

A Generic Method for Assembling
Software Product Line Components

Daniel Correa

Universidad Nacional de Colombia

Facultad de Minas, Departamento de Ciencias de la Computación y la Decisión

Medellín, Colombia

2020

A Generic Method for Assembling
Software Product Line Components

Daniel Correa

Submitted in partial fulfillment of the requirements for the degree of:

Doctor en Ingeniería de Sistemas e Informática

Thesis Directors:

Ph.D. Raúl Mazo

Ph.D. Gloria Lucia Giraldo Gómez

Research Area:

Software Product Lines

Research Group:

Grupo de ingeniería de software

Universidad Nacional de Colombia

Facultad de Minas, Departamento de Ciencias de la Computación y la Decisión

Medellín, Colombia

2020

…To my wife, Juliana

…To my parents, Mercedes and Fernando

…To my sister, Juliana

Acknowledgments

This thesis would not have been possible without the support of many people. First, I would

like to thank my thesis directors, Ph.D. Raúl Mazo, professor at the Université Paris 1

Panthéon – Sorbonne, and Ph.D. Gloria Lucia Giraldo Gómez, professor at the Universidad

Nacional de Colombia – Sede Medellín. Many thanks for being available at any moment to

solve questions, to review my work, to make critics, to suggest ideas, and many more. Many

thanks to Ph.D. Marta Silvia Tabares, Ph.D. Roberto Lopez Herrejon, and Ph.D. Jaime

Chavarriaga Lozano for agreeing to be the jury of this thesis. Many thanks to the people of

the research group, Juan Carlos, Luisa, Ángela, Esteban, Camilo, León, Yan, and many

more. Thanks to the people at the Centre de Recherche en Informatique who help me

during an internship. Thanks to Tiziana Laudato and Javier Orlando Acosta for the thesis

style correction. Thanks to Universidad Nacional de Colombia and Colciencias which

provided me with the financial means to complete this thesis and made possible to present

some chapters of this thesis in other countries. Many thanks to my parents, they support

me in all moment and their love and dedication were essential to complete this thesis. Many

thanks to my friends Sebastián, Carlos, Johana, Daniel, Andrés, Laura. Thanks to Above

& Beyond, Gareth Emery, and BT your music is a wonderful source of inspiration. Thanks

to all the professors who taught me many things during my entire career, including,

Fernando Arango, Carlos Mario Zapata, Alvaro Monroy, Deiby Salazar, Ángela Jurado, and

Diana Mira.

And finally, thanks to my family, my wife’s family, and my wife who during the entire thesis

were supporting me in everything and gave me love.

Abstract IX

Abstract

Software product lines (SPL) facilitate the industrialization of software development. The

main goal is to create a set of reusable software components for the rapid production of a

software systems family. Many authors propose different approaches to implement and

assemble the reusable components of an SPL. However, the construction and assembly

of these components continue to be a complex and time-consuming process. This thesis

analyzes the advantages and disadvantages of the current approaches to implement and

assemble the reusable components of an SPL. Taking advantage of these elements and

with the goal of developing a generic method (which can be applied to several software

components developed in different software languages), we develop Fragment-oriented

programming (FragOP), a framework to design, implement and reuse SPL domain

components. FragOP is based on: (i) domain components, (ii) domain files, (iii)

fragmentation points, (iv) fragments, (v) customization points, and (vi) customization files.

FragOP was implemented in an open-source tool called VariaMos, and we also carried out

three evaluations: (i) we created a clothing stores SPL, derived five different products, and

discussed the results. (ii) We developed a discussion about the comparison between

FragOP and other approaches. And (iii) we designed and executed a usability test of

VariaMos to support the FragOP approach. The results show preliminary evidence that the

use of FragOP reduces the manual intervention when assembling SPL domain

components and it can be used as a generic method for assembling assets and SPL

components developed in different software languages.

Keywords: software product lines, fragment-oriented programming, component

development, component composition.

X A Generic Method for Assembling Software Product Line Components

Resumen

Las líneas de productos de software (LPS) promueven la industrialización del desarrollo

de software mediante la definición y ensamblaje de componentes reutilizables de software.

Actualmente existen diferentes propuestas para implementar y ensamblar estos

componentes. Sin embargo, su construcción y ensamblaje continúa siendo un proceso

complejo y que requiere mucho tiempo. Esta tesis analiza las ventajas y desventajas de

las diferentes estrategias actuales para implementación y ensamblaje de componentes de

LPS. Con base en esto y con el objetivo de desarrollar un método genérico (el cual se

pueda aplicar a múltiples componentes de software desarrollados en diferentes lenguajes),

esta tesis desarrolla la programación orientada a fragmentos (FragOP), la cual define un

marco de trabajo para diseñar, implementar y reutilizar componentes de dominio de LPS.

FragOP se basa en: (i) componentes de dominio, (ii) archivos de dominio, (iii) puntos de

fragmentación, (iv) fragmentos, (v) puntos de personalización, y (vi) archivos de

personalización. Además, se realizó una implementación de FragOP en una herramienta

llamada VariaMos, y se llevaron a cabo tres evaluaciones: (i) se creó una LPS de tiendas

de ropa, se derivaron cinco productos y se discutieron los resultados. (ii) Se realizó una

discusión acerca de la comparación de FragOP y otras propuestas actuales. Y (iii) se

diseñó una prueba de usabilidad acerca del soporte de VariaMos para FragOP. Los

resultados muestran evidencia preliminar de que el uso de FragOP reduce la intervención

manual cuando se ensamblan componentes, y que FragOP puede usarse como un método

genérico para el ensamblaje de componentes.

Palabras clave: líneas de productos de software, programación orientada a fragmentos,

desarrollo de componentes, ensamblaje de componentes.

Content XI

Content

Page

Abstract ... IX

List of figures ... XIV

List of tables .. XVII

List of listings ... XVIII

Glossary .. XIX

Introduction ... 1
Problem statement .. 3
Research questions .. 5
Research hypothesis ... 7
Research method .. 8
Contributions ... 9
Thesis organization ... 10

1. State of the art.. 13
1.1 Related work .. 14
1.2 Systematic mapping process ... 17

1.2.1 Definition of research goals and questions .. 17
1.2.2 Definition of search strategy ... 20
1.2.3 Definition of search conduction .. 23

1.3 Data extraction ... 24
1.4 Resolving questions about research goal G1 – Publication 25
1.5 Resolving questions about research goal G2 – SPL implementation 28

1.5.1 Summary of SPL implementation approaches .. 28
1.5.1.1 Aspect-oriented programming (AOP) .. 29
1.5.1.2 Service-oriented architecture (SOA) ... 31
1.5.1.3 Annotative approaches .. 32
1.5.1.4 Feature-oriented programming (FOP) and delta-oriented programming
(DOP) 33
1.5.1.5 Other approaches .. 34
1.5.1.6 Mixed approaches ... 35
1.5.1.7 SPL implementation approach not specified .. 37
1.5.1.8 Example of component implementation with some current approaches
 37

1.5.2 Results .. 41

XII A Generic Method for Assembling Software Product Line Components

1.6 Resolving questions about research goal G3 – Topics and trends 47
1.7 Threats to validity ... 49
1.8 Conclusions .. 50

2. Running example ... 53
2.1 Requirements ... 54
2.2 Software architecture ... 57
2.3 Summary .. 59

3. Overview of the proposal ... 61
3.1 FragOP metamodel .. 61
3.2 FragOP process ... 63

3.2.1 Domain engineering ... 64
3.2.2 Application engineering .. 65

3.3 FragOP implementation ... 66
3.4 Summary .. 66

4. FragOP fundamentals ... 69
4.1 Domain component .. 70
4.2 Domain file.. 72
4.3 FragOP assembling capability ... 75

4.3.1 Fragmentation point .. 77
4.3.2 Fragment... 80

4.4 FragOP customization capability ... 85
4.4.1 Customization point .. 86
4.4.2 Customization file ... 88

4.5 Summary .. 90

5. FragOP process ... 93
5.1 Modeling product line requirements ... 93

5.1.1 VariaMos support ... 96
5.2 Modeling domain components ... 98

5.2.1 VariaMos support ... 99
5.3 Implementing domain components .. 103

5.3.1 IDE support ... 104
5.4 Binding domain requirements and domain components 106

5.4.1 VariaMos support ... 109
5.5 Configuring products .. 110

5.5.1 VariaMos support ... 111
5.6 Deriving products ... 114

5.6.1 VariaMos support ... 116
5.7 Customizing products ... 121

5.7.1 VariaMos support ... 121
5.8 Verifying products... 123

5.8.1 VariaMos support ... 124
5.9 Summary .. 127

6. Evaluation ... 129
6.1 ClothingStores results .. 129

6.1.1 Evaluation metrics .. 130
6.1.2 Results .. 131
6.1.3 Threads to validity .. 135

Content XIII

6.2 SPL implementation mechanisms comparison ... 136
6.3 Usability test ... 138

6.3.1 Product description ... 140
6.3.2 Test objectives .. 140
6.3.3 Context of use... 141
6.3.4 Usability metrics.. 142
6.3.5 Usability test process.. 143

6.3.5.1 Participants’ selection .. 143
6.3.5.2 Pre-questionnaire .. 144
6.3.5.3 SPL, FragOP and VariaMos introduction .. 145
6.3.5.4 Pre-experiment setup part A ... 145
6.3.5.5 Experiment part A .. 145
6.3.5.6 Pre-experiment setup part B ... 146
6.3.5.7 Experiment part B .. 146
6.3.5.8 Post-questionnaire ... 146
6.3.5.9 Semi-structured group interview ... 147

6.3.6 Results .. 147
6.3.6.1 Performance results .. 147
6.3.6.2 Satisfaction results .. 149

6.3.7 Validation threads ... 152
6.4 Summary .. 153

7. Conclusions and future research .. 155
7.1 Conclusions .. 155

7.1.1 State of art in SPL implementation... 155
7.1.2 FragOP SPL implementation approach ... 156
7.1.3 VariaMos automation.. 157
7.1.4 FragOP and VariaMos evaluation .. 157

7.2 Future Research... 158
7.2.1 Future work in variability modeling ... 158
7.2.2 Future work in SPL testing ... 159
7.2.3 Future work in tool automation ... 159
7.2.4 Future work in evaluation ... 161

A. Appendix: Publications .. 163

B. Appendix: List of Systematic Mapping Study selected studies 167

C. Appendix: Pre-questionnaire ... 175

D. Appendix: Experiment Part A .. 177

E. Appendix: Experiment Part B .. 181

F. Appendix: Post-questionnaire ... 183

References ... 189

Content XIV

List of figures

Page

Figure I-1: Application of the design science process model for information system

research (Peffers et al., 2007) to the research carried out in this thesis 8

Figure 1-1: The systematic mapping process ... 17

Figure 1-2: Systematic mapping study research goals ... 18

Figure 1-3: Study selection stages .. 24

Figure 1-4: Temporal distribution of the sources ... 26

Figure 1-5: Data on most frequent journals and conferences 27

Figure 1-6: Data on most frequent authors’... 27

Figure 1-7: Data on each publication’s main authors’ affiliations 28

Figure 1-8: Example of a domain component implementation in OOP 38

Figure 1-9: Example of a domain component implementation in FOP 38

Figure 1-10: Example of a domain component implementation in DOP....................... 39

Figure 1-11: Example of a domain component implementation in COP....................... 39

Figure 1-12: Example of a domain component implementation in AOP 40

Figure 1-13: Example of a domain component implementation in an Annotative

approach 40

Figure 1-14: Example of a domain component implementation in SOA 41

Figure 1-15: Result of SPL component implementation approaches 42

Figure 1-16: Quantity of mentions of some SPL implementation tools 44

Figure 1-17: Result of variability models ... 45

Figure 1-18: Result of software languages .. 45

Figure 1-19: Result of evaluations and kind of examples ... 46

Figure 2-1: ClothingStores feature model ... 55

Figure 2-2: ClothingStores reference software architecture 58

Figure 2-3: ClothingStores project reference folder structure 59

Figure 3-1: FragOP metamodel (UML class diagram) .. 62

Figure 3-2: FragOP process (UML activity diagram) .. 63

Figure 4-1: FragOP metamodel highlighting the domain component, domain file,

fragment, and customization file relationship ... 71

Figure 4-2: FragOP metamodel highlighting the domain file, fragment, and

fragmentation point relationship ... 76

Figure 4-3: An example of the connection between a domain file, a fragment, and a

fragmentation point ... 76

Content XV

Figure 4-4: FragOP metamodel highlighting the domain file, customization file, and

customization point relationship ... 85

Figure 4-5: An example of the connection between a domain file, a customization file,

and a customization point ... 86

Figure 5-1: FragOP metamodel highlighting the concepts of SPL and domain

requirement 95

Figure 5-2: VariaMos “feature model” view main elements .. 96

Figure 5-3: Feature model of the complete ClothingStores running example

(VariaMos) 97

Figure 5-4: FragOP metamodel highlighting the concepts of SPL and domain

component 98

Figure 5-5: VariaMos “Domain component model” view main elements 102

Figure 5-6: ClothingStores complete domain component model 103

Figure 5-7: Component pool folders and files structure .. 105

Figure 5-8: Clothing stores component pool folder ... 105

Figure 5-9: Sublime IDE with an example of a component file development 106

Figure 5-10: FragOP metamodel highlighting the domain requirement and domain

component relationship ... 108

Figure 5-11: VariaMos “Binding model” view main elements 109

Figure 5-12: ClothingStores complete binding model ... 110

Figure 5-13: VariaMos product configuration elements .. 112

Figure 5-14: ClothingStores final product configuration (VariaMos) 113

Figure 5-15: FragOP metamodel highlighting the SPL, product and application file

relationship 114

Figure 5-16: An example of two component files being assembled 115

Figure 5-17: VariaMos “set derivation parameters” configuration............................... 116

Figure 5-18: VariaMos product derivation activity ... 116

Figure 5-19: VariaMos product customization activity .. 122

Figure 5-20: ClothingStores product customization execution (VariaMos) 123

Figure 5-21: Verify derivation alert (VariaMos) ... 126

Figure 6-1: Product section of a derived product (P1); Product section of a derived

product (P5) 132

Figure 6-2: Number of files of each derived ClothingStores product by file type 134

Figure 6-3: LOC of each derived ClothingStores product by file type 134

Figure 6-4: LOC automatically injected in each derived ClothingStores product by file

type 134

Figure 6-5: Summary of LOC reused, automatically injected and customized of each

derived ClothingStores product by file type .. 135

Figure 6-6: VariaMos tool highlighting the evaluated features 141

Figure 6-7: Usability test process (UML activity diagram)... 143

Figure 6-8: Participants’ average time to complete each task 148

Figure 6-9: Satisfaction question average results ... 151

Figure 6-10: Participants’ correct answers about VariaMos and FragOP 151

Figure 7-1: VariaMos web feature model view .. 160

XVI A Generic Method for Assembling Software Product Line Components

Figure 7-2: VariaMos web component model view ... 160

Content XVII

List of tables

Page

Table 1-1: Systematic mapping study research questions .. 19

Table 1-2: Group of terms .. 20

Table 1-3: Resulting search strings ... 21

Table 1-4: Selected search sources .. 22

Table 1-5: Studies data extraction ... 25

Table 1-6: Summary of SPL and AOP ... 30

Table 1-7: Summary of SPL and SOA ... 31

Table 1-8: Summary of SPL and annotative approaches.. 33

Table 1-9: Summary of SPL, FOP, and DOP .. 34

Table 1-10: Summary of other SPL implementation approaches 35

Table 1-11: Summary of SPL with mixed approaches ... 36

Table 2-1: ClothingStores list of features ... 55

Table 5-1: ClothingStores list of domain components and their files 99

Table 6-1: Derived products ... 131

Table 6-2: ClothingStores derivation results .. 133

Table 6-3: SPL implementation approaches and tools comparison summary 136

Table 6-4: Participants’ pre-questionnaire information summary first part 144

Table 6-5: Participants’ pre-questionnaire information summary second part............ 144

Table 6-6: Participants’ performance result summary ... 147

Table 6-7: Participants’ satisfaction result summary ... 150

Table 6-8: Participants’ post-questionnaire external factors and overall satisfaction

result summary ... 152

Content XVIII

List of listings

Page

Listing 4-1: BasicViewsGeneral-Header (header.jsp), UserManagement-

ManageUsers (ManageUsers.java), and DatabaseManagement-Config (Config.java)

component file source codes .. 73

Listing 4-2: Fragmentation point shape ... 77

Listing 4-3: Fragmentation point shape example .. 77

Listing 4-4: Refined BasicViewsGeneral-Header (header.jsp) and UserManagement-

ManageUsers (ManageUsers.java) component files ... 79

Listing 4-5: Fragment shape .. 80

Listing 4-6: ListOfProducts-AlterHeader (alterHeader.frag) and Login-AlterAdmin

(alterAdmin.frag) fragment source codes. .. 84

Listing 4-7: Customization point shape .. 86

Listing 4-8: Refined DatabaseManagement-Config (Config.java) file source code 88

Listing 4-9: Customization file shape ... 88

Listing 4-10: DatabaseManagement-Custom (customization.json) file source code 89

Listing 5-1: Derived BasicViewsGeneral-Header (header.jsp) and UserManagement-

ManageUsers (ManageUsers.java) application files .. 118

Listing 5-2: Introducing an error to the Login-AlterAdmin (alterAdmin.frag) fragment

source code 125

Content XIX

Glossary

Abbreviation Term

ADL Architectural description language
ANTLR ANother Tool for Language Recognition
AOP Aspect-oriented programming
BPEL Business Process Execution Language
CBSE Component-based software engineering
CLP Constraint Logic Programming
COP Context-oriented programming
COTS Commercial off-the-shelf
CSS Cascading Style Sheets
DAO Data access object
DOP Delta-oriented programming
DSL Domain-specific language
DSPL Dynamic software product lines
FragOP Fragment-oriented programming
FM Feature-model
FOL First order logic
FOP Software product lines
HTML Hypertext Markup Language
IDE Integrated development environment
JDBC Java Database Connectivity
JS JavaScript
JSP JavaServer Pages
MDA Model-driven architecture
MDD Model-driven development
MDE Model-driven engineering
MVC Model-view-controller
OOP Object-oriented programming
PL Product line
PLA Product line architecture
PLE Product line engineering
SMS Systematic mapping study
SOA Service-oriented architecture
SPL Software product lines
SPLE Software product line engineering
UML Unified Modeling Language
WSDL Web Service Definition Language

Introduction

Before the advent of mass production in the age of industrialization, manufacturing

processes were essentially handcrafting. Skilled craftsmen built physical goods, such as

machines, furniture, buildings, and clothing, among others, but each product was unique in

the sense that it was built from scratch. Thereafter, mass production became the leading

production philosophy, with the use of assembly lines and standardized parts which were

eventually combined to create more complex products. This philosophy improved

productivity compared to handcrafting. Nevertheless, individualism was lost (or considered

less important) in the sense that a manufacturer no longer incorporated the needs and

wishes of individual customers. In the twentieth century, the idea of a product line emerged.

A product line (PL) is a set of products in a manufacturer’s product portfolio that share

substantial similarities and that are, ideally, created from a set of reusable parts. This way,

manufacturers looked to diversification in order to offer multiple products tailored to

individual market segments (Apel et al., 2013).

Software development has a history similar to that of the production of physical goods. Early

software was handcrafted by a few experts. Thereafter, standardization (mass

production) appeared alongside products such as Microsoft Word, IBM DB2, and Excel,

among others. Nevertheless, these products did not address smaller market segments’

needs or individuals’ needs (Apel et al., 2013). In order to fulfill these specific needs, the

idea of software product lines was developed. A software product line (SPL) is a collection

of software-intensive systems sharing a common, managed set of characteristics that

satisfy the specific needs of a particular market segment or mission and that are developed

from a common set of core assets in a prescribed way (Clements & Northrop, 2001). The

main objective is to avoid developing software systems from scratch, instead of that, those

systems should be constructed from reusable parts.

Software product line engineering (SPLE) has gained significant attention over recent

years. It has been claimed that SPLE is promising in that it provides a faster, better, and

2 Introduction

cheaper way to develop a large range of software systems (Chen & Babar, 2011). SPLE

comprises two processes: (i) domain engineering, which defines the commonalities and

the variability of the SPL, and develops the reusable domain artifacts (for instance:

components, models and tests); and (ii) application engineering process, which derives

the software systems from the reusable domain artifacts, based on the particular

requirements of the stakeholder.

Proper domain component development and management is crucial to take advantage of

SPLE benefits. Currently, the implementation of the reusable domain components and their

subsequent assembly (product derivation) continue to be a complex, time-consuming and

expensive process (Azanza et al., 2010; Lahiani & Bennouar, 2017).

Why are product lines important?

As discussed above, there are several advantages to the product line production strategy.

According to a study by Clements and Northrop (2001) the product line production approach

decreases not only the cost per product (by as much as 60%), but also the time to market

(by as much as 98%), the labor needs (by as much as 60%) and improves productivity (by

as much as 10x), the quality of each derived product (by as much as 10x) and increases

the portfolio size and therefore the possibility of capturing new markets. Furthermore,

according to Apel et al. (2013), companies, such as Boeing, Bosch, Toshiba, Hewlett

Packard, and General Motors have presented successful stories with the implementation

of software product lines.

Why are domain implementation and product derivation activities important?

Domain implementation (an activity which is part of the domain engineering process) refers

to the development of the reusable domain artifacts. Some of the most important reusable

domain artifacts are reusable components (Van Ommering & Bosch, 2002). Domain

components are the base on which each new application of the product line is produced. In

this thesis, a software component is defined as a piece of self-contained code with well-

defined functionality that can be reused as a unit in various different contexts (Wang &

Qian, 2005).

Another important activity is product derivation (which is part of the application engineering

process). In SPL application engineering, products are configured and derived (Apel et al.,

2013). The derivation process takes the reusable components and assembles them to

Introduction 3

generate the new software system. The degree of automation of the assembly process

depends on how the components were implemented. If the process is not very automatic,

the benefits of the SPLE are reduced.

Problem statement

SPL component implementation and assembly have been intensively researched during

recent years. Many authors propose several approaches and tools to the design,

implementation and assembly of components (Apel et al., 2013), such as feature-oriented

programming (FOP; Prehofer, 1997), delta-oriented programming (DOP; Schaefer, et al.,

2010), context-oriented programming (COP; Salvaneschi et al., 2012), aspect-oriented

programming (AOP; Tizzei et al., 2012), service-oriented architecture (SOA; Alzahmi et al.,

2014), Colored Integrated Development Environment (CIDE; Kästner et al., 2008),

pure::variants (Beuche, 2008), GenArch (Cirilo et al., 2007), GenArch-P (Aleixo et al.,

2013), and agents (Jordan et al., 2012). Commonly, those approaches could be grouped

into two main categories: annotative and compositional (Apel et al., 2013). In annotative

approaches such as pure::variants, CIDE, and GenArch, developers simply introduce

markers at the exact positions where a component should be extended (Kästner et al.,

2008). This allows fine-grained extensions, i.e., changes at lower levels, such as changes

in a fixed position inside a class method. In compositional approaches such as FOP,

DOP, and AOP (Apel et al., 2013), components are implemented in the form of composable

units. In FOP, the software assets are developed in terms of “feature modules”, which can

be seen as increments of product functionality. For example, in the context of object-

oriented programming (OOP), a feature module can introduce new classes or refine existing

classes by adding fields and methods, or by overriding existing methods. This allows

coarse-grained extensions, i.e., changes at top levels, such as changes in the hierarchical

structure of an implementation artifact. However, despite the relative success of these

approaches, the derivation of individual products from shared software assets continues to

be a time-consuming and expensive activity in many organizations (Deelstra et al., 2005;

Rabiser et al., 2011; Lahiani & Bennouar, 2017).

We found several unresolved issues that motivate the research presented in this thesis:

• The area of product derivation is still rather immature (Souza et al., 2015) due to

the fact that: (i) there is a lack of support for the derivation process; (ii) existing

4 Introduction

approaches do not present detailed information on the strategies for product

customization, resolving variability, and the derivation of additional software assets

such as databases, views, images, scripts and configuration files; and (iii) in

comparison with the research on the development and modeling of product lines,

few approaches and tools are available for product derivation. This is an important

issue because the production derivation process includes the assembly of the

reusable domain components.

• Most current approaches and tools provide a mechanism for the implementation

and assembly of the domain components. However, they are usually attached to

very specific software languages or software paradigms. For example, (i)

compositional approaches such as FOP, DOP, AOP, and COP have been called as

extensions of OOP, and have been widely used to refine, modify or extend classes

and objects; and are usually attached to a particular host language (Kästner & Apel,

2008). For instance, compositional tools or extensions, such as AspectJ and DeltaJ

are attached to Java, and FeatureC++ is attached to C++. However, software

products are not only made up of classes and objects, and are commonly written in

multiple software languages. Additionally, (ii) annotative approaches implement

components with some form of explicit or implicit annotations, with the prototypical

example being the use of #ifdef and #endif statements that surround the

component code (Kästner & Apel, 2008). Nevertheless, not all software languages

provide these statements, and many annotative approaches provide limited support

to only a few software languages. Indeed, software products are made up of multiple

artifacts developed in multiple languages, such as programming languages (PHP,

JAVA, or Python), markup languages (HTML or XML), style sheet languages (CSS),

database languages (SQL or SPARQL), scripts, images, and configuration files.

According to Mayer and Bauer (2015) who analyzed 1150 open source projects, a

mean number of 5 different languages are used in each project. Consequently,

developing system modules that can be applied to multiple languages appears to

be an important concern (Kästner et al., 2011).

• Annotative approaches have their own limitations in that the domain component files

contain all the source code variants, which (i) increases the number of lines of code,

(ii) increases the number of relationships between the domain component file and

Introduction 5

other domain component files, and (iii) tends to make source code complex and

therefore difficult to maintain and evolve (Le et al., 2013).

• Compositional approaches present important limitations. According to Kästner et al.

(2008) “compositional approaches only introduce new code fragments in positions

in which the order does not matter. Thus, it is possible to introduce new classes into

the program or new methods into a class, but not new statements at a fixed position

inside a method”. Additionally, as previously stated, compositional approaches are

usually attached to a particular host language.

• The combination of compositional and annotative approaches has important

advantages but also some limitations. The few approaches that try to combine

annotative and compositional approaches (Kästner & Apel, 2008; Walkingshaw &

Erwig, 2012; Behringer & Rothkugel, 2016; Horcas et al., 2018) present similar

limitations to those listed previously (limited support for few software languages, use

of if statements, poorly detailed or no tool support). Consequently, how to combine

the compositional and annotative approaches to maximize the advantages and

minimize the limitations of each separate approach continues to be an important

concern (Kästner & Apel, 2008).

Research questions

This thesis addresses the aforementioned problems by proposing an approach that: (i)

allows the implementation and assembly of software product line components independent

of their software language, (ii) combines compositional and annotative elements in order to

allow fine-grained extensions, but keeps the variations as independent modules, and (iii)

supports the product derivation process, trying to automate the entire component assembly

process and supporting other SPL activities in which SPL components are involved (such

as the customization activity). Consequently, the proposed approach is generic; it allows

for the implementation of multiple software components developed in several software

languages and assembles them properly. Thus, the main objective of this thesis is to

answer the following research question:

6 Introduction

Main RQ: How can software product line components be automatically assembled

independent of their software language in a generic and reusable way?

The resolution of each of the following four research questions is necessary to solve the

main research question of the thesis.

RQ1: How should software product line components be implemented to guarantee a

generic assembly and to contain the variation code independent?

To answer this question, this thesis proposes a new paradigm called Fragment-oriented

programming (FragOP) which is presented in Chapter 3. This paradigm combines elements

from compositional and annotative approaches, and so allows variation points to be

represented in most software languages and for them to contain the variation code

independently. In this case, SPL components are implemented through the development of

domain components, domain files, fragmentation points, fragments, customization points,

and customization files (presented in Chapter 4).

RQ2: How should software product line components be assembled to reduce manual

intervention as much as possible?

To answer this question, this thesis proposes a new derivation process which moves the

domain component files to their final destination and applies the fragment alterations (see

Section 5.6). A fragment can inject or modify code developed in several languages.

RQ3: How should software product line components be verified?

This thesis develops a new approach which assembles domain components developed in

several languages. Then, it is important to verify that those components are properly

assembled. This task is more complex for this approach due to the multiple language

support. We take advantage of ANTLR (ANother Tool for Language Recognition), which is

a language tool that provides a framework for constructing recognizers, compilers, and

translators from grammatical descriptions. We used a series of parsers and lexers for

languages, such as PHP, Java, CSS, and MySQL, among others. Based on the derived

Introduction 7

component file extension, the grammar of each file is analyzed, and alerts are generated if

errors are found (see Section 5.8).

RQ4: What support can be offered to systems engineers for improving software product

line component assembly?

As previously stated, tool support is crucial for managing the SPL, as assembling thousands

of components manually voids the benefits of SPL adoption. In this thesis, a software tool

called VariaMos (Mazo et al., 2015) is extended to provide support to the FragOP process

(see Chapter 5).

Research hypothesis

Based on the aforementioned problems and objectives, the following main research

hypothesis was defined:

Main RH: A generic method will allow software product line components to be automatically

assembled independent of the software language in which they were implemented.

The main research hypothesis can be better understood by disaggregating and explaining

some of the concepts:

What is meant by “generic method”? We define generic as the method’s suitability for

use in different cases and contexts.

What is meant by “automatic assembly”? A tool or software automates the assembly

process, reducing manual intervention as much as possible.

What is meant by “software product line components”? The domain software assets

developed in the domain SPL engineering process, which are reused to generate new

software systems.

8 Introduction

Research method

In order to test the research hypotheses of this thesis, the following research strategy was

implemented:

1. We conducted a systematic mapping study on product line engineering. In particular

on the techniques, methods, and tools for SPL component implementation and

assembly.

2. We identified a set of gaps and drawbacks of the existing approaches with regard

to the present research question. Specifically, we examined how solutions could be

used together to address the problem tackled by this thesis.

3. We proposed a new generic method to implement and assemble SPL components

which was automated.

4. We tested the new method through the development of a running example, and the

assembly and derivation of 5 different software systems.

5. We evaluated the correctness of the proposed approach through a laboratory case

study which evaluated the proposal’s usability.

This research methodology matches the design science process model proposed by

Peffers et al. (2007) exactly. Figure I-1 presents, in blue, the design science process model

for information system research, and the application of this process to the research carried

out in this thesis.

Figure I-1: Application of the design science process model for information system

research (Peffers et al., 2007) to the research carried out in this thesis

Introduction 9

Contributions

To overcome the limitations presented in this introduction, this thesis proposes a generic

method for defining domain components and using them to create new products.

Specifically, the main contributions of this thesis are the following:

1. A generic approach for implementing software product line components. In

this step, we developed a new approach that is called Fragment-oriented

programming (FragOP). FragOP is a framework to design, implement and reuse

SPL domain components. It is based on the development of domain components,

domain files, fragmentation points, fragments, customization points, and

customization files. This approach is also a mix of compositional and annotative

approaches (see Chapter 3).

2. A derivation activity which includes component assembly. Based on the

FragOP elements, we developed a new derivation activity, which includes a series

of steps that take information from the component pool and the model information

and derive specific software systems. These steps also detail the management of

the domain components assembly, allowing the component code to be reused and

minimizing manual intervention (see Section 5.6).

3. A customization activity. The addition of customization points and customization

files improves customization activity. After derivation activity, SPL developers are

able to recognize and automate the customization of the derived software products

(see Section 5.7).

4. A verification method for the derived product files. As previously stated, this

approach innovates with component assembly independent of software language.

This means that SPL developers are able to create multiple domain components

and multiple code variations in languages such as Java, HTML, CSS, and MySQL

among others. Consequently, developing a mechanism for early error detection and

syntax validation becomes crucial. For this, we used ANTLR and an analysis of the

derived product files’ grammar (see Section 5.8).

5. A supporting tool for the proposal. We extended the capabilities of the VariaMos

tool to support the FragOP approach (see Section 3.3).

6. Three evaluations of the proposal. (i) We designed a running example to gain

insights about if VariaMos (FragOP) was expressive enough to implement a real

world, variant-rich multi-language software system (see Section 6.1). (ii) We defined

10 Introduction

and discussed the differences between VariaMos (FragOP) and similar SPL

implementation mechanisms and tools (see Section 6.2). Finally, (iii) we applied a

usability test to the new approach and its implementation from which we found

preliminary evidence that VariaMos is a usable tool that properly supports the

FragOP approach (see Section 6.3).

Thesis organization

This thesis is organized as follows:

Chapter 1 presents related work through a systematic mapping study (SMS) on SPL

implementation. It also analyzes the advancements, gaps, and challenges found in the

literature on this topic.

Chapter 2 presents a running example called ClothingStores. ClothingStores is a software

product line that consists of the development of an e-commerce store system family to

manage and sell clothes. This chapter describes the SPL requirements and SPL software

architecture. The running example is used in Chapters 4 and 5 to provide a real scenario

to show how the new approach works.

Chapter 3 provides an overview of the generic method presented in this thesis. It presents

the FragOP metamodel, the FragOP process and its eight main activities, and introduces

VariaMos, a software tool that supports the FragOP approach.

Chapter 4 presents the FragOP fundamentals (the six main elements of the FragOP

metamodel), explaining how these elements support the two main FragOP capabilities

(assembly and customization).

Chapter 5 presents the FragOP process. It describes and details each of the eight

activities, (i) modeling PL requirements, (ii) modeling domain components, (iii)

implementing domain components, (iv) binding domain requirements and domain

components, (v) configuring products, (vi) deriving products, (vii) customizing products, and

(vii) verifying products. Therefore, for each activity, we present how to use VariaMos to

support them, and we provide a practical application by using a running example.

Introduction 11

Chapter 6 provides an evaluation of the proposal. We discuss the running example results,

present a comparison of the FragOP approach and contemporary studies, and develop a

usability test to see how VariaMos supports the FragOP approach.

Finally, Chapter 7 concludes the thesis and proposes future research directions.

1. State of the art

As previously stated, software components are some of the most important SPL artifacts,

as they are the base on which each new application of the product line is produced. SPL

components are used throughout several SPLE stages such as binding, development,

testing, evolution, and derivation, among others. Due to the way SPL components are

integrated into several of those stages, we decided to develop a systematic mapping study

(SMS) on SPL implementation. This SMS provides an overview of the processes, methods,

and tools used to carry out SPL implementation, but also provides details on the role of the

SPL components in the entire process.

An SMS is a form of a secondary study aiming to provide a comprehensive overview of a

certain research topic, to identify gaps in the research, and to collect evidence in order to

guide researchers and practitioners in their current or future work (Wohlin et al., 2013). It

allows all available studies in a domain to be analyzed at a high level thereby answering

broad research questions regarding the current state of the research on a topic. Another

form of secondary study is a systematic literature review (SLR), which aims to identify,

evaluate, and interpret all available studies to answer specific research questions (usually

in the form: Is technology/method A better than B or not?), and requires more in-depth

analysis (Kitchenham & Charters, 2007). We decided to conduct an SMS instead of an SLR

because (i) we wanted to provide thematic analysis of the current studies developed in the

SPL implementation field; (ii) we wanted to conduct a generic study (related to research

trends) with high-level questions of the form: which researchers, how much activity, what

type of studies, etc., instead of an specific study (related to outcomes of empirical studies);

and (iii) we wanted to conduct a broad study because we were at the beginning of this PhD

research project and we wanted to build a big picture of the research project area.

14 A Generic Method for Assembling Software Product Line Components

The main goals of this SMS are:

• (G1) to provide basic publication information through a demographic method and to

assist researchers in identifying the most appropriate sources of research

information on SPL implementation.

• (G2) to assist researchers and practitioners in identifying the range of methods and

mechanisms currently available for an SPL implementation (including SPL

component implementation).

• (G3) to identify principal research trends in the literature and highlight active

research topics that require more future work.

To achieve these objectives, this SMS will answer a selection of the research questions

presented in Section 1.2.1.

The remainder of this section is organized as follows: Section 1.1 presents the related work;

Section 1.2 describes the systematic mapping process, the definition of the research goals

and questions, the search strategy, and the search conduction are presented; Section 1.3

presents the data extraction; Section 1.4 presents the answers to questions about research

goal G1 – Publication; Section 1.5 presents the answers to questions about research goal

G2 – SPL implementation; Section 1.6 presents the answers to questions about research

goal G3 – Topics and trends; Section 1.7 discusses the threats to validity; and finally,

Section 1.8 concludes this study and recommends the direction of future work.

Note: It is important to highlight that the references used in the SMS can be found in

Appendix B. Therefore, some of these references will be presented in this section with the

IEEE format, and they will be preceded by the letter S.

1.1 Related work

During the last decade, many authors have carried out SMS, SLR and surveys on SPL

[S11, S12, S13, S33, S54, S55, S71, S77, S82, S87], with these contributions covering

many aspects of the field of SPL. However, most of them involve a specific part or even a

specific method for the SPL implementation process. As a result, a complete understanding

of SPL implementation is not given. Therefore, the research questions posed in this SMS

are legitimate and previous studies have not yet answered them. A summary of the

currently available SMS, SRL, and survey studies is presented below.

State of the art 15

Lee et al. [S11] presented a survey framework that consists of eight SPL specific testing

perspectives and compared and analyzed the contributions of selected studies. Neto et al.

[S12] developed a systematic mapping study on Testing in SPL in which 120 studies were

evaluated. They found a huge amount of approaches that handle different and specific

aspects in the SPL testing process, however, the quantity of approaches makes comparing

studies a difficult task. Through this study, they were able to identify which activities are

handled by the existing approaches as well as understanding how researchers are

developing work on SPL testing.

Laguna and Crespo [S13] carried out a study which aimed to survey the existing research

on the reengineering of legacy systems like SPLs and the refactoring of existing SPLs.

Guided by several parameters, 74 papers were selected and classified. The results of the

study indicate that the initial works focused on the adaptation of generic reengineering

processes to SPL extraction. Several trends were detected in the research: the integrated

or guided reengineering of (typically object-oriented) legacy code and requirements;

specific aspect-oriented or feature-oriented refactoring of SPLs, and refactoring for the

evolution of existing product lines. Most papers included academic or industrial case

studies, although only a few were based on quantitative data. Montalvillo and Díaz [S71]

conducted a mapping study on SPL evolution that included 107 articles. They developed a

classification schema that included four facets: evolution activity, product-derivation

approach, research type, and asset type. The results show that regarding the evolution

activity, “Implement change” (43%) and “Analyze and plan change” (37%) were the most

covered contributions.

Mohabbati et al. [S33] developed a systematic mapping study on the combination of

service-orientation and SPLE. In this SMS, 81 primary studies were selected. Their

research focused on service variability modeling, service identification, service reuse,

service configuration and customization, dynamic software product lines, and adaptive

systems. The results show that SPLE approaches, especially feature-oriented approaches

for variability modeling, have been applied to the design and development of service-

oriented systems. Service-orientation is employed in software product line contexts for the

realization of product lines to reconcile the flexibility, scalability, and dynamism in product

derivations thereby creating dynamic software product lines.

16 A Generic Method for Assembling Software Product Line Components

Afzal et al. [S54] conducted a literature review of both research and industrial artificial

intelligence applications for SPL configuration issues. They found 19 relevant research

papers which employ traditional artificial intelligence techniques on small feature sets with

no real-life testing or application in industry. Finally, they showed that only 2 standard

industrial SPL tools employ artificial intelligence in a limited way to resolve inconsistencies.

Méndez-Acuna et al. [S55] developed a literature review in which they reported an attempt

to organize the literature on language product line engineering. More precisely, they

proposed a definition for the life-cycle of language product lines, and they used it to analyze

the capabilities of current approaches (38 studies were included). In addition, they mapped

each approach and the technological space supported by it.

Vale et al. [S77] conducted a systematic mapping study to investigate the state-of-art of the

SPL traceability area, in which 62 primary studies were identified. The results showed that

the common strategies for systematizing traceability were metamodeling, different

representation structures, model transformations, formal methods, and trace recovery

techniques. Most strategies focus on the trace creation activities, with a lack of planning,

maintenance, and use of SPL traces.

Dos Santos Rocha and Fantinato [S82] performed an SLR with four research questions

formulated to evaluate PL approaches for BPM (63 papers were selected). The results

showed that the PL approaches found for BPM only partially cover the BPM lifecycle, not

taking into account the last phase which restarts the lifecycle. Therefore, the results indicate

that PL approaches for BPM are still at an early stage and are gaining maturity.

Mazo et al. [S87] carried out a literature review. Their objective was to identify and analyze

the different ways for improving ERP engineering issues with the methods, techniques, and

tools provided by PLE. Their literature review analyzed six research papers and found that

there is still a lack of interest in addressing ERP engineering issues with the product line

strategy.

Pereira et al., (2015) developed an SLR which analyzed the available literature on SPL

management tools. In this study, 52 papers were included. They identified 41 tools in the

literature that provide support to at least one SPL management phase.

Finally, Marimuthu & Chandrasekaran (2017) conducted a systematic mapping study of

State of the art 17

existing systematic studies of software product lines (tertiary study). They analyzed 60

relevant studies to highlight the SPL research topics, type of published reviews, active

researchers and publication forums.

1.2 Systematic mapping process

As previously mentioned, the method used in this research is an SMS. We applied the

mapping studies guidelines proposed by Petersen et al. (2008), which compares the

methods used in mapping studies and SLR. The specific systematic mapping process

reported in this paper was performed based on those guidelines and represented in Figure

1-1 as a sequence of activities and their corresponding outcomes. Even if it is not possible

to conduct a mapping study or a literature review in a fully objective manner, the guidelines

used in our systematic mapping process on SPL implementation renders the study less

subjective thanks to pre-defined data types and criteria that narrow the scope for personal

interpretation.

Figure 1-1: The systematic mapping process

The main activities of this systematic mapping process are (i) definition of research goals

and questions, (ii) definition of search strategy, (iii) search conduction, and (iv) data

extraction and question resolution. The first three activities are described in the next three

subsections Section 1.2.1, Section 1.2.2, and Section 1.2.3; the last activity is described in

Section 1.3.

1.2.1 Definition of research goals and questions

Figure 1-2 shows a KAOS diagram (Heaven & Finkelstein, 2004) that details the research

goals of this study. The main research goal (G0) refers to the carrying out of the SMS on

SPL implementation. G0 is broken down into three primary sub-goals and these primary

18 A Generic Method for Assembling Software Product Line Components

sub-goals into secondary sub-goals; the secondary sub-goals will serve as a base for the

definition of the research questions.

• Primary sub-goals G1 and G3 represent the researchers’ perspective. Their

secondary sub-goals provide an overview of how different researchers are dealing

with SPL implementation in different countries, in different laboratories, and where

these contributions are available and what the current trends are.

• Primary sub-goal G2 represents the practitioners, industry and developers’

perspectives. Its secondary sub-goals provide an overview of current

methodologies for implementing an SPL, the available tools, software languages,

and evaluations, among others.

Figure 1-2: Systematic mapping study research goals

Based on the previous diagram, we designed 10 answerable and interpretable research

questions (SRQ). These research questions will be called SRQ to avoid confusion with the

thesis research questions (RQ). Each SRQ is related to a specific secondary sub-goal

which is simultaneously related to a primary sub-goal. Table 1-1 shows the 12 research

questions and their division.

State of the art 19

Table 1-1: Systematic mapping study research questions

Research Question Sub-goal Goal

SRQ1: What is the time distribution of primary studies?
Rationale: answering this SRQ will help us to understand if this is
a trending field and how it has evolved over the years.

G1.1
G1

SRQ2: What is the venue distribution of primary studies?
Rationale: it is important to know what the authors preferred
venues are in order to know where to find relevant papers about this
field.

G1.2

SRQ3: What is the geographic distribution of primary studies?
Rationale: this SRQ will help us to understand what the lead
countries and authors in this field are.

G1.3

SRQ4: What approaches for SPL implementation are used?
Rationale: commonly, the base of SPL implementation is a
programming paradigm or mechanism which defines the design,
implementation, and assembly of the reusable domain components.
By answering this SRQ, we can get an overview of how researchers
deal with SPL component implementation.

G2.1
G2

SRQ5: What are the available tools that automate SPL
implementation?
Rationale: SPL implementation is a difficult process that involves a
lot of activities. The answer to this question will let us know what the
available tools and programs are, what processes they automate,
and how these tools are used. Based on this, researchers and
companies can learn which tools can be used to satisfy their needs.

G2.2

SRQ6: What variability models are most used in an SPL
implementation?
Rationale: This question specifies that system variability is a
common field in SPL implementation. Answering this question will
let us know what the most used variability models are.

G2.3

SRQ7: What software languages are most used to implement the
SPL components?
Rationale: Commonly companies and developers have preferred
software languages that they have used before to develop software
products. Knowing the programming languages that are most used
by authors and developers to implement SPL components will serve
to discover what the matureness of the technologies and
mechanisms using those languages are.

G2.4

SRQ8: What type of evaluations are most used in studies on SPL
implementation?
Rationale: Knowing how the authors evaluate their proposals is
useful for future studies.

G2.5

SRQ9: What are the main topics of the selected studies?
Rationale: by answering this SRQ, we can get an overview of what
the main topics are in SPL implementation. This information is an

G3.1
G3

20 A Generic Method for Assembling Software Product Line Components

important starting point for deepening researchers’ topics of
interest.

SRQ10: What trends have these topics followed over the last
years?
Rationale: trending topics are very valuable; they can lead
researchers to focus on future research and new developments.
Also, this answer helps to understand what topics authors have
been developing recently and what challenges they have had.

G3.2

1.2.2 Definition of search strategy

Keeping in mind the previous research questions, we defined a set of terms. These terms

also consider three subjects: (i) the application domain, (ii) the SPL implementation stage,

and (iii) the research perspective.

1. Application domain: contextualizes the search; in this case, the search only

encompasses documents related to software product lines.

2. SPL implementation stage: as was mentioned before, the intention is to obtain a

complete overview of SPL implementation. This process is comprised of different

stages, and so relevant articles need to be found for each stage to obtain the

complete overview. For this SMS, we selected 8 principal stages which range from

specification to evolution (specification, modeling, binding, personalization,

configuration, assembling, validation, and evolution).

3. Research perspective: the present SMS perspective is to obtain information about

SPL implementation. Then, three terms were added that will help to refine and to

obtain results related to this field.

These elements are consolidated in Table 1-2, and Table 1-3 lists the final derived search

strings used to conduct the search. The strings are the result of the combination of three

parts: (i) all terms in Table 1-2 – Group 1 (separated by “OR”); (ii) specific terms related to

each SPL implementation stage, terms of Table 1-2 – Group 2 (separated by “OR”); and

(iii) all terms in Table 1-2 – Group 3 (separated by “OR”).

Table 1-2: Group of terms

Group Term Subject

1 Product line, product family, SPL Application
domain

State of the art 21

2 Specification: (domain engineering, domain requirements,
requirements engineering) – Modeling: (variability language,
domain design, variability model) – Binding: (feature binding,
variability binding) – Personalization: (product personalization,
market personalization, software personalization, component
personalization) – Assembling: (product assembling, software
assembling, component assembling) – Configuration: (product
configuration, software configuration, component configuration,
application realization, application implementation) – Validation:
(product validation, quality assurance, software validation, product
testing, component validation) – Evolution: (product evolution,
software evolution, company evolution, component evolution)

SPL
implementation
stage

3 Component implementation, software implementation, product
implementation

Research
perspective

Table 1-3: Resulting search strings

No. SPL
Implementation
Stage

Search strings

DS1 Specification (“product line” OR “product family” OR “SPL”) AND (“domain
engineering” OR “domain requirements” OR “requirements
engineering”) AND (“component implementation” OR “software
implementation” OR “product implementation”)

DS2 Modeling (“product line” OR “product family” OR “SPL”) AND (“variability
language” OR “domain design” OR “variability model”) AND
(“component implementation” OR “software implementation” OR
“product implementation”)

DS3 Binding (“product line” OR “product family” OR “SPL”) AND (“feature binding”
OR “variability binding”) AND (“component implementation” OR
“software implementation” OR “product implementation”)

DS4 Personalization (“product line” OR “product family” OR “SPL”) AND (“product
personalization” OR “market personalization” OR “software
personalization” OR “component personalization”) AND (“component
implementation” OR “software implementation” OR “product
implementation”)

DS5 Assembling (“product line” OR “product family” OR “SPL”) AND (“product
assembling” OR “software assembling” OR “component assembling”)
AND (“software implementation” OR “product implementation” OR
“component implementation”)

DS6 Configuration (“product line” OR “product family” OR “SPL”) AND (“product
configuration” OR “software configuration” OR “component
configuration” OR “application realization” OR “application
implementation”) AND (“component implementation” OR “software
implementation” OR “product implementation”)

22 A Generic Method for Assembling Software Product Line Components

DS7 Validation (“product line” OR “product family” OR “SPL”) AND (“product
validation” OR “quality assurance” OR “software validation” OR
“product testing” OR “component validation”) AND (“component
implementation” OR “software implementation” OR “product
implementation”)

DS8 Evolution (“product line” OR “product family” OR “SPL”) AND (“product
evolution” OR “software evolution” OR “company evolution” OR
“component evolution”) AND (“component implementation” OR
“software implementation” OR “product implementation”)

In addition to the search strings, we established the search sources used to find the primary

studies which are shown in Table 1-4. According to Dyba et al. (2007), these databases are

efficient for conducting systematic studies in the context of software engineering.

Furthermore, these databases have also been considered in another SMS (Laguna &

Crespo, 2013). After a first consolidation of the results, other databases were considered

as part of a second phase (Google Scholar and Citeseerx) to try to find additional results

that could offer useful material.

For each database, we applied a “trial search”. This trial search consisted of introducing

the first derived search string (DS1) into each database search form, and we checked if the

results were as expected. If less than 10 documents were returned or if there were millions

of results with inconsistent articles (not related to SPL implementation), then, those

databases were discarded (DB6, DB7, and DB8 were discarded). Finally, we introduced

each resulting search string into each selected search source and collected the results.

Table 1-4: Selected search sources

Selected Source URL #

Yes ACM DL http://dl.acm.org/ DB1

Yes IEEE Explore http://ieeexplore.ieee.org/ DB2

Yes ScienceDirect http://www.sciencedirect.com/ DB3

Yes Springer http://www.springer.com/la/ DB4

Yes Google Scholar https://scholar.google.com DB5

No (after trial search) Scopus http://www.scopus.com DB6

No (after trial search) Citeseerx http://citeseerx.ist.psu.edu DB7

No (after trial search) Web of Science http://www.isiknowledge.com DB8

Inclusion/exclusion criteria

Before conducting the search, the following restrictions and quality criteria for

including/excluding publications were defined. These criteria were developed with the

http://dl.acm.org/
http://ieeexplore.ieee.org/
http://www.sciencedirect.com/
http://www.springer.com/la/
https://scholar.google.com/
http://www.scopus.com/
http://citeseerx.ist.psu.edu/
http://www.isiknowledge.com/

State of the art 23

intention of finding the most relevant papers to solve the research questions and to exclude

papers which do not fit this field and do not allow the research questions to be solved.

• Restriction R1: The study only includes papers available in electronic form. Books

were analyzed based on information available online and using the hard copy

versions.

• Restriction R2: Only publications written in English were included.

• Restriction R3: Articles related to the topic of this paper published between 1st

January 2000 and 31st March 2017 were included.

• Quality criterion Q1: Each publication was checked for completeness. Publications

containing several unsupported claims or that frequently referred to existing work

without providing citations were excluded.

• Quality criterion Q2: Works by the same authors with very similar content were

included and grouped under the same category (method).

1.2.3 Definition of search conduction

The search conduction was composed of seven stages based on the study by Li et al.

(2015) work: (i) selection by title, (ii) first results merge, (iii) selection by abstract, (iv)

selection by full text, (v) snowballing, (vi) search extension in Google Scholar, and (vii) final

results merge. These stages (see Figure 1-3) used the previous search strings and criteria,

and they are presented below:

1. Selection by title: the search conduction started by using the search strings in four

search sources (ACM DL, IEEE Explore, ScienceDirect and Springer), then

candidate studies were selected based on the title. Restriction R1, R2, and R3 were

applied in this step.

2. First results merge: all candidate studies were merged (493 at this point) and

duplicated studies were removed (33 studies were removed).

3. Selection by abstract: the next stage analyzed the candidate studies’ abstracts to

guarantee that they were related with the desired topic (SPL implementation); at this

point, 150 candidate studies were selected.

4. Selection by full text: the previous studies’ full texts were analyzed and as a result

64 studies were selected. Quality criteria Q1 and Q2 were applied in this step.

5. Snowballing: in order not to miss any potentially relevant studies, we applied the

“snowballing” technique to find more connected studies by checking the references

24 A Generic Method for Assembling Software Product Line Components

of the selected studies. This process could be iterative as snowballing and could be

repeated in the newfound studies. However, only the first iteration was applied, and

10 new studies were found.

6. Search extension in Google Scholar: parallel to stage 5, we extended the search

by looking in Google Scholar, we used the search strings and made a first scan by

title (Restriction R1, R2, and R3 were applied in this step), then, a second scan by

abstract, and finally a third scan by full text (Quality criteria Q1 and Q2 were applied

in this step). 14 new studies were found.

7. Final results merge: at the end, we merged the selected studies from stages 4 and

5 and 6, and 88 relevant studies were selected. These relevant studies are listed in

Appendix B.

Figure 1-3: Study selection stages

1.3 Data extraction

The data extraction process consisted of collecting key information about relevant studies

that will be the base to answer the research questions. We created a spreadsheet and for

each study we recorded 18 pieces of data (see Table 1-5), the description of each data

State of the art 25

point is also included in the next table (this description explains in detail the kind of data to

be collected). Lastly, relevant research questions were assigned to each data point; this is

because some of this data serves to answer one or multiple research questions.

Table 1-5: Studies data extraction

Data item name Description Relevant SRQ

D1 Article name The name of the article None

D2 Article year
The year in which the article was
published

SRQ1

D3 Type of publication
The publication type, such as journal,
conference, workshop, symposium, or
book chapter

SRQ2

D4 Publication name
The name of the journal, conference,
workshop, symposium or book chapter
where the article was published

SRQ2

D5 Publication venue
The name of the publication venue of the
study

SRQ2

D6 Authors
The name of all authors that participate in
the study

SRQ3

D7 Country The main author’s affiliation country SRQ3

D9
Implementation
approach

The programming paradigm or approach
used to design, implement, and assemble
the SPL components

SRQ4

D10 Implementation stage
The SPL implementation stage that was
covered in the article

SRQ5

D11 Tools
The name of the tools presented or used
in the article

SRQ5

D12 IDE
The integrated developed environments
presented or used in the article

SRQ5

D13 Variability models
The variability models presented or used
in the article

SRQ6

D14
Provide example with
programming code

Yes or no depending on if the article
provides an example with programming
code

SRQ7

D15 Software languages
The software languages presented or
used in the article to implement the SPL
components

SRQ7

D16 Evaluation type
The type of evaluation presented or used
in the article

SRQ8

D17 Example type
The type of example presented in the
article

SRQ8

D18 Topics and Trends
A general topic discussed in the article
and/or trends

SRQ9-SRQ10

1.4 Resolving questions about research goal G1 –
Publication

The first analysis after the search conduction gives us a global overview of the time

distribution and the diversity of the sources in this research field (which provides information

26 A Generic Method for Assembling Software Product Line Components

to answer SRQ1 and SRQ2). Implementation of SPL has been a relevant topic over the

last decade (see Figure 1-4); at the beginning of the twenty-first century there were a few

studies in this field, and in 2016 publication peaked with 10 studies published. 2017 shows

only 4 publications, but the time-frame between the papers are sent to be published and

their final publication should be considered, as the search conduction was carried out

between March and April of 2017.

Figure 1-4: Temporal distribution of the sources

Figure 1-4 shows some interesting information. Most of the publications were presented at

conferences or similar (symposiums and workshops) with a total of 56 publications (64%).

The second preferred medium is journals with 24 publications (27%) and finally book

chapters with 8 publications (9%).

Another important result is related to conferences and journals that have published the most

studies (see Figure 1-5). For journals, Information and Software Technology with 7

publications was the most used; second, Journal of Systems and Software with 6 and third,

Science of Computer Programming with 3. For conferences, International Software Product

Line Conference (SPLC) with 5 publications was the most used; second, International

Conference on Software Engineering (ICSE) with 4 and third, International Conference on

Software Reuse (ICSR) with 3 publications.

State of the art 27

Figure 1-5: Data on most frequent journals and conferences

Top authors in the research field are presented in Figure 1-6, showing the number of

contributions from each author as a main author or secondary author. Uirá Kulesza (Kuleza

U) from Universidad Federal de Río Grande del Norte (Brazil) and Eduardo Santana de

Almeida (de Almeida E.S.) from Universidade Federal da Bahia (Brazil) are the top

contributors with 6 publications each, followed by Alessandro Garcia (Garcia A) from

Pontificia Universidad Católica de Río de Janeiro (Brazil) with 5 publications. Finally,

Jaejoon Lee (Lee J) from Lancaster University (UK) and Vander Alves (Alves V) from

Universidade de Brasília (Brazil) present 4 publications each (this analysis helps to answer

the SRQ3).

Figure 1-6: Data on most frequent authors’

28 A Generic Method for Assembling Software Product Line Components

Based on the previous figure, Brazil leads as the country with the most top contributors.

This is consistent with the results presented in Figure 1-7. This figure provides a list of the

top countries that each publication’s main authors are affiliated to (SRQ4 research

question). It shows Brazil also leads with 21 publications (24%), followed by Germany with

11 publications (13%), and USA and Netherlands with 6 publications each.

Figure 1-7: Data on each publication’s main authors’ affiliations

1.5 Resolving questions about research goal G2 – SPL
implementation

After the search conduction was carried out, the second analysis focused on the main topic

of the SMS (SPL implementation), which provides information for answering SRQ4 to

SRQ8. First, we summarize the results of the SPL implementation approaches; second, we

present the results in order to answer the research questions.

1.5.1 Summary of SPL implementation approaches

We divided the studies based on their SPL implementation approach (See Table 1-5 – D9).

We grouped these studies as follows: (i) aspect-oriented programming (AOP), (ii) service-

oriented architecture (SOA), (iii) annotative approaches, (iv) feature-oriented programming

(FOP) and delta-oriented programming (DOP), (v) other approaches, (vi) mixed

State of the art 29

approaches, (vii) not specified. After summarizing each approach, we will show an example

of component implementation with some of the approaches listed above. These

approaches also describe the way in which the SPL components must be implemented.

Below, the results of the information collected for each of the previous groups are

presented. To organize the information, we created a table structure that summarizes the

collected information (based on Table 1-5). This structure records:

• SPLE stage refers to the software product line engineering stage, that was covered

in the study such as modeling, binding, implementation, and evolution. Sometimes

a study can cover multiple SPLE stages, in these cases, we recorded the

information as “Multiple”.

• Evaluation refers to the type of evaluation applied in the study such as running

examples, experiments, and comparisons.

• Specific example refers to the type of example presented in the study.

• Tool support refers to the tools, libraries or software used or mentioned in the

study.

• Software language refers to the software languages used or mentioned in the

study such as Java, PHP, and C++.

• Variability model refers to the variability model used or mentioned in the study

such as the feature model, OVM, and goals model.

1.5.1.1 Aspect-oriented programming (AOP)

Aspect-oriented programming (AOP) is an approach that aims to modularize the

crosscutting concerns of both software product lines and single-systems. These concerns

are widely-scoped properties and usually crosscut several modules in the software system.

Aspects are the abstractions used to encapsulate otherwise crosscutting concerns. An

example of a crosscutting concern is "logging", which is frequently used in distributed

applications to aid debugging by tracing method calls [S34]. Therefore, the use of aspects

relies on three major mechanisms to modularize and vary crosscutting concerns: (i) join

points are the identifiable execution points, for example, method calls or object attribute

assignments; (ii) a pointcut is a predicate over dynamic join points, meaning that given a

certain dynamic join point, a pointcut can either match this join point or not (at runtime); and

(iii) an advice is a new behavior that extends, refines or replaces the computation at

30 A Generic Method for Assembling Software Product Line Components

selected join points [S35]. AspectJ is an example of an aspect-oriented programming

language; in AspectJ, a call to a method, a method execution, or an assignment to a

variable are examples of join points. For instance, using AspectJ, it is possible to intercept

a call to an interface method in order to check whether any of the parameters are null [S35].

A summary of research focusing on SPL and AOP is presented in Table 1-6. This table

details important descriptions about the main papers in this field, the SPLE stage covered,

the type of evaluation, the kind of examples presented, and the tools, the software

languages and the variability model used.

Table 1-6: Summary of SPL and AOP

Ref
SPLE stage

covered
Evaluation

Specific
Example

Tool Support
Soft.
lang.

Variability
model

S15 Architecture
Running
example

Public health
complaint
system

COSMOS∗-VP
Feature
model

S18 Evaluation
Running
example

Mobile phone
company

AspectJ - Ant Java

S23 Modeling
Running
example

Microwave oven Uced
Feature
model

S24
SPL architecture
- Multiple

Running
example

Graph
algorithms

AspectJ -
Extended
GenVoca -
CoBaCoLa -
ReGaL

Java

S25 Multiple
Running
example

Scientific
calculator

AspectJ Java
Feature
model

S41
Architecture -
Evolution

Running
example

Philips TV
product line
architecture

Koala - INXS -
AspectC++ -
Aspicere - C4 -
WeaveC -
AspectC

S42 Evolution
Running
example

BestLap, Mobile
Media

AspectJ -
CaesarJ

Java
Feature
model

S44
Customization -
Implementation

Running
example

Library
management
domain

AspectJ -
OntoFeature

Java
Feature
model

S46
Product
derivation

AspectJ -
pure::variants -
Gears - EMF

Java
Feature
model

S59 Architecture
Running
example

Library
management
system

AspectJ
Feature
model

S60 Multiple
Running
example

Game

AspectJ - Junit -
EMF - JET -
Gears -
Pure::variants -
Feature
modeling plugin
(FMP)

Java
Feature
model

State of the art 31

S66 Architecture
Running
example -
Comparison

Terrestrial
Digital TV
System

AspectualACME
- ACME

Feature
model

S67
Implementation -
Multiple

Running
example

Weather station
- Home
automation
system

AspectJ -
CaesarJ - OSGi
- CAM-DAOP -
Ecore -
openArchitectur
eWare

Java
Feature
model

S70
Modeling -
Implementation

Running
example

Microwave
system

AspectJ
Java -
XML

S85 Multiple
Running
example -
Comparison

Bus
transportation

AspectJ - Spring
framework -
Hibernate

Java -
XML

Feature
model

1.5.1.2 Service-oriented architecture (SOA)

SOA emphasizes building software solution logic in the form of self-contained services that

can be reused in multiple systems [S6]. In this approach, the SPL components are

implemented in the form of services. An SOA implementation exposes standard interfaces

to make services available for authorized service consumers to use in a variety of ways

[S16], therefore, services can be replaced or can be reconfigured to adapt to different

circumstances [S62]. In addition, an SPL that implements an SOA approach commonly

uses Business Process Execution Language (BPEL) or similar languages to support

variability. BPEL is an XML-based programming language that can be used to describe the

interaction between web services at the message level; in this way, it also describes their

composition. One example of a BPEL extension is a language called VxBPEL, which has

extra XML elements to support variation points and variants in a BPEL process [S62].

SPL and SOA integration has been widely studied over recent years. A summary of the

principal research is presented in Table 1-7. This table contains important descriptions

about the main papers in this field, the SPLE stage covered, the type of evaluation, the kind

of examples presented, and the tools, the software languages and the variability model

used.

Table 1-7: Summary of SPL and SOA

Ref
SPLE stage

covered
Evaluation

Specific
Example

Tool
Support

Software
language

Variability
model

S4 Multiple
Running
example

Mobile
learning app

Java -
Javascript

Feature
model

S5 Implementation
Running
example

Office system JBoss jBPM Java
Feature
model

S6 Multiple
Running
example

e-health
domain

SoaSPL
Feature
model

32 A Generic Method for Assembling Software Product Line Components

S8
Architecture -
Multiple

Running
example -
Experiment

Currency
exchange

VisualWebC
- BPEL4WS

ASP - Java

S14 Multiple

S16
Implementation -
Evaluation

Comparison Library

OSGi -
Apache
Tuscany -
JAX-WS

Java
Feature
model

S17 Multiple
Running
example

e-commerce

Apache ODE
- Apache
CXF -
Eclipse
Swordfish -
SoaSPLE

Java

Feature
model -
Multiple
View Service
Variability
Model

S26
Implementation -
Product derivation

Industrial
report

Aurora – web
development
enviroment

JSP -
HTML -
XML - Java

S62
Modeling -
Multiple

Running
example

Supply Chain
Management
System

COVAMOF-
VS - BPEL -
VxBPEL -
ArgoUML

Java - XML

UML profile
for
architectural
variability
modeling

S68 Multiple

S76
Modeling -
Implementation

Running
example

Online
marketplace

BPMN - EPC
- YAWL -
VxBPEL -
COVAMOF -
SOMA

Java - .net
Feature
model

1.5.1.3 Annotative approaches

Annotative approaches implement SPL components with some form of explicit or implicit

annotations, with the prototypical example being the use of #ifdef and #endif

statements to surround the SPL component code. Annotative approaches assemble the

variations of all possible configurations within a single artifact, as is the case with the C++

preprocessor and the Java preprocessor Antenna [S48]. During variant derivation, the parts

that are not needed within a variant are removed. This is the reason that annotative

approaches are well known in their support of fine-grained extensions on statements,

parameters, and conditional expressions [S65].

A summary of the principal research on SPL and annotative approaches is presented in

Table 1-8. This table contains an important description on the major papers in this field, the

SPLE stage covered, the type of evaluation, the kind of examples presented, and the tools,

the software languages and the variability model used.

State of the art 33

Table 1-8: Summary of SPL and annotative approaches

Ref
SPLE stage

covered
Evaluation

Specific
Example

Tool Support
Software
language

Variability
model

S2 Multiple
Running
example

Satellite
system

pure::variants -
Rhapsody - C
Compiler

C
Feature
model

S20
Architecture -
Multiple

Running
example

Chat app xADL - ANTLR Java

S36 Multiple
Running
example

Mobile games Java
Feature
model

S52 Multiple
Running
example

Shopping
store

GenArch Java - XML
Feature
model

S61
Configuration -
Multiple

Running
example

Software
configuration
management

FeaturePlugin
- Fujaba -
MODPLFeatur
ePlugin

Java
Feature
model

S72
Requirements -
Architecture -
Multiple

Industrial
report

Automotive
pure::variants -
DOORS -
Rhapsody

Feature
model

S84
Architecture -
Multiple

Running
example

Chat app

xLineMapper -
Eclipse
 JET - ANTLR
- ArchJava -
Archface

Java PLA model

1.5.1.4 Feature-oriented programming (FOP) and delta-oriented programming
(DOP)

Feature-oriented programming (FOP) has been used to implement SPLs by composing

feature modules. To obtain a product for a feature configuration, feature modules are

composed incrementally. In the context of OOP, feature modules can introduce new

classes or refine existing ones by adding fields and methods or by overriding existing

methods [S37]. Delta-oriented programming (DOP) has been seen as an extension of FOP.

In DOP, the implementation of an SPL is divided into a core module and a set of delta

modules. The core module comprises a set of classes that implement a complete product

for a valid feature configuration. This allows the core module to be developed with well-

established single application engineering techniques to ensure its quality. Delta modules

specify the changes to be applied to the core module in order to implement other products.

A delta module can add or remove classes from product implementation [S37].

A summary of the principal research on SPL, FOP, and DOP is presented in Table 1-9.

This table contains an important description of the major papers in this field, the SPLE stage

covered, the type of evaluation, the kind of examples presented, and the tools, the software

languages and the variability model used. References marked with an asterisk (*) use DOP

approaches.

34 A Generic Method for Assembling Software Product Line Components

Table 1-9: Summary of SPL, FOP, and DOP

Ref
SPLE stage

covered
Evaluation

Specific
Example

Tool Support
Software
language

Variability
model

S27*
Modeling -
Multiple

Running
example

Bank system
ABS tool - ANTLR
- JastAdd -
Papyrus

Java - XML
Feature
model

S32 Multiple
Running
example

Graph spl FeatureC++ C++
Feature
model

S39 Multiple
Running
example

Graph spl
rbFeatures -
AHEAD - CIDE

Ruby
Feature
model

S47 Multiple
Running
example

Graph spl –
calculator –
Expression
product line

rbFeatures -
FeatureJ

Ruby
Feature
model

S56 Multiple
Running
example

Map AHEAD - XAK
JavaScript
- XML -
SVG

Feature
model

S75* Multiple
Running
example

Smart home
SiPL - EMF - SiLift
- Simulink

Feature
model

1.5.1.5 Other approaches

Peña [S31] discussed the use of agents in SPL. Agent-oriented software engineering is a

software engineering paradigm that promises to enable the development of more complex

systems than those that can be achieved with current object-oriented approaches using

agents and organizations of agents as the main abstractions. A software agent is a piece

of software which exhibits the following characteristics: autonomy, reactivity, pro-activity

and social ability. The introduction of agents to the industrial world may benefit from the

advantages that SPL offers [S31]. Using SPL philosophy, a company will be able to define

a core multi-agent system from which concrete products will be derived for each customer.

El-Sharkawy et al. [S43] developed a tool called EASy-Producer, an Eclipse extension for

efficient software product line development. This tool uses three custom-developed

domain-specific languages (DSL): IVML language which is used to define the variability

model of the SPL, VIL language which is used to define the relationship between the

variabilities and the implementation, and VTL language which supports variability-aware

artifact generation.

Another approach that the SMS found is context-oriented programming (COP). COP is an

approach that supports the dynamic adaptation of context conditions such as bandwidth

availability, presence of WiFi and data connection (Salvaneschi et al., 2012). COP

introduces language-level abstractions, such as “layers” that group partial method

State of the art 35

definitions, to manage the modularization of adaptations and their dynamic activation during

the program’s execution.

A summary of other SPL implementation approaches is presented in Table 1-10. This table

contains an important description of the major papers in this field, the approach used, the

SPLE stage covered, the type of evaluation, the kind of examples presented, and the tools,

the software languages and the variability model used.

Table 1-10: Summary of other SPL implementation approaches

Ref Approach
SPLE
stage

covered
Evaluation

Specific
Example

Tool Support
Soft.
Lang.

Var.
Model

S31 Agents Multiple
Running
example

Security
council's
procedure
to issue
resolutions

Feature
model -
Goals

S43
IVML, VIL,
VTL (custom
DSLs)

Multiple
Running
example

Elevator
simulator

EASy-
Producer -
Dopler tool -
FeatureIDE -
pure::variant -
FaMa
framework -
REMiDEMMI -
FeatureMappe
r - AspectJ

Java IVML

1.5.1.6 Mixed approaches

Sometimes, authors develop studies with mixed SPL implementation approaches. Most of

these studies compare two or more approaches [S34, S37, S65, S81]. However, in other

cases, they try to take advantage of the benefits of some approaches and use them in

combination with other approaches. For example, Parra et al. [S19] develop an approach

for SPL based on SOA services. Their approach mixes the use of SOA services with

annotations. The use of annotations serves to manually indicate which parts of the original

artifacts can be transformed into services to be used externally. Andrade et al. [S22]

propose the use of AOP with annotations. In their work, they use AspectJ as the base tool,

which is refined with the use of some Java annotations. They implemented this combination

to solve some issues presented in previous work which uses AspectJ-based idioms. Santos

et al. [S73] present RiPLE-HC, a strategy aimed at blending compositional and annotative

approaches to implement variability in JavaScript-based systems. In the annotative part,

36 A Generic Method for Assembling Software Product Line Components

they use the classical #ifdef and #endif statements to support the fine-grained

extensions. Other studies include the blending of compositional and annotative approaches

(Kästner & Apel, 2008; Walkingshaw & Erwig, 2012; Behringer & Rothkugel, 2016; Horcas

et al., 2018). However, all the previous approaches present important limitations such as

limited support for a few software languages, the use of if statements or tree structures,

poorly detailed coding, and no tool support.

A summary of SPL with mixed implementation strategies is presented in Table 1-11. It

includes studies that deal with comparative methods. The table contains an important

description of the major papers in this field, the mixed approaches used, the SPLE stage

covered, the type of evaluation, the kind of examples presented, and the tools, the software

languages and the variability model used.

Table 1-11: Summary of SPL with mixed approaches

Ref Approaches
SPLE
stage

covered
Evaluation

Specific
example

Tool
support

Soft.
Lang.

Var.
Model

S19
SOA -
annotative

Multiple
Running
example

Multiple
artifacts

Spoon -
FeatureIDE

Java
Feature
model

S22
AOP -
Annotative

Implement
ation -
Binding

Experiment
Company
spl

AspectJ Java

S29 Agents - AOP Multiple
Running
example

Personal
user
services

GenArch -
FMP - Jadex

Java -
XML

Feature
model

S34 AOP - OO Evolution Comparison
Mobile
media

Feature
model

S35
AOP - OO -
Component-
based

Architectur
e - Multiple

Running
example

Mobile
media

AspectJ Java
Feature
model

S37 DOP - FOP Multiple Comparison

Expression
product
line -
Graph

DeltaJ - Jak
- AHEAD

Java
Feature
model

S48
Annotative -
FOP - DOP

Multiple
Running
example

FeatureAM
P –
GameOfLif
e - Violet

EMF - Xtext
- DeltaJ -
Antenna -
C++
preprocessor

Java –
C++

Feature
model

S53 AOP - FOP Multiple
Running
example -
Comparison

Three
board
games

AspectJ -
CaesarJ

Java
Feature
model

S63 OO - AOP
Implement
ation

Running
example -
Comparison

Smart
homes

 Java
Feature
model

S65
FOP - OO -
Annotative

Evolution -
Multiple

Running
example -
Comparison

WebStore -
Mobile
Media

AHEAD -
JAK

Java -
JSP

Feature
model

State of the art 37

S73
Annotative -
compositional

Multiple
Running
example -
Experiment

Learning
objects

RiPLE-HC -
npm - jam -
bower -
requireJS
 -
FeatureHous
e -
FeatureIDE

JavaSc
ript

Feature
model

S78
SOA -
annotative

Multiple
Running
example

Company
apps

SPLIT -
Spoon -
EMF -
FeatureIDE

Java -
XML

Feature
model

S79
SOA -
annotative

Multiple
Running
example

Smart
home

LISA Java
Feature
model

S81 AOP - OO Modeling
Running
example -
Comparison

Pacemaker
product
line

Rhapsody

1.5.1.7 SPL implementation approach not specified

There were 23 studies in which the SPL implementation approach that was used was not

specified. For these studies, the same information shown in the above tables was recorded.

This information can be found online (Correa, 2018).

1.5.1.8 Example of component implementation with some current approaches

The previous section explained and summarized how different approaches deal with SPL

implementation from a theoretical perspective. In order to illustrate how some of those

approaches can be used to design and implement SPL components, a practical example

of an appliance stores product line was elaborated. In this example, the appliance stores

must have the possibility to manage “Payments” (mandatory feature), and those payments

can be extended to support “Card Payments” (optional feature). Based on these features,

we decided to implement the Payment and Card Payment using six different SPL

implementation approaches (OOP, FOP, DOP, COP, AOP, annotative, and SOA), as

shown in Figures 1-8, 1-9, 1-10, 1-11, 1-12, 1-13, and 1-14. The implemented methods

were left blank because the intention is to analyze how the components and their code are

divided based on each approach, rather than analyzing the method that was implemented.

OOP

Figure 1-8 shows an excerpt of our appliance stores product line represented as a class

hierarchy. In OOP, components are implemented with classes. In this example, the

“Payment” feature is implemented through the Payment Java class, and the “Card

Payment” requirement is implemented through the CardPayment Java class. Extension of

38 A Generic Method for Assembling Software Product Line Components

components is an important contribution of OOP to improve reuse by inheritance. There

are other approaches that include the use of interfaces or patterns, but all of them are based

in object-oriented elements, and not all SPL components are object-oriented.

Figure 1-8: Example of a domain component implementation in OOP

FOP

Figure 1-9 shows two different options for the implementation of components with FOP.

The first option is based on “Superimposition”, which is the process of composing software

artifacts by merging their corresponding substructures (cf. Fig. 1-9 model). The second

option is based on refactoring, which has been proposed as a means for improving the

internal structure of a system (i.e., the source code) while preserving the external behavior.

In this case, a feature module (component) may also contain class and method refinements

(cf. Fig. 1-9 code). The example shows how the CardPayment feature code refines the

Payment feature with the addition of the new processCard method. This refinement is

carried out in the component integration process. The disadvantage of FOP is that it doesn’t

support fine-grained extensions.

Figure 1-9: Example of a domain component implementation in FOP

State of the art 39

DOP

Figure 1-10 shows how to implement two components by means of DOP with DeltaJ.

Similar to FOP, CardPayment delta modifies the Payment class with the addition of a new

method called processCard. Delta also allows removing code which is not allowed in FOP.

Finally, similar to FOP, DOP doesn’t provide fine-grained extensions.

Figure 1-10: Example of a domain component implementation in DOP

COP

Figure 1-11 shows the component implementation by means of COP. In our example, the

Payment class is extended with a CardLayer (layers are used to group partial method

definitions), this layer defines a process method, which is only executed when the

CardLayer is referred. However, the layer activation mechanism can be quite complex and

could tend to make source code complex and difficult to maintain.

Figure 1-11: Example of a domain component implementation in COP

AOP

Figure 1-12 shows the component implementation by means of AOP. AOP is a solution for

crosscutting concerns, so instead of implementing the CardPayment feature, we

implemented a Logging feature which is a crosscutting concern. There, we defined a

Logging aspect with a pointcut and advice. The pointcut was called PayProcess which was

40 A Generic Method for Assembling Software Product Line Components

linked to the Payment Process method. The advice was linked to the previous pointcut and

it was defined to be executed before the pointcut execution. This means, that before the

Payment Process method is executed, the Logging aspect will execute its advice. The

disadvantage of AOP is that it only supports variability for crosscutting concerns.

Figure 1-12: Example of a domain component implementation in AOP

Annotative

Figure 1-13 shows how to implement SPL components by means of Antenna (an annotative

approach). In this case, the optional feature CardPayment is surrounded by Java

comments. During the product derivation, the parts that are not needed within a file are

removed. The disadvantage of annotative approaches is that the SPL components contain

all the possible variations inside them, which makes them difficult to maintain and evolve.

Figure 1-13: Example of a domain component implementation in an Annotative approach

SOA

Figure 1-14 shows how to implement SPL components by means of SOA and with the use

of BPEL Designer1. In this case, Payment and CardPayment are implemented in form of

independent services, with the use of Web Services Description Language (WSDL) files. In

addition, a BPEL process file is created to describe the interaction between these services

1 https://www.eclipse.org/bpel/

https://www.eclipse.org/bpel/

State of the art 41

(to describe their composition). Depending on the received input, the Payment WSDL or

the CardPayment WSDL could be invoked. However, SOA is not recommended for

standalone applications, and the GUI has to be designed as an independent project.

Figure 1-14: Example of a domain component implementation in SOA

1.5.2 Results

Following, we show the results for answering SRQ4 to SRQ8.

SRQ4: What approaches to implement the SPL components are used?

In the previous section we discussed the studies found about SPL implementation, we also

summarized those studies and their contributions. Therefore, we developed the Figures 1-

8, 1-9, 1-10, 1-11, 1-12, 1-13, and 1-14 in which we showed how the SPL components are

implemented with some of the previous SPL implementations approaches. Figure 1-15

summarizes the SMS findings of SRQ4. Most of the studies that specified SPL

implementation approaches focused on AOP (34%), followed by SOA (22%), annotative

approaches (22%), FOP (13%), and DOP (6%). In addition, we found some studies in which

there was a mix of approaches to support the SPL component implementation, or in which

the authors created some comparisons (see Table 1-11).

Nevertheless, we discussed in Introduction the issues with the previous approaches. For

example, some of them support only coarse-grained extensions, are attached to a specific

42 A Generic Method for Assembling Software Product Line Components

software language and include the code variations inside the reusable component files

which increases the complexity, among others.

Figure 1-15: Result of SPL component implementation approaches

SRQ5: What are the available tools that automate SPL implementation?

The first analysis of the SPL tools was to focus on the integrated development environments

(IDE). SPL projects are commonly developed inside a specific IDE. We found that the most

used or discussed IDE was Eclipse (91%), followed by Visual Studio (9%). There were

other development environments such as ArchStudio or pure::variants, but they were

developed based on the Eclipse platform.

The second analysis was the use of tools for the implementation of an SPL. Most of those

tools support a specific SPL implementation approach. Figure 1-16 summarizes the tool

results and below we describe the most used or discussed tools based on the SPL

implementation approaches:

• AOP: AspectJ is an AOP extension for the Java programming language. Currently,

AspectJ is the most consolidated AOP language [S42]. CaesarJ is an aspect-

oriented language which unifies aspects, classes and packages in a single powerful

construct that helps to solve a set of different problems of both aspect-oriented and

component-oriented programming.

• SOA: VxBPEL is proposed as an extension of Business Process Execution

Language (BPEL) for to the process description and definition. VxBPEL allows for

State of the art 43

run-time variability and variability management in Web service-based systems.

Variability information is defined in-line with the process definition [S76]. SoaSPLE

is a generic conceptual framework that can be built on top of available Object

Management Group (OMG) and standard modeling languages such as UML,

BPMN, and SoaML. These languages provide modeling elements that can be used

in depicting service views such as SoaMl’s Service Interface elements, BPMN’s

Business Process elements and UML’s Interaction Diagram elements [S6].

• Annotatives: pure::variants is a tool developed by pure-systems and is used for

modeling features, expressing product variants in terms of features, and generating

tailored artifacts. It is based on the well-known Eclipse platform and it can be

extended by writing plug-ins in the Java programming language [S72]. Rhapsody is

a tool developed by IBM Rational, that supports system engineers with modeling

static and dynamic aspects of software systems using UML and SysML. Code

generation for different languages is supported as well as the simulation of

behavioral models such as state charts [S72]. Spoon is a tool that analyses and

transforms Java code using processors. Spoon creates an abstract syntax tree of

the code being analyzed and offers the API to navigate through the tree and

eventually perform modifications [S78]. GEARS provide an all-in-one development

environment for establishing, managing and operating your Feature-based PLE

Factory. GEARS explicitly supports the integration of existing (i.e., unchanged)

software. This implies that GEARS can deal with software over which no control

exists [S38].

• FOP: AHEAD is an approach to support FOP based on stepwise refinements. The

main idea behind AHEAD is that programs are constants and features are added to

programs using refinement functions [S65].

• DOP: DeltaJ is a programming language which introduces DOP to Java [S37].

DeltaJ is available as an Eclipse plugin and it is based on the Xtext Framework.

• Other: FeatureIDE is a set of tools for variability modeling that enables one to create

and edit feature diagrams. Furthermore, FeatureIDE provides a configuration tool

to create and validate configurations with regard to the constraints defined in the

variability model. Using FeatureIDE a developer can create product configurations

and validate if such configurations respect the constraints expressed in the

variability model. FeatureIDE already supports multiple composer engines and

44 A Generic Method for Assembling Software Product Line Components

approaches such as AHEAD, Munge, Antenna, AspectJ, FeatureC++, and

FeatureHouse, among others [S78]. Koala [S38] is a component model consisting

of an architectural description language (ADL) and tool support. The ADL serves to

define interfaces, data types, basic components, and compositions (which are

components themselves). The tooling serves to generate products from component

compositions. Koala was primarily designed for resource-constrained software and

is applied in the consumer electronics domain. ANTLR (Another Tool for Language

Recognition) is an open-source project that can automatically generate a code

processor from a defined grammar. The generated code processor automatically

parses the input source code into a syntax tree, and outputs the code as instructed

by the user [S20].

Figure 1-16: Quantity of mentions of some SPL implementation tools

SRQ6: What variability models are most used in an SPL implementation?

Without any doubt, feature models are the most used and discussed variability models in

the SPL implementation literature. Some of the SMS studies specified the use of SPL

variability models (see Figure 1-17). In this case, the most used or discussed variability

model was feature models (82%). There were other studies in which other variability models

were discussed, such as, Orthogonal Variability Model (OVM), architectural models, and

goals models. However, they represent a small size of the total studies. During these years,

feature models have become a popular formalism for describing the commonality and

variability of SPLs.

State of the art 45

Figure 1-17: Result of variability models

SRQ7: What software languages are most used in the SPL component

implementation?

Figure 1-18 summarizes the SMS findings of the software language popularity. In the

studies that specify software languages, we found that the most popular was Java (48%).

Followed by XML (15%), and C, C++ and C# (8%).

Figure 1-18: Result of software languages

It is not a surprise that Java arises as to the most used software language, this can be due

to the fact that the SPL developers are very attached to the use of IDEs such as Eclipse,

and many of the authors have proposed and developed tools based on the Eclipse

Modeling Framework (EMF). In this framework, developers can specify models with the use

46 A Generic Method for Assembling Software Product Line Components

of annotated Java, UML, and XML documents, among others. That can be a reason why

Java and XML are two of the most used software languages. However, as mentioned in

Introduction, many SPL implementation approaches focus on supporting a specific software

language or are attached to a specific software language, and software applications use an

average of 5 different software languages.

SRQ8: What type of evaluations are most used in studies on SPL implementation?

As we have shown during the development of this chapter, many studies have proposed

new mechanisms, concepts, processes, or techniques that improve some stages of the

implementation of SPL. Many of those studies also provide a kind of evaluation for their

proposals. Figure 1-19-a summarizes SMS evaluations results. Running examples are the

most used evaluation technique (81%), which provide a practical way to illustrate the

authors’ proposals. The use of running examples was followed by comparison studies and

case studies both with 8%. It is important to clarify that many studies claimed themselves

to use case studies, however, we only recorded case studies for those studies that there

were applied in industrial settings. If a study was claimed as a case study but in a non-

industrial setting, we recorded them as a running example.

Figure 1-19: Result of evaluations and kind of examples

State of the art 47

We also found that most evaluations recorded information such as lines of code (LOC),

quantity of classes, quantity of methods, quantity of components, number of product

derivations, and number of product configurations, among others.

Finally, we recorded the kind of examples that were presented in the studies’ evaluations

(see Figure 1-19-b). The results show a wide range of domains in which SPL are applied,

which goes from the avionics domain [S50], to games [S36], library management systems

[S59], and home automation [S79].

1.6 Resolving questions about research goal G3 – Topics
and trends

SRQ9: What are the main topics of the selected studies?

After the SMS development, we have found some main topics in the SPL implementation

domain. Some of these topics have been already discussed in Introduction and in Section

1.5; such as SPLE, domain engineering, application engineering, product derivation,

variability modeling, compositional and annotative approaches, fine-grained and coarse-

grained extensions, component implementation, component assembling, SPL tools, and

SPL evaluations. Other main topics are discussed below:

• MDD – MDE – MDA. Model-driven development (MDD) and similar areas, such as

model-driven engineering (MDE) and model-driven architecture (MDA) improve the

way software is developed by capturing key features of a system in models which

are developed and refined as the system is created. During the system’s lifecycle,

models are synchronized, combined and transformed between different levels of

abstraction and different viewpoints. In contrast to traditional modeling, models do

not only constitute documentation but are processed by automated tools [S67].

Authors and SPL developers have been taken advantage of the MDD

characteristics to improve and automatize the implementation of SPL. For example:

(i) Alzahmi et al. [S6] presented a tool that facilitates the automatic derivation of

SOA applications based on MDE as an implementation methodology, (ii) Mefteh et

al. [S49] developed an approach in which feature models can be built automatically

not only from source codes but also from descriptions and uses cases diagrams,

and (iii) Mohamed et al. [S74] presented a multi-tenant single instance software-as-

a-service evolution platform based on Software Product Lines (SPLs) and MDA.

48 A Generic Method for Assembling Software Product Line Components

• PLA – ADL. Product line architecture (PLA) is an important application of software

architecture in the development of a family of software products, or a software

product line. It captures architectural commonality and variability among products

of the product line [S84]. Architectural description languages (ADLs) can be seemed

as an approach for implementing PLA concepts. ADLs typically use architectural

styles to define vocabularies of types of components, connectors, properties, and

sets of rules that specify how elements of those types may be legally composed in

a reusable architectural domain [S66]. PLA and ADL have been also used in

conjunction with SPL implementation, Zheng and Cu [S84] presented an approach

to implementing product line architecture which combines a code generation and

separation pattern with an architecture-based code annotation technique; the Koala

tool was designed as a component model consisting of an ADL [S38]; and Barbosa

et al. [S66] developed PL-AspectualACME which is an extension of the ACME ADL

that enriches existing abstractions to express architectural variabilities.

• DSL. A domain specific language (DSL) is a formalism for building models which

encompasses a meta-model as well as a definition of a concrete syntax that is used

to represent the models. The concrete syntax can be textual, graphical or using

other means, such as tables, trees or dialogs [S67]. Some authors have developed

some DSL to improve the implementation of SPL, such as El-Sharkawy et al. [S43]

who developed a tool and three custom-made DSLs to support the creation and

management of software product line projects, and Pessoa et al. [S30] proposed an

approach to developing reliable and maintainable DSPLs which uses a DSL to

describe reliability goals and adaptability at runtime.

• DSPL. Dynamic software product lines (DSPL) have emerged as a promising

strategy to develop SPL that incorporate reusable and dynamically reconfigurable

artifacts. The central purpose of DSPL is to handle adaptability at runtime through

variability management, as well as to maximize the reuse of components [S63].

• CBSE. Component-based software engineering (CBSE) focuses on the

development and reuse of self-contained software assets in order to achieve better

productivity and quality as software systems are composed by previously developed

components used (and tested) in other contexts [S28]. CBSE has some similarities

with SPL, some SPL developers incorporate CBSE processes and activities inside

the SPLE.

State of the art 49

• COTS. A commercial off-the-shelf (COTS) product or component is one that is used

"as-is". COTS components are designed to be easily installed and to interoperate

with existing system components. Lago et al. [S83] extended a tool to support

traceability in product families which allows accommodating both newly developed

and COTS components at code level.

SRQ10: What trends have these topics followed over the last years?

For the question resolution about trends, we analyzed the papers presented between 2015

and 2017. We found five main areas in which authors were developing their studies.

• Dynamic software product lines. Software availability has become more and

more recognized as a quality issue since business transactions and many customer

operations have become computerized. DSPL has become a trending topic to

support dynamic product reconfiguration and adaptability at runtime [S30,S45,S63],

which improve software availability.

• SMS and SLR studies. During the last decade, many have authors have developed

several proposals in different SPL areas. Recently, some authors have developed

multiple SMS and SLR studies trying to provide an overview of these proposals in

different SPL areas [S54,S55,S71,S77].

• Web and mobile systems. Due to the internet boom, some authors have proposed

some studies to apply SPL techniques to web and mobile systems [S9,S73,S80].

This also means that SPL proposals have to evolve to support many mobile and

web software languages and frameworks.

• MDD. The use of MDD to support some processes inside the SPLE continue being

a trending topic [S49, S75]. Research in MDD will allow to automatize the SPLE

processes and reduce the manual intervention.

• PLA. The evolution of software architectures requires research in the PLA area

[S20, S84]. For example, the use of PLA in microservices is a relevant research

area.

1.7 Threats to validity

Threats to the validity of the study can be analyzed from the point of view of construct

validity, reliability, and internal validity (Wohlin et al., 2000). First, construct validity reflects

the extent to which the phenomenon under study really represents what is being

50 A Generic Method for Assembling Software Product Line Components

investigated, according to the research questions. The term software product line is well

established and hence stable enough to be used as part of the search string. However, for

SPL implementation, we consider that this is an ambiguous term and several authors use

different names. That is the reason why we divided the SPL implementation term in eight

resulting search string, trying to cover as many representative variants as possible, and to

reduce the threat of having used the appropriate terms or not (see Table 1-3). Another

aspect of the construct validity is the assurance that we find all the papers on the selected

topic. We have searched broadly in general publication databases that index the best

reputed journals and conference proceedings. The list of different publication media

indicates that the width of the search is enough (see Table 1-4). Second, reliability focuses

on whether the data are collected, and the analysis is conducted in a way that it can be

repeated by other researchers with the same results. We defined the search terms and

applied procedures, which may be replicated by others. The non-determinism of some of

the databases (Google scholar) is compensated by using more reliable databases

(ScienceDirect, Springer, ACM, and IEEE explore). The inclusion/exclusion criteria are

related to whether the topic of the field is present in the paper or not. Finally, in order to

address the internal validity concerns, a review protocol was created beforehand and

evaluated by two researchers, which took on roles of quality assurance as well. The internal

validity was also enhanced by following the systematic mapping guidelines proposed by

Petersen et al. (2008).

1.8 Conclusions

This chapter presented the results of a systematic mapping study on SPL implementation.

Including an overview of the processes, methods, and tools used to carry out SPL

implementation; and details on the role of the SPL components in the entire process. In

total, 88 studies were included in this mapping study from 2000 to March 2017. The SMS

included the definition of 10 research questions which were defined and answered. These

questions were divided into three categories publication, SPL implementation, and topics

and trends. A summary of each category is presented below:

• Publication. SPL implementation remains as an interesting field in which many

authors from many different countries have been proposing many contributions

during the last decade. The most preferred journal to publish this type of articles is

Information and Software Technology, and the most preferred conference is the

State of the art 51

International Software Product Line Conference (SPLC). Brazil leads as the country

which has more quantity of publications in this field and has the majority of the top

contributions.

• SPL implementation. There are several approaches to implement SPL, the most

discussed are AOP, SOA, annotative approaches, FOP, and DOP. There are

different software tools that support specific approaches or some processes of the

SPLE. The most mentioned include AspectJ, pure::variants, AHEAD, KOALA, and

FeatureIDE. About variability models and software languages, feature model

appears as the most preferred variability model, and Java and XML are the most

used software languages. Finally, there are different kinds of evaluations in which

the most discussed are running examples, case studies and comparisons.

• Topics and trends. Some of the general topics in the SPL implementation domain

include SPLE, domain engineering, application engineering, product derivation,

variability modeling, compositional and annotative approaches, MDD, PLA, DSL,

DSPL, CBSE, and COTS. Therefore, current trends include DSPL, SMS and SLR

studies, web and mobile systems, MDD, and PLA.

2. Running example

The use of running examples is very useful in software engineering. They have been used

to provide a practical way to illustrate the concepts of a methodology, process, and

technique, among others (Wileden & Kaplan 1999; Mens, 2004; Epifani et al., 2009). We

also found that many SPL studies used running examples as a way to describe and show

their concepts (see Figure 1-15). In this thesis, we present FragOP which consists of

several concepts, processes, activities, and tooling support, that should be understood and

used to design and implement an SPL. Based on that fact, we defined an SPL running

example that will be explained as this chapter develops and will be used to illustrate the

FragOP elements and provide a realistic scenario of how to implement an SPL with the use

of FragOP. The running example is consistently referred to throughout Chapters 4 and 5.

We called the running example ClothingStores. ClothingStores is a software product line,

which consists of the development of an e-commerce store system family to manage and

sell clothes. The main idea is to provide a set of capabilities, such as product management,

user management, shop system, cart system, web management, sharing system, login

system, database management, offline payment, and comment system, among others. The

implementation of these features will allow developing several customized clothing store

products.

The ClothingStores SPL was designed as a real-world example, covering most of the

problems SPL developers face when implementing an SPL. These problems include:

• Crosscutting concerns. ClothingStores will contain a Login component, which in

case of being part of a final product, must be integrated transversally over multiple

other product files.

• Fine-grained extensions. ClothingStores will present multiple fine-grained

extensions that must be applied for most of the derived products. For example, to

54 A Generic Method for Assembling Software Product Line Components

modify the header menu, to modify specific parts of the product views, to modify

product class methods, SQL files, among others.

• Coarse-grained extensions. There are many cases in which a ClothingStores

product will require coarse-grained extensions such as replacing a validation

method for the admin classes and including DAO methods, among others.

• Product customization. Database config vars, product name, and some default

texts inside the product views must be customized.

• Managing multiple language files. The ClothingStores SPL will be designed as a

real web application which includes domain files types, such as SQL, images (.jpg

and .png), JavaScript, HTML, JSP, Java, and CSS.

In the next two subsections we describe the ClothingStores requirements, and then go on

to describe the ClothingStores software architecture, including its project folder structure.

2.1 Requirements

The SPL requirements define the possible capabilities of the derived software products. In

an SPLE, the requirements shared by all members of the product line (mandatory) and

requirements which are specific for one or several special products (optional) must be

defined.

The SPL requirements are usually represented with visual languages, such as Feature

Models (FMs; Kang et al., 1990). In an FM, a feature can be defined as a quality or a

characteristic of a (software) system (Apel et al., 2013). Features have a Boolean nature

even though it is well known that quality attributes, as opposed to the functional

requirements, are non-Boolean. There are some other limitations of the feature modeling

language that can be consulted in Mazo (2014). For the ClothingStores SPL example, we

defined a total of 25 features which are described in Table 2-1 and graphically represented

in Figure 2-1. Mandatory features contain an asterisk (*) at the end of the “Feature

Identifier”.

Running example 55

Figure 2-1: ClothingStores feature model

Table 2-1: ClothingStores list of features

ID Feature Identifier Description Parent

F01 ClothingStores* The root or name of the PL

F02 Basic views*
Refers to the basic views that any ClothingStores product
must contain (e.g., headers, footers, home section, and
CSS styles)

F01

F03 Contact us
A website section that contains the store contact
information (e.g., phone number, address, and email)

F01

F04 Shipping
A website section that contains the store shipping
information

F01

F05
Database
management*

Manages the communication with the database (in this
case MySQL)

F01

F06 Demo data
Provides sample SQL data (e.g., products, users, and
comments)

F01

F07 Product* Groups the product functionalities F01

F08 Product model*
Provides a service to store product information, attributes,
and its operations

F07

F09 List of products* Represents a display service of all products in the store F07

F10 Comments Provides a mechanism to comment on products F07

F11 Sharing system
Provides a mechanism to share products on Facebook
and Twitter

F07

F12 Rating Provides a mechanism to rate products F07

F13 User Groups the user functionalities F01

F14 User model*
Provides a service to store user information, attributes,
and its operations

F13

F15 Account
Represents a display service of the user information (e.g.,
user name, user type, user identifier)

F13

56 A Generic Method for Assembling Software Product Line Components

F16 Login
Provides a mechanism to connect and disconnect from the
application

F13

F17 Shop Groups the shop functionalities F01

F18 Cart*
Provides a mechanism to add products to the user cart,
and display and remove the products added to the cart

F17

F19 Online payment Allows payment through PayPal F17

F20 Offline payment
Allows offline payment by providing bank account
information

F17

F21 Web management Groups the web management functionalities F01

F22 Basic views*
Refers to the basic views that the web management
module contains (e.g., header and home section)

F21

F23
Product
management

Allows products to be managed, such as create products,
edit products, list products, and delete products.

F21

F24 User management
Allows users to be managed, such as create users, edit
users, list users, and delete users.

F21

F25
Comment
management

Allows comments to be managed, such as create
comments, edit comments, list comments, and delete
comments.

F21

In addition to the concept of feature, there are some concepts that organize these features

into a feature model as presented and exemplified in the following paragraphs:

• Mandatory: Given two features F1 and F2, F1 father of F2, a mandatory

relationship between F1 and F2 means that if the F1 is selected, then F2 must be

selected too and vice versa. For instance, in Figure 2-1, features Shop and Cart

are related by a mandatory relationship.

• Optional: Given two features F1 and F2, F1 father of F2, an optional relationship

between F1 and F2 means that if F1 is selected then F2 can be selected or not.

However, if F2 is selected, then F1 must also be selected. For instance, in Figure

2-1, features Product and Rating are related by a mandatory relationship.

• Requires: Given two features F1 and F2, F1 requires F2 means that if F1 is

selected in the product, then F2 has to be selected too. Additionally, it means that

F2 can be selected even when F1 is not. For instance, Web management requires

Login (cf. Figure 2-1).

• Group cardinality: A group cardinality is an interval denoted <n..m>, with n as

lower bound and m as upper bound limiting the number of child features that can be

part of a product when its parent feature is selected. If one of the child features is

selected, then the father feature must be selected too. For instance in Figure 2-1,

Online payment and Offline payment are related in a <1..2> group

cardinality.

Running example 57

• Exclusion: Given two features F1 and F2, F1 excludes F2 means that if F1 is

selected then F2 cannot be selected in the same product. This relationship is bi-

directional: if F2 is selected, then F1 cannot be selected in the same product.

• Feature cardinality: Is represented as a sequence of intervals [Min..Max], with

Min as lower bound and Max as upper bound limiting the number of instances of a

particular feature that can be part of a product. Each instance is called a clone.

The previous requirements allow different kinds of software products to be defined, from

very basic clothing stores products that contain some of the previous requirements, to very

complete ones that contain almost all the previous requirements.

2.2 Software architecture

The previous SPL requirements provide relevant information that is useful for defining the

SPL software architecture. The software architecture provides a general framework to

develop different products from an SPL, this also means, the domain components’ source

code must be consistent with the software architecture (Zheng & Cu, 2016). The software

architecture includes an architectural pattern, high-level decisions and an effective way to

manage the product variability. Finally, the definition of the SPL software architecture

provides relevant information for modeling and developing the domain components.

Keeping in mind the multiple challenges that the development of an SPL involves, which

includes the use of several software languages, we decided to define a software

architecture that used different software languages that communicated between each

other. For this example, we decided:

• To implement the ClothingStores SPL by following a client-server architecture with

three layers: model-view-controller (MVC).

• To develop the assets with the use of software languages, such as Java, Cascading

Style Sheets (CSS), Hypertext Markup Language (HTML), and JavaServer Pages

(JSP), among others.

• To select MySQL1 as the database engine to store the application information.

1 https://www.mysql.com/

https://www.mysql.com/

58 A Generic Method for Assembling Software Product Line Components

Figure 2-2 shows the SPL reference software architecture and the relationship between the

different elements. The architecture is divided into (i) clients who are the users that request

information from the application. They access the application through the HTTP protocol

with the help of browsers, such as Firefox or Google Chrome; (ii) server which stores the

application information and responses to the client’s requests. This reference software

architecture will be used later as a base to design and construct the domain components.

Figure 2-2: ClothingStores reference software architecture

The server is divided into three layers:

• View: contains the graphical representation of the application. Views are developed

in JavaServer Pages (JSP). A JSP page is a text document that contains two types

of text: static data, which can be expressed in any text-based format (such as

HTML), and JSP elements, which construct dynamic content. Views also contain

CSS, JS, images, and taglibs files (which are a set of useful JSP custom tags).

• Controller: is designed as an HttpServlet. Controllers allow the client to request

information to be collected and communication with the other layers. Commonly, at

the end of the controller code, the request is forwarded to a JSP, and then, a

response is sent to the client in the form of a .html, .css, .jpg or another client-side

format file.

• Model: contains the application information. Java models contain application

classes such as user, product, and comments. Java data access objects (DAO)

provide a mechanism to communicate with the database (MySQL), in this case, the

communication is made through the Java Database Connectivity (JDBC) interface.

Running example 59

Additional to the SPL software architecture, we also defined the project reference folder

structure. This is the folder structure that any new SPL software product will follow. This

structure is based on the folder structure provided by the Eclipse Enterprise Edition1 when

a new “Web Project” is created (see Figure 2-3). This structure shows where to store the

controllers, models, and views.

Figure 2-3: ClothingStores project reference folder structure

2.3 Summary

This chapter introduced the ClothingStores running example. ClothingStores is defined as

an SPL of an e-commerce store system family to manage and sell clothes. First, the

ClothingStores requirements were defined, from very simple requirements like a contact us

section to more complex like a cart system. Then, we defined ClothingStores reference

software architecture as a client-server system. It included a separation of three layers

(model-view-controller) and a MySQL database. We discussed the relationship between

the different architectural elements, and we presented the basic project folder structure (the

structure that contains any new software product by this SPL).

This running example was designed as a real-world example, covering most of the

problems SPL developers face when implementing an SPL; Including crosscutting

concerns, fine-grained extensions, coarse-grained extensions, product customization, and

1 https://www.eclipse.org/downloads/packages/eclipse-ide-java-ee-developers/photonr

https://www.eclipse.org/downloads/packages/eclipse-ide-java-ee-developers/photonr

60 A Generic Method for Assembling Software Product Line Components

managing multiple language files. Finally, we will use this running example in the next

chapters, to demonstrate the capabilities of the new SPL implementation approach in a

practical way.

3. Overview of the proposal

In the Introduction and in Chapter 1 we found several issues that current SPL

implementation approaches present. Because of these issues, we decided to propose a

new approach that combines some of the advantages of existing work. This new approach

allows the component assembling to be automated, supports customization activity and the

final product derivation. We named this new approach Fragment-oriented programming

(FragOP). In this chapter, we present an overview of this approach, including (i) a

metamodel that describes the approach at an abstract level, (ii) its process with its main

activities, and (iii) a tool that supports it.

3.1 FragOP metamodel

FragOP is a framework used to design, implement and reuse domain components in the

context of an SPL. This framework is a mix of compositional and annotative approaches,

which is based on the definition of six fundamental elements: (i) domain components, (ii)

domain files, (iii) fragmentation points, (iv) fragments, (v) customization points, and (vi)

customization files. The fragments act as composable units (compositional approach) and

the fragmentation points act as annotations (annotative approach).

All the fundamental elements play an important role in the implementation of an SPL based

on FragOP. For instance, implementing an SPL with OOP is a very different task than

implementing an SPL with FOP or SOA because each approach has its own rules,

structures, paradigm, and elements that support it. The role of each FragOP element, their

relationships, their make-up, and the information they store can be seen in the FragOP

metamodel (see Figure 3-1). Here, we present an overview of the FragOP metamodel

elements:

• SPL represents the software product line and contains an ID that represents the

name of the corresponding SPL.

62 A Generic Method for Assembling Software Product Line Components

• Domain requirements represent SPL domain requirements.

• Domain components represent SPL reusable domain components and contain an

ID that represents a folder in which the component is stored.

• File is an abstract class used for inheritance purposes, contains an ID and the file

code.

• A domain file is a basic element which most software components are made up of;

for instance, HTML, CSS, JavaScript, Java, and JSP files.

• A fragment is a special type of file which alters the application code.

• A fragmentation point is an annotation (a very simple mark) that specifies a “point”

in which a domain file can be altered.

• A customization file is a file which specifies the domain files (for the current domain

component) that should be customized.

• Customization points are annotations (very simple marks) that specify the “points”

in which a domain file should be customized.

• Product represents a folder in which a new SPL product is derived.

• Application files are copies of domain files which are generated when a new

product is derived. These files can be also modified by the fragments.

Figure 3-1: FragOP metamodel (UML class diagram)

Overview of the proposal 63

In the metamodel depicted in Figure 3-1, FragOP elements are modeled by meta-classes,

and relationships between these elements are modeled by meta-associations. We

formalized the meta-classes and meta-associations, with the definition of a certain number

of predicates, formulas and functions; this formalization was carried out in first-order logic

(FOL) according to Bradley & Manna (2007). We also developed a SWI-Prolog file with the

definition of the meta-model elements, to be able to test it and reason over it. The

formalization document and the SWI-Prolog file can be found in an online repository

(Correa, 2018). Finally, each FragOP element is described in detail in Chapters 4 and 5.

3.2 FragOP process

The FragOP metamodel presents the main elements that must be used and understood in

an SPL that implements a FragOP approach. However, it does not describe the process for

the implementation of the entire SPL. That is the FragOP process objective. There are

eight main activities that constitute this process (cf. Figure 3-2): (i) modeling PL

requirements, (ii) modeling domain components, (iii) implementing domain components,

(iv) binding domain requirements and domain components, (v) configuring products, (vi)

deriving products, (vii) customizing products, and (vii) verifying products. These eight

activities could also be grouped into two main processes: domain engineering, and

application engineering.

Figure 3-2: FragOP process (UML activity diagram)

Below, we introduce the FragOP activities related to the domain engineering process, and

the FragOP activities related to the application engineering process.

64 A Generic Method for Assembling Software Product Line Components

3.2.1 Domain engineering

In SPLE, the domain engineering process defines the commonalities and the variability of

the SPL, culminating with the development of the domain artifacts (Metzger & Pohl, 2014).

FragOP defines four activities related to this process which are summarized as follows: (i)

modeling PL requirements, (ii) modeling domain components, (iii) implementing domain

components, and (iv) binding domain requirements and domain components.

• Modeling PL requirements is the activity in which all the PL requirement are

elicited. Elicitation implies the definition of mandatory and optional requirements,

and the relationships or dependencies between the said requirements. Variability

models (such as feature models) are commonly used to represent the PL

requirements (Soltani et al., 2012).

• Modeling domain components. Commonly, PL requirements are realized through

the development of software components or pieces of code. In this activity, the PL

domain components, their domain files (including fragments and customization files)

and the relationship between these elements, are defined using a component

model.

• Implementing domain components is the activity in which the components and

files are developed based on the component model. The main idea is to develop

reusable domain components that could be used for different PL software products.

These components and files should be designed to be as generic as possible with

respect to the corresponding domain (Correa & Mazo, 2018). This activity implies

(i) developing the domain components with their domain files’ code, (ii) including the

fragmentation points, (iii) codifying the fragments, (iv) including the customization

points, and (v) codifying the customization files. Here, a PL developer could use a

preferred IDE that supports the codification process. The result of this activity is the

development of a domain component pool that includes the reusable assets of the

PL.

• Binding domain requirements and domain components is the activity in which

a binding model between the component model and the variability model is created.

The binding is an activity that links components and requirements; it specifies which

domain requirements are realized by which domain components. FragOP allows a

domain component to be linked with a domain requirement (one-to-one

Overview of the proposal 65

relationship). Later, this information is used in the configuration and derivation

activities.

3.2.2 Application engineering

In SPLE, the application engineering process derives the applications of the SPL from the

domain artifacts and based on customer needs (Metzger & Pohl, 2014). FragOP defines

four activities related to this process which are summarized below: (i) configuring products,

(ii) deriving products, (iii) customizing products, and (vi) verifying products.

• Configuring products consists of selecting the specific features that a specific

product will contain based on the stakeholder requirements (Soltani et al., 2012).

The result is a configured variability model.

• Deriving products consists of generating specific software products based on the

configured variability model. The selected features and the variability model are

taken as an input. Then, the binding is resolved to show what components should

be assembled based on the selected features. Then, the components are

assembled in a product folder (the output). In this activity, the fragments’ codes are

injected over the product’s file codes, which allows the product derivation activity to

be automated.

• Customizing products. Even when PL software products are derived based on the

customer’s needs, it is very common for these products to require customization

(Montalvillo et al., 2017), for example, to parameterize configuration files or

variables, to modify dummy texts, and to include specific customer requirements,

among others. FragOP takes advantage of the customization files and

customization points and facilitates the customization activity. It shows which

product’s files should be customized and at what specific points. This activity is

automated to permit the easy customization of the software products.

• Verifying products. The last activity in the application engineering process is

product syntax verification. Due to the fact that FragOP allows component file codes

to be injected and modified (through the use of fragments), it becomes relevant to

verify the resulting products. FragOP suggests including the use of lexers and

parsers to verify the syntax of each resulting file code. With the use of VariaMos this

activity is automated which improves the software product quality.

66 A Generic Method for Assembling Software Product Line Components

The entire FragOP process is described in detail in Chapter 5.

3.3 FragOP implementation

FragOp was implemented as part of the VariaMos tool. VariaMos1 is a modeling tool that

incorporates a language to represent and simulate families of systems and (self) adaptive

systems (Mazo et al., 2015). VariaMos was initially developed at the Computer Science

Research Center (CRI) of Université Paris 1 Panthéon-Sorbonne in Paris, France.

Subsequently, different research groups in Colombia and France have been improving this

tool. During recent years, this tool has been used in several SPL projects and approaches

(Sawyer et al., 2012; Mazo et al., 2015; Correa et al., 2018, Correa et al., 2019).

Currently, VariaMos offers some capabilities such as product line requirements modeling

and product simulation which are useful for designing, reasoning, and implementing SPLs.

We took advantage of these capabilities and we extended VariaMos with new capabilities

to support the FragOP process: (i) modeling domain components, (ii) binding (or weaving)

the product line requirements model and the domain component model, (iii) configuring new

products from the domain models, (iv) deriving the configured products, (v) customizing the

derived products, and (vi) verifying the domain models and the derived products. Only one

FragOP activity (“implementing domain components”) is not supported by VariaMos and

must be carried out with external software. In this case, we recommend using an integrated

development environment (IDE), such as Sublime2, IntelliJ3, NetBeans4, or Eclipse5.

Instructions about how to use VariaMos and the IDEs to carry out each of the previous

activities are provided in Chapter 5.

3.4 Summary

This chapter introduced an overview of the thesis proposal. It presented FragOP as a

framework used to design, implement and reuse domain components in the context of an

1 https://variamos.com/home/
2 https://www.sublimetext.com/
3 https://www.jetbrains.com/idea/
4 https://netbeans.org/projects/www/
5 https://www.eclipse.org/

https://variamos.com/home/
https://www.sublimetext.com/
https://www.jetbrains.com/idea/
https://netbeans.org/projects/www/
https://www.eclipse.org/

Overview of the proposal 67

SPL. FragOP is defined as a mix of compositional and annotative approaches and is based

on the definition of six fundamental elements: (i) domain components (i) domain files, (iii)

fragmentation points, (iv) fragments, (v) customization points, and (vi) customization files.

This chapter also presents the FragOP metamodel which describes each FragOP element,

their relationships, how are made up, and the information they store. Therefore, it presents

the FragOP process which is divided into eight main activities.

Finally, this chapter introduces VariaMos, which is a software modeling tool used to

represent and analyze variability-based systems. VariaMos already contains relevant

functionalities that support most of the FragOP process activities, in fact, VariaMos has

been enhanced to support seven of the eight FragOP process activities.

The next two chapters describe in detail each FragOP metamodel element and each

FragOP process activity.

4. FragOP fundamentals

In the previous chapter, we mentioned that there are six FragOP fundamental elements. In

this chapter, we will describe these elements and use the running example to exemplify

and demonstrate the use of these elements. In this way, we will explain how these elements

support the two FragOP main capabilities (assembling and customization).

Each SPL implementation approach has its advantages and disadvantages, and all of them

have different capabilities. For example, AOP is a good candidate to implement crosscutting

concerns, annotative is a good candidate to support the implementation and assembling of

multiple software languages and both fine-grained and coarse-grained extensions, and

SOA supports web services and BPM processes. In this case, FragOP’s main capabilities

are both supporting generic assembling and customization (for different kinds of

components developed in several software languages).

Below, we discuss two FragOP fundamental elements (domain components and domain

files). These FragOP fundamental elements are transversal elements that are used in the

two FragOP main capabilities. We will also discuss the FragOP assembling and

customization capabilities with their own fundamental elements. These fundamental

elements have been presented and described in detail in two articles (Correa et al., 2018;

Correa et al., 2019).

Finally, the definition of these FragOP fundamental elements will allows us to answer the

RQ1 because these elements specify the way in which the SPL components should be

implemented.

70 A Generic Method for Assembling Software Product Line Components

4.1 Domain component

Related work has documented several approaches for the implementation of domain

components (Thüm et al., 2014), such as:

• Feature-oriented programming with AHEAD (Java 1.4), FeatureC++ (C++),

and FeatureHouse (C, Java 1.5, JML, Haskell, XML, JavaCC).

• Aspect-oriented programming with AspectJ (Java).

• Delta-oriented modeling and programming with DeltaEcore and DeltaJ (Java).

• Annotation-based implementation with CIDE (multi-language),

preprocessor Antenna, C preprocessor CPP by Colligens, and

preprocessor Munge.

Each of these specifies its own manner of implementing the domain components. For

example:

• In OOP, components are implemented with classes.

• In AOP, components are implemented with aspects.

• In DOP, components are implemented with core modules and delta modules. The

core module comprises a set of classes that implements a complete product. Delta

modules specify changes to be applied to the core module.

• In FOP, components are implemented with feature modules, which can be seen as

increments of product functionality.

• In SOA, components are implemented with web services, which are independent

functionalities that can be reused in multiple software systems.

• In annotative approaches, such as CIDE, developers simply annotate code

fragments inside the original code and use tool support to view and navigate through

the annotations.

In FragOP, a domain component is a grouping of domain files, fragments and

customization files DC = {DF, FR, CF}. In this approach, each domain component is

stored in an independent folder that contains its respective domain files, fragments and

customization files. Figure 4-1 shows how the FragOP metamodel relates domain

components with their files. It also shows that a domain component contains an ID. This ID

represents the domain component folder name. Additionally, a domain component must

contain at least one domain file or fragment.

FragOP fundamentals 71

Figure 4-1: FragOP metamodel highlighting the domain component, domain file,

fragment, and customization file relationship

The property of each domain component stored in its own folder has been used in

approaches such as Feature IDE with AHEAD (FOP) or with FeatureHouse (FOP).

However, other approaches such as DeltaJ (DOP), AspectJ (AOP) and CIDE (annotative

approach) do not store a domain component in a separate folder, rather they create a base

project in which everything could be stored at the same level. Storing a domain component

in its own dedicated folder supports the SPL maintainability and evolution because an SPL

developer can easily find the specific files that are related to a specific domain component.

It is also important to highlight that FragOP and most of the approaches that store domain

components in their own folder do not allow a hierarchy to be specified among the domain

components. This means that the storing of a domain component inside another domain

component is not allowed. We think that restricting the hierarchy of components improves

the reusability because it keeps the domain components as independent as possible.

72 A Generic Method for Assembling Software Product Line Components

4.2 Domain file

In FragOP, domain components are made up of domain files that represent HTML, CSS,

JavaScript, Java, and JSP files, among others. Any file that could be reused for the

development of multiple SPL products can be considered a domain file. This means that in

the FragOP approach, a domain file could be as complex as a software class that allows

communication with a database, or as simple as a text file that contains configuration

variables. The FragOP metamodel (see Figure 4-1) indicates that a domain file contains (i)

an ID, (ii) a filename, (iii) the file code, and (iv) a destination which represents the final

location in which the domain file must be assembled. This final location must be consistent

with the SPL basic project structure (see Figure 2-3).

Supporting different domain files developed in several software languages is a key

characteristic of FragOP. As we mentioned in the Introduction: (i) according to Mayer and

Bauer (2015) who analyzed 1150 open source projects, a mean number of 5 different

languages are used in each project; (ii) compositional approaches are usually attached to

a particular host language (Kästner & Apel, 2008); and (iii) annotative approaches usually

use #ifdef and #endif statements to surround the component code, although not all

software languages provide these statements, and many other annotative approaches

provide limited support to few software languages.

For instance, if an SPL adopts a DOP (DeltaJ) approach, the Java assets can be easily

managed with the DeltaJ tool. However, other assets such as images, HTML files, CSS

files, and XML files must be manually managed by the SPL developer.

Below, we present some examples of real domain files. Listing 4-1 shows the source code

of three ClothingStores domain files: (i) BasicViewsGeneral-Header (header.jsp), (ii)

UserManagement-ManageUsers (ManageUsers.java), and (iii)

DatabaseManagement-Config (Config.java).

• ID: BasicViewsGeneral-Header – Filename: header.jsp – Destination:

WebContent/views/header.jsp is a file which is written in JSP and HTML and

represents the header of the application. This code contains a menu (the highlighted

code), which corresponds to an unordered list with only one element (i.e., Home)

FragOP fundamentals 73

that is linked to the home section of the application. This domain file belongs to the

BasicViewsGeneral domain component.

• ID: UserManagement-ManageUsers – Filename: ManageUsers.java –

Destination: src/controllers/admin/ManageUsers.java is a file which is written in

Java and represents a controller for managing the user information. It contains three

functions: (i) doGet which is used to display the users and to remove users, (ii)

doPost which is used to create new users, and (iii) validation (the highlighted

code) which was created with the intention of executing some validations before the

doGet and doPost execution. This domain file belongs to the UserManagement

domain component.

• ID: DatabaseManagement-Config – Filename: Config.java – Destination:

src/db/Config.java is a file which is written in Java and represents a database

configuration file. It defines four variables (the highlighted code) which allow

communication with the database engine. As a domain file, these variables present

sample values, however, the value of each variable must be changed (customized)

for the final product. This domain file belongs to the DatabaseManagement

domain component.

Listing 4-1: BasicViewsGeneral-Header (header.jsp), UserManagement-ManageUsers

(ManageUsers.java), and DatabaseManagement-Config (Config.java) component file

source codes

BasicViewsGeneral-Header (header.jsp)
<%@ page contentType="text/html" pageEncoding="UTF-8"%>

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>

<%@ taglib uri="http://java.sun.com/jsp/jstl/functions" prefix = "fn" %>

<html>

 <head>

 <title>${title}</title>

 <link rel="stylesheet" type="text/css" href="<c:url value =

"/assets/css/bootstrap.min.css"/>" />

 <link rel="stylesheet" type="text/css" href="<c:url value =

"/assets/css/style.css"/>" />

 </head>

 <body>

 <nav class="navbar navbar-expand-md navbar-dark fixed-top bg-dark">

 <button class="navbar-toggler" type="button" data-toggle="collapse"

data-target="#navbarsExampleDefault" aria-controls="navbarsExampleDefault"

aria-expanded="false" aria-label="Toggle navigation">

 </button>

 <div class="collapse navbar-collapse" id="navbarsExampleDefault">

74 A Generic Method for Assembling Software Product Line Components

 <ul class="navbar-nav mr-auto">

 <li class="nav-item active">

 <a class="nav-link" href="<c:url value='Home'/>">Home <span

class="sr-only">(current)

 </div>

 </nav>

 <div>

UserManagement-ManageUsers (ManageUsers.java)
package controllers.admin;

import java.io.IOException; import javax.servlet.RequestDispatcher; import

javax.servlet.ServletException;

import javax.servlet.annotation.WebServlet; import

javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest; import

javax.servlet.http.HttpServletResponse;

import javax.servlet.http.HttpSession; import models.User; import

models.UserDAO;

@WebServlet(urlPatterns = {"/Admin/Users"})

public class ManageUsers extends HttpServlet {

 protected boolean validation(HttpServletRequest request,

HttpServletResponse response) throws ServletException, IOException{

 return true;

 }

 @Override

 protected void doGet(HttpServletRequest request, HttpServletResponse

response)

 throws ServletException, IOException {

 if(this.validation(request, response)){

 String remove = request.getParameter("remove");

 if(remove != null){

 UserDAO.remove(Integer.parseInt(remove));

 }

 request.setAttribute("users",UserDAO.getUsers());

 request.setAttribute("title", "Admin Panel - Users");

 RequestDispatcher view =

request.getRequestDispatcher("../views/admin/users.jsp");

 view.forward(request, response);

 }

 }

 protected void doPost(HttpServletRequest request, HttpServletResponse

 response) throws ServletException, IOException {

 if(this.validation(request, response)){

 String user = request.getParameter("user");

 String pass = request.getParameter("pass");

 String name = request.getParameter("name");

 String type = request.getParameter("type");

 User u = new User(name,type,user,pass); UserDAO.insert(u);

 response.sendRedirect("Users");

 }

 }

}

DatabaseManagement-Config (Config.java)

FragOP fundamentals 75

package db;

public class Config {

 public static final String db_driver = "com.mysql.jdbc.Driver";

 public static final String db_url = "URL";

 public static final String db_user = "USER";

 public static final String db_pass = "PASS";

}

4.3 FragOP assembling capability

To implement software product lines efficiently, the domain component code has to be

variable. Variability is defined as the ability to derive different products from a common set

of artifacts (Apel et al., 2013). This means the approach, tool, paradigm or methodology

used to implement the SPL domain components should support the code variability.

For a better understanding of the variability concept, we present the following scenario.

Suppose that an SPL contains two domain components, login and user management. If a

customer wants an application that includes the previous two components, then, it is very

common that these components must be assembled as part of the product derivation

activity (to include some functionalities of the login component inside the user management

component). The variability scenario can be also applied to the files presented in Listing 4-

1. For example, other domain components could require the modification of the

BasicViewsGeneral-Header file, specifically to add new elements in the header menu.

To conclude, if the domain component code supports variability, the assembly activity could

be automated. However, if the domain component code does not support variability, the

assembly activity must be carried out manually, which affects the SPL efficiency.

The FragOP approach supports the domain component assembly through the use of three

FragOP fundamental elements, domain files, fragmentation points and fragments (Correa

et al., 2018; see Figure 4-2). Figure 4-3 shows an example of the connection between these

FragOP fundamental elements involved in a realistic assembly scenario. It also shows how

FragOP supports variability at the code level. In this example, a domain file (header.jsp)

supports the code variability through the inclusion of a fragmentation point (menu-

modificator). Additionally, a fragment (alterHeader.frag) specifies a code alteration in the

previous fragmentation point of the previous domain file. The fragmentation point, fragment,

and the example are fully explained in the next two subsections.

76 A Generic Method for Assembling Software Product Line Components

Figure 4-2: FragOP metamodel highlighting the domain file, fragment, and

fragmentation point relationship

Figure 4-3: An example of the connection between a domain file, a fragment, and a

fragmentation point

FragOP fundamentals 77

4.3.1 Fragmentation point

In FragOP, we use annotations to support code variability. In this approach, we call them

fragmentation points. A fragmentation point is an annotation (a very simple mark) that

specifies a “point” at which a domain file can be altered. This is a key FragOP element

because it allows developers to define very specific code locations in which a domain file

could be extended or refined (could vary).

Listing 4-2 shows the fragmentation point shape. FragOP suggests creating fragmentation

points by starting with a comment block LanguageCommentBlock based on the current

file language type. For example, for a file written in Java, the fragmentation point should

start with /* and should end with */. For a file written in HTML, the fragmentation point

should start with <!-- and should end with -->. This way, the source code of a file is not

altered by the addition of the fragmentation points, ensuring code consistency and code

maintainability. If a specific file code does not provide a comment block (like txt files), then,

we suggest creating a regular expression, like [FragAnnot][/FragAnnot].

Listing 4-2: Fragmentation point shape

LanguageCommentBlock<B|E>-<PointID>LanguageCommentBlock

After the LanguageCommentBlock opening section, the fragmentation point continues

with <B|E>-<PointID>. <B|E> corresponds to a fragmentation point begin section (B) or

end section (E). At the first occurrence of a fragmentation point, it should contain the letter

B. The end section is optional because it is used to delimitate where a fragmentation point

ends, which is only required to replace and hide actions that we will describe in the next

section. The fragmentation point continues with a minus (-) symbol and a PointID, which

is a custom text that is used to identify the fragmentation point. Finally, the

LanguageCommentBlock closing section should be added. Listing 4-3 shows a

fragmentation point example. Listing 4-3 shows a fragmentation point example.

Listing 4-3: Fragmentation point shape example

<!--B-menu-modificator-->

We decided to use annotations because it supports fine-grained extensions (changes at

lower levels, such as changes in a fixed position inside a class method). This is also very

78 A Generic Method for Assembling Software Product Line Components

useful for specifying changes to non-object-oriented software assets, such as HTML or

CSS. However, fragmentation points have some important differences from the common

annotations used by other approaches:

• Fragmentation points do not use if, else statements. Some annotative

approaches use these statements to specify when a code variation should be

executed or not. However, as we mentioned, not all software languages provide if,

else statements.

• Fragmentation points do not include the variant code. For example, in the

Munge approach, code variations are annotated by feature directives using IF and

END inside comments. This means that the domain files include the base code, and

also all the possible variant codes (this also applies for other approaches such as

CIDE and Antenna). This affects the domain files readability, maintainability, and

evolution because in an SPL there can be thousands of code variants. In FragOP,

the variable code is located inside a new type of file called fragment which will be

discussed in the next section.

• Fragmentation points in the form of comment blocks. In the Munge approach,

the conditional tags are contained in Java comments (so they do not interfere with

development environments such as Eclipse). In FragOP, fragmentation points are

also defined with language comments.

Finally, Listing 4-4 shows the source code of the new BasicViewsGeneral-Header

(header.jsp) and UserManagement-ManageUsers (ManageUsers.java) files. They were

refined with the inclusion of two fragmentation points.

• menu-modificator is a fragmentation point which was included inside the

header.jsp file (inside the menu navigation bar). The main idea is that other domain

components could require the modification of the header.jsp file, specifically to add

new elements to the header menu.

• validation-function is a fragmentation point which was included inside the

ManageUsers.java file (surrounding the validation function). The main idea is

that a component such as Login could require the modification of the

ManageUsers.java file. If Login is present in the derived product, the

ManageUsers.java validation function should be replaced with a new one that

includes a call to the login class or to the login elements. This way, the new

FragOP fundamentals 79

validation function is able to check that only permitted users (for instance

admins) are using the ManageUsers.java class.

Listing 4-4: Refined BasicViewsGeneral-Header (header.jsp) and UserManagement-

ManageUsers (ManageUsers.java) component files

BasicViewsGeneral-Header (header.jsp)
<%@ page contentType="text/html" pageEncoding="UTF-8"%>

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>

<%@ taglib uri="http://java.sun.com/jsp/jstl/functions" prefix = "fn" %>

<html>

 <head>

 <title>${title}</title>

 <link rel="stylesheet" type="text/css" href="<c:url value =

"/assets/css/bootstrap.min.css"/>" />

 <link rel="stylesheet" type="text/css" href="<c:url value =

"/assets/css/style.css"/>" />

 </head>

 <body>

 <nav class="navbar navbar-expand-md navbar-dark fixed-top bg-dark">

 <button class="navbar-toggler" type="button" data-toggle="collapse"

data-target="#navbarsExampleDefault" aria-controls="navbarsExampleDefault"

aria-expanded="false" aria-label="Toggle navigation">

 </button>

 <div class="collapse navbar-collapse" id="navbarsExampleDefault">

 <ul class="navbar-nav mr-auto">

 <li class="nav-item active">

 <a class="nav-link" href="<c:url value='Home'/>">Home <span

class="sr-only">(current)

 <!--B-menu-modificator-->

 </div>

 </nav>

 <div>

UserManagement-ManageUsers (ManageUsers.java)
package controllers.admin;

import java.io.IOException; import javax.servlet.RequestDispatcher; import

javax.servlet.ServletException;

import javax.servlet.annotation.WebServlet; import

javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest; import

javax.servlet.http.HttpServletResponse;

import javax.servlet.http.HttpSession; import models.User; import

models.UserDAO;

@WebServlet(urlPatterns = {"/Admin/Users"})

public class ManageUsers extends HttpServlet {

 /*B-validation-function*/

 protected boolean validation(HttpServletRequest request,

HttpServletResponse response) throws ServletException, IOException{

 return true;

 }

80 A Generic Method for Assembling Software Product Line Components

 /*E-validation-function*/

 @Override

 protected void doGet(HttpServletRequest request,

HttpServletResponse response)

 throws ServletException, IOException {

 if(this.validation(request, response)){

 String remove = request.getParameter("remove");

 if(remove != null){

 UserDAO.remove(Integer.parseInt(remove));

 }

 request.setAttribute("users",UserDAO.getUsers());

 request.setAttribute("title", "Admin Panel - Users");

 RequestDispatcher view =

request.getRequestDispatcher("../views/admin/users.jsp");

 view.forward(request, response);

 }

 }

 protected void doPost(HttpServletRequest request,

HttpServletResponse response) throws ServletException, IOException {

 if(this.validation(request, response)){

 String user = request.getParameter("user");

 String pass = request.getParameter("pass");

 String name = request.getParameter("name");

 String type = request.getParameter("type");

 User u = new User(name,type,user,pass); UserDAO.insert(u);

 response.sendRedirect("Users");

 }

 }

}

4.3.2 Fragment

Fragmentation points define specific points in which a file can be altered, but how to alter

those files? That is the objective of fragments. A fragment is a special type of file in which

the SPL developers specify code alterations to the domain files. It is worth noting that these

alterations are designed at the domain level to be used at the application level when

components are being assembled for the derivation of new products (described in Section

5.6), which guarantees the reusability of the domain components. In general, a fragment

respects the shape presented in Listing 4-5 and is explained thereafter.

Listing 4-5: Fragment shape

Fragment <ID> {

 Action: <add || replace || hide>

 Priority: <high || medium || low || priority_number>

 PointBracketsLan: <language>

FragOP fundamentals 81

 FragmentationPoints: <pointID1, pointID2, ...>

 Destinations: <fileID1, fileID2, ... || path1, path2, ...>

 SourceFile: <filename>

 SourceCode: [ALTERCODE-FRAG]<code>[/ALTERCODE-FRAG]

}

Fragment <ID>. ID serves as an identifier for the fragment. The ID is used when the

components are assembled, allowing the developers to find the fragment that has been

responsible for any alteration, which is useful for code traceability.

Action: <add || replace || hide>. Specifies the type of the alteration.

 • add allows a piece of code to be injected at specific PointIDs.

 • replace allows a piece of code to be replaced at specific PointIDs or (ii) allows a file

to be replaced on specific destination paths.

 • hide allows a piece of code to be hidden at specific fragmentation PointIDs (the

pieces of code are placed inside a comment block).

Priority: <high || medium || low || priority_number>. Specifies the fragment priority

(high, medium or low). Fragments with high priority are assembled before fragments

with medium or low priority. Therefore, it is possible to specify a priority_number (INT

number). By default, high priority takes a value of 10, medium priority takes a value of 500,

and low priority takes a value of 1000. This feature could be useful in a case where two or

more different fragments inject code at the same fragmentation point. For example, two

different fragments could inject code into the header menu (in order to include new menu

options). Depending on each fragment priority, one code will be injected first and the other

will be injected second (which allows a code integration order to be defined).

PointBracketsLan: <language> (Optional). Language specifies the comment bracket

language in which the fragmentation points are defined. For example: PHP, HTML or Java.

FragmentationPoints: <pointID1, pointID2, …> (Optional). PointIDs are unique

texts which serve to identify fragmentation points. The user is able to define multiple

fragmentation points and destinations, which means that the fragment source code or

source file will be injected in several places.

Destinations: <fileID1, fileID2, … || path1, path2, …>.

 • FileIDs represent the domain files to be altered.

 • Paths represent the locations where a file should be replaced.

82 A Generic Method for Assembling Software Product Line Components

SourceFile: <filename> (Optional). Filename represents the new file to be added.

SourceCode: <code> (Optional). Code contains the source code that will be injected.

We took advantage of different characteristics of several composable units, such as

aspects, deltas modules and feature modules to design the fragment shape. Below, we

discuss some of the main characteristics.

• Fragments as composable units. The advantage of having the code variants as

independent composable units is that domain files do not contain all the possible

code variants, as is common in most annotative approaches.

• Fragments linked to the fragmentation points. Commonly, compositional

approaches present two different types of component elements. In FOP, there are

classes and class refinements. In DOP, there are base modules and a set of delta

modules. In AOP, there are program files and aspects. One of the previous two

elements of each approach modifies the other element (for instance, delta modules

modify the base modules code). These modifications are commonly linked to an

object-oriented specific element (such as a class, class method or class attribute)

or to a tree element (some approaches such as FeatureHouse model the domain

components by tree structures). The problem is that many domain files are not

object-oriented, such as HTML files or XML files; and other domain files do not

provide tree structures, such as SQL files, or TXT files. Therefore, the compositional

approaches do not allow fine-grained extensions. In the present case, the fragment

element establishes a connection to the domain file element through a

fragmentation point, which allows fine-grained extensions (see Figure 4-3).

• Fragments work for multiple domain file languages. Compositional approaches

that rely on object-oriented elements to execute code variants are usually attached

to host languages. For example, DeltaJ (DOP) only works with Java files and

FeatureC++ (FOP) only works with C++ files. Compositional approaches that rely

on tree structures, such as FeatureHouse (FOP), only work with languages that

provide tree structures (such as Java, C, and XML). FragOP fragments do not rely

on object-oriented elements or tree structures, solely relying on fragmentation

points that can be added to many different domain file languages. This makes

fragments a good candidate to support variability over multiple domain file

languages.

FragOP fundamentals 83

• Fragments that replace entire files. Another key characteristic of this approach is

that fragments are able to replace an entire file. This could be useful for domain files

that cannot be modified with the inclusion of fragmentation points, such as images

or PDF files. For example, suppose that an SPL contains a “general views”

component that includes a “default logo”. The SPL also contains a “premium

version” component with a “premium logo”. In this case, it is recommended to create

a fragment that will replace the “default logo” with the “premium logo” when the

“premium version” component is assembled.

• Fragments specify the alteration order. Compositional approaches use

composable units to generate the application code. However, in most of these, it is

not possible to specify the order or the code line in which composable units are

included. In annotative approaches, this problem does not exist because the domain

files contain all possible code variations, this way the SPL developer can specify

the order and the code line of the code variations. Fragments allow to specify the

alteration order through the fragments’ priority; here the SPL developer can define

if a fragment code should be injected before other fragment codes with lower

priority; and with fragmentation points, the code variations can be easily located in

specific domain file code lines.

• Fragments allow a piece of code to be injected at multiple locations.

Approaches such as FeatureHouse (FOP), FeatureC++ (FOP), and DeltaJ (DOP)

only allow a specific piece of code to be injected (method and attribute, among

others) into a specific file or class. For example, if an SPL developer wants to include

the same class attribute into two different classes, he/she has to create two delta

modules to include the same attribute in the two classes. In annotative approaches,

the same code variation (new attribute) must be specified twice (once for each

class). On the other hand, AspectJ (AOP) allows an aspect (a code variation) to be

included in several places, but it is limited to object-oriented elements. In FragOP,

a single piece of code can be easily injected at multiple locations, through the

definition of multiple fragment destinations.

For a better understanding of how fragments work, consider the following case based on

the ClothingStores example. Listing 4-6 shows (i) the ListOfProducts-AlterHeader

(alterHeader.frag) code which specifies that the BasicViewsGeneral-Header file

84 A Generic Method for Assembling Software Product Line Components

(Destinations) will be altered in the menu-modificator (FragmentationPoints) with a

high priority. In this case, the fragment will add (Action) a new menu element

(SourceCode) inside the file. This is consistent with the example presented in Figure 4-3.

And (ii) the Login-AlterAdmin (alterAdmin.frag) code specifies that the

UserManagement-ManageUsers file (Destinations) will be altered in the validation-

zone (FragmentationPoints) with a high priority. In this case, the fragment will replace

(Action) the UserManagement-ManageUsers validation function with a new validation

function (SourceCode).

Listing 4-6: ListOfProducts-AlterHeader (alterHeader.frag) and Login-AlterAdmin

(alterAdmin.frag) fragment source codes.

ListOfProducts-AlterHeader (alterHeader.frag)
Fragment ListOfProducts-AlterHeader {

 Action: add

 Priority: high

 FragmentationPoints: menu-modificator

 PointBracketsLan: html

 Destinations: BasicViewsGeneral-Header

 SourceCode: [ALTERCODE-FRAG]

 <a class="nav-link" href="<c:url value='Products'/>">Products

 [/ALTERCODE-FRAG]

}
Login-AlterAdmin (alterAdmin.frag)

Fragment Login-AlterAdmin {

 Action: replace

 Priority: high

 FragmentationPoints: validation-function

 PointBracketsLan: java

 Destinations: UserManagement-ManageUsers

 SourceCode: [ALTERCODE-FRAG]protected boolean validation(HttpServletRequest

request, HttpServletResponse response) throws ServletException, IOException{

 HttpSession session = request.getSession();

 User u = (User) session.getAttribute("datauser");

 if(u == null) { response.sendRedirect("../Home"); return false; }

 else if(!u.getType().equals("admin")){

 response.sendRedirect("../Home"); return false;

 }

 return true;

 }[/ALTERCODE-FRAG]

}

It is important to highlight that the previous fragments are designed to inject their code only

when a software product is derived. This is carried out later as part of the FragOP derivation

activity, which is described in Section 5.6 (Listing 5-1).

FragOP fundamentals 85

4.4 FragOP customization capability

Product customization is a critical task of SPLE. The domain components hardly ever fully

satisfy the requirements of a specific software product. Thus, a customization process is

required in almost all PL (Cobaleda et al., 2018).

The FragOP approach supports the product customization through the use of three FragOP

fundamental elements, domain files, customization points and customization files (Correa

et al., 2019; see Figure 4-4). Figure 4-5 shows an example of the connection between these

FragOP fundamental elements involved in a realistic customization scenario. It also shows

how FragOP supports product customization. In this case, a domain file (Config.java)

supports product customization through the inclusion of a customization point (vars).

Additionally, a customization file (customization.json) specifies the customization points of

the domain files of the current domain component DatabaseManagement. The

customization point, customization file, and the example are fully explained in the following

two subsections.

Figure 4-4: FragOP metamodel highlighting the domain file, customization file, and

customization point relationship

86 A Generic Method for Assembling Software Product Line Components

Figure 4-5: An example of the connection between a domain file, a customization file,

and a customization point

4.4.1 Customization point

In FragOP, we use annotations to support product customization. In this approach, we call

them customization points. A customization point is an annotation (a very simple mark)

that specifies a “point” in which a domain file should be customized.

Customization point shape is very similar to fragmentation point shape, the main difference

is that a customization point shape should contain a begin part (BCP) and an end part (ECP).

Listing 4-7 shows the customization point shape. The code to be customized at the

application level should be placed in the middle of both BCP and ECP parts.

Listing 4-7: Customization point shape

LanguageCommentBlock<BCP>-<PointID>LanguageCommentBlock

LanguageCommentBlock<ECP>-<PointID>LanguageCommentBlock

We decided to use annotations once again because it allows developers to define very

specific customization locations, and it can be used for many kinds of software assets

(including non-object-oriented assets). The customization points have the following

characteristics:

FragOP fundamentals 87

• Customization points are different from fragmentation points. Customization

points and fragmentation points are very similar, however, we decided to distinguish

between the two elements. This is due to the fact that: (i) fragmentation points are

used to specify points in which a domain file code can vary, and they are connected

with fragments that modify the domain file code. The possible code variations are

pre-defined inside the fragments’ code (which are stored in the domain component

pool). And these variations are executed in the product derivation activity (see

Section 5.6). (ii) Customization points are used to specify points in which a domain

file code should be customized. The code customizations are not pre-defined,

because each product customization is unique, and it is customer-dependent. And

these customizations must be manually applied by the SPL developer after the

product derivation (see Section 5.7).

• Customization points guide SPL developers in the customization activity.

Most of the SPL implementation approaches do not provide a product customization

capability (such as CIDE, DeltaJ, Munge, Antenna, AspectJ, and AHEAD, among

others). Nevertheless, the literature presents different customization strategies. Kim

et al. (2005) propose three strategies: selection, plug-in, and external profile

technique. However, these strategies only work with interface classes and are not

applied in SPL scenarios. Rabiser et al. (2009) suggest a decision-oriented software

product line approach to support the end-user personalization of a system based on

their needs. However, the personalization is limited to the elements that the decision

model supports. Pleuss et al. (2012) propose the use of abstract UI models to bridge

the gap between automated, traceable product derivation and customized high-

quality user interfaces. However, it requires to create abstract UI models with all

possible scenarios, and this is only applied to user interfaces. Other strategies

include inheritance, overloading, dynamic class loading, but again not all assets are

object-oriented. Finally, in FragOP we decided to avoid the use models, decisions

and object elements to support the product customization. This is because we

wanted to support the customization of most kinds of files (generic customization),

and we know that most product customizations are unique. However, even the most

complete model will not fulfill all customer customizations. In this case, we decided

to use customization points to indicate sections inside the domain files that should

be customized. Later, the SPL developer should manually customize these

88 A Generic Method for Assembling Software Product Line Components

sections. Although the customization is manual, we provide a way to guide the

developer in the customization activity (see Section 5.7).

In order to present an example of customization points in action, the ClothingStores

DatabaseManagement-Config (Config.java) file is detailed in full. Listing 4-1 shows the

Config.java code which is a configuration file that contains four variables which allow

communication with the database engine. As a domain file, these variables present sample

values, however, for a final product the value of each variable must be changed. As a

consequence, we refined the DatabaseManagement-Config (Config.java) file with the

inclusion of a customization point (see Listing 4-8). Later, the SPL developer will be able to

customize this file in order to establish the real values for each variable (described in

Section 5.7).

Listing 4-8: Refined DatabaseManagement-Config (Config.java) file source code

DatabaseManagement-Config (Config.java)
package db;

public class Config {

 /*BCP-vars*/

 public static final String db_driver = "com.mysql.jdbc.Driver";

 public static final String db_url = "URL";

 public static final String db_user = "USER";

 public static final String db_pass = "PASS";

 /*ECP-vars*/

}

4.4.2 Customization file

A customization file is a file which specifies the domain files (for the current domain

component) that should be customized. Only one customization file is allowed per domain

component, its filename must be customization.json, and it must respect the shape

presented in Listing 4-9 and explained below.

Listing 4-9: Customization file shape

{

 "IDs": ["FileID1", "FileID2", "..."],

 "CustomizationPoints": ["PointID1", "PointID2", "..."],

 "PointBracketsLangs": ["language1", "language2", "..."]

}

FragOP fundamentals 89

IDs: <FileID1, FileID2, …>. This represents the domain files to be customized.

CustomizationPoints: <pointID1, pointID2, …> (Optional). PointIDs are unique

texts which serve to identify customization points.

PointBracketsLangs: <language1, language2, …> (Optional). This specifies the

comment bracket languages in which the customization points are defined. For example,

PHP, HTML, and Java.

The customization points and the point brackets languages are optional, this way a

customization file is able to specify entire domain files that must be customized (replaced)

or specific customization points to be customized. Customizing an entire domain file is

useful when it is not possible to include customization points. For example, when there is a

domain file such as a default logo, that must be customized with the real client company

logo.

As shown in the Listing 4-8, the DatabaseManagement component contains the

DatabaseManagement-Config (Config.java) file which was refined with a customization

point. It means that the SPL developer must create a customization file inside the

DatabaseManagement component to specify the customization points for the current

component. Listing 4-10 shows the DatabaseManagement-Custom (customization.json)

customization file source code. This code indicates that for the current component

(DatabaseManagement) one customization point (vars) that belongs to the

DatabaseManagement-Config file has been defined. The complete relationship

between the domain file, customization point, and customization file can be found in Figure

4-5.

Listing 4-10: DatabaseManagement-Custom (customization.json) file source code

DatabaseManagement-Custom (customization.json)
{

 "CustomizationPoints": "vars",

 "PointBracketsLangs": "java",

 "IDs": "DatabaseManagement-Config"

}

The component file customization will be executed and applied later in the product

customization activity which is described in Section 5.7.

90 A Generic Method for Assembling Software Product Line Components

Finally, it is important to highlight that customization files and customization points are very

useful for simple customizations, such as parametrizing variables, changing a default text,

or replacing an image file, nevertheless, complex customization like the creation of a new

component must be applied manually by the SPL developer.

4.5 Summary

This chapter presented the FragOP fundamental elements: (i) domain components (i)

domain files, (iii) fragmentation points, (iv) fragments, (v) customization points, and (vi)

customization files. The six FragOP fundamental elements are summarized below:

• Domain components are folders that store domain files, fragments and

customization files.

• Domain files represent the files that could be reused for the development of multiple

SPL products (such as HTML, Python, JavaScript, Java, and JSP files).

• Fragmentation points are annotations (simple marks) that specify “points” in which

a domain file can be altered.

• Fragments are a special type of file in which the SPL developers specify code

alterations to the domain files.

• Customization points are annotations (simple mark) that specify “points” in which a

domain file should be customized.

• A customization file specifies the domain files to be customized and the

customization points of the domain files of the current domain component.

We explained in this chapter the decisions to create each of the previous FragOP’s

fundamental elements, the functionalities from the literature that were taken into account to

improve the FragOP fundamental elements, and the main characteristics of each FragOP

fundamental element.

This chapter also presented the two FragOP main capabilities, assembling and

customization; and we used the running example to provide a practical way of

understanding both the FragOP fundamental elements and the two FragOP main

capabilities. The two FragOP main capabilities are summarized below:

• The assembling capability provides an effective and generic way to support software

variability. The use of domain files, fragmentation points, and fragments, allow

FragOP fundamentals 91

specifying variation points inside most software language files (because it only

requires the use of language comment blocks or regular expressions). And even, if

it is not possible to modify the file source code to include the variation points (i.e.,

an image or PDF file), the FragOP fragments allow replacing an entire file.

• The customization capability provides an effective and generic way to support

component customization. The use of domain files, customization points, and

customization files, allow specifing customization points inside most software

language files (because it only requires the use of language comment blocks, or

regular expressions). And even, if it is not possible to modify the file source code to

include the customization points (i.e., an image or PDF file), the FragOP

customization files allow customizing an entire file.

To conclude, the definition of these six elements allows us to answer RQ1 because these

elements specify the way in which the SPL components should be implemented. The next

chapter will describe each activity in the FragOP process and will provide a practical way

to implement an SPL with the FragOP approach.

5. FragOP process

The FragOP process provides a course of action for implementing an SPL using the

FragOP approach. This process was designed following the common SPLE structure. The

FragOP process contains eight main activities (i) modeling PL requirements, (ii) modeling

domain components, (iii) implementing domain components, (iv) binding domain

requirements and domain components, (v) configuring products, (vi) deriving products, (vii)

customizing products, and (viii) verifying products. These activities describe from very early

SPLE processes such as variability modeling to later SPLE processes such as product

derivation.

In this chapter, we present each of the previous activities in detail. For each, (i) we

summarize the theory from the SPLE literature and discuss how it should be applied using

the FragOP approach, (ii) we show how VariaMos supports it, and (iii) we carried out a

demonstration in the running example and so exemplify the use of this approach in a

realistic scenario.

5.1 Modeling product line requirements

The definitions of a requirement according to the Institute of Electrical and Electronics

Engineers (IEEE, 1990) are:

1. A condition or capability needed by a user to solve a problem or achieve an

objective.

2. A condition or capability that must be met or possessed by a system or system

component to satisfy a contract, standard, specification, or other formally imposed

documents.

3. A documented representation of a condition or capability as in (1) or (2).

94 A Generic Method for Assembling Software Product Line Components

Requirements are often classified into functional requirements and non-functional

requirements. Functional requirements specify a function that a system must be able to

perform. Non-functional requirements specify quality attributes (such as usability,

reliability, performance, and supportability) and constraints on a system (such as time,

budget, hardware, and material).

Establishing the product line requirements is a difficult task that involves the participation

of different stakeholders and should be done through a requirement engineering process.

This process consists of three steps:

• Requirements elicitation consists of finding and identifying the relevant PL

requirements. First, it is important to identify the different stakeholders (such as final

users, employees, software developers, and executives) that could be interested in

a product (relevant to the PL domain). Second, the analyst should identify the

information sources (such as stakeholders, documents, laws, and social networks)

that are relevant for defining the PL requirements. Third, the analyst starts with the

requirement elicitation, which consists of finding and identifying the PL requirement

based on the previous information sources. There are different strategies for the PL

requirement elicitation, one of them consists of analyzing the market segment

relevant to the PL domain. Then, the existing products should be analyzed in order

to discover PL requirements and finally define the common and variable

requirements. And fourth, the requirements are written with the use of a template or

specification.

• Requirements analysis consists of a formal documentation of the PL

requirements. Commonly, PL analysts use variability models, such as feature

models, goal models, and the Orthogonal Variability Model (OVM), to represent the

PL requirements. Each model has its own advantages and disadvantages. Feature

models are the most used; they represent the PL variability through a tree structure

in which the features form the nodes of the tree, and the arcs and groupings of

features represent feature variability (Beuche & Dalgarno, 2007). Feature models

are commonly used to represent functional requirements, however, they are not well

adapted to represent non-functional requirements and their particular relationships

with the functional requirements. Goal models are graphs where a goal node is

refined into several subgoal nodes (Yu et al., 2008). In this approach, functional

requirements are modeled by goals, and quality attributes (non-functional

FragOP process 95

requirements) are modeled as softgoals. The softgoals have a multi-valued label to

indicate the degree of its satisfaction: fully satisfied (FS), partially satisfied (PS), fully

denied (FD) or partially denied (PD). Thus, for instance, a security requirement will

not have a true or false value but a certain degree of satisfaction.

• Requirements management consists of documenting, planning and coordinating

the PL requirements. Here the requirements are stored, and traceability is defined.

The FragOP approach requires the domain requirements to be elicited and then formally

specified within a modeling language. Figure 5-1 shows that in FragOP an SPL contains

two or more domain requirements. There should be a minimum of two domain requirements

because it guarantees at least two configurations of two different products. It is also

important to highlight that this approach does not restrict the way in which the domain

requirements are modeled. It means that the SPL developer can use feature models, OVM,

and goal models, among others.

Figure 5-1: FragOP metamodel highlighting the concepts of SPL and domain

requirement

96 A Generic Method for Assembling Software Product Line Components

5.1.1 VariaMos support

Modeling product line requirements is an activity that is fully supported by VariaMos.

VariaMos allows for domain requirements to be specified in the form of a “Feature model”.

After downloading and running VariaMos, the user should select a “Component-based

project”. This kind of project allows navigating between three different views: (i) feature

model, (ii) domain component model, and (iii) binding model. Figure 5-2 shows the feature

model view. Here the SPL developer is able to graphically represent the domain

requirements through the feature model. VariaMos also provides some verification options,

such as (i) more than one root element, (ii) child elements without parents, (iii) dead

elements, and (iv) false optional elements. A complete tutorial on how to use VariaMos to

represent feature models, configure and verify them can be found online (Correa, 2018).

Figure 5-2: VariaMos “feature model” view main elements

Currently, the “Component-based project” only supports feature models, however,

VariaMos offers the possibility of creating new models, such as goals models or OVM, and

even offers the possibility of creating user custom models.

Other current approaches also support the domain requirements specification, for example:

• FeatureIDE with AHEAD (FOP) or FeatureHouse (FOP) or AspectJ (AOP). After

the creation of a FeatureIDE project, a model.xml file is automatically created. When

the model.xml file is opened, a graphical editor is presented. There the SPL

developer can edit the SPL feature model.

FragOP process 97

• DeltaJ (DOP). This approach provides a .spl file, in this file, there is a variable called

“Features” where the SPL developer types the feature names (there is no graphical

support).

• CIDE (annotative). This approach provides three ways to execute feature

modeling: (i) the definition of a list of features, which are all optional and unrelated,

(ii) a graphical feature model editor from FeatureIDE, and (iii) a connector to the

pure::variants tool, where the SPL developer is able to use pure::variants feature

models.

ClothingStores SPL

We used the VariaMos feature model view to define the 25 features of the ClothingStores

example (see Figure 2-1). A developer can create those features manually or load a pre-

developed model (Correa, 2018) which contains the complete feature model as shown in

Figure 5-3.

Figure 5-3: Feature model of the complete ClothingStores running example (VariaMos)

98 A Generic Method for Assembling Software Product Line Components

5.2 Modeling domain components

Modeling domain components is not a typical activity in most of the current SPL

implementation approaches. Many of the current approaches have a direct link between

the features (defined in the feature model) and the component files that operationalize

them, thereby, there is no need for a component model. On the other hand, a domain

component model allows the software components, their files, and their relationships to be

represented. The SPL domain component model provides a general insight for software

architects and software developers into the SPL domain system. Therefore, it allows having

a complete separation between the domain requirements (problem space) and the domain

components (solution space).

In FragOP, an SPL contains two or more domain components (see Figure 5-4), which

guarantee the derivation of at least two different products. The FragOP domain component

model also serves to define: (i) the links between domain components and their files, (ii)

the domain file destinations, (iii) the domain component IDs and file IDs, and (iv) a future

connection between the domain requirements and the domain components (see Section

5.4). Later, each domain component file must be operationalized with its code

implementation (see Section 5.3).

Figure 5-4: FragOP metamodel highlighting the concepts of SPL and domain

component

FragOP process 99

5.2.1 VariaMos support

Before starting the domain component modeling activity, the SPL developer has to define

the domain components and files that the SPL will contain. In this case, we used the

ClothingStores requirements (see Table 2-1), and we defined a list of 20 domain reusable

components. Each domain component is also connected to its own list of files which

operationalize it as shown in Table 5-1. The first element in the table is the domain

component identifier, which is a simple text with the domain component name. This text is

going to represent a real folder, so the PL developer should avoid spaces or strange

symbols. Table 5-1 also records the following information for each file: (i) File ID: we

suggest that it be created as a combination of the domain component identifier plus a minus

symbol (“-“), plus the file identifier; (ii) Filename: the real filename including its extension;

and (iii) Destination: the destination in which the file is going to be derived at the end of

the FragOP process, based on the SPL basic project folder structure (see Figure 2-3).

Table 5-1: ClothingStores list of domain components and their files

Component ID File ID Filename Destination

C01
BasicViewsGener
al

BasicViewsGeneral-Index index.jsp
WebContent/views/i
ndex.jsp

BasicViewsGeneral-Banner banner.jpg
WebContent/assets
/img/banner.jpg

BasicViewsGeneral-
Bootstrap

bootstrap.min.css
WebContent/assets
/css/bootstrap.min.
css

BasicViewsGeneral-
Bootstrap2

bootstrap.min.js
WebContent/assets
/js/bootstrap.min.js

BasicViewsGeneral-Header header.jsp
WebContent/views/
header.jsp

BasicViewsGeneral-Footer footer.jsp
WebContent/views/
footer.jsp

BasicViewsGeneral-Home Home.java
src/controllers/Hom
e.java

BasicViewsGeneral-Popper popper.js
WebContent/assets
/js/popper.js

BasicViewsGeneral-Style style.css
WebContent/assets
/css/style.css

BasicViewsGeneral-JQuery jquery-3.2.1.min.js
WebContent/assets
/js/jquery-
3.2.1.min.js

BasicViewsGeneral-Custom customization.json

C02 ContactUs

ContactUs-Contact Contact.java
src/controllers/Cont
act.java

ContactUs-View contact.jsp
WebContent/views/
contact.jsp

ContactUs-AlterHeader alterHeader.frag

ContactUs-Custom customization.json

C03 Shipping Shipping-Shipping Shipping.java
src/controllers/Ship
ping.java

100 A Generic Method for Assembling Software Product Line Components

Shipping-View shipping.jsp
WebContent/views/
shipping.jsp

Shipping-AlterHeader alterHeader.frag

Shipping-Custom customization.json

C04
DatabaseManage
ment

DatabaseManagement-DB DB.java src/db/DB.java

DatabaseManagement-
Config

Config.java src/db/Config.java

DatabaseManagement-
MainSQL

main.sql main.sql

DatabaseManagement-
Custom

customization.json

C05 DemoData DemoData-DemoSQL demo.sql demo.sql

C06 ProductModel

ProductModel-Product Product.java
src/models/Product.
java

ProductModel-ProductDAO ProductDAO.java
src/models/Product
DAO.java

ProductModel-AlterMainSQL alterMainSQL.frag

C07 ListOfProducts

ListOfProducts-ListProducts ListProducts.java
src/controllers/ListP
roducts.java

ListOfProducts-View listproducts.jsp
WebContent/views/l
istproducts.jsp

ListOfProducts-OneProduct oneproduct.jsp
WebContent/views/
oneproduct.jsp

ListOfProducts-AlterStyle alterStyle.frag

ListOfProducts-AlterHeader alterHeader.frag

C08 Comments

Comments-Comment Comment.java
src/models/Comme
nt.java

Comments-CommentDAO CommentDAO.java
src/models/Comme
ntDAO.java

Comments-AddComment AddComment.java
src/controllers/Add
Comment.java

Comments-AlterDemoSQL alterDemoSQL.frag

Comments-AlterMainSQL alterMainSQL.frag

Comments-AlterListProducts alterListProducts.frag

Comments-AlterOneProduct alterOneProduct.frag

C09 SharingSystem

SharingSystem-Fb fb.png
WebContent/assets
/img/fb.png

SharingSystem-Twitter twitter.png
WebContent/assets
/img/twitter.png

SharingSystem-
AlterOneProduct

alterOneProduct.frag

C10 Rating

Rating-AlterListProducts alterListProducts.frag

Rating-AlterMainSQL alterMainSQL.frag

Rating-AlterManageProducts
alterManageProducts.
frag

Rating-AlterOneProduct alterOneProduct.frag

Rating-AlterProduct alterProduct.frag

Rating-AlterProductDAO alterProductDAO.frag

Rating-AlterStyle.frag alterStyle.frag

C11 UserModel

UserModel-User User.java
src/models/User.jav
a

UserModel-UserDAO UserDAO.java
src/models/UserDA
O.java

UserModel-AlterDemoSQL alterDemoSQL.frag

UserModel-AlterMainSQL alterMainSQL.frag

C12 Account

Account-Account Account.java
src/controllers/Acco
unt.java

Account-AccountView account.jsp
WebContent/views/
account.jsp

FragOP process 101

Account-Img user.png
WebContent/assets
/img/user.png

Account-AlterHeader alterHeader.frag

C13 Login

Login-Login Login.java
src/controllers/Logi
n.java

Login-LoginForm login_form.jsp
WebContent/views/l
ogin_form.jsp

Login-AlterAccount alterAccount.frag

Login-AlterAdmin alterAdmin.frag

Login-AlterHeader alterHeader.frag

C14 Cart

Cart-Cart Cart.java
src/controllers/Cart.
java

Cart-CartView cart.jsp
WebContent/views/
cart.jsp

Cart-AlterProductDAO alterProductDAO.frag

Cart-AlterOneProduct alterOneProduct.frag

Cart-AlterHeader.frag alterHeader.frag

C15 OnlinePayment OnlinePayment-AlterCart alterCart.frag

C16 OfflinePayment OfflinePayment-AlterCart alterCart.frag

C17 BasicViewsAdmin

BasicViewsAdmin-Home Home.java
src/controllers/admi
n/Home.java

BasicViewsAdmin-Index index.jsp
WebContent/views/
admin/index.jsp

BasicViewsAdmin-Header header.jsp
WebContent/views/
admin/header.jsp

BasicViewsAdmin-Custom customization.json

C18
ProductManagem
ent

ProductManagement-
ManageProducts

ManageProducts.java
src/controllers/admi
n/ManageProducts.
java

ProductManagement-View products.jsp
WebContent/views/
admin/products.jsp

ProductManagement-
AlterAdminHeader

alterAdminHeader.fra
g

ProductManagement-
AlterProductDAO

alterProductDAO.frag

C19 UserManagement

UserManagement-
ManageUsers

ManageUsers.java
src/controllers/admi
n/ManageUsers.jav
a

UserManagement-View users.jsp
WebContent/views/
admin/users.jsp

UserManagement-
AlterAdminHeader

alterAdminHeader.fra
g

UserManagement-
AlterUserDAO

alterUserDAO.frag

C20
CommentManage
ment

CommentManagement-
ManageComment

ManageComment.jav
a

src/controllers/admi
n/ManageComment
.java

CommentManagement-View comments.jsp
WebContent/views/
admin/comments.js
p

CommentManagement-
AlterCommentDAO

alterCommentDAO.fr
ag

CommentManagement-
AlterAdminHeader

alterAdminHeader.fra
g

Table 5-1 also highlights three different types of files: (i) blue background refers to domain

files (see Section 4.2), (ii) white background refers to fragments (see Section 4.3.2), and

102 A Generic Method for Assembling Software Product Line Components

(iii) red background refers to customization files (see Section 4.4.2). Destination

information must not be provided for fragments and customization files, because those files

will not be included as part of the final derived products.

After developing the list of domain components and their files, the SPL developer should

use VariaMos to create the domain component model. This activity requires the SPL

developer to navigate to the “Domain component model” view (see Figure 5-5). The process

consists of graphically representing the domain components and their files based on the

previous list (see Table 5-1).

Figure 5-5: VariaMos “Domain component model” view main elements

Finally, we use the VariaMos component model view to represent the ClothingStores

domain components and files. An SPL developer can create these domain components

and files manually (by using the information in Table 5-1) or load a pre-developed model

(Correa, 2018) which contains the ClothingStores complete domain component model as

shown in Figure 5-6.

FragOP process 103

Figure 5-6: ClothingStores complete domain component model

5.3 Implementing domain components

Implementing the reusable domain component is one of the most important tasks in an

SPLE. These components will serve as the base from which any SPL product will be

derived. As explained in Section 4.1, depending on the selected approach, this activity will

104 A Generic Method for Assembling Software Product Line Components

require to codify object classes (OOP), aspects (AOP), delta modules (DOP), web services,

agents, and features (FOP), among others. Therefore, any reusable asset, such as images,

scripts, HTML views, among others need to be included.

Additionally, it is important to highlight that the domain components are not always designed

and implemented from scratch. Domain components could also be acquired or rented

through external companies, like with commercial off-the-shelf (COTS) components (Lago

et al., 2004); inherited from previous developments; or outsourced through third party

companies.

In FragOP, this activity requires that SPL developers implement the (i) domain components,

(ii) domain files, (iii) fragmentation points, (iv) fragments, (v) customization points, and (vi)

customization files. We have already explained how to implement these elements in

Chapter 4, where we showed some of the differences between the FragOP approach and

other similar approaches.

Finally, these components have to be verified and validated after the domain component

implementation. There are different kinds of tests that could be applied, such as (i) unit

tests, which allows a class, component or a piece of code to be tested independently of the

entire system. (ii) integration tests, which allows the integration of two or more components

to be tested. And (iii) regression tests, which are carried out when changes are made to

components or pieces of code that have already been tested (Neto et al., 2011).

5.3.1 IDE support

To start the domain components implementation, PL developers must create a domain

component pool directory to store the corresponding components and files. In FragOP, the

domain component pool directory must be consistent with the Component Identifiers

defined in Table 5-1. Figure 5-7-A shows an example of the default folder structure, which

can be used as a template to create the final folder structure (e.g., for the ClothingStores

SPL) as can the one presented in Figure 5-7-B.

FragOP process 105

We also suggest connecting the component pool directory with a web-based version control

repository, such as Bitbucket1 or GitHub2, to manage the domain component evolution and

traceability.

Figure 5-7: Component pool folders and files structure

Figure 5-8 shows the ClothingStores component pool folder structure based on the 20

domain components defined in Table 5-1.

Figure 5-8: Clothing stores component pool folder

After the definition of the component pool, we recommend selecting a preferred IDE to

develop the component file source code such as Sublime3, IntelliJ4, NetBeans5, and

Eclipse6, among others. Figure 5-9 shows the example of Sublime being used to create the

1 https://bitbucket.org/
2 https://github.com/
3 https://www.sublimetext.com/
4 https://www.jetbrains.com/idea/
5 https://netbeans.org/projects/www/
6 https://www.eclipse.org/

https://bitbucket.org/
https://github.com/
https://www.sublimetext.com/
https://www.jetbrains.com/idea/
https://netbeans.org/projects/www/
https://www.eclipse.org/

106 A Generic Method for Assembling Software Product Line Components

component files. Finally, the PL developer has to codify all of the domain component files,

fragments, fragmentation points, customization points, and customization files. Additionally,

we created an online folder (Correa, 2018) which contains the complete domain component

file source codes.

Figure 5-9: Sublime IDE with an example of a component file development

Note: most of the SPL implementation approaches (such as AHEAD, FeatureHouse,

DeltaJ, CIDE, and Antenna) are designed as Eclipse plugins. In this case, the SPL

developers create a new Eclipse project and use Eclipse to develop and store the domain

components.

5.4 Binding domain requirements and domain
components

As seen in previous sections, domain requirements can be implemented by means of

several approaches. The relationship between the domain requirements and their

implementations (commonly domain components) is very important for the SPLE because

it connects the work of the PL requirement engineers with the PL software developers and

the component suppliers.

FragOP process 107

The relationship could be defined as a one-to-one relationship (for example, one domain

component linked to one domain requirement). Nevertheless, the relationship could be

complex when there are multiple domain components that satisfy a specific domain

requirement, or multiple component suppliers.

There are some models and approaches that have been proposed for linking the domain

requirements and the domain components:

• Weaving models are intermediary models which define the relationships between

the variability model and the component model. The features are located on one

side and the components on the other (Cetina et al., 2013).

• Mappings are used to define complex connections between features from feature

models and the software artefacts that are realizing those features (Heidenreich et

al., 2008). For example, in FeatureMapper, these mappings usually do not only

contain mappings between features and software artefacts, but also between

feature expressions and software artefacts, where a feature expression is a logical

combination of features (e.g. FeatureA AND FeatureB).

• Cardinality constraints are used in models such as DOPLER (Dhungana et al.,

2011), and they connect the decision models (variability elements) with the asset

models (domain components). These constraints group components and allow min

and max values to be defined (cardinality) which are used to implement specific

features. For example, a DOPLER decision DOPLER_tools (variability element)

could be linked to three possible values ConfigurationWizard, DecisionKing

and ProjectKing (components), and the user should select between 0 and 3 of

the previous possible values (cardinality).

The reality is that most current approaches do not use graphical binding models, using

instead a direct connection between the features and the components. For example:

• In DeltaJ (DOP), there is a file with an extension “.spl”. That file includes a section

called partitions, in which the user manually types the name of the features that are

connected to the delta modules.

• In CIDE (annotative), the SPL developer is able to select the specific files or pieces

of code that are related to specific features. He/she makes a right click on the

specific piece of code or file and select the name of the feature that wants to link it

with.

108 A Generic Method for Assembling Software Product Line Components

• In AspectJ with FeatureIDE (AOP), once a new feature is created in the feature

model, the application generates a new file with the same name of the feature and

with “.aj” extension.

• In Antenna with FeatureIDE (annotative), the file code that belongs to a specific

feature is surrounded by IF and ENDIF statements. The IF statement must contain

the name of the feature that links to it.

• Approaches such as AHEAD (FOP) and FeatureHouse (FOP) with FeatureIDE

create a folder with the same name of each leaf feature; there the user stores the

domain components that operationalize those features. Again, there is a direct link

between the feature and the component.

In FragOP, this activity consists of developing a binding model between the domain

requirements model (such as a feature model) and the domain component model. The

binding model represents how the domain components operationalize the domain

requirements. Figure 5-10 shows how the FragOP metamodel relates the domain

requirements to the domain components in a many-to-many relationship.

Figure 5-10: FragOP metamodel highlighting the domain requirement and domain

component relationship

FragOP process 109

5.4.1 VariaMos support

Modeling the binding with VariaMos requires the developer to navigate to the third view

“Binding model” (see Figure 5-11). This view presents the same distribution as the previous

feature model and domain component model views. There are two elements components

and leaf features which are automatically loaded from the two previous views. Here, the

developer only needs to link the domain components with the leaf features that they

operationalize.

Figure 5-11: VariaMos “Binding model” view main elements

At present, VariaMos only allows a one-to-one binding relationship. Nevertheless, we plan

to implement a constraint network (Lecoutre, 2009) to graphically represent more complex

domain implementation relationships such as “Domain components C1 or C2, but not both,

can be used to implement feature F”.

ClothingStores SPL

The ClothingStores feature model (presented in Figure 5-3) and the ClothingStores

component model (presented in Figure 5-6) are connected by means of the binding model.

Figure 5-12 shows the ClothingStores complete binding model. The complete feature

model, component model, and binding model can be found online (Correa, 2018).

110 A Generic Method for Assembling Software Product Line Components

Figure 5-12: ClothingStores complete binding model

5.5 Configuring products

In SPLE, the configuration is a step-wise process that aims to deliver new software products

that both satisfy the domain constraints, provided by the product line model, and the

stakeholders’ requirements. A product configuration can be a complex task because

variability models can contain thousands of options (Siegmund et al., 2008), and feature

selection must consider several factors, such as technical limitations, implementation costs,

requirements and the stakeholders’ expectations. Therefore, the product configuration

activity is usually tool supported. These software tools accelerate the configuration activity

through the propagation of decisions and constraints, which reduce the number of errors.

FragOP process 111

In some cases, these tools auto-complete the configurations or guide the users through the

configuration process.

Once the product requirements are identified, there are different ways to carry out the

product configuration (Mazo et al., 2018).

• Selection approach is an iterative process which consists of selecting the desired

features that will be included in the final product. This approach starts with the

selection of one desired feature F1, and the system looks for all possible

configurations that include F1. The process continues by selecting a second

desired feature F2 and the system looks for all possible configurations that include

F1 and F2. The process is repeated until a final valid solution is found.

• Reject approach is an iterative process which consists of rejecting the features

that will be excluded in the final product. This approach starts with the selection of

one unwanted feature F1, and the system looks for all possible configurations that

exclude F1. The process continues by selecting a second unwanted feature F2 and

the system looks for all possible configurations that exclude F1 and F2. The

process is repeated until a final valid solution is found.

• Value reduction approach consists of reducing step by step the values of some

variables of the variability model, for example, reducing the range of a group

cardinality.

• Optimization approach consists of finding a product configuration based on

specific requirements that optimize the product with respect to specific criteria, for

example, finding the product with the highest security level.

In FragOP, this activity consists of selecting the specific domain requirements that a certain

product will contain. This configuration activity must satisfy the domain restrictions (which

are represented in the PL models) and the customer needs.

5.5.1 VariaMos support

Product configuration is carried out in the feature model. There, the SPL developer selects

the leaf features that the new SPL software product will contain, based on the customer

needs.

112 A Generic Method for Assembling Software Product Line Components

Figure 5-13: VariaMos product configuration elements

By default, VariaMos presents all the leaf features with a green arrow above them. This

means that the leaf feature is already selected to be part of a new software product. Then,

the SPL developer should deselect the SelectedToIntegrate option of those features

that the SPL developer does not want to include in the new SPL software product (see

Figure 5-13).

Note: VariaMos also provides a “Model configuration/Simulation” perspective which allows

product configurations to be simulated. This way, SPL developers can verify if a specific

product configuration is valid or not and compare it with the previous product configuration.

The “Model configuration/Simulation” contains some capabilities such as create a first

random configuration, go to the next random configuration, specify features that must be

configured, and specify features that must not be configured, among others. A document

explaining the “Model configuration/Simulation” perspective and its functionalities can be

found online (Correa, 2018).

Other current approaches also support the product configuration, for example:

• FeatureIDE with AHEAD (FOP) or FeatureHouse (FOP) or AspectJ (AOP). A

FeatureIDE project allows creating a configuration file “.config”. The SPL developer

FragOP process 113

should open the configuration file and select the features that he/she wants to

include in the current configuration.

• DeltaJ (DOP). This approach provides a .spl file, in this file, there is a variable called

“Products” where the SPL developer types the name of a product and types the

names of the deltas that he/she wants to include in each product.

• CIDE (annotative). This approach provides an option called "Generate Variant"

from the project's context menu. There, the SPL developer has to select the features

that he/she wants to include in the current configuration.

ClothingStores SPL

In order to present a realistic scenario, suppose that there is a “Customer A” who requires

a new e-commerce clothing store application. After an elicitation process, the SPL

developer deduced that “Customer A” requires the following list of functionalities: manage

products, manage users, a sharing system for the products, a contact us section, a login

system, demo data, and an offline payment system. Using this information, the SPL

developer should try to configure a new SPL product.

Figure 5-14: ClothingStores final product configuration (VariaMos)

114 A Generic Method for Assembling Software Product Line Components

Based on the customer requirements, an SPL developer must deselect the

SelectedToIntegrate option for each of the following features: (i) shipping, (ii)

rating, (iii) comments, (iv) comment management, (v) online payment, and (vi)

account. Figure 5-14 shows the final product configuration.

5.6 Deriving products

One of the key activities for an SPLE is the product derivation. Product derivation aims to

create specific software products based on the assembling of the reusable domain

components. Depending on the approach selected to build the domain components and

the tool that supports the product derivation activity, the product derivation could be a quick

automated activity or a slow manual activity. Therefore, effective product derivation activity

is critical to ensure that the effort required to develop the common assets will be lower than

the benefits achieved through their use (de Souza et al., 2015).

Figure 5-15: FragOP metamodel highlighting the SPL, product and application file

relationship

FragOP process 115

In the FragOP approach, the product derivation activity consists of generating a specific

product which contains application files (see Figure 5-15). Figure 5-16 shows a realistic

product derivation scenario. In this case, a domain file (header.jsp) and a fragment

(alterHeader.frag) will be assembled. These two component files belong to two components

(BasicViewsGeneral and ListOfProducts), that are bounded to two mandatory leaf

features (List of products and Basic views). This means, that any ClothingStores

product configuration will include these two leaf features. At application level, this means

that the files of BasicViewsGeneral and ListOfProducts will be assembled. The

product derivation activity requires tool support, so, the complete product derivation process

will be explained in the following section.

Figure 5-16: An example of two component files being assembled

116 A Generic Method for Assembling Software Product Line Components

5.6.1 VariaMos support

VariaMos offers two functionalities to support the FragOP product derivation activity. In the

VariaMos “domain implementation” menu, the SPL developer can find Set derivation

parameters and Product derivation.

The Set derivation parameters option allows the definition of (i) the “component

pool folder path” which is the path where components and files are stored, and (ii)

the “product folder path” which is the path where the configured product will be

derived. Figure 5-17 shows a “set derivation parameters” configuration.

The Product derivation option allows the specific software product to be derived

based on an automated algorithm that follows a series of instructions as presented

in Figure 5-18.

Figure 5-17: VariaMos “set derivation parameters” configuration

Figure 5-18: VariaMos product derivation activity

FragOP process 117

At the beginning of the VariaMos product derivation algorithm, the information is taken from

the component pool folder and the developed models. Then, the algorithm (i) extracts the

information of the selected leaf features (based on the product configuration activity, see

Section 5.5); (ii) resolves the binding relationships of the selected features to establish the

corresponding components and files (based on the binding activity, see Section 5.4); (iii)

creates a copy of the component domain files (from the domain component pool) and

moves the copied files to the product folder (these files represent the application files).

The application files are moved to a specific subfolder based on the domain file destination.

Finally, the algorithm (iv) applies the domain component fragment alterations to the

application files by priority order. The output is a product folder, which contains the

assembled domain components and the specific software product. This algorithm also

provides different alerts, such as invalid fragment definition, missing fields, invalid

fragmentation point definition, invalid actions, and invalid filenames and paths.

The FragOP product derivation activity and the VariaMos algorithm allows us to answer

RQ2. Therefore, the VariaMos support to the product derivation activity also allows us to

answer RQ4.

Other current approaches also support the product derivation, for example:

• FeatureIDE with AHEAD (FOP) or FeatureHouse (FOP) or AspectJ (AOP). After

the SPL developer completes the configuration file which contains the selected

features. The SPL developer must save the configuration file, and FeatureIDE will

compose the features (or aspects) and compile the generated Java code.

• DeltaJ (DOP). After the SPL developer completes the .spl file information. The SPL

developer saves the file and a popup displays the available products to be derived.

The SPL developer selects the desired product, and the application composes the

deltas. After all deltas are composed, the generated classes are serialized and

written into the JAVA source files in the file system (in a folder called src-gen/).

Therefore, Eclipse will automatically compile the generated files.

• CIDE (annotative). Once the product is configured (i.e., the features are selected),

CIDE will copy the source code to the target project and remove all colored code

that is not included in the product configuration.

118 A Generic Method for Assembling Software Product Line Components

ClothingStores SPL

The first step is to “set the derivation parameters” according to the “component pool folder

path” and the “product folder path”. Then, the SPL developer should click on the “product

derivation” option. In this case, the reusable domain components are assembled and stored

in the “product folder”, and as stated previously, the fragment alterations are applied.

Following the running example and based on the current product configuration (see Figure

5-14), the ListOfProducts-AlterHeader (alterHeader.frag) and the Login-

AlterAdmin (alterAdmin.frag) fragments (see Listing 4-6) are executed in the

BasicViewsGeneral-Header (header.jsp) and UserManagement-ManageUsers

(ManageUsers.java) application files respectively (see Listing 4-4). The component

assembly results are shown in Listing 5-1.

Listing 5-1: Derived BasicViewsGeneral-Header (header.jsp) and UserManagement-

ManageUsers (ManageUsers.java) application files

BasicViewsGeneral-Header (header.jsp)
<%@ page contentType="text/html" pageEncoding="UTF-8"%>

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>

<%@ taglib uri="http://java.sun.com/jsp/jstl/functions" prefix = "fn" %>

<html>

 <head>

 <title>${title}</title>

 <link rel="stylesheet" type="text/css" href="<c:url value =

"/assets/css/bootstrap.min.css"/>" />

 <link rel="stylesheet" type="text/css" href="<c:url value =

"/assets/css/style.css"/>" />

 </head>

 <body>

 <nav class="navbar navbar-expand-md navbar-dark fixed-top bg-dark">

 <button class="navbar-toggler" type="button" data-toggle="collapse"

data-target="#navbarsExampleDefault" aria-controls="navbarsExampleDefault"

aria-expanded="false" aria-label="Toggle navigation">

 </button>

 <div class="collapse navbar-collapse" id="navbarsExampleDefault">

 <ul class="navbar-nav mr-auto">

 <li class="nav-item active">

 <a class="nav-link" href="<c:url value='Home'/>">Home <span

class="sr-only">(current)

 <!--B-menu-modificator-->

 <!--Code injected by: ListOfProducts-AlterHeader-->

 <a class="nav-link" href="<c:url

value='Products'/>">Products

 <!--Code injected by: ListOfProducts-AlterHeader-->

FragOP process 119

 <!--Code injected by: Login-AlterHeader-->

 <c:choose>

 <c:when test="${sessionScope.logged != '1'}">

 <a class="nav-link" href="<c:url

value='Login'/>">Login

 </c:when>

 <c:otherwise>

 <!--B-menu-modificator-login-->

 <!--Code injected by: Account-AlterHeader-->

 <a class="nav-link" href="<c:url

value='Account'/>">Account

 <!--Code injected by: Account-AlterHeader-->

 <a class="nav-link" href="<c:url

value='Login?logout=1'/>">Logout

 </c:otherwise>

 </c:choose>

 <!--Code injected by: Login-AlterHeader-->

 <!--Code injected by: ContactUs-AlterHeader-->

 <a class="nav-link" href="<c:url

value='Contact'/>">Contact Us

 <!--Code injected by: ContactUs-AlterHeader-->

 <!--Code injected by: Cart-AlterHeader-->

 <a class="nav-link" href="<c:url value='Cart'/>">Cart

 <!--Code injected by: Cart-AlterHeader-->

 </div>

 </nav>

 <div>

UserManagement-ManageUsers (ManageUsers.java)
package controllers.admin;

import java.io.IOException; import javax.servlet.RequestDispatcher; import

javax.servlet.ServletException;

import javax.servlet.annotation.WebServlet; import

javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest; import

javax.servlet.http.HttpServletResponse;

import javax.servlet.http.HttpSession; import models.User; import

models.UserDAO;

@WebServlet(urlPatterns = {"/Admin/Users"})

public class ManageUsers extends HttpServlet {

 /*B-validation-function*/

 /*Code replaced by: Login-AlterAdmin*/

 protected boolean validation(HttpServletRequest request,

HttpServletResponse response) throws ServletException, IOException{

 HttpSession session = request.getSession();

 User u = (User) session.getAttribute("datauser");

120 A Generic Method for Assembling Software Product Line Components

 if(u == null) { response.sendRedirect("../Home"); return false; }

 else if(!u.getType().equals("admin")){

 response.sendRedirect("../Home"); return false;

 }

 return true;

 }

 /*Code replaced by: Login-AlterAdmin*/

 /*E-validation-function*/

 @Override

 protected void doGet(HttpServletRequest request,

HttpServletResponse response)

 throws ServletException, IOException {

 if(this.validation(request, response)){

 String remove = request.getParameter("remove");

 if(remove != null){

 UserDAO.remove(Integer.parseInt(remove));

 }

 request.setAttribute("users",UserDAO.getUsers());

 request.setAttribute("title", "Admin Panel - Users");

 RequestDispatcher view =

request.getRequestDispatcher("../views/admin/users.jsp");

 view.forward(request, response);

 }

 }

 protected void doPost(HttpServletRequest request,

HttpServletResponse response) throws ServletException, IOException {

 if(this.validation(request, response)){

 String user = request.getParameter("user");

 String pass = request.getParameter("pass");

 String name = request.getParameter("name");

 String type = request.getParameter("type");

 User u = new User(name,type,user,pass); UserDAO.insert(u);

 response.sendRedirect("Users");

 }

 }

}

Now we can see the BasicViewsGeneral-Header which contains a new menu element

that links to the products section (highlighted code), which is also presented in Figure 5-16.

It also contains other menu element modifications carried out by the Login-

AlterHeader, Account-AlterHeader, ContactUs-AlterHeader, and Cart-

AlterHeader fragments. The UserManagement-ManageUsers was also modified by

the Login-AlterAdmin fragment. This fragment injected a new validation function which

replaced the default version (highlighted code).

FragOP process 121

5.7 Customizing products

Product customization is a typical activity within SPLE. A product derivation hardly ever

ends with a finalized software product. There are different kinds of product customizations,

such as component parameterization, component adaptation, and component

augmentation, among others (Cobaleda et al., 2018).

• Parameterization consists of providing values to the product parameters, with the

objective of adjusting them to the specific customer needs and the environment, for

example, the configuration files may need to be parameterized.

• Adaptation customization should be applied when the domain component does not

satisfy the customer needs fully. Commonly, it consists of modifying the component

code.

• Augmentation is about the development of new components to supply product

functionalities that are not included in the domain components. Commonly,

augmentation is carried out when there are very specific requirements that were not

considered during the domain engineering.

In FragOP, the use of customization points and customization files serve to make clear the

specific places in which the products should be customized. These elements allow some

specific product customizations to be applied, such as component parameterization and

some component adaptations. Nevertheless, most of the complex product customizations

such as a component augmentation, which involves the development of a new component,

must be carried out manually by the SPL developer.

The FragOP product customization activity is supported by VariaMos and explained in the

next section.

5.7.1 VariaMos support

In the VariaMos “domain implementation” menu, the SPL developer can find “product

customization” option. After clicking the “product customization” option, VariaMos displays

a popup menu which contains two buttons: start and next (see Figure 5-19). The start

button initiates an algorithm that looks for customization files (based on the derived

components). If a customization file is found, then the algorithm analyzes (i) the

customization points, looks for the application files that contain the previous customization

122 A Generic Method for Assembling Software Product Line Components

points and collects the code surrounded by each customization point. That code is

displayed in the Default content text area. Next, the developer provides a new

customized content. Here the developer customizes each application file, as is

presented in Figure 5-19. And (ii) the domain files to be customized that do not include

customization points. In this case, two buttons, upload and save, are presented. The

developer uploads the new customized file using the upload button, and the save button

stores the new customized file in the product folder. The next button sends the provided

information and modifies the derived application files, therefore, if there are other pending

customization points or customization files, the default content is refreshed with the new

code or file to be customized. Finally, once there are no pending customization points or

customization files, the next button is disabled and the customization activity finishes.

As mentioned in the previous chapter, most of the SPL implementation approaches do not

provide a product customization capability (these include CIDE, DeltaJ, Munge, Antenna,

AspectJ, and AHEAD, among others). Even when VariaMos (FragOP) does not

automatically customize the application files (because the SPL developers should modify

the code that appears in the popups), the reality is that this activity is streamlined.

Otherwise, without the use of customization points and customization files, the SPL

developers would need to manually look over each derived application file, trying to figure

out what pieces of code and files should be customized.

Figure 5-19: VariaMos product customization activity

FragOP process 123

ClothingStores SPL

In the ClothingStores SPL, the DatabaseManagement-Config contained a

customization point which was surrounded by some variables that had to be parameterized

(presented in Listing 4-8). This parametrization could be easily carried out using VariaMos.

The SPL developer executes the “product customization” option, and a popup with the

customization points is presented. Figure 5-20 shows the vars customization point which

belongs to the DatabaseManagement-Config (Config.java) derived application file.

Finally, the developer should manually provide the final database variable values for the

new customized content.

Figure 5-20: ClothingStores product customization execution (VariaMos)

5.8 Verifying products

After the product derivation and customization, it is critical to verify and validate the software

product by applying tests, such as integration tests, system tests and acceptance tests

(Engström & Runeson, 2011).

• Integration tests allow the assembly of the components to be tested. In this kind

of test, it is suggested that the critical subsystems of the entire product be identified,

and the proper tests executed. There are different strategies to execute integration

tests, such as big-bang in which all the components of the subsystem are

assembled, and the test is executed. Top-down is a strategy in which a specific

component is tested, and some additional components are later included for

testing. The process is repeated until all components are tested.

124 A Generic Method for Assembling Software Product Line Components

• System tests take the complete assembled product as an entity for testing. This

test tries to find the resulting errors of the subsystem interactions. It also allows the

compliance of the functional and non-functional requirements to be evaluated.

There are different kinds of system tests, such as security tests, user interface

tests, recovery tests, and compatibility tests, among others.

• Acceptance tests are applied after the system tests. These tests include the

execution of the system functionalities of the finalized product. The tests have to

be executed by the user or group of users who will use the system. If the product

passes the tests the stakeholder will accept it, which confirms that it fulfills the

stakeholder needs.

In FragOP it is critical to verify the product application files before the integration, system

and acceptance tests. The FragOP approach allows multiple pieces of code which are

developed in several languages to be injected. This is due to the FragOP structure and the

FragOP concepts, such as fragmentation points, fragments, customization points, and

customization files, among others. It implies that any time a fragment is executed, a derived

application file will probably be altered through code injection. Therefore, as part of the

product customization activity, the SPL developer could inject wrong code or remove

essential code. As a consequence, ensuring a proper application file code structure and

grammar is essential.

This code verification can be carried out using an IDE. For instance, an SPL developer can

move the product application files to a new Eclipse project, and the Eclipse platform will

highlight the code errors. Alternatively, the VariaMos tool can also be used.

5.8.1 VariaMos support

VariaMos provides automated product syntax verification. To execute it, the SPL

developer goes to the “domain implementation” menu and clicks on the “product

verification” option. If the product was properly derived and the files contain the correct

syntax, VariaMos shows the “no errors found” message. Nevertheless, if there are files with

incorrect structure or grammar, VariaMos shows an alert with the specific code line in which

each file contains errors.

FragOP process 125

How does the product syntax verification activity work?

The product syntax verification activity allows grammar errors to be found over the derived

application files. To this end, VariaMos uses ANother Tool for Language Recognition

(ANTLR; Parr, 2013) which is a language tool that provides a framework for constructing

recognizers, compilers, and translators from grammatical descriptions. VariaMos

implements ANTLR 4.7.1 and uses a series of parsers and lexers for languages, such as

PHP, Java, CSS, and MySQL, among others. Once the product derivation is executed and

once the SPL developer clicks the “product verification” option, VariaMos extracts the

product folder information. Based on each derived application file extension, VariaMos

analyses the grammar of each file and generates alerts if errors are found. This product

syntax verification support allows us to answer RQ3.

ClothingStores SPL

To explore the workings of the product syntax verification, we will apply a very small

modification to the Login-AlterAdmin (alterAdmin.frag) fragment source code (see

Listing 5-2). In this case, instead of giving protected visibility to the validation

function, we wrote the protecte, which is a typographical error.

Listing 5-2: Introducing an error to the Login-AlterAdmin (alterAdmin.frag) fragment

source code

Login-AlterAdmin (alterAdmin.frag)
Fragment Login-AlterAdmin {

 Action: replace

 Priority: high

 FragmentationPoints: validation-function, validation-function, validation-

function, validation-function

 PointBracketsLan: java

 Destinations: BasicViewsAdmin-Home, CommentManagement-ManageComment,

ProductManagement-ManageProducts, UserManagement-ManageUsers

 SourceCode: [ALTERCODE-FRAG]protecte boolean validation(HttpServletRequest

request, HttpServletResponse response) throws ServletException, IOException{

 HttpSession session = request.getSession();

 User u = (User) session.getAttribute("datauser");

 if(u == null) { response.sendRedirect("../Home"); return false; }

 else if(!u.getType().equals("admin")){

 response.sendRedirect("../Home"); return false;

 }

 return true;

 }[/ALTERCODE-FRAG]

}

The Login-AlterAdmin (alterAdmin.frag) will inject the wrong code into four different

files: BasicViewsAdmin-Home, UserManagement-ManageUsers,

126 A Generic Method for Assembling Software Product Line Components

CommentManagement-ManageComment and ProductManagement-

ManageProducts (depending on whether the corresponding components will be derived

or not). Based on the current example and configuration (see Section 5.5), three files will

contain the wrong code: BasicViewsAdmin-Home, UserManagement-ManageUsers,

and ProductManagement-ManageProducts.

Now, in order to see how VariaMos displays the alerts, we must (i) modify the Login-

AlterAdmin (alterAdmin.frag) as shown in Listing 5-2, (ii) click the “product derivation”

option and (iii) click the “product verification” option. Figure 5-21 shows the VariaMos alerts

for the current derivation and configuration, which states that “protecte boolean” is invalid

for the following derived application files: src/controllers/admin/Home.java,

src/controllers/admin/ManageUsers.java, and src/controllers/admin/ManageProducts.java.

Figure 5-21: Verify derivation alert (VariaMos)

It is important to note that VariaMos product syntax verification is not enough, there are

more product verifications and product validations that should be carried out manually. We

also recommend applying different system tests (Sawant et al., 2012), such as security

testing, graphical user interface testing, compatibility testing, and recovery testing, among

others.

Finally, the software product is ready to be deployed in the production environment. Section

6.1 shows some finalized ClothingStores products that are running over on an Apache

Tomcat server.

FragOP process 127

5.9 Summary

This chapter presented the FragOP process with its eight main activities. For each activity,

we presented (i) the theory from the SPLE literature and how it should be applied using the

FragOP approach, (ii) how VariaMos supported it, and (iii) a demonstration and

exemplification in the running example which provided a realistic scenario. A summary of

each activity is presented below.

1. Modeling PL requirements is about the elicitation and formally specification of the

domain requirements. Commonly, this activity is carried out with the use of a

variability model. FragOP and VariaMos allow for domain requirements to be

specified in the form of a feature model. There are some plans to provide support

to languages such as OVM, and goal models, among others.

2. Modeling domain components allows specifying the SPL domain components,

which includes information about the components, their files and their relationships.

FragOP and VariaMos allow for domain components to be graphical represented in

the form of a component model. This representation allows having a complete

separation between the domain requirements (problem space) and the domain

components (solution space).

3. Implementing domain components refers to the realization of each component and

file represented in the domain component model. This is one of the most complex

activities in the FragOP process because it requires the codification of domain

component files, fragmentation points, fragments, customization points, and

customization files. For this activity there is not VariaMos support, so the SPL

developers should use their preferred IDE to codify the components’ code.

4. Binding domain requirements and domain components is about the connection

between the domain requirements (problem space) and the domain components

(solution space). This connection is commonly carried out through the use of models

or configuration documents. FragOP and VariaMos allow creating a binding model

which specifies how the domain components operationalize the domain

requirements. At present, VariaMos only allows a one-to-one binding relationship

(one component linked to one feature), however, we plan to implement constraint

networks to graphically represent more complex relationships.

5. Configuring products is a step-wise process that aims to deliver new software

products that both satisfy the domain constraints, provided by the product line

128 A Generic Method for Assembling Software Product Line Components

model, and the stakeholders’ requirements. In FragOP and VariaMos, this activity

consists of selecting the specific leaf feature that a certain product will contain,

based on the customer needs.

6. Deriving products is a complex activity that aims to create specific software products

based on the integration of the reusable domain components. FragOP and

VariaMos allow an automated product derivation through the execution of an

algorithm which takes as inputs the developed models, the component pool folder,

and the selected leaf features; the output is a derivation folder which includes the

assembled component files. Fragments’ codes are injected in this activity.

7. Customizing products is about to apply the final modifications to the derived files

based on the customer specific needs, such as component parameterizations,

adaptations, and augmentations. Thanks to the customization points and

customization files, FragOP and VariaMos provide a way to guide the SPL

developers in the customization activity. However, complex product customizations

such as a component augmentation must be carried out manually by the SPL

developer.

8. Verifying products is about ensuring the quality of the derived and customized

products. VariaMos allows verifying that the derived files contain a proper structure

and proper grammar. In this instance, VariaMos uses ANTLR and based on each

derived component file extension, it analyses the grammar of each file and

generates alerts if errors are found. It is important to highlight that other verifications

and tests such as integration tests, system tests, and acceptance tests must be

applied manually.

To conclude, the definition of the FragOP product derivation activity and the VariaMos

derivation algorithm (see Section 5.6) allows us to answer RQ2 because of that activity

details and specifies the way in which the SPL components should be assembled. The

definition of the FragOP product syntax verification activity and the VariaMos support (see

Section 5.8) allows us to answer RQ3 because of that activity details and specifies the way

in which the SPL components should be verified. And the development and enhancement

of the VariaMos tool allow us to answer RQ4 because that tool supports and improves the

SPL component implementation and assembly.

6. Evaluation

Having the FragOP approach defined, and a stable version of VariaMos, it is important to

evaluate how FragOP and VariaMos support the SPL implementation. In order to do that,

we defined 3 evaluation questions:

• EQ1. Is VariaMos (FragOP) expressive enough to implement a real world, variant-

rich multi-language software system?

• EQ2. What are the differences between VariaMos (FragOP) and similar SPL

implementation mechanism and tools?

• EQ3. Is VariaMos a useful tool that supports the FragOP approach?

In order to analyze and try to find an answer to the previous questions, we present in the

next three subsections: (i) a discussion about the ClothingStores SPL results, (ii) a

discussion about the comparison between VariaMos (FragOP) and other SPL

implementation mechanisms, and (iii) a usability test of VariaMos to support the FragOP

approach.

6.1 ClothingStores results

The ClothingStores SPL was designed with the intention to provide a real example of the

use of VariaMos (FragOP) to design and implement an SPL. Therefore, it was designed as

an initial case study to gain insights about if VariaMos (FragOP) is expressive enough to

implement a real world, variant-rich multi-language software system.

We used the Koscielny et al. (2014) DeltaJ 1.5 case study as the base to present the

VariaMos ClothingStores results. In their study, they: (i) evaluated DeltaJ 1.5 (which is a

DOP approach), (ii) used a similar question to our EQ1 question, and (iii) used a

SimpleTextEditor SPL as the subject system. In comparison, the SimpleTextEditor

consisted of 11 features, while the ClothingStores consists of 25 features.

130 A Generic Method for Assembling Software Product Line Components

Koscielny et al. (2014) also included an extra research question about a comparison

between DeltaJ 1.5 and a plugin-based approach (ECLIPSE RCP). In our case study, we

decided to leave a discussion about the ClothingStores results compared with other

approaches to the end of this section. This is due to most current SPL implementation tools

do not support all the software languages involved in the ClothingStores implementation.

Furthermore, in Section 6.2 we present a deeper analysis of the SPL implementation

mechanisms compared with VariaMos (FragOP).

The subject study (ClothingStores SPL) was properly defined and detailed in Chapter 2.

There, we described the SPL requirements and software architecture. The ClothingStores

was designed as a real-world example, covering most of the problems SPL developers face

when implementing an SPL (which is of particular importance for EQ1). These problems

include crosscutting concerns, fine-grained extensions, coarse-grained extensions, product

customization, and managing multiple language files. These problems are detailed in

Chapter 2.

In the next subsections, we will show the evaluation metrics and the initial case study

results.

6.1.1 Evaluation metrics

The analysis and evaluation of VariaMos source code are difficult, because of missing tool

support to measure variability-aware metrics. To overcome this problem and to cover all

the SPL features, we derived five products (as seen in Table 6-1), and we manually

measured the generated application files source code. For each derived product, we

recorded:

• Name. Product name.

• Leaf features selected. The leaf features that were selected in order to derive the

product, which was based on the feature model (see Figure 5-3).

• Linked domain files. The number of domain files that were linked to the previous

leaf features, which was based on the component model (see Figure 5-6) the

binding model (see Figure 5-12).

• Derived files. The number of application files that were included in the product

folder, after the product derivation activity.

Evaluation 131

• Total derived LOC. The number of lines of code of all derived files (image files

were not included).

• Total injected LOC. The number of lines of code that were automatically injected

by the fragments in the product derivation activity.

• Customized LOC. The number of lines of code that were customized to finalize

the product.

• Percent of injected LOC. The percentage of lines of code that were injected,

compared with the total derived LOC.

• Time to derive (sec). The seconds that took to derive each product. We applied a

little change over the VariaMos tool, in order to record the time spent in the product

derivation activity.

Table 6-1: Derived products

Product name SPL leaf features selected

P1 Basic views, Database management, Demo data, List of products, Product Model

P2
Basic views, Comments, Contact Us, Database management, Demo data, List of

products, Product Model, Shipping

P3

Basic views, Basic views (web management), Comment Management, Comments,

Contact Us, Database management, Demo data, List of products, Login, Product

Management, Product Model, Shipping, User model

P4

Basic views, Basic views (web management), Comment Management, Comments,

Contact Us, Database management, Demo data, List of products, Login, Product

Management, Product Model, Rating, Sharing system, Shipping, User model

P5

Account, Basic views, Basic views (web management), Cart, Comment

Management, Comments, Contact Us, Database management, Demo data, List of

products, Login, Product Management, Online Payment, Offline Payment, Product

Model, Rating, Sharing system, Shipping, User Management, User model

6.1.2 Results

After following the FragOP process (see Chapter 5), we completed the derivation of the five

products. The product finalization was very easy: (i) the derived products were located in

Eclipse web projects, (ii) a couple of Java libraries were added to the projects (a MySQL

connector, and a JSTL library), (iii) the SQL files were imported into a MySQL database,

and (iv) the projects were run over an Apache Tomcat server.

132 A Generic Method for Assembling Software Product Line Components

Figure 6-1: Product section of a derived product (P1); Product section of a derived

product (P5)

Figure 6-1 shows the P1 and P5 products running over a web browser; Figure 6-1-a shows

the P1 “product section” which contains a very basic configuration where the final user is

able to read the product information; and Figure 6-1-b shows the P5 “product section” which

contains a complete configuration where the final user is able to rate, share, comment and

add the product to the cart.

The results show that VariaMos (FragOP) is expressive enough (EQ1) to implement a real-

world, variant-rich multi-language software system. An inspection of the product code

shows that:

• Multiple assets of different types (such as SQL, images, JavaScript, HTML, JSP,

Java, and CSS) were automatically assembled and deployed in the respective

project folder structure (see Figure 6-2).

• Several LOC were derived and automatically injected (see Figure 6-3 and Figure 6-

4). For instance, 27.72 percent of the P5 LOC were automatically injected. This

Evaluation 133

means that a P5 product derivation carried manually without the use of VariaMos

will require to manually modify 560 LOC.

• Between 21 and 50 lines of code were manually customized (supported by the

VariaMos tool) to complete each product finalization (see Table 6-2 and Figure 6-

5). Even, the database queries were automatically generated.

• If we try to derive the P5 with a compositional approach that is attached to a host

language like Java (such as AspectJ, DeltaJ, AHEAD), (i) 26 files must be manually

included in the product folder structure, and (ii) a minimum of 284 LOC (14% of the

total derived LOC) must be manually modified to finalize the product derivation.

Even, without counting the LOC of Java that implies fine-grained extensions that

are not supported by these approaches.

• If we try to derive the P5 with annotative approaches, the results could vary

depending on the annotative approach language support (for instance, Antenna

only supports Java); however, as mentioned before, annotative approaches inject

all code variations inside the domain files, which is not the case in VariaMos

(FragOP). It means that a domain file such as ListOfProducts-OneProduct

(oneproduct.jsp) will contain at least 104 LOC in an annotative approach.

Nevertheless, in VariaMos (FragOP) it only contains 31 LOC and the code variations

are located in separated files (fragments). This characteristic makes domain files of

annotative approaches difficult to maintain and evolve.

Table 6-2: ClothingStores derivation results

Name

Leaf

features

selected

Linked

domain

files

Derived

files

Total

derived

LOC

Total

injected

LOC

Customized

LOC

%

Injected

LOC

Time to

derive

(sec)

P1 5 24 19 486 37 21 7.61 0.04386

P2 8 39 26 802 103 48 12.84 0.05396

P3 13 60 37 1410 240 50 17.02 0.08725

P4 15 70 39 1602 432 50 26.97 0.13434

P5 20 85 46 2020 560 50 27.72 0.18426

134 A Generic Method for Assembling Software Product Line Components

Figure 6-2: Number of files of each derived ClothingStores product by file type

Figure 6-3: LOC of each derived ClothingStores product by file type

Figure 6-4: LOC automatically injected in each derived ClothingStores product by file

type

Evaluation 135

Figure 6-5: Summary of LOC reused, automatically injected and customized of each

derived ClothingStores product by file type

6.1.3 Threads to validity

Although we conducted our evaluation with care, it exhibits some limitations. First, our case

study consists of only one system that is small in size and has been implemented for this

purpose only. Hence, our findings are not generalizable to other (large-scale) systems.

Second, we have not implemented the system with other approaches for implementing

variant-rich systems. However, we made some theoretical comparisons that show the

benefits of the VariaMos (FragOP) approach. We also suggest implementing

ClothingStores with multiple approaches in the future. Third, we analyzed concrete variants

rather than the complete code base. Especially for quality-related measures, such as

complexity or cohesion, this may be limited. However, the main focus of this paper was

rather the technical realization of VariaMos (FragOP), whereas the evaluation was

complementary in order to demonstrate the applicability of VariaMos (FragOP) for

implementing SPLs. We will address the aforementioned shortcomings in a comprehensive

case study in future work.

136 A Generic Method for Assembling Software Product Line Components

6.2 SPL implementation mechanisms comparison

The SMS developed in this thesis and many additional references have shown some

different software tools and SPL implementation approaches used to implement an SPL. In

this section, we compare five SPL implementation approaches which are automated with

the use of non-commercial tools. The comparison is done based on (see Table 6-3):

• Approach type, compositional or annotative or a mix.

• Approach language independence refers to the way in which the approach is

attached to a particular language and its structure, or if it is language independent.

• Tool analyzed, the SPL tool used to support the SPL implementation approach,

and which was analyzed for this comparison.

• Tool software language support, the software languages that the selected tool

currently supports.

• Variation points refer to the way to include the variation points inside the

component files, or the elements that are used a based to include the variability.

• Requires modifying the component code to include the variation points, yes

or no depending on the way the approach or tool support the variation points

inclusion.

• Variant units refer to the way in which the code to be injected, modified, or

removed is codified.

• Allow injecting a variant unit in multiple variant points refers to the possibility

of injecting a code variant in multiple places.

• Granularity support, the type of extensions that can be applied with the current

approach or tool (coarse-grained or fine-grained extensions).

• Type of files used in the component implementation.

• Variability model support refers to the variability models supported by the tool.

• Product configuration refers to the way to configure a specific product.

• Support product customization, yes or no depending on if the approach or tool

support the product customization.

Table 6-3: SPL implementation approaches and tools comparison summary

 AOP CIDE DOP FOP FragOP

Approach type Compositional Annotative Compositional Compositional
Compositional
and annotative

Evaluation 137

Approach
language

independence

Usually
depending on a
particular host

language

Language
independent

Usually
depending on a
particular host

language

Usually
depending on a
particular host

language

Language
independent

Tool analyzed
AspectJ with
FeatureIDE

CIDE DeltaJ
AHEAD with
FeatureIDE

VariaMos

Tool software
language
support

Java Multiple Java Java Multiple

Variation
points

Object-oriented
elements such

as classes,
methods, and

attributes

Markers
(annotations)

Object-oriented
elements such

as classes,
methods, and

attributes

Object-oriented
elements such

as classes,
methods, and

attributes

Fragmentation
points

(annotations)

Requires
modifying the
component

code to
include the
variation
points

No Yes No No

Yes (minimum
modification with

language
comments)

Variant units
Separated

(aspect files)

Combined
(with the

original file)

Separated (delta
module files)

Separated (Jak
files)

Separated
(fragment files)

Allow injecting
a variant unit

in multiple
variant points

Yes No No No Yes

Granularity
support

Coarse-grained
extensions

Coarse-
grained and
fine-grained
extensions

Coarse-grained
extensions

Coarse-grained
extensions

Coarse-grained
and fine-grained

extensions

Type of files
used in the
component

implementatio
n

Component files
and aspects

Component
files with

annotations

Delta modules
(delta files)

Feature modules
(Jak files)

Component files
(with

fragmentation
points and

customization
points),

fragments, and
customization

files

Variability
model support

Feature model
(graphical)

Feature model
(graphical and

textual)

Feature model
(textual)

Feature model
(graphical)

Feature model
(graphical)

Product
configuration

Through feature
selection

(graphical)

Through
feature

selection
(graphical)

Through delta
selection
(textual)

Through feature
selection

(graphical)

Through leaf
feature selection

(graphical)

Support
product

customization
No No No No Yes

As the previous table shows, FragOP (VariaMos) presents some important advantages

versus other approaches (i) FragOP (VariaMos) as other annotative approaches (such as

CIDE) is language independent, this characteristic allows implementing different

components developed in different software language under the same approach. (ii)

138 A Generic Method for Assembling Software Product Line Components

FragOP (VariaMos) as other annotative approaches permits coarse-grained and fine-

grained extensions, which is very useful for applying changes in very specific locations. (iii)

FragOP (VariaMos) as other compositional approaches separates the variations unit from

the domain component files, which reduce the complexity and improves the maintainability

of the domain components files. (iv) FragOP (VariaMos) as other annotative approaches

requires the modification of the domain component files to include the variations points,

however, this modification is different from most annotative approaches; because the

modification is minimum and does not interfere with the code, since it uses language

comments blocks. (v) FragOP (VariaMos) as many other approaches supports feature

model, however, it is designed in a way that new custom models can be included. (vi)

FragOP (VariaMos) as AOP approaches allow injecting a single variant unit in multiple

variant points, which improves the reusability and maintainability. And (vii) FragOP

(VariaMos) compared to other approaches is the only one that supports product

customization.

The comparison presented in this section was made based on some previous work

(Schaefer et al., 2010; Correa et al., 2018) and the official documentation of these

approaches1,2,3,4. Therefore, More details and comparisons of the new approach and other

approaches can be found in Chapters 4 and 5.

6.3 Usability test

This section presents a usability test of VariaMos (version 1.1.0.1). The main idea is to test

the VariaMos usability to support the FragOP approach (EQ3). And so, gain insight into

how easy or difficult is to follow and understand the FragOP approach.

Usability is defined by the International Standard Organization (ISO 9241-11, 1998) as “the

extent to which a product can be used by specified users to achieve specified goals with

effectiveness, efficiency, and satisfaction in a specified context of use”. That means that if

1 https://www.eclipse.org/aspectj/docs.php
2 http://ckaestne.github.io/CIDE/
3 http://deltaj.sourceforge.net/
4 https://github.com/FeatureIDE/FeatureIDE/wiki/Tutorial

https://www.eclipse.org/aspectj/docs.php
http://ckaestne.github.io/CIDE/
http://deltaj.sourceforge.net/
https://github.com/FeatureIDE/FeatureIDE/wiki/Tutorial

Evaluation 139

a product (a software tool in our case) does not provide effectiveness, efficiency and

satisfaction to its users, it is not usable, and therefore will probably not be used.

We intended to evaluate the usability of the VariaMos tool to support the FragOP approach

(EQ3), so, we took as a base two similar studies related to usability testing. First, we

analyzed the work of Rabiser et al. (2012), which presented an implementation of the

capabilities in a configuration tool called DOPLER CW. They performed a qualitative

investigation on the usefulness of the tool’s capabilities for user guidance in product

configuration by involving nine business-oriented experts of two industry partners from the

domain of industrial automation. Their tool was also used in software product lines. Second,

we analyzed the work of Teruel et al. (2014), which presented a usability evaluation of the

CSRML tool 2012; which is a Requirements Engineering CASE Tool for the Goal-Oriented

Collaborative Systems Requirements Modeling Language (CSRML). They involved 28

fourth-year Computer Science students in the evaluation, which was reported by following

the ISO/IEC 25062:2006 Common Industry Format for usability tests.

Subsequently, we decided to develop and conduct a usability test by using the ISO/IEC

Common Industry Format (CIF) for usability tests (ISO/IEC 25062, 2006). We also applied

three evaluation techniques: (i) one for the definition of the experimental tasks (Condori-

Fernández et al., 2013), (ii) another for evaluating user satisfaction by gathering their

opinion through a survey (Lund, 2001), and finally a semi-structured interview to enrich this

usability test. Eight graduate students participated in this study. They were asked to carry

out a set of tasks about a sample of an e-commerce software product line. The usability of

the tool was measured by several variables such as tasks completion rate, elapsed time,

and a satisfaction questionnaire.

Following we present: (i) product description, (ii) test objectives, (iii) context of use, (iv)

usability metrics, (v) usability test process, (vi) results, and (vii) validation threads.

Note: the usability test format completed for this evaluation can be found in an online

repository (Correa, 2018). That repository also contains all the documents used in the

usability test. Including pre-questionnaire, post-questionnaire, pre-experiment setup A,

experiment part A, pre-experiment setup B, experiment part B, and program installation.

140 A Generic Method for Assembling Software Product Line Components

6.3.1 Product description

Product name: VariaMos

Product Version: 1.1.0.1

Website: https://variamos.com

GitHub: https://github.com/SPLA/VARIAMOS

VariaMos target users: this tool is intended to be used for researchers, students, software

developers and industrials which are interested in the software product line methodology.

This includes people with experience in the software product lines field and novice people

who are interested in adopting a software product line methodology. Finally, this tool can

be also used for people who are interested in component-based software development.

VariaMos assistive technologies: SWI-Prolog, MXGraph.

VariaMos evaluated parts: (a) feature modeling, (b) domain component modeling, (c)

binding modeling, (d) product configuration, (e) product derivation, (f) product syntax

verification, and (g) product customization. Additionally, we evaluated the “implementing

domain components” FragOP activity, which is not supported by VariaMos, but it is very

important inside the FragOP process.

6.3.2 Test objectives

As previously stated, the main idea is to test the VariaMos usability to support the FragOP

approach (EQ3). This is why we focused on seven VariaMos features as seen in Figure 6-

6. Additionally, we consider the domain component implementation, which was not

supported by VariaMos, but it is very important inside the FragOP process. So, we plan to

test:

a) Feature modeling: the ability of the users to interact and modify the feature models.

b) Domain component modeling: the ability of the users to interact and modify the

component models.

c) Binding modeling: the ability of the users to interact and modify the binding

models.

d) Product configuration: the ability of the users to interact and create custom

product configuration.

e) Product derivation: the ability of the users to derive software products and to find

product derivation errors.

Evaluation 141

f) Product syntax verification: the ability of the users to verify software products and

to find product syntax verification errors.

g) Product customization: the ability of the users to customize software products.

h) Domain component implementation (not supported by VariaMos): the ability of

the users to interact, modify and create domain files.

Figure 6-6: VariaMos tool highlighting the evaluated features

6.3.3 Context of use

Test facilities

• Intended context of use: any workplace with people interested in SPL or

component-based software development.

• Context used for this test: the usability test was conducted in a laboratory of the

Facultad de Minas at the Universidad Nacional de Colombia. The participants use

their own computers with a list of software programs previously installed and

configured. They were requested to record their tasks through the use of google

drive documents. Additionally, two test administrators were observing and attending

142 A Generic Method for Assembling Software Product Line Components

the participants’ questions. Finally, we use audio record programs to record the

participants’ opinions at the end of the experiment.

Participants’ computer environment

• Intended context of use: VariaMos 1.1.0.1 is intended to use for any PC running

Windows or Unix operating systems.

• Context used for this test: as previously stated, we requested the participants to

bring their own PC. This way we will test how the tool performs over very different

PC configurations. Some of the participant PC included: (i) operating systems, such

as Windows, Linux, and macOS; (ii) RAM between 2 GB and 12 GB; (iii) display

units between 14” and 17”; and (iv) the software programs required to execute the

projects. The software programs included: VariaMos 1.1.0.1, Eclipse Oxygen EE 3,

Java (JDK 8), Apache Tomcat 8.5.

6.3.4 Usability metrics

A product (or a software tool in our case) must provide effectiveness, efficiency, and

satisfaction to its users, based on that, we defined the next usability metrics.

A) Effectiveness

• Completion rate: unassisted completion rate was defined as the percentage of

participants who completed each task correctly without any assistance from the test

administrator. The assisted completion rate was defined as the percentage of

participants who completed each task correctly with the test administrator

intervention.

• Errors: an error was defined as a task completed wrongly or not completed.

• Assists: an assist was defined as verbal help given by the test administrators to

guide the participant to the next step in completing the task. Test administrators also

provide help to the participants to understand a task definition that was not very

clear to them, but this type of assists was not recorded.

B) Efficiency

• Task time: the amount of time to complete each task.

• Completion rate efficiency: mean completion task rate/mean task time.

Evaluation 143

C) Satisfaction

At the end of the experiment, participants completed a post-questionnaire. Subjects rated

some questions on a 5-point Likert scale, and there were other questions about VariaMos

and FragOP. Scores were given for each participant's perception of ease of use, easy to

learn, easy to remember and subjective satisfaction. Therefore, a semi-structured group

interview was carried out about tool usability.

6.3.5 Usability test process

The usability test was designed as a process with nine activities (see Figure 6-7), which is

described next.

Figure 6-7: Usability test process (UML activity diagram)

6.3.5.1 Participants’ selection

Eight graduate students from the Universidad Nacional de Colombia participated in this

testing. These students were attending a postgraduate course in software modeling. The

participants agreed to develop the usability test during two sessions of their software

modeling course (each session lasted four hours). We told them that we want to find errors

and evaluate the usability of a tool called VariaMos. We told them that their personal

information (such as name, email, and company, among others) won’t be exposed so they

will appear in the report as participant 1..N. We explained to them that the usability test was

about a software tool used to design and implement SPL components, and they will be

requested to complete some tasks. Next, participants were asked to sign a document to

participate in the experiment.

144 A Generic Method for Assembling Software Product Line Components

6.3.5.2 Pre-questionnaire

The usability test started with a request to the participants to complete a pre-questionnaire

about their background and software experience (see Appendix C). The pre-questionnaire

was designed using a Likert scale (Likert, 1932), which had a five-point format: (1) strongly

disagree, (2) somewhat disagree, (3) neither agree nor disagree, (4) some-what agree, and

(5) strongly agree. The intention was to collect information about the participants’

background and experience and in order to confirm the participants’ lack of knowledge with

FragOP and VariaMos (see Table 6-4 and Table 6-5). The pre-questionnaire took 15

minutes of the first session.

Table 6-4: Participants’ pre-questionnaire information summary first part

Participant Gender Job occupation
Professional

experience (years)

P1 Male
Software Development and

Automatization
3

P2 Male Software Development 7

P3 Male Software Development 3

P4 Male Software Development 3

P5 Male Web development 3

P6 Male
Software Development and

Database Analyst
5

P7 Male Software Development 8

P8 Male Web development 3

Table 6-5: Participants’ pre-questionnaire information summary second part

Participant Experience
with

software
development

Experience
with

component
development

Experience
with SPL

implementation

Experience
with

VariaMos

Experience
with FragOP

P1 5 3 1 1 1

P2 4 3 2 1 1

P3 3 3 1 1 1

P4 4 4 2 1 1

P5 4 4 1 1 1

P6 4 3 1 1 1

P7 4 2 1 1 1

P8 4 3 1 1 1

Mean 4.000 3.125 1.250 1.000 1.000

Standard
Deviation

0.535 0.641 0.463 0.000 0.000

Standard
Error

0.189 0.227 0.164 0.000 0.000

Min 3 2 1 1 1

Max 5 4 2 1 1

Evaluation 145

The participants’ background and experience were very important to develop the usability

test. The pre-questionnaire results showed that participants have knowledge in software

development (mean = 4,000; stdev = 0,535) and more or less knowledge in component

development (mean = 3,125; stdev = 0,641). The pre-questionnaire also shows that the

participants have lack of knowledge in SPL (mean = 1,250; stdev = 0,463), VariaMos (mean

= 1; stdev = 0), and FragOP (mean = 1; stdev = 0). The last two results were mandatory to

execute this usability test.

Based on the participants’ background and experience, these participants could be

classified as “novice people who are interested in adopting a software product line

methodology” who are one of the VariaMos user target population.

6.3.5.3 SPL, FragOP and VariaMos introduction

After the pre-questionnaire, we started a magistral class. In this class, we presented the

main concepts of SPL, FragOP, and VariaMos, and we developed a very small example of

the use of FragOP and VariaMos. This introduction was important because the participants

didn’t have knowledge about SPL, so, we introduced topics, such as software product lines,

software product line engineering, feature modeling, domain engineering, application

engineering, fragment-oriented programming, and product derivation, among others. The

introduction took 3 hours of the first session.

6.3.5.4 Pre-experiment setup part A

The second session started with the “pre-experiment setup part A”. Here, the participants

were introduced to a document which presented a series of steps to set up an SPL project

with the use of VariaMos. Therefore, it showed how to run a derived product in the Eclipse

EE environment. This project was the base to carry out the experiment part A. The pre-

experiment setup took 30 minutes of the second session.

6.3.5.5 Experiment part A

Once all participants completed the pre-experiment setup part A, we shared with them a

personal Google Drive folder with the experiment part A (see Appendix D). Then, they

started to complete the five experiment part A tasks. There was a limit of 90 minutes for

146 A Generic Method for Assembling Software Product Line Components

this part. Additionally, two test administrators were observing and attending the participants’

questions. The experiment part A tasks were about:

• Task 1: Deriving and customizing a different product based on the pre-experiment

base SPL project.

• Task 2: Understanding how the fragments work. Here the participant completes

some information about the previous derived product.

• Task 3: Modifying a domain component. Here the participant tries to figure out how

to modify a domain component based on a screenshot of a derived product.

• Task 4: Creating a fragmentation point and fragment. Here the participant is

requested to create a modification of the component pool which includes a new

feature, new component, and new binding, among others.

• Task 5: Deriving a new product which includes the previous created feature.

6.3.5.6 Pre-experiment setup part B

After the experiment part A, the participants were requested to follow a “pre-experiment

setup part B”, here, the participants were introduced to a document which presented a

series of steps to set up a new SPL project with the use of VariaMos. The pre-experiment

setup took 15 minutes of the second session.

6.3.5.7 Experiment part B

Once all participants completed the pre-experiment setup part B, we shared with them a

personal Google Drive folder with the experiment part B (see Appendix E). Then, they

started to complete the two experiment part B tasks. There was a limit of 30 minutes for

this part. Additionally, two test administrators were observing and attending the participants’

questions. The experiment part B tasks were about:

• Task 1: Finding and fixing product derivation errors on the pre-experiment base

SPL project.

• Task 2: Finding and fixing product syntax verification errors on the pre-experiment

base SPL project.

6.3.5.8 Post-questionnaire

The participants were submitted to a post-questionnaire, which included questions about

(i) experiment environment, (ii) overall satisfaction, (iii) VariaMos and FragOP performance,

Evaluation 147

(iv) general question, and (v) specific questions about the VariaMos and FragOP theory

(see Appendix F). The post-questionnaire was also designed using a Likert scale. The post-

questionnaire took 15 minutes of the second session. The post-questionnaire results can

be found in Section 6.3.6.

6.3.5.9 Semi-structured group interview

At the end of the testing, a semi-structured group interview with all the participants was

carried out. We asked them four open questions about the tool usability, and we recorded

the participants’ answers. The questions were:

• What did you like?

• What did you dislike/What should be improved?

• What are the opportunities when using this tool in daily business?

• What are the risks when using this tool in daily business?

The group interview results can be found in Section 6.3.6.2.

6.3.6 Results

Next, we discuss the usability test results, based on the performance results and the

satisfaction results.

6.3.6.1 Performance results

All the eight participants completed all the seven tasks. Three of them completed all seven

tasks without assistance. A total of seven assistances were given to the participants, five

of these assistances were requested to the Task 4 – Part A, which was the most the

complex task (participants spend a mean of 31 minutes to complete this task). The mean

total time to complete all the seven tasks was approximately 72 minutes. There were not

errors because all the participants completed all the tasks properly (see Table 6-6).

Table 6-6: Participants’ performance result summary

Participant

Assisted
task

completion
rate

Unassisted
task

completion
rate

Total
Task
time

Errors Assistance
Mean
task
time

Efficiency

P1 100 100 81 0 2 11.571 8.642

P2 100 100 72 0 1 10.286 9.722

148 A Generic Method for Assembling Software Product Line Components

P3 - 100 71 0 0 10.143 9.859

P4 100 100 85 0 1 12.143 8.235

P5 - 100 61 0 0 8.714 11.475

P6 - 100 53 0 0 7.571 13.208

P7 100 100 90 0 2 12.857 7.778

P8 100 100 64 0 1 9.143 10.938

Mean 100.000 100.000 72.125 0.000 0.875 10.304 9.982

Standard
Dev

0.000 0.000 12.654 0.000 0.835 1.808 1.826

Standard
Error

0.000 0.000 4.474 0.000 0.295 0.639 0.646

Min 100.000 100.000 53 0 0 7.571 7.778

Max 100 100 90 0 2 12.857 13.208

Figure 6-8 shows that the participants spend more time developing Task 4 – Part A (mean

of 31 minutes). This task was about creating a fragmentation point and a fragment. This

task involved: (i) the creation of a new feature, (ii) the creation of a new domain component

and file, (iii) the development of a fragment and a new fragmentation point (without the

support of VariaMos), and (iv) the update of the binding model. It also shows that the

participants spend little time in the development of Task 5 – Part A and Task 2 – Part B.

Task 5 – Part A was about a new product derivation, which took on average approximately

4 minutes; Task 2 – Part B was about finding validation errors, we included a syntax error

over a domain file and on average the participants only spend approximately 4 minutes in

finding and fixing the error.

Figure 6-8: Participants’ average time to complete each task

The results of this study show that all the participants were able to complete a set of tasks

in which VariaMos supported the FragOP process. Including:

• Feature modeling, through Task 4 – Part A.

• Domain component modeling, through Task 4 – Part A.

Evaluation 149

• Binding modeling, through Task 4 – Part A.

• Product configuration, through Task 1 – Part A, Task 5 – Part A.

• Product derivation, through Task 1 – Part A, Task 1 – Part B, Task 5 – Part A.

• Product syntax verification, through Task 2 – Part B.

• Product customization, through Task 1 – Part A.

• Domain component implementation, through Task 2 – Part A, Task 3 – Part A, Task

4 – Part A, Task 1 – Part B, Task 2 – Part B.

Finally, it is important to highlight that all the participants were novice SPL developers and

FragOP novice developers. So, the results in this test provide preliminary evidence that

VariaMos is a usable tool that properly supports the FragOP approach (EQ3). All the

participants completed all the tasks (effectiveness), and the mean task time was

approximately 10 minutes (efficiency). The tool also provides properly errors notifications

that help developers to find fragment errors or domain component errors easily. Task 1 –

Part B and Task 2 – Part B were about finding errors in fragments and domain components

that even the participants did not develop. The mean for Task 1 – Part B time was

approximately 10 minutes, and the mean for Task 2 – Part B time was approximately 4

minutes.

6.3.6.2 Satisfaction results

The satisfaction results were obtained from two sources. First, we analyzed 21 of the 26

post-questionnaire questions. Scores for the 21 questions were given for each participant,

based on four usability attributes: ease of use, ease of learning, ease of remembering and

subjective satisfaction. It is important to realize that usability is not a single, one-

dimensional property of a user interface. Usability has multiple components and is

traditionally associated with different usability attributes (Nielsen, 1993). Second, we

analyzed the semi-structured interview results which will be presented at the end of this

section. Finally, the other five post-questionnaire questions results are used in Section 6.3.7

as a source of information for the validation threads.

The summary of the 21 questions results can be seen in Table 6-7. The highest satisfaction

result was about the “ease of use” of VariaMos with a mean of 4.153 (see Figure 6-9).

Therefore, on average the participants had 4.6 correct answers of a total of 6 when asked

about VariaMos and FragOP functionalities (see Figure 6-10).

150 A Generic Method for Assembling Software Product Line Components

• Ease of use was calculated as the mean value between the results obtained by the

participant in the post-questionnaire “About VariaMos and FragOP performance”

(Question VF1 to question VF9). The results show that the most perceived easy

FragOP process was binding modeling (mean = 4.375; stdev = 0.518) and the less

perceived easy FragOP process were product configuration (mean = 3.625; stdev

= 0.916) and domain component implementation (mean = 3.875; stdev = 1.246).

• Ease of learning was calculated based on the result obtained by the participant in

the post-questionnaire “General Questions” (Question G1).

• Ease of remembering was calculated based on the result obtained by the

participant in the post-questionnaire “About VariaMos and FragOP performance”

(Question VF11).

• Subjective satisfaction was calculated as the mean value between the results

obtained by the participant in the post-questionnaire “About VariaMos and FragOP

performance” (Question VF10 and question VF12) and “General Questions”

(Question G2 and Question G3).

• VariaMos and FragOP correct answers were calculated as the mean value

between the results obtained by the participant in the post-questionnaire “Specific

Questions” (Question SQ1 and question SQ6). This also provides support to the

“ease of remembering” attribute.

Table 6-7: Participants’ satisfaction result summary

Participant Ease of use
Ease of
learning

Subjective
satisfaction

Ease of
remembering

VariaMos
and FragOP

correct
answers

P1 4.2 4.0 2.5 5.0 5.0

P2 4.1 5.0 5.0 4.0 5.0

P3 3.9 4.0 4.0 4.0 5.0

P4 4.0 4.0 3.5 3.0 3.0

P5 5.0 1.0 3.8 4.0 4.0

P6 4.6 5.0 3.3 4.0 5.0

P7 3.8 4.0 3.5 4.0 5.0

P8 3.7 2.0 2.8 3.0 5.0

Mean 4.153 3.625 3.531 3.875 4.625

Standard Dev 0.440 1.408 0.773 0.641 0.744

Standard
Error

0.156 0.498 0.273 0.227 0.263

Min 3.7 1.0 2.5 3.0 3.0

Max 5.0 5.0 5.0 5.0 5.0

Evaluation 151

Figure 6-9: Satisfaction question average results

Figure 6-10: Participants’ correct answers about VariaMos and FragOP

Finally, the semi-structured interview showed that in general participants liked the software

application and saw the potential of this tool and the FragOP approach. They mentioned

that is a good strategy to reuse the domain components and assembled them. Some of

them think this tool could improve their work at their companies and liked the way the

FragOP approach worked.

There were also some recommendations to improve the tool: (i) the graphical interface

could be improved. A participant mentioned that future work could be to move the graphical

interface into a web project. Allowing to use cellphones or tablet to open the application or

152 A Generic Method for Assembling Software Product Line Components

to avoid the installation of software programs. And (ii) another participant suggested to

automatically generate the component model based on the component pool folder

information, which will save time.

6.3.7 Validation threads

The outcome of validation is to gather enough scientific evidence to provide a sound

interpretation of the results. Validation threats are issues and scenarios that may distort

that evidence and thus incorrectly support (or discard) expected results. Each validation

threat should be expected and addressed a priori in order to yield unbiased results or, at

least, minimize posterior with effective counter-measures. This section addresses expected

validation threats and how these were discarded, while others should be attentively focused

in future experiments. Table 6-8 shows the participants post-questionnaire results of some

questions which help to discard some threats.

Table 6-8: Participants’ post-questionnaire external factors and overall satisfaction

result summary

Participant EF1 EF2 EF3 OS1 OS2
P1 3 3 2 5 5
P2 4 4 2 5 5
P3 4 4 1 4 4
P4 2 4 3 4 3
P5 1 3 2 4 4
P6 1 4 1 5 5
P7 3 4 3 3 4
P8 2 2 2 4 2

Mean 2.500 3.500 2.000 4.250 4.000
Standard Dev 1.195 0.756 0.756 0.707 1.069

Standard
Error

0.423 0.267 0.267 0.250 0.378

Min 1 2 1 3 2
Max 4 4 3 5 5

• Participants sample. The number of participants may seem relatively small.

However, the ISO/IEC Common Industry Format (CIF) for usability tests states

“eight or more subjects are recommended” (ISO/IEC 25062, 2006). Therefore,

these participants belong to one of the VariaMos user target population (novice

people who are interested in adopting a software product line methodology).

• Conclusion validity. There is a threat that many of the results are not based on

statistical relationships but on qualitative data. However, given that the main aim of

Evaluation 153

the study was to study the behavior and opinions of users of a tool, qualitative

research methods are well suited. The analysis of the collected data still depends

on our interpretation. The work was performed by a single researcher, but the result

was carefully checked by two other researchers.

• Project size. We selected a basic SPL project due to target users that participated

in this usability test (novice people who are interested in adopting a software product

line methodology). However, we have shown in previous sections that the tool also

works with complex SPL projects (see Section 6.1).

• Insufficient skills to execute the tasks. The tasks required participants to have

the necessary skill to work with a modeling tool (VariaMos) and to have knowledge

in software development. We designed a basic SPL project for the novice SPL

developers, and we prepared an introduction to the modeling tool and SPL. This

threat was discarded by the participants’ pre-questionnaire results, through

questions 2 to 6.

• Lack of documentation and guides. Due to the length of the tasks, and the fact

that participants were novice in SPL, VariaMos, and FragOP, the lack of proper

documentation or guides could hinder the outcome. This threat is discarded by post-

questionnaire questions OS1 and OS2.

• External factors. Despite the noise or disturbance that could be generated in a

laboratory by other students, it was necessary to make sure that the experiment

environment was not a threat to validity. This threat was analyzed by the post-

questionnaire questions EF1, EF2, and EF3. EF2 shows the participants more or

less enjoyed modeling and developing in the experiment (mean 3.5). EF3 shows

got a little distracted by other colleagues (mean 2), and EF1 shows found the

experience environment a little intimidating (mean 2.5). However, the results show

the participant completed all the tasks.

6.4 Summary

This chapter presented three evaluations which were designed to confirm how FragOP and

VariaMos support the SPL implementation.

The first evaluation showed that VariaMos (FragOP) is expressive enough to implement a

real-world, variant-rich multi-language software system. After a code inspection of the result

154 A Generic Method for Assembling Software Product Line Components

of deriving five different products, we found that multiple assets of different types were

automatically assembled and deployed in the respective project folder structure, several

LOC were derived and automatically injected, between 21 and 50 lines of code were

manually customized (with VariaMos support), and we described some theoretical

differences in the case of trying to derive those products with other approaches.

The second evaluation showed the differences between VariaMos (FragOP) and similar

SPL implementation mechanism and tools. In this case, we compared VariaMos FragOP

with AspectJ (AOP), CIDE (annotative), DeltaJ (DOP), and AHEAD (FOP). We found many

differences and some advantages of the FragOP versus the other approaches.

The third evaluation performed a usability test of the VariaMos tool to support the FragOP

approach by using the ISO/IEC Common Industry Format (CIF) for usability tests. For the

usability test, we defined some experimental tasks, evaluated the user satisfaction and

developed a semi-structured interview. Eight graduate students participated in the usability

test and were asked to carry out a set of tasks about a sample of an e-commerce software

product line. In the end, all the participants completed all the seven tasks, and the mean

task time was approximately 10 minutes. The results in this test provide preliminary

evidence that VariaMos supports the SPLE and the FragOP approach.

Finally, there is much future work and research to do, such as the development of more

tests and experiments under real industrial settings, development of more complex SPL

projects under the FragOP approach, and practical comparisons of the FragOP approach

and other approaches, among others.

7. Conclusions and future research

The main objective of this thesis is to answer the research question: How can software

product line components be automatically assembled independently of their software

language in a generic and reusable way? To answer this question, this thesis proposes:

• An SMS in SPL implementation, including SPL component implementation.

• A new SPL implementation approach called FragOP, which is a mix of

compositional and annotative approaches. The new approach includes a

metamodel and a process to implement SPLs. It also defines two main capabilities,

generic assembling, and generic customization.

• A running example to exemplify and demonstrate the use of the new approach.

• A tool to automate the new SPL implementation approach.

• An analysis of multiple product derivations.

• A comparison of the new approach with other current approaches.

• A usability test of the new approach and tool.

7.1 Conclusions

The proposals used to answer the research questions of this thesis are summarized in the

next sub-sections.

7.1.1 State of art in SPL implementation

State of the art in SPL implementation including SPL component implementation shows:

• The most discussed SPL implementation approaches are AOP, SOA, annotative

approaches, FOP, and DOP; which are commonly grouped in two categories,

compositional and annotative approaches.

• There are a few studies that mix compositional and annotative approaches.

156 A Generic Method for Assembling Software Product Line Components

• Most of the current approaches use Java as a base to design the SPL components

or are attached to a specific software language. However, software applications use

on average of 5 different software languages.

• All the current approaches present some limitations, for example, some of them

support only coarse-grained extensions, are attached to a specific software

language, and include the code variations inside the reusable component files which

increases the component complexity, among others.

• There is no approach that allows the generic assembling of SPL components

independent of their software language and reduces component complexity.

7.1.2 FragOP SPL implementation approach

This thesis proposes a new SPL implementation approach called FragOP. FragOP is a

framework used to design, implement and reuse domain components in the context of an

SPL. This framework is a mix of compositional and annotative approaches, which is based

on the definition of six fundamental elements: (i) domain components, (ii) domain files, (iii)

fragmentation points, (iv) fragments, (v) customization points, and (vi) customization files.

FragOP contains two main capabilities generic assembling and customization. The

assembling capability provides an effective and generic way to support component

variability and improve product derivation. The customization capability provides an

effective and generic way to support component customization and guide SPL developers

in the product customization activity. Both capabilities are designed to support multiple

software languages, which includes assembly and customization at code level (in a generic

way), or in the cases that this is not possible, then assembly and customization at entire file

level (in a generic way).

Therefore, we defined the FragOP process which describes the way to implement an SPL

under the FragOP approach. This process contains eight activities that go from modeling

PL requirements to verify products.

Additionally, a running example was designed as a real-world example, covering most of

the problems SPL developers face when implementing an SPL. The use of the running

Conclusions and future research 157

example helps to demonstrate and exemplify the capabilities of the FragOP approach in a

practical way.

7.1.3 VariaMos automation

FragOP approach includes the use of six fundamental elements and eight FragOP process

activities, and there is a need to automate the FragOP approach, otherwise, the benefits of

this approach are dismissed. There is a tool that already supports some of the FragOP

process activities such as modeling PL requirements and configuring products; that tool is

called VariaMos. VariaMos was enhanced to support seven of the eight FragOP process

activities.

VariaMos connects and uses some software tools to support some of the previous activities.

For example, (i) the use of MxGraph which is a diagramming library that enables interactive

graph and charting applications to be quickly created, which allows creating the different

models such as feature models and component models. (ii) The use of ANTLR which is a

language tool that provides a framework for constructing recognizers, compilers, and

translators from grammatical descriptions. This tool allows us to check the derived

component file grammar and execute the product syntax verification activity. And (iii) the

use of SWI-Prolog which is a free implementation of the programming language Prolog that

allows checking the models’ semantics.

7.1.4 FragOP and VariaMos evaluation

Three evaluations were applied to confirm how FragOP and VariaMos support the SPL

implementation.

• The first evaluation included the development and analysis of the ClothingStores

and a derivation of five products. The results show that VariaMos (FragOP) is

expressive enough to implement a real-world, variant-rich multi-language software

system. The derivations showed that (i) multiple assets of different types and

software languages were automatically assembled and deployed in the respective

project folder structure. (ii) Several LOC were derived and automatically injected.

And (iii) the product customization was successfully supported. In the end, no single

line of code had to be manually modified (without the use of VariaMos) to complete

158 A Generic Method for Assembling Software Product Line Components

the product derivation; this is an important result that shows that the manual

intervention can be reduced at minimum.

• The second evaluation was about SPL implementation mechanisms comparison. It

described in detail the differences between FragOP and other approaches,

therefore, it highlighted some benefits of the FragOP approach.

• The third evaluation presented and evaluated the usability of the VariaMos tool to

support the FragOP approach. This test was applied with the use of the ISO/IEC

Common Industry Format (CIF) for usability tests. Eight graduate students

participated and carried out a set of tasks about a sample of an e-commerce

software product line. The results provide preliminary evidence that VariaMos

supports the SPLE and the FragOP approach.

7.2 Future Research

A desirable aspect of any research is that in addition to providing solutions to initial issues

or questions, it should identify new research topics that would allow researchers to further

work to eventually produce more useful knowledge and progress. This section presents

some research directions and required additional work on SPL implementation, component

implementation, and also some particular research directions in the improvement of the

FragOP approach and VariaMos, including and further validation of the approach presented

in this thesis.

7.2.1 Future work in variability modeling

Future works in SPL variability modeling include the following items:

• Implement complex binding relationships. Currently, VariaMos (FragOP) only

allows a one-to-one binding relationship. One component connected to one feature.

Nevertheless, we plan to implement a constraint network (Lecoutre, 2009) to

graphically represent more complex domain implementation relationships such as

“Domain components C1 or C2, but not both, can be used to implement feature F”.

• Support more variability models. There are different types of models that can be

used to represent the SPL requirements and variability. Currently, VariaMos

(FragOP) only supports feature models, however, we think it is important to support

more variability models, such as goals models (Asadi et al., 2011). For example,

Conclusions and future research 159

goal models allow representing quality attributes (non-functional requirements)

which is not supported by the feature models.

• PLA variability. The domain components developed for the FragOP approach or

for most of the SPL implementation approaches are designed and codified based

on a single SPL software architecture. So, implementing and supporting PLA

models and refining SPL components to support variability at architectural level

arises as an interesting research topic.

7.2.2 Future work in SPL testing

Future works in SPL testing include the following items:

• Test variability. SPL components support variability, so, how to design, store, and

execute tests that can be applied to variable components is an important research

topic.

• Unit tests, integration tests, and systems tests. Developing new test approaches

that allow FragOP testing at different levels such as at domain and application level

is an important future work.

7.2.3 Future work in tool automation

The result of the usability test, some VariaMos developers’ suggestions, and the trend to

develop applications in the cloud were considered to redesign the VariaMos project as a

web application. Web SPL tools present some advantages versus desktop applications,

such as distributed computing, responsive design (user interfaces), collaborative modeling,

easy maintenance, improve usability, and improve connectivity, among others.

That is the reason why we decided to create a new VariaMos version called VariaMos web1.

This new version was developed with trending technologies, such as HTML, CSS,

JavaScript, Vue.js (a JavaScript framework), MxGraph-JS (the modeling library in which

DRAW.IO is based), Java, Spring MVC (a Java framework), and SWI-PROLOG (an

implementation of the programming language Prolog).

1 https://variamos.com/home/variamos-web/

https://variamos.com/home/variamos-web/

160 A Generic Method for Assembling Software Product Line Components

Figures 6-11 and 6-12 show the new VariaMos web user interface. This new version

contains all the FragOP functionalities from the VariaMos old version (desktop version),

from feature modeling to product derivation. And the source code can be found in two

GitHub repositories, one contains the front-end application and the other contains the back-

end application. This web version is currently under development and many other

functionalities from the VariaMos old version are in process to be included.

Figure 7-1: VariaMos web feature model view

Figure 7-2: VariaMos web component model view

Conclusions and future research 161

Finally, future works in SPL tool automation include the following items:

• Support static code analysis. There are different tools that support static code

analysis, such as CheckStyle1, SonarQube2, and Infer3. We think we can take

advantage of some of these tools to analyze the code of the domain and application

files, in order to detect potential bugs and issues.

• Support verification of more languages. Currently, VariaMos (FragOP) support

verification of some software languages, such as Java, PHP, and HTML. However,

we plan to extend the support for more languages.

• Support VariaMos component verification at domain level. Currently, it is only

possible to verify the application files after the product derivation, however, we plan

to extend the support to verify the domain component files at domain level with the

execution of some integration tests.

• Improve VariaMos to automate partially the creation of the component model

based on the directories. We plan to use the information of the component pool

directory to allow a partial automation of the domain component model creation.

• Support the storage of component tests. We also plan to extend the domain

component pool structure and domain component model to support sorting and

managing component tests.

7.2.4 Future work in evaluation

Future works in SPL implementation approach evaluations include the following items:

• Test with real companies. Future work can focus on testing the new approach in

real industrial settings. Including the development and implementation of complex

software product lines.

• Complex comparison between the different approaches. It is important to

compare and test the different approaches with practical experiments and

evaluations. To gain insights about the support, benefits, and issues with each

approach.

1 https://checkstyle.sourceforge.io/
2 https://www.sonarqube.org/
3 https://fbinfer.com/

https://checkstyle.sourceforge.io/
https://www.sonarqube.org/
https://fbinfer.com/

162 A Generic Method for Assembling Software Product Line Components

A. Appendix: Publications

This appendix contains the titles and venues of the publications the Ph.D. research has

produced so far:

Journals:

Correa, D., Mazo, R., & Giraldo-Goméz, G.L. (2018). Fragment-oriented programming: a

framework to design and implement software product line domain components. DYNA, vol.

85(207), pp. 74-83.

Conferences with proceedings:

Correa, D., Mazo, R., & Giraldo, G. L. (2019, June). Extending FragOP Domain Reusable

Components to Support Product Customization in the Context of Software Product Lines.

In International Conference on Software Reuse (ICSR), pp. 17-33, Springer, Cham.

Book chapters:

Correa, D., & Mazo, R. (2018). Implementación de componentes reutilizables de dominio.

In Guía para la adopción industrial de líneas de productos de software, Editorial Eafit, ISBN

978-958-720-506-0, pp. 307-368, Medellín-Colombia.

Correa, D., & Mazo, R. (2018). Verificación y validación de componentes reutilizables de

dominio. In Guía para la adopción industrial de líneas de productos de software, Editorial

Eafit, ISBN 978-958-720-506-0, pp. 369-384, Medellín-Colombia.

164 A Generic Method for Assembling Software Product Line Components

Correa, D., & Mazo, R. (2018). Selección de los mecanismos de ensamblaje y ensamblaje

de los componentes de aplicación. In Guía para la adopción industrial de líneas de

productos de software, Editorial Eafit, ISBN 978-958-720-506-0, pp. 459-480, Medellín-

Colombia.

Cobaleda, L., Mazo, R., & Correa, D. (2018). Selección, personalización y aumento de

componentes reutilizables de dominio para cada aplicación. In Guía para la adopción

industrial de líneas de productos de software, Editorial Eafit, ISBN 978-958-720-506-0, pp.

447-458, Medellín-Colombia.

Cortés, A., Mazo, R., & Correa, D. (2018). Pruebas de integración, del sistema, de

certificación y de aceptación de los productos derivados de una línea de productos. In Guía

para la adopción industrial de líneas de productos de software, Editorial Eafit, ISBN 978-

958-720-506-0, pp. 481-502, Medellín-Colombia.

Mazo, R., Noreña, G., Jaramillo, L., & Correa, D. (2018a). Marco de referencia para la

adopción y la gestión de líneas de productos de software. In Guía para la adopción

industrial de líneas de productos de software, Editorial Eafit, ISBN 978-958-720-506-0, pp.

39-58, Medellín-Colombia.

Other publications developed during the PhD program, but non-related with the

thesis topic

Alvarez, D., Correa, D., & Arango, F. (2016, April). An analysis of XSS, CSRF and SQL

injection in Colombian software and web site development. In 2016 8th Euro American

Conference on Telematics and Information Systems (EATIS), pp. 1-5, IEEE.

Correa, D., Arango, F., Mazo, R., & Giraldo, G. L. (2018, June). CME – A Web Application

Framework Learning Technique Based on Concerns, Micro-Learning and Examples. In

International Conference on Web Engineering, pp. 17-32, Springer, Cham.

Lozano, S., Monsalve, E. S., Vallejo, P., Mazo, R., & Correa, D. Comparando dos

Estrategias de Aprendizaje Activo para Enseñar SCRUM en un Curso Introductorio de

Appendix A. Publications 165

Ingeniería de Software. [To appear in the INGENIARE journal, Volumen 28 N°1 2019-2020,

ISSN: 0718-3305].

Monsalve, E. S., Vallejo, P., Mazo, R., & Correa, D. (2017). Transparency as a learning

strategy to teach Software Engineering. In Proceeding of the 12 Colombian Conference on

Computing (CCC), Cali, Colombia.

B. Appendix: List of Systematic
Mapping Study selected studies

The following contains the list of all the 88 SMS selected studies.

Reference

S1

Heider, W., Vierhauser, M., Lettner, D., & Grunbacher, P. (2012). A case study on the
evolution of a component-based product line. In: 2012 Joint Working IEEE/IFIP Conference
on Software Architecture (WICSA) and European Conference on Software Architecture
(ECSA), pp. 1–10. IEEE Computer Society, Washington.

S2

Heymans, P., Boucher, Q., Classen, A., Bourdoux, A., & Demonceau, L. (2012). A code
tagging approach to software product line development. International Journal On Software
Tools For Technology Transfer, vol. 14(5), pp. 553-566.

S3

Shen, L., Peng, X., & Zhao, W. (2009, April). A comprehensive feature-oriented traceability
model for software product line development. Australian Software Engineering Conference
(ASWEC), pp. 210-219, IEEE.

S4

Falvo, V., Duarte Filho, N. F., Oliveira, E., & Barbosa, E. F. (2014, October). A contribution to
the adoption of software product lines in the development of mobile learning applications.
Frontiers in Education Conference (FIE), pp. 1-8, IEEE.

S5

Lee, J., Muthig, D., & Naab, M. (2010). A feature-oriented approach for developing reusable
product line assets of service-based systems. Journal of Systems and Software, vol. 83(7),
pp. 1123-1136.

S6

Alzahmi, S. M., Abu-Matar, M., & Mizouni, R. (2014, April). A Practical Tool for Automating
Service Oriented Software Product Lines Derivation. International Symposium on Service
Oriented System Engineering (SOSE), pp. 90-97, IEEE.

S7
Deelstra, S., Sinnema, M., & Bosch, J. (2004). A Product Derivation Framework for Software
Product Families. Software Product-Family Engineering, pp. 473-484.

S8

Karam, M., Dascalu, S., Safa, H., Santina, R., & Koteich, Z. (2008). A product-line
architecture for web service-based visual composition of web applications. Journal of
Systems and Software, vol. 81(6), pp. 855-867.

S9

Usman, M., Iqbal, M. Z., & Khan, M. U. (2017). A product-line model-driven engineering
approach for generating feature-based mobile applications. Journal of Systems and
Software, vol. 123, pp. 1-32.

168 A Generic Method for Assembling Software Product Line Components

S10

Go, G., Kang, S., & Ahn, J. (2015, June). A software binding application tool based on the
orthogonal variability description language for software product line development.
International Conference on Software Engineering, Artificial Intelligence, Networking and
Parallel/Distributed Computing (SNPD), pp. 1-8, IEEE.

S11
Lee, J., Kang, S., & Lee, D. (2012, September). A survey on software product line testing.
Software Product Line Conference (SPLC), vol. 1, pp. 31-40, ACM.

S12

Neto, P. A. D. M. S., do Carmo Machado, I., McGregor, J. D., De Almeida, E. S., & de Lemos
Meira, S. R. (2011). A systematic mapping study of software product lines testing.
Information and Software Technology, vol. 53(5), pp. 407-423.

S13

Laguna, M. A., & Crespo, Y. (2013). A systematic mapping study on software product line
evolution: From legacy system reengineering to product line refactoring. Science of
Computer Programming, vol. 78(8), pp. 1010-1034.

S14

Khoshnevis, S. (2012, June). An approach to variability management in service-oriented
product lines. International Conference on Software Engineering (ICSE), pp. 1483-1486.
IEEE.

S15

Tizzei, L. P., Rubira, C. M., & Lee, J. (2012, September). An aspect-based feature model for
architecting component product lines. EUROMICRO Conference on Software Engineering
and Advanced Applications (SEAA), pp. 85-92. IEEE.

S16

Ribeiro, H. B. G., de Lemos Meira, S. R., de Almeida, E. S., Lucredio, D., Alvaro, A., Alves, V.,
& Garcia, V. C. (2010, September). An assessment on technologies for implementing core
assets in service-oriented product lines. Brazilian Symposium on Software Components,
Architectures and Reuse (SBCARS), pp. 90-99, IEEE.

S17

Abu-Matar, M., & Gomaa, H. (2013, March). An automated framework for variability
management of service-oriented software product lines. International Symposium on
Service Oriented System Engineering (SOSE), pp. 260-267, IEEE.

S18

Anastasopoulos, M., & Muthig, D. (2004). An Evaluation of Aspect-Oriented Programming
as a Product Line Implementation Technology. Software Reuse: Methods, Techniques, And
Tools, pp. 141-156.

S19

Parra, C., Joya, D., Giral, L., & Infante, A. (2014, March). An SOA approach for automating
software product line adoption. Symposium on Applied Computing (ASC), pp. 1231-1238,
ACM.

S20

Cu, C., & Zheng, Y. (2016, May). Architecture-centric derivation of products in a software
product line. International Workshop on Modeling in Software Engineering (MiSE), pp. 27-
33, IEEE/ACM.

S21

Kim, K., Kim, H., Ahn, M., Seo, M., Chang, Y., & Kang, K. C. (2006, May). ASADAL: a tool
system for co-development of software and test environment based on product line
engineering. International conference on Software engineering (ICSE), pp. 783-786, ACM.

S22

Andrade, R., Rebêlo, H., Ribeiro, M., & Borba, P. (2013, September). AspectJ-based idioms
for flexible feature binding. Brazilian Symposium on Software Components, Architectures
and Reuse (SBCARS), pp. 59-68, IEEE.

S23
Anthonysamy, P., & Somé, S. S. (2008, March). Aspect-oriented use case modeling for
software product lines. AOSD workshop on Early aspects, ACM.

Appendix A. Publications 169

S24

Lesaint, D., & Papamargaritis, G. (2004, June). Aspects and constraints for implementing
configurable product-line architectures. Working IEEE/IFIP Conference on Software
Architecture (WICSA), pp. 135-144, IEEE.

S25

Lee, K., Botterweck, G., & Thiel, S. (2009, July). Aspectual separation of feature
dependencies for flexible feature composition. Computer Software and Applications
Conference (COMPSAC), pp. 45-52, IEEE.

S26
Altintas, N. I., Surav, M., Keskin, O., & Cetin, S. (2005, September). Aurora software product
line. Turkish Software Architecture Workshop, Ankara.

S27

Muhammad, R., & Setyautami, M. R. A. (2016, October). Automatic model translation to
UML from software product lines model using UML profile. International Conference on
Advanced Computer Science and Information Systems (ICACSIS), pp. 605-610, IEEE.

S28

Miranda Filho, S., Mariano, H., Kulesza, U., & Batista, T. (2010, September). Automating
Software Product Line Development: A Repository-Based Approach. Conference on
Software Engineering and Advanced Applications (SEAA), pp. 141-144, IEEE.

S29

Cirilo, E., Nunes, I., Kulesza, U., & Lucena, C. (2012). Automating the product derivation
process of multi-agent systems product lines. Journal of Systems and Software, vol. 85(2),
pp. 258-276.

S30

Pessoa, L., Fernandes, P., Castro, T., Alves, V., Rodrigues, G. N., & Carvalho, H. (2017).
Building reliable and maintainable Dynamic Software Product Lines: An investigation in the
Body Sensor Network domain. Information and Software Technology, vol. 86, pp. 54-70.

S31

Peña, J. (2005, September). Can agent oriented software engineering be used to build
MASs product lines?. Workshop on Radical Agent Concepts (WRAC), pp. 98-108, Springer
Berlin Heidelberg.

S32

Rosenmüller, M., Siegmund, N., Saake, G., & Apel, S. (2008, October). Code generation to
support static and dynamic composition of software product lines. International
conference on Generative programming and component engineering (GPCE), pp. 3-12,
ACM.

S33

Mohabbati, B., Asadi, M., Gašević, D., Hatala, M., & Müller, H. A. (2013). Combining service-
orientation and software product line engineering: A systematic mapping study.
Information and Software Technology, vol. 55(11), pp. 1845-1859.

S34

Abdelmoez, W., Khater, H., & El-shoafy, N. (2012, May). Comparing maintainability
evolution of object-oriented and aspect-oriented software product lines. International
Conference on Informatics and Systems (INFOS), pp. SE-53, IEEE.

S35

Tizzei, L. P., Dias, M., Rubira, C. M., Garcia, A., & Lee, J. (2011). Components meet aspects:
Assessing design stability of a software product line. Information and Software Technology,
vol. 53(2), pp. 121-136.

S36

Nascimento, L. M., de Almeida, E. S., & de Lemos Meira, S. R. (2009). Cores assets
development in software product lines-towards a practical approach for the mobile game
domain. Simpósio Brasileiro de Componentes, Arquiteturas e Reutilização de Software
(SBCARS), pp. 124-137.

S37
Schaefer, I., Bettini, L., Bono, V., Damiani, F., & Tanzarella, N. (2010). Delta-Oriented
Programming of Software Product Lines. Software Product Lines: Going Beyond, pp. 77-91.

170 A Generic Method for Assembling Software Product Line Components

S38
de Jonge, M. (2009). Developing product lines with third-party components. Electronic
Notes in Theoretical Computer Science, vol. 238(5), pp. 63-80.

S39

Günther, S., & Sunkle, S. (2010, October). Dynamically adaptable software product lines
using Ruby metaprogramming. International Workshop on Feature-Oriented Software
Development (FOSD), pp. 80-87, ACM.

S40
Capilla, R., & Dueñas, J. C. (2005). Evolution and Maintenance of Web Sites: A Product Line
Model. Managing Corporate Information Systems Evolution and Maintenance, pp. 255-271.

S41

Tesanovic, A. (2007, March). Evolving embedded product lines: opportunities for aspects.
Workshop on Aspects, components, and patterns for infrastructure software (ACP4IS),
ACM.

S42

Figueiredo, E., Cacho, N., Sant'Anna, C., Monteiro, M., Kulesza, U., Garcia, A., Soares, S.,
Ferrari, F., Khan, S., Castor Filho, F., & Dantas, F. (2008, May). Evolving software product
lines with aspects: an empirical study on design stability. International conference on
Software engineering (ICSE), pp. 261-270, ACM/IEEE.

S43

El-Sharkawy, S., Kröher, C., Eichelberger, H., & Schmid, K. (2015, October). Experience from
implementing a complex eclipse extension for software product line engineering. Eclipse
Technology eXchange, pp. 13-18, ACM.

S44

Peng, X., Shen, L., & Zhao, W. (2008). Feature Implementation Modeling Based Product
Derivation in Software Product Line. High Confidence Software Reuse in Large Systems, pp.
142-153.

S45

Amja, A. M., Obaid, A., Mili, H., & Jarir, Z. (2016, November). Feature-Based Adaptation and
Its Implementation. International Conference on Collaboration and Internet Computing
(CIC), pp. 321-328, IEEE.

S46

Lee, K., Botterweck, G., & Thiel, S. (2009, May). Feature-modeling and aspect-oriented
programming: Integration and automation. International Conference on Software
Engineering, Artificial Intelligences, Networking and Parallel/Distributed Computing (SNPD),
pp. 186-191, IEEE.

S47
Günther, S., & Sunkle, S. (2009, October). Feature-oriented programming with Ruby.
International Workshop on Feature-Oriented Software Development (FOSD), 11-18, ACM.

S48

Seidl, C., Schuster, S., & Schaefer, I. (2017). Generative software product line development
using variability-aware design patterns. Computer Languages, Systems & Structures, vol.
48, pp. 89-111.

S49

Mefteh, M., Bouassida, N., & Ben-Abdallah, H. (2015, April). Implementation and
evaluation of an approach for extracting feature models from documented UML use case
diagrams. Symposium on Applied Computing (SAC), pp. 1602-1609, ACM.

S50

Dordowsky, F., Bridges, R., & Tschope, H. (2011, August). Implementing a software product
line for a complex avionics system. Software Product Line Conference (SPLC), pp. 241-250,
IEEE.

S51

Geertsema, B., & Jansen, S. (2010, August). Increasing software product reusability and
variability using active components: a software product line infrastructure. European
Conference on Software Architecture (ECSA), pp. 336-343, ACM.

S52

Cirilo, E., Kulesza, U., Coelho, R., de Lucena, C., & von Staa, A. (2008). Integrating
Component and Product Lines Technologies. High Confidence Software Reuse in Large
Systems, pp. 130-141.

Appendix A. Publications 171

S53

Gurgel, A., Dantas, F., Garcia, A., & Sant'Anna, C. (2012, July). Integrating Software Product
Lines: A Study of Reuse versus Stability. Computer Software and Applications Conference
(COMPSAC), pp. 89-98, IEEE.

S54
Afzal, U., Mahmood, T., & Shaikh, Z. (2016). Intelligent software product line
configurations: A literature review. Computer Standards & Interfaces, vol. 48, pp. 30-48.

S55

Méndez-Acuna, D., Galindo, J. A., Degueule, T., Combemale, B., & Baudry, B. (2016).
Leveraging Software Product Lines Engineering in the development of external DSLs: A
systematic literature review. Computer Languages, Systems & Structures, vol. 46, pp. 206-
235.

S56
Freeman, G., Batory, D., & Lavender, G. (2008). Lifting Transformational Models of Product
Lines: A Case Study. Theory And Practice Of Model Transformations, pp. 16-30.

S57

McRitchie, I., Brown, T., & Spence, I. (2004). Managing Component Variability within
Embedded Software Product Lines via Transformational Code Generation. Software
Product-Family Engineering, pp. 98-110.

S58
Thao, C. (2012, June). Managing evolution of software product line. International
Conference on Software Engineering (ICSE), pp. 1619-1621, IEEE.

S59

Zhang, J., Cai, X., & Liu, G. (2008, December). Mapping features to architectural
components in aspect-oriented software product lines. International Conference on
Computer Science and Software Engineering (CSSE), vol. 2, pp. 94-97, IEEE.

S60

Kulesza, U., Alves, V., Garcia, A., Neto, A., Cirilo, E., de Lucena, C., & Borba, P. (2007).
Mapping Features to Aspects: A Model-Based Generative Approach. Early Aspects: Current
Challenges and Future Directions, pp. 155-174.

S61

Buchmann, T., Dotor, A., & Westfechtel, B. (2013). MOD2-SCM: A model-driven product
line for software configuration management systems. Information and Software
Technology, vol. 55(3), pp. 630-650.

S62

Sun, C. A., Rossing, R., Sinnema, M., Bulanov, P., & Aiello, M. (2010). Modeling and
managing the variability of Web service-based systems. Journal of Systems and Software,
vol. 83(3), pp. 502-516.

S63

Carvalho, M. L. L., Gomes, G. S. D. S., Da Silva, M. L. G., Machado, I. D. C., & de Almeida, E.
S. (2016, September). On the Implementation of Dynamic Software Product Lines: A
Preliminary Study. Brazilian Symposium on Software Components, Architectures and Reuse
(SBCARS), pp. 21-30, IEEE.

S64

Barros, F. J. (2013, April). On the representation of product lines using pluggable software
units: results from an exploratory study. Symposium on Theory of Modeling & Simulation-
DEVS Integrative M&S Symposium (TMS-DEVS), Society for Computer Simulation
International.

S65

Ferreira, G. C. S., Gaia, F. N., Figueiredo, E., & de Almeida Maia, M. (2014). On the use of
feature-oriented programming for evolving software product lines—A comparative study.
Science of Computer Programming, vol. 93, pp. 65-85.

S66

Adachi Barbosa, E., Batista, T., Garcia, A., & Silva, E. (2011). PL-AspectualACME: An Aspect-
Oriented Architectural Description Language for Software Product Lines. Software
Architecture, pp. 139-146.

172 A Generic Method for Assembling Software Product Line Components

S67

Voelter, M., & Groher, I. (2007, September). Product line implementation using aspect-
oriented and model-driven software development. Software Product Line Conference
(SPLC), pp. 233-242, IEEE.

S68

Capilla, R., & Topaloglu, N. Y. (2005, September). Product lines for supporting the
composition and evolution of service oriented applications. International Workshop on
Principles of Software Evolution (IWPSE), pp. 53-56, IEEE.

S69

Caporuscio, M., Muccini, H., Pelliccione, P., & Di Nisio, E. (2006). Rapid System
Development Via Product Line Architecture Implementation. Rapid Integration Of Software
Engineering Techniques, pp. 18-33.

S70

Heo, S. H., & Choi, E. M. (2006, August). Representation of variability in software product
line using aspect-oriented programming. International Conference on Software Engineering
Research, Management and Applications (SERA), pp. 66-73, IEEE.

S71
Montalvillo, L., & Díaz, O. (2016). Requirement-driven evolution in software product lines:
A systematic mapping study. Journal of Systems and Software, vol. 122, pp. 110-143.

S72

Derakhshanmanesh, M., Fox, J., & Ebert, J. (2014). Requirements-driven incremental
adoption of variability management techniques and tools: an industrial experience report.
Requirements Engineering, vol. 19(4), pp. 333-354.

S73

Santos, A. R., do Carmo Machado, I., & de Almeida, E. S. (2016, September). RiPLE-HC:
Javascript systems meets SPL composition. Systems and Software Product Line Conference
(SPLC), pp. 154-163, ACM.

S74

Mohamed, F., Abu-Matar, M., Mizouni, R., Al-Qutayri, M., & Al Mahmoud, Z. (2014,
December). SaaS Dynamic Evolution Based on Model-Driven Software Product Lines. 6th
International Conference on Cloud Computing Technology and Science (CloudCom), pp.
292-299, IEEE.

S75

Pietsch, C., Kehrer, T., Kelter, U., Reuling, D., & Ohrndorf, M. (2015, November). SiPL--A
Delta-Based Modeling Framework for Software Product Line Engineering. International
Conference on Automated Software Engineering (ASE), pp. 852-857, IEEE/ACM.

S76
Mohabbati, B., Asadi, M., Gašević, D., & Lee, J. (2014). Software Product Line Engineering
to Develop Variant-Rich Web Services. Web Services Foundations, pp. 535-562.

S77

Vale, T., de Almeida, E. S., Alves, V., Kulesza, U., Niu, N., & de Lima, R. (2017). Software
product lines traceability: A systematic mapping study. Information and Software
Technology, vol. 84, pp. 1-18.

S78

Parra, C., & Joya, D. (2015). SPLIT: an automated approach for enterprise product line
adoption through SOA. Journal of Internet Services and Information Security, vol. 5(1), pp.
29-52.

S79

Groher, I., & Weinreich, R. (2013, January). Supporting variability management in
architecture design and implementation. Hawaii International Conference on System
Sciences (HICSS), pp. 4995-5004, IEEE.

S80

Carromeu, C., Paiva, D., & Cagnin, M. (2015). The Evolution from a Web SPL of the e-Gov
Domain to the Mobile Paradigm. International Conference on Computational Science And
Its Applications (ICCSA), pp. 217-231.

S81

Liu, J. J., Lutz, R. R., & Rajan, H. (2006, October). The role of aspects in modeling product
line variabilities. Workshop on Aspect-oriented Product Line Engineering (AOPLE), pp. 32-
39.

Appendix A. Publications 173

S82

dos Santos Rocha, R., & Fantinato, M. (2013). The use of software product lines for
business process management: A systematic literature review. Information and Software
Technology, vol. 55(8), pp. 1355-1373.

S83

Lago, P., Niemela, E., & Van Vliet, H. (2004, March). Tool support for traceable product
evolution. Conference on Software Maintenance and Reengineering (CSMR), pp. 261-269,
IEEE.

S84

Zheng, Y., & Cu, C. (2016, May). Towards implementing product line architecture.
Workshop on Bringing Architectural Design Thinking into Developers' Daily Activities
(BRIDGE), pp. 5-10, IEEE/ACM.

S85

de Moraes, A. L., Brito, R. D. C., Junior, A. C. C., Ramos, M. C., Colanzi, T. E., Gimenes, I. M.
D. S., & Masiero, P. C. (2010, November). Using aspects and the spring framework to
implement variabilities in a software product line. International Conference of the Chilean
Computer Science Society (SCCC), pp. 71-80, IEEE.

S86

Hartmann, H., Keren, M., Matsinger, A., Rubin, J., Trew, T., & Yatzkar-Haham, T. (2013).
Using MDA for integration of heterogeneous components in software supply chains.
Science of Computer Programming, vol. 78(12), pp. 2313-2330.

S87

Mazo, R., Assar, S., Salinesi, C., & Hassen, N. B. (2014). Using Software Product Line to
improve ERP Engineering: literature review and analysis. Latin American Journal of
Computing Faculty of Systems Engineering National Polytechnic School Quito-Ecuador, vol.
1(1), pp. 10.

S88

Humblet, M., Tran, D. V., Weber, J. H., & Cleve, A. (2016, May). Variability management in
database applications. Workshop on Variability and Complexity in Software Design (VACE),
pp. 21-27, ACM.

C. Appendix: Pre-questionnaire

The following is a copy of the pre-questionnaire handed to the participants before the

beginning of the usability test.

176 A Generic Method for Assembling Software Product Line Components

D. Appendix: Experiment Part A

The following is a copy of the Experiment Part A handed to the participants during the

usability test.

178 A Generic Method for Assembling Software Product Line Components

Appendix D. Experiment Part A 179

180 A Generic Method for Assembling Software Product Line Components

E. Appendix: Experiment Part B

The following is a copy of the Experiment Part B handed to the participants during the

usability test.

182 A Generic Method for Assembling Software Product Line Components

F. Appendix: Post-questionnaire

The following is a copy of the post-questionnaire handed to the participants at the end of

the usability test.

184 A Generic Method for Assembling Software Product Line Components

Appendix F. Post-questionnaire 185

186 A Generic Method for Assembling Software Product Line Components

Appendix F. Post-questionnaire 187

188 A Generic Method for Assembling Software Product Line Components

References

Aleixo, F. A., Kulesza, U., & Junior, E. A. O. (2013). Modeling variabilities from software

process lines with compositional and annotative techniques: A quantitative study. In: Int.

Conf. on Product Focused Software Process Improvement, pp. 153-168, Springer, Berlin.

Alzahmi, S., Matar, M. A., & Mizouni, (2014). R. A Practical Tool for Automating Service

Oriented Software Product Lines Derivation. 8th Int. Symposium on Service Oriented

System Engineering (SOSE), pp. 90-97, IEEE.

Apel, S., Batory, D., Kästner, C., & Saake, G. (2013). Feature-oriented software product

lines. Springer-Verlag Berlin An.

Asadi, M., Bagheri, E., Gašević, D., Hatala, M., & Mohabbati, B. (2011, March). Goal-driven

software product line engineering. In Proceedings of the 2011 ACM Symposium on Applied

Computing, pp. 691-698, ACM.

Azanza, M., Díaz, O., & Trujillo, S. (2010, July). Software factories: describing the assembly

process. In International Conference on Software Process, pp. 126-137, Springer, Berlin,

Heidelberg.

Behringer, B., & Rothkugel, S. (2016, April). Integrating feature-based implementation

approaches using a common graph-based representation. In Proceedings of the 31st

Annual ACM Symposium on Applied Computing, pp. 1504-1511, ACM.

Beuche, D. (2008, September). Modeling and building software product lines with

pure::variants. In 12th International Software Product Line Conference, pp. 358-358, IEEE.

190 A Generic Method for Assembling Software Product Line Components

Beuche, D., & Dalgarno, M. (2007). Software product line engineering with feature models.

Overload Journal, vol. 78, pp. 5-8.

Bradley, A., & Manna, Z. (2007). The Calculus of Computation - Decision Procedures with

Applications to Verification. ISBN 978-3-540-74112-1, Springer Berlin Heidelberg New

York.

Cetina, C., Giner, P., Fons, J., & Pelechano, V. (2013). Prototyping Dynamic Software

Product Lines to evaluate run-time reconfigurations. Science of Computer Programming,

vol. 78(12), pp. 2399-2413.

Chen, L., & Babar, M. A. (2011). A systematic review of evaluation of variability

management approaches in software product lines. Information and Software Technology,

vol. 53(4), pp. 344-362.

Cirilo, E., Kulesza, U., & Lucena, C. (2007) GenArch: A Model-Based Product Derivation

Tool. In: Proceedings of Brazilian Symposium on Software Components, Architectures and

Reuse (SBCARS 2007), Campinas – Brazil.

Clements, P., & Northrop, L. (2001). Software product lines: practices and patterns.

Addison-Wesley.

Cobaleda, L., Mazo, R., & Correa, D. (2018). Selección, personalización y aumento de

componentes reutilizables de dominio para cada aplicación. In Guía para la adopción

industrial de líneas de productos de software. Editorial Eafit, ISBN 978-958-720-506-0, pp.

447-458, Medellín-Colombia.

Condori-Fernández, N., Panach Navarrete, J. I., Baars, A. I., Vos, T. E., & Pastor López,

O. (2013). An empirical approach for evaluating the usability of model-driven tools. In

Science of computer programming, vol. 78(11), pp. 2245-2258, Elsevier.

Correa, D. (2018). FragOP-Thesis GitHub repository, Available at:

https://github.com/danielgara/FragOP-thesis

References 191

Correa, D., & Mazo, R. (2018). Implementación de componentes reutilizables de dominio.

In Guía para la adopción industrial de líneas de productos de software. Editorial Eafit, ISBN

978-958-720-506-0, pp. 307-368, Medellín-Colombia.

Correa, D., Mazo, R., & Giraldo, G. L. (2019, June). Extending FragOP Domain Reusable

Components to Support Product Customization in the Context of Software Product Lines.

In International Conference on Software Reuse, pp. 17-33, Springer, Cham.

Correa, D., Mazo, R., & Giraldo-Goméz, G.L. (2018). Fragment-oriented programming: a

framework to design and implement software product line domain components. DYNA, vol.

85(207), pp. 74-83.

de Souza, L. O., O’Leary, P., de Almeida, E. S., & de Lemos Meira, S. R. (2015). Product

derivation in practice. Information and Software Technology, vol. 58, pp. 319-337.

Deelstra, S., Sinnema, M., & Bosch, J. (2005). Product derivation in software product

families: a case study. Journal of Systems and Software, vol. 74(2), pp. 173-194.

Dhungana, D., Grünbacher, P., & Rabiser, R. (2011). The DOPLER meta-tool for decision-

oriented variability modeling: a multiple case study. Automated Software Engineering, vol.

18(1), pp. 77-114.

Dyba, T., Dingsoyr, T., & Hanssen, G. K. (2007, September). Applying systematic reviews

to diverse study types: An experience report. In First International Symposium on Empirical

Software Engineering and Measurement (ESEM 2007), pp. 225-234, IEEE.

Engström, E., & Runeson, P. (2011). Software product line testing–a systematic mapping

study. Information and Software Technology, vol. 53(1), pp. 2-13.

Epifani, I., Ghezzi, C., Mirandola, R., & Tamburrelli, G. (2009, May). Model evolution by

run-time parameter adaptation. In Proceedings of the 31st International Conference on

Software Engineering, pp. 111-121, IEEE Computer Society.

192 A Generic Method for Assembling Software Product Line Components

Heaven, W., & Finkelstein, A. (2004). UML profile to support requirements engineering with

KAOS. IEE Proceedings-Software, vol. 151(1), pp. 10-27.

Heidenreich, F., Savga, I., & Wende, C. (2008, September). On Controlled Visualisations

in Software Product Line Engineering. In Software Product Line Conference, pp. 335-341.

Horcas, J. M., Cortiñas, A., Fuentes, L., & Luaces, M. R. (2018, September). Integrating

the common variability language with multilanguage annotations for web engineering. In

Proceeedings of the 22nd International Conference on Systems and Software Product Line,

pp. 196-207, ACM.

IEEE. (1990). Standard Glossary of Software Engineering Terminology. IEEE Standard

610.12-1990.

ISO 9241-11. (1998). Ergonomic requirements for office work with visual display terminals

(VDTs) - Part 11: Guidance on usability.

ISO/IEC 25062. (2006). Software engineering—Software product Quality Requirements

and Evaluation (SQuaRE)—Common Industry Format (CIF) for usability test reports.

Jordan, H. R., Russell, S. E., O'Hare, G. M., & Collier, R. W. (2012) Reuse by Inheritance

in Agent Programming Languages. In: Intelligent Distributed Computing V, volume 382 of

Studies in Computational Intelligence, pp. 279-289, Springer Berlin Heidelberg.

Kang, K. C., Cohen, S. G., Hess, J. A., Novak, W. E. & Peterson, A. S. (1990). Feature-

Oriented Domain Analysis (FODA) Feasibility Study. Technical report, Carnegie Mellon

Software Engineering Institute.

Kästner, C., Apel, S., & Kuhlemann, M. (2008). Granularity in software product lines. In:

30th Int. Conf. on Software Engineering (ICSE), pp. 311-320.

Kästner, C., Apel, S., & Ostermann, K. The road to feature modularity? (2011). In Proc. of

the 15th Int. Software Product Line Conference, vol. 2, pp. 5, ACM.

References 193

Kästner, C., & Apel, S. (2008, October). Integrating compositional and annotative

approaches for product line engineering. In Proc. GPCE Workshop on Modularization,

Composition and Generative Techniques for Product Line Engineering, pp. 35-40.

Kim, S. D., Min, H. G., & Rhew, S. Y. (2005, May). Variability design and customization

mechanisms for COTS components. In International Conference on Computational Science

and Its Applications, pp. 57-66, Springer, Berlin, Heidelberg.

Kitchenham, B., & Charters, S. (2007). Guidelines for performing systematic literature

reviews in software engineering.

Koscielny, J., Holthusen, S., Schaefer, I., Schulze, S., Bettini, L., & Damiani, F. (2014,

September). DeltaJ 1.5: delta-oriented programming for Java 1.5. In Proceedings of the

2014 International Conference on Principles and Practices of Programming on the Java

platform: Virtual machines, Languages, and Tools, pp. 63-74, ACM.

Lago, P., Niemela, E., & Van Vliet, H. (2004, March). Tool support for traceable product

evolution. In Eighth European Conference on Software Maintenance and Reengineering,

2004, pp. 261-269, IEEE.

Laguna, M. A., & Crespo, Y. (2013). A systematic mapping study on software product line

evolution: From legacy system reengineering to product line refactoring. Science of

Computer Programming, vol. 78(8), pp. 1010-1034.

Lahiani, N., & Bennouar, D. (2017). A DSL-based Approach to Product Derivation for

Software Product Line. Acta Informatica Pragensia, vol. 5(2), pp. 138-143.

Le, D. M., Lee, H., Kang, K. C., & Keun, L. (2013). Validating Consistency between a

Feature Model and Its Implementation. In: ICSR, pp. 1-16.

Lecoutre, C. (2009). Constraint Networks, Wiley-IEEE Press.

194 A Generic Method for Assembling Software Product Line Components

Li, Z., Avgeriou, P., & Liang, P. (2015). A systematic mapping study on technical debt and

its management. Journal of Systems and Software, vol. 101, pp. 193-220.

Likert, R. (1932). A technique for the measurement of attitudes. Archives of psychology.

Lund, A. M. (2001). Measuring usability with the use questionnaire. Usability interface, vol.

8(2), pp. 3-6.

Marimuthu, C., & Chandrasekaran, K. (2017, September). Systematic Studies in Software

Product Lines: A Tertiary Study. In Proceedings of the 21st International Systems and

Software Product Line Conference, pp. 143-152, ACM.

Mayer, P., & Bauer, A. (2015, April). An empirical analysis of the utilization of multiple

programming languages in open source projects. In Proceedings of the 19th International

Conference on Evaluation and Assessment in Software Engineering, pp. 4, ACM.

Mazo, R. (2014). Avantages et limites des modèles de caractéristiques dans la

modélisation des exigences de variabilité. Journal "Génie Logiciel", no. 111, Paris-France,

pp. 42-48.

Mazo, R., Martínez, J. C., López, J. I. (2018). Proceso de configuración como un proceso

de ingeniería de requisitos. In Guía para la adopción industrial de líneas de productos de

software, Editorial Eafit, ISBN 978-958-720-506-0, pp. 397-431, Medellín-Colombia.

Mazo, R., Muñoz-Fernández, J. C., Rincón, L., Salinesi, C. & Tamura, G. (2015). VariaMos:

an extensible tool for engineering (dynamic) product lines. In: Proc. of the 19th Int. Conf.

on Software Product Line, pp. 374-379, ACM.

Mens, T. (2004). A survey of software refactoring. IEEE Transactions on software

engineering, vol. 2, pp. 126-139.

References 195

Metzger, A., & Pohl, K. (2014, May). Software product line engineering and variability

management: achievements and challenges. In Proceedings of the on Future of Software

Engineering, pp. 70-84, ACM.

Montalvillo, L., Díaz, O., & Azanza, M. (2017, September). Visualizing product

customization efforts for spotting SPL reuse opportunities. In Proceedings of the 21st

International Systems and Software Product Line Conference, pp. 73-80, ACM.

Neto, P. A. D. M. S., do Carmo Machado, I., McGregor, J. D., De Almeida, E. S., & de

Lemos Meira, S. R. (2011). A systematic mapping study of software product lines testing.

Information and Software Technology, vol. 53(5), pp. 407-423.

Nielsen, J. (1993). Usability Engineering, Academic Press, Boston, MA.

Parr, T. (2013). The definitive ANTLR 4 reference. Pragmatic Bookshelf.

Peffers, K., Tuunanen T., Chatterjee M.A, & Rothenberger S. A. (2007). Design science

research methodology for information systems research. Journal of Management

Information Systems, vol. 24(3), pp. 45-77.

Pereira, J. A., Constantino, K., & Figueiredo, E. (2015, January). A systematic literature

review of software product line management tools. In International Conference on Software

Reuse, pp. 73-89, Springer, Cham.

Petersen, K., Feldt, R., Mujtaba, S., & Mattsson, M. (2008, June). Systematic mapping

studies in software engineering. In Ease, vol. 8, pp. 68-77.

Pleuss, A., Hauptmann, B., Dhungana, D., & Botterweck, G. (2012, June). User interface

engineering for software product lines: the dilemma between automation and usability. In

Proceedings of the 4th ACM SIGCHI symposium on Engineering interactive computing

systems, pp. 25-34, ACM.

196 A Generic Method for Assembling Software Product Line Components

Prehofer, C. (1997). Feature-Oriented Programming: A Fresh Look at Objects. In: Proc.

Europ. Conf. Object-Oriented Programming, pp. 419-443.

Rabiser, R., Grünbacher, P., & Lehofer, M. (2012, September). A qualitative study on user

guidance capabilities in product configuration tools. In Proceedings of the 27th IEEE/ACM

International Conference on Automated Software Engineering, pp. 110-119, ACM.

Rabiser, R., O’Leary, P., & Richardson, I. (2011). Key activities for product derivation in

software product lines. Journal of Systems and Software, vol. 84(2), pp. 285-300.

Rabiser, R., Wolfinger, R., & Grunbacher, P. (2009, January). Three-level customization of

software products using a product line approach. In 42nd Hawaii International Conference

on System Sciences, pp. 1-10, IEEE.

Salvaneschi, G., Ghezzi, C., & Pradella, M. (2012). Context-oriented programming: A

software engineering perspective. J. of Systems and Software, vol. 85(8), pp. 1801-1817.

Sawant, A. A., Bari, P. H., & Chawan, P. M. (2012) Software testing techniques and

strategies. International Journal of Engineering Research and Applications (IJERA), vol.

2(3), pp. 980-986.

Sawyer, P., Mazo, R., Diaz, D., Salinesi, C., & Hughes, D. (2012). Using constraint

programming to manage configurations in self-adaptive systems. Computer, vol. 45(10),

pp. 56-63.

Schaefer, I., Bettini, L., Bono, V., Damiani, F., & Tanzarella, N. (2010). Delta-oriented

programming of software product lines. In: SPLC. LNCS, vol. 6287, pp. 77-91.

Siegmund, N., Rosenmüller, M., Kuhlemann, M., Kästner, C., & Saake, G. (2008,

December). Measuring non-functional properties in software product line for product

derivation. In 2008 15th Asia-Pacific Software Engineering Conference, pp. 187-194, IEEE.

References 197

Soltani, S., Asadi, M., Gašević, D., Hatala, M., & Bagheri, E. (2012, September). Automated

planning for feature model configuration based on functional and non-functional

requirements. In Proceedings of the 16th International Software Product Line Conference,

pp. 56-65, ACM.

Souza, L. O., O’Leary, P., de Almeida, E. S., & de Lemos Meira, S. R. (2015). Product

derivation in practice. Information and Software Technology, vol. 58, pp. 319-337.

Teruel, M. A., Navarro, E., López-Jaquero, V., Montero, F., & González, P. (2014). A CSCW

requirements engineering CASE tool: development and usability evaluation. Information

and Software Technology, vol. 56(8), pp. 922-949.

Tizzei, L. P., Rubira, C. M., & Lee, J. (2012). An aspect-based feature model for architecting

component product lines. In: SEAA, pp. 85-92, IEEE.

Thüm, T., Kästner, C., Benduhn, F., Meinicke, J., Saake, G., & Leich, T. (2014).

FeatureIDE: An extensible framework for feature-oriented software development. Science

of Computer Programming, vol. 79, pp. 70-85.

Van Ommering, R., & Bosch, J. (2002, August). Widening the scope of software product

lines—from variation to composition. In International Conference on Software Product

Lines, pp. 328-347, Springer, Berlin, Heidelberg.

Yu, Y., do Prado Leite, J. C. S., Lapouchnian, A., & Mylopoulos, J. (2008, March).

Configuring features with stakeholder goals. In Proceedings of the 2008 ACM symposium

on Applied computing, pp. 645-649, ACM.

Walkingshaw, E., & Erwig, M. (2012, September). A calculus for modeling and

implementing variation. In ACM SIGPLAN Notices, vol. 48(3), pp. 132-140, ACM.

Wang, A. J. A., & Qian, K. (2005). Component-oriented programming. John Wiley & Sons.

198 A Generic Method for Assembling Software Product Line Components

Wileden, J. C., & Kaplan, A. (1999, May). Software interoperability: Principles and practice.

In Proceedings of the 21st international conference on Software engineering, pp. 675-676,

ACM.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., & Wesslén, A. (2000).

Experimentation in Software Engineering: An Introduction. Kluwer Academic Publishers.

Wohlin, C., Runeson, P., Neto, P. A. D. M. S., Engström, E., do Carmo Machado, I., & De

Almeida, E. S. (2013). On the reliability of mapping studies in software engineering. Journal

of Systems and Software, vol. 86(10), pp. 2594-2610.

Zheng, Y., & Cu, C. (2016, May). Towards implementing product line architecture. In

IEEE/ACM 1st International Workshop on Bringing Architectural Design Thinking into

Developers' Daily Activities, pp. 5-10, IEEE.

