52 research outputs found

    Power Management Electronics

    No full text
    Accepted versio

    Nano-Power Integrated Circuits for Energy Harvesting

    Get PDF
    The energy harvesting research field has grown considerably in the last decade due to increasing interests in energy autonomous sensing systems, which require smart and efficient interfaces for extracting power from energy source and power management (PM) circuits. This thesis investigates the design trade-offs for minimizing the intrinsic power of PM circuits, in order to allow operation with very weak energy sources. For validation purposes, three different integrated power converter and PM circuits for energy harvesting applications are presented. They have been designed for nano-power operations and single-source converters can operate with input power lower than 1 μW. The first IC is a buck-boost converter for piezoelectric transducers (PZ) implementing Synchronous Electrical Charge Extraction (SECE), a non-linear energy extraction technique. Moreover, Residual Charge Inversion technique is exploited for extracting energy from PZ with weak and irregular excitations (i.e. lower voltage), and the implemented PM policy, named Two-Way Energy Storage, considerably reduces the start-up time of the converter, improving the overall conversion efficiency. The second proposed IC is a general-purpose buck-boost converter for low-voltage DC energy sources, up to 2.5 V. An ultra-low-power MPPT circuit has been designed in order to track variations of source power. Furthermore, a capacitive boost circuit has been included, allowing the converter start-up from a source voltage VDC0 = 223 mV. A nano-power programmable linear regulator is also included in order to provide a stable voltage to the load. The third IC implements an heterogeneous multisource buck-boost converter. It provides up to 9 independent input channels, of which 5 are specific for PZ (with SECE) and 4 for DC energy sources with MPPT. The inductor is shared among channels and an arbiter, designed with asynchronous logic to reduce the energy consumption, avoids simultaneous access to the buck-boost core, with a dynamic schedule based on source priority

    An Input Power-Aware Maximum Efficiency Tracking Technique for Energy Harvesting in IoT Applications

    Get PDF
    The Internet of Things (IoT) enables intelligent monitoring and management in many applications such as industrial and biomedical systems as well as environmental and infrastructure monitoring. As a result, IoT requires billions of wireless sensor network (WSN) nodes equipped with a microcontroller and transceiver. As many of these WSN nodes are off-grid and small-sized, their limited-capacity batteries need periodic replacement. To mitigate the high costs and challenges of these battery replacements, energy harvesting from ambient sources is vital to achieve energy-autonomous operation. Energy harvesting for WSNs is challenging because the available energy varies significantly with ambient conditions and in many applications, energy must be harvested from ultra-low power levels. To tackle these stringent power constraints, this dissertation proposes a discontinuous charging technique for switched-capacitor converters that improves the power conversion efficiency (PCE) at low input power levels and extends the input power harvesting range at which high PCE is achievable. Discontinuous charging delivers current to energy storage only during clock non-overlap time. This enables tuning of the output current to minimize converter losses based on the available input power. Based on this fundamental result, an input power-aware, two-dimensional efficiency tracking technique for WSNs is presented. In addition to conventional switching frequency control, clock nonoverlap time control is introduced to adaptively optimize the power conversion efficiency according to the sensed ambient power levels. The proposed technique is designed and simulated in 90nm CMOS with post-layout extraction. Under the same input and output conditions, the proposed system maintains at least 45% PCE at 4μW input power, as opposed to a conventional continuous system which requires at least 18.7μW to maintain the same PCE. In this technique, the input power harvesting range is extended by 1.5x. The technique is applied to a WSN implementation utilizing the IEEE 802.15.4- compatible GreenNet communications protocol for industrial and wearable applications. This allows the node to meet specifications and achieve energy autonomy when deployed in harsher environments where the input power is 49% lower than what is required for conventional operation

    Circuits and Systems for Energy Harvesting and Internet of Things Applications

    Get PDF
    The Internet of Things (IoT) continues its growing trend, while new “smart” objects are con-stantly being developed and commercialized in the market. Under this paradigm, every common object will be soon connected to the Internet: mobile and wearable devices, electric appliances, home electronics and even cars will have Internet connectivity. Not only that, but a variety of wireless sensors are being proposed for different consumer and industrial applications. With the possibility of having hundreds of billions of IoT objects deployed all around us in the coming years, the social implications and the economic impact of IoT technology needs to be seriously considered. There are still many challenges, however, awaiting a solution in order to realize this future vision of a connected world. A very important bottleneck is the limited lifetime of battery powered wireless devices. Fully depleted batteries need to be replaced, which in perspective would generate costly maintenance requirements and environmental pollution. However, a very plausible solution to this dilemma can be found in harvesting energy from the ambient. This dissertation focuses in the design of circuits and system for energy harvesting and Internet of Things applications. The first part of this dissertation introduces the research motivation and fundamentals of energy harvesting and power management units (PMUs). The architecture of IoT sensor nodes and PMUs is examined to observe the limitations of modern energy harvesting systems. Moreover, several architectures for multisource harvesting are reviewed, providing a background for the research presented here. Then, a new fully integrated system architecture for multisource energy harvesting is presented. The design methodology, implementation, trade-offs and measurement results of the proposed system are described. The second part of this dissertation focus on the design and implementation of low-power wireless sensor nodes for precision agriculture. First, a sensor node incorporating solar energy harvesting and a dynamic power management strategy is presented. The operation of a wireless sensor network for soil parameter estimation, consisting of four nodes is demonstrated. After that, a solar thermoelectric generator (STEG) prototype for powering a wireless sensor node is proposed. The implemented solar thermoelectric generator demonstrates to be an alternative way to harvest ambient energy, opening the possibility for its use in agricultural and environmental applications. The open problems in energy harvesting for IoT devices are discussed at the end, to delineate the possible future work to improve the performance of EH systems. For all the presented works, proof-of-concept prototypes were fabricated and tested. The measured results are used to verify their correct operation and performance

    ENERGY HARVESTING TECHNIQUES IN WIRELESS SENSOR NETWORKS

    Get PDF
    Batteries are the main source of energy for low-power electronics such as micro-electro mechanical systems (MEMS), wireless sensor networks, embedded devices for remote sensing and control, etc. With the limited capacity of finite power sources and the need for supplying energy for the lifetime of a system/device there is a requirement for self-powered devices. Using conventional batteries is not always good design solution because batteries require human intervention to replace them (very often in hard-accessible and harsh-environmental conditions). Therefore, acquiring the electrical power, by using an alternative source of energy that is needed to operate these devices is a major concern. The process of extracting energy from the surrounding environment and converting it into consumable electrical energy is known as energy harvesting or power scavenging. The energy harvesting sources can be used to increase the lifetime and capability of the devices by either replacing or augmenting the battery usage. There are various forms of energy that can be scavenged, like solar, mechanical, thermal, and electromagnetic. Nowadays, there is a big interest in the field of research related to energy harvesting. This paper represents a survey for identifying the sources of energy harvesting and describes the basic operation of principles of the most common energy harvester. As first, we present, in short, the conversion principles of single energy source harvesting systems and point to their benefits and limitations in their usage. After that, hybrid structures of energy harvesters which simultaneously combine scavenged power from different ambient sources (solar, thermoelectric, electromagnetic), with aim to support higher load at the output, are considered

    Contributions to the design of energy harvesting systems for autonomous sensors in low power marine applications

    Get PDF
    Tesi en modalitat de compendi de publicacionsOceanographic sensor platforms provide biological and meteorological data to help understand changes in marine environment and help to preserve it. Lagrangian drifters are autonomous passive floating platforms used in climate research to obtain surface marine data. They are low-cost, versatile, easy-to-deploy and can cover large extensions of the ocean when deployed in group. These deployments can last for years, so one of the main design challenges is the autonomy of the drifter. Several energy harvesting (EH) sources are being explored to reduce costs in battery replacement maintenance efforts such as solar panels. Drifters must avoid the impact of the wind because this may compromise proper surface current tracking and therefore, should ideally be mostly submerged. This interferes with the feasibility of solar harvesting, so other EH sources are being explored such as the oscillatory movement of the drifter caused by ocean waves. Wave energy converters (WEC) are the devices that turn this movement into energy. The motion of the drifter can principally be described by 3 oscillatory degrees of freedom (DoF); surge, heave and pitch. The heave motion includes the buoyancy’s response of the drifter, which can be explained by a mass-spring-damping model. By including the wave’s hydrodynamic load in this model, it is converted into a nonlinear system whose frequency response includes the wave’s frequency and the natural frequencies from the linear system. A smart option to maximize the captured energy is to design the inner WEC with a natural frequency similar to that of the drifter's movement. In this thesis, a 4 DoF model is obtained. This model includes the heave, the surge and the pitch motion of the drifter in addition to the inner pendulum motion relative to the buoy. Simultaneously, different pendulum-type WECs for small-size oceanic drifters are proposed. One of these converters consists of an articulated double-pendulum arm with a proof mass that generates energy through its relative motion with the buoy. Different experimental tests are carried out, with a prototype below 10 cm in diameter and 300 g of total mass, proving the capability of harvesting hundreds of microwatts in standard sea conditions EH sources require an additional power management unit (PMU) to convert their variable output into a constant and clean source to be able to feed the sensor electronics. PMUs should also ensure that the maximum available energy is harvested with a maximum power point tracking (MPPT) algorithm. Some sources, such as WECs, require fast MPPT as its output can show relatively rapid variations. However, increasing the sampling rate may reduce the harvested energy. In this thesis, this trade-off is analyzed using the resistor-based fractional open circuit voltage-MPPT technique, which is appropriate for low-power EH sources. Several experiments carried out in marine environments demonstrate the need for increasing the sampling rate. For this purpose, the use of a commercial PMU IC with additional low-power circuitry is proposed. Three novel circuits with a sampling period of 60 ms are manufactured and experimentally evaluated with a small-scale and low-power WEC. Results show that these configurations improve the harvested energy by 26% in comparison to slow sampling rate configurations. Finally, an EH-powered oceanographic monitoring system with a custom wave measuring algorithm is designed. By using the energy collected by a small-size WEC, this system is capable of transmitting up to 22 messages per day containing data on its location and measured wave parameters.Les plataformes d’observació oceanogràfiques integren sensors que proporcionen dades físiques i biogeoquímiques de l’oceà que ajuden a entendre canvis en l’entorn marí. Un exemple d’aquestes plataformes són les boies de deriva (drifters), que són dispositius autònoms i passius utilitzats en l’àmbit de la recerca climàtica per obtenir dades in-situ de la superfície marina. Aquests instruments són de baix cost, versàtils, fàcils de desplegar i poden cobrir grans superfícies quan s’utilitzen en grup. L’autonomia és un dels principals desafiaments en el disseny de drifters. Per tal d’evitar els costos en la substitució de bateries, s’estudien diferents fonts de captació d’energia com per exemple la solar. Els drifters utilitzats per l’estudi dels corrents marins superficials han d’evitar l’impacte directe del vent ja que afecta al correcte seguiment de les corrents i, per tant, cal que estiguin majoritàriament submergides. Això compromet la viabilitat de l’energia solar, fet que requereix l’estudi d’altres fonts de captació com el propi moviment de la boia causat per les onades. Els convertidors d’energia de les onades (WEC, wave energy converters) compleixen aquesta funció. El moviment dels drifters pot explicar-se bàsicament a través de 3 graus de llibertat oscil·latoris: la translació vertical i la horitzontal i el balanceig. La translació vertical inclou la flotabilitat del dispositiu, que es pot descriure mitjançant el model massamolla- amortidor. Incloure la càrrega hidrodinàmica de l’onada en aquest model el converteix en un sistema no lineal amb una resposta freqüencial que inclou la de l’onada i les naturals del sistema lineal. Una opció per maximitzar l’energia captada és dissenyar el WEC amb una freqüència natural similar a la del moviment de la boia. En aquesta tesis es proposa un model de 4 graus de llibertat per a l’estudi del moviment del drifter. Aquest inclou els 3 graus de llibertat de la boia i el moviment del pèndul relatiu a ella. En paral·lel, es proposen diferents WEC del tipus pendular per drifters de reduïdes dimensions. Un d’aquests WEC consisteix en un doble braç articulat amb massa flotant que genera energia a través del seu moviment relatiu al drifter. S’han dut a terme diferents proves experimentals amb un prototip inferior a 10 cm de diàmetre i 300 g de massa, les quals demostren la seva capacitat de captar centenars de microwatts en condicions marines estàndard. Utilitzar fonts de captació d’energia requereix incloure una unitat gestora de potència (PMU, power management unit) per tal de convertir la seva sortida variable en una font constant i neta que alimenti l’electrònica dels sensors. Les PMU també tenen la funció d’assegurar que es recull la màxima energia mitjançant un algoritme de seguiment del punt de màxima potència. Els WEC requereixen un seguiment d’aquest punt ràpid perquè la seva sortida consta de variacions relativament ràpides. Tanmateix, augmentar la freqüència de mostreig pot reduir l’energia captada. En aquesta tesi, s'analitza a fons aquesta relació utilitzant la tècnica de seguiment de la tensió en circuit obert fraccionada basada en resistències, que és molt adequada per a fonts de baixa potència. Diversos experiments realitzats en el medi marí mostren la necessitat d'augmentar la freqüència de mostreig, així que es proposa l'ús de PMU comercials amb una electrònica addicional de baix consum. S’han fabricat tres circuits diferents amb un període de mostreig de 60 ms i s’han avaluat experimentalment en un WEC de reduïdes dimensions. Els resultats mostren que aquestes configuracions milloren l'energia recollida en un 26% en comparació a PMU amb mostreig més lent. Finalment, s’ha dissenyat un sistema autònom de monitorització marina que inclou un algoritme de mesura d'ones propi. Aquest sistema és capaç de transmetre fins a 22 missatges al diaPostprint (published version

    Urubu: energy scavenging in wireless sensor networks

    Get PDF
    For the past years wireless sensor networks (WSNs) have been coined as one of the most promising technologies for supporting a wide range of applications. However, outside the research community, few are the people who know what they are and what they can offer. Even fewer are the ones that have seen these networks used in real world applications. The main obstacle for the proliferation of these networks is energy, or the lack of it. Even though renewable energy sources are always present in the networks environment, designing devices that can efficiently scavenge that energy in order to sustain the operation of these networks is still an open challenge. Energy scavenging, along with energy efficiency and energy conservation, are the current available means to sustain the operation of these networks, and can all be framed within the broader concept of “Energetic Sustainability”. A comprehensive study of the several issues related to the energetic sustainability of WSNs is presented in this thesis, with a special focus in today’s applicable energy harvesting techniques and devices, and in the energy consumption of commercially available WSN hardware platforms. This work allows the understanding of the different energy concepts involving WSNs and the evaluation of the presented energy harvesting techniques for sustaining wireless sensor nodes. This survey is supported by a novel experimental analysis of the energy consumption of the most widespread commercially available WSN hardware platforms.Há já alguns anos que as redes de sensores sem fios (do Inglês Wireless Sensor Networks - WSNs) têm sido apontadas como uma das mais promissoras tecnologias de suporte a uma vasta gama de aplicações. No entanto, fora da comunidade científica, poucas são as pessoas que sabem o que elas são e o que têm para oferecer. Ainda menos são aquelas que já viram a sua utilização em aplicações do dia-a-dia. O principal obstáculo para a proliferação destas redes é a energia, ou a falta dela. Apesar da existência de fontes de energia renováveis no local de operação destas redes, continua a ser um desafio construir dispositivos capazes de aproveitar eficientemente essa energia para suportar a operação permanente das mesmas. A colheita de energia juntamente com a eficiência energética e a conservação de energia, são os meios disponíveis actualmente que permitem a operação permanente destas redes e podem ser todos englobados no conceito mais amplo de “Sustentabilidade Energética”. Esta tese apresenta um estudo extensivo das várias questões relacionadas com a sustentabilidade energética das redes de sensores sem fios, com especial foco nas tecnologias e dispositivos explorados actualmente na colheita de energia e no consumo energético de algumas plataformas comercias de redes de sensores sem fios. Este trabalho permite compreender os diferentes conceitos energéticos relacionados com as redes de sensores sem fios e avaliar a capacidade das tecnologias apresentadas em suportar a operação permanente das redes sem fios. Este estudo é suportado por uma inovadora análise experimental do consumo energético de algumas das mais difundidas plataformas comerciais de redes de sensores sem fios

    A POWER DISTRIBUTION SYSTEM BUILT FOR A VARIETY OF UNATTENDED ELECTRONICS

    Get PDF
    A power distribution system (PDS) delivers electrical power to a load safely and effectively in a pre-determined format. Here format refers to necessary voltages, current levels and time variation of either as required by the empowered system. This formatting is usually referred as "conditioning". The research reported in this dissertation presents a complete system focusing on low power energy harvesting, conditioning, storage and regulation. Energy harvesting is a process by which ambient energy present in the environment is captured and converted to electrical energy. In recent years, it has become a prominent research area in multiple disciplines. Several energy harvesting schemes have been exploited in the literature, including solar energy, mechanic energy, radio frequency (RF) energy, thermal energy, electromagnetic energy, biochemical energy, radioactive energy and so on. Different from the large scale energy generation, energy harvesting typically operates in milli-watts or even micro-watts power levels. Almost all energy harvesting schemes require stages of power conditioning and intermediate storage - batteries or capacitors that reservoir energy harvested from the environment. Most of the ambient energy fluctuates and is usually weak. The purpose of power conditioning is to adjust the format of the energy to be further used, and intermediate storage smoothes out the impact of the fluctuations on the power delivered to the load. This dissertation reports an end to end power distribution system that integrates different functional blocks including energy harvesting, power conditioning, energy storage, output regulation and system control. We studied and investigated different energy harvesting schemes and the dissertation places emphasis on radio frequency energy harvesting. This approach has proven to be a viable power source for low-power electronics. However, it is still challenging to obtain significant amounts of energy rapidly and efficiently from the ambient. Available RF power is usually very weak, leading to low voltage applied to the electronics. The power delivered to the PDS is hard to utilize or store. This dissertation presents a configuration including a wideband rectenna, a switched capacitor voltage boost converter and a thin film flexible battery cell that can be re-charged at an exceptionally low voltage. We demonstrate that the system is able to harvest energy from a commercially available hand-held communication device at an overall efficiency as high as 7.7 %. Besides the RF energy harvesting block, the whole PDS includes a solar energy harvesting block, a USB recharging block, a customer selection block, two battery arrays, a control block and an output block. The functions of each of the blocks have been tested and verified. The dissertation also studies and investigates several potential applications of this PDS. The applications we exploited include an ultra-low power tunable neural oscillator, wireless sensor networks (WSNs), medical prosthetics and small unmanned aerial vehicles (UAVs). We prove that it is viable to power these potential loads through energy harvesting from multiple sources

    Double smart energy harvesting system for self-powered industrial IoT

    Get PDF
    312 p. 335 p. (confidencial)Future factories would be based on the Industry 4.0 paradigm. IndustrialInternet of Things (IIoT) represent a part of the solution in this field. Asautonomous systems, powering challenges could be solved using energy harvestingtechnology. The present thesis work combines two alternatives of energy input andmanagement on a single architecture. A mini-reactor and an indoor photovoltaiccell as energy harvesters and a double power manager with AC/DC and DC/DCconverters controlled by a low power single controller. Furthermore, theaforementioned energy management is improved with artificial intelligencetechniques, which allows a smart and optimal energy management. Besides, theharvested energy is going to be stored in a low power supercapacitor. The workconcludes with the integration of these solutions making IIoT self-powered devices.IK4 Teknike

    A Multi-Source Harvesting System Applied to Sensor-Based Smart Garments for Monitoring Workers’ Bio-Physical Parameters in Harsh Environments

    Get PDF
    This paper describes the development and characterization of a smart garment for monitoring the environmental and biophysical parameters of the user wearing it; the wearable application is focused on the control to workers’ conditions in dangerous workplaces in order to prevent or reduce the consequences of accidents. The smart jacket includes flexible solar panels, thermoelectric generators and flexible piezoelectric harvesters to scavenge energy from the human body, thus ensuring the energy autonomy of the employed sensors and electronic boards. The hardware and firmware optimization allowed the correct interfacing of the heart rate and SpO2 sensor, accelerometers, temperature and electrochemical gas sensors with a modified Arduino Pro mini board. The latter stores and processes the sensor data and, in the event of abnormal parameters, sends an alarm to a cloud database, allowing company managers to check them via a web app. The characterization of the harvesting subsection has shown that ≈ 265 mW maximum power can be obtained in a real scenario, whereas the power consumption due to the acquisition, processing and BLE data transmission functions determined that a 10 mAh/day charge is required to ensure the device’s proper operation. By charging a 380 mAh Lipo battery in a few hours by means of the harvesting system, an energy autonomy of 23 days was obtained, in the absence of any further energy contribution
    corecore