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Abstract. Batteries are the main source of energy for low-power electronics such as 

micro-electro mechanical systems (MEMS), wireless sensor networks, embedded 

devices for remote sensing and control, etc. With the limited capacity of finite power 

sources and the need for supplying energy for the lifetime of a system/device there is a 

requirement for self-powered devices. Using conventional batteries is not always good 

design solution because batteries require human intervention to replace them (very 

often in hard-accessible and harsh-environmental conditions). Therefore, acquiring the 

electrical power, by using an alternative source of energy that is needed to operate 

these devices is a major concern. The process of extracting energy from the 

surrounding environment and converting it into consumable electrical energy is known 

as energy harvesting or power scavenging. The energy harvesting sources can be used 

to increase the lifetime and capability of the devices by either replacing or augmenting 

the battery usage. There are various forms of energy that can be scavenged, like solar, 

mechanical, thermal, and electromagnetic. Nowadays, there is a big interest in the field 

of research related to energy harvesting. This paper represents a survey for identifying 

the sources of energy harvesting and describes the basic operation of principles of the 

most common energy harvesters. As first, we present, in short, the conversion principles 

of single energy source harvesting systems and point to their benefits and limitations in 

their usage. After that, hybrid structures of energy harvesters which simultaneously 

combine scavenged power from different ambient sources (solar, thermoelectric, 

electromagnetic), with the aim of supporting higher load at the output, are considered. 
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  1. INTRODUCTION 

A wireless sensor network (WSN) consists of a number of low-power devices (called 

sensor nodes (SNs)) equipped with sensing, computing and communicating capabilities 

[1]. Serious problem faced by WSNs is energy. When an SN is depleted of energy it can 

no longer fulfill its role unless the source of energy, usually a battery, is replaced. One of 

the major limitations on performance and lifetime of such WSNs is the limited capacity 

of these finite power sources, which must be manually replaced when they are depleted. 

However, manual replacement or recharging of batteries is not an easy and always 

possible task due to high maintenance cost of replacing batteries for numerous SNs, 

especially in hard-to-service areas [2], [3]. A promising technique that is commonly 

applied to address the problem of finite SN lifetime is the use of energy harvesting. 

Energy harvesting refers to harnessing energy from the environments or other energy 

sources (body heat, foot strike, finger strokes) and converting it to electrical energy. The 

harnessed electrical energy powers the SNs. Recent works [4], [5] has explored scenarios 

in which SNs can harvest energy from their environment (for example, from the sun) and 

use it to recharge their batteries. In the absence of such energy (e.g., at night in the case 

of solar energy), SNs can then subsist on their replenished battery supply. The 

classification of energy harvesting can be organized on the basis of the form of energy the 

SNs use to scavenge the power. For instance, piezoelectric harvesting devices scavenge 

mechanical energy and convert it into usable electrical energy. Other common sources for 

energy scavenging are wind turbines, photovoltaic cells, thermoelectric generators, 

mechanical devices (e.g., piezoelectric devices), electromagnetic devices, and others [6].  

In this paper, we present an overview of the basic energy harvesting techniques that 

are used in WSNs. Firstly, WSN is defined as a collection of battery powered SNs 

randomly distributed over an area. Since the battery capacity is limited, and battery 

replacement is a costly and an often impossible task, in many real WSN applications 

using harvested energy as alternative/main system power source becomes a necessity. 

Secondly, the common energy harvesting sources are identified and the amount of energy 

that can be captured from these sources is presented. After that, the architecture of a SN 

is described and its essential activities (sensing, data processing and communication) are 

indicated. With an aim of prolonging the lifespan of an SN and indirectly save energy, 

the usage of a duty-cycle technique is proposed. Thirdly, in the central part of this paper, 

a unified understanding of energy harvesting and studying the most common energy 

sources (light, thermal gradients, vibration, etc.) and their characteristics are provided. For 

each energy source, a corresponding energy harvester structure is given and its benefits and 

limitations are indicated. In general, a single harvesting technology suitable for 

implementation in all applications does not exist. Having this in mind, the last part of our 

paper describes hybrid energy harvesters in a form of combined usage of complementary 

power sources (light, vibration, thermal, RF, e.tc.) as efficient design solutions attractive for 

VLSI implementation as a single chip, in the near future. Our paper is concluded by 

summarizing the contribution of the paper and suggesting future work. 

2. SENSOR NODE ARCHITECTURE 

A typical hardware structure of an SN is presented in Fig. 1 [7]. The SN consists of 

several building blocks: 
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a) MCU – referred as a processing subsystem, controls the operation of all constituents 

within the SN and performs data processing. The MCU includes a microcontroller and a 

memory for local data processing.  

b) Sensor Elements (SE) – called a sensing subsystem, implemented as a set of 

passive and active sensors (digital or analog) convert the input information from the 

external environment into electrical signals. In most applications, wireless SNs are used 

for monitoring light, pressure, vibration, flow rates in pipelines, temperature, ventilation, 

electricity, etc. Commonly, sensor elements generate voltage or current signals at their 

outputs. These signals are first amplified (conditioned) and then digitized with an analog-

to-digital converter, ADC, before data are digitally processed, stored and transmitted. 

 

Fig. 1 Typical block scheme of a sensor node 

c) Radio Block (RB) – implemented as a short range transceiver which provides 

wireless communication with the host or SNs within a WSN.  

d) Supply Unit (SU) – is a part of the power subsystem acting as a controllable unit 

which individually switches on/off the power supply of each of SN's building blocks. SU 

is responsible for providing the right amount of supply voltage to each individual SN 

hardware component. 

 

2.1. Power Consumption of Sensor Nodes 

In general, in terms of power consumption, sensor nodes can be categorized into four 

groups, as it is presented in Table 1 [6], [8].  

Table 1 Categorization of sensor nodes into four distinct groups 

Category Power range Applications  

ultra-low power ≤ 1 mW environmental monitoring, smart homes, surveillance; two 

operational modes: a) fully-operational (consumption is of 

order mW), and b) standby (consumption is of order pW)  

low-power 1 mW – 1 W machine interface, structural health monitoring, smart 

transportation (consumption varies from 100 µW up to 1 W) 

medium-power 1 W – 10 W gas sensors, camera, Internet gateways in WSN (provide high 

data rate transmission and execute complicated routing 

algorithms); (consumption varies from 500 mW up to 10 W) 

high-power ≥ 10 W grid connected devices, household-devices, industrial systems 

(power consumption varies from 5 W up to 5 kW) 
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In order to save energy, the sensor nodes use two different modes of operation: active 

and sleep. The power consumption of a typical SN's building block (see Fig. 1) is given 

in Table 2 [7].  

Table 2 Power consumption of different components when the supply voltage is Vdd=3.3V 

Building block Power Mode of operation 

Processor&memory&sensors 6 mW Active mode 

Processor&memory&sensors 17 μW Sleep mode 

Radio RX mode 62 mW Active mode (receiving) 

Radio TX mode 57 mW Active mode (transmission) 

Radio Idle mode 69 μW Idle mode (part of the Rx&Tx logic is active) 

Radio Sleep mode 3 μW Sleep mode 

Duty-cycling is a common approach for reduction of the average energy consumption 

of SNs. In WSNs, low duty-cycled operation is implemented such that each sensor node 

periodically switches between the sleeping mode and active mode. If we denote the 

portion of time in active state as Tac and the period in the sleep state as Tsl, the duty-cycle 

δ can be defined as [9]: 

( )ac ac slT T T   ,  and  0 1                                             (1) 

For example, if a sensor node requires 3.3 V at approximately 21 mA (70 mW) while 

active but is only active for 10 milliseconds out of every second, then the average power 

required is only 0.7 mW. If the same wireless sensor node samples and transmits now 

once a minute instead of once a second, the average power consumption plummets under 

12 μW. This difference is significant because most types of energy harvesters can offer 

such low steady-state power, usually no more than a few milliwatts and, in some cases, 

only microwatts. The less average power required by an application, the more likely it 

can be powered by harvested energy. As conclusion, by using a combination of duty 

cycling and energy harvesting techniques significant power consumption reduction (three 

orders of magnitudes) can be achieved.  

Having in mind the aforementioned, it is evident that implementation of an energy 

harvesting block within the SN’s architecture is justified. One general SN architecture 

which includes the energy harvester block is presented in Fig. 2 [5].  

 

Fig. 2 SN architecture with an energy harvester block 

In the following text the focus will be on explaining the principles of operation of 

different energy harvesters. 
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3. COMMON ENERGY HARVESTING SOURCES 

The mass-production of ultra-low power wireless SNs and embedded systems for 

measurement and control, along with advances in transducer technology, have made it 

possible to produce completely autonomous systems that are powered by local ambient 

energy instead of a primary or a secondary battery. Powering an SN from an ambient or 

free energy source is attractive because it can be a supplement or it can eliminate the need 

for batteries or wires. This is a clear benefit when battery replacement or servicing is 

inconvenient, labor intensive, and costly. In such cases, energy harvesting from any 

ambient source can readily be used in remote applications where the natural energy is 

essentially inexhaustible. The classification of energy harvesting can be organized on the 

basis of the form of energy they use to scavenge the power [5].  

The main energy-harvesting sources currently deployed in WSN are the following: 

1. Thermal-energy – wasted energy produced by heaters, furnaces, and others, is used.  

2. Light-energy – captured energy from sunlight or room lighting 

3. Mechanical-energy – energy from sources such as vibration, mechanical stress, etc. 

4. Electromagnetic-energy – energy from radio-frequency (RF) radiation, etc. 

5. Natural-ambient-energy – energy from wind, water-flow, etc.    

6. Human-body-energy – combination of mechanical and thermal energy. 

7. Other-energy – energy from chemical and biological sources. 

The amount of energy that can be captured from some typical sources is shown in Fig. 

3 in the form of µW/cm
2
 or µW/cm

3
, depending if it is used as 2D- or 3D harvester [5]. 

The energy sources are characterized by different power densities (Fig. 3). Energy 

Harvesting (EH) from outside sun is clearly the most powerful. Unfortunately, solar energy 

harvesting is not possible in dark areas (near or inside machines, in warehouses). And 

similarly, it is not possible to harvest energy from thermal gradients where there is no 

thermal gradient or to harvest vibrations where there is no vibration. As a consequence, the 

source of ambient energy must be chosen according to the local environment of the SN: no 

universal ambient energy source exists [10]. 

 

Fig. 3 The harvestable energy sources and the amount of energy they generate 
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Efficiency of the energy harvester can be divided into several parts: conversion 

efficiency from one form of energy to another (e.g., from light to electricity), transfer 

efficiency from the source to the supply, buffering efficiency once it has been harvested, 

and consumption efficiency in terms of the amount of useful work given the harvestable 

energy. The power output from various energy harvesting technologies and 

corresponding efficiencies, for some typical harvesters, are given in Table 3 [11]. 

Table 3 Power output from various energy harvesting technologies 

Harvesting technology Power Density  

(Harvested power) 

Characteristics Efficiency 

Solar cells – direct sun 15 mW/cm2 Outdoor 10 – 41%  

Solar cells – cloudy day 0,15 mW/cm2 Outdoor 

Solar cells – indoors 0,006 mW/cm2 Indoor 

Solar cells – desk lamp < 60 W 0,57 mW/cm2 Indoor 

Piezoelectric – shoe inserts 330 µW/cm2 ~ Hz-human 25 – 50% 

Vibration – microwave oven 0,01-0,1 mW/cm2 ~ kHz-machines 

Thermoelectric – 10 oC gradient 40 µW/cm2 Human, Industrial 0.1 – 3% 

Passive–human powered system 1,8 mW Human 1 – 3% 

Radio frequency (RF) 0.1 µW/cm2 

0.001 µW/cm2 

External  GSM 900 MHz 

WiFi 2.4 GHz 

Table 4 A comparison of power sources for SNs 

Power source Type Transducer Comments 

wind mechanical wind turbine power density is dependent on wind speed 

solar electromagnetic solar panel 

(outdoors) 

solar panel can be scaled to provide higher or 

lower power 

thermal thermal thermoelectric 

generator 

power density is commonly reported for 

temperature difference ΔT = 10 0C, higher 

densities can be achieved by increasing ΔT 

vibration mechanical electromagnetic generated power is dependent on the 

amplitude and frequency of mechanical 

stimulus of the generator 

mechanical piezoelectric 

material 

power is determined by the type of the 

piezoelectric material and the intensity of the 

mechanical stress 

mechanical electrostatic generated power is dependent on mechanical 

stimuli and the fabrication process 

indoor light electromagnetic solar panel 

(indoors) 

generated power is dependent on the light 

intensity and ambient temperature 

directed RF electromagnetic Antenna the power caster is located in proximity of the 

power harvester(s) and aimed at certain 

direction to transmit the RF (radio frequency) 

signal 

ambient RF electromagnetic Antenna power density is highly dependent on the 

distance from the broadcasting station, type of 

the antenna, and the frequency band of the wave 

Notice: the term RF stands for radio frequency 
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3.1. Types of energy harvesters 

The appropriate energy harvesting approach for a WSN is primarily determined by the 

power requirements of the target applications. These requirements along with the most 

commonly harvested ambient sources can be categorized and compared in Table 4. The 

various sources of energy harvesting are wind turbines, photovoltaic cells, thermoelectric 

generators, vibration devices (such as piezoelectric devices), electromagnetic devices, etc. 

Table 4 shows some of the harvesting methods with their generation capability [6].  

4. HARVESTING ARCHITECTURE 

The general architecture structure of a typical energy harvester is given in Fig. 4. It 

consists of the following four building blocks: (i) power sources, (ii) pre-conditioner, (iii) 

harvester, and (iv) energy buffer. Some of these building blocks may not exist in all types 

of harvesters; for example, pre-conditioning is not necessary for most of the solar 

harvesters. We will now describe in short the role of each building block [6]. 

Power sources: this component comprises the harvestable source and a transducer to 

convert it to electrical power. As harvestable sources in WSN can be used solar panels, 

wind turbines, thermoelectric generators, piezoelectric material, RF energy harvester, etc.  

Pre-conditioner: pre-conditioning serves three main purposes: (i) a voltage rectifier 

turns the AC power inputs to DC, (ii) a multiplexer provides the selection of one of the 

power inputs, (iii) a voltage limiter constituent prevents the harvesting component from 

being damaged due to over-voltage.  

 

Fig. 4 A general energy harvester 

Harvester: this building block is responsible for turning the input power into buffered 

energy (i.e., harvesting). It can be implemented using basic hardware elements that do not 

require software to operate (e.g., OPAMPs, comparators, RLC), for greater efficiency, 

intelligent configurations are typically controlled by firmware running on a microcontroller 

or a DSP. The harvesting component incorporates the firmware to execute the algorithms, 

such as the MPPT algorithm. Software-based intelligent harvesters provide additional 

functionality such as over-voltage protection, voltage regulation, and wireless communication 

with the other SNs within WSN.  
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Energy buffer: buffers the harvested energy. Batteries and supercapacitors are 

commonly used as buffer elements.  

4.1. Energy harvester for WSNs 

An energy-harvesting system for WSNs represents a simplified version of the general 

energy harvester given in Fig. 4. As it is presented in Fig. 5, it requires an energy source 

and some key electronic components to form a complete system [12]. These usually 

include: 

 energy sources or energy conversion device (transducer), such as a piezoelectric 

element or solar panel that can convert the ambient energy source into an electrical 

form 

 energy harvesting module or electronic interface device (converter), such as a low-

voltage buck-boost converter, to capture energy from a low-voltage source and 

convert it into a regulated usable voltage to power a load and/or charge a battery 

or supercapacitor 

 sensors, microcontrollers, and a transceiver to read, record, and transmit the data 

as part of the WSN. 

It is very important that SNs have a low quiescent current that allows accumulation of 

the harvested energy to power these blocks.  
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Fig. 5 Single power source energy harvester for SN 

Energy harvesting devices can be classified into two ways: a) considering who or 

what provides the energy for conversion, and b) what type of energy is converted. Table 

5 relates the two classification schemes [13]. 

The first kind of energy harvesting devices is referred as human energy devices. The 

second kind of energy harvesting devices gets its energy from the environment, and we 

call them as environment energy devices.  

The second classification scheme may consider three types of energy: kinetic, 

electromagnetic radiation (including light and RF), and thermal. 

Table 5 Classes of energy harvesting devices 

Energy Source Type of Energy 

Human 

Environment 

Kinetic, Thermal 

Kinetic, Thermal, Radiation 
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4.2. Taxonomy for Energy Harvesting Systems 

A large family of harvesting systems is capable of harvesting energy from one or 

more power sources. Such systems we call hybrid. To categorize these systems in a 

concise manner, we introduce a taxonomy that distinguishes each harvesting system 

based on their power sources. Systems that solely depend on a solar power input are 

denoted using an S symbol, which means solar-only power input. Similarly, the symbol 

W is used to refer to wind energy harvesting systems that depend on a wind-only power 

input. The symbol T deals with thermal, RF relate to radio frequency, and V refers to 

vibration energy harvesting systems. To extend this notation to hybrid systems, the 

notations SW (solar and wind), SS (double solar, sunlight/incandescent), ST (solar and 

thermal), SV (solar and vibration), SRF (solar and radio frequency), etc., are used. 

5. SOLAR ENERGY HARVESTING (SEH) 

Solar or other light sources are the primary sources for autonomous systems due to 

the following three reasons: 

a) Solar power is readily available everywhere. 

b) Solar power transducers provide a higher power density compared to other sources 

(from 10
2
 up to 10

3
 higher with respect to RF and thermal). 

c) Unlike wind turbines and vibration harvesters, solar energy can be harvested trough 

solid-state devices with no moving parts, which implies a higher reliability, longer 

lifetime, and lower maintenance cost.  

However, solar energy harvesters (SEHs) have the disadvantage of being able to 

generate energy only when there is sufficient sunlight or artificial light. In SEH the 

source of the energy are the photons that the sun generates during the nuclear reaction 

inside the sun. These photons travel from the sun to the earth in the form of 

electromagnetic waves and are intercepted by solar panels that turn photons into electrical 

energy. Table 6 shows the frequency band of the photons that solar panels can harvest 

[4]. The energy of a photon is 

hc
E


                                                              (2) 

where h – Planck’s  constant, c – speed of light in vacuum,  – wavelength of the photon. 

Table 6 Operational frequency of solar panels [4] 

Radiated frequency Band name Wavelength  Names of electromagnetic wave 

270 THz IR 1.1 m infrared 

430 THz VL 700 nm red (visible light) 

… … … … 

790 THz VL 380 nm violet (visible light) 

1.6 PHz UV 200 nm ultraviolet 

Solar panels are made out of photo-diodes that have an exposed junction for the 

photons to hit. When a photon hits an electron of the silicon atom within the photo-diode, 

it can move a silicon valence electron to conduction and give it sufficient energy to cross 
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p-n junction. In this way, the energy that the photon carries is converted to electrical 

energy. Solar power transducers are composed of elementary units called solar cells (or 

photo-diodes) that generate electricity from solar radiation. The solar cells are connected 

in series and/or parallel to form a solar module (or solar panel). 

Solar panels (see Fig. 6) can be modeled as a collection of photo-cells with an 

aggregate current of Iph and a diode D1 that has a non-linear intrinsic resistance R1, while 

R2 and R3 are equivalent shunt and series resistances. 

 

Fig. 6 Equivalent scheme of solar panels 

In practical realization R2 is very large and R3 is relatively small, so that the current 

Isolar is estimated as 

exp 1solar

solar ph s

qV
I I I

kT

  
    

  
                                              (3) 

where Is is the diode saturation current, k is Boltzmann’s constant, T is the junction’s 

temperature in Kelvin, q is the absolute value of electron charge,  is the diode’s ideality 

factor (typically between 1 and 2), and Iph is the aggregate current. 

The generated power of a solar panel (Psolar) is   

( ) exp solar
solar solar ph s s solar

qV
P V I I I V

kT

 
    

 
                             (4) 

Under varying temperature or irradiance conditions the output characteristics of a photo-

voltaic (PV) module changes non-linearly (see Fig. 7), i.e. the PV characteristics of solar 

panels are non-linear and non-monotonic. For each solar irradiation level, the power reaches 

a global maximum only at a specific voltage (or equivalent current) value, which is the 

desirable operating point to extract the maximum amount of power from the solar panel. 

Therefore, the problem is to automatically find the voltage (and the current) at which it 

should operate to obtain the maximum output power. An efficient photovoltaic energy 

harvesting system should track this particular operating point is referred to as the Maximum 

Power Point (MPP). The MPP can be calculated by solving ( / ) 0solar solardP dPV  , which 

yields the equation 

 

1 exp
ph s MPP MPP

s

I I qV qV

I kT kT 

    
    
   

   (5) 
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where VMPP is the solar panel output voltage when it is operating at the MPP. By 

analyzing Eq. (5) we can conclude that MPP is a function of Iph and Is, which depends on 

instantaneous solar irradiation level (in W/m
2
) at a given point in time and temperature T. 

In spite of the fact that Eq. (5) provides a basis for accurate MPP tracking, its 

implementation in harvesting tracking is difficult to conduct because of the need to 

measure solar irradiation (Wsolar), temperature (T), the voltage (VMPP) and current (Iph) of 

the solar panels. In order to cope efficiently with these problems, which offer simplicity 

versus accuracy tradeoffs, many designers have actively investigated simplified 

techniques for MPP tracking (MPPT) [12], [14]. The problem considered by MPPT is to 

automatically find the operating point at which a PV module should operate to obtain the 

maximum output power under a given temperature and irradiance, following it when light 

intensity changes (indicated with arrows in Fig. 7a). A PV module's current versus 

voltage curve varies with the irradiance or intensity of sunlight. As the graph in Fig. 7b 

shows, the current dramatically changes as irradiance varies, but voltage remains 

relatively constant. 

      

                              (a)                                                                            (b)                  

Fig. 7 PV module: (a) typical current versus voltage (I-V) and power versus voltage  

(P-V) curves, (b) current versus voltage curve in term of the irradiance [15] 

The magnitude of energy generated by solar cell varies from approximately 15 mW/cm
2 
in 

noon-time sunlight to 10 µW/cm
2
 in indoor incandescent lighting. The energy output depends 

on the material used. Silicon and gallium arsenide (as crystalline materials) have 

moderate absorption efficiency (15-30%), while cadmium telluride (as thin film material) 

has high absorption efficiency and lower conversion efficiency (10%). The choice of 

material depends on its spectral response and the light source of interest. A single solar 

cell output is 0.6 V but panels with series of such cells can generate any required voltage.  

5.1. Typical application of SEH 

In Fig. 8, one typical application of solar energy harvester is given. The design 

solution is based on the LTC3105 which as a complete single chip solution is used for 

energy harvesting from low cost, single photovoltaic cells. The LTC3105 makes it 

possible to produce autonomous remote sensor nodes, data collection systems and other 

applications that require grid independence and minimal maintenance [16]. 

Maximum 

power point

Power vs. voltage

Current vs. voltage

Maximum power

Pmp

Isc

Imp

Voltage (V) Vmp Voc

P
o

w
e

r 
(W

)

C
u

rr
e

n
t 

(A
)

Maximum power points

0.5

Module voltage (V)

V Range

20

M
o

d
u

le
 c

u
rr

e
n

t 
(A

)

1.0

1.5

2.0

2.3

3.0

3.5

10 1550
0.0

G = 1000 W/m
2

G = 800 W/m
2

G = 600 W/m
2

G = 400 W/m
2

G = 200 W/m
2



128 T. NIKOLIĆ, M. STOJĈEV, G. NIKOLIĆ, G. JOVANOVIĆ,  

6. MECHANICAL VIBRATION 

When an embedded device is susceptible to vibration its internal mass can be used to 

create movement. This movement can be converted into electrical energy. The form of 

energy utilized in this case is the mechanical energy. Vibrations are available in many 

environments of interest including commercial buildings, parking structures, aircrafts, 

trains, industrial facilities and even residential buildings. 

 

Fig. 8 Simplified schematic of self-powered energy harvesting from PV cell [16] 

The sources of vibrations which may be heavy machinery, home appliances, movement 

of people or vehicles, and other movements vary a great deal in their acceleration 

characteristics and the frequency spectra. Methods to convert this energy to electricity can 

be classified into electromagnetic, electrostatic and piezoelectric [4]. Electromagnetic 

conversion uses vibration to move a conductor in a magnetic field. Existing prototypes 

generate a very low voltage output to be usable. Electrostatic conversion uses vibration 

energy to move the conductors of a charged capacitor. The disadvantage of this approach is 

that a separate voltage source is required to charge the capacitor. An advantage however is 

that the output voltage is in the usable range of two to several volts. Piezoelectric 

conversion uses materials which, when mechanically deformed, generate an electric 

potential. The piezoelectric method combines the advantages of electromagnetic and 

electrostatic conversion but it is difficult to implement at micro-scale. With the current 

technology, they have the greatest available energy density among the three methods [10]. 

6.1. Piezoelectric materials 

The property to detect vibrations by using piezoelectric material has become viable energy 

scavenging source. The most commonly used piezoelectric materials are the following: 

Quartz, Polycrystalline ceramic, Lead Zirconate Titanate (PZT). Using piezoelectric materials 

to harvest energy requires a mode of storing the energy generated. The energy harvested can 

be stored in rechargeable batteries instead of using capacitors to store the energy.  
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At the circuit level, a single piezo-electric material element is modeled as a voltage 

source, in series with a capacitor and a resistor. When the material is stressed, an open-

circuit voltage develops across the voltage source. When a load is attached, AC excitation 

energy flows from the element into the loading impedance. Piezo-electric energy-

harvesting generally yields high voltage levels but low currents. 

Fast transients and sinusoidal excitations can be harvested for energy but the energy is 

not stored in the piezo-electric material itself. Instead, it is stored in a capacitor like 

mechanism which is connected in parallel with the material. So in practice, when these 

materials are used for energy-harvesting, a rectifier and a storage element such as a 

capacitor are used to create usable DC voltages as shown in Fig. 9 [17].  

 

Fig. 9 Generalized piezo-electric energy harvesting circuit 

One typical application of piezo-electric energy harvesting circuit based on nanopower 

energy harvesting power supply unit (product of Linear Technology [18]) is presented in 

Fig. 10. 

 

Fig. 10 Piezoelectric energy harvesting power supply [18] 

The main advantages of piezoelectric energy harvesters are: a) the direct generation of 

desired voltage since they do not need a separate voltage source and additional components; 

b) compatibility with the MEMS; c) high output voltage generation; b) high capacitances; 

c) no need to control any gap. Disadvantages are the following: a) expensive material; 

b) coupling coefficient linked to material properties; c) the properties of piezoelectric 

materials vary with age, stress and temperature [10].  
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6.2. Electrostatic (Capacitive) Energy Harvesting 

Electrostatic energy harvesting is based on the changing capacitance of vibration-

dependent variable capacitors (varactors) to generate charges from a relative motion 

between two plates. Vibrations separate the plates of an initially charged variable 

capacitor, and mechanical energy is converted into electrical energy. Electrostatic 

generators are mechanical devices that produce electricity by using manual power [10]. In 

Fig. 11 electrostatic converter which uses variable capacitor structure is presented. 

 

Fig. 11 Electrostatic converter 

 The significant advantage of using the electrostatic converters is their ability to 

integrate with microelectronics and they do not need any smart material. In addition, these 

converters characterize: a) generation of high output voltages; b) possibility to build low-

cost systems; c) coupling coefficient easy to adjust; d) high coupling coefficients reachable; 

e) size reduction increases capacitances. Crucial disadvantages of using electrostatic 

converters are: a) they need an additional voltage source to initially charge the variable 

capacitor; b) low capacitances; c) high impact of parasitic capacitances; d) need to control 

μm dimensions [10]. 

6.3. Electromagnetic energy harvesting 

Electromagnetic energy harvesting can be achieved by the principle of electromagnetic 

induction. Electromagnetic induction is defined as the process of generating voltage in a 

conductor by changing the magnetic field around the conductor. Namely, they are based on 

electromagnetic induction and ruled by Lenz’s law. An electromotive force is generated 

from a relative motion between a coil and a magnet. One of the most effective ways of 

producing electromagnetic induction for energy harvesting is with the help of permanent 

magnets. Electromagnetic converter which uses Lenz’s law is shown in Fig. 12 [10]. 

 

Fig. 12 Electromagnetic converter 

Advantages of electromagnetic energy harvesters are: a) high output currents; b) long 

lifetime proven; and c) robustness. Disadvantages are the following: a) low output 

voltages; b) hard to develop MEMS devices; c) may be expensive (material); and d) low 

efficiency in low frequencies and small sizes [10].  

As conclusion, the electrostatic and piezoelectric harvesters are capable of producing 

voltage ranging from 2 to 10V, whereas the electromagnetic harvesters have a limitation 

of producing maximum voltage of 0.1V. 
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7. THERMAL ENERGY HARVESTING 

The thermoelectric effect is a typical example of the conversion of heat energy to 

electrical energy. Current is generated when there is a temperature difference between 

two junctions of a conducting material. Thermal energy harvesting uses temperature 

differences or gradients to generate electricity, e.g. between the human body and the 

surrounding environment. Devices with direct contact to the human body can harvest the 

energy radiated from the human body by means of thermoelectric generators (TEGs). 

Thermoelectric generation using Seebeck effect (flow of current in a loop made from two 

wires of certain metals when a temperature difference is applied to the wire junctions) 

and other methods have been demonstrated to yield 10μW/cm
2
 to 40μW/cm

2
 using a 5-10 

0
C temperature gradient [19], [20]. 

Wireless SNs can be powered by temperature gradients. This capability is provided by 

using TEG which can harvest energy from temperature differentials as low as 2 ºC. TEG 

represents a thermoelectric module that converts a temperature differential across the 

device into a voltage via the Seebeck effect. The reverse of this phenomenon known as 

the Peltier effect produces a temperature differential by applying a voltage and is 

commonly used in thermoelectric coolers (TEGs). The polarity of the generated voltage 

at the output of TEG depends on the polarity of the temperature differential across the 

TEG. TEG consists of pairs of n-doped and p-doped semiconductor pellets connected 

electrically in series and sandwiched between two thermally conductive ceramic plates. 

The most commonly used semiconductor material is bismuth-telluride (Bi2Te3). The TEG 

construction is presented in Fig. 13a), its equivalent scheme in Fig. 13b), and the output 

power in Fig. 13c) [19], [21]. 

  
(a) 

         
     (b)                                                             (c)                

Fig. 13 A typical thermoelectric generator module: (a) TEG construction; (b) simplified 

equivalent scheme; (c) output power in terms of load resistance [19], [21] 
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Seebeck effect describes the induction of a voltage VS in a circuit consisting of two 

different conducting materials, whose connections are at different temperatures. In case 

of a Peltier module the Seebeck voltage can be expressed as in (2), where Th-Tc is the 

temperature gradient across the junctions located at the opposite sides of the module [21]. 

( ) ( )( )S AB A B h cV S T S S T T                                           (6) 

where SA and SB are the Seebeck coefficient of the metals A and B, respectively. 

Commercially available wireless SN application powered by a TEG is presented in 

Fig. 14 [22]. Thermoelectric devices are primarily used in space and terrestrial 

applications. Solid-state thermoelectric generators are considered to have long life, low 

maintenance and high reliability. The main advantages of this type of generators are that 

it is a simple structure, there are no moving parts, and it has a relatively long life time 

(average 20 years). However, their usage is limited because of their low energy 

conversion efficiency and high costs.  

A design example can be found at http://www.linear.com/product/LTC3108. The 

resulting design can support a 50 mW load with a duty cycle up to 3.7% 

 

Fig. 14 A wireless SN application powered by a TEG [22] 

8. WIND ENERGY HARVESTING 

Wind or water flow can be converted to energy. While macro-scale generators based 

on these flows are widely used, compact technologies to extract such energy are lacking. 

To harvest wind energy, an electric motor is used, that contains a magnetic rotor. This 

kind of harvester converts the mechanical energy of the wind into the rotation of the 

motor, which induces an electromagnetic-force on the rotor. The electromagnetic-force is 

the harvested energy in the form of an electrical current. The operation of a permanent-

magnet wind turbine, which acts as a synchronous generator, is sketched in Fig. 15. As 

can be seen from Fig. 15 the incoming wind at a speed vwind has a kinetic power of Pu. A 

portion of this power Pturbine is transferred into turbine, causing its blades to turn at an 

angular velocity of w and powering the departing wind speed to vd and its kinetic power 

to Pd [6]. In the bottom part of Fig. 15 a per-phase equivalent circuit of a permanent 

magnet synchronous electric generator is presented. Xs and RA represent the stator 
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synchronous reactance and its winding resistance, respectively. RL is the equivalent 

resistance seen by the wind turbine. 

Wind turbines are used as the primary power source of SNs in WSN much less 

frequently than solar panels because: 

a) The mechanical operation of wind turbines substantially increases system 

maintenance. 

b) Contrary to solar power for which power availability changes are steady and 

predictable, wind power changes tend to be much more random. 

c) In respect to a solar panel, wind turbines generate an AC power output requiring 

rectification circuitry for SNs that operate using DC power. 

As a conclusion, in spite of the fact that small scale turbines are available for 

powering SNs (produce power output in the mW range) this is much less common than 

the large wind turbines designed to produce power outputs in the kW range [23], [6]. 

 

Fig. 15 Operation of a permanent-magnet wind turbine 

9. RADIO-FREQUENCY HARVESTING 

Radio-frequency (RF) power harvesting refers to the harvesting of the energy in the 

wireless signal through an antenna to power the SN. RF waves are electromagnetic waves 

generated by a transmitter in the form of a photon that is oscillating within one of the pre-

determined frequency band (LF, HF, UHF, SHF, …, see Table 7) [4]. Let us note now the 

main difference between RF and solar harvesting. In RF harvesting, the source is an 

intentional electromagnetic radiation initiated by an electronic device, contrary to the 

natural radiation initiated by the sun. The most important consequence of this fact is that 

the electromagnetic properties (radiated frequency, output power) of the RF radiation can 

be determined by the transmitter.  
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Table 7 Commonly used radio-frequencies 

Frequency Band Wavelength Notes 

125-134 kHz LF 2.3 km unregulated 

13.56 MHz HF 22 m ISM global 

865-868 MHz UHF 35 cm EU:ISM 

902-928 MHz UHF 33 cm USA:ISM 

2.4-2.48 GHz UHF 12 cm ISM 

5.8 GHz SHF 5.1 cm ISM 

RF transmission frequencies (see Table 7) are substantially lower than the frequencies 

of the photons hitting solar panels (see Table 3). Comparing solar and RF harvesting, we 

notice that the RF harvested power levels are 4-5 orders-of-magnitudes lower for RF per 

m
2
. Despite this seemingly big disadvantage of RF power levels, RF harvesting is useful 

and represents a practical alternative for the following reasons [24], [4]: 

 The state-of-the-art of VLSI CMOS circuits can function at 2-100 W power 

level. Ultra-low power consumers of the Application Specific Integrated Circuits 

(ASICs) type are designed to perform specific SN’s tasks and achieve orders-of-

magnitudes power advantages as compared to generic circuits. 

 Bearing in mind that RF energy can travel within materials such as plastic, matt 

glass, paper, etc., SNs can be located in areas where there is no solar, wind or 

other kind of power. In these cases, RF power harvesting represents a good 

alternative. 

In practice, the following two RF harvesting categories are used [4]: 

1. Ambient RF energy harvesting – The ambient energy may come in the form of Wi-Fi, 

TV, mobile phone, or military broadcasting, as well as directed energy transmission. The 

ambient RF harvesting circuit accepts the RF energy and charges much larger power 

storage systems over extended or indefinite periods of time. A typical ambient RF 

harvesting circuit can generate power levels in the 2 W/cm
2
 range.  

2. Dedicated-source RF energy harvesting – RFID chips remain the most common and 

ubiquitous use of power harvesting technology that can generate power levels in the 50 

W/cm
2
 range. RFID is characterized by two-way communication – the transceiver must 

not only receive data, but also transmit it via reflective backscatter managed by an 

internal oscillator and signal modulator. 

9.1. RFID 

A Radio Frequency Identification (RFID) system consists of readers (also called 

interrogators) and tags (or transponders). A reader communicates with the tags in its 

wireless range and collects information about the objects to which tags are attached. 

Depending upon their operating principle, tags are classified into three categories: 

passive, semi-passive, and active. 

A passive tag is the least complex and hence the cheapest. It has no internal power 

source but uses the electromagnetic (EM) field transmitted by a reader to power its internal 

circuit. It relies not on a transmitter but on “backscattering” to transmit data back to the 

reader. A semi-passive tag has its own power source but no transmitter and also uses 

backscattering. An active tag has both internal power supply and an on-tag transmitter [25]. 
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Preferable design solutions for WSNs are based on passive RFID. Fig. 16 illustrates the 

interaction between a reader and a passive tag [26], [4].   

Usually, RFIDs are used in the following areas [25], [26]:  

1) Supply chain including industrial process automation, tracking of goods, products 

identification, stock management, etc. 

2) Access control to secure locations and equipment, such as office buildings and 

safes. 

3) Transport payment is used for person/vehicle identification or for recording 

prepaid balances. 

4) E-passports when RFID tags store the information contained in passports. 

5) Automotive security for ignition keys equipped when RFID is used in most high-

end cars as an anti-theft measure. 

6) Livestock ID used for animal identification for managements and disease control. 

7) Automated libraries when RFID is used in streamlining library work-flow 

including check-in and check-out of books, books inventory (performed without 

removing books from the shelves) and maintaining a library inventory in real time. 

8) Healthcare where RFID covers: a) tracking hospital personnel, equipment, and 

supplies; b) checking for counterfeit products; c) preventing errors in healthcare 

administration; and d) maintenance of shared yet secured medical records. 

 

Fig. 16 Reader tag interaction 

RFID has great potential for a significant impact on many areas of everyday life. 

However, a number of obstacles limit its widespread adoption. The main problems in 

RFID implementations concern reliability, security and privacy. 

9.2. Radio frequency power harvesting 

A radio frequency, RF, power harvesting system captures and converts electromagnetic 

energy into a usable direct current (DC) voltage. The basic structure of a radio frequency 

energy harvesting system (see Fig. 17) consists of a receiving antenna, impedance matching 

network, rectifier/voltage multiplier, and optionally power management. Electromagnetic 

waves are captured by the antenna, voltage is amplified using the matching circuit, signal is 

converted to a voltage value thanks to the voltage rectifier, and finally this DC voltage 

output is adjusted using the multiplier (voltage elevator). Optionally, some schemes include 
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a power management building block. Applications deal with load (microcontroller, sensors, 

radio block) [24].  

 

Fig. 17 Block diagram of an RF power harvesting system 

In the sequel we will explain, in short, the main design issues related to principle of 

operation and realization requirement of each RF power harvesting system building 

block.  

An RF antenna can harvest energy from a variety of sources, including broadcast TV 

signal (ultrahigh frequency (UHF)), mobile phones (900–950 MHz), or Local Area 

Network (2.45 GHz / 5.8 GHz), etc.  

The loss of power in space can be characterized by free space path loss (FSPL), which 

is the loss of signal power during propagation in free space. Calculating FSPL requires 

information about the antenna gain, frequency of transmitting wave, and distance 

between the transmitter and receiver [24]. The behavior of electromagnetic waves 

depends upon the distance from the transmitting antenna. These characteristics are 

categorized into two segments: far-field and near-field. In most applications SNs are 

located in far-field where the range (R) is higher than 2D
2
/λ (D is the maximum 

dimension of the radiator (or diameter of the antenna), and λ is the wavelength of the 

electromagnetic wave). For a transmitter–receiver antenna in the far-field free space, the 

power propagation at the receiver antenna can be expressed as  

2

2(4 )

T T R
R

P G G
P

R




                                                          (7) 

where PR is power at the receiver antenna; GR is receiver antenna gain relative to the 

isotropic source (dBi); λ is the wavelength of the electromagnetic signal, which is equal 

to the speed of light in vacuum divided by the signal frequency,  λ=c/f; and k=2π/λ is the 

wave number. From the above formula, the FSPL, PL for far-field can be inferred as  

T

L

R

P
P

P
                                                                (8) 

In case f is measured in MHz, distance R is measured in km, and gain GT and GR are 

measured in dBi, the above function becomes 
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10 10( ) 20log ( ) 20log ( ) 32.44L T RP dB f R G G                             (9) 

As can be seen from Eq. (9), PL depends on antenna gain, resonance frequency, and 

bandwidth. 

The ratio between the maximum power density of an antenna at a given distance to the 

power density of an optimal omnidirectional or isotropic antenna at the same distance, 

radiating the same power, is known as antenna gain (G). Every antenna has its own optimal 

operation frequency known as resonance frequency (see Fig. 18) [24]. The resonance 

frequency is determined by the capacitance and inductance characteristics of the antenna. 

As frequency increases, inductive behavior becomes dominant and capacitance decreases. 

The frequency at which the inductance and capacitance nullify each other, minimizing the 

impedance of the antenna, is called the resonance frequency. The bandwidth of an antenna 

is the range of frequencies in which the antenna can operate efficiently. A wide bandwidth 

antenna can collect signals from a wider range of frequencies than a narrow bandwidth 

antenna. 

Impedance matching network is used to match the antenna impedance to the rectifier 

circuit in order to achieve maximum power and improve efficiency, by using coils and 

capacitors. 

 

Fig. 18 Correlation between impedance and resonance frequency of an antenna 

Rectifier/voltage multiplier is used in order to get a DC signal out of an AC signal and 

improve the efficiency of the RF–DC power conversion system [4], [27]. In terms of power 

harvesting application, the RF signal retrieved in the antenna has a sinusoidal waveform. 

The signal after transformation through impedance matching network would be rectified 

and boosted to meet the power requirements of the application. To achieve this goal voltage 

multiplier is used. It is a special type of rectifier circuit that converts and boosts AC input to 

DC output. In a case where the rectified power is inadequate for the application, there is a 

need for boosting the output DC by stacking single rectifiers into series, forming the voltage 

multiplier. Two standard configurations of the voltage multiplier are shown in Fig. 19 

where Vin is RF signal. The most fundamental configuration is the Cockcroft-Walton 

voltage multiplier (Fig. 19a). This circuit’s operational principle is similar to the full-wave 

rectifier but has more stages for higher voltage gain. The Dickson multiplier in Fig. 19b) is 

a modification of Cockcroft-Walton’s configuration with stage capacitors being shunted to 
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reduce parasitic effects. Thus, the Dickson multiplier is preferable for small voltage 

applications.  

          
                                 (a)                                                                 (b) 

Fig. 19 Different types of voltage multipliers: (a) Villard/Cockcroft-Walton voltage 

multiplier, (b) Dickson/Greinacher voltage multiplier 

The most popular rectifier used is a modified Dickson multiplier, which has the 

function of rectifying the radio frequency signal and increases the DC voltage, see Fig 

20a) [28]. Moreover, many works have used a complementary metal–oxide–

semiconductor (CMOS) technology to replace the diodes, see Fig. 20b).  

Typical applications of RF power harvesting are met in medical/healthcare and 

wireless power harvesting network (IoT/WSN). 

        
                            (a)            (b) 

Fig. 20 Modified Dickson charge pump: (a) diode based 2 stages: 3× multiplier Dickson 

charge pump, (b) CMOS based 

Schottky diodes were mainly used in early rectifier designs (implemented in energy 

harvesting systems) due to their low threshold voltage, exponential voltage drop with 

current, and stable performance under varying temperatures. Nowadays, the Schottky diode 

remains in use for modern rectifiers, especially for those built with discrete components, 

since they are often available as surface mount packages and can thus be used in a PCB 

design. However, many publications have opted not to use Schottky diodes due to their 

cost, inconsistent process quality, and difficulty to integrate into standard CMOS 

production. The diode connected transistor was introduced early on as an alternative, but 

suffers a number of disadvantages when compared to the Schottky diode; transistors have a 

more significant initial threshold voltage that decreases quadratically, rather than 

exponentially like the Schottky, and experience more power loss over their nonlinear stages 

of operation due to the body effect. Lowering this transistor threshold requires establishing 

a substrate bias appropriate for the transistor’s position in the rectifier circuit [4], [28]. 
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10. HYBRID ENERGY HARVESTERS 

Autonomous solar-only/or thermal-only/or vibration-only field systems are 

susceptible to frequent power interruptions (downtime), because neither solar panels/nor 

thermal transducers/nor vibration transducers can individually provide continuous power 

throughout an entire day. Namely, single harvester generator or harvesting single power 

source may remain insufficient for the energy feed into the systems like electronic 

devices, biosensors, human, structural and machine health monitoring, and wireless 

sensor nodes. One possible solution being considered is to harvest energy from various 

ambient sources, such as light, thermal and vibration energy, supplying power for the 

WSN. However, these energy sources are not available all the time. In order to harvest 

energy continuously, it is necessary to design and fabricate a hybrid energy harvester that 

integrates, for example, from solar panels and piezoelectric vibration generators, enabling 

energy harvesting from light, thermal, and vibration simultaneously. In general, the basic 

idea is to scavenge the energy from several energy sources as much as possible, store the 

energy in a single super-capacitor and discharge it when it is enough to supply the load 

for an established amount of time. In the past few years, there emerged a number of 

multi-input energy harvesting systems that have been presented by researchers [29], [30]. 

A variety of circuit design architectures with various combinations of ambient sources 

and implementation of CMOS technology are introduced also [31], all with the same goal 

which is to improve the harvester's performance with the maximum power conversion 

efficiency and minimal power losses. Hybrid energy harvesting is combining more than 

one ambient source to generate electrical power out of a single system. By harvesting and 

combining energy from multiple sources, energy can flow continuously even though one 

or more sources are absent. In essence, hybrid harvesters [31] that can utilize a combination 

of solar, piezoelectric, thermal and other kind of power are attractive because these different 

sources often have complementary availability. Hence, more power can be supplied and the 

overall system reliability and functionality can be enhanced. The overall behavior of the 

hybrid energy harvester is depending on the design of each component in the system. 

In Fig. 21 a schematic of power harvester which is used to scavenge the energy from 

two sources, store the energy in a single super-capacitor and discharge it when it is 

enough to supply the load for an established amount of time [29].  

 

Fig. 21 Electrical scheme of a dual- hybrid energy harvesting system 
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Fig. 22 Structure of triple-hybrid energy harvester 

As can be seen from Fig. 21 the harvester consists of an MPPT circuit for ambient 

light energy storage, an AC-DC rectifying circuit and an impedance matching circuit for 

vibration energy, energy storage, energy bleed-off and voltage regulator. 

Currently, the design and development of a poly-hybrid single-chip harvesting 

systems that combine solar, vibration, RF, and thermal harvesting outputs at a single load 

are in the focus of interest of many researchers. In Fig. 22 the structure of one commonly 

used triple-hybrid energy harvester system is presented [31]. 

11. CONCLUSION 

In this paper, the basic principles of energy harvesting technology in recent years are 

summarized. This technology will play a crucial role in replacing battery (constituent of 

any remote or mobile device such as wireless sensor node) in the near future. In general, 

the source of ambient energy must be chosen according to the local environment of the 

wireless sensor node because no universal ambient energy source exists. Besides the 

progressive advance in recent years, there is still a variety of options to further optimize 

the energy harvesting technology with an aim of prolonging the lifetime of a sensor node. 

It seems to the authors that hybrid energy harvesters realized as a single VLSI IC chip 

will offer more benefits and will gradually become a reality in the near future. Although 

this technology still faces many technical problems, overcoming these challenges can 

lead to a drastic lifetime prolongation of a sensor node. 
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