4 research outputs found

    An Input Power-Aware Maximum Efficiency Tracking Technique for Energy Harvesting in IoT Applications

    Get PDF
    The Internet of Things (IoT) enables intelligent monitoring and management in many applications such as industrial and biomedical systems as well as environmental and infrastructure monitoring. As a result, IoT requires billions of wireless sensor network (WSN) nodes equipped with a microcontroller and transceiver. As many of these WSN nodes are off-grid and small-sized, their limited-capacity batteries need periodic replacement. To mitigate the high costs and challenges of these battery replacements, energy harvesting from ambient sources is vital to achieve energy-autonomous operation. Energy harvesting for WSNs is challenging because the available energy varies significantly with ambient conditions and in many applications, energy must be harvested from ultra-low power levels. To tackle these stringent power constraints, this dissertation proposes a discontinuous charging technique for switched-capacitor converters that improves the power conversion efficiency (PCE) at low input power levels and extends the input power harvesting range at which high PCE is achievable. Discontinuous charging delivers current to energy storage only during clock non-overlap time. This enables tuning of the output current to minimize converter losses based on the available input power. Based on this fundamental result, an input power-aware, two-dimensional efficiency tracking technique for WSNs is presented. In addition to conventional switching frequency control, clock nonoverlap time control is introduced to adaptively optimize the power conversion efficiency according to the sensed ambient power levels. The proposed technique is designed and simulated in 90nm CMOS with post-layout extraction. Under the same input and output conditions, the proposed system maintains at least 45% PCE at 4Ī¼W input power, as opposed to a conventional continuous system which requires at least 18.7Ī¼W to maintain the same PCE. In this technique, the input power harvesting range is extended by 1.5x. The technique is applied to a WSN implementation utilizing the IEEE 802.15.4- compatible GreenNet communications protocol for industrial and wearable applications. This allows the node to meet specifications and achieve energy autonomy when deployed in harsher environments where the input power is 49% lower than what is required for conventional operation

    A Generic Power Management Circuit for Energy Harvesters With Shared Components Between the MPPT and Regulator

    No full text

    Circuits and Systems for Energy Harvesting and Internet of Things Applications

    Get PDF
    The Internet of Things (IoT) continues its growing trend, while new ā€œsmartā€ objects are con-stantly being developed and commercialized in the market. Under this paradigm, every common object will be soon connected to the Internet: mobile and wearable devices, electric appliances, home electronics and even cars will have Internet connectivity. Not only that, but a variety of wireless sensors are being proposed for different consumer and industrial applications. With the possibility of having hundreds of billions of IoT objects deployed all around us in the coming years, the social implications and the economic impact of IoT technology needs to be seriously considered. There are still many challenges, however, awaiting a solution in order to realize this future vision of a connected world. A very important bottleneck is the limited lifetime of battery powered wireless devices. Fully depleted batteries need to be replaced, which in perspective would generate costly maintenance requirements and environmental pollution. However, a very plausible solution to this dilemma can be found in harvesting energy from the ambient. This dissertation focuses in the design of circuits and system for energy harvesting and Internet of Things applications. The ļ¬rst part of this dissertation introduces the research motivation and fundamentals of energy harvesting and power management units (PMUs). The architecture of IoT sensor nodes and PMUs is examined to observe the limitations of modern energy harvesting systems. Moreover, several architectures for multisource harvesting are reviewed, providing a background for the research presented here. Then, a new fully integrated system architecture for multisource energy harvesting is presented. The design methodology, implementation, trade-offs and measurement results of the proposed system are described. The second part of this dissertation focus on the design and implementation of low-power wireless sensor nodes for precision agriculture. First, a sensor node incorporating solar energy harvesting and a dynamic power management strategy is presented. The operation of a wireless sensor network for soil parameter estimation, consisting of four nodes is demonstrated. After that, a solar thermoelectric generator (STEG) prototype for powering a wireless sensor node is proposed. The implemented solar thermoelectric generator demonstrates to be an alternative way to harvest ambient energy, opening the possibility for its use in agricultural and environmental applications. The open problems in energy harvesting for IoT devices are discussed at the end, to delineate the possible future work to improve the performance of EH systems. For all the presented works, proof-of-concept prototypes were fabricated and tested. The measured results are used to verify their correct operation and performance
    corecore