2,102 research outputs found

    A model-driven traceability framework for software product lines

    Get PDF
    International audienceSoftware product line (SPL) engineering is a recent approach to software development where a set of software products are derived for a well defined target application domain, from a common set of core assets using analogous means of production (for instance, through Model Driven Engineering). Therefore, such family of products are built from reuse, instead of developed individually from scratch. SPL promise to lower the costs of development, increase the quality of software, give clients more flexibility and reduce time to market. These benefits come with a set of new problems and turn some older problems possibly more complex. One of these problems is traceability management. In the Europe an AMPLE project we are creating a common traceability framework across the various activities of the SPL development. We identified four orthogonal traceability dimensions in SPL development, one of which is an extension of what is often considered as "traceability of variability". This constitutes one of the two contributions of this paper. The second contribution is the specification of a metamodel for a repository of traceability links in the context of SPL and the implementation of a respective traceability framework. This framework enables fundamental traceability management operations, such as trace import and export, modification, query and visualization. The power of our framework is highlighted with an example scenari

    Traceability system for capturing, processing and providing consumer-relevant information about wood products: System solution and its economic feasibility

    Get PDF
    Current research and practice reports indicate the existence of purchase barriers concerning eco-friendly products, e.g. wood products. These can be ascribed to consumers' mistrust regarding the non-observable environmental impact of wood products. To counter the mistrust, wood products are commonly endowed with eco-labels, which may be perceived mostly as a marketing tool, therefore not fulfilling their intended purpose. Current studies have shown that providing consumers with wood product information based on traceability systems increases product trust and purchase intentions, with those information items most valued by consumers being identified as well. Based on this, the paper proposes a traceability information system for the capturing, processing, and provision of product information using examples of wood furniture. Furthermore, a cost-benefit model for the proposed solution is developed. The calculations indicate the possibility of implementing traceability at the item level based on a four-layer system architecture enabling the capture and delivery of all information valued by consumers at acceptable costs. The proposed system helps to overcome purchase barriers of eco-friendly products, increasing consumers' product trust and purchase intentions

    Traceability support in software product lines

    Get PDF
    Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Engenharia Informática.Traceability is becoming a necessary quality of any modern software system. The complexity in modern systems is such that, if we cannot rely on good techniques and tools it becomes an unsustainable burden, where software artifacts can hardly be linked to their initial requirements. Modern software systems are composed by a many artifacts (models, code, etc.). Any change in one of them may have repercussions on many components. The assessment of this impact usually comes at a high cost and is highly error-prone. This complexity inherent to software development increases when it comes to Software Product Line Engineering. Traceability aims to respond to this challenge, by linking all the software artifacts that are used, in order to reason about how they influence each others. We propose to specify, design and implement an extensible Traceability Framework that will allow developers to provide traceability for a product line, or the possibility to extend it for other development scenarios. This MSc thesis work is to develop an extensible framework, using Model-Driven techniques and technologies, to provide traceability support for product lines. We also wish to provide basic and advanced traceability queries, and traceability views designed for the needs of each user

    Automatic Generation of Trace Links in Model-driven Software Development

    Get PDF
    Traceability data provides the knowledge on dependencies and logical relations existing amongst artefacts that are created during software development. In reasoning over traceability data, conclusions can be drawn to increase the quality of software. The paradigm of Model-driven Software Engineering (MDSD) promotes the generation of software out of models. The latter are specified through different modelling languages. In subsequent model transformations, these models are used to generate programming code automatically. Traceability data of the involved artefacts in a MDSD process can be used to increase the software quality in providing the necessary knowledge as described above. Existing traceability solutions in MDSD are based on the integral model mapping of transformation execution to generate traceability data. Yet, these solutions still entail a wide range of open challenges. One challenge is that the collected traceability data does not adhere to a unified formal definition, which leads to poorly integrated traceability data. This aggravates the reasoning over traceability data. Furthermore, these traceability solutions all depend on the existence of a transformation engine. However, not in all cases pertaining to MDSD can a transformation engine be accessed, while taking into account proprietary transformation engines, or manually implemented transformations. In these cases it is not possible to instrument the transformation engine for the sake of generating traceability data, resulting in a lack of traceability data. In this work, we address these shortcomings. In doing so, we propose a generic traceability framework for augmenting arbitrary transformation approaches with a traceability mechanism. To integrate traceability data from different transformation approaches, our approach features a methodology for augmentation possibilities based on a design pattern. The design pattern supplies the engineer with recommendations for designing the traceability mechanism and for modelling traceability data. Additionally, to provide a traceability mechanism for inaccessible transformation engines, we leverage parallel model matching to generate traceability data for arbitrary source and target models. This approach is based on a language-agnostic concept of three similarity measures for matching. To realise the similarity measures, we exploit metamodel matching techniques for graph-based model matching. Finally, we evaluate our approach according to a set of transformations from an SAP business application and the domain of MDSD

    CD/CV: Blockchain-based schemes for continuous verifiability and traceability of IoT data for edge-fog-cloud

    Get PDF
    This paper presents a continuous delivery/continuous verifiability (CD/CV) method for IoT dataflows in edge¿fog¿cloud. A CD model based on extraction, transformation, and load (ETL) mechanism as well as a directed acyclic graph (DAG) construction, enable end-users to create efficient schemes for the continuous verification and validation of the execution of applications in edge¿fog¿cloud infrastructures. This scheme also verifies and validates established execution sequences and the integrity of digital assets. CV model converts ETL and DAG into business model, smart contracts in a private blockchain for the automatic and transparent registration of transactions performed by each application in workflows/pipelines created by CD model without altering applications nor edge¿fog¿cloud workflows. This model ensures that IoT dataflows delivers verifiable information for organizations to conduct critical decision-making processes with certainty. A containerized parallelism model solves portability issues and reduces/compensates the overhead produced by CD/CV operations. We developed and implemented a prototype to create CD/CV schemes, which were evaluated in a case study where user mobility information is used to identify interest points, patterns, and maps. The experimental evaluation revealed the efficiency of CD/CV to register the transactions performed in IoT dataflows through edge¿fog¿cloud in a private blockchain network in comparison with state-of-art solutions.This work has been partially supported by the project “CABAHLA-CM: Convergencia Big data-Hpc: de los sensores a las Aplicaciones” S2018/TCS-4423 from Madrid Regional Government, Spain and by the Spanish Ministry of Science and Innovation Project “New Data Intensive Computing Methods for High-End and Edge Computing Platforms (DECIDE)”. Ref. PID2019-107858GB-I00; and by the project 41756 “Plataforma tecnológica para la gestión, aseguramiento, intercambio preservación de grandes volúmenes de datos en salud construcción de un repositorio nacional de servicios de análisis de datos de salud” by the PRONACES-CONACYT, Mexic

    Preserving the Quality of Architectural Tactics in Source Code

    Get PDF
    In any complex software system, strong interdependencies exist between requirements and software architecture. Requirements drive architectural choices while also being constrained by the existing architecture and by what is economically feasible. This makes it advisable to concurrently specify the requirements, to devise and compare alternative architectural design solutions, and ultimately to make a series of design decisions in order to satisfy each of the quality concerns. Unfortunately, anecdotal evidence has shown that architectural knowledge tends to be tacit in nature, stored in the heads of people, and lost over time. Therefore, developers often lack comprehensive knowledge of underlying architectural design decisions and inadvertently degrade the quality of the architecture while performing maintenance activities. In practice, this problem can be addressed through preserving the relationships between the requirements, architectural design decisions and their implementations in the source code, and then using this information to keep developers aware of critical architectural aspects of the code. This dissertation presents a novel approach that utilizes machine learning techniques to recover and preserve the relationships between architecturally significant requirements, architectural decisions and their realizations in the implemented code. Our approach for recovering architectural decisions includes the two primary stages of training and classification. In the first stage, the classifier is trained using code snippets of different architectural decisions collected from various software systems. During this phase, the classifier learns the terms that developers typically use to implement each architectural decision. These ``indicator terms\u27\u27 represent method names, variable names, comments, or the development APIs that developers inevitably use to implement various architectural decisions. A probabilistic weight is then computed for each potential indicator term with respect to each type of architectural decision. The weight estimates how strongly an indicator term represents a specific architectural tactics/decisions. For example, a term such as \emph{pulse} is highly representative of the heartbeat tactic but occurs infrequently in the authentication. After learning the indicator terms, the classifier can compute the likelihood that any given source file implements a specific architectural decision. The classifier was evaluated through several different experiments including classical cross-validation over code snippets of 50 open source projects and on the entire source code of a large scale software system. Results showed that classifier can reliably recognize a wide range of architectural decisions. The technique introduced in this dissertation is used to develop the Archie tool suite. Archie is a plug-in for Eclipse and is designed to detect wide range of architectural design decisions in the code and to protect them from potential degradation during maintenance activities. It has several features for performing change impact analysis of architectural concerns at both the code and design level and proactively keep developers informed of underlying architectural decisions during maintenance activities. Archie is at the stage of technology transfer at the US Department of Homeland Security where it is purely used to detect and monitor security choices. Furthermore, this outcome is integrated into the Department of Homeland Security\u27s Software Assurance Market Place (SWAMP) to advance research and development of secure software systems

    A Generic method for assembling software product line components

    Get PDF
    Software product lines (SPL) facilitate the industrialization of software development. The main goal is to create a set of reusable software components for the rapid production of a software systems family. Many authors propose different approaches to implement and assemble the reusable components of an SPL. However, the construction and assembly of these components continue to be a complex and time-consuming process. This thesis analyzes the advantages and disadvantages of the current approaches to implement and assemble the reusable components of an SPL. Taking advantage of these elements and with the goal of developing a generic method (which can be applied to several software components developed in different software languages), we develop Fragment-oriented programming (FragOP), a framework to design, implement and reuse SPL domain components. FragOP is based on: (i) domain components, (ii) domain files, (iii) fragmentation points, (iv) fragments, (v) customization points, and (vi) customization files. FragOP was implemented in an open-source tool called VariaMos, and we also carried out three evaluations: (i) we created a clothing stores SPL, derived five different products, and discussed the results. (ii) We developed a discussion about the comparison between FragOP and other approaches. And (iii) we designed and executed a usability test of VariaMos to support the FragOP approach. The results show preliminary evidence that the use of FragOP reduces the manual intervention when assembling SPL domain components and it can be used as a generic method for assembling assets and SPL components developed in different software languages.Las líneas de productos de software (LPS) promueven la industrialización del desarrollo de software mediante la definición y ensamblaje de componentes reutilizables de software. Actualmente existen diferentes propuestas para implementar y ensamblar estos componentes. Sin embargo, su construcción y ensamblaje continúa siendo un proceso complejo y que requiere mucho tiempo. Esta tesis analiza las ventajas y desventajas de las diferentes estrategias actuales para implementación y ensamblaje de componentes de LPS. Con base en esto y con el objetivo de desarrollar un método genérico (el cual se pueda aplicar a múltiples componentes de software desarrollados en diferentes lenguajes), esta tesis desarrolla la programación orientada a fragmentos (FragOP), la cual define un marco de trabajo para diseñar, implementar y reutilizar componentes de dominio de LPS. FragOP se basa en: (i) componentes de dominio, (ii) archivos de dominio, (iii) puntos de fragmentación, (iv) fragmentos, (v) puntos de personalización, y (vi) archivos de personalización. Además, se realizó una implementación de FragOP en una herramienta llamada VariaMos, y se llevaron a cabo tres evaluaciones: (i) se creó una LPS de tiendas de ropa, se derivaron cinco productos y se discutieron los resultados. (ii) Se realizó una discusión acerca de la comparación de FragOP y otras propuestas actuales. Y (iii) se diseñó una prueba de usabilidad acerca del soporte de VariaMos para FragOP. Los resultados muestran evidencia preliminar de que el uso de FragOP reduce la intervención manual cuando se ensamblan componentes, y que FragOP puede usarse como un método genérico para el ensamblaje de componentes.Doctorad

    Taking advantage of the software product line paradigm to generate customized user interfaces for decision-making processes: a case study on university employability

    Get PDF
    [EN]University employment and, specifically, employability has gained relevance since research in these fields can lead to improvement in the quality of life of individual citizens. However, empirical research is still insufficient to make significant decisions, and relying on powerful tools to explore data and reach insights on these fields is paramount. Information dashboards play a key role in analyzing and visually exploring data about a specific topic or domain, but end users can present several necessities that differ from each other, regarding the displayed information itself, design features and even functionalities. By applying a domain engineering approach (within the software product line paradigm), it is possible to produce customized dashboards to fit into particular requirements, by the identification of commonalities and singularities of every product that could be part of the product line. Software product lines increase productivity, maintainability and traceability regarding the evolution of the requirements, among other benefits. To validate this approach, a case study of its application in the context of the Spanish Observatory for University Employability and Employment system has been developed, where users (Spanish universities and administrators) can control their own dashboards to reach insights about the employability of their graduates. These dashboards have been automatically generated through a domain specific language, which provides the syntax to specify the requirements of each user. The domain language fuels a template-based code generator, allowing the generation of the dashboards' source code. Applying domain engineering to the dashboards' domain improves the development and maintainability of these complex software products given the variety of requirements that users might have regarding their graphical interfaces
    corecore