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Real-Time Guarantees in Routerless Networks-on-Chip

LEANDRO SOARES INDRUSIAK, University of York, UK

ALAN BURNS, University of York, UK

This paper considers the use of routerless networks-on-chip as an alternative on-chip interconnect for

multiprocessor systems requiring hard real-time guarantees for inter-processor communication. It presents

a novel analytical framework that can provide latency upper bounds to real-time packet flows sent over

routerless networks-on-chip, and it uses that framework to evaluate the ability of such networks to provide

real-time guarantees. Extensive comparative analysis is provided, considering different architectures for

routerless networks and a state-of-the-art wormhole network based on priority-preemptive routers as a

baseline.
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1 INTRODUCTION

On-chip interconnects have played a key role in the performance and scalability of multicore and
many-core processor architectures over the past two decades, and routerless networks-on-chip
(NoCs) are one of the latest developments in that area. The concept of routerless NoCs builds on
two well-studied interconnect features: ring topology and deflection routing. Ring topologies for
on-chip interconnects have been studied in academic research [31] [4] and are widely used in
commercial processor interconnects like the Intel Sandy Bridge [28] and the IBM Cell [26]. In those
cases, data is sent over one or more multi-hop rings towards its destination (typically over the
shortest path). Deflection routing exploits the possibility of circular routes over ring topologies,
allowing data to take longer paths and circle around the ring interconnect one or more times instead
of sitting in buffers in the case of link contention [10] [2]. The application of those two features to
NoCs allowed for lower hardware overhead, because of the limited need for buffering and flow
control circuitry [21]. The advantages with regards to energy dissipation are less clear-cut, but
experimental work has shown that typically there are moderate amounts of energy savings despite
longer routes due to deflection [20].

Recent works on the so-called routerless NoC architectures [1] [18] [34] [17] have pushed those
concepts one step further and advocated for additional savings in hardware overheads by completely
removing the routing function from the NoC interconnect. In previous ring-based defletion-enabled
NoCs, data packets would be injected by the source processing core via a network interface, and the
network would route them across one or more rings, deflecting them as needed when contention
arises, until they reach their destination core. Those architectures would still require some sort of
buffering and flow control mechanisms to enable the transfer of packets from one ring to another,
as well as routing mechanisms on every network hop along the way. Routerless NoCs do not allow
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1:2 Indrusiak and Burns

packets to change rings along their way, removing completely the need for routing and requiring
only minimal buffering and flow control on each network switch. To enable full connectivity
among processing cores, routerless NoCs have carefully selected topologies with multiple rings
that, among them, connect all cores of the system. Packets are therefore always injected into a
ring that passes through their source and their destination cores. The only routing decision that
still must be performed is the choice of ring that should be used given the destination of each data
packet, and there may be more than one possibility, depending on the topology. That decision is
made at the interface of the network before the packet is injected into a ring, typically through
a routing table. Figure 1 provides an overview of a routerless NoC, and more details about the
architecture will be given in subsection 2.2.

The advantages of routerless NoCs in terms of performance, hardware area and energy overheads
have been experimentally evaluated in [18] and [1]. With regards to performance, Liu et al. [18]
reported improvements of more than 200% in saturation throughput and more than 70% in average
latency when comparing their IMR (Isolated Multi-Ring) routerless NoC against several router-
based NoC architectures including mesh and torus networks. The area and energy savings they
reported were modest, never reaching more than 10% improvement over the baselines. Following a
more aggressive reduction of buffering circuitry, Alazemi et al. [1] reported more than 10x reduction
in power consumption compared to a router-based mesh NoC (and nearly 8x improvement against
Liu et al.’s IMR), as well as area savings of approximately 85% and 70% compared with a router-based
mesh NoC and IMR, respectively.

Given the figures reported by [18] and [1], it is likely that the resource efficiency of routerless NoC
architectures would be beneficial to embedded and real-time multiprocessor platforms. However,
none of the works on routerless NoCs addresses the problem of packet latency bounds, focusing
instead on average-case latency metrics. In this paper, we present the first approach to obtain
latency upper bounds to real-time packet flows sent over routerless networks-on-chip. With that,
we aim to enable the use of routerless NoCs as the communication backbone for real-time and
embedded multiprocessors. Furthermore, we aim to shed light on the inherent trade-offs posed by
such networks and show in which circumstances should designers replace traditional router-based
networks by routerless NoCs, and in which they should not.
The paper is organised as follows: Section 2 provides an overview of the state-of-the-art in

real-time networks-on-chip, and provides a more detailed background on routerless NoCs; Section
3 presents a novel analytical framework that can provide latency upper bounds to real-time packet
flows sent over routerless NoCs, which is the first contribution of this paper; the second contribution
of the paper, in Section 4, addresses the use of the proposed analytical framework to evaluate the
ability of routerless NoCs to provide real-time guarantees under different configurations, compared
against a state-of-the-art router-based NoC; the paper is then closed with a summary of the insights
uncovered by the experimental work and with numerous lines of further research that were opened
by the proposed framework.

2 BACKGROUND

2.1 Real-time Wormhole Networks-on-Chip

Wormhole switching has been widely used in NoCs because of its balance between performance
and buffering overheads in the router. Unlike switching protocols such as store-and-forward (SAF)
and virtual cut-through (VCT), wormhole does not require buffers to have capacity to store a full
packet. Each packet is forwarded as a sequence of fixed size data units (flits), the first of them
(the header) carries information about routing and packet size. As the header advances along the
specified route, the remaining flits follow in a pipelined way. If the output link requested by a header
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flit is supposed to be routed via a link already in use, it is blocked until the link becomes available.
In this situation, the second flit will then be blocked by the first one, and so on, until all flits stall.
They will then remain buffered in one or more routers along the packet route (depending on the
buffering capabilities of each router) until the header is released, so the pipelined transmission can
continue.

The smaller the buffers on each router, the larger the number of routers that will have to store a
given packet in a blockage scenario. If there is not enough buffer space distributed over routers in
the packet route, the backpressure will propagate back to the packet sender, preventing it from
injecting further flits into the network. Since a packet can be stored by several routers and occupy
multiple links at a time, the potential congestion over the network is increased. This makes it
harder to predict the time it takes for a given packet to cross the network, because many of the links
along its route may be blocked by other packets. This is not the case in store-and-forward (SAF)
switching, where each packet uses only one link at a time, or in virtual cut-through (VCT), where
packets are only stored in the router where they experience blocking [7]. Wormhole switching has
been widely preferred over SAF or VCT in on-chip interconnects because having smaller buffers
allowed for smaller overheads in silicon area and energy dissipation.
Several arbitration and flow control mechanisms were proposed to improve time predictability

in on-chip networks, using resource sharing policies such as time-division multiplexing (TDM) [9]
and prioritised virtual channels (VCs) [3]. TDM tries to avoid latency interference between packets
by reserving link bandwidth to each packet flow. Priority-arbitrated virtual channels allow packets
to interfere with each other but aims to quantify the interference upper bounds for each packet flow.
Priority-based mechanisms are seen as superior, since they are work conserving (do not reserve
resources) and more flexible (do not require exact knowledge of packet sizes or injection times), but
not always preferred because of higher overheads in area and energy dissipation. A wider review
of real-time network-on-chip architectures is beyond the scope of this paper, and a good survey
can be found in [12]. Our focus in this paper is actually on the analytical models that evaluate how
well a given architecture can provide guarantees to real-time application communication traffic.
That aspect is not covered in detail by [12], so we provide a brief review and additional references
over the next paragraph, with a focus on models for priority-based NoCs.
Most of the real-time analytical models for priority-based wormhole NoCs have been based on

analysis developed in the mid 1990s for general purpose wormhole networks [22] [11] [16]. NoC
analysis models proposed by Shi and Burns [30] and Kashif and Patel [14] customised those general
models for the specifics of the on-chip communication mechanisms and were widely used until
the discovery of the multi-point progressive blocking (MPB) problem by Xiong et al. [35]. MPB
exposed a flaw in the assumptions of the original analysis approaches from the 1990s which made all
subsequent analytical models unsafe. The problem manifests itself in indirect interference scenarios
happening downstream from the path of a given packet, but affecting that packet in complex
ways due to backpressure effects caused by the limited buffering per router (which is a key part of
wormhole switching). As MPB was underestimated in all those analytical models, they can lead to
optimistic predictions of schedulability. Since the discovery of the MPB problem, it has been safely
modelled by several approaches [36] [13] [24] (i.e. no known optimistic counter-examples). Despite
the consistent increase in tightness from one approach to the next, all of them are still significantly
more conservative than previous analyses that did not model MPB. In [8], authors used network
calculus in an attempt to improve the tightness against [24], which is based on response-time
analysis as its predecessors, but they could not show any dominance of one model over the other.
This provided more evidence that the MPB problem is not an artifact of a specific type of analysis,
but instead is an inherent issue that comes with wormhole networks and backpressure (albeit a rare
one - it took more than a decade for it to be uncovered). Accordingly, some of the latest works in
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the area of real-time NoCs are attempts to avoid or control backpressure as a way to prevent MPB,
but they either rely on global wires which may prevent an efficient and reliable implementation in
silicon [23] [33] [27] or require complex memory management in every NoC core [5].

2.2 Routerless Networks-on-Chip

Recent works have proposed network architectures that completely remove flow control, routing
and/or switching logic, aiming to reduce the hardware and energy overheads in network routers.
Processing cores are still laid out in 2D grids and network links only connect neighbouring cores,
avoiding global wire issues and allowing for regular structures that can be reliably implemented in
silicon.

In [2], authors use a hierarchical ring topology with no in-ring buffering or buffered flow control.
Packets are allowed to transit across rings, so inter-ring buffers are employed. These are limited,
forcing packets to keep circling the ring until the buffer has enough space.
Liu et al. [18] proposed IMR, which uses an even more economic design where packets are not

allowed to transit across rings, so the problem shifts to the efficient definition of rings that can
provide full connectivity and low average hop count between communicating cores. The authors
propose a genetic algorithm formulation based on a clever bit-stream representation of potential
rings, and use it to evolve ring configurations that minimise the overall number of interconnect
links, average latency and hop count, while ensuring full network connectivity. IMR uses full-packet
buffers on each switch for each ring, providing temporary storage in case a packet is not granted
arbitration to the output link, which avoids sophisticated flow control and completely prevents
backpressure. Each switch has a single ejection link connecting it to the local processing core,
which is shared by all rings passing through that switch. Due to the lack of flow control and limited
buffering capabilities, a packet may be forced to circle around the loop repeatedly if the ejection
link to their destination core is not available. To prevent livelock (i.e. packets looping around the
ring forever), all packets are timestamped so that the ejection links can be arbitrated using an
Oldest-First policy.
Alazemi et al. [1] proposed a number of improvements to IMR: a constructive heuristic called

RLrec to efficiently define and place rings ensuring full communication across the network; a
protocol to share full-packet buffers among multiple rings going through the same switch; a
possibility of multiple ejection links; and a different livelock prevention mechanism based on a
circling counter. The authors applied for a patent for this design, which was granted in 2020 [6].
Figure 1, adapted from [1], shows the main components of a routerless network as proposed

in [18] and [1]. The lower-right part of the figure shows a 16-processor network organised in a 4x4
grid, each processor connected to a switch. The switches are interconnected by 10 rings following
the RLrec approach from [1] (detail in the upper-right part of the figure). One of the switches is
shown in more detail in the left part of the figure, including the injection and ejection links used by
the local core to connect to the network, the input and output ports for each ring passing through
the switch, and the full-packet buffers used for temporary storage. Packets arriving from the ring
are transferred into the switch via the ring input port, at a rate of one flit per network cycle (which
correspond to one clock cycle in the hardware implementations in [18] and [1]). In the remainder
of this paper, we will use a network cycle as the unit for all time-related parameters and metrics,
and will refer to it simply as ‘cycle’. During a network cycle, the following operations can happen:

• Flits arriving at input ports of each ring are stored in their respective flit buffers.
• Flits that had arrived in the previous cycle are transferred from the flit buffers to an ejection
link (if their destination is the local processor), to the respective ring’s output port (if there is
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no ongoing packet payload injection and their ring buffer is empty) or to a packet buffer (if
there is an ongoing packet payload injection or if their ring buffer is not empty).
• Header flit of the packet at the head of the injection queue is transferred to the output port
of the ring indicated by the routing table, but only if the packet buffer and flit buffer of that
ring are empty (i.e. ring traffic always has precedence over packet header injection).
• Payload flit of the packet at the head of the injection queue is transferred to the output port
of the same ring that the header or payload flit of that same packet has used during the
previous cycle (i.e. payload flit injection always has precedence over ring traffic to avoid
packet interleaving).
• Flits stored in the head of packet buffers are transferred to the output port of their respective
rings if there is no ongoing packet payload injection.
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Fig. 1. Routerless network switch (adapted from [1]), 4x4 network, and detail of the topology generated by

the RLrec heuristic.

As one can infer from the operations listed above, a routerless network requires no flow control.
A switch can always send a flit per cycle to the downstream switch of each of its rings, as it can
be sure that there is space in the downstream flit buffer since any flit sent over the previous cycle
would by then be transferred further to an output port, to a packet buffer, or to an ejection link.
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From the point of view of the output port, the protocol is straightforward: it outputs a flit, if one
exists, from the packet buffer, flit buffer or injection queue, in that order of priority unless there are
additional flits to be injected (as packet injections are non-preemptive).

3 REAL-TIME ANALYSIS FOR ROUTERLESS NETWORKS-ON-CHIP

This section presents the first real-time analysis model for a routerless NoC, initially by assuming
exclusive injection and ejection links for each ring, and then by analysing the impact of sharing
injection and ejection links among multiple rings.

3.1 System Model

Let us model a routerless network-on-chip such as the ones discussed in subsection 2.2 as a set of
processing cores Π = {𝜋𝑎, 𝜋𝑏, . . . , 𝜋𝑧}; and a set of rings 𝑂 = {𝑜1, 𝑜2, . . . , 𝑜𝑚} where, representative
ring 𝑜 is defined by the ordered set of 𝑟𝑜 switches Ξ𝑜

= {𝜉1, 𝜉2, . . . , 𝜉𝑟𝑜 } and the set Λ𝑜 of 3𝑟𝑜

unidirectional links which includes a link between subsequent switches of the ring and two links
to and from the processing core connected to each switch (referred to as the ejection and injection
links). Each switch 𝜉 of Ξ𝑜 includes a buffer of size 𝐵𝑜 which must be able to store even the largest
packet sent to its respective ring.

It is possible (and likely, in the topologies proposed in [18] and [1]) that a switch is part of more

than one ring, e.g. 𝜉2 ∈ Ξ
𝑜1 , 𝜉2 ∈ Ξ

𝑜3 , 𝜉2 ∈ Ξ
𝑜7 . In such a case, the switch encompasses the links and

buffers of all rings going through it (as shown in Figure 1).
To model the traffic load injected to the network, we define a set Γ of 𝑛 real-time traffic-flows (or

just flows for short) Γ ={𝜏1, 𝜏2, . . . 𝜏𝑛}. Each flow 𝜏𝑖 gives rise to a potentially unbounded sequence
of packets that are sent over the network flit-by-flit. The flow has a set of properties and timing
requirements which are characterised by a set of attributes: 𝜏𝑖 = (𝑇𝑖 , 𝐷𝑖 , 𝐿𝑖 , 𝐽𝑖 , 𝜋

𝑠
𝑖 , 𝜋

𝑑
𝑖 ). The source

and destination cores of a flow are denoted respectively by 𝜋𝑠
𝑖 and 𝜋

𝑑
𝑖 . We assume that all the flows

which require timely delivery are either periodic or sporadic, and the lower bound interval on the
time between releases of successive packets is called the period (𝑇𝑖 ) for the flow, measured in cycles.

The maximum packet size of a flow, in flits, is denoted by 𝐿𝑖 . As a ring forwards one flit per cycle,
𝐿𝑖 is also the time it takes for a packet of 𝜏𝑖 to completely cross a link, in cycles. Each real-time
flow has a relative deadline (𝐷𝑖 ) which is the upper bound restriction on network latency. In this
work we assume for simplicity that 𝐷𝑖 ≤ 𝑇𝑖 . Finally, we assume that the maximum deviation of
successive packet releases from the flow’s period, i.e. the maximum packet jitter, is known and
represented as 𝐽𝑖 . 𝐷𝑖 and 𝐽𝑖 are also given in cycles.
We now define as Γ𝑜 a subset of Γ with all the flows using ring 𝑜 ∈ 𝑂 . Each traffic flow 𝜏𝑖 is

bound to a single ring 𝑜 ∈ 𝑂 , so all possible Γ𝑜 subsets of Γ are mutually exclusive. Similarly, we
define Γ𝑜

𝜉
as the subset of Γ𝑜 with all the flows that use switch 𝜉 of ring 𝑜 . As it is possible, and

perhaps likely, that a flow 𝜏 goes through several of the switches of its ring, the subsets Γ𝑜
𝜉
of Γ𝑜

are not necessarily mutually exclusive. To be more precise about the nature of the flows in Γ
𝑜
𝜉
, we

divide them into three mutually-exclusive subsets: Γ𝑜
𝜉𝑖𝑛

(packets flowing into 𝜉 via its injection port

and exiting via the output port), Γ𝑜
𝜉𝑜𝑢𝑡

(packets flowing into 𝜉 via its input port and exiting via the

ejection link) and Γ𝑜
𝜉𝑡ℎ𝑟𝑢

(packets flowing into 𝜉 via its input port and exiting via the output port). In

the following, we will further refine such subsets to precisely represent resource sharing between
flows, and from that we will qualify the potential timing interference between them.

A main goal of this paper is to quantify the worst-case latency (response-time), 𝑅𝑖 , of any packet
of a given packet flow 𝜏𝑖 . In the following subsections, we propose a framework of analytical models
accounting for the contributions of the packet’s own latency as well as upper-bounds on the latency
interference from other packets sharing the same network resources (i.e. contention), for different
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configurations of the network. Once we are able to calculate its worst-case latency 𝑅𝑖 , we can
determine if a packet flow 𝜏𝑖 is schedulable: if 𝑅𝑖 ≤ 𝐷𝑖 then all packets of 𝜏𝑖 will always reach
their destination before their respective deadline, even when encountering worst-case network
contention. Generalising the same concept, we deem that a flowset Γ to be schedulable when all
flows 𝜏𝑖 ∈ Γ are schedulable.
To support the proposed analytical framework, we also need to define specific subsets of the

ordered set of switches Ξ𝑜 of a given ring. We therefore define the function 𝑝𝑎𝑡ℎ𝑜 (𝜋𝛼 , 𝜋𝜔 ) to denote
the ordered subset of Ξ𝑜 with the switches in the path between cores 𝜋𝛼 and 𝜋𝜔 ; and the function
𝑑𝑝𝑎𝑡ℎ𝑜 (𝜋𝛼 , 𝜋𝜔 ), which denotes the downstream path between those processing cores i.e. the exact
same ordered subset of Ξ𝑜 except for the first switch (i.e. the one directly connected to 𝜋𝛼 ). We then
define that the absolute value of such a function denotes the number of switches in the respective
path, so it should be clear that |𝑝𝑎𝑡ℎ𝑜 (𝜋𝛼 , 𝜋𝜔 ) | = |𝑑𝑝𝑎𝑡ℎ

𝑜 (𝜋𝛼 , 𝜋𝜔 ) | + 1.
We also define a secondary parameter for each traffic flow 𝜏𝑖 : 𝐶𝑖 which represents the maximum

transmission latency of a packet of 𝜏𝑖 from 𝜋𝑠
𝑖 to 𝜋

𝑑
𝑖 when no contention exists. It is a parameter

found in most real-time analysis for networks and is often called maximum basic latency or
maximum no-load latency of a packet flow. Assuming that, in the absence of contention, a packet
flit is transmitted per cycle by the ring, the value of 𝐶𝑖 in cycles can be obtained by adding the
number of ring links between 𝜋𝑠

𝑖 and 𝜋𝑑
𝑖 (including injection and ejection ones) and the number

of payload flits of the packet, which is given by 𝐿𝑖 − 1. The first term of that sum (given below)
represents the time taken by the header flit to travel from the source to the destination, and the
second term is the time it takes for all payload flits to arrive after the header, in pipeline fashion.

𝐶𝑖 = |𝑝𝑎𝑡ℎ(𝜋𝑠
𝑖 , 𝜋

𝑑
𝑖 ) | + 𝐿𝑖 − 1 (1)

3.2 Basic Analysis

To calculate the worst-case latency 𝑅𝑖 experienced by any packet of a packet flow 𝜏𝑖 , we must
analyse all sources of timing interference that can affect it. In this paper, we start with a set of
assumptions that reduces the potential sources of timing interference. Once we are able to derive
analytical models that can calculate latency upper-bounds under the initial set of assumptions, we
will then progressively lift the assumptions and derive more general and widely applicable models.

Our first step assumes that rings are completely independent, meaning that their switches, buffers
and links are not shared with other rings. In that case, packets of a flow 𝜏𝑖 injected to a ring 𝑜 can
only suffer interference from the following sources:

(1) Packets from any other previously injected flow 𝜏 𝑗 ∈ Γ
𝑜
𝑢𝑝𝑖

(where Γ𝑜𝑢𝑝𝑖 is the set Γ
𝑜
𝜉𝑡ℎ𝑟𝑢

with

all flows going through the switch where the packets of 𝜏𝑖 are injected), as the packets of
𝜏𝑖 cannot start injection unless there are no flits flowing through that switch’s output port.
We refer to these sources of interference as upstream direct interference, or 𝜏

𝑢𝑝
𝑗 for short,

because the packets of those flows must be injected in switches upstream from the switch
where 𝜏𝑖 is injected, they must be injected before the injection of 𝜏𝑖 ’s packets, and will compete
directly with 𝜏𝑖 ’s packets for the output link of the switch where 𝜏𝑖 is injected.

(2) Packets from any other flow 𝜏 𝑗 ∈ Γ
𝑜
𝑑𝑜𝑤𝑛𝑖

(where Γ
𝑜
𝑑𝑜𝑤𝑛𝑖

is the subset of Γ𝑜 with all flows

injected or buffered in any of the downstream switches along 𝜏𝑖 ’s path towards its destination),
as they may (injected) or will (buffered) take precedence over 𝜏𝑖 in the access of the switch’s
output link, forcing it to be buffered in that switch until the transfer of the interfering packet
is completed. We refer to these sources of interference as downstream direct interference,
or 𝜏𝑑𝑜𝑤𝑛

𝑗 for short, because the packets of those flows will compete directly with 𝜏𝑖 ’s packets

for the output link of switches that are downstream from the switch where 𝜏𝑑𝑜𝑤𝑛
𝑗 is injected.
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1:8 Indrusiak and Burns

(3) Packets from any other flow 𝜏 𝑗 ∈ Γ
𝑜
𝑖𝑛𝑖

(where Γ𝑜𝑖𝑛𝑖 is the set Γ
𝑜
𝜉𝑖𝑛

with all flows injected into

the same switch as 𝜏𝑖 ). We assumed at this stage that each ring has its exclusive injection
link, but such an assumption does not prevent it from being used by many local flows, so we
must account for the interference they can cause. We refer to these sources of interference
as injection direct interference, or 𝜏𝑖𝑛𝑗 for short, because the packets of those flows will

compete directly with 𝜏𝑖 ’s packets for the injection link.
(4) Packets from any other flow 𝜏𝑘 ∈ Γ

𝑜
𝑢𝑝𝑖𝑛𝑑𝑖

(where Γ
𝑜
𝑢𝑝𝑖𝑛𝑑𝑖

is the subset of Γ𝑜 with all flows

with a path that does not share links with the path of the packets of 𝜏𝑖 , but causes direct
interference to a flow that in turn causes upstream direct interference to 𝜏𝑖 ). This type of
interference has been widely studied in wormhole networks, and is referred to as indirect
interference in [30] and upstream indirect interference in [24]. In effect, upstream indirect
interference can amplify the perceived jitter of flows causing upstream direct interference,
so this must be accounted for in the analysis.

Notice that downstream indirect interference (which is the cause of the MPB problem reviewed
in subsection 2.1) does not appear as a fifth item in the list discussed above. This is because the flow
control and arbitration mechanisms in routerless NoCs do not allow for backpressure: if a packet
does not gain arbitration to an output link of a switch, its flits will be completely buffered in that
one switch, and will not prevent the progress of the flits that may be in-route over other upstream
switches. This behaviour follows the principles of a virtual cut-through network, rather than the
wormhole switching typically used in NoCs, and prevents all interference scenarios resulting from
downstream indirect interference, including complex and rare ones such as MPB.

Figure 2 illustrates all sources of interference listed above in a scenario where five traffic flows are
transferred over a six-switch (clockwise) ring 𝑜 : Γ𝑜 = {𝜏1, 𝜏2, 𝜏3, 𝜏4, 𝜏5}. Let us first concentrate on 𝜏1,
which is injected into switch 𝜉3. Before it can be injected, 𝜏1 can suffer upstream direct interference
from 𝜏2, i.e. Γ

𝑜
𝑢𝑝1

= {𝜏2}. Once it is injected, it can also suffer downstream direct interference from

𝜏3, i.e. Γ
𝑜
𝑑𝑜𝑤𝑛1

= {𝜏3}. Since it is injected into the same switch as 𝜏5, it can suffer injection direct

interference from it, i.e. Γ𝑜𝑖𝑛1
= {𝜏5}. Finally, we can also see that 𝜏1 can suffer upstream indirect

interference from 𝜏4, because 𝜏4 does not share any links in 𝜏4’s path, but it directly interferes with
𝜏2, which in turn causes upstream direct interference to 𝜏𝑖 , i.e. Γ

𝑜
𝑢𝑝𝑖𝑛𝑑1

= {𝜏4}. Following the same

principles, we summarise in Table 1 the different sources of interference for all five flows in this
scenario.

Table 1. Sources of interference for all five flows in Figure 2.

𝜏𝑖 Γ
𝑜
𝑢𝑝𝑖

Γ
𝑜
𝑑𝑜𝑤𝑛𝑖

Γ
𝑜
𝑖𝑛𝑖

Γ
𝑜
𝑢𝑝𝑖𝑛𝑑𝑖

𝜏1 {𝜏2} {𝜏3} {𝜏5} {𝜏4}

𝜏2 {𝜏4} {𝜏1, 𝜏5} ∅ ∅

𝜏3 {𝜏1} ∅ ∅ {𝜏2, 𝜏5}

𝜏4 ∅ {𝜏2} ∅ ∅

𝜏5 {𝜏2} ∅ {𝜏1} {𝜏4}

Let us now consider the four sources of interference we identified above, and derive an analytical
model that provides a safe bound to the worst-case latency 𝑅𝑖 of a flow 𝜏𝑖 . By looking carefully at
the nature of those sources of interference, we can claim that sources listed under items 1, 3 and 4
can only interfere with 𝜏𝑖 before its injection, while sources under item 2 can only interfere after
its injection. This allows us to break the interference analysis into two completely separated stages:
worst-case interference before injection 𝐼

𝑝𝑟𝑒
𝑖 and worst-case interference after injection 𝐼

𝑝𝑜𝑠
𝑖 .
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Fig. 2. Scenario with five flows over a six-switch (clockwise) ring.

The worst-case interference before injection 𝐼
𝑝𝑟𝑒
𝑖 is the largest amount of time a packet of 𝜏𝑖

must experience before it can have access to the output link of the switch it is injected into. We
argue that this is equal to the longest busy period of that output link, as it serves newly injected
packets to the switch (injection direct interference, item 3), packets arriving from the switch’s input
and previously buffered packets (upstream direct interference, item 1). As soon as the output link
becomes idle, it is immediately acquired by 𝜏𝑖 , which will then transmit the whole packet to the
next downstream switch without experiencing any additional injection, upstream direct or indirect
interference. Eq. 2 provides an upper bound for 𝐼

𝑝𝑟𝑒
𝑖 :

𝐼
𝑝𝑟𝑒
𝑖 = 1 +

∑︁

𝜏 𝑗 ∈Γ
𝑜
𝑖𝑛𝑖

𝐿 𝑗 +
∑︁

𝜏 𝑗 ∈Γ
𝑜
𝑢𝑝𝑖

⌈

𝐼
𝑝𝑟𝑒
𝑖 + 𝐽 𝑗 + 𝐽

𝑘
𝑗

𝑇𝑗

⌉

· 𝐿 𝑗 (2)

The third term of Eq. 2 follows a classic formulation of a busy period, with the term inside
the ceiling function representing the maximum number of packets of 𝜏

𝑢𝑝
𝑗 transferred through the

output port of the switch during an arbitrary time window with length equal to the numerator of
that term. A recurrence relationship ensures that the considered time window is expanded by all
terms of the equation. The third term also considers the maximum release jitter of the interfering
packets 𝐽 𝑗 , as in [32], and the maximum jitter amplification due to upstream indirect interference

𝐽𝑘𝑗 , as in [30]. The choice of a safe value for 𝐽𝑘𝑗 in routerless NoCs is slightly more complicated than

in the case addressed in [30], so we will address this issue in more detail in subsection 3.3.
The second term of Eq. 2 accounts for the interference caused by 𝜏𝑖𝑛𝑗 flows. Given that in a

schedulable system each flow can have at most one packet in-route (i.e. 𝐷 ≤ 𝑇 ), only a single
packet of each of the 𝜏𝑖𝑛𝑗 flows can interfere on a given release of 𝜏𝑖 . For each of those packets, the

interference happens when 𝜏𝑖𝑛𝑗 is in the injection queue when 𝜏𝑖 is released (so 𝜏𝑖 must wait in the

queue), or when 𝜏𝑖𝑛𝑗 has been totally or partially injected before 𝜏𝑖 ’s release and its injection has

caused the buffer to fill up (and therefore it must be drained before 𝜏𝑖 can be injected). In either case,
the upper-bound to the interference is the maximum packet size 𝐿 for each of the flows. Notice
that we do not double-account the interference of 𝜏𝑖𝑛𝑗 packets over the queue or the switch buffer:

for a given 𝜏𝑖𝑛𝑗 flit, it will either be in the queue by the time 𝜏𝑖 is released or it will have already

been injected and thus its interference will be in the form of buffer draining (i.e. upstream packets
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1:10 Indrusiak and Burns

that it may have forced to be buffered). So the maximum interference caused by a 𝜏𝑖𝑛𝑗 packet will

always be 𝐿 𝑗 regardless if its flits are all in the queue by the time 𝜏𝑖 is released, or if they have all
been injected and caused the buffer to fill up, or if part of them are in the queue and part of them
have been injected (and partially filled up the buffer).
Due to the periodic nature of packet flows, it is possible that the busy period calculated by the

second and third terms of Eq. 2 could repeat itself again and again, one immediately after another,
completely preventing the injection of new packets into the ring. By adding the first term to the
equation, we guarantee that there will be at least a single free cycle following the busy period
calculated by the equation, thus allowing for the injection of a new packet. This analysis is safe
(it ensures that the new packet can gain access to the ring) but is not necessarily exact; tighter
analysis may be possible.

Now, let us focus on the second stage of the analysis and formulate theworst-case interference

after injection 𝐼
𝑝𝑜𝑠
𝑖 . Once a packet is injected into the ring, it can only suffer downstream direct

interference from packets injected or buffered in the switches along its way towards its destination.
More precisely, only a single packet of a single 𝜏𝑑𝑜𝑤𝑛

𝑗 flow can cause interference per switch crossed

by 𝜏𝑖 . Either that packet is a newly injected packet, which will then force the buffering of 𝜏𝑖 until it
completes the injection; or that packet is a previously buffered packet that is flowing out of the
switch as 𝜏𝑖 arrives. Regardless of the scenario, 𝜏𝑖 will gain arbitration to the output link as soon
as the interfering packet finishes its transmission. Therefore, an upper bound to the interference
suffered by 𝜏𝑖 after its injection is given by Eq. 3:

𝐼
𝑝𝑜𝑠
𝑖 = |𝑑𝑝𝑎𝑡ℎ𝑜 (𝜋𝑠

𝑖 , 𝜋
𝑑
𝑖 ) | · 𝐵

𝑜 (3)

As defined in subsection 3.1, the function 𝑑𝑝𝑎𝑡ℎ𝑜 provides the set of switches in ring 𝑜 the packets
must go through between processing cores 𝜋𝑠

𝑖 and 𝜋𝑑
𝑖 (i.e. the source and destination cores of flow

𝜏𝑖 ) except for the injection switch (as the interference over that switch is completely accounted
in 𝐼

𝑝𝑟𝑒
𝑖 ). The absolute value of that function provides the number of switches in that set, which

is then multiplied by 𝐵𝑜 (the size of the packet buffer in every switch of the ring, also defined in
subsection 3.1), which is an upper-bound to the number of flits can be either injected or buffered in
each of those switches before 𝜏𝑖 can acquire the output port.

While clearly safe, we can argue that using 𝐵𝑜 as an upper-bound to the interference over each
and every switch along the downstream path of a packet can be pessimistic. Given the maximum
sizes of the packets injected into each switch along the downstream path, it is likely that many of
their buffers may never be completely full. We therefore define 𝐵𝑜

𝜉
as the maximum number of flits

that will be stored in the packet buffer of the switch 𝜉 of ring 𝑜 :

𝐵𝑜𝜉 = max
𝜏 𝑗 ∈Γ

𝑜
𝜉𝑖𝑛

𝐿 𝑗 − 1 (4)

Eq. 4 states that maximum occupation of the packet buffer in switch 𝜉 is the size of the payload
(𝐿 𝑗 − 1) of the largest packet injected into that switch, as incoming flits are only buffered when an
injection is ongoing and therefore the header of the injected packet must have already exited the
switch one cycle earlier during an idle tick.
This leads to a tighter formulation for 𝐼

𝑝𝑜𝑠
𝑖 by adding up the 𝐵𝑜

𝜉
of every switch along the

downstream path of 𝜏𝑖 :

𝐼
𝑝𝑜𝑠
𝑖 =

∑︁

𝜉∈𝑑𝑝𝑎𝑡ℎ𝑜 (𝜋𝑠
𝑖 ,𝜋

𝑑
𝑖 )

𝐵𝑜𝜉 (5)
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We can now calculate the total worst-case latency experienced by any packet of 𝜏𝑖 by adding its
no-load latency 𝐶𝑖 to the worst-case interference it can suffer before and after injection:

𝑅𝑖 = 𝐶𝑖 + 𝐼
𝑝𝑟𝑒
𝑖 + 𝐼

𝑝𝑜𝑠
𝑖 (6)

3.3 Indirect Interference Jitter

In this subsection, we address the issue of assigning a safe value to the indirect interference jitter 𝐽𝑘𝑗
of each direct interfering flow 𝜏 𝑗 ∈ Γ

𝑜
𝑢𝑝𝑖

in the third term of Eq. 2. As explained earlier, 𝐽𝑘𝑗 represents

the increased jitter that any 𝜏 𝑗 may suffer due to upstream or injection interference by a flow 𝜏𝑘
that does not directly interfere with the flow 𝜏𝑖 under analysis. In [30], Shi and Burns observed
that the amount of indirect interference jitter suffered by a flow 𝜏 𝑗 was bounded by 𝑅 𝑗 −𝐶 𝑗 : the
jitter can never be larger than the difference between 𝜏 𝑗 ’s worst-case latency and its maximum
no-load latency. Whilst potentially pessimistic, this bound is safe and has been used in subsequent
analyses such as [24] and [36]. However, in that approach the worst-case latency 𝑅 𝑗 of a flow must
be calculated before the calculation of the worst-case latency 𝑅𝑖 of any flow 𝜏𝑖 that suffers direct
interference from 𝜏 𝑗 . In a priority-based system such as the one considered in [30], it is always
possible to calculate the worst-case latency 𝑅 𝑗 of higher priority flows before using those values
in the calculation of the worst-case latency 𝑅𝑖 of lower priority flows. However, in the case of a
routerless NoC where flows can both interfere and suffer interference from one another in different
stages of their lifetimes, such an approach becomes infeasible.
A simple solution to this problem is to assume 𝐷 𝑗 − 𝐶 𝑗 as the upper bound for the indirect

interference jitter 𝐽𝑘𝑗 of a given flow, assuming that it is schedulable. In that case, 𝑅 𝑗 will not be

larger than 𝐷 𝑗 , so the bound is safe. However, it is likely to be a very pessimistic bound. Specially
in cases of underloaded networks, where packet flows are more likely to have a worst-case latency
which is much smaller than their respective deadlines.

In this paper, we propose a slightly more sophisticated approach to calculate 𝐽𝑘𝑗 . We initially

assume that 𝐽𝑘𝑗 = 0, which allows for the calculation of initial (and potentially unsafe) values of 𝑅𝑖 of

all flows in 𝜏𝑖 ∈ Γ using only the parameters available in the system model described in subsection
3.1. Once we obtain values of 𝑅 for individual flows, we use those to update the corresponding
values of 𝐽𝑘𝑗 with 𝑅 𝑗 −𝐶 𝑗 (as in [30]) and use them on the calculations of the worst-case latency

𝑅 of other flows. As we keep iterating over those steps, the recalculated values of 𝑅 can increase
or remain the same within an iteration, but will never decrease. So we simply keep repeating
the monotonic process until the recalculated values of 𝑅 of all flows remain the same over two
subsequent iterations (meaning that the flowset is schedulable), or at least one of them exceeds
the deadline of the respective flow (meaning that the flowset is unschedulable). We present the
pseudo-code of such approach as Algorithm 1.
While both approaches are safe, i.e. both provide an upper-bound latency for each and every

packet of a traffic flow, the goal of our approach is to provide tighter bounds. That means employing
a worst-case latency estimate that is less pessimistic, and therefore lower. In Section 4, we evaluate
and quantify the advantages of our approach.
This completes the basic analysis for a routerless NoC. We now extend this analysis to cover

platforms that share injection and ejection links.

3.4 Analysis of Shared Injection Link

Let us now remove the assumption that each ring has its independent injection link, and update
our analysis so that it takes into account the potential timing interference that arises when all
rings share the same injection link (which is the implementation choice in [18] and [1]). Only the
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Result:Worst-case latency 𝑅𝑖 for every 𝜏𝑖 ∈ Γ if flowset Γ is schedulable, ∅ otherwise
Schedulability (Γ)

inputs : set Γ of traffic flows, pre-calculated values of 𝐼
𝑝𝑜𝑠
𝑖 for each flow

output : set 𝑅 := {𝑅𝑖 | 𝜏𝑖 ∈ Γ} of worst-case latencies 𝑅𝑖 for each flow
foreach (𝜏𝑖 ∈ Γ) do

𝑅𝑖 ← 0;

𝐽𝑘𝑖 ← 0;

end

do

𝑐ℎ𝑎𝑛𝑔𝑒 ← 𝑓 𝑎𝑙𝑠𝑒;

foreach (𝜏𝑖 ∈ Γ) do

calculate 𝐼
𝑝𝑟𝑒
𝑖 by feeding the latest values of 𝐽𝑘 into Eq. 2;

calculate 𝑅𝑛𝑒𝑤𝑖 = 𝐶𝑖 + 𝐼
𝑝𝑟𝑒
𝑖 + 𝐼

𝑝𝑜𝑠
𝑖 ;

if 𝑅𝑛𝑒𝑤𝑖 > 𝐷𝑖 then

Γ is unschedulable, return 𝑅 ← ∅ and exit;

end

if 𝑅𝑛𝑒𝑤𝑖 ≠ 𝑅𝑖 then

𝑐ℎ𝑎𝑛𝑔𝑒 = 𝑡𝑟𝑢𝑒;

𝑅𝑖 ← 𝑅𝑛𝑒𝑤𝑖 ;

𝐽𝑘𝑖 = 𝑅𝑖 −𝐶𝑖 ;

end

end

while 𝑐ℎ𝑎𝑛𝑔𝑒 == 𝑡𝑟𝑢𝑒;

return 𝑅;

end

Algorithm 1: Iterative Schedulability Test

formulation for 𝐼𝑝𝑟𝑒 must be updated, since the additional interference will only affect 𝜏𝑖 before its
injection.

As we argued in the previous subsection, at most one packet of each flow using the same injection
link can be queued when a packet of 𝜏𝑖 joins the queue. However, packets entering a different
ring as 𝜏𝑖 will suffer interference from different sources as the ones that share the same ring, and
therefore will block 𝜏𝑖 in different ways, so our analysis must take that into account.

To handle this problem, we first separate the two parts of 𝐼𝑝𝑟𝑒 , namely the time a packet spends
in the injection queue (which we refer to as 𝐼𝑝𝑟𝑒𝑞𝑢𝑒𝑢𝑒 ) and the time it spends at the head of the
queue waiting for an idle cycle on its respective ring (which we refer to as 𝐼𝑝𝑟𝑒𝑖𝑑𝑙𝑒 ). Following the
same intuition used in Eq. 2, we can state that 𝐼𝑝𝑟𝑒𝑖𝑑𝑙𝑒 of a given packet of flow 𝜏𝑖 at the head of the
injection queue can be formulated as the first idle cycle in its respective ring:

𝐼
𝑝𝑟𝑒𝑖𝑑𝑙𝑒
𝑖 = 1 +

∑︁

𝜏 𝑗 ∈Γ
𝑜
𝑢𝑝𝑖

⌈

𝐼
𝑝𝑟𝑒𝑖𝑑𝑙𝑒
𝑖 + 𝐽 𝑗 + 𝐽

𝑘
𝑗

𝑇𝑗

⌉

· 𝐿 𝑗 (7)

The only difference between Eqs. 2 and 7 is the additional waiting in the queue represented by
the second term in Eq. 2, which is absent in Eq. 7.
We now can define 𝐼𝑝𝑟𝑒𝑞𝑢𝑒𝑢𝑒 of a packet of flow 𝜏𝑖 as the sum of all the 𝐼𝑝𝑟𝑒𝑖𝑑𝑙𝑒 of the packets 𝜏 𝑗

that can be ahead of it in the injection queue:
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𝐼
𝑝𝑟𝑒𝑞𝑢𝑒𝑢𝑒
𝑖 =

∑︁

𝜏 𝑗 ∈Γ𝑖𝑛𝑖

(𝐿 𝑗 + 𝐼
𝑝𝑟𝑒𝑖𝑑𝑙𝑒
𝑗 ) (8)

where Γ𝑖𝑛𝑖 is the subset of Γ (and not of Γ𝑜 ) with all flows originating from core 𝜋𝑖 (i.e. the same
core as 𝜏𝑖 ), regardless of which ring they use. The intuition here is that a packet of 𝜏𝑖 will be queued,
in the worst case, for the maximum time it takes for a single packet of each of the flows sharing its
injection link to enter their respective rings.
And of course the total worst-case interference before injection 𝐼𝑝𝑟𝑒 under a shared injection

link is given by:

𝐼
𝑝𝑟𝑒
𝑖 = 𝐼

𝑝𝑟𝑒𝑖𝑑𝑙𝑒
𝑖 + 𝐼

𝑝𝑟𝑒𝑞𝑢𝑒𝑢𝑒
𝑖 (9)

Note that this formulation is general enough to be applied in the case where injection queues
are not shared, i.e. when all queued packets will be injected to the same ring, so it can actually be
applied instead of Eq. 2. However, it is a more pessimistic formulation, as it always assumes the
maximum time each individual packet has to wait in the head of the queue to enter the ring, while
Eq. 2 considers the longest time interval with enough idle cycles for all packets in the queue to
enter the ring (which can never be larger).
Due to the separation of 𝐼𝑝𝑟𝑒 into two parts, the iterative approach for the calculation of 𝐽𝑘

proposed in subsection 3.3 has to be modified accordingly. Algorithm 2 shows the changed parts
from Algorithm 1, which mainly consists of an additional loop performed at each iteration to
calculate 𝐼𝑝𝑟𝑒𝑖𝑑𝑙𝑒 for all flows before the loop used for the calculation of 𝐼𝑝𝑟𝑒𝑞𝑢𝑒𝑢𝑒 , 𝐼𝑝𝑟𝑒 and 𝑅𝑛𝑒𝑤 . This

is because the calculation of 𝐼
𝑝𝑟𝑒𝑞𝑢𝑒𝑢𝑒
𝑖 of a given flow depends on the values of 𝐼𝑝𝑟𝑒𝑖𝑑𝑙𝑒 of all other

flows sharing the same injection link, not only its own. The remainder of the algorithm follows
exactly the same logic explained in subsection 3.3.

𝑐ℎ𝑎𝑛𝑔𝑒 ← 𝑓 𝑎𝑙𝑠𝑒;

foreach (𝜏𝑖 ∈ Γ) do

calculate 𝐼
𝑝𝑟𝑒𝑖𝑑𝑙𝑒
𝑖 by feeding the latest values of 𝐽𝑘 into Eq. 7;

end

foreach (𝜏𝑖 ∈ Γ) do

calculate 𝐼
𝑝𝑟𝑒𝑞𝑢𝑒𝑢𝑒
𝑖 by feeding the latest values of 𝐼𝑝𝑟𝑒𝑖𝑑𝑙𝑒 into Eq. 8;

calculate 𝐼
𝑝𝑟𝑒
𝑖 = 𝐼

𝑝𝑟𝑒𝑖𝑑𝑙𝑒
𝑖 + 𝐼

𝑝𝑟𝑒𝑞𝑢𝑒𝑢𝑒
𝑖 ;

calculate 𝑅𝑛𝑒𝑤𝑖 = 𝐶𝑖 + 𝐼
𝑝𝑟𝑒
𝑖 + 𝐼

𝑝𝑜𝑠
𝑖 ;

if 𝑅𝑛𝑒𝑤𝑖 > 𝐷𝑖 then

Γ is unschedulable, return 𝑅 ← ∅ and exit;

end

if 𝑅𝑛𝑒𝑤𝑖 ≠ 𝑅𝑖 then

𝑐ℎ𝑎𝑛𝑔𝑒 = 𝑡𝑟𝑢𝑒;

𝑅𝑖 ← 𝑅𝑛𝑒𝑤𝑖 ;

𝐽𝑘𝑖 = 𝑅𝑖 −𝐶𝑖 ;

end

end

Algorithm 2: Iterative Schedulability Test for Shared Injection Links.
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3.5 Analysis of Shared Ejection Link

To reduce even further the energy and area overheads of routerless NoCs, [18] and [1] consider
switches with shared ejection links. In the case of Liu et al. [18], switches only have a single ejection
link shared by all rings that deliver packets to the core connected to that switch. Aware of the
negative impact of a single ejection link on the NoC performance, Alazemi et al. [1] supported
multiple ejection links per switch, but allowed them to be shared in case the number of rings
delivering packets to a given core exceeds the number of available ejection links. In both cases,
when a packet arrives to its destination switch and is unable to obtain arbitration to the ejection
link (i.e. a packet ejection from another ring sharing the same ejection link is already under way), it
is deflected to the switch’s output port for that ring and forced to do a loop around the whole ring
before arriving back at the destination switch’s input port and trying again to obtain arbitration
to its ejection link. To prevent successive deflections from causing a livelock, both approaches
propose mechanisms to limit the number of deflections: Liu et al. [18] timestamp every packet
and use an Oldest-First arbitration of the ejection link; while Alazemi et al. [1] tag packets with a
circling counter that is incremented after every deflection, and implement a reservation scheme
that guarantees an ejection link for the packet after one final loop once the counter reaches a
certain value.
Such packet deflection mechanisms are not amenable to time predictability, since they force

the analysis to assume that whenever a packet can be deflected, regardless of how unlikely, it will
be. While the livelock prevention mechanisms proposed by [18] and [1] ensure that the number
of deflections is bounded, that upper-bound may be much higher than the typical number of
deflections a packet would experience (e.g. an 8-bit circling counter, as implemented in [1] would
allow a packet to circle the ring up to 256 times before it is guaranteed access to an ejection link).
Nonetheless, we update our analysis so that it can take into account the increased worst-case packet
latencies due to deflection.
A packet deflection affects both 𝐼

𝑝𝑟𝑒
𝑖 and 𝐼

𝑝𝑜𝑠
𝑖 terms of the proposed analysis. The value of 𝐼

𝑝𝑜𝑠
𝑖

will increase because of the additional links a packet must go through while circling around the
loop after a deflection, as well as the downstream direct interference which in this case should
consider traffic over the whole ring. In turn, the value of 𝐼

𝑝𝑟𝑒
𝑖 will increase because of the additional

packets circling the ring that can delay even further a packet injection.
We start by formulating the worst case latency a packet of a flow 𝜏𝑖 will experience after a

deflection. We can produce two equations with different levels of precision, following the same
intuition behind Eqs. 3 and 5, but considering that the packet must go through all 𝑟𝑜 switches of
the ring Ξ

𝑜 instead of only its downstream path:

𝐼
𝑑𝑒𝑓 𝑙
𝑖 = 𝑟𝑜 · 𝐵𝑜 (10)

𝐼
𝑑𝑒𝑓 𝑙
𝑖 =

∑︁

𝜉∈Ξ𝑜

𝐵𝑜𝜉 (11)

Eq. 12 below provides an upper bound for 𝐼
𝑝𝑜𝑠
𝑖 considering that a packet may suffer up to𝑚𝑎𝑥𝑙𝑜𝑜𝑝

deflections:

𝐼
𝑝𝑜𝑠𝑑𝑒𝑓 𝑙
𝑖 = 𝐼

𝑝𝑜𝑠
𝑖 +𝑚𝑎𝑥𝑙𝑜𝑜𝑝𝑖 · 𝐼

𝑑𝑒𝑓 𝑙
𝑖 (12)

It accounts for the interference 𝜏𝑖 may suffer from packets that can either be injected or buffered
in each of the switches along its path to its destination, as well as those over each of its loops
around the ring after each deflection. It provides a safe upper bound regardless if the value of 𝐼

𝑝𝑜𝑠
𝑖
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is obtained from Eq. 3 or 5, and the value of 𝐼
𝑑𝑒𝑓 𝑙
𝑖 is obtained from Eq. 10 or 11, but the tightest

bound is obtained using values from Eqs. 5 and 11, respectively.
We now focus our attention on updating the upper bound to 𝐼

𝑝𝑟𝑒
𝑖 due to the additional injection

delay imposed by deflected packets. For the sake of completeness, we will present one formulation
assuming an exclusive injection link per ring and another for the case where a single injection link
is shared among all rings.
If we assume that each ring has its exclusive injection link, all we need to do is to update Eq. 2

so that it also models the additional interference caused by the deflections of packets using that
ring. We do that by adding a fourth term to Eq. 2, which models the injection delay caused by each
of the packet deflections by accounting for them as if they are replicas of the original packet flow,
producing interfering packets with the same period, jitter and upstream indirect interference:

𝐼
𝑝𝑟𝑒
𝑖 = 1 +

∑︁

𝜏 𝑗 ∈Γ𝑖𝑛𝑖

𝐿 𝑗 +
∑︁

𝜏 𝑗 ∈Γ
𝑜
𝑢𝑝𝑖

⌈

𝐼
𝑝𝑟𝑒
𝑖 + 𝐽 𝑗 + 𝐽

𝑘
𝑗

𝑇𝑗

⌉

· 𝐿 𝑗 +
∑︁

𝜏 𝑗 ∈Γ𝑜

𝑚𝑎𝑥𝑙𝑜𝑜𝑝 𝑗
∑︁

1

⌈

𝐼
𝑝𝑟𝑒
𝑖 + 𝐽 𝑗 + 𝐽

𝑘
𝑗

𝑇𝑗

⌉

· 𝐿 𝑗 (13)

To ensure that all possible packet deflections are considered (and not only those by the packets
that share links with 𝜏𝑖 ), the outer sum in the fourth term is performed over the set Γ𝑜 that includes
all flows using the ring 𝑜 .
Now, let us assume that a single injection link is shared among all rings. As in subsection 3.4,

for this case we analyse separately the time a packet spends in the injection queue (𝐼𝑝𝑟𝑒𝑞𝑢𝑒𝑢𝑒 ) and
the time it spends at the head of the queue waiting for an idle cycle on its respective ring (𝐼𝑝𝑟𝑒𝑖𝑑𝑙𝑒 ).
Deflected packets will potentially increase the worst-case wait for an idle cycle on a given ring, so
we must account for that on an updated definition of 𝐼𝑝𝑟𝑒𝑖𝑑𝑙𝑒 :

𝐼
𝑝𝑟𝑒𝑖𝑑𝑙𝑒
𝑖 = 1 +

∑︁

𝜏 𝑗 ∈Γ
𝑜
𝑢𝑝𝑖

⌈

𝐼
𝑝𝑟𝑒𝑖𝑑𝑙𝑒
𝑖 + 𝐽 𝑗 + 𝐽

𝑘
𝑗

𝑇𝑗

⌉

· 𝐿 𝑗 +
∑︁

𝜏 𝑗 ∈Γ𝑜

𝑚𝑎𝑥𝑙𝑜𝑜𝑝 𝑗
∑︁

1

⌈

𝐼
𝑝𝑟𝑒𝑖𝑑𝑙𝑒
𝑖 + 𝐽 𝑗 + 𝐽

𝑘
𝑗

𝑇𝑗

⌉

· 𝐿 𝑗 (14)

The update follows exactly the same intuition behind Eq. 13, and adds a term to account for
packet deflections as if they are replicas of the original packet flow. The calculation of 𝐼𝑝𝑟𝑒 then
uses an unchanged Eq. 9, adding 𝐼𝑝𝑟𝑒𝑞𝑢𝑒𝑢𝑒 provided by an unchanged Eq. 8 to 𝐼𝑝𝑟𝑒𝑖𝑑𝑙𝑒 obtained from
Eq. 14 above.

Finally, Eq. 6 must be updated to include the packet’s no-load latency over each of its deflections,
which is accounted for by the product of the number of hops around the ring (which is equal to the
number of switches 𝑟𝑜 ) and the maximum number of deflections𝑚𝑎𝑥𝑙𝑜𝑜𝑝𝑖 . That value is added to
the packet’s no-load latency from its source to destination (i.e. before any deflections take place,
as in Eq. 6, which also accounts for the payload flits flowing into and out of the ring), and to the
values for the worst-case interference before and after injection using the equations derived in this
subsection:

𝑅𝑖 = 𝐶𝑖 + 𝑟
𝑜 ·𝑚𝑎𝑥𝑙𝑜𝑜𝑝𝑖 + 𝐼

𝑝𝑟𝑒
𝑖 + 𝐼

𝑝𝑜𝑠
𝑖 (15)

Table 2 provides a summary of every NoC configuration analysed in this paper, and the equations
used to calculate worst case packet latency (and its components) under each of those configurations.

3.6 Bounding Deflections

Eqs. 12, 13, 14 and 15 all require an appropriate value for the𝑚𝑎𝑥𝑙𝑜𝑜𝑝 variable. That value depends
on the the livelock prevention mechanism used by the network, but also on the traffic load injected
into it.
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Table 2. Summary of equations used for each NoC configuration

Configuration
𝑅𝑖 𝐼

𝑝𝑟𝑒
𝑖 𝐼

𝑝𝑟𝑒𝑖𝑑𝑙𝑒
𝑖 𝐼

𝑝𝑟𝑒𝑞𝑢𝑒𝑢𝑒
𝑖

𝐼
𝑝𝑜𝑠
𝑖Injection links Ejection links

independent independent Eq.6 Eq.2 N/A N/A Eq.3 or Eq.5

shared independent Eq.6 Eq.9 Eq.7 Eq.8 Eq.3 or Eq.5

independent shared Eq.15 Eq.13 N/A N/A Eq.12

shared shared Eq.15 Eq.9 Eq.14 Eq.8 Eq.12

In the case of the Oldest-First livelock prevention mechanism proposed by Liu et al. [18],𝑚𝑎𝑥𝑙𝑜𝑜𝑝

should be set to the highest possible number of packets that can be en route to the destination core
𝜋𝑑
𝑖 of the packet flow under analysis 𝜏𝑖 , as each of them could, in the worst case, force a deflection

to a packet of 𝜏𝑖 . Since we assume that a packet flow deadline is no greater than its period, we
can assume that in a schedulable system each flow will have at most one packet en route to their
destination core at any given time, so the value of𝑚𝑎𝑥𝑙𝑜𝑜𝑝 in such a case is exactly the number of
flows sharing the same destination core.
In the routerless architecture proposed by Alazemi et al. [1], livelock is prevented by a circling

counter which locks the ejection link of a ring for every packet that has reached the number of
deflections given by the counter’s resolution. The value of𝑚𝑎𝑥𝑙𝑜𝑜𝑝 could then be directly provided
by the counter’s resolution (i.e. its maximum value), but in reality the actual traffic load may dictate
that the maximum number of deflections could be smaller (for lightly loaded networks) or even
larger than the counter’s resolution (as an overloaded network may force the deflection counter of
specific packets to overflow, a possibility that is not addressed in [1]). For example, such a scenario
may arise when a particular packet’s circling counter expires while the ejection link is still locked
to another packet. This shows that the usage of Alazemi et al.’s architecture to support real-time
systems would require careful investigation of the assignment of specific values for the circling
counter of each packet flow, aiming to verify feasibility and maximise schedulability resulting from
that assignment. Such investigation is outside the scope of this paper and is left as future work.

While [18] focused mostly on single ejection links shared by all flows with the same destination
core, [1] already supports multiple ejection links per core. By allowing for multiple ejection links
while enforcing that packets of a given flow would always use the same ejection link, and by
utilising an Oldest-First mechanism such as proposed in [18], the analysis proposed in this paper
enables system designers to fully exploit a well-defined trade-off between hardware resources and
real-time schedulability: by adding more ejection links per core, the value of𝑚𝑎𝑥𝑙𝑜𝑜𝑝 can be driven
down (as in this case𝑚𝑎𝑥𝑙𝑜𝑜𝑝 would be equal to the number of flows sharing an ejection link),
and therefore schedulability becomes easier to achieve since most of the components of the flow’s
worst-case latency are functions of𝑚𝑎𝑥𝑙𝑜𝑜𝑝 . A systematic exploration of this trade-off within an
optimisation framework is also left as future work.

4 EVALUATION

The superiority of routerless NoCs over router-based wormhole mesh networks on average-case
performance, chip area and energy dissipation has been discussed in detail in [1] and [18], supported
by extensive experiments based on simulation models and hardware designs. Our goal in this section
is to add a new aspect to the comparison between the two types of NoC architectures, focusing
exclusively on the ability of routerless NoCs to guarantee the delivery of application communication
packets within their deadlines even in the worst-case scenario. Such a comparison, however, is
not necessarily straightforward. As discussed in Section 3, different assumptions with regards to
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the sharing of injection and ejection links, and therefore deflection, result in different analytical
models and, most likely, different latency upper bounds. Another difficulty lies on achieving a
fair comparison between routerless NoCs and router-based baselines: since their topologies and
communication mechanisms are so distinct, it is likely that schedulability metrics could be impacted
by the nature of the application benchmark (or its mapping onto the NoC platform) in very different
ways for the routerless NoC or the baseline. For example, the same application communication
traffic could flow between neighbouring cores in one of the architectures, while in the other it
would require a large number of hops and potentially suffer more interference.

Taking into account the above-mentioned considerations, we performed two types of experi-
mental evaluation. Firstly, we evaluate the ability of both types of NoC architectures to provide
latency guarantees to all flows of a given flowset, i.e. full schedulability. We refer to that evaluation
as flowset-based evaluation, which is presented in detail in subsection 4.1. We then change the focus
of our experimental evaluation to individual flows within a flowset, aiming to better understand
how different configurations of routerless NoCs affect their individual upper-bound latencies. We
refer to that evaluation as flow-based evaluation, with the results presented in subsection 4.2.

4.1 Flowset-based Evaluation

To account for the significant difference between mesh-based and routerless NoCs, we focus first
on a style of evaluation that relies on a diverse set of synthetically generated benchmarks that are
not biased to any of the architectures we are comparing. Let us describe such evaluation style in
more detail by stating its experimental metrics and goals:

• The main experimental metric considered in this subsection is the schedulability ratio, which
we define as the percentage of cases out of a set of benchmarks that are deemed fully
schedulable by a particular approach. If the set of benchmarks is sufficiently large and diverse,
we can argue that in a comparison among multiple approaches it is the one with the highest
schedulability ratio that would be more likely to produce a fully schedulable outcome in a
practical NoC deployment.
• We aim to evaluate the change in schedulability ratio over different levels of application
communication load, aiming to provide more diversity to our set of benchmarks and to obtain
a better comparison between different approaches under challenging operating conditions.
• We aim to investigate the impact of sharing injection and ejection links in the schedulability
ratio of routerless NoCs.
• We aim to investigate the impact of different upper bounds for route deflection in the
schedulability ratio of routerless NoCs with shared ejection links.
• We aim to investigate the impact of different maximum packet sizes in the schedulability
ratio of routerless NoCs.

In the remainder of this subsection, we will use the schedulability ratio metric to compare
different configurations of a routerless NoC against a state-of-the-art router-based wormhole NoC,
which we will refer to as the experimental baseline. The chosen baseline follows the widely used
QNoC template proposed in [3]: its cores are organised over a bi-dimensional grid, each of them
connected to a router supporting virtual channels with flit-level priority-preemptive arbitration,
and each router connected to its neighbours via bi-directional links in a 2D mesh topology. Its
configuration includes XY dimension-order routing, credit-based flow control (to allow flits to cross
a link in a single clock cycle), and 2-position FIFO buffers per virtual channel (as recommended
in [13], to minimise the effects of MPB). To calculate the schedulability ratio for the baseline, we
will rely on the state-of-the-art analysis [24].
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The routerless NoC chosen for the comparison will have the same number of processing cores
placed over a similar bi-dimensional grid, they will be connected by a multi-ring topology produced
by Alazemi et al.’s RLrec algorithm [1] (as shown in Figure 1 for a 4x4 NoC, in which case the
algorithm produces 10 rings). Such topology allows packets to reach a given destination through
multiple rings, so we will consider a network with interfaces that choose the ring that can reach
the packet’s destination core with the lowest number of hops. To cover the whole scope of our
contribution in this paper, we will consider several configurations of routerless NoCs regarding the
sharing of injection and ejection links.

To compare all the routerless NoC configurations against each other and the baseline, we produced
a wide variety of benchmarks, each of them consisting of 100 randomly generated flowsets. To
cover a wide range of communication load levels, benchmarks are characterised by the number of
sporadic traffic flows composing each of their flowsets, and by the packet sizes that those flows
are allowed to transfer over the network. All experiments start with a benchmark containing 100
flowsets of 20 traffic flows each, and we compare the schedulability ratio of all proposed approaches
against each other and the baseline for that benchmark, i.e. how many of the 100 flowsets can be
made fully schedulable by using each of the configurations (i.e. every single traffic flow in a flowset
is schedulable). We then continue to generate 100-flowset benchmarks, but with more flows per
flowset, and perform the same comparison for each benchmark. We stop either at benchmarks with
400 flows per flowset, or at the stage that no further comparative analysis is possible because only
a single configuration is still able to provide fully schedulable flowsets (i.e. non-zero schedulability
ratio).
To produce realistic benchmarks, all sporadic traffic flows have parameters uniformly sampled

from the same ranges: periods between 1 and 100 microseconds, and release jitters between 0 and
50% of the respective periods. In each experiment, we randomly map all traffic flows over a NoC
architecture in such a way that the source and destination cores are distinct, so that all flows use
the NoC interconnect. We perform experiments using two different NoC sizes (4x4 and 5x5 cores,
both set to operate at a clock frequency of 1 GHz) and for four different ranges of packet sizes (𝐿𝑖
uniformly distributed between 16-48, 32-96, 48-256 and 96-512).

4.1.1 Independent ejection links. The first flowset-based evaluation we present here assumes that
all routerless NoC configurations have independent ejection links, and therefore there is no need for
packet deflection (i.e. flows will always have an ejection link available to them). This requires larger
hardware overheads, but poses a smaller impact on performance and performance predictability.
The aims of this comparison are (i) to compare such routerless NoC configurations against a mesh-
based priority-preemptive baseline, (ii) to investigate the impact of sharing or not the injection
links to the NoC, and (iii) to evaluate the advantages of using the proposed iterative algorithms
to calculate the indirect interference 𝐽𝑘 (described in Algorithms 1 and 2) against the simplified
calculation of 𝐽𝑘𝑗 = 𝐷 𝑗 −𝐶 𝑗 .

Figure 3 shows eight plots, covering the two NoC sizes and four ranges of packet sizes. Within
each plot, there are five curves displaying the schedulability ratio achieved for each benchmark by
the following NoC configurations:

• 0D_NI_II - routerless NoC with independent ejection, non-iterative calculation of indirect
interference jitter (i.e. 𝐽𝑘𝑗 = 𝐷 𝑗 −𝐶 𝑗 ), independent injection.

• 0D_IU_II - routerless NoC with independent ejection, iterative calculation of indirect inter-
ference jitter (i.e. Algorithm 1), independent injection.
• 0D_NI_SI - routerless NoC with independent ejection, non-iterative calculation of indirect
interference jitter (i.e. 𝐽𝑘𝑗 = 𝐷 𝑗 −𝐶 𝑗 ), shared injection.
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• 0D_IU_SI - routerless NoC with independent ejection, iterative calculation of indirect inter-
ference jitter (i.e. Algorithm 1), shared injection.
• baseline - mesh-based NoC with priority-preemptive arbitration
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Fig. 3. Flowset-based evaluation of routerless NoCs with independent ejection links against a priority-

preemptive mesh baseline

A careful analysis of the plots in Fig. 3 allowed us to confirm the following experimental
hypotheses:

• The proposed iterative algorithm for the calculation of indirect interference jitter provides tighter

upper-bounds than the simplified non-iterative method. This can be seen in both NoC sizes,
and across all ranges of packet sizes. For the case of independent injection, the schedulability
ratio of the configuration 0D_NI_II (analysed using the simplified bound) is consistently
worse than the 0D_IU_II (analysed using the proposed iterative algorithm). Similarly for the
case with shared injection, 0D_NI_SI is consistently worse than 0D_IU_SI. This can be clearly
seen in the plots: when comparing lines of the same colour, the ones with triangle markers
(simplified) are never above the ones with square markers (iterative). In the cases with smaller
packets, where the network is less saturated and therefore worst-case latencies are more
likely to be well below the respective deadlines, the advantages of the proposed iterative
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analysis are much more significant (as the simplified bound becomes very pessimistic, as
explained in subsection 3.3). For example, in the 4x4 NoC with packets between 16 and
48 flits and shared injection links (i.e. yellow lines), the iterative approach (square marker)
produced a 100% schedulability ratio for benchmarks with up to 180 flows per flowset, while
the simplified method (triange marker) dropped below 100% schedulability ratio already for
benchmarks with 40 flows per flowset, and at 180 flows per flowset its schedulability ratio
dropped to zero. Given the consistent superiority of the iterative analysis, which can be
observed with NoC sizes, packet sizes and injection link sharing status, we will focus the
subsequent comparisons on the configurations analysed using the iterative approach (i.e.
0D_IU_II and 0D_IU_SI).
• Sharing injection links has detrimental impact on worst-case performance. This was of course
expected, as sharing injection with packets going into different rings may introduce much
larger worst-case injection latencies. The evaluation results in Fig. 3 allow us to quantify that
impact by measuring the vertical distance between 0D_IU_SI (shared injection) and 0D_IU_II
(independent injection) in the plots. The configuration with shared injection is consistently
below the one with independent injection across all plots, typically by 5-25 percent points,
but in some cases the difference can reach more than 80 percent points. For example, in the
5x5 NoC with packets between 32 and 96 flits and benchmark with 400 flows per flowset,
the schedulability ratio with independent injection is 91% while sharing the injection link
allowed for a schedulability ratio of only 4%.
• The performance of Routerless NoCs suffers significantly as packet sizes increase. The plots
clearly show that, for the case of small packets (i.e. 16-48 and 32-96 flits), the schedulability
ratio of the Routerless NoC configurations is significantly better than the baseline, for both
independent and shared injection links. However, with the increase of packet sizes, that
advantage shrinks and in the case with the largest packets the baseline becomes superior
(particularly in the 5x5 NoC case). This is due to the fact that routerless NoCs have no
means to preempt large packets, so they can impose large amounts of interference to other
packets (potentially more urgent ones), simply because they were earlier in acquiring a shared
resource. The baseline uses preemptive arbitration, allowing packets with shorter deadlines
to be given higher priority, so they can acquire a shared resource previously acquired by a
large packet, preventing long undesired delays. This effect can also be seen in the plots, as
the performance of the baseline does not change so widely across different packet sizes.

To summarise our experimental conclusions so far, we can firstly state that the proposed iterative
approach for calculating indirect interference jitter provides significantly tighter upper bounds
compared to the simplified non-iterative approach, and therefore should be used as the best known
representation of the worst-case behaviour of routerless NoCs. Then, by analysing the results
produced by the proposed iterative approach, we can state that a routerless NoC with independent
ejection and small packet sizes is consistently superior to a mesh-based priority-preemptive NoC
when it comes to real-time schedulability, even in the cases with shared injection link. For larger
packets, routerless NoCs perform significantly worse and can be outperformed by mesh NoCs, so
such configurations should be avoided. This can be done by exploring the trade-off between period
and packet sizes, i.e. by breaking packet into smaller units that can be injected more frequently, but
a detailed analysis of such optimisation approach is left as future work.
As reviewed in subsection 3.5, the cost of independent ejection links can be prohibitive and

routerless NoCs typically share them among multiple rings, forcing packets to be deflected if the
ejection link is in use upon their arrival. In the next subsection, our evaluation focuses in that kind
of scenario.
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4.1.2 Shared ejection links. Our second flowset-based evaluation aims to quantify the impact of
sharing ejection links on the real-time schedulability of routerless NoCs. Of course, that impact
depends on the maximum number of deflections that a packet may have to do, so our comparison
will cover the following alternatives:

• 0D_IU_SI - routerless NoC with independent ejection, iterative calculation of indirect inter-
ference jitter (i.e. Algorithm 1), shared injection. This is the same as the configuration with
the same name in the previous subsection.
• 1D_IU_SI - routerless NoC with shared ejection and a maximum of 1 deflection, iterative
calculation of indirect interference jitter (i.e. Algorithm 1), shared injection.
• 2D_IU_SI - routerless NoC with shared ejection and a maximum of 2 deflections, iterative
calculation of indirect interference jitter (i.e. Algorithm 1), shared injection.
• 3D_IU_SI - routerless NoC with shared ejection and a maximum of 3 deflection, iterative
calculation of indirect interference jitter (i.e. Algorithm 1), shared injection.
• baseline - mesh-based NoC with priority-preemptive arbitration. This is the same as the
configuration with the same name in the previous subsection.
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Fig. 4. Flowset-based evaluation of routerless NoCs with shared ejection links against a priority-preemptive

mesh baseline.
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Configuration 0D_IU_SI was used again in this evaluation, as it has outperformed the baseline in
the previous evaluation while requiring lower hardware resources (as it uses shared injection links).
We then evaluate different levels of ejection link sharing by limiting the number of deflections
allowed to all packets in the NoC, from 0 to 3.
The generation of benchmarks follows the same process described in the previous subsection,

and the NoC sizes, topologies and packet sizes are also the same.
By looking at the plots in Fig. 4, we can see that a larger number of deflections leads to lower

schedulability ratios, as expected. We can also see that the difference in schedulability ratio for
each additional deflection is larger in the 5x5 NoC than in the 4x4 NoC, which can be explained by
the need of deflected packets to cycle around larger rings (but which poses interesting questions
regarding the scalability of routerless NoCs with shared ejection).
Once more, we can see the significant impact of packet sizes. For the smallest packets, we can

see that a routerless NoC that allows up to 2 deflections for every packet can still beat the baseline
(e.g. for benchmarks with more than 140 flows per flowset on a 4x4 NoC, and 160 flows per flowset
on a 5x5 NoC). For larger packets, allowing even a single deflection would put the routerless NoC
configurations below the baseline.

As a summary, we can state that deflections should be seen as the exceptional case when it comes
to supporting real-time guarantees in routerless NoCs. While full schedulability could be achieved
when allowing up to two deflections per packet, our experimental evidence shows that those cases
are not common at high levels of communication load. The real-time analysis framework proposed
in this paper can enable an optimisation process that considers partitioning of flows over multiple
shared ejection links, aiming to fulfil real-time guarantees while minimising the number of ejection
links (and the associated hardware overhead), which we will tackle as future work.

4.2 Flow-based Evaluation

In the previous subsection, we used schedulability ratio as the metric to compare different NoC
configurations and analysis techniques over a wide variety of flowsets. We now present results of a
flow-based evaluation, which instead focuses on the worst-case latencies of individual flows within
a flowset. Our aim is to better understand the impact of the different components of the worst-case
latency under different scenarios and different levels of load.
The experimental setup is similar to what we used in the previous subsection. We generate

flowsets with different numbers of flows in each of them, aiming to cover a wide range of communi-
cation loads. Given the nature of the proposed analysis, we are only able to obtain valid worst-case
latencies for schedulable flows (as seen in Algorithms 1 and 2), so the comparisons in this subsection
must consider only fully schedulable flowsets. Therefore, the process of benchmark generation
had to be changed: we would repeatedly apply the process described in the previous subsection for
generating random flowsets within the parameters specified for the specific benchmark, stopping
only when it finds a fully schedulable one, which is then used in the experimental comparisons
described below.
Even though our goal in this subsection is to analyse worst-case latencies of individual flows

within a flowset, it is not easy to make sense of those values directly. Instead, we focus on the
spread and skewness of the latencies of flows within a flowset, and we plot that distribution as
a box-and-whiskers plot: the lower and upper whiskers represent the minimum and maximum
values, while the box represents the median, and the first and third quartiles.

Following our findings from the flowset-based experiments, we now focus only on traffic flows
with packets between 16 and 48 flits. In all experiments, routerless and baseline NoCs have the
same size (4x4).
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4.2.1 Independent ejection links. As before, we start our comparative evaluation by considering
the case where all rings have their own ejection link, so deflection is not necessary. Our goals here
are similar to that of subsection 4.1.1, but now looking at the impact on individual flow latencies
instead of overall schedulability ratio.
Let us first look into the impact of the proposed iterative algorithms to calculate the indirect

interference 𝐽𝑘 against the simplified calculation of 𝐽𝑘𝑗 = 𝐷 𝑗 − 𝐶 𝑗 . In Fig. 5(a), we see box-and-

whiskers for six different flowsets, all fully schedulable, but each with a different number of flows
(from 25 to 150, indicated on the x-axis). The data distribution represented by each box-and-whiskers
is the percent difference between the worst-case latency of a given flow obtained through the
proposed iterative analysis and the worst-case latency of the same flow using the non-iterative
simplified calculation. For the smallest flowset with 25 flows, we see that there is no difference
for up to a quarter of the flows, and for more than three quarters of the flows the proposed
iterative algorithm provided worst-case bounds that were less than 20% smaller than the simplified
calculation. However, as the number of flows per flowset increases to 50, forcing more resource
sharing and therefore more interference, the tighter formulation of the proposed algorithm provides
a sharp improvement, with half of the flows showing an improvement above 30%. As the number
of flows per flowset increases even more, the network becomes more and more congested and
therefore the advantages of the proposed approach reach a plateau: as the worst-case latency 𝑅 of
many flows become closer to their respective deadlines, the simplified use of the deadline as a proxy
for 𝑅 introduces less and less error. If we could keep increasing the number of flows per flowset
towards network saturation, we would likely see the percent difference decrease from that plateau,
but that becomes increasingly difficult because we are less and less likely to find fully-schedulable
flowsets at that level of network load.

Now, let us evaluate the impact of having shared injection links. In Fig. 5(b), we present box-and-
whiskers showing the percent difference between the worst-case latency of a flow using a routerless
NoC with independent injection links for each ring, and the worst-case latency of the same flow
using a routerless NoC where all rings share the same injection link on a switch. The first feature
we should notice is the magnitude of the spread of the distribution, which shows that sharing the
injection link can lead to an increase of the worst-case latency by more than 200%. The increase of
the median difference as we increase the network load is significant, but expected as there will
be likely more congestion over the shared link. More importantly, there is a sharp increase in the
maximum percent difference (i.e. upper whisker), which shows that sharing injection links is much
more likely to create worst-case outliers. For a flowset to be deemed unschedulable, we only need
one flow to be unschedulable, and we can now see that sharing injection links makes that more
likely. This fully corroborates our findings from the flowset-based experiments, where we see a
much larger gap between yellow (shared injection) and purple (independent injection) lines in Fig.
3 as the network load increases (either by increasing the number of flows or the size of packets).

In Fig. 5(c) we have the percentage of the worst-case latency of each flow of the flowset that is due
to the worst-case latency before injection 𝐼𝑝𝑟𝑒 , and in Fig. 5(d) the percentage due to the worst-case
latency after injection 𝐼𝑝𝑜𝑠 , both in a routerless NoC with independent injection. We can see that for
small flowsets the overall latency is dominated by 𝐼𝑝𝑜𝑠 , as the calculation of 𝐼𝑝𝑜𝑠 does not depend
on the number of flows (from Eq. 3 we can see it is a function of the path length and maximum
packet size). The calculation of 𝐼𝑝𝑟𝑒 , on the other hand, is based on sums over interference sets,
which become larger as the number of flows increase. This is clearly reflected on the increase of
the contribution of 𝐼𝑝𝑟𝑒 and the reduction of the contribution of 𝐼𝑝𝑜𝑠 as the network load increases.
Nonetheless, 𝐼𝑝𝑜𝑠 dominates across the the whole range of benchmarks.
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Fig. 5. Flow-based evaluation of routerless NoCs with independent ejection links: x-axis shows the number of

flows in the flowset, y-axis shows (a) percentage difference between non-iterative and iterative solutions, (b)

percentage difference between shared and independent injection, (c) percentage of the worst-case latency due

to 𝐼𝑝𝑟𝑒 under independent injection, (d) percentage of the worst-case latency due to 𝐼𝑝𝑜𝑠 under independent

injection, (e) percentage of the worst-case latency due to 𝐼𝑝𝑟𝑒 under shared injection, (f) percentage of the

worst-case latency due to 𝐼𝑝𝑜𝑠 under shared injection.

In Fig. 5(e) and (f), we have exactly the same comparisons as in (c) and (d), but for a routerless NoC
with shared injection. Sharing injection links does not impact the calculation of 𝐼𝑝𝑜𝑠 , because once
injected a packet will still suffer interference of at most one packet per hop. However, the shared
injection boosts 𝐼𝑝𝑟𝑒 significantly due to the additional queuing behind packets entering other rings.
In this case, we can see a breaking point for flowsets with more than 50 flows, where 𝐼𝑝𝑟𝑒 becomes
the dominant component of a flow’s worst-case latency. This is a particularly interesting finding,
as our analytical framework allows network designers to pinpoint when the injection links become
the main responsible for the worst-case packet behaviour in a routerless NoC, and therefore decide
at which point the price of exclusive injection links becomes worth paying.

4.2.2 Shared ejection links. To complete our flow-based evaluation, we now look into routerless
NoCs with shared ejection links and analyse the impact of deflection to the components of a
flow’s worst-case latency. We consider that injection links are also shared, so we can consider this
evaluation as a further step beyond the comparison presented in Fig. 5(e) and (f).

In Fig. 6 (a) and (b) we have again, respectively, the percentage of the worst-case latency of each
flow that is due to 𝐼𝑝𝑟𝑒 and 𝐼𝑝𝑜𝑠 , but this time with a level of ejection link sharing that allows for at
most one deflection per packet (i.e. maxloop = 1). We can see that a single deflection already reverts
the trend we have seen in 5(e) and (f) where 𝐼𝑝𝑟𝑒 became dominant for heavier network loads. If
deflections are necessary, 𝐼𝑝𝑜𝑠 becomes dominant across all levels of load. And since 𝐼𝑝𝑜𝑠 does not
depend on the number of flows in the flowset, we can see that the spread of the distribution of
latencies is much smaller than what we have seen in the previous subsection.
Finally, in Fig. 6 (c) and (d) we see the same comparison for up to two deflections per packet,

and in Fig. 6 (e) and (f) for up to three deflections per packet. Perhaps counter-intuitively, we can
see that with an increased number of deflections we see a decrease in the dominance of 𝐼𝑝𝑜𝑠 , and
an increased variability on both latency components. This is due to the fact that deflected packets
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Fig. 6. Flow-based evaluation of routerless NoCs with shared ejection links: x-axis shows the number of

flows in the flowset, y-axis shows (a) percentage of the worst-case latency due to 𝐼𝑝𝑟𝑒 with 1 deflection per

packet, (b) percentage of the worst-case latency due to 𝐼𝑝𝑜𝑠 with 1 deflection per packet, (c) percentage of

the worst-case latency due to 𝐼𝑝𝑟𝑒 with 2 deflections per packet, (d) percentage of the worst-case latency due

to 𝐼𝑝𝑜𝑠 with 2 deflections per packet, (e) percentage of the worst-case latency due to 𝐼𝑝𝑟𝑒 with 3 deflections

per packet, (f) percentage of the worst-case latency due to 𝐼𝑝𝑜𝑠 with 3 deflections per packet.

have a large contribution to 𝐼𝑝𝑟𝑒 (as denoted by the last term of both Equations 13 and 14), because
their reappearance will increase even more the wait for the idle network cycle that allows a new
packet to be injected. Similarly, but not as significantly, the number of deflections also increases
the part of the worst-case latency that is not due to 𝐼𝑝𝑜𝑠 nor 𝐼𝑝𝑟𝑒 , i.e. the time the packet is moving
uninterruptedly around the ring.

5 CONCLUSIONS AND FUTURE WORK

This paper has identified the potential of routerless networks-on-chip as a communication backbone
for real-time multiprocessor platforms, and has proposed the first real-time analysis framework for
those networks. The proposed framework supports multiple configurations within the architectural
space of routerless NoCs, including sharing of injection and ejection links, and the use of starvation
avoidance mechanisms to bound the number of packet deflections. Evaluation using a large number
of synthetic benchmarks allowed for the comparison among multiple routerless NoC configurations,
and against a state-of-the-art router-based wormhole NoC baseline. We found that, besides the
previously reported advantages in chip area, energy dissipation and average-case performance,
routerless NoCs can be competitive alternatives when it comes to providing performance guarantees
to real-time applications and systems. Our experiments have shown that this is particularly true
for configurations with small maximum packet sizes and limited sharing of injection and ejection
links.

There are several limitations to the approach presented here, but also several new opportunities
enabled by it, all of which provide scope for further work. Our evaluation work is based on
synthetically generated benchmarks which are randomly mapped onto the NoC platforms. While
this is one way to achieve fairness, i.e. the mapping is not biased towards any of the routerless
configurations nor to the baseline, it fails to identify which platform is actually more amenable to
optimisation. Additional experiments based on the use of metaheuristics to optimise the mapping
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of the application benchmarks onto each specific platform would be one way to complete the
picture and evaluate the optimisation potential of the different alternatives (specially as this has
already been shown to be true for the baseline, e.g. with branch-and-bound [15] and genetic
algorithms [29]).
We have shown that the proposed analytical framework can quantify the impact of maximum

packet sizes and sharing of injection and ejection links. Such framework can be used as a fitness
function within the process of design space exploration for real-time embedded systems (such as
in [25] and [19]). Guided by the proposed framework, a good design space exploration process
would be able to evaluate alternative buffer sizes as well as the number of injection and ejection
links per switch, aiming to configure a NoC platform with minimum hardware overheads while
still satisfying all the real-time requirements of a given application.
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