paths :
...

c on s t r a i n t s :
...

c r i t e r i a :
...

Kubernetes metadata is common to all objects [54]. The only
required field is name, a unique identifier. Other fields include
namespace, to provide virtual separation between objects; or labels,
a key-value pairs intended to specify identifying attributes. How-
ever, most of the fields inside metadata are updated by the system
and are read-only from a user perspective, e.g., creationTimestamp,
which contains the time when that object was created.

Each kind of object contains a customized spec field. There are
six different fields in an application’s spec: scheduler, components,
channels, paths, constraints, and criteria. The first one al-
lows providing configuration parameters for the application sched-

99

4. Implementation of ACOA

uler, while the rest are arrays and relate to ACOA’s workload
model.

The scheduler field allows to parameterize the application
schedulers (code snippet 4.2). The implemented application sched-
uler reviews the selected deployment periodically (specified in sec-
onds). If a new deployment with a better score is found, it modifies
the previous deployment. In order to avoid constantly moving ap-
plications for minor improvements, a threshold is set. If the score
of the new deployment does not improve the current one by that
percentage, the application deployment will not be modified. The
default values for these two parameters are 300 seconds and 5%.

Code snippets 4.2: Example YAML definition of an application
scheduler configuration in ACOA.

s chedu le r :
per iod : 3 0 0
thre sho ld : 5

The components field is an array of PodTemplateSpec [55]
(code snippet 4.3). It contains its own metadata field with a name

and its own spec field with an array of containers. There are
also other optional fields that can be used to further configure the
pod that will be created for each component.

Code snippets 4.3: Example YAML definition of an application
components in ACOA.

components :
- metadata :

name: c omponent −1
spec :

con ta in e r s :
- image : comp−1− c o n t a i n e r : 1 . 0 . 0

- metadata :
name: c omponent −2

100

4.3. ACOA implementation over Kubernetes

spec :
con ta in e r s :

- image : comp−2− c o n t a i n e r : 1 . 0 . 0
- metadata :

name: c omponent −3
spec :

con ta in e r s :
- image : comp−3− c o n t a i n e r : 1 . 0 . 0

The channels array (code snippet 4.4) contains a list of objects
with three fields, all of them mandatory: name, source, and sink.
The first one is a unique identifier. The last two are the names of
the component that sends the message and the one that receives it
respectively. The next field, paths (code snippet 4.5), groups these
channels by name. Defining the paths makes the system aware of
the message flow that will happen at runtime, as required by some
of the scheduler policies.

Code snippets 4.4: Example YAML definition of an application
channels in ACOA.

channe l s :
- name: c h a n n e l −1−2

source : c omponent −1
s ink : c omponent −2

- name: c h a n n e l −2−3
source : c omponent −2
s ink : c omponent −3

Code snippets 4.5: Example YAML definition of an application
paths in ACOA.

paths :
- name: pa th −1−3

channe l s :
- channel −1−2
- channel −2−3

101

4. Implementation of ACOA

The constraints and criteria arrays allow customizing the
behavior of the scheduler process (code snippet 4.6). Both have a
target field that can be either an array of components or paths.
They also have a type field to specify which kind of constraint
or criteria should be applied and an optional value field that can
contain further information specific to each kind. Additionally,
criteria have a weight field to specify the importance of each of
them. The following types of constraints and criteria have been
implemented, and can be further expanded as needed:

• node (constraint): the value field specifies the name of the
node where the target should be executed. The target is usu-
ally a single component, but multiple components or paths
can also be provided, in which case it will be applied to all
the related components.

• require-label (constraint): nodes that contain the specified
label are considered electable to execute the specified target.
If an optional value is provided, the label’s value must also
match it.

• avoid-label (constraint): nodes that contain the specified
label are filtered out from the electable nodes. If an optional
value is provided, the label’s value must also match it to be
filtered out.

• e2e-response-time (criteria): expects a single path that
forms a DAG as the target, and optimizes the latency be-
tween the nodes containing those components.

102

4.3. ACOA implementation over Kubernetes

• e2e-reliability (criteria): expects a single path that forms
a DAG as the target, and optimizes the success rate between
the nodes containing those components.

Code snippets 4.6: Example YAML definition of an application
constraints and criteria in ACOA.

c on s t r a i n t s :
- t a r g e t s :

components :
- component−1

type : n ode
value : node −1

c r i t e r i a :
- t a r g e t s :

paths :
- path−1−3

type : e 2 e − r e s p o n s e − t im e
weight : 1 . 0

4.3.3 Extended Kubernetes architecture

ACOA’s infrastructure is divided into two planes: control and exe-
cution. The control plane is further divided into two layers: system
and application. Kubernetes also has the two planes separation,
but the control plane layers are specific of ACOA. This layer sepa-
ration improves the scalability of the scheduling process, which is
one of the requirements that Kubernetes does not fulfil (R9).

Some of Kubernetes system components directly relate with
ACOA system components, but other components need to be im-
plemented. This relationship is summarized in table 4.2.

• The API server is implemented by Kubernetes API server
and controllers. Controllers for link, application and compo-

103

4. Implementation of ACOA

nents have been developed to extend Kubernetes’ infrastruc-
ture and workload models with these new abstractions.

• Kubernetes’ etcd database is equivalent to the state database
in ACOA.

• Kubernetes’ scheduler is used as the system scheduler in
ACOA.

• Application schedulers do not exist in Kubernetes. They
will be dynamically deployed by ACOA as Pods in the appli-
cation control layer nodes.

• Kubernetes’ kubelets act as the node daemons in ACOA.

• Kubernetes’ kubelets also perform monitoring daemons’
tasks by monitoring the node. Additional monitoring dae-
mons are deployed in all nodes to measure the network state
using SWIM-NSM.

Table 4.2: Kubernetes extended components for ACOA.

ACOA Kubernetes New

API server API server
and controllers

Additional
controllers

State database etcd -
System scheduler Scheduler -
Application
schedulers - Deployed

dynamically
Node daemon kubelet -
Monitoring
daemons kubelet SWIM-NSM

daemon

All these components are illustrated in figure 4.7. The new
components, identified by the green background, have been imple-

104

4.3. ACOA implementation over Kubernetes

mented in Go, and the corresponding container images have been
created. The corresponding ACOA’s components have been shad-
owed in blue, and planes and layers have also been delimited with
dashed lines.

Schedulers and controllers in Kubernetes use a subscription
mechanism. They inform the API server which abstraction they
are watching, and when any of the instances of these abstractions
are changed, they get notified. They then determine if any ac-
tion needs to be taken. This is the approach followed by the link
controller, application controller, application schedulers and com-
ponent controller.

The link controller subscribes to changes to nodes, which in-
clude their creation and deletion. When a new node is created,
the required link instances are created. This includes links with all
the nodes in the system, including itself, and for both directions.
When a node in deleted, all the links that have it as a sink or a
source are automatically deleted.

The application controller subscribes to changes to applications.
When a new application instance is created, the application con-
troller creates the pod instance for the corresponding application
scheduler. It constrains this pod to the application control layer
nodes. The system scheduler will notice this pod and schedule it
accordingly. The application controller is also in charge of updat-
ing the corresponding component instances when an application is
created, modified, or deleted.

The application schedulers subscribe to changes in their corre-
sponding components. It executes the customized scheduling algo-
rithm for each application based on the metrics measured by the

105

4.
Im

plem
en

tat
io

n
o
f

A
C

O
A

Figure 4.7: UML component diagram of ACOA architecture over K8s.

106

4.4. Conclusion

monitoring daemons (R8). It modifies the component instances to
include the target node location.

The component controller also subscribes to changes in compo-
nents. Once component instances are assigned a target node by the
application schedulers, it creates the corresponding pod instances
with the target node already defined. These pods do not require the
intervention of the system scheduler as they were already scheduled
by the corresponding application scheduler.

The above-described process needs to take into account appli-
cation QoS (R8), which requires the collection of node and network
metrics. Node metrics are already collected by the kubelet, while
network metrics are collected by a new monitoring daemon. It is
generated by the SWIM-NSM library described in a previous chap-
ter, keeping an up-to-date list of the latency, jitter, and success rate
of all the links in the cluster (R7).

4.4 Conclusion

Kubernetes and Docker Swarm both offer thoroughly tested fea-
tures that fulfill some of the requirements identified for the Edge
to Cloud continuum. They lack network monitoring capabilities
(R7) and QoS-aware scheduling algorithms (R8). They both of-
fer HA setups, but they do not consider scalability (R9) for the
scheduling process.

ACOA has been implemented on top of Kubernetes, as it offers
more customization capabilities than Docker Swarm. Kubernetes
infrastructure model has been extended to make it network aware.
The workload model has also been extended in order to improve the

107

4. Implementation of ACOA

scheduling customization capabilities (R3) and to provide a higher
abstraction level for the users (R4). Three new abstractions (link,
application, and component), and their corresponding controllers,
have been introduced for this purpose.

The separation of the control plane in two layers and the inclu-
sion of new system components allow fulfilling the remaining re-
quirements. The inclusion of the daemon implementing the SWIM-
NSM protocol allows monitoring the network state of the system
(R7). The application schedulers make use of these metrics to
implement scheduling algorithms that take into consideration the
QoS of the applications (R8). The shared state approach of these
application schedulers in the application control layer provides a
better scalability of the scheduling algorithm for the Edge to Cloud
continuum (R9).

108

CHAPTER 5
ACOA assessment

“You need to assess yourself on a yearly basis and see how far you
have gone and what you still need to work on.”

- Sunday Adelaja

111

5.1. Introduction

5.1 Introduction

ACOA has been designed in order to fulfill the nine identified
requirements. Most of them can only be validated in a qualita-
tive manner exception for the scalability requirement (R9). This
chapter evaluates ACOA and compares its behavior with a non-
application-centric approach.

First, the scalability improvements brought by the use of a
shared-state scheme are evaluated. The mean deployment time
required for hundreds of software components (containers) by dif-
ferent number of application schedulers is analyzed.

Next, a use case in the transportation vertical domain is used to
assess ACOA’s suitability to orchestrate Edge to Cloud continuum-
oriented applications. ACOA is compared to an orchestration ar-
chitecture that does not have into account the application QoS
requirements. Kubernetes has been used for this comparison, but
similar results are expected for other COEs that are not application
QoS aware.

Finally, the influence of the number of components in a path
and the network variability in the improvement provided by ACOA
is theoretically obtained. These theoretical bounds are compared
with the empirically obtained data from the above use case.

5.2 Shared-state scheme validation

ACOA uses a shared-state orchestration scheme where multiple
schedulers orchestrate the workload simultaneously, one per appli-
cation. This enables the application-centric approach of ACOA by
providing customization capabilities in a per application basis.

113

5. ACOA assessment

Additionally, the use of multiple schedulers prevents the HoL
blocking issue present in architectures with a single scheduler, re-
sulting in better scalability. In order to assess that scalability im-
provement, the time required to orchestrate and deploy several
containers has been measured. This time interval is considered
since the containers are defined by the user until they are assigned
the node where they will be executed.

This assessment has been carried out for one, five and ten sched-
ulers. Aside from the number of schedulers, there is no other dif-
ference. The same scheduling algorithm is used to deploy exactly
identical containers, so that the obtained results can be used to
validate if there is a time reduction and if it is relevant.

The mean deployment time for different amounts of containers
has been measured. Figure 5.1 illustrates the reduction in the
mean time required to deploy each component when using multiple
concurrent schedulers. The ten-scheduler case presents a reduction
of the mean deployment time compared to the single scheduler case
between 37% and 67%.

The existence of multiple concurrent schedulers also introduces
the possibility of collisions. A collision happens when two sched-
ulers make parallel decisions that cannot be satisfied at the same
time. A collision requires one of the affected schedulers to make a
new decision. The frequency of these collisions during the deploy-
ment was also measured. The resource utilization of each of the
deployed components was fixed so that the cluster utilization in
each test was 85%, 90% and 95%. For a total of 1500 components
deployed, no collision was found for the 85% utilization case, a sin-
gle collision (0.06%) was found for the 90% utilization case with
ten schedulers and the 95% utilization case with five schedulers,

114

5.3. Railway use case

Figure 5.1: Deployment time depending on the number of sched-
ulers.

and two collisions (0.13%) were found for the 95% utilization case
with ten schedulers, as it can be seen in table 5.1.

Table 5.1: Collisions during component deployment.

Cluster utilization 85% 90% 95%
Schedulers 5 10 5 10 5 10
100 components - - - - - -
200 components - - - - - -
300 components - - - - 1 -
400 components - - - 1 - 2
500 components - - - - - -
Percentage 0% 0% 0% 0.06% 0.06% 0.13%

5.3 Railway use case

The transportation vertical domain has been selected as the use
case scenario to assess ACOA, more specifically, the railway sector.

The railway sector presents a geographically distributed in-
frastructure with different size nodes that offers a good example

115

5. ACOA assessment

of which kinds of sectors would benefit from an Edge to Cloud
continuum-oriented architecture. This infrastructure comprises from
resource constrained nodes on board of each train or in every sta-
tion to powerful devices in the company’s headquarters or in Cloud
providers’ datacenters. Combining all these resources into a single
cluster provides a good example of an Edge to Cloud continuum
infrastructure.

The applications in this sector are also very heterogeneous:
from simple applications on board of every train to complex algo-
rithms that take into account the data from the whole architecture.
Closed doors verification, smoke detection, ticket and identity ver-
ification, or train speed profiling are some examples of these appli-
cations. Each of these applications has different QoS requirements
that can be considered by ACOA. For this use case, a simple smoke
detection application inside a train and a more complex speed pro-
filing one have been selected to demonstrate the viability of ACOA.

The following sections describe the specific infrastructure and
workload used for this use case. Finally, the deployment config-
uration results with ACOA are compared to an orchestration ar-
chitecture that does not take into account the application QoS
requirements.

5.3.1 Infrastructure description

The railway sector has computing devices that can be part of
an Edge to Cloud continuum cluster spread among several loca-
tions. Trains, stations, central headquarter offices and even Cloud
providers can contribute to the cluster infrastructure. Therefore,
the infrastructure is spread among a large geographical area. Even

116

5.3. Railway use case

in local railway transportation, nodes are distributed throughout
a city, and long-distance railway networks can extend one or even
several countries.

Inside a train, several devices can be found: the visualization
dashboards for the driver, and telemetry or security data acquiring
nodes are some examples. These nodes are usually resource con-
strained, but they can answer the application demands very quick
as they are located in the Edge part of the continuum.

Nodes can also be found in stations, such as ticket validation
or dispensing machines, schedules dashboards or computers in in-
formation/security offices. The computing resources available in
stations usually are higher than those found in a train, but they
are still placed close to the physical world. From the train applica-
tions point of view, they can be considered as Fog devices placed
towards the middle of the Edge to Cloud continuum.

The most powerful devices owned by the company are placed
in the central company headquarters. They can execute complex
algorithms and store high amount of data, being positioned to-
wards the most distant part of the Edge to Cloud continuum. In
some cases, the ownership of these datacenters may be delegated
to Cloud providers, removing the need to own and maintain them.

For the following use case, a down-scaled version of such an
infrastructure has been used. A cluster of 20 ACOA nodes has
been provisioned for these applications. Each of them is running
k3s, a certified lightweight implementation of Kubernetes ‘built
for IoT & Edge computing” [56]. These 20 nodes have been used
to simulate a multi-datacenter setup with 5 different locations, as
illustrated in table 5.2.

117

5. ACOA assessment

Table 5.2: Emulated railway infrastructure.

Location Nodes

Headquarters 1–6
Cloud provider 7–12

Train 1 13–15
Train 2 16–18
Station 19–20

The first six nodes represent the devices in the headquarters
and the following six are virtual machines from a Cloud provider.
Nodes 13-15 and 16-18 are placed on two different trains, while
the last two nodes are placed in a station. The location of each
of the nodes in each train is also relevant for the current use case.
The first node in each train represents the security data gathering
node (13 & 16), the driver’s dashboard is represented by the second
node (14 & 17), and the third node is in charge of gathering the
telemetry data (15 & 18). These nodes have access to specific
hardware needed for the applications of this use case. All nodes
have been appropriately labeled in the configuration file that node
daemons read, according to table 5.3, so that application schedulers
are aware of their capabilities.

Table 5.3: Train node labels.
Label 1-12 13 14 15 16 17 18 19-20
train-1 3 3 3

train-2 3 3 3

fast-processor 3

database 3

security-sensors 3 3

dashboard 3 3

telemetry 3 3

118

5.3. Railway use case

Nodes 1-3 are configured as part of the system control layer,
while nodes 4-6 are part of the application control layer. All nodes,
including these first six, are part of the execution plane. This
setup guarantees that all layers have enough resources to perform
their tasks while they still provide resilience to the system control
components.

Despite simulating a multi-datacenter setup, the 20 provisioned
nodes are physically connected to the same Ethernet switch. There-
fore, the actual measurements of the SWIM-NSM daemon do not
properly characterize the desired simulated datacenters. Instead,
a simulated network monitoring system has been used for the pur-
pose of this assessment. The simulated latency and success rate val-
ues are randomly generated, but taking into consideration which
location each node in the link belongs to. The lower and upper
bounds for these generated values have been selected based on pre-
vious execution of the SWIM-NSM protocol, and are summarized
in table 5.4. As components of the same application can be placed
in the same node, the metrics of a node with itself must also be
taken into account. A very small latency and perfect success rate
are considered for this case, as message exchanges do not even need
to reach the network. A slightly higher latency and a good success
rate are considered for nodes that belong to the same location, e.g.,
two nodes in the same train. A higher latency and lower success
rate are used for links that span nodes in two different locations.

5.3.2 Workload characterization

Smoke monitoring and speed profiling applications have been exe-
cuted in the previously described infrastructure. The two selected
applications have very different characteristics in order to repre-

119

5. ACOA assessment

Table 5.4: Network metric bounds.

Target Latency Success Rate

Same node 0.25–0.35 ms 100%
Same location 0.8–1.2 ms 95–100%

Different location 15–25 ms 85–95%

sent the heterogeneity of the applications that can be deployed
in the Edge to Cloud continuum. They present different QoS re-
quirements that are considered by ACOA during the orchestration
process.

This section describes both applications, and provides the YAML
definition used to characterize them.

5.3.2.1 Smoke monitoring application

The smoke monitoring application takes smoke concentration mea-
surements from the first train. These measurements are used to
raise an alarm in the driver’s dashboard if they go over a cer-
tain threshold, and they are also stored in a database after being
processed. Despite being a simple application, it includes prepro-
cessing, historic data storage in the Cloud and short deadlines for
alarm triggering, illustrating some of the requirements of applica-
tions targeted towards the Edge to Cloud continuum.

The application has been implemented with five components as
depicted in Figure 5.2. The first component (measurement) reads
the measurements of the smoke concentration from the sensor for
the next two components. Component two (batching) groups mul-
tiple measurements and computes deltas to reduce the memory
footprint required to store the data. The third component (level

120

5.3. Railway use case

detection) triggers events when the values go above or below cer-
tain thresholds. Component four (storage) stores the data and the
events into a database. Finally, the fifth component (alarm) fires
an alarm to inform that the configured threshold was surpassed.

Figure 5.2: Smoke monitoring application components.

This application is defined in a YAML file according to ACOA’s
workload model and then registered through the API server. Code
snippet 5.1 provides the basic skeleton of this file, where each frag-
ment is being detailed hereunder. The default period and threshold
parameters for the application scheduler have been used, so that
fragment has been omitted.

Code snippets 5.1: YAML file structure for the smoke monitoring
application.
ap iVers ion : a c o a / v1
kind : A p p l i c a t i o n
metadata :

name: smoke −m o n i t o r i n g
spec :

components :
// . . .

121

5. ACOA assessment

channe l s :
// . . .

paths :
// . . .

c o n s t r a i n t s :
// . . .

c r i t e r i a :
// . . .

The five different components that take part in this application
need to be defined in their corresponding fragment. The work-
load model requires each component to specify a unique name and
the image of the container that implements it. Code snippet 5.2
provides these values for this application.

Code snippets 5.2: YAML file fragment for the components defini-
tion of the smoke monitoring application.

components :
- metadata :

name: m e a s u r emen t
spec :

con ta in e r s :
- image : smoke −m o n i t o r i n g −mea su r emen t : 1 . 0 . 0

- metadata :
name: b a t c h i n g

spec :
con ta in e r s :

- image : smoke −m o n i t o r i n g −b a t c h i n g : 1 . 0 . 0
- metadata :

name: l e v e l − d e t e c t i o n
spec :

con ta in e r s :
- image : smoke −m o n i t o r i n g − l e v e l : 1 . 0 . 0

- metadata :
name: s t o r a g e

spec :
con ta in e r s :

- image : smoke −m o n i t o r i n g − s t o r a g e : 1 . 0 . 0
- metadata :

name: a l a rm

122

5.3. Railway use case

spec :
con ta in e r s :

- image : smoke −m o n i t o r i n g −a l a rm : 1 . 0 . 0

The workload model also requires defining the exchanged mes-
sages between the components, by providing channels with a unique
name, and source and sink components. The messages exchanged
in this application follow the arrows present in figure 5.2, and this
information is specified as seen in code snippet 5.3.

Code snippets 5.3: YAML file fragment for the channels definition
of the smoke monitoring application.

channe l s :
- name: c h a n n e l −1−2

source : m e a s u r emen t
s ink : b a t c h i n g

- name: c h a n n e l −1−3
source : m e a s u r emen t
s ink : l e v e l − d e t e c t i o n

- name: c h a n n e l −2−4
source : b a t c h i n g
s ink : s t o r a g e

- name: c h a n n e l −3−4
source : l e v e l − d e t e c t i o n
s ink : s t o r a g e

- name: c h a n n e l −3−5
source : l e v e l − d e t e c t i o n
s ink : a l a rm

These channels are further grouped in three paths that will be
used as targets for the different scheduling policies. The data stor-
age path comprises the measurement, batching and storage com-
ponents; the event storage path includes the measurement, level
detection and storage components; and finally, the alarm path in-
cludes the measurement, level detection and alarm components. A
unique name for these paths and the list of channels that are part

123

5. ACOA assessment

of each of them need to be provided according to the workload
model. These paths have been characterized in code snippet 5.4.

Code snippets 5.4: YAML file fragment for the paths definition of
the smoke monitoring application.

paths :
- name: da ta − s t o r a g e

channe l s :
- channel −1−2
- channel −2−4

- name: e v e n t − s t o r a g e
channe l s :

- channel −1−3
- channel −3−4

- name: a l a rm
channe l s :

- channel −1−3
- channel −3−5

Some of the application components impose some constraints
that limit the nodes where they can be deployed. Themeasurement
component requires the node to have access to the smoke sensor
in order to obtain the data, and the alarm component requires the
node to have access to the driver’s dashboard in order to emit the
alarm, both from the first train. Additionally, the storage compo-
nent requires the node to be able to access a database. These con-
straints are implemented with the "require-label" constraint type,
using as values the labels previously set to the infrastructure nodes
as depicted in code snippet 5.5.

Code snippets 5.5: YAML file fragment for the constraints defini-
tion of the smoke monitoring application.

c on s t r a i n t s :
- t a r g e t s :

components :
- measurement

124

5.3. Railway use case

- alarm
type : r e q u i r e − l a b e l
value : t r a i n −1

- t a r g e t s :
components :

- measurement
type : r e q u i r e − l a b e l
value : s e c u r i t y − s e n s o r s

- t a r g e t s :
components :

- alarm
type : r e q u i r e − l a b e l
value : d a s h b o a r d

- t a r g e t s :
components :

- s to rage
type : r e q u i r e − l a b e l
value : d a t a b a s e

The other kind of policy, criteria, is used to optimize the place-
ment of each component attending to the application QoS. On the
one hand, the most critical path for the smoke monitoring applica-
tion is the alarm path. Alarm triggering needs to be performed in a
timely and reliable manner, as it is one of the security applications
of each train. Therefore, policies for minimizing the latency and
maximizing the reliability of this path are set. On the other hand,
both storage paths (data storage and event storage) are not time
sensitive. As the event information can be reconstructed from the
measured data, only the data storage path will be configured with
a reliability policy. This reliability has a weight four times smaller
than the alarm path due to the relative importance in comparison.
The target, type, and weight of each of these policies have been
characterized in code snippet 5.6 according to ACOA’s workload
model.

125

5. ACOA assessment

Code snippets 5.6: YAML file fragment for the criteria definition
of the smoke monitoring application.

c r i t e r i a :
- t a r g e t s :

paths :
- data−s to rage

type : e 2 e − r e l i a b i l i t y
weight : 0 . 2 5

- t a r g e t s :
paths :

- alarm
type : e 2 e − r e s p o n s e − t im e
weight : 1 . 0

- t a r g e t s :
paths :

- alarm
type : e 2 e − r e l i a b i l i t y
weight : 1 . 0

5.3.2.2 Speed profiling application

Speed profiling application’s goal is to determine which is the op-
timal speed for a train based on all the information available. This
includes, among other data, the expected arrival time, and the
position and speed of other surrounding trains. Computing these
speed profiles can prove to be resource demanding for nodes in the
train and it is offloaded to Cloud nodes.

The application has been implemented with seven components
as depicted in figure 5.3. Four different types of components take
part in this application, but some of them are replicated for every
train. The first component type is the telemetry acquisition com-
ponent that reads the GPS coordinates and train speed, needing
one instance per train. A message broker component is in charge
of routing all the collected data into the speed profiling algorithms,

126

5.3. Railway use case

as every algorithm requires the data from all the trains. The algo-
rithm for each train is executed in the corresponding profiler com-
ponent instance. The computed speed profiles are displayed in the
train dashboards for the driver by the visualization components.

Figure 5.3: Speed profiling application components.

Similar to the smoke monitoring application, code snippet 5.7
provides the basic skeleton of the YAML definition file, and all the
relevant information is included afterwards.

Code snippets 5.7: YAML file structure for the speed profiling
application.
ap iVers ion : a c o a / v1
kind : A p p l i c a t i o n
metadata :

name: s p e e d − p r o f i l i n g
spec :

components :
// . . .

channe l s :
// . . .

paths :
// . . .

c o n s t r a i n t s :
// . . .

c r i t e r i a :
// . . .

127

5. ACOA assessment

The components field will contain the previously described com-
ponents. All the necessary components are named and provided
with the image that implements their container, as seen in code
snippet 5.8.

Code snippets 5.8: YAML file fragment for the components defini-
tion of the speed profiling application.

components :
- metadata :

name: t e l e m e t r y −1
spec :

con ta in e r s :
- image : s p e e d − p r o f i l i n g − t e l e m e t r y : 1 . 0 . 0

- metadata :
name: t e l e m e t r y −2

spec :
con ta in e r s :
- image : s p e e d − p r o f i l i n g − t e l e m e t r y : 1 . 0 . 0

- metadata :
name: me s s a g e −b r o k e r

spec :
con ta in e r s :

- image : s p e e d − p r o f i l i n g −mes s a g e −b r o k e r : 1 . 0 . 0
- metadata :

name: p r o f i l e r −1
spec :

con ta in e r s :
- image : s p e e d − p r o f i l i n g − p r o f i l e r : 1 . 0 . 0

- metadata :
name: p r o f i l e r −2

spec :
con ta in e r s :

- image : s p e e d − p r o f i l i n g − p r o f i l e r : 1 . 0 . 0
- metadata :

name: v i s u a l i z a t i o n −1
spec :

con ta in e r s :
- image : s p e e d − p r o f i l i n g − v i s u a l i z a t i o n : 1 . 0 . 0

- metadata :
name: v i s u a l i z a t i o n −2

spec :

128

5.3. Railway use case

con ta in e r s :
- image : s p e e d − p r o f i l i n g − v i s u a l i z a t i o n : 1 . 0 . 0

The messages exchanged in this application follow the arrows
presented in figure 5.3. The presence of a message broker compo-
nent simplifies the message flow, as telemetry components publish
their data to the broker and profiler components subscribe to it,
instead of requiring each telemetry component to send messages to
every profiler. The message exchanged among all the components
are represented by channels, which need to be provided to ACOA
by defining their names, as well as the source and sink components,
as seen in code snippet 5.9.

Code snippets 5.9: YAML file fragment for the channels definition
of the speed profiling application.

channe l s :
- name: c h a n n e l −1−3

source : t e l e m e t r y −1
s ink : me s s a g e −b r o k e r

- name: c h a n n e l −2−3
source : t e l e m e t r y −2
s ink : me s s a g e −b r o k e r

- name: c h a n n e l −3−4
source : me s s a g e −b r o k e r
s ink : p r o f i l e r −1

- name: c h a n n e l −3−5
source : me s s a g e −b r o k e r
s ink : p r o f i l e r −2

- name: c h a n n e l −4−6
source : p r o f i l e r −1
s ink : v i s u a l i z a t i o n −1

- name: c h a n n e l −5−7
source : p r o f i l e r −2
s ink : v i s u a l i z a t i o n −2

129

5. ACOA assessment

These channels follow two different paths, one for each train,
and they will be used as targets for the different scheduling policies.
These paths have been characterized in code snippet 5.10.

Code snippets 5.10: YAML file fragment for the paths definition
of the speed profiling application.

paths :
- name: t r a i n −1

channe l s :
- channel −1−3
- channel −3−4
- channel −4−6

- name: t r a i n −2
channe l s :

- channel −2−3
- channel −3−5
- channel −5−7

Some of these components impose some constraints that limit
the nodes where they can be deployed. The telemetry components
require the node to have access to the train’s telemetry data, the
profiler components require a Cloud node with high processing
power and the visualization components need to have access to
the driver’s dashboard. These constraints are implemented with
the "require-label" constraint type, using as values the labels pre-
viously set to the infrastructure nodes, and they are depicted in
code snippet 5.11.

Code snippets 5.11: YAML file fragment for the constraints defi-
nition of the speed profiling application.

c on s t r a i n t s :
- t a r g e t s :

components :
- te lemetry −1
- v i s u a l i z a t i o n −1

type : r e q u i r e − l a b e l

130

5.3. Railway use case

value : t r a i n −1
- t a r g e t s :

components :
- te lemetry −2
- v i s u a l i z a t i o n −2

type : r e q u i r e − l a b e l
value : t r a i n −2

- t a r g e t s :
components :

- te lemetry −1
- te lemetry −2

type : r e q u i r e − l a b e l
value : t e l e m e t r y

- t a r g e t s :
components :

- v i s u a l i z a t i o n −1
- v i s u a l i z a t i o n −2

type : r e q u i r e − l a b e l
value : d a s h b o a r d

- t a r g e t s :
components :

- p r o f i l e r −1
- p r o f i l e r −2

type : r e q u i r e − l a b e l
value : f a s t − p r o c e s s o r

Aside from these constraints, additional policies have been de-
fined to improve the application’s QoS. No reliability policy is used
in this case because the publisher–subscriber pattern followed by
the message broker already provides it. Each of the paths has been
configured with a policy minimizing the e2e response time in order
to provide a quick response to unexpected changes, such as delays
in other trains. These optimization criteria have been described in
code snippet 5.12.

Code snippets 5.12: YAML file fragment for the criteria definition
of the speed profiling application.

c r i t e r i a :
- t a r g e t s :

131

5. ACOA assessment

paths :
- t ra in −1

type : e 2 e − r e s p o n s e − t im e
weight : 1 . 0

- t a r g e t s :
paths :

- t ra in −2
type : e 2 e − r e s p o n s e − t im e
weight : 1 . 0

5.3.3 Deployment evaluation

In order to compare the behavior of the proposed architecture,
the same applications have been deployed in the aforementioned
infrastructure using both base Kubernetes and ACOA.

Kubernetes is not aware of the application abstraction, so the
above applications need to be transformed into a set of pods. The
list of components in code snippets 5.2 and 5.8 are PodTemplateSpec
instances, so they can be used as the pod spec fields. The label-
based constraints present in code snippets 5.5 and 5.11 can also
be defined in Kubernetes, despite using a different syntax. An
example of a pod definition for the smoke monitoring application
measurement component can be seen in code snippet 5.13, where
K8s syntax for defining the constraints can be seen.

Code snippets 5.13: Pod declaration for the smoke monitoring ap-
plication measurement component.
ap iVers ion : v1
kind : Pod
metadata :

name: smoke −m o n i t o r i n g −mea su r emen t
spec :

con ta in e r s :
- image : smoke −m o n i t o r i n g −mea su r emen t : 1 . 0 . 0
a f f i n i t y :

132

5.3. Railway use case

nodeAf f i n i ty :
requiredDuringSchedul ingIgnoredDuringExecut ion :

nodeSelectorTerms :
- matchExpressions :

- key: t r a i n −1
operator : E x i s t s

- key: s e c u r i t y − s e n s o r s
operator : E x i s t s

As ACOA’s scheduling decision is based on the optimization
criteria, the deployment is deterministic for a given network state
snapshot. However, the channel, path and optimization criteria
concepts cannot be included in Kubernetes. Therefore, the base
K8s scheduler selects one of the possible nodes at random from the
ones that fulfill the specified constraints. The number of potential
deployment configurations for an application is the product of the
number of possible nodes for each component, after applying their
constraints.

ACOA’s default application scheduler grades each of the crite-
ria defined for each application. The weighted mean of all these
criteria scores is used to select the best deployment configuration.
This means that all criteria scores need to be normalized. The ac-
cumulated success rate, obtained by multiplying the success rates
along the whole path, is already normalized. However, the accu-
mulated latency, obtained from the sum of the latencies through
the whole path, is not normalized. In order to normalize it, the
accumulated latency of the best deployment for each snapshot, i.e.,
the minimum accumulated latency (lmin), is divided by the accu-
mulated latency of each deployment configuration (li) to obtain its
score (si), as seen in equation 5.1.

133

5. ACOA assessment

si =
lmin

li
(5.1)

The best and worst potential deployments for the smoke moni-
toring application, as graded by the aforementioned policies, have
been depicted in table 5.5. ACOA selects the best graded deploy-
ment. Having 4800 potential deployments, the chance that the de-
fault Kubernetes scheduler chooses the same deployment as ACOA
is 0.02%.

Table 5.5: Smoke monitoring deployment nodes selection.

Component Possible
Nodes

Best
Case

Worst
Case

1 Measurement 13 13 13

2 Batching 1–20 8 6

3 Level detection 1–20 13 10

4 Storage 1–12 8 7

5 Alarm 14 14 14

Score 98% 43%

As expected, the measurement and alarm components are fixed
to nodes 13 and 14, respectively, as they are dependent on some
hardware that is only accessible by those nodes. The storage com-
ponent is deployed in one of the headquarter or cloud provider
nodes as those are the ones that can support a database. The dif-
ference between the best and worst cases relies on the deployment
of the batching and level detection components. On the one hand,
the best-case scenario (figure 5.4) places those components with
other components in their corresponding paths in the same node.

134

5.3. Railway use case

On the other hand, the worst-case scenario (figure 5.5) does not
only place them in different nodes, but from different locations.
This means extra hops on higher latency and lower success rate
links for the worst-case scenario, which explains the low score for
this case.

Similarly, the best and worst potential deployments for the
speed profiling application have been depicted in table 5.6. ACOA
always selects the best graded deployment. The number of poten-
tial deployments is a bit lower, 2880, resulting in a 0.03% chance
of Kubernetes choosing the same scenario as ACOA.

Table 5.6: Speed profiling deployment nodes selection.

Component Possible
Nodes

Best
Case

Worst
Case

1 Telemetry 1 15 15 15

2 Telemetry 2 18 18 18

3 Message broker 1–20 6 12

4 Profiler 1 1–12 5 2

5 Profiler 2 1–12 6 3

6 Visualization 1 14 14 14

7 Visualization 2 17 17 17

Score 98% 62%

As expected, the telemetry and visualization components are
fixed to nodes 15, 18, 14, and 17, respectively. The difference be-
tween both cases is that the best-case scenario (figure 5.6) deploys
all of them in the same location, while the worst-case scenario (fig-
ure 5.7) deploys the message broker in a cloud-provider node and
the two profilers are placed in the headquarter nodes. This requires

135

5. ACOA assessment

Figure 5.4: Smoke monitoring application best-case deployment.

Figure 5.5: Smoke monitoring application worst-case deployment.

an additional hop between datacenters that is more expensive time-
wise.

136

5.4. Theoretical bounds for e2e response time scores

Figure 5.6: Speed profiling application best case deployment.

Figure 5.7: Speed profiling application worst case deployment.

5.4 Theoretical bounds for e2e response

time scores

From the above railway use case, regarding e2e response time
scores, it can be concluded that the main difference between the

137

5. ACOA assessment

best and the worst possible deployment configurations relies on the
number of hops that messages need to perform between locations.
This effect is due to the fact that latencies between locations are an
order of magnitude higher than latencies among the same location.

There are other factors (e.g., the number of hops between com-
ponents) that also affect the final score of a deployment configura-
tion, but its effect cannot be so easily appreciated from the above
results. In order to see the influence of this additional factors,
the theoretical lower bound for the score of an e2e response time
criterion can be calculated.

The latencies between nodes in the system are simplified to
two different values: one for nodes in the same location (lsame) and
another one for links joining two different locations (ldiff). The
ratio of these two values (lratio) can be computed as depicted in
equation 5.2. This ratio depends on the infrastructure, and, for
the railway use case above, it is around 20.

lratio =
ldiff
lsame

(5.2)

Another important factor is how many hops are forced between
different locations (hdiff), and how many hops are allowed in the
same location (hsame), which add up to the total number of hops
(h). These parameters depend on the workload. The event storage
path of smoke monitoring application has a total of two hops and
zero forced ones between locations, while both paths of the speed
profiling application have a total number of three hops, two of them
forced between locations.

The score of an e2e response time criterion for a specific de-
ployment (si) is computed as the smallest accumulated latency of

138

5.4. Theoretical bounds for e2e response time scores

all the potential deployments (lmin) divided by the accumulated
latency of the specific deployment (li), as seen in equation 5.1.
Theoretically, the smallest accumulated latency only has the en-
forced hops between locations, while the rest are inside the same
location, which can be expressed as in equation 5.3.

lmin = hdiff ∗ ldiff + hsame ∗ lsame (5.3)

The worst-case scenario, i.e., the highest potential value for
a deployment configuration’s accumulated latency (lworst), implies
that all hops span multiple locations, as expressed in equation 5.4.

lworst = hldiff (5.4)

Therefore, the formula for the worst potential score can be sim-
plified according to equation 5.5. This score has two terms: one
constant based on the workload characterization (hdiff/h), and the
other depends on the ratio between the latencies among nodes of
same or different locations.

sworst =
lmin

lworst

=
hdiff
h

ldiff
ldiff

+
hsame

h

lsame

ldiff
=
hdiff
h

+
hsame

h

1

lratio
(5.5)

Figure 5.8 shows the score for the worst potential deployment
configuration. The horizontal axis is the latency ratio in a log-
arithmic scale, while the vertical axis represents the score. The
orange line is the constant term (hdiff/h), while the blue line is
the whole score. A latency ratio of one means that there is no
difference between the two latencies, and therefore the score would

139

5. ACOA assessment

be 100%. As the difference between the two latencies increases, the
score rapidly approaches the constant term, which is just based on
the workload characterization.

Figure 5.8: Theoretical worst-case score.

For the speed profiling application, the theoretical worst-case
score can be computed with the above provided formula. The result
is 68% (as seen in equation 5.6), which is higher than the score
obtained in the previous section for the worst-case deployment.
This happens because one of the simplifications was to reduce all
latencies to just two values.

sworst =
2

3
+

1

3

1

20
= 0.68 (5.6)

140

5.5. Conclusions

Without this simplification, the last step in equation 5.5 cannot
be performed. Latencies ldiff and lsame would take smaller values
for the best accumulated latency (lmin) than for the worst-case
scenario (lworst). Considering the biggest and lowest latencies for
links that have node 15 or 18 as the source, and links that have
node 14 or 17 as the sink, the theoretical bound is placed at 55%
(as seen in equation 5.7). The latency variability of the network
further reduces the theoretical lower bound.

sworst =
2

3

20.13

24.78
+

1

3

0.80

24.78
= 0.55 (5.7)

It can be concluded that both the number of hops that are not
forced to be to different locations, and the latency variability of
the network, contribute to reducing the theoretical lower bound for
the score. This smaller bound increases the improvement achieved
by ACOA over orchestration architectures that do not consider
application QoS requirements.

5.5 Conclusions

Several tests have been performed to assess the validity of ACOA
and its fulfillment of the identified requirements.

The impact of the shared-state orchestration scheme used for
ACOA has been validated [57]. The required mean deployment
time has been measured for different number of components and
schedulers, showing an improvement for every studied scenario.
The appearance of collisions during these tests has also been mea-
sured. Their frequency has been proved to be orders of magnitude
lower than the mean deployment time reduction, proving that the

141

5. ACOA assessment

use of the shared-state scheme improves the scalability of the ar-
chitecture (R9).

A use case in the railway domain has been used to validate
ACOA. An infrastructure of 20 nodes spread among five different
locations has been used, simulating high-end nodes in headquar-
ter or cloud-provider datacenters as well as resource-constrained
nodes in trains and stations (R1). Two applications with differ-
ent QoS requirements (R3) have been defined in a human readable
YAML file (R4). Based on the node and network data gathered
by the architecture (R6 & R7), ACOA has been able to select the
best deployment configuration among thousands of possibilities to
optimize the specified application QoS requirements (R8).

This use case highlights the importance of considering applica-
tion QoS requirements during the scheduling algorithm, by illus-
trating the difference between the best possible deployment config-
uration and the worst case. The influence that some workload pa-
rameters (such as the number of messages exchanged in each path)
and infrastructure metrics (like the latency variability) have also
been analyzed. The theoretical results obtained by this method
match the empirical results obtained during the use case assess-
ment.

142

CHAPTER 6
Conclusions and future lines

“There is no real ending. It’s just the place where you stop the
story.”

- Frank Herbert

145

6.1. Conclusions

6.1 Conclusions

The present work contributes with an orchestration architecture
for the Edge to Cloud continuum that is aware of the application
QoS requirements. ACOA manages distributed containerized ap-
plications at runtime and dynamically reconfigure the deployment
of their components over the infrastructure nodes to satisfy QoS
requirements.

As Edge to Cloud continuum infrastructures comprise a large
number of nodes that present very different characteristics, an in-
frastructure model is proposed to characterize the whole cluster. It
includes both nodes, which represent their corresponding physical
device, and links that define the network state.

Furthermore, a workload model is also proposed to organize
all the required information about each application in order to
take into account the QoS requirements for the scheduling and
deployment algorithms.

The information related to these two models is gathered, stored,
and consumed by the different system components in order to per-
form the orchestration tasks. Node daemons manage the contain-
ers in each node and monitoring daemons capture the state of the
whole cluster, including the network. The data obtained by these
daemons and the application definitions provided by the users are
stored in the state database through the API server. The sys-
tem scheduler consumes this information to deploy the application
schedulers, which also consume it when executing their QoS-aware
scheduling algorithms. These application schedulers (one per appli-
cation) review the selected deployment periodically to dynamically
reconfigure if necessary.

147

6. Conclusions and future lines

The increased complexity due to application QoS requirements
requires a more scalable approach than the current centralized ones.
Therefore, an orchestration scheme with multiple concurrent sched-
ulers has been used. This approach not only increases the scalabil-
ity of the orchestration architecture, but it also enables customizing
the scheduling algorithm to deploy each application based on its
non-functional requirements.

The dynamic scheduling and deployment algorithms require to
know the current network state. Latency, jitter, and packet-loss
ratio measurements for each link in the cluster are provided by the
monitoring daemons. They implement SWIM-NSM, a new proto-
col designed for this purpose with lightweight-ness and scalability
as its main goals.

ACOA has been implemented on top of Kubernetes. For this
purpose, Kubernetes has been extended to include: 1) link ab-
straction for the infrastructure model to make it network-aware, 2)
applications and components for the workload model to provide a
higher abstraction level for the users and to improve the schedul-
ing customization capabilities, and 3) new system components to
implement the distributed monitoring and scheduling, as well as
the above specified abstractions.

Several tests have been carried out to assess the suitability of
ACOA for the Cloud to Edge continuum. First, the performance
of the multiple scheduler approach is evaluated. Next, a use case
scenario with two different applications from the railway vertical
domain is used to compare ACOA with base Kubernetes schedul-
ing. Finally, a theoretical analysis to consider the impact of the
number of nodes and the network variability in the score used to
select the best deployment is also performed.

148

6.2. Future lines

The results of this work have been published in several inter-
national conferences and indexed magazines with renown in the
research field:

[24] Adrián Orive et al. “Passive Network State Monitoring for
Dynamic Resource Management in Industry 4.0 Fog Archi-
tectures”. In: Fourteenth International Conference on Au-
tomation Science and Engineering (CASE). Munich, Ger-
many: IEEE, 2018, pp. 1414–1419. doi: 10.1109/COASE.
2018.8560475.

[57] Adrián Orive et al. “Novel orchestration architecture for Fog
computing”. In: Seventeenth International Conference on In-
dustrial Informatics (INDINN). Helsinki, Finland: IEEE, 2019.
doi: 10.1109/INDIN41052.2019.8972087.

[58] Adrián Orive et al. “Quality of Service Aware Orchestration
for Cloud–Edge Continuum Applications”. In: Sensors 22.5
(2022). issn: 1424-8220. doi: 10.3390/s22051755.

6.2 Future lines

ACOA offers several important advantages compared to existing
approaches, but there are some topics that still need to be further
researched.

The present work has not considered security and privacy, which
is a major concern in the related field. Kubernetes provides ba-
sic authorization mechanisms to prevent non-allowed users to de-
ploy potentially harmful applications. Application implementa-
tions should also use secure communications between their com-
ponents. However, studying the security and privacy subject from

149

6. Conclusions and future lines

an architecture point of view is still an open research topic from
which ACOA would benefit.

The dynamic redeployment being used in ACOA is based on
a configurable period, and a score improvement threshold to pre-
vent constant changes with minimal impact. These values require
domain knowledge from the user as different applications or do-
mains require different values. This value tuning process could be
automated with Artificial Intelligence (AI) approaches. These ap-
proaches could adapt these configurations parameters based on the
variability of the network or the criticality of the application being
deployed.

Regarding the network monitoring protocol, measuring band-
width in a non-intrusive manner is still an open research topic.
Adding this fourth metric to the already existing latency, jitter
and packet-loss ratio would fully characterize each link. However,
all the existing methods are based on overflowing the link with
packets, which would affect the performance of the applications
being executed in ACOA.

150

APPENDIX A
SWIM-NSM wire protocol

153

A. SWIM-NSM wire protocol

A.1 Introduction

Short Protocol Version
SWIM-NSM SWIM Network State Monitoring v1.0

This appendix describes the wire-format of the messages ex-
changed by SWIM-NSM clients in order to keep an up-to-date list
of active nodes in the group and compute the network metrics of
the whole mesh.

Messages can be categorized into detection and dissemination
messages. Every package transmission will be composed of a sin-
gle detection message and any number of dissemination messages
that will allow achieving the infectious-style gossiping behavior of
SWIM. Additionally, they will also add a protocol identification
header.

A.2 Header

The packet header is composed of a mandatory version block and
additional blocks defined by each version.

A.2.1 Version block

The goal of this block is to identify the SWIM-NSM protocol ver-
sion so that the messages in this package can be decoded accord-
ingly. A variable-length field is used for this purpose, where the
most significant bit in each byte indicates if an additional byte is
required to represent the version.

After removing the most significant bit of every byte, the re-
maining bits are divided in two bit-arrays of the same length, with

154

A.3. Detection message

the binary representation of the major and minor version numbers
respectively. In case of an odd number of bits, the bit-array corre-
sponding to the major version will be one bit longer than the one
corresponding to the minor version.

Table A.1: Maximum major and minor version values per block
size.

Block size Max. major version Max. minor version
1 byte 15 7
2 bytes 127 127

The smallest version block size that fits the protocol version
must be used. The maximum supported values of the major and
minor versions for each header size is represented in table A.1. For
the version described in this appendix (v1.0), the header is shown
in table A.2.

Table A.2: Version block for v1.0.
b7 b6 b5 b4 b3 b2 b1 b0
0 0 0 0 1 0 0 0

A.2.2 Additional blocks

The version described in this appendix (v1.0) does not define any
additional header block.

A.3 Detection message

A single detection message is encoded after the header. This mes-
sage can be one of the four following types:

• Ping

155

A. SWIM-NSM wire protocol

• Ping request
• Ack
• Forward ack

These messages are composed of a detection message header
block, a token block, and additional blocks defined by each message
kind.

A.3.1 Common detection message blocks

A.3.1.1 Detection message header block

The detection message header block’s length is fixed to 1 byte. The
four most significant bits are used for type-specific flags, while the
two less significant bits are used to identify the type of detection
message. The remaining two bits are reserved for future use and
should always be unset. Table A.3 shows the bit representation of
the headers of each detection type.

Table A.3: Detection message header block.

Message type b7 b6 b5 b4 b3 b2 b1 b0
Ping * * * * 0 0 0 0
Ping request * * * * 0 0 0 1
Ack * * * * 0 0 1 0
Forward ack * * * * 0 0 1 1

A.3.1.2 Token block

The token block is a two byte fixed length integer used to iden-
tify which detection message is being answered to. Ping and ping
request messages generate a unique (per client) 2-byte token and

156

A.3. Detection message

encode them in this block, and ack and forward ack messages use
the same token as the ping or ping request they are answering to.

Note: the easiest way to implement this is by using an incre-
mental integer, but this behavior is not enforced by the protocol
definition.

A.3.2 Ping detection message

This detection message is sent to check the status of another node.
In this context, source refers to the client sending this packet.

A.3.2.1 Header block

The ping detection message defines two flags in the most significant
bits of the detection message header block. The two remaining bits
must be unset. Table A.4 shows the bit representation of the ping
detection message header block.

Table A.4: Ping detection message header block.

b7 b6 b5 b4 b3 b2 b1 b0
Source IP flag Source port flag 0 0 0 0 0 0

• The source IP flag determines if the provided source IP uses
IPv4 (unset) or IPv6 (set) format.

• The source port flag determines if a non-default port is being
used by the source client.

A.3.2.2 Token block

As described in the common detection message blocks section (A.3.1.2).

157

A. SWIM-NSM wire protocol

A.3.2.3 Source IP block

This block defines the IP address of the client that sent this mes-
sage.

This block is mandatory and its length can be either 4 bytes
(source IP flag unset) or 16 bytes (source IP flag set).

A.3.2.4 Source port block

This block specifies the non-default port that is being used by the
client that sent this message.

This block is optional (only present if the source port flag was
set) and its length is 2 bytes.

A.3.3 Ping request detection message

This message is sent to request another node to check the status of
a third one. In this context, source refers to the client sending this
message, while target refers to the client that needs to be pinged.

A.3.3.1 Header block

The ping request detection message defines four flags in the most
significant bits of the detection message header block. Table A.5
shows the bit representation of the ping request detection message
header block.

Table A.5: Ping request detection message header block.

b7 b6 b5 b4 b3 b2 b1 b0
Src. IP Src. port Tgt. IP Tgt. port 0 0 0 1

158

A.3. Detection message

• The source IP flag determines if the provided source IP uses
IPv4 (unset) or IPv6 (set) format.

• The source port flag determines if a non-default port is being
used by the source client.

• The target IP flag determines if the provided target IP uses
IPv4 (unset) or IPv6 (set) format.

• The target port flag determines if a non-default port is being
used by the target client.

A.3.3.2 Token block

As described in the common detection message blocks section (A.3.1.2).

A.3.3.3 Source IP block

This block defines the IP address of the client that sent this mes-
sage.

This block is mandatory and its length can be either 4 bytes
(source IP flag unset) or 16 bytes (source IP flag set).

A.3.3.4 Source port block

This block specifies the non-default port that is being used by the
client that sent this message.

This block is optional (only present if the source port flag was
set) and its length is 2 bytes.

A.3.3.5 Target IP block

This block defines the IP address of the client that needs to be
pinged by the receiver of this message.

159

A. SWIM-NSM wire protocol

This block is mandatory and its length can be either 4 bytes
(target IP flag unset) or 16 bytes (target IP flag set).

A.3.3.6 Target port block

This block specifies the non-default port that is being used by the
client that needs to be pinged by the receiver of this message.

This block is optional (only present if the target port flag was
set) and its length is 2 bytes.

A.3.4 Ack detection message

This message is sent to answer a ping detection message.

A.3.4.1 Header block

The ack detection message defines no flag. The four remaining bits
must be unset. Table A.6 shows the bit representation of the ack
detection message header block.

Table A.6: Ack detection message header block.

b7 b6 b5 b4 b3 b2 b1 b0
0 0 0 0 0 0 1 0

A.3.4.2 Token block

As described in the common detection message blocks section (A.3.1.2).

A.3.4.3 Duration block

The duration block specifies the elapsed time between receiving the
ping detection message and sending the ack detection message in
microseconds (µs).

160

A.3. Detection message

This block is mandatory and its length is 4 bytes.

Note: the precision and length of this block establish a practical
upper bound to the protocol’s timeout at 4 294 967 295 µs (i.e., 1
h 11 min 34 s 967 ms 295 µs).

A.3.5 Forward ack detection message

This message is sent to answer a ping request detection message.

A.3.5.1 Header block

The forward ack detection message defines a single flag in the most
significant bit. The three remaining bits must be unset. Table A.7
shows the bit representation of the forward ack detection message
header block.

Table A.7: Forward ack detection message header block.

b7 b6 b5 b4 b3 b2 b1 b0
Fail flag 0 0 0 0 0 1 1

• The fail flag specifies if the ping requested has succeeded
(unset) or failed (set).

A.3.5.2 Token block

As described in the common detection message blocks section (A.3.1.2).

A.3.5.3 Duration block

The duration block specifies the elapsed time between receiving
the ping request detection message and sending the forward ack
detection message in microseconds (µs).

161

A. SWIM-NSM wire protocol

This block is mandatory and its length is 4 bytes.

Note: the precision and length of this block establish a practical
upper bound to the protocol’s timeout at 4 294 967 295 µs (i.e., 1
h 11 min 34 s 967 ms 295 µs).

A.4 Dissemination messages

Any number of dissemination messages may be encoded after the
detection message, in order to spread gossips. These messages can
be one of the three following types:

• Alive
• Suspect
• Confirm

These messages are composed by a dissemination message header
block, some dissemination message type specific blocks and an in-
carnation block.

A.4.1 Common dissemination message blocks

A.4.1.1 Dissemination message header block

The dissemination message header block’s length is fixed to 1 byte.
The four most significant bits are used for type-specific flags, while
the two less significant bits are used to identify the type of dissemi-
nation message. The remaining two bits are reserved for future use
and should always be unset. Table A.8 shows the bit representation
of the headers of each dissemination type.

162

A.4. Dissemination messages

Table A.8: Dissemination message header block.

Message type b7 b6 b5 b4 b3 b2 b1 b0
Alive * * * * 0 0 0 0
Suspect * * * * 0 0 0 1
Confirm * * * * 0 0 1 0

A.4.1.2 Incarnation block

The incarnation block is a variable length incremental integer num-
ber that is used to determine which dissemination message should
take precedence when multiple contradictory dissemination mes-
sages are being gossiped simultaneously.

A variable amount of leading set bits, followed by a single unset
bit, is used as a prefix. The number of leading set bits is the
number of additional bytes that are used to encode this variable-
length integer. After loading the additional bytes, the prefix is
removed, and the remaining bit array is interpreted as an unsigned
integer.

Several examples using this variable-length integer representa-
tion are provided down below:

Table A.9 shows the bit representation of number 1. It is com-
posed of a single bit prefix (0) indicating that no extra bytes are
required, and the number representation in the remaining 7 bits
(000 0001).

Table A.9: Variable length encoding of 1.

Byte number b7 b6 b5 b4 b3 b2 b1 b0
Byte 1 0 0 0 0 0 0 0 1

163

A. SWIM-NSM wire protocol

Table A.10 shows the bit representation of number 127. It is
composed of a single bit prefix (0) indicating that no extra bytes
are required, and the number representation in the remaining 7
bits (111 1111).

Table A.10: Variable length encoding of 127.

Byte number b7 b6 b5 b4 b3 b2 b1 b0
Byte 1 0 1 1 1 1 1 1 1

Table A.11 shows the bit representation of number 128. It is
composed of a two bit prefix (10) indicating that one extra byte is
required, and the number representation in the remaining 14 bits
(00 0000 1000 0000).

Table A.11: Variable length encoding of 128.

Byte number b7 b6 b5 b4 b3 b2 b1 b0
Byte 1 1 0 0 0 0 0 0 0
Byte 2 1 0 0 0 0 0 0 0

Table A.12 shows the bit representation of number 72 057 594
037 927 936. It is composed of a nine bit prefix (1111 1111 0)
indicating that eight extra bytes are required, and the number
representation in the remaining 71 bits (0000000 00000001 followed
by 7 fully unset bytes).

A.4.2 Alive dissemination message

This message is sent to specify that a node is alive. It can only
be generated by itself, but can be gossiped by all the nodes in the
system.

164

A.4. Dissemination messages

Table A.12: Variable length encoding of 72 057 594 037 927 936.

Byte number b7 b6 b5 b4 b3 b2 b1 b0
Byte 1 1 1 1 1 1 1 1 1
Byte 2 0 0 0 0 0 0 0 0
Byte 3 0 0 0 0 0 0 0 1
Byte 4 0 0 0 0 0 0 0 0
Byte 5 0 0 0 0 0 0 0 0
Byte 6 0 0 0 0 0 0 0 0
Byte 7 0 0 0 0 0 0 0 0
Byte 8 0 0 0 0 0 0 0 0
Byte 9 0 0 0 0 0 0 0 0
Byte 10 0 0 0 0 0 0 0 0

A.4.2.1 Header block

The alive dissemination message defines two flags in the most sig-
nificant bits of the dissemination message header block. The two
remaining bits must be unset. Table A.13 shows the bit represen-
tation of the alive dissemination message header block.

Table A.13: Alive dissemination message header block.

b7 b6 b5 b4 b3 b2 b1 b0
IP flag Port flag 0 0 0 0 0 0

• The IP flag determines if the provided IP uses IPv4 (unset)
or IPv6 (set) format.

• The port flag determines if a non-default port is being used
by the client.

A.4.2.2 IP block

This block defines the IP address of the client that claims to be
alive.

165

A. SWIM-NSM wire protocol

This block is mandatory and its length can be either 4 bytes
(IP flag unset) or 16 bytes (IP flag set).

A.4.2.3 Port block

This block specifies the non-default port that is being used by the
client that claims to be alive.

This block is optional (only present if the port flag was set) and
its length is 2 bytes.

A.4.2.4 Incarnation block

As described in the common dissemination message blocks section
(A.4.1.2).

A.4.3 Suspect dissemination message

This message is sent to mark a node as suspicious of being down.

In this context, source refers to the client starting this suspicion,
while target refers to the client that is marked as suspicious.

A.4.3.1 Header block

The suspect dissemination message defines four flags in the most
significant bits of the dissemination message header block. Ta-
ble A.14 shows the bit representation of the suspect dissemination
message header block.

Table A.14: Suspect dissemination message header block.

b7 b6 b5 b4 b3 b2 b1 b0
Src. IP Src. port Tgt. IP Tgt. port 0 0 0 1

166

A.4. Dissemination messages

• The source IP flag determines if the provided source IP uses
IPv4 (unset) or IPv6 (set) format.

• The source port flag determines if a non-default port is being
used by the source client.

• The target IP flag determines if the provided target IP uses
IPv4 (unset) or IPv6 (set) format.

• The target port flag determines if a non-default port is being
used by the target client.

A.4.3.2 Source IP block

This block defines the IP address of the client that started the
suspicion.

This block is mandatory and its length can be either 4 bytes
(source IP flag unset) or 16 bytes (source IP flag set).

A.4.3.3 Source port block

This block specifies the non-default port that is being used by the
client that started the suspicion.

This block is optional (only present if the source port flag was
set) and its length is 2 bytes.

A.4.3.4 Target IP block

This block defines the IP address of the client that is being marked
as suspicious.

This block is mandatory and its length can be either 4 bytes
(target IP flag unset) or 16 bytes (target IP flag set).

167

A. SWIM-NSM wire protocol

A.4.3.5 Target port block

This block specifies the non-default port that is being used by the
client that is being marked as suspicious.

This block is optional (only present if the target port flag was
set) and its length is 2 bytes.

A.4.3.6 Incarnation block

As described in the common dissemination message blocks section
(A.4.1.2).

A.4.4 Confirm dissemination message

This message is sent to confirm that a node is down.

In this context, source refers to the client making the claim,
while target refers to the client that is down.

A.4.4.1 Header block

The confirm dissemination message defines four flags in the most
significant bits of the dissemination message header block. Ta-
ble A.15 shows the bit representation of the confirm dissemination
message header block.

Table A.15: Confirm dissemination message header block.

b7 b6 b5 b4 b3 b2 b1 b0
Src. IP Src. port Tgt. IP Tgt. port 0 0 1 0

• The source IP flag determines if the provided source IP uses
IPv4 (unset) or IPv6 (set) format.

168

A.4. Dissemination messages

• The source port flag determines if a non-default port is being
used by the source client.

• The target IP flag determines if the provided target IP uses
IPv4 (unset) or IPv6 (set) format.

• The target port flag determines if a non-default port is being
used by the target client.

A.4.4.2 Source IP block

This block defines the IP address of the client that made the claim
that a node was down.

This block is mandatory and its length can be either 4 bytes
(source IP flag unset) or 16 bytes (source IP flag set).

A.4.4.3 Source port block

This block specifies the non-default port that is being used by the
client that made the claim that a node was down.

This block is optional (only present if the source port flag was
set) and its length is 2 bytes.

A.4.4.4 Target IP block

This block defines the IP address of the client that is being marked
as down.

This block is mandatory and its length can be either 4 bytes
(target IP flag unset) or 16 bytes (target IP flag set).

169

A. SWIM-NSM wire protocol

A.4.4.5 Target port block

This block specifies the non-default port that is being used by the
client that is being marked as down.

This block is optional (only present if the target port flag was
set) and its length is 2 bytes.

A.4.4.6 Incarnation block

As described in the common dissemination message blocks section
(A.4.1.2).

170

References

[1] Ed Sperling. “Computing’s Swinging Pendulum”. In: Forbes
(Mar. 2010). url: https://www.forbes.com/2010/03/05/
cloud-computing-management-technology-cio-network-

data.html.

[2] Gordon Moore. “Cramming more components onto integrated
circuits”. In: Electronics 38.8 (Apr. 1965).

[3] Gordon Moore. “Excerpts from A Conversation with Gor-
don Moore: Moore’s Law”. In: (2005). url: http://large.
stanford.edu/courses/2012/ph250/lee1/docs/Excepts_

A_Conversation_with_Gordon_Moore.pdf.

[4] Edward Ashford Lee. “Cyber Physical Systems: Design Chal-
lenges”. In: International Symposium on Object-Oriented Real-
Time Distributed Computing. Orlando, FL, USA: IEEE, 2008.
doi: 10.1109/ISORC.2008.25.

[5] Ian Fuat Akyìldìz et al. “Wireless sensor networks: A survey”.
In: Computer Networks 38.4 (Mar. 2002), pp. 393–422. issn:
1389-1286. doi: 10.1016/S1389-1286(01)00302-4.

[6] Luigi Atzori, Antonio Iera, and Giacomo Morabito. “The In-
ternet of Things: A survey”. In: Computer Networks 54.15

173

References

(Oct. 2010), pp. 2787–2805. issn: 1389-1286. doi: 10.1016/
j.comnet.2010.05.010.

[7] Internet Engineering Task Force. IETF. [Online; accessed 13-
September-2022]. url: https://www.ietf.org/.

[8] Harald T. Alvestrand. A Mission Statement for the IETF.
RFC 3935. Oct. 2004. doi: 10.17487/RFC3935. url: https:
//www.rfc-editor.org/info/rfc3935.

[9] Guy Almes, Sunil Kalidindi, and Matthew Zekauskas. A One-
way Delay Metric for IPPM. RFC 2679. Sept. 1999. doi:
10.17487/RFC2679. url: https://www.rfc-editor.org/
info/rfc2679.

[10] Guy Almes et al. A One-Way Delay Metric for IP Perfor-
mance Metrics (IPPM). RFC 7679. Jan. 2016. doi: 10 .

17487/RFC7679. url: https://www.rfc- editor.org/
info/rfc7679.

[11] C. Demichelis and P. Chimento. IP Packet Delay Variation
Metric for IP Performance Metrics (IPPM). RFC 3393. Nov.
2002. doi: 10.17487/RFC3393. url: https://www.rfc-
editor.org/info/rfc3393.

[12] Guy Almes, Sunil Kalidindi, and Matthew Zekauskas. A One-
way Packet Loss Metric for IPPM. RFC 2680. Sept. 1999.
doi: 10.17487/RFC2680. url: https://www.rfc-editor.
org/info/rfc2680.

[13] Guy Almes et al. A One-Way Loss Metric for IP Perfor-
mance Metrics (IPPM). RFC 7680. Jan. 2016. doi: 10 .

17487/RFC7680. url: https://www.rfc- editor.org/
info/rfc7680.

174

References

[14] Joseph Ishac and Phil Chimento. Defining Network Capacity.
RFC 5136. Feb. 2008. doi: 10.17487/RFC5136. url: https:
//www.rfc-editor.org/info/rfc5136.

[15] Stanislav Shalunov et al. A One-way Active Measurement
Protocol (OWAMP). RFC 4656. Sept. 2006. doi: 10.17487/
RFC4656. url: https : / / www . rfc - editor . org / info /

rfc4656.

[16] René Serral, Albert Cabellos, and Jordi Domingo. “Network
performance assessment using adaptive trafficsampling”. In:
Ad Hoc and Sensor Networks, Wireless Networks, Next Gen-
eration Internet, 7th International IFIP-TC6 Networking Con-
ference. Singapore: Springer, 2008, pp. 252–263. isbn: 978-3-
540-79548-3. doi: 10.1007/978-3-540-79549-0_22.

[17] Han Hee Song and Praveen Yalagandula. “Real-time End-
to-end Network Monitoring in Large Distributed Systems”.
In: 2nd International Conference on Communication Systems
Software and Middleware. Bangalore, India: IEEE, 2007. isbn:
1-4244-0613-7. doi: 10.1109/COMSWA.2007.382612.

[18] Alaknantha Eswaradass, Xian-He Sun, and Ming Wu. “Net-
work Bandwidth Predictor (NBP): A System for Online Net-
work performance Forecasting”. In: 6th International Sympo-
sium on Cluster Computing and the Grid. Singapore: IEEE,
2006. isbn: 0-7695-2585-7. doi: 10.1109/CCGRID.2006.72.

[19] Ramana Rao Kompella et al. “Every Microsecond Counts:
Tracking Fine-Grain Latencies with a Lossy Difference Ag-
gregator”. In: SIGCOMM Computer Communication Review
39.4 (2009), pp. 255–266. issn: 0146-4833. doi: 10.1145/
1594977.1592599.

175

References

[20] Myungjin Lee, Nick Duffield, and Ramana Rao Kompella.
“Not All Microseconds Are Equal: Fine-Grained per-Flow
Measurements with Reference Latency Interpolation”. In: SIG-
COMM Computer Communication Review 40.4 (2010), pp. 27–
38. issn: 0146-4833. doi: 10.1145/1851275.1851188.

[21] Myungjin Lee, Nick Duffield, and Ramana Rao Kompella.
“MAPLE: A Scalable Architecture for Maintaining Packet
Latency Measurements”. In: Internet Measurement Confer-
ence. Boston, Massachusetts, USA: Association for Comput-
ing Machinery, Inc., 2012, pp. 101–114. isbn: 9781450317054.
doi: 10.1145/2398776.2398788.

[22] Donald Brown, James Leth, and James Vandendorpe. “Fault
recovery in a distributed processing system”. U.S. Patent
4710926A.

[23] Abhinandan Das, Indranil Gupta, and A. Motivala. “SWIM:
scalable weakly-consistent infection-style process group mem-
bership protocol”. In: Proceedings International Conference
on Dependable Systems and Networks. Washington, DC, USA:
IEEE, 2002. doi: 0.1109/DSN.2002.1028914.

[24] Adrián Orive et al. “Passive Network State Monitoring for
Dynamic Resource Management in Industry 4.0 Fog Archi-
tectures”. In: Fourteenth International Conference on Au-
tomation Science and Engineering (CASE). Munich, Ger-
many: IEEE, 2018, pp. 1414–1419. doi: 10.1109/COASE.
2018.8560475.

[25] Shane Snyder et al. “A Case for Epidemic Fault Detection
and Group Membership in HPC Storage Systems”. In: Inter-
national Workshop on Performance Modeling, Benchmark-

176

References

ing and Simularion of High Performance Computer Systems.
New Orleans, LA, USA: Springer, 2014, pp. 237–248. doi:
10.1007/978-3-319-17248-4_12.

[26] Abhishek Verma et al. “Large-scale cluster management at
Google with Borg”. In: European Conference on Computer
Systems (EuroSys). Bordeaux, France: Association for Com-
puting Machinery, Inc., 2015, pp. 1–17. isbn: 978-1-4503-
3238-5. doi: 10.1145/2741948.2741964.

[27] The Kubernetes Authors. Kubernetes. [Online; accessed 02-
January-2023]. url: https://kubernetes.io/.

[28] Docker Inc. Docker Swarm. [Online; accessed 02-January-
2023]. url: https://docs.docker.com/engine/swarm/.

[29] Michael Isard et al. “Quincy: Fair Scheduling for Distributed
Computing Clusters”. In: Symposium on Operating System
Principles (SOSP). Big Sky, MT, USA: Association for Com-
puting Machinery, Inc., 2009, pp. 261–276. isbn: 978-1-60558-
752-3. doi: 10.1145/1629575.1629601.

[30] Benjamin Hindman et al. “Mesos: A Platform for Fine-Grained
Resource Sharing in the Data Center”. In: Symposium on Net-
worked System Design and Implementation (NSDI). Boston,
MA, USA: USENIX, 2011, pp. 295–308. doi: 10 . 5555 /

1972457.1972488.

[31] Vinod Kumar Vavilapalli et al. “Apache Hadoop YARN: yet
another resource negotiator”. In: Symposium on Cloud Com-
puting (SOCC). Santa Clara, CA, USA: Association for Com-
puting Machinery, Inc., 2013, pp. 1–16. isbn: 978-1-4503-
2428-1. doi: 10.1145/2523616.2523633.

177

References

[32] Malte Schwarzkopf et al. “Omega: flexible, scalable sched-
ulers for large compute clusters”. In: European Conference on
Computer Systems (EuroSys). Prague, Czech Republic: As-
sociation for Computing Machinery, Inc., 2013, pp. 351–364.
isbn: 978-1-4503-1994-2. doi: 10.1145/2465351.2465386.

[33] Eric Boutin et al. “Apollo: Scalable and Coordinated Schedul-
ing for Cloud-Scale Computing”. In: Symposium on Operating
System Design and Implementation (OSDI). Broomfield, CO,
USA: USENIX, 2014, pp. 285–300. isbn: 978-1-931971-16-4.
doi: 10.5555/2685048.2685071.

[34] HashiCorp. Nomad scheduling. [Online; accessed 02-January-
2023]. url: https://developer.hashicorp.com/nomad/
docs/concepts/scheduling.

[35] Kay Ousterhout et al. “Sparrow: distributed, low latency
scheduling”. In: Symposium on Operating System Principles
(SOSP). Farminton, PA, USA: Association for Computing
Machinery, Inc., 2013, pp. 69–84. isbn: 978-1-4503-2388-8.
doi: 10.1145/2517349.2522716.

[36] Karima Velasquez et al. “Service Orchestration in Fog En-
vironments”. In: International Conference on Future Inter-
net of Things and Cloud (FiCloud). Prague, Czech Repub-
lic: IEEE, 2017, pp. 329–336. isbn: 978-1-5386-2074-8. doi:
10.1109/FiCloud.2017.49.

[37] Mathias Santos de Brito et al. “A service orchestration ar-
chitecture for Fog-enabled infrastructures”. In: International
Conference on Fog and Mobile Edge Computing (FMEC).
Valencia, Spain: IEEE, 2017, pp. 127–132. isbn: 978-1-5386-
2859-1. doi: 10.1109/FMEC.2017.7946419.

178

References

[38] Yuxuan Jiang, Zhe Huang, and Danny H. K. Tsang. “Chal-
lenges and Solutions in Fog Computing Orchestration”. In:
IEEE Network 32.3 (Nov. 2017), pp. 122–129. issn: 0890-
8044. doi: 10.1109/MNET.2017.1700271.

[39] Francescomaria Faticanti et al. “Throughput-Aware Parti-
tioning and Placement of Applications in Fog Computing”.
In: IEEE Transactions on Network and Service Management
17 (Sept. 2020), pp. 2436–2450. issn: 1932-4537. doi: 10.
1109/TNSM.2020.3023011.

[40] Cecil Wöbker et al. “Fogernetes: Deployment and Manage-
ment of Fog Computing Applications”. In: Network Opera-
tions and Management Symposium (NOMS). Taipei, Taiwan:
IEEE, 2018. doi: 10.1109/NOMS.2018.8406321.

[41] Saiful Hoque et al. “Towards Container Orchestration in Fog
Computing Infrastructures”. In: Annual Computer Software
and Applications Conference (COMPSAC). Turin, Italy: IEEE,
2017, pp. 294–299. doi: 10.1109/COMPSAC.2017.248.

[42] Zhenyu Wen et al. “Fog Orchestration for Internet of Things
Services”. In: IEEE Internet Computing 21.2 (Mar. 2017),
pp. 16–24. issn: 1089-7801. doi: 10.1109/MIC.2017.36.

[43] Antonio Brogi and Stefano Forti. “QoS-Aware Deployment
of IoT Applications Through the Fog”. In: IEEE Internat of
Things Journal 4.5 (Oct. 2017), pp. 1185–1192. issn: 2327-
4662. doi: 10.1109/JIOT.2017.2701408.

[44] Jen-Sheng Tsai et al. “QoS-Aware Fog Service Orchestration
for Industrial Internet of Things”. In: Transactions on Ser-
vices Computing 15.3 (2020), pp. 1265–1279. issn: 1939-1374.
doi: 10.1109/TSC.2020.2978472.

179

References

[45] Kaihua Fu et al. “Adaptive Resource Efficient Microservice
Deployment in Cloud-Edge Continuum”. In: IEEE Transac-
tions on Parallel and Distributed Systems 33 (Nov. 2021),
pp. 1825–1840. issn: 1558-2183. doi: 10.1109/TPDS.2021.
3128037.

[46] Salman Taherizadeh, Vlado Stankovski, and Marko Grobel-
nik. “A Capillary Computing Architecture for Dynamic In-
ternet of Things: Orchestration of Microservices from Edge
Devices to Fog and Cloud Providers”. In: Sensors 18.9 (2018).
issn: 1424-8220. doi: 10.3390/s18092938.

[47] Zeinab Nezami et al. “Decentralized Edge-to-Cloud Load Bal-
ancing: Service Placement for the Internet of Things”. In:
Access 9 (2021), pp. 64983–65000. issn: 2169-3536. doi: 10.
1109/ACCESS.2021.3074962.

[48] Rafael Fayos-Jordan et al. “Performance comparison of con-
tainer orchestration platforms with low cost devices in the
fog, assisting Internet of Things applications”. In: Journal of
Network and Computer Applications 169 (2020). issn: 1084-
8045. doi: 10.1016/j.jnca.2020.102788.

[49] Valeria Cardellini et al. “Self-adaptive Container Deployment
in the Fog: A Survey”. In: International Symposium on Algo-
rithmic Aspects of Cloud Computing (ALGOCLOUD). Mu-
nich, Germany: Springer, Cham, 2019, pp. 77–102. isbn: 978-
3-030-58628-7. doi: 10.1007/978-3-030-58628-7_6.

[50] Zeineb Rejiba and Javad Chamanara. “Custom Scheduling
in Kubernetes: A Survey on Common Problems and Solu-
tion Approaches”. In: ACM Computing Surveys 55.7 (2022),
pp. 1–37. issn: 0360-0300. doi: 10.1145/3544788.

180

References

[51] Google.Google Kubernetes Engine. [Online; accessed 06-October-
2022]. url: https : / / cloud . google . com / kubernetes -
engine.

[52] Amazon. Amazon Elastic Kubernetes Service. [Online; ac-
cessed 06-October-2022]. url: https://aws.amazon.com/
eks/.

[53] Microsoft. Azure Kubernetes Service. [Online; accessed 06-
October-2022]. url: https://azure.microsoft.com/en-
in/services/kubernetes-service/.

[54] Kubernetes. Kubernetes ObjectMeta v1. [Online; accessed 06-
October-2022]. url: https://kubernetes.io/docs/reference/
generated/kubernetes-api/v1.24/%5C#objectmeta-v1-

meta.

[55] Kubernetes.Kubernetes PodTemplateSpec v1. [Online; accessed
06-October-2022]. url: https://kubernetes.io/docs/
reference / generated / kubernetes - api / v1 . 24 / %5C #

podtemplatespec-v1-core.

[56] Cloud Native Computing Foundation. K3s. [Online; accessed
13-September-2022]. 2019. url: https://k3s.io.

[57] Adrián Orive et al. “Novel orchestration architecture for Fog
computing”. In: Seventeenth International Conference on In-
dustrial Informatics (INDINN). Helsinki, Finland: IEEE, 2019.
doi: 10.1109/INDIN41052.2019.8972087.

[58] Adrián Orive et al. “Quality of Service Aware Orchestration
for Cloud–Edge Continuum Applications”. In: Sensors 22.5
(2022). issn: 1424-8220. doi: 10.3390/s22051755.

181

Glossary

A
ACOA Application-Centric Orchestration Architecture

API Application Programming Interface

C
COE Container Orchestration Engine

CPS Cyber-Physical System

CPU Central Processing Unit

D
DG Directed Graph

E
EoS Economies of Scales

H
HoL Head of Line

HPC High-Performance Computing

183

Glossary

I
IETF Internet Engineering Task Force

IoT Internet of Things

M
MAPLE Measurement Architecture for Packet LatEncies

N
NBP Network Bandwidth Predictor

O
OS Operating System

Q
QoS Quality of Service

R
RAM Random Access Memory

REST Representational State Transfer

RFC Request For Comment, standard published by the IETF

RTT round-trip time

S
SWIM Scalable, Weakly-consistent, Infection-style, processes

group Membership protocol

SWIM-NSM Network State Monitoring extension for the
SWIM protocol

184

T
TCO Total Cost of Ownership

U
UGV Unmanned Ground Vehicle

W
WSN Wireless Sensor Network

185

