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Abstract 

Software product lines (SPL) facilitate the industrialization of software development. The 

main goal is to create a set of reusable software components for the rapid production of a 

software systems family. Many authors propose different approaches to implement and 

assemble the reusable components of an SPL. However, the construction and assembly 

of these components continue to be a complex and time-consuming process. This thesis 

analyzes the advantages and disadvantages of the current approaches to implement and 

assemble the reusable components of an SPL. Taking advantage of these elements and 

with the goal of developing a generic method (which can be applied to several software 

components developed in different software languages), we develop Fragment-oriented 

programming (FragOP), a framework to design, implement and reuse SPL domain 

components. FragOP is based on: (i) domain components, (ii) domain files, (iii) 

fragmentation points, (iv) fragments, (v) customization points, and (vi) customization files. 

FragOP was implemented in an open-source tool called VariaMos, and we also carried out 

three evaluations: (i) we created a clothing stores SPL, derived five different products, and 

discussed the results. (ii) We developed a discussion about the comparison between 

FragOP and other approaches. And (iii) we designed and executed a usability test of 

VariaMos to support the FragOP approach. The results show preliminary evidence that the 

use of FragOP reduces the manual intervention when assembling SPL domain 

components and it can be used as a generic method for assembling assets and SPL 

components developed in different software languages. 

 

Keywords: software product lines, fragment-oriented programming, component 

development, component composition. 
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Resumen 

Las líneas de productos de software (LPS) promueven la industrialización del desarrollo 

de software mediante la definición y ensamblaje de componentes reutilizables de software. 

Actualmente existen diferentes propuestas para implementar y ensamblar estos 

componentes. Sin embargo, su construcción y ensamblaje continúa siendo un proceso 

complejo y que requiere mucho tiempo. Esta tesis analiza las ventajas y desventajas de 

las diferentes estrategias actuales para implementación y ensamblaje de componentes de 

LPS. Con base en esto y con el objetivo de desarrollar un método genérico (el cual se 

pueda aplicar a múltiples componentes de software desarrollados en diferentes lenguajes), 

esta tesis desarrolla la programación orientada a fragmentos (FragOP), la cual define un 

marco de trabajo para diseñar, implementar y reutilizar componentes de dominio de LPS. 

FragOP se basa en: (i) componentes de dominio, (ii) archivos de dominio, (iii) puntos de 

fragmentación, (iv) fragmentos, (v) puntos de personalización, y (vi) archivos de 

personalización. Además, se realizó una implementación de FragOP en una herramienta 

llamada VariaMos, y se llevaron a cabo tres evaluaciones: (i) se creó una LPS de tiendas 

de ropa, se derivaron cinco productos y se discutieron los resultados. (ii) Se realizó una 

discusión acerca de la comparación de FragOP y otras propuestas actuales. Y (iii) se 

diseñó una prueba de usabilidad acerca del soporte de VariaMos para FragOP. Los 

resultados muestran evidencia preliminar de que el uso de FragOP reduce la intervención 

manual cuando se ensamblan componentes, y que FragOP puede usarse como un método 

genérico para el ensamblaje de componentes. 

 

Palabras clave: líneas de productos de software, programación orientada a fragmentos, 

desarrollo de componentes, ensamblaje de componentes.
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Introduction 

Before the advent of mass production in the age of industrialization, manufacturing 

processes were essentially handcrafting. Skilled craftsmen built physical goods, such as 

machines, furniture, buildings, and clothing, among others, but each product was unique in 

the sense that it was built from scratch. Thereafter, mass production became the leading 

production philosophy, with the use of assembly lines and standardized parts which were 

eventually combined to create more complex products. This philosophy improved 

productivity compared to handcrafting. Nevertheless, individualism was lost (or considered 

less important) in the sense that a manufacturer no longer incorporated the needs and 

wishes of individual customers. In the twentieth century, the idea of a product line emerged. 

A product line (PL) is a set of products in a manufacturer’s product portfolio that share 

substantial similarities and that are, ideally, created from a set of reusable parts. This way, 

manufacturers looked to diversification in order to offer multiple products tailored to 

individual market segments (Apel et al., 2013). 

Software development has a history similar to that of the production of physical goods. Early 

software was handcrafted by a few experts. Thereafter, standardization (mass 

production) appeared alongside products such as Microsoft Word, IBM DB2, and Excel, 

among others. Nevertheless, these products did not address smaller market segments’ 

needs or individuals’ needs (Apel et al., 2013). In order to fulfill these specific needs, the 

idea of software product lines was developed. A software product line (SPL) is a collection 

of software-intensive systems sharing a common, managed set of characteristics that 

satisfy the specific needs of a particular market segment or mission and that are developed 

from a common set of core assets in a prescribed way (Clements & Northrop, 2001). The 

main objective is to avoid developing software systems from scratch, instead of that, those 

systems should be constructed from reusable parts. 

Software product line engineering (SPLE) has gained significant attention over recent 

years. It has been claimed that SPLE is promising in that it provides a faster, better, and 
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cheaper way to develop a large range of software systems (Chen & Babar, 2011). SPLE 

comprises two processes: (i) domain engineering, which defines the commonalities and 

the variability of the SPL, and develops the reusable domain artifacts (for instance: 

components, models and tests); and (ii) application engineering process, which derives 

the software systems from the reusable domain artifacts, based on the particular 

requirements of the stakeholder. 

Proper domain component development and management is crucial to take advantage of 

SPLE benefits. Currently, the implementation of the reusable domain components and their 

subsequent assembly (product derivation) continue to be a complex, time-consuming and 

expensive process (Azanza et al., 2010; Lahiani & Bennouar, 2017).  

Why are product lines important? 

As discussed above, there are several advantages to the product line production strategy. 

According to a study by Clements and Northrop (2001) the product line production approach 

decreases not only the cost per product (by as much as 60%), but also the time to market 

(by as much as 98%), the labor needs (by as much as 60%) and improves productivity (by 

as much as 10x), the quality of each derived product (by as much as 10x) and increases 

the portfolio size and therefore the possibility of capturing new markets. Furthermore, 

according to Apel et al. (2013), companies, such as Boeing, Bosch, Toshiba, Hewlett 

Packard, and General Motors have presented successful stories with the implementation 

of software product lines. 

Why are domain implementation and product derivation activities important? 

Domain implementation (an activity which is part of the domain engineering process) refers 

to the development of the reusable domain artifacts. Some of the most important reusable 

domain artifacts are reusable components (Van Ommering & Bosch, 2002). Domain 

components are the base on which each new application of the product line is produced. In 

this thesis, a software component is defined as a piece of self-contained code with well-

defined functionality that can be reused as a unit in various different contexts (Wang & 

Qian, 2005).  

Another important activity is product derivation (which is part of the application engineering 

process). In SPL application engineering, products are configured and derived (Apel et al., 

2013). The derivation process takes the reusable components and assembles them to 
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generate the new software system. The degree of automation of the assembly process 

depends on how the components were implemented. If the process is not very automatic, 

the benefits of the SPLE are reduced. 

Problem statement 

SPL component implementation and assembly have been intensively researched during 

recent years. Many authors propose several approaches and tools to the design, 

implementation and assembly of components (Apel et al., 2013), such as feature-oriented 

programming (FOP; Prehofer, 1997), delta-oriented programming (DOP; Schaefer, et al., 

2010), context-oriented programming (COP; Salvaneschi et al., 2012), aspect-oriented 

programming (AOP; Tizzei et al., 2012), service-oriented architecture (SOA; Alzahmi et al., 

2014), Colored Integrated Development Environment (CIDE; Kästner et al., 2008), 

pure::variants (Beuche, 2008), GenArch (Cirilo et al., 2007), GenArch-P (Aleixo et al., 

2013), and agents (Jordan et al., 2012). Commonly, those approaches could be grouped 

into two main categories: annotative and compositional (Apel et al., 2013). In annotative 

approaches such as pure::variants, CIDE, and GenArch, developers simply introduce 

markers at the exact positions where a component should be extended (Kästner et al., 

2008). This allows fine-grained extensions, i.e., changes at lower levels, such as changes 

in a fixed position inside a class method. In compositional approaches such as FOP, 

DOP, and AOP (Apel et al., 2013), components are implemented in the form of composable 

units. In FOP, the software assets are developed in terms of “feature modules”, which can 

be seen as increments of product functionality. For example, in the context of object-

oriented programming (OOP), a feature module can introduce new classes or refine existing 

classes by adding fields and methods, or by overriding existing methods. This allows 

coarse-grained extensions, i.e., changes at top levels, such as changes in the hierarchical 

structure of an implementation artifact. However, despite the relative success of these 

approaches, the derivation of individual products from shared software assets continues to 

be a time-consuming and expensive activity in many organizations (Deelstra et al., 2005; 

Rabiser et al., 2011; Lahiani & Bennouar, 2017).  

 

We found several unresolved issues that motivate the research presented in this thesis: 

• The area of product derivation is still rather immature (Souza et al., 2015) due to 

the fact that: (i) there is a lack of support for the derivation process; (ii) existing 
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approaches do not present detailed information on the strategies for product 

customization, resolving variability, and the derivation of additional software assets 

such as databases, views, images, scripts and configuration files; and (iii) in 

comparison with the research on the development and modeling of product lines, 

few approaches and tools are available for product derivation. This is an important 

issue because the production derivation process includes the assembly of the 

reusable domain components. 

 

• Most current approaches and tools provide a mechanism for the implementation 

and assembly of the domain components. However, they are usually attached to 

very specific software languages or software paradigms. For example, (i) 

compositional approaches such as FOP, DOP, AOP, and COP have been called as 

extensions of OOP, and have been widely used to refine, modify or extend classes 

and objects; and are usually attached to a particular host language (Kästner & Apel, 

2008). For instance, compositional tools or extensions, such as AspectJ and DeltaJ 

are attached to Java, and FeatureC++ is attached to C++. However, software 

products are not only made up of classes and objects, and are commonly written in 

multiple software languages. Additionally, (ii) annotative approaches implement 

components with some form of explicit or implicit annotations, with the prototypical 

example being the use of #ifdef and #endif statements that surround the 

component code (Kästner & Apel, 2008). Nevertheless, not all software languages 

provide these statements, and many annotative approaches provide limited support 

to only a few software languages. Indeed, software products are made up of multiple 

artifacts developed in multiple languages, such as programming languages (PHP, 

JAVA, or Python), markup languages (HTML or XML), style sheet languages (CSS), 

database languages (SQL or SPARQL), scripts, images, and configuration files. 

According to Mayer and Bauer (2015) who analyzed 1150 open source projects, a 

mean number of 5 different languages are used in each project. Consequently, 

developing system modules that can be applied to multiple languages appears to 

be an important concern (Kästner et al., 2011). 

 

• Annotative approaches have their own limitations in that the domain component files 

contain all the source code variants, which (i) increases the number of lines of code, 

(ii) increases the number of relationships between the domain component file and 
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other domain component files, and (iii) tends to make source code complex and 

therefore difficult to maintain and evolve (Le et al., 2013).  

 

• Compositional approaches present important limitations. According to Kästner et al. 

(2008) “compositional approaches only introduce new code fragments in positions 

in which the order does not matter. Thus, it is possible to introduce new classes into 

the program or new methods into a class, but not new statements at a fixed position 

inside a method”. Additionally, as previously stated, compositional approaches are 

usually attached to a particular host language. 

 

• The combination of compositional and annotative approaches has important 

advantages but also some limitations. The few approaches that try to combine 

annotative and compositional approaches (Kästner & Apel, 2008; Walkingshaw & 

Erwig, 2012; Behringer & Rothkugel, 2016; Horcas et al., 2018) present similar 

limitations to those listed previously (limited support for few software languages, use 

of if statements, poorly detailed or no tool support). Consequently, how to combine 

the compositional and annotative approaches to maximize the advantages and 

minimize the limitations of each separate approach continues to be an important 

concern (Kästner & Apel, 2008). 

Research questions 

This thesis addresses the aforementioned problems by proposing an approach that: (i) 

allows the implementation and assembly of software product line components independent 

of their software language, (ii) combines compositional and annotative elements in order to 

allow fine-grained extensions, but keeps the variations as independent modules, and (iii) 

supports the product derivation process, trying to automate the entire component assembly 

process and supporting other SPL activities in which SPL components are involved (such 

as the customization activity). Consequently, the proposed approach is generic; it allows 

for the implementation of multiple software components developed in several software 

languages and assembles them properly. Thus, the main objective of this thesis is to 

answer the following research question: 
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Main RQ: How can software product line components be automatically assembled 

independent of their software language in a generic and reusable way? 

 

The resolution of each of the following four research questions is necessary to solve the 

main research question of the thesis. 

 

RQ1: How should software product line components be implemented to guarantee a 

generic assembly and to contain the variation code independent? 

 

To answer this question, this thesis proposes a new paradigm called Fragment-oriented 

programming (FragOP) which is presented in Chapter 3. This paradigm combines elements 

from compositional and annotative approaches, and so allows variation points to be 

represented in most software languages and for them to contain the variation code 

independently. In this case, SPL components are implemented through the development of 

domain components, domain files, fragmentation points, fragments, customization points, 

and customization files (presented in Chapter 4). 

 

RQ2: How should software product line components be assembled to reduce manual 

intervention as much as possible? 

 

To answer this question, this thesis proposes a new derivation process which moves the 

domain component files to their final destination and applies the fragment alterations (see 

Section 5.6). A fragment can inject or modify code developed in several languages.  

 

RQ3: How should software product line components be verified? 

 

This thesis develops a new approach which assembles domain components developed in 

several languages. Then, it is important to verify that those components are properly 

assembled. This task is more complex for this approach due to the multiple language 

support. We take advantage of ANTLR (ANother Tool for Language Recognition), which is 

a language tool that provides a framework for constructing recognizers, compilers, and 

translators from grammatical descriptions. We used a series of parsers and lexers for 

languages, such as PHP, Java, CSS, and MySQL, among others. Based on the derived 



Introduction 7 

 

 

component file extension, the grammar of each file is analyzed, and alerts are generated if 

errors are found (see Section 5.8). 

 

RQ4: What support can be offered to systems engineers for improving software product 

line component assembly? 

 

As previously stated, tool support is crucial for managing the SPL, as assembling thousands 

of components manually voids the benefits of SPL adoption. In this thesis, a software tool 

called VariaMos (Mazo et al., 2015) is extended to provide support to the FragOP process 

(see Chapter 5). 

Research hypothesis 

Based on the aforementioned problems and objectives, the following main research 

hypothesis was defined: 

 

Main RH: A generic method will allow software product line components to be automatically 

assembled independent of the software language in which they were implemented. 

 

The main research hypothesis can be better understood by disaggregating and explaining 

some of the concepts: 

 

What is meant by “generic method”? We define generic as the method’s suitability for 

use in different cases and contexts. 

 

What is meant by “automatic assembly”? A tool or software automates the assembly 

process, reducing manual intervention as much as possible. 

 

What is meant by “software product line components”? The domain software assets 

developed in the domain SPL engineering process, which are reused to generate new 

software systems. 
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Research method 

In order to test the research hypotheses of this thesis, the following research strategy was 

implemented: 

1. We conducted a systematic mapping study on product line engineering. In particular 

on the techniques, methods, and tools for SPL component implementation and 

assembly. 

2. We identified a set of gaps and drawbacks of the existing approaches with regard 

to the present research question. Specifically, we examined how solutions could be 

used together to address the problem tackled by this thesis. 

3. We proposed a new generic method to implement and assemble SPL components 

which was automated. 

4. We tested the new method through the development of a running example, and the 

assembly and derivation of 5 different software systems. 

5. We evaluated the correctness of the proposed approach through a laboratory case 

study which evaluated the proposal’s usability. 

 

This research methodology matches the design science process model proposed by 

Peffers et al. (2007) exactly. Figure I-1 presents, in blue, the design science process model 

for information system research, and the application of this process to the research carried 

out in this thesis. 

 

Figure I-1: Application of the design science process model for information system 

research (Peffers et al., 2007) to the research carried out in this thesis 
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Contributions 

To overcome the limitations presented in this introduction, this thesis proposes a generic 

method for defining domain components and using them to create new products. 

Specifically, the main contributions of this thesis are the following: 

1. A generic approach for implementing software product line components. In 

this step, we developed a new approach that is called Fragment-oriented 

programming (FragOP). FragOP is a framework to design, implement and reuse 

SPL domain components. It is based on the development of domain components, 

domain files, fragmentation points, fragments, customization points, and 

customization files. This approach is also a mix of compositional and annotative 

approaches (see Chapter 3). 

2. A derivation activity which includes component assembly. Based on the 

FragOP elements, we developed a new derivation activity, which includes a series 

of steps that take information from the component pool and the model information 

and derive specific software systems. These steps also detail the management of 

the domain components assembly, allowing the component code to be reused and 

minimizing manual intervention (see Section 5.6). 

3. A customization activity. The addition of customization points and customization 

files improves customization activity. After derivation activity, SPL developers are 

able to recognize and automate the customization of the derived software products 

(see Section 5.7). 

4. A verification method for the derived product files. As previously stated, this 

approach innovates with component assembly independent of software language. 

This means that SPL developers are able to create multiple domain components 

and multiple code variations in languages such as Java, HTML, CSS, and MySQL 

among others. Consequently, developing a mechanism for early error detection and 

syntax validation becomes crucial. For this, we used ANTLR and an analysis of the 

derived product files’ grammar (see Section 5.8).  

5. A supporting tool for the proposal. We extended the capabilities of the VariaMos 

tool to support the FragOP approach (see Section 3.3).  

6. Three evaluations of the proposal. (i) We designed a running example to gain 

insights about if VariaMos (FragOP) was expressive enough to implement a real 

world, variant-rich multi-language software system (see Section 6.1). (ii) We defined 
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and discussed the differences between VariaMos (FragOP) and similar SPL 

implementation mechanisms and tools (see Section 6.2). Finally, (iii) we applied a 

usability test to the new approach and its implementation from which we found 

preliminary evidence that VariaMos is a usable tool that properly supports the 

FragOP approach (see Section 6.3). 

Thesis organization 

This thesis is organized as follows: 

 

Chapter 1 presents related work through a systematic mapping study (SMS) on SPL 

implementation. It also analyzes the advancements, gaps, and challenges found in the 

literature on this topic. 

 

Chapter 2 presents a running example called ClothingStores. ClothingStores is a software 

product line that consists of the development of an e-commerce store system family to 

manage and sell clothes. This chapter describes the SPL requirements and SPL software 

architecture. The running example is used in Chapters 4 and 5 to provide a real scenario 

to show how the new approach works. 

 

Chapter 3 provides an overview of the generic method presented in this thesis. It presents 

the FragOP metamodel, the FragOP process and its eight main activities, and introduces 

VariaMos, a software tool that supports the FragOP approach. 

 

Chapter 4 presents the FragOP fundamentals (the six main elements of the FragOP 

metamodel), explaining how these elements support the two main FragOP capabilities 

(assembly and customization). 

 

Chapter 5 presents the FragOP process. It describes and details each of the eight 

activities, (i) modeling PL requirements, (ii) modeling domain components, (iii) 

implementing domain components, (iv) binding domain requirements and domain 

components, (v) configuring products, (vi) deriving products, (vii) customizing products, and 

(vii) verifying products. Therefore, for each activity, we present how to use VariaMos to 

support them, and we provide a practical application by using a running example. 
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Chapter 6 provides an evaluation of the proposal. We discuss the running example results, 

present a comparison of the FragOP approach and contemporary studies, and develop a 

usability test to see how VariaMos supports the FragOP approach. 

 

Finally, Chapter 7 concludes the thesis and proposes future research directions. 





 

 
 

1. State of the art 

As previously stated, software components are some of the most important SPL artifacts, 

as they are the base on which each new application of the product line is produced. SPL 

components are used throughout several SPLE stages such as binding, development, 

testing, evolution, and derivation, among others. Due to the way SPL components are 

integrated into several of those stages, we decided to develop a systematic mapping study 

(SMS) on SPL implementation. This SMS provides an overview of the processes, methods, 

and tools used to carry out SPL implementation, but also provides details on the role of the 

SPL components in the entire process. 

 

An SMS is a form of a secondary study aiming to provide a comprehensive overview of a 

certain research topic, to identify gaps in the research, and to collect evidence in order to 

guide researchers and practitioners in their current or future work (Wohlin et al., 2013). It 

allows all available studies in a domain to be analyzed at a high level thereby answering 

broad research questions regarding the current state of the research on a topic. Another 

form of secondary study is a systematic literature review (SLR), which aims to identify, 

evaluate, and interpret all available studies to answer specific research questions (usually 

in the form: Is technology/method A better than B or not?), and requires more in-depth 

analysis (Kitchenham & Charters, 2007). We decided to conduct an SMS instead of an SLR 

because (i) we wanted to provide thematic analysis of the current studies developed in the 

SPL implementation field; (ii) we wanted to conduct a generic study (related to research 

trends) with high-level questions of the form: which researchers, how much activity, what 

type of studies, etc., instead of an specific study (related to outcomes of empirical studies); 

and (iii) we wanted to conduct a broad study because we were at the beginning of this PhD 

research project and we wanted to build a big picture of the research project area. 
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The main goals of this SMS are: 

• (G1) to provide basic publication information through a demographic method and to 

assist researchers in identifying the most appropriate sources of research 

information on SPL implementation. 

• (G2) to assist researchers and practitioners in identifying the range of methods and 

mechanisms currently available for an SPL implementation (including SPL 

component implementation). 

• (G3) to identify principal research trends in the literature and highlight active 

research topics that require more future work. 

 

To achieve these objectives, this SMS will answer a selection of the research questions 

presented in Section 1.2.1. 

The remainder of this section is organized as follows: Section 1.1 presents the related work; 

Section 1.2 describes the systematic mapping process, the definition of the research goals 

and questions, the search strategy, and the search conduction are presented; Section 1.3 

presents the data extraction; Section 1.4 presents the answers to questions about research 

goal G1 – Publication; Section 1.5 presents the answers to questions about research goal 

G2 – SPL implementation; Section 1.6 presents the answers to questions about research 

goal G3 – Topics and trends; Section 1.7 discusses the threats to validity; and finally, 

Section 1.8 concludes this study and recommends the direction of future work. 

Note: It is important to highlight that the references used in the SMS can be found in 

Appendix B. Therefore, some of these references will be presented in this section with the 

IEEE format, and they will be preceded by the letter S. 

1.1 Related work 

During the last decade, many authors have carried out SMS, SLR and surveys on SPL 

[S11, S12, S13, S33, S54, S55, S71, S77, S82, S87], with these contributions covering 

many aspects of the field of SPL. However, most of them involve a specific part or even a 

specific method for the SPL implementation process. As a result, a complete understanding 

of SPL implementation is not given. Therefore, the research questions posed in this SMS 

are legitimate and previous studies have not yet answered them. A summary of the 

currently available SMS, SRL, and survey studies is presented below. 
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Lee et al. [S11] presented a survey framework that consists of eight SPL specific testing 

perspectives and compared and analyzed the contributions of selected studies. Neto et al. 

[S12] developed a systematic mapping study on Testing in SPL in which 120 studies were 

evaluated. They found a huge amount of approaches that handle different and specific 

aspects in the SPL testing process, however, the quantity of approaches makes comparing 

studies a difficult task. Through this study, they were able to identify which activities are 

handled by the existing approaches as well as understanding how researchers are 

developing work on SPL testing. 

Laguna and Crespo [S13] carried out a study which aimed to survey the existing research 

on the reengineering of legacy systems like SPLs and the refactoring of existing SPLs. 

Guided by several parameters, 74 papers were selected and classified. The results of the 

study indicate that the initial works focused on the adaptation of generic reengineering 

processes to SPL extraction. Several trends were detected in the research: the integrated 

or guided reengineering of (typically object-oriented) legacy code and requirements; 

specific aspect-oriented or feature-oriented refactoring of SPLs, and refactoring for the 

evolution of existing product lines. Most papers included academic or industrial case 

studies, although only a few were based on quantitative data. Montalvillo and Díaz [S71] 

conducted a mapping study on SPL evolution that included 107 articles. They developed a 

classification schema that included four facets: evolution activity, product-derivation 

approach, research type, and asset type. The results show that regarding the evolution 

activity, “Implement change” (43%) and “Analyze and plan change” (37%) were the most 

covered contributions. 

Mohabbati et al. [S33] developed a systematic mapping study on the combination of 

service-orientation and SPLE. In this SMS, 81 primary studies were selected. Their 

research focused on service variability modeling, service identification, service reuse, 

service configuration and customization, dynamic software product lines, and adaptive 

systems. The results show that SPLE approaches, especially feature-oriented approaches 

for variability modeling, have been applied to the design and development of service-

oriented systems. Service-orientation is employed in software product line contexts for the 

realization of product lines to reconcile the flexibility, scalability, and dynamism in product 

derivations thereby creating dynamic software product lines. 
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Afzal et al. [S54] conducted a literature review of both research and industrial artificial 

intelligence applications for SPL configuration issues. They found 19 relevant research 

papers which employ traditional artificial intelligence techniques on small feature sets with 

no real-life testing or application in industry. Finally, they showed that only 2 standard 

industrial SPL tools employ artificial intelligence in a limited way to resolve inconsistencies. 

Méndez-Acuna et al. [S55] developed a literature review in which they reported an attempt 

to organize the literature on language product line engineering. More precisely, they 

proposed a definition for the life-cycle of language product lines, and they used it to analyze 

the capabilities of current approaches (38 studies were included). In addition, they mapped 

each approach and the technological space supported by it. 

Vale et al. [S77] conducted a systematic mapping study to investigate the state-of-art of the 

SPL traceability area, in which 62 primary studies were identified. The results showed that 

the common strategies for systematizing traceability were metamodeling, different 

representation structures, model transformations, formal methods, and trace recovery 

techniques. Most strategies focus on the trace creation activities, with a lack of planning, 

maintenance, and use of SPL traces. 

Dos Santos Rocha and Fantinato [S82] performed an SLR with four research questions 

formulated to evaluate PL approaches for BPM (63 papers were selected). The results 

showed that the PL approaches found for BPM only partially cover the BPM lifecycle, not 

taking into account the last phase which restarts the lifecycle. Therefore, the results indicate 

that PL approaches for BPM are still at an early stage and are gaining maturity. 

Mazo et al. [S87] carried out a literature review. Their objective was to identify and analyze 

the different ways for improving ERP engineering issues with the methods, techniques, and 

tools provided by PLE. Their literature review analyzed six research papers and found that 

there is still a lack of interest in addressing ERP engineering issues with the product line 

strategy. 

Pereira et al., (2015) developed an SLR which analyzed the available literature on SPL 

management tools. In this study, 52 papers were included. They identified 41 tools in the 

literature that provide support to at least one SPL management phase. 

 

Finally, Marimuthu & Chandrasekaran (2017) conducted a systematic mapping study of 
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existing systematic studies of software product lines (tertiary study). They analyzed 60 

relevant studies to highlight the SPL research topics, type of published reviews, active 

researchers and publication forums. 

1.2 Systematic mapping process 

As previously mentioned, the method used in this research is an SMS. We applied the 

mapping studies guidelines proposed by Petersen et al. (2008), which compares the 

methods used in mapping studies and SLR. The specific systematic mapping process 

reported in this paper was performed based on those guidelines and represented in Figure 

1-1 as a sequence of activities and their corresponding outcomes. Even if it is not possible 

to conduct a mapping study or a literature review in a fully objective manner, the guidelines 

used in our systematic mapping process on SPL implementation renders the study less 

subjective thanks to pre-defined data types and criteria that narrow the scope for personal 

interpretation. 

 

Figure 1-1: The systematic mapping process 

 

 

The main activities of this systematic mapping process are (i) definition of research goals 

and questions, (ii) definition of search strategy, (iii) search conduction, and (iv) data 

extraction and question resolution. The first three activities are described in the next three 

subsections Section 1.2.1, Section 1.2.2, and Section 1.2.3; the last activity is described in 

Section 1.3. 

1.2.1 Definition of research goals and questions 

Figure 1-2 shows a KAOS diagram (Heaven & Finkelstein, 2004) that details the research 

goals of this study. The main research goal (G0) refers to the carrying out of the SMS on 

SPL implementation. G0 is broken down into three primary sub-goals and these primary 
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sub-goals into secondary sub-goals; the secondary sub-goals will serve as a base for the 

definition of the research questions. 

• Primary sub-goals G1 and G3 represent the researchers’ perspective. Their 

secondary sub-goals provide an overview of how different researchers are dealing 

with SPL implementation in different countries, in different laboratories, and where 

these contributions are available and what the current trends are.  

• Primary sub-goal G2 represents the practitioners, industry and developers’ 

perspectives. Its secondary sub-goals provide an overview of current 

methodologies for implementing an SPL, the available tools, software languages, 

and evaluations, among others. 

 

Figure 1-2: Systematic mapping study research goals 

 

 

Based on the previous diagram, we designed 10 answerable and interpretable research 

questions (SRQ). These research questions will be called SRQ to avoid confusion with the 

thesis research questions (RQ). Each SRQ is related to a specific secondary sub-goal 

which is simultaneously related to a primary sub-goal. Table 1-1 shows the 12 research 

questions and their division. 
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Table 1-1: Systematic mapping study research questions  

Research Question Sub-goal Goal 

SRQ1: What is the time distribution of primary studies? 
Rationale: answering this SRQ will help us to understand if this is 
a trending field and how it has evolved over the years. 

G1.1  
G1 

SRQ2: What is the venue distribution of primary studies? 
Rationale: it is important to know what the authors preferred 
venues are in order to know where to find relevant papers about this 
field. 

G1.2 

SRQ3: What is the geographic distribution of primary studies?  
Rationale: this SRQ will help us to understand what the lead 
countries and authors in this field are. 

G1.3 

SRQ4: What approaches for SPL implementation are used?  
Rationale: commonly, the base of SPL implementation is a 
programming paradigm or mechanism which defines the design, 
implementation, and assembly of the reusable domain components. 
By answering this SRQ, we can get an overview of how researchers 
deal with SPL component implementation. 

G2.1  
G2 

SRQ5: What are the available tools that automate SPL 
implementation? 
Rationale: SPL implementation is a difficult process that involves a 
lot of activities. The answer to this question will let us know what the 
available tools and programs are, what processes they automate, 
and how these tools are used. Based on this, researchers and 
companies can learn which tools can be used to satisfy their needs. 

G2.2 

SRQ6: What variability models are most used in an SPL 
implementation? 
Rationale: This question specifies that system variability is a 
common field in SPL implementation. Answering this question will 
let us know what the most used variability models are.  

G2.3 

SRQ7: What software languages are most used to implement the 
SPL components? 
Rationale: Commonly companies and developers have preferred 
software languages that they have used before to develop software 
products. Knowing the programming languages that are most used 
by authors and developers to implement SPL components will serve 
to discover what the matureness of the technologies and 
mechanisms using those languages are. 

G2.4 

SRQ8: What type of evaluations are most used in studies on SPL 
implementation? 
Rationale: Knowing how the authors evaluate their proposals is 
useful for future studies. 

G2.5 

SRQ9: What are the main topics of the selected studies?  
Rationale: by answering this SRQ, we can get an overview of what 
the main topics are in SPL implementation. This information is an 

G3.1  
G3 
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important starting point for deepening researchers’ topics of 
interest. 

SRQ10: What trends have these topics followed over the last 
years?  
Rationale: trending topics are very valuable; they can lead 
researchers to focus on future research and new developments. 
Also, this answer helps to understand what topics authors have 
been developing recently and what challenges they have had. 

G3.2 

1.2.2 Definition of search strategy 

Keeping in mind the previous research questions, we defined a set of terms. These terms 

also consider three subjects: (i) the application domain, (ii) the SPL implementation stage, 

and (iii) the research perspective. 

1. Application domain: contextualizes the search; in this case, the search only 

encompasses documents related to software product lines. 

2. SPL implementation stage: as was mentioned before, the intention is to obtain a 

complete overview of SPL implementation. This process is comprised of different 

stages, and so relevant articles need to be found for each stage to obtain the 

complete overview. For this SMS, we selected 8 principal stages which range from 

specification to evolution (specification, modeling, binding, personalization, 

configuration, assembling, validation, and evolution). 

3. Research perspective: the present SMS perspective is to obtain information about 

SPL implementation. Then, three terms were added that will help to refine and to 

obtain results related to this field. 

 

These elements are consolidated in Table 1-2, and Table 1-3 lists the final derived search 

strings used to conduct the search. The strings are the result of the combination of three 

parts: (i) all terms in Table 1-2 – Group 1 (separated by “OR”); (ii) specific terms related to 

each SPL implementation stage, terms of Table 1-2 – Group 2  (separated by “OR”); and 

(iii) all terms in Table 1-2 – Group 3 (separated by “OR”). 

 

Table 1-2: Group of terms 

Group Term Subject 

1 Product line, product family, SPL Application 
domain 



State of the art 21 

 

 

2 Specification: (domain engineering, domain requirements, 
requirements engineering) – Modeling: (variability language, 
domain design, variability model) – Binding: (feature binding, 
variability binding) – Personalization: (product personalization, 
market personalization, software personalization, component 
personalization) – Assembling: (product assembling, software 
assembling, component assembling) – Configuration: (product 
configuration, software configuration, component configuration, 
application realization, application implementation) – Validation: 
(product validation, quality assurance, software validation, product 
testing, component validation) – Evolution: (product evolution, 
software evolution, company evolution, component evolution) 

SPL 
implementation 
stage 

3 Component implementation, software implementation, product 
implementation 

Research 
perspective 

 

Table 1-3: Resulting search strings 

No. SPL 
Implementation 
Stage 

Search strings 

DS1 Specification (“product line” OR “product family” OR “SPL”) AND (“domain 
engineering” OR “domain requirements” OR “requirements 
engineering”) AND (“component implementation” OR “software 
implementation” OR “product implementation”) 

DS2 Modeling (“product line” OR “product family” OR “SPL”) AND (“variability 
language” OR “domain design” OR “variability model”) AND 
(“component implementation” OR “software implementation” OR 
“product implementation”) 

DS3 Binding (“product line” OR “product family” OR “SPL”) AND (“feature binding” 
OR “variability binding”) AND (“component implementation” OR 
“software implementation” OR “product implementation”) 

DS4 Personalization (“product line” OR “product family” OR “SPL”) AND (“product 
personalization” OR “market personalization” OR “software 
personalization” OR “component personalization”) AND (“component 
implementation” OR “software implementation” OR “product 
implementation”) 

DS5 Assembling (“product line” OR “product family” OR “SPL”) AND (“product 
assembling” OR “software assembling” OR “component assembling”) 
AND (“software implementation” OR “product implementation” OR 
“component implementation”) 

DS6 Configuration (“product line” OR “product family” OR “SPL”) AND (“product 
configuration” OR “software configuration” OR “component 
configuration” OR “application realization” OR “application 
implementation”) AND (“component implementation” OR “software 
implementation” OR “product implementation”) 
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DS7 Validation (“product line” OR “product family” OR “SPL”) AND (“product 
validation” OR “quality assurance” OR “software validation” OR 
“product testing” OR “component validation”) AND (“component 
implementation” OR “software implementation” OR “product 
implementation”) 

DS8 Evolution (“product line” OR “product family” OR “SPL”) AND (“product 
evolution” OR “software evolution” OR “company evolution” OR 
“component evolution”) AND (“component implementation” OR 
“software implementation” OR “product implementation”) 

 

In addition to the search strings, we established the search sources used to find the primary 

studies which are shown in Table 1-4. According to Dyba et al. (2007), these databases are 

efficient for conducting systematic studies in the context of software engineering. 

Furthermore, these databases have also been considered in another SMS (Laguna & 

Crespo, 2013). After a first consolidation of the results, other databases were considered 

as part of a second phase (Google Scholar and Citeseerx) to try to find additional results 

that could offer useful material. 

 

For each database, we applied a “trial search”. This trial search consisted of introducing 

the first derived search string (DS1) into each database search form, and we checked if the 

results were as expected. If less than 10 documents were returned or if there were millions 

of results with inconsistent articles (not related to SPL implementation), then, those 

databases were discarded (DB6, DB7, and DB8 were discarded). Finally, we introduced 

each resulting search string into each selected search source and collected the results. 

 

Table 1-4: Selected search sources 

Selected Source URL # 

Yes ACM DL http://dl.acm.org/  DB1 

Yes IEEE Explore http://ieeexplore.ieee.org/  DB2 

Yes ScienceDirect http://www.sciencedirect.com/  DB3 

Yes Springer http://www.springer.com/la/  DB4 

Yes Google Scholar https://scholar.google.com  DB5 

No (after trial search) Scopus http://www.scopus.com  DB6 

No (after trial search) Citeseerx http://citeseerx.ist.psu.edu  DB7 

No (after trial search) Web of Science http://www.isiknowledge.com  DB8 

 

Inclusion/exclusion criteria 

Before conducting the search, the following restrictions and quality criteria for 

including/excluding publications were defined. These criteria were developed with the 

http://dl.acm.org/
http://ieeexplore.ieee.org/
http://www.sciencedirect.com/
http://www.springer.com/la/
https://scholar.google.com/
http://www.scopus.com/
http://citeseerx.ist.psu.edu/
http://www.isiknowledge.com/
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intention of finding the most relevant papers to solve the research questions and to exclude 

papers which do not fit this field and do not allow the research questions to be solved. 

• Restriction R1: The study only includes papers available in electronic form. Books 

were analyzed based on information available online and using the hard copy 

versions. 

• Restriction R2: Only publications written in English were included. 

• Restriction R3: Articles related to the topic of this paper published between 1st 

January 2000 and 31st March 2017 were included. 

• Quality criterion Q1: Each publication was checked for completeness. Publications 

containing several unsupported claims or that frequently referred to existing work 

without providing citations were excluded. 

• Quality criterion Q2: Works by the same authors with very similar content were 

included and grouped under the same category (method). 

1.2.3 Definition of search conduction 

The search conduction was composed of seven stages based on the study by Li et al. 

(2015) work: (i) selection by title, (ii) first results merge, (iii) selection by abstract, (iv) 

selection by full text, (v) snowballing, (vi) search extension in Google Scholar, and (vii) final 

results merge. These stages (see Figure 1-3) used the previous search strings and criteria, 

and they are presented below: 

1. Selection by title: the search conduction started by using the search strings in four 

search sources (ACM DL, IEEE Explore, ScienceDirect and Springer), then 

candidate studies were selected based on the title. Restriction R1, R2, and R3 were 

applied in this step. 

2. First results merge: all candidate studies were merged (493 at this point) and 

duplicated studies were removed (33 studies were removed). 

3. Selection by abstract: the next stage analyzed the candidate studies’ abstracts to 

guarantee that they were related with the desired topic (SPL implementation); at this 

point, 150 candidate studies were selected. 

4. Selection by full text: the previous studies’ full texts were analyzed and as a result 

64 studies were selected. Quality criteria Q1 and Q2 were applied in this step. 

5. Snowballing: in order not to miss any potentially relevant studies, we applied the 

“snowballing” technique to find more connected studies by checking the references 



24 A Generic Method for Assembling Software Product Line Components 

 

 

of the selected studies. This process could be iterative as snowballing and could be 

repeated in the newfound studies. However, only the first iteration was applied, and 

10 new studies were found. 

6. Search extension in Google Scholar: parallel to stage 5, we extended the search 

by looking in Google Scholar, we used the search strings and made a first scan by 

title (Restriction R1, R2, and R3 were applied in this step), then, a second scan by 

abstract, and finally a third scan by full text (Quality criteria Q1 and Q2 were applied 

in this step). 14 new studies were found. 

7. Final results merge: at the end, we merged the selected studies from stages 4 and 

5 and 6, and 88 relevant studies were selected. These relevant studies are listed in 

Appendix B. 

 

Figure 1-3: Study selection stages 

 

1.3 Data extraction 

The data extraction process consisted of collecting key information about relevant studies 

that will be the base to answer the research questions. We created a spreadsheet and for 

each study we recorded 18 pieces of data (see Table 1-5), the description of each data 
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point is also included in the next table (this description explains in detail the kind of data to 

be collected). Lastly, relevant research questions were assigned to each data point; this is 

because some of this data serves to answer one or multiple research questions. 

 

Table 1-5: Studies data extraction 

# Data item name Description Relevant SRQ 

D1 Article name The name of the article None 

D2 Article year 
The year in which the article was 
published 

SRQ1 

D3 Type of publication 
The publication type, such as journal, 
conference, workshop, symposium, or 
book chapter 

SRQ2 

D4 Publication name 
The name of the journal, conference, 
workshop, symposium or book chapter 
where the article was published 

SRQ2 

D5 Publication venue 
The name of the publication venue of the 
study 

SRQ2 

D6 Authors 
The name of all authors that participate in 
the study 

SRQ3 

D7 Country The main author’s affiliation country SRQ3 

D9 
Implementation 
approach 

The programming paradigm or approach 
used to design, implement, and assemble 
the SPL components 

SRQ4 

D10 Implementation stage 
The SPL implementation stage that was 
covered in the article 

SRQ5 

D11 Tools 
The name of the tools presented or used 
in the article 

SRQ5 

D12 IDE 
The integrated developed environments 
presented or used in the article 

SRQ5 

D13 Variability models 
The variability models presented or used 
in the article 

SRQ6 

D14 
Provide example with 
programming code 

Yes or no depending on if the article 
provides an example with programming 
code 

SRQ7 

D15 Software languages 
The software languages presented or 
used in the article to implement the SPL 
components 

SRQ7 

D16 Evaluation type 
The type of evaluation presented or used 
in the article 

SRQ8 

D17 Example type 
The type of example presented in the 
article 

SRQ8 

D18 Topics and Trends 
A general topic discussed in the article 
and/or trends 

SRQ9-SRQ10 

1.4 Resolving questions about research goal G1 – 
Publication 

The first analysis after the search conduction gives us a global overview of the time 

distribution and the diversity of the sources in this research field (which provides information 
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to answer SRQ1 and SRQ2). Implementation of SPL has been a relevant topic over the 

last decade (see Figure 1-4); at the beginning of the twenty-first century there were a few 

studies in this field, and in 2016 publication peaked with 10 studies published. 2017 shows 

only 4 publications, but the time-frame between the papers are sent to be published and 

their final publication should be considered, as the search conduction was carried out 

between March and April of 2017. 

 

Figure 1-4: Temporal distribution of the sources 

 

 

Figure 1-4 shows some interesting information. Most of the publications were presented at 

conferences or similar (symposiums and workshops) with a total of 56 publications (64%). 

The second preferred medium is journals with 24 publications (27%) and finally book 

chapters with 8 publications (9%). 

 

Another important result is related to conferences and journals that have published the most 

studies (see Figure 1-5). For journals, Information and Software Technology with 7 

publications was the most used; second, Journal of Systems and Software with 6 and third, 

Science of Computer Programming with 3. For conferences, International Software Product 

Line Conference (SPLC) with 5 publications was the most used; second, International 

Conference on Software Engineering (ICSE) with 4 and third, International Conference on 

Software Reuse (ICSR) with 3 publications. 
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Figure 1-5: Data on most frequent journals and conferences 

 

 

Top authors in the research field are presented in Figure 1-6, showing the number of 

contributions from each author as a main author or secondary author. Uirá Kulesza (Kuleza 

U) from Universidad Federal de Río Grande del Norte (Brazil) and Eduardo Santana de 

Almeida (de Almeida E.S.) from Universidade Federal da Bahia (Brazil) are the top 

contributors with 6 publications each, followed by Alessandro Garcia (Garcia A) from 

Pontificia Universidad Católica de Río de Janeiro (Brazil) with 5 publications. Finally, 

Jaejoon Lee (Lee J) from Lancaster University (UK) and Vander Alves (Alves V) from 

Universidade de Brasília (Brazil) present 4 publications each (this analysis helps to answer 

the SRQ3). 

 

Figure 1-6: Data on most frequent authors’ 
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Based on the previous figure, Brazil leads as the country with the most top contributors. 

This is consistent with the results presented in Figure 1-7. This figure provides a list of the 

top countries that each publication’s main authors are affiliated to (SRQ4 research 

question). It shows Brazil also leads with 21 publications (24%), followed by Germany with 

11 publications (13%), and USA and Netherlands with 6 publications each. 

 

Figure 1-7: Data on each publication’s main authors’ affiliations 

 

1.5 Resolving questions about research goal G2 – SPL 
implementation 

After the search conduction was carried out, the second analysis focused on the main topic 

of the SMS (SPL implementation), which provides information for answering SRQ4 to 

SRQ8. First, we summarize the results of the SPL implementation approaches; second, we 

present the results in order to answer the research questions. 

1.5.1 Summary of SPL implementation approaches 

We divided the studies based on their SPL implementation approach (See Table 1-5 – D9). 

We grouped these studies as follows: (i) aspect-oriented programming (AOP), (ii) service-

oriented architecture (SOA), (iii) annotative approaches, (iv) feature-oriented programming 

(FOP) and delta-oriented programming (DOP), (v) other approaches, (vi) mixed 
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approaches, (vii) not specified. After summarizing each approach, we will show an example 

of component implementation with some of the approaches listed above. These 

approaches also describe the way in which the SPL components must be implemented. 

 

Below, the results of the information collected for each of the previous groups are 

presented. To organize the information, we created a table structure that summarizes the 

collected information (based on Table 1-5). This structure records: 

• SPLE stage refers to the software product line engineering stage, that was covered 

in the study such as modeling, binding, implementation, and evolution. Sometimes 

a study can cover multiple SPLE stages, in these cases, we recorded the 

information as “Multiple”. 

• Evaluation refers to the type of evaluation applied in the study such as running 

examples, experiments, and comparisons. 

• Specific example refers to the type of example presented in the study. 

• Tool support refers to the tools, libraries or software used or mentioned in the 

study. 

• Software language refers to the software languages used or mentioned in the 

study such as Java, PHP, and C++. 

• Variability model refers to the variability model used or mentioned in the study 

such as the feature model, OVM, and goals model. 

1.5.1.1 Aspect-oriented programming (AOP) 

Aspect-oriented programming (AOP) is an approach that aims to modularize the 

crosscutting concerns of both software product lines and single-systems. These concerns 

are widely-scoped properties and usually crosscut several modules in the software system. 

Aspects are the abstractions used to encapsulate otherwise crosscutting concerns. An 

example of a crosscutting concern is "logging", which is frequently used in distributed 

applications to aid debugging by tracing method calls [S34]. Therefore, the use of aspects 

relies on three major mechanisms to modularize and vary crosscutting concerns: (i) join 

points are the identifiable execution points, for example, method calls or object attribute 

assignments; (ii) a pointcut is a predicate over dynamic join points, meaning that given a 

certain dynamic join point, a pointcut can either match this join point or not (at runtime); and 

(iii) an advice is a new behavior that extends, refines or replaces the computation at 
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selected join points [S35]. AspectJ is an example of an aspect-oriented programming 

language; in AspectJ, a call to a method, a method execution, or an assignment to a 

variable are examples of join points. For instance, using AspectJ, it is possible to intercept 

a call to an interface method in order to check whether any of the parameters are null [S35]. 

 

A summary of research focusing on SPL and AOP is presented in Table 1-6. This table 

details important descriptions about the main papers in this field, the SPLE stage covered, 

the type of evaluation, the kind of examples presented, and the tools, the software 

languages and the variability model used. 

 

Table 1-6: Summary of SPL and AOP 

Ref 
SPLE stage 

covered 
Evaluation 

Specific 
Example 

Tool Support 
Soft. 
lang. 

Variability 
model 

S15 Architecture 
Running 
example 

Public health 
complaint 
system 

COSMOS∗-VP  
Feature 
model 

S18 Evaluation 
Running 
example 

Mobile phone 
company 

AspectJ - Ant Java  

S23 Modeling 
Running 
example 

Microwave oven Uced  
Feature 
model 

S24 
SPL architecture 
- Multiple 

Running 
example 

Graph 
algorithms 

AspectJ - 
Extended 
GenVoca - 
CoBaCoLa - 
ReGaL 

Java  

S25 Multiple 
Running 
example 

Scientific 
calculator 

AspectJ Java 
Feature 
model 

S41 
Architecture - 
Evolution 

Running 
example 

Philips TV 
product line 
architecture 

Koala - INXS - 
AspectC++ - 
Aspicere - C4 - 
WeaveC -
AspectC 

  

S42 Evolution 
Running 
example 

BestLap, Mobile 
Media 

AspectJ - 
CaesarJ 

Java 
Feature 
model 

S44 
Customization - 
Implementation 

Running 
example 

Library 
management 
domain 

AspectJ - 
OntoFeature 

Java 
Feature 
model 

S46 
Product 
derivation 

  
AspectJ - 
pure::variants - 
Gears - EMF 

Java 
Feature 
model 

S59 Architecture 
Running 
example 

Library 
management 
system 

AspectJ  
Feature 
model 

S60 Multiple 
Running 
example 

Game 

AspectJ - Junit - 
EMF - JET - 
Gears - 
Pure::variants - 
Feature 
modeling plugin 
(FMP) 

Java 
Feature 
model 
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S66 Architecture 
Running 
example - 
Comparison 

Terrestrial 
Digital TV 
System 

AspectualACME 
- ACME 

 
Feature 
model 

S67 
Implementation - 
Multiple 

Running 
example 

Weather station 
- Home 
automation 
system 

AspectJ - 
CaesarJ - OSGi 
- CAM-DAOP - 
Ecore - 
openArchitectur
eWare 

Java 
Feature 
model 

S70 
Modeling - 
Implementation 

Running 
example 

Microwave 
system 

AspectJ 
Java - 
XML 

 

S85 Multiple 
Running 
example - 
Comparison 

Bus 
transportation 

AspectJ - Spring 
framework - 
Hibernate 

Java - 
XML 

Feature 
model 

1.5.1.2 Service-oriented architecture (SOA) 

SOA emphasizes building software solution logic in the form of self-contained services that 

can be reused in multiple systems [S6]. In this approach, the SPL components are 

implemented in the form of services. An SOA implementation exposes standard interfaces 

to make services available for authorized service consumers to use in a variety of ways 

[S16], therefore, services can be replaced or can be reconfigured to adapt to different 

circumstances [S62]. In addition, an SPL that implements an SOA approach commonly 

uses Business Process Execution Language (BPEL) or similar languages to support 

variability. BPEL is an XML-based programming language that can be used to describe the 

interaction between web services at the message level; in this way, it also describes their 

composition. One example of a BPEL extension is a language called VxBPEL, which has 

extra XML elements to support variation points and variants in a BPEL process [S62]. 

 

SPL and SOA integration has been widely studied over recent years. A summary of the 

principal research is presented in Table 1-7. This table contains important descriptions 

about the main papers in this field, the SPLE stage covered, the type of evaluation, the kind 

of examples presented, and the tools, the software languages and the variability model 

used. 

 

Table 1-7: Summary of SPL and SOA 

Ref 
SPLE stage 

covered 
Evaluation 

Specific 
Example 

Tool 
Support 

Software 
language 

Variability 
model 

S4 Multiple 
Running 
example 

Mobile 
learning app 

 
Java - 
Javascript 

Feature 
model 

S5 Implementation 
Running 
example 

Office system JBoss jBPM Java 
Feature 
model 

S6 Multiple 
Running 
example 

e-health 
domain 

SoaSPL  
Feature 
model 
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S8 
Architecture - 
Multiple 

Running 
example - 
Experiment 

Currency 
exchange 

VisualWebC 
- BPEL4WS 

ASP - Java  

S14 Multiple      

S16 
Implementation - 
Evaluation 

Comparison Library 

OSGi - 
Apache 
Tuscany - 
JAX-WS 

Java 
Feature 
model 

S17 Multiple 
Running 
example 

e-commerce 

Apache ODE 
- Apache 
CXF - 
Eclipse 
Swordfish - 
SoaSPLE 

Java 

Feature 
model - 
Multiple 
View Service 
Variability 
Model 

S26 
Implementation - 
Product derivation 

Industrial 
report 

Aurora – web 
development 
enviroment 

 
JSP - 
HTML - 
XML - Java 

 

S62 
Modeling - 
Multiple 

Running 
example 

Supply Chain 
Management 
System 

COVAMOF-
VS - BPEL - 
VxBPEL - 
ArgoUML 

Java - XML 

UML profile 
for 
architectural 
variability 
modeling 

S68 Multiple      

S76 
Modeling - 
Implementation 

Running 
example 

Online 
marketplace 

BPMN - EPC 
- YAWL - 
VxBPEL - 
COVAMOF - 
SOMA 

Java - .net 
Feature 
model 

1.5.1.3 Annotative approaches 

Annotative approaches implement SPL components with some form of explicit or implicit 

annotations, with the prototypical example being the use of #ifdef and #endif 

statements to surround the SPL component code. Annotative approaches assemble the 

variations of all possible configurations within a single artifact, as is the case with the C++ 

preprocessor and the Java preprocessor Antenna [S48]. During variant derivation, the parts 

that are not needed within a variant are removed. This is the reason that annotative 

approaches are well known in their support of fine-grained extensions on statements, 

parameters, and conditional expressions [S65]. 

 

A summary of the principal research on SPL and annotative approaches is presented in 

Table 1-8. This table contains an important description on the major papers in this field, the 

SPLE stage covered, the type of evaluation, the kind of examples presented, and the tools, 

the software languages and the variability model used. 
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Table 1-8: Summary of SPL and annotative approaches  

Ref 
SPLE stage 

covered 
Evaluation 

Specific 
Example 

Tool Support 
Software 
language 

Variability 
model 

S2 Multiple 
Running 
example 

Satellite 
system 

pure::variants - 
Rhapsody - C 
Compiler 

C 
Feature 
model 

S20 
Architecture - 
Multiple 

Running 
example 

Chat app xADL - ANTLR Java  

S36 Multiple 
Running 
example 

Mobile games  Java 
Feature 
model 

S52 Multiple 
Running 
example 

Shopping 
store 

GenArch Java - XML 
Feature 
model 

S61 
Configuration - 
Multiple 

Running 
example 

Software 
configuration 
management 

FeaturePlugin 
- Fujaba - 
MODPLFeatur
ePlugin 

Java 
Feature 
model 

S72 
Requirements - 
Architecture - 
Multiple 

Industrial 
report 

Automotive 
pure::variants - 
DOORS - 
Rhapsody 

 
Feature 
model 

S84 
Architecture - 
Multiple 

Running 
example 

Chat app 

xLineMapper - 
Eclipse 
 JET - ANTLR 
- ArchJava - 
Archface 

Java PLA model 

1.5.1.4 Feature-oriented programming (FOP) and delta-oriented programming 
(DOP) 

Feature-oriented programming (FOP) has been used to implement SPLs by composing 

feature modules. To obtain a product for a feature configuration, feature modules are 

composed incrementally. In the context of OOP, feature modules can introduce new 

classes or refine existing ones by adding fields and methods or by overriding existing 

methods [S37]. Delta-oriented programming (DOP) has been seen as an extension of FOP. 

In DOP, the implementation of an SPL is divided into a core module and a set of delta 

modules. The core module comprises a set of classes that implement a complete product 

for a valid feature configuration. This allows the core module to be developed with well-

established single application engineering techniques to ensure its quality. Delta modules 

specify the changes to be applied to the core module in order to implement other products. 

A delta module can add or remove classes from product implementation [S37]. 

 

A summary of the principal research on SPL, FOP, and DOP is presented in Table 1-9. 

This table contains an important description of the major papers in this field, the SPLE stage 

covered, the type of evaluation, the kind of examples presented, and the tools, the software 

languages and the variability model used. References marked with an asterisk (*) use DOP 

approaches. 
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Table 1-9: Summary of SPL, FOP, and DOP 

Ref 
SPLE stage 

covered 
Evaluation 

Specific 
Example 

Tool Support 
Software 
language 

Variability 
model 

S27* 
Modeling - 
Multiple 

Running 
example 

Bank system 
ABS tool - ANTLR 
- JastAdd - 
Papyrus 

Java - XML 
Feature 
model 

S32 Multiple 
Running 
example 

Graph spl FeatureC++ C++ 
Feature 
model 

S39 Multiple 
Running 
example 

Graph spl 
rbFeatures - 
AHEAD - CIDE 

Ruby 
Feature 
model 

S47 Multiple 
Running 
example 

Graph spl – 
calculator – 
Expression 
product line 

rbFeatures - 
FeatureJ 

Ruby 
Feature 
model 

S56 Multiple 
Running 
example 

Map AHEAD - XAK 
JavaScript 
- XML - 
SVG 

Feature 
model 

S75* Multiple 
Running 
example 

Smart home 
SiPL - EMF - SiLift 
- Simulink 

 
Feature 
model 

1.5.1.5 Other approaches 

Peña [S31] discussed the use of agents in SPL. Agent-oriented software engineering is a 

software engineering paradigm that promises to enable the development of more complex 

systems than those that can be achieved with current object-oriented approaches using 

agents and organizations of agents as the main abstractions. A software agent is a piece 

of software which exhibits the following characteristics: autonomy, reactivity, pro-activity 

and social ability. The introduction of agents to the industrial world may benefit from the 

advantages that SPL offers [S31]. Using SPL philosophy, a company will be able to define 

a core multi-agent system from which concrete products will be derived for each customer. 

 

El-Sharkawy et al. [S43] developed a tool called EASy-Producer, an Eclipse extension for 

efficient software product line development. This tool uses three custom-developed 

domain-specific languages (DSL): IVML language which is used to define the variability 

model of the SPL, VIL language which is used to define the relationship between the 

variabilities and the implementation, and VTL language which supports variability-aware 

artifact generation. 

 

Another approach that the SMS found is context-oriented programming (COP). COP is an 

approach that supports the dynamic adaptation of context conditions such as bandwidth 

availability, presence of WiFi and data connection (Salvaneschi et al., 2012).  COP 

introduces language-level abstractions, such as “layers” that group partial method 
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definitions, to manage the modularization of adaptations and their dynamic activation during 

the program’s execution. 

 

A summary of other SPL implementation approaches is presented in Table 1-10. This table 

contains an important description of the major papers in this field, the approach used, the 

SPLE stage covered, the type of evaluation, the kind of examples presented, and the tools, 

the software languages and the variability model used. 

 

Table 1-10: Summary of other SPL implementation approaches 

Ref Approach 
SPLE 
stage 

covered 
Evaluation 

Specific 
Example 

Tool Support 
Soft. 
Lang. 

Var. 
Model 

S31 Agents Multiple 
Running 
example 

Security 
council's 
procedure 
to issue 
resolutions 

  
Feature 
model - 
Goals 

S43 
IVML, VIL, 
VTL (custom 
DSLs) 

Multiple 
Running 
example 

Elevator 
simulator 

EASy-
Producer - 
Dopler tool - 
FeatureIDE - 
pure::variant - 
FaMa 
framework - 
REMiDEMMI - 
FeatureMappe
r - AspectJ 

Java IVML 

1.5.1.6 Mixed approaches 

Sometimes, authors develop studies with mixed SPL implementation approaches. Most of 

these studies compare two or more approaches [S34, S37, S65, S81]. However, in other 

cases, they try to take advantage of the benefits of some approaches and use them in 

combination with other approaches. For example, Parra et al. [S19] develop an approach 

for SPL based on SOA services. Their approach mixes the use of SOA services with 

annotations. The use of annotations serves to manually indicate which parts of the original 

artifacts can be transformed into services to be used externally. Andrade et al. [S22] 

propose the use of AOP with annotations. In their work, they use AspectJ as the base tool, 

which is refined with the use of some Java annotations. They implemented this combination 

to solve some issues presented in previous work which uses AspectJ-based idioms. Santos 

et al. [S73] present RiPLE-HC, a strategy aimed at blending compositional and annotative 

approaches to implement variability in JavaScript-based systems. In the annotative part, 
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they use the classical #ifdef and #endif statements to support the fine-grained 

extensions. Other studies include the blending of compositional and annotative approaches 

(Kästner & Apel, 2008; Walkingshaw & Erwig, 2012; Behringer & Rothkugel, 2016; Horcas 

et al., 2018). However, all the previous approaches present important limitations such as 

limited support for a few software languages, the use of if statements or tree structures, 

poorly detailed coding, and no tool support. 

 

A summary of SPL with mixed implementation strategies is presented in Table 1-11. It 

includes studies that deal with comparative methods. The table contains an important 

description of the major papers in this field, the mixed approaches used, the SPLE stage 

covered, the type of evaluation, the kind of examples presented, and the tools, the software 

languages and the variability model used. 

 

Table 1-11: Summary of SPL with mixed approaches 

Ref Approaches 
SPLE 
stage 

covered 
Evaluation 

Specific 
example 

Tool 
support 

Soft. 
Lang. 

Var. 
Model 

S19 
SOA - 
annotative 

Multiple 
Running 
example 

Multiple 
artifacts 

Spoon - 
FeatureIDE 

Java 
Feature 
model 

S22 
AOP - 
Annotative 

Implement
ation - 
Binding 

Experiment 
Company 
spl 

AspectJ Java  

S29 Agents - AOP Multiple 
Running 
example 

Personal 
user 
services 

GenArch - 
FMP - Jadex 

Java - 
XML 

Feature 
model 

S34 AOP - OO Evolution Comparison 
Mobile 
media 

  
Feature 
model 

S35 
AOP - OO - 
Component-
based 

Architectur
e - Multiple 

Running 
example 

Mobile 
media 

AspectJ Java 
Feature 
model 

S37 DOP - FOP Multiple Comparison 

Expression 
product 
line - 
Graph 

DeltaJ - Jak 
- AHEAD 

Java 
Feature 
model 

S48 
Annotative - 
FOP - DOP 

Multiple 
Running 
example 

FeatureAM
P – 
GameOfLif
e - Violet  

EMF - Xtext 
- DeltaJ - 
Antenna - 
C++ 
preprocessor 

Java – 
C++ 

Feature 
model 

S53 AOP - FOP Multiple 
Running 
example - 
Comparison 

Three 
board 
games 

AspectJ - 
CaesarJ 

Java 
Feature 
model 

S63 OO - AOP 
Implement
ation 

Running 
example - 
Comparison 

Smart 
homes 

 Java 
Feature 
model 

S65 
FOP - OO -
Annotative 

Evolution - 
Multiple 

Running 
example - 
Comparison 

WebStore - 
Mobile 
Media 

AHEAD - 
JAK 

Java - 
JSP 

Feature 
model 
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S73 
Annotative -
compositional 

Multiple 
Running 
example - 
Experiment 

Learning 
objects 

RiPLE-HC - 
npm - jam - 
bower - 
requireJS 
 - 
FeatureHous
e - 
FeatureIDE 

JavaSc
ript 

Feature 
model 

S78 
SOA - 
annotative 

Multiple 
Running 
example 

Company 
apps 

SPLIT - 
Spoon - 
EMF - 
FeatureIDE 

Java - 
XML 

Feature 
model 

S79 
SOA - 
annotative 

Multiple 
Running 
example 

Smart 
home 

LISA Java 
Feature 
model 

S81 AOP - OO Modeling 
Running 
example - 
Comparison 

Pacemaker 
product 
line 

Rhapsody   

1.5.1.7 SPL implementation approach not specified 

There were 23 studies in which the SPL implementation approach that was used was not 

specified. For these studies, the same information shown in the above tables was recorded. 

This information can be found online (Correa, 2018). 

1.5.1.8 Example of component implementation with some current approaches 

The previous section explained and summarized how different approaches deal with SPL 

implementation from a theoretical perspective. In order to illustrate how some of those 

approaches can be used to design and implement SPL components, a practical example 

of an appliance stores product line was elaborated. In this example, the appliance stores 

must have the possibility to manage “Payments” (mandatory feature), and those payments 

can be extended to support “Card Payments” (optional feature). Based on these features, 

we decided to implement the Payment and Card Payment using six different SPL 

implementation approaches (OOP, FOP, DOP, COP, AOP, annotative, and SOA), as 

shown in Figures 1-8, 1-9, 1-10, 1-11, 1-12, 1-13, and 1-14. The implemented methods 

were left blank because the intention is to analyze how the components and their code are 

divided based on each approach, rather than analyzing the method that was implemented. 

 

OOP 

Figure 1-8 shows an excerpt of our appliance stores product line represented as a class 

hierarchy. In OOP, components are implemented with classes. In this example, the 

“Payment” feature is implemented through the Payment Java class, and the “Card 

Payment” requirement is implemented through the CardPayment Java class. Extension of 
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components is an important contribution of OOP to improve reuse by inheritance. There 

are other approaches that include the use of interfaces or patterns, but all of them are based 

in object-oriented elements, and not all SPL components are object-oriented. 

Figure 1-8: Example of a domain component implementation in OOP 

 

FOP 

Figure 1-9 shows two different options for the implementation of components with FOP. 

The first option is based on “Superimposition”, which is the process of composing software 

artifacts by merging their corresponding substructures (cf. Fig. 1-9 model). The second 

option is based on refactoring, which has been proposed as a means for improving the 

internal structure of a system (i.e., the source code) while preserving the external behavior. 

In this case, a feature module (component) may also contain class and method refinements 

(cf. Fig. 1-9 code). The example shows how the CardPayment feature code refines the 

Payment feature with the addition of the new processCard method. This refinement is 

carried out in the component integration process. The disadvantage of FOP is that it doesn’t 

support fine-grained extensions. 

Figure 1-9: Example of a domain component implementation in FOP 
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DOP 

Figure 1-10 shows how to implement two components by means of DOP with DeltaJ. 

Similar to FOP, CardPayment delta modifies the Payment class with the addition of a new 

method called processCard. Delta also allows removing code which is not allowed in FOP. 

Finally, similar to FOP, DOP doesn’t provide fine-grained extensions. 

Figure 1-10: Example of a domain component implementation in DOP 

 

COP 

Figure 1-11 shows the component implementation by means of COP. In our example, the 

Payment class is extended with a CardLayer (layers are used to group partial method 

definitions), this layer defines a process method, which is only executed when the 

CardLayer is referred. However, the layer activation mechanism can be quite complex and 

could tend to make source code complex and difficult to maintain. 

Figure 1-11: Example of a domain component implementation in COP 

 

 

AOP 

Figure 1-12 shows the component implementation by means of AOP. AOP is a solution for 

crosscutting concerns, so instead of implementing the CardPayment feature, we 

implemented a Logging feature which is a crosscutting concern. There, we defined a 

Logging aspect with a pointcut and advice. The pointcut was called PayProcess which was 



40 A Generic Method for Assembling Software Product Line Components 

 

 

linked to the Payment Process method. The advice was linked to the previous pointcut and 

it was defined to be executed before the pointcut execution. This means, that before the 

Payment Process method is executed, the Logging aspect will execute its advice. The 

disadvantage of AOP is that it only supports variability for crosscutting concerns.  

Figure 1-12: Example of a domain component implementation in AOP 

 

Annotative 

Figure 1-13 shows how to implement SPL components by means of Antenna (an annotative 

approach). In this case, the optional feature CardPayment is surrounded by Java 

comments. During the product derivation, the parts that are not needed within a file are 

removed. The disadvantage of annotative approaches is that the SPL components contain 

all the possible variations inside them, which makes them difficult to maintain and evolve. 

Figure 1-13: Example of a domain component implementation in an Annotative approach 

 

 

SOA 

Figure 1-14 shows how to implement SPL components by means of SOA and with the use 

of BPEL Designer1. In this case, Payment and CardPayment are implemented in form of 

independent services, with the use of Web Services Description Language (WSDL) files. In 

addition, a BPEL process file is created to describe the interaction between these services 

 
 

1 https://www.eclipse.org/bpel/ 

https://www.eclipse.org/bpel/
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(to describe their composition). Depending on the received input, the Payment WSDL or 

the CardPayment WSDL could be invoked. However, SOA is not recommended for 

standalone applications, and the GUI has to be designed as an independent project. 

Figure 1-14: Example of a domain component implementation in SOA 

 

1.5.2 Results 

Following, we show the results for answering SRQ4 to SRQ8. 

SRQ4: What approaches to implement the SPL components are used? 

In the previous section we discussed the studies found about SPL implementation, we also 

summarized those studies and their contributions. Therefore, we developed the Figures 1-

8, 1-9, 1-10, 1-11, 1-12, 1-13, and 1-14 in which we showed how the SPL components are 

implemented with some of the previous SPL implementations approaches. Figure 1-15 

summarizes the SMS findings of SRQ4. Most of the studies that specified SPL 

implementation approaches focused on AOP (34%), followed by SOA (22%), annotative 

approaches (22%), FOP (13%), and DOP (6%). In addition, we found some studies in which 

there was a mix of approaches to support the SPL component implementation, or in which 

the authors created some comparisons (see Table 1-11). 

Nevertheless, we discussed in Introduction the issues with the previous approaches. For 

example, some of them support only coarse-grained extensions, are attached to a specific 
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software language and include the code variations inside the reusable component files 

which increases the complexity, among others.  

Figure 1-15: Result of SPL component implementation approaches 

 

 

SRQ5: What are the available tools that automate SPL implementation? 

The first analysis of the SPL tools was to focus on the integrated development environments 

(IDE). SPL projects are commonly developed inside a specific IDE. We found that the most 

used or discussed IDE was Eclipse (91%), followed by Visual Studio (9%). There were 

other development environments such as ArchStudio or pure::variants, but they were 

developed based on the Eclipse platform. 

The second analysis was the use of tools for the implementation of an SPL. Most of those 

tools support a specific SPL implementation approach. Figure 1-16 summarizes the tool 

results and below we describe the most used or discussed tools based on the SPL 

implementation approaches: 

• AOP: AspectJ is an AOP extension for the Java programming language. Currently, 

AspectJ is the most consolidated AOP language [S42]. CaesarJ is an aspect-

oriented language which unifies aspects, classes and packages in a single powerful 

construct that helps to solve a set of different problems of both aspect-oriented and 

component-oriented programming. 

• SOA: VxBPEL is proposed as an extension of Business Process Execution 

Language (BPEL) for to the process description and definition. VxBPEL allows for 
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run-time variability and variability management in Web service-based systems. 

Variability information is defined in-line with the process definition [S76]. SoaSPLE 

is a generic conceptual framework that can be built on top of available Object 

Management Group (OMG) and standard modeling languages such as UML, 

BPMN, and SoaML. These languages provide modeling elements that can be used 

in depicting service views such as SoaMl’s Service Interface elements, BPMN’s 

Business Process elements and UML’s Interaction Diagram elements [S6]. 

• Annotatives: pure::variants is a tool developed by pure-systems and is used for 

modeling features, expressing product variants in terms of features, and generating 

tailored artifacts. It is based on the well-known Eclipse platform and it can be 

extended by writing plug-ins in the Java programming language [S72]. Rhapsody is 

a tool developed by IBM Rational, that supports system engineers with modeling 

static and dynamic aspects of software systems using UML and SysML. Code 

generation for different languages is supported as well as the simulation of 

behavioral models such as state charts [S72]. Spoon is a tool that analyses and 

transforms Java code using processors. Spoon creates an abstract syntax tree of 

the code being analyzed and offers the API to navigate through the tree and 

eventually perform modifications [S78]. GEARS provide an all-in-one development 

environment for establishing, managing and operating your Feature-based PLE 

Factory. GEARS explicitly supports the integration of existing (i.e., unchanged) 

software. This implies that GEARS can deal with software over which no control 

exists [S38]. 

• FOP: AHEAD is an approach to support FOP based on stepwise refinements. The 

main idea behind AHEAD is that programs are constants and features are added to 

programs using refinement functions [S65]. 

• DOP: DeltaJ is a programming language which introduces DOP to Java [S37]. 

DeltaJ is available as an Eclipse plugin and it is based on the Xtext Framework. 

• Other: FeatureIDE is a set of tools for variability modeling that enables one to create 

and edit feature diagrams. Furthermore, FeatureIDE provides a configuration tool 

to create and validate configurations with regard to the constraints defined in the 

variability model. Using FeatureIDE a developer can create product configurations 

and validate if such configurations respect the constraints expressed in the 

variability model. FeatureIDE already supports multiple composer engines and 
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approaches such as AHEAD, Munge, Antenna, AspectJ, FeatureC++, and 

FeatureHouse, among others [S78]. Koala [S38] is a component model consisting 

of an architectural description language (ADL) and tool support. The ADL serves to 

define interfaces, data types, basic components, and compositions (which are 

components themselves). The tooling serves to generate products from component 

compositions. Koala was primarily designed for resource-constrained software and 

is applied in the consumer electronics domain. ANTLR (Another Tool for Language 

Recognition) is an open-source project that can automatically generate a code 

processor from a defined grammar. The generated code processor automatically 

parses the input source code into a syntax tree, and outputs the code as instructed 

by the user [S20]. 

 

Figure 1-16: Quantity of mentions of some SPL implementation tools 

 

 

SRQ6: What variability models are most used in an SPL implementation? 

Without any doubt, feature models are the most used and discussed variability models in 

the SPL implementation literature. Some of the SMS studies specified the use of SPL 

variability models (see Figure 1-17). In this case, the most used or discussed variability 

model was feature models (82%). There were other studies in which other variability models 

were discussed, such as, Orthogonal Variability Model (OVM), architectural models, and 

goals models. However, they represent a small size of the total studies. During these years, 

feature models have become a popular formalism for describing the commonality and 

variability of SPLs. 
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Figure 1-17: Result of variability models 

 

 

SRQ7: What software languages are most used in the SPL component 

implementation? 

Figure 1-18 summarizes the SMS findings of the software language popularity. In the 

studies that specify software languages, we found that the most popular was Java (48%). 

Followed by XML (15%), and C, C++ and C# (8%).  

Figure 1-18: Result of software languages 

 

It is not a surprise that Java arises as to the most used software language, this can be due 

to the fact that the SPL developers are very attached to the use of IDEs such as Eclipse, 

and many of the authors have proposed and developed tools based on the Eclipse 

Modeling Framework (EMF). In this framework, developers can specify models with the use 
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of annotated Java, UML, and XML documents, among others. That can be a reason why 

Java and XML are two of the most used software languages. However, as mentioned in 

Introduction, many SPL implementation approaches focus on supporting a specific software 

language or are attached to a specific software language, and software applications use an 

average of 5 different software languages. 

SRQ8: What type of evaluations are most used in studies on SPL implementation? 

As we have shown during the development of this chapter, many studies have proposed 

new mechanisms, concepts, processes, or techniques that improve some stages of the 

implementation of SPL. Many of those studies also provide a kind of evaluation for their 

proposals. Figure 1-19-a summarizes SMS evaluations results. Running examples are the 

most used evaluation technique (81%), which provide a practical way to illustrate the 

authors’ proposals. The use of running examples was followed by comparison studies and 

case studies both with 8%. It is important to clarify that many studies claimed themselves 

to use case studies, however, we only recorded case studies for those studies that there 

were applied in industrial settings. If a study was claimed as a case study but in a non-

industrial setting, we recorded them as a running example. 

Figure 1-19: Result of evaluations and kind of examples 
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We also found that most evaluations recorded information such as lines of code (LOC), 

quantity of classes, quantity of methods, quantity of components, number of product 

derivations, and number of product configurations, among others. 

Finally, we recorded the kind of examples that were presented in the studies’ evaluations 

(see Figure 1-19-b). The results show a wide range of domains in which SPL are applied, 

which goes from the avionics domain [S50], to games [S36], library management systems 

[S59], and home automation [S79]. 

1.6 Resolving questions about research goal G3 – Topics 
and trends 

SRQ9: What are the main topics of the selected studies?  

After the SMS development, we have found some main topics in the SPL implementation 

domain. Some of these topics have been already discussed in Introduction and in Section 

1.5; such as SPLE, domain engineering, application engineering, product derivation, 

variability modeling, compositional and annotative approaches, fine-grained and coarse-

grained extensions, component implementation, component assembling, SPL tools, and 

SPL evaluations. Other main topics are discussed below: 

• MDD – MDE – MDA. Model-driven development (MDD) and similar areas, such as 

model-driven engineering (MDE) and model-driven architecture (MDA) improve the 

way software is developed by capturing key features of a system in models which 

are developed and refined as the system is created. During the system’s lifecycle, 

models are synchronized, combined and transformed between different levels of 

abstraction and different viewpoints. In contrast to traditional modeling, models do 

not only constitute documentation but are processed by automated tools [S67]. 

Authors and SPL developers have been taken advantage of the MDD 

characteristics to improve and automatize the implementation of SPL. For example: 

(i) Alzahmi et al. [S6] presented a tool that facilitates the automatic derivation of 

SOA applications based on MDE as an implementation methodology, (ii) Mefteh et 

al. [S49] developed an approach in which feature models can be built automatically 

not only from source codes but also from descriptions and uses cases diagrams, 

and (iii) Mohamed et al. [S74] presented a multi-tenant single instance software-as-

a-service evolution platform based on Software Product Lines (SPLs) and MDA. 
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• PLA – ADL. Product line architecture (PLA) is an important application of software 

architecture in the development of a family of software products, or a software 

product line. It captures architectural commonality and variability among products 

of the product line [S84]. Architectural description languages (ADLs) can be seemed 

as an approach for implementing PLA concepts. ADLs typically use architectural 

styles to define vocabularies of types of components, connectors, properties, and 

sets of rules that specify how elements of those types may be legally composed in 

a reusable architectural domain [S66]. PLA and ADL have been also used in 

conjunction with SPL implementation, Zheng and Cu [S84] presented an approach 

to implementing product line architecture which combines a code generation and 

separation pattern with an architecture-based code annotation technique;  the Koala 

tool was designed as a component model consisting of an ADL [S38]; and Barbosa 

et al. [S66] developed PL-AspectualACME which is an extension of the ACME ADL 

that enriches existing abstractions to express architectural variabilities. 

• DSL. A domain specific language (DSL) is a formalism for building models which 

encompasses a meta-model as well as a definition of a concrete syntax that is used 

to represent the models. The concrete syntax can be textual, graphical or using 

other means, such as tables, trees or dialogs [S67]. Some authors have developed 

some DSL to improve the implementation of SPL, such as El-Sharkawy et al. [S43] 

who developed a tool and three custom-made DSLs to support the creation and 

management of software product line projects, and Pessoa et al. [S30] proposed an 

approach to developing reliable and maintainable DSPLs which uses a DSL to 

describe reliability goals and adaptability at runtime. 

• DSPL. Dynamic software product lines (DSPL) have emerged as a promising 

strategy to develop SPL that incorporate reusable and dynamically reconfigurable 

artifacts. The central purpose of DSPL is to handle adaptability at runtime through 

variability management, as well as to maximize the reuse of components [S63]. 

• CBSE. Component-based software engineering (CBSE) focuses on the 

development and reuse of self-contained software assets in order to achieve better 

productivity and quality as software systems are composed by previously developed 

components used (and tested) in other contexts [S28]. CBSE has some similarities 

with SPL, some SPL developers incorporate CBSE processes and activities inside 

the SPLE. 
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• COTS. A commercial off-the-shelf (COTS) product or component is one that is used 

"as-is". COTS components are designed to be easily installed and to interoperate 

with existing system components. Lago et al. [S83] extended a tool to support 

traceability in product families which allows accommodating both newly developed 

and COTS components at code level. 

 

SRQ10: What trends have these topics followed over the last years? 

For the question resolution about trends, we analyzed the papers presented between 2015 

and 2017. We found five main areas in which authors were developing their studies. 

• Dynamic software product lines. Software availability has become more and 

more recognized as a quality issue since business transactions and many customer 

operations have become computerized. DSPL has become a trending topic to 

support dynamic product reconfiguration and adaptability at runtime [S30,S45,S63], 

which improve software availability. 

• SMS and SLR studies. During the last decade, many have authors have developed 

several proposals in different SPL areas. Recently, some authors have developed 

multiple SMS and SLR studies trying to provide an overview of these proposals in 

different SPL areas [S54,S55,S71,S77]. 

• Web and mobile systems. Due to the internet boom, some authors have proposed 

some studies to apply SPL techniques to web and mobile systems [S9,S73,S80]. 

This also means that SPL proposals have to evolve to support many mobile and 

web software languages and frameworks. 

• MDD. The use of MDD to support some processes inside the SPLE continue being 

a trending topic [S49, S75]. Research in MDD will allow to automatize the SPLE 

processes and reduce the manual intervention. 

• PLA. The evolution of software architectures requires research in the PLA area 

[S20, S84]. For example, the use of PLA in microservices is a relevant research 

area. 

1.7 Threats to validity 

Threats to the validity of the study can be analyzed from the point of view of construct 

validity, reliability, and internal validity (Wohlin et al., 2000). First, construct validity reflects 

the extent to which the phenomenon under study really represents what is being 
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investigated, according to the research questions. The term software product line is well 

established and hence stable enough to be used as part of the search string. However, for 

SPL implementation, we consider that this is an ambiguous term and several authors use 

different names. That is the reason why we divided the SPL implementation term in eight 

resulting search string, trying to cover as many representative variants as possible, and to 

reduce the threat of having used the appropriate terms or not (see Table 1-3). Another 

aspect of the construct validity is the assurance that we find all the papers on the selected 

topic. We have searched broadly in general publication databases that index the best 

reputed journals and conference proceedings. The list of different publication media 

indicates that the width of the search is enough (see Table 1-4). Second, reliability focuses 

on whether the data are collected, and the analysis is conducted in a way that it can be 

repeated by other researchers with the same results. We defined the search terms and 

applied procedures, which may be replicated by others. The non-determinism of some of 

the databases (Google scholar) is compensated by using more reliable databases 

(ScienceDirect, Springer, ACM, and IEEE explore). The inclusion/exclusion criteria are 

related to whether the topic of the field is present in the paper or not. Finally, in order to 

address the internal validity concerns, a review protocol was created beforehand and 

evaluated by two researchers, which took on roles of quality assurance as well. The internal 

validity was also enhanced by following the systematic mapping guidelines proposed by 

Petersen et al. (2008). 

1.8 Conclusions 

This chapter presented the results of a systematic mapping study on SPL implementation. 

Including an overview of the processes, methods, and tools used to carry out SPL 

implementation; and details on the role of the SPL components in the entire process. In 

total, 88 studies were included in this mapping study from 2000 to March 2017. The SMS 

included the definition of 10 research questions which were defined and answered. These 

questions were divided into three categories publication, SPL implementation, and topics 

and trends. A summary of each category is presented below: 

• Publication. SPL implementation remains as an interesting field in which many 

authors from many different countries have been proposing many contributions 

during the last decade. The most preferred journal to publish this type of articles is 

Information and Software Technology, and the most preferred conference is the 
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International Software Product Line Conference (SPLC). Brazil leads as the country 

which has more quantity of publications in this field and has the majority of the top 

contributions. 

• SPL implementation. There are several approaches to implement SPL, the most 

discussed are AOP, SOA, annotative approaches, FOP, and DOP. There are 

different software tools that support specific approaches or some processes of the 

SPLE. The most mentioned include AspectJ, pure::variants, AHEAD, KOALA, and 

FeatureIDE. About variability models and software languages, feature model 

appears as the most preferred variability model, and Java and XML are the most 

used software languages. Finally, there are different kinds of evaluations in which 

the most discussed are running examples, case studies and comparisons. 

• Topics and trends. Some of the general topics in the SPL implementation domain 

include SPLE, domain engineering, application engineering, product derivation, 

variability modeling, compositional and annotative approaches, MDD, PLA, DSL, 

DSPL, CBSE, and COTS. Therefore, current trends include DSPL, SMS and SLR 

studies, web and mobile systems, MDD, and PLA. 

 





 

 
 

2. Running example 

The use of running examples is very useful in software engineering. They have been used 

to provide a practical way to illustrate the concepts of a methodology, process, and 

technique, among others (Wileden & Kaplan 1999; Mens, 2004; Epifani et al., 2009). We 

also found that many SPL studies used running examples as a way to describe and show 

their concepts (see Figure 1-15). In this thesis, we present FragOP which consists of 

several concepts, processes, activities, and tooling support, that should be understood and 

used to design and implement an SPL. Based on that fact, we defined an SPL running 

example that will be explained as this chapter develops and will be used to illustrate the 

FragOP elements and provide a realistic scenario of how to implement an SPL with the use 

of FragOP. The running example is consistently referred to throughout Chapters 4 and 5. 

 

We called the running example ClothingStores. ClothingStores is a software product line, 

which consists of the development of an e-commerce store system family to manage and 

sell clothes. The main idea is to provide a set of capabilities, such as product management, 

user management, shop system, cart system, web management, sharing system, login 

system, database management, offline payment, and comment system, among others. The 

implementation of these features will allow developing several customized clothing store 

products. 

 

The ClothingStores SPL was designed as a real-world example, covering most of the 

problems SPL developers face when implementing an SPL. These problems include: 

• Crosscutting concerns. ClothingStores will contain a Login component, which in 

case of being part of a final product, must be integrated transversally over multiple 

other product files. 

• Fine-grained extensions. ClothingStores will present multiple fine-grained 

extensions that must be applied for most of the derived products. For example, to 
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modify the header menu, to modify specific parts of the product views, to modify 

product class methods, SQL files, among others. 

• Coarse-grained extensions. There are many cases in which a ClothingStores 

product will require coarse-grained extensions such as replacing a validation 

method for the admin classes and including DAO methods, among others. 

• Product customization. Database config vars, product name, and some default 

texts inside the product views must be customized. 

• Managing multiple language files. The ClothingStores SPL will be designed as a 

real web application which includes domain files types, such as SQL, images (.jpg 

and .png), JavaScript, HTML, JSP, Java, and CSS. 

 

In the next two subsections we describe the ClothingStores requirements, and then go on 

to describe the ClothingStores software architecture, including its project folder structure. 

2.1 Requirements 

The SPL requirements define the possible capabilities of the derived software products. In 

an SPLE, the requirements shared by all members of the product line (mandatory) and 

requirements which are specific for one or several special products (optional) must be 

defined. 

 

The SPL requirements are usually represented with visual languages, such as Feature 

Models (FMs; Kang et al., 1990).  In an FM, a feature can be defined as a quality or a 

characteristic of a (software) system (Apel et al., 2013). Features have a Boolean nature 

even though it is well known that quality attributes, as opposed to the functional 

requirements, are non-Boolean. There are some other limitations of the feature modeling 

language that can be consulted in Mazo (2014). For the ClothingStores SPL example, we 

defined a total of 25 features which are described in Table 2-1 and graphically represented 

in Figure 2-1. Mandatory features contain an asterisk (*) at the end of the “Feature 

Identifier”. 
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Figure 2-1: ClothingStores feature model 

 

 

Table 2-1: ClothingStores list of features 

ID Feature Identifier Description Parent 

F01 ClothingStores* The root or name of the PL  

F02 Basic views* 
Refers to the basic views that any ClothingStores product 
must contain (e.g., headers, footers, home section, and 
CSS styles) 

F01 

F03 Contact us 
A website section that contains the store contact 
information (e.g., phone number, address, and email) 

F01 

F04 Shipping 
A website section that contains the store shipping 
information 

F01 

F05 
Database 
management* 

Manages the communication with the database (in this 
case MySQL) 

F01 

F06 Demo data 
Provides sample SQL data (e.g., products, users, and 
comments) 

F01 

F07 Product* Groups the product functionalities F01 

F08 Product model* 
Provides a service to store product information, attributes, 
and its operations 

F07 

F09 List of products* Represents a display service of all products in the store F07 

F10 Comments Provides a mechanism to comment on products F07 

F11 Sharing system 
Provides a mechanism to share products on Facebook 
and Twitter 

F07 

F12 Rating Provides a mechanism to rate products F07 

F13 User Groups the user functionalities F01 

F14 User model* 
Provides a service to store user information, attributes, 
and its operations 

F13 

F15 Account 
Represents a display service of the user information (e.g., 
user name, user type, user identifier) 

F13 
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F16 Login 
Provides a mechanism to connect and disconnect from the 
application 

F13 

F17 Shop Groups the shop functionalities F01 

F18 Cart* 
Provides a mechanism to add products to the user cart, 
and display and remove the products added to the cart 

F17 

F19 Online payment Allows payment through PayPal F17 

F20 Offline payment 
Allows offline payment by providing bank account 
information 

F17 

F21 Web management Groups the web management functionalities F01 

F22 Basic views* 
Refers to the basic views that the web management 
module contains (e.g., header and home section) 

F21 

F23 
Product 
management 

Allows products to be managed, such as create products, 
edit products, list products, and delete products. 

F21 

F24 User management 
Allows users to be managed, such as create users, edit 
users, list users, and delete users. 

F21 

F25 
Comment 
management 

Allows comments to be managed, such as create 
comments, edit comments, list comments, and delete 
comments. 

F21 

 

In addition to the concept of feature, there are some concepts that organize these features 

into a feature model as presented and exemplified in the following paragraphs: 

• Mandatory: Given two features F1 and F2, F1 father of F2, a mandatory 

relationship between F1 and F2 means that if the F1 is selected, then F2 must be 

selected too and vice versa. For instance, in Figure 2-1, features Shop and Cart 

are related by a mandatory relationship. 

• Optional: Given two features F1 and F2, F1 father of F2, an optional relationship 

between F1 and F2 means that if F1 is selected then F2 can be selected or not. 

However, if F2 is selected, then F1 must also be selected. For instance, in Figure 

2-1, features Product and Rating are related by a mandatory relationship. 

• Requires: Given two features F1 and F2, F1 requires F2 means that if F1 is 

selected in the product, then F2 has to be selected too. Additionally, it means that 

F2 can be selected even when F1 is not. For instance, Web management requires 

Login (cf. Figure 2-1). 

• Group cardinality: A group cardinality is an interval denoted <n..m>, with n as 

lower bound and m as upper bound limiting the number of child features that can be 

part of a product when its parent feature is selected. If one of the child features is 

selected, then the father feature must be selected too. For instance in Figure 2-1, 

Online payment and Offline payment are related in a <1..2> group 

cardinality. 
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• Exclusion: Given two features F1 and F2, F1 excludes F2 means that if F1 is 

selected then F2 cannot be selected in the same product. This relationship is bi-

directional: if F2 is selected, then F1 cannot be selected in the same product. 

• Feature cardinality: Is represented as a sequence of intervals [Min..Max], with 

Min as lower bound and Max as upper bound limiting the number of instances of a 

particular feature that can be part of a product. Each instance is called a clone. 

 

The previous requirements allow different kinds of software products to be defined, from 

very basic clothing stores products that contain some of the previous requirements, to very 

complete ones that contain almost all the previous requirements. 

2.2 Software architecture 

The previous SPL requirements provide relevant information that is useful for defining the 

SPL software architecture. The software architecture provides a general framework to 

develop different products from an SPL, this also means, the domain components’ source 

code must be consistent with the software architecture (Zheng & Cu, 2016). The software 

architecture includes an architectural pattern, high-level decisions and an effective way to 

manage the product variability. Finally, the definition of the SPL software architecture 

provides relevant information for modeling and developing the domain components. 

 

Keeping in mind the multiple challenges that the development of an SPL involves, which 

includes the use of several software languages, we decided to define a software 

architecture that used different software languages that communicated between each 

other. For this example, we decided:  

• To implement the ClothingStores SPL by following a client-server architecture with 

three layers: model-view-controller (MVC). 

• To develop the assets with the use of software languages, such as Java, Cascading 

Style Sheets (CSS), Hypertext Markup Language (HTML), and JavaServer Pages 

(JSP), among others.  

• To select MySQL1 as the database engine to store the application information. 

 
 

1 https://www.mysql.com/  

https://www.mysql.com/
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Figure 2-2 shows the SPL reference software architecture and the relationship between the 

different elements. The architecture is divided into (i) clients who are the users that request 

information from the application. They access the application through the HTTP protocol 

with the help of browsers, such as Firefox or Google Chrome; (ii) server which stores the 

application information and responses to the client’s requests. This reference software 

architecture will be used later as a base to design and construct the domain components. 

 

Figure 2-2: ClothingStores reference software architecture 

 

 

The server is divided into three layers: 

• View: contains the graphical representation of the application. Views are developed 

in JavaServer Pages (JSP). A JSP page is a text document that contains two types 

of text: static data, which can be expressed in any text-based format (such as 

HTML), and JSP elements, which construct dynamic content. Views also contain 

CSS, JS, images, and taglibs files (which are a set of useful JSP custom tags). 

• Controller: is designed as an HttpServlet. Controllers allow the client to request 

information to be collected and communication with the other layers. Commonly, at 

the end of the controller code, the request is forwarded to a JSP, and then, a 

response is sent to the client in the form of a .html, .css, .jpg or another client-side 

format file. 

• Model: contains the application information. Java models contain application 

classes such as user, product, and comments. Java data access objects (DAO) 

provide a mechanism to communicate with the database (MySQL), in this case, the 

communication is made through the Java Database Connectivity (JDBC) interface. 
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Additional to the SPL software architecture, we also defined the project reference folder 

structure. This is the folder structure that any new SPL software product will follow. This 

structure is based on the folder structure provided by the Eclipse Enterprise Edition1 when 

a new “Web Project” is created (see Figure 2-3). This structure shows where to store the 

controllers, models, and views. 

Figure 2-3: ClothingStores project reference folder structure 

 

2.3 Summary 

This chapter introduced the ClothingStores running example. ClothingStores is defined as 

an SPL of an e-commerce store system family to manage and sell clothes. First, the 

ClothingStores requirements were defined, from very simple requirements like a contact us 

section to more complex like a cart system. Then, we defined ClothingStores reference 

software architecture as a client-server system. It included a separation of three layers 

(model-view-controller) and a MySQL database. We discussed the relationship between 

the different architectural elements, and we presented the basic project folder structure (the 

structure that contains any new software product by this SPL).  

This running example was designed as a real-world example, covering most of the 

problems SPL developers face when implementing an SPL; Including crosscutting 

concerns, fine-grained extensions, coarse-grained extensions, product customization, and 

 
 

1 https://www.eclipse.org/downloads/packages/eclipse-ide-java-ee-developers/photonr  

https://www.eclipse.org/downloads/packages/eclipse-ide-java-ee-developers/photonr
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managing multiple language files. Finally, we will use this running example in the next 

chapters, to demonstrate the capabilities of the new SPL implementation approach in a 

practical way. 

 

 



 

 
 

3. Overview of the proposal 

In the Introduction and in Chapter 1 we found several issues that current SPL 

implementation approaches present. Because of these issues, we decided to propose a 

new approach that combines some of the advantages of existing work. This new approach 

allows the component assembling to be automated, supports customization activity and the 

final product derivation. We named this new approach Fragment-oriented programming 

(FragOP). In this chapter, we present an overview of this approach, including (i) a 

metamodel that describes the approach at an abstract level, (ii) its process with its main 

activities, and (iii) a tool that supports it. 

3.1 FragOP metamodel 

FragOP is a framework used to design, implement and reuse domain components in the 

context of an SPL. This framework is a mix of compositional and annotative approaches, 

which is based on the definition of six fundamental elements: (i) domain components, (ii) 

domain files, (iii) fragmentation points, (iv) fragments, (v) customization points, and (vi) 

customization files. The fragments act as composable units (compositional approach) and 

the fragmentation points act as annotations (annotative approach).  

 

All the fundamental elements play an important role in the implementation of an SPL based 

on FragOP. For instance, implementing an SPL with OOP is a very different task than 

implementing an SPL with FOP or SOA because each approach has its own rules, 

structures, paradigm, and elements that support it. The role of each FragOP element, their 

relationships, their make-up, and the information they store can be seen in the FragOP 

metamodel (see Figure 3-1). Here, we present an overview of the FragOP metamodel 

elements: 

• SPL represents the software product line and contains an ID that represents the 

name of the corresponding SPL. 
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• Domain requirements represent SPL domain requirements. 

• Domain components represent SPL reusable domain components and contain an 

ID that represents a folder in which the component is stored. 

• File is an abstract class used for inheritance purposes, contains an ID and the file 

code. 

• A domain file is a basic element which most software components are made up of; 

for instance, HTML, CSS, JavaScript, Java, and JSP files. 

• A fragment is a special type of file which alters the application code. 

• A fragmentation point is an annotation (a very simple mark) that specifies a “point” 

in which a domain file can be altered. 

• A customization file is a file which specifies the domain files (for the current domain 

component) that should be customized. 

• Customization points are annotations (very simple marks) that specify the “points” 

in which a domain file should be customized. 

• Product represents a folder in which a new SPL product is derived. 

• Application files are copies of domain files which are generated when a new 

product is derived. These files can be also modified by the fragments. 

 

Figure 3-1: FragOP metamodel (UML class diagram) 
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In the metamodel depicted in Figure 3-1, FragOP elements are modeled by meta-classes, 

and relationships between these elements are modeled by meta-associations. We 

formalized the meta-classes and meta-associations, with the definition of a certain number 

of predicates, formulas and functions; this formalization was carried out in first-order logic 

(FOL) according to Bradley & Manna (2007). We also developed a SWI-Prolog file with the 

definition of the meta-model elements, to be able to test it and reason over it. The 

formalization document and the SWI-Prolog file can be found in an online repository 

(Correa, 2018). Finally, each FragOP element is described in detail in Chapters 4 and 5. 

3.2 FragOP process 

The FragOP metamodel presents the main elements that must be used and understood in 

an SPL that implements a FragOP approach. However, it does not describe the process for 

the implementation of the entire SPL. That is the FragOP process objective. There are 

eight main activities that constitute this process (cf. Figure 3-2): (i) modeling PL 

requirements, (ii) modeling domain components, (iii) implementing domain components, 

(iv) binding domain requirements and domain components, (v) configuring products, (vi) 

deriving products, (vii) customizing products, and (vii) verifying products. These eight 

activities could also be grouped into two main processes: domain engineering, and 

application engineering. 

 

Figure 3-2: FragOP process (UML activity diagram) 

 

 

Below, we introduce the FragOP activities related to the domain engineering process, and 

the FragOP activities related to the application engineering process. 
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3.2.1 Domain engineering 

In SPLE, the domain engineering process defines the commonalities and the variability of 

the SPL, culminating with the development of the domain artifacts (Metzger & Pohl, 2014). 

FragOP defines four activities related to this process which are summarized as follows: (i) 

modeling PL requirements, (ii) modeling domain components, (iii) implementing domain 

components, and (iv) binding domain requirements and domain components. 

• Modeling PL requirements is the activity in which all the PL requirement are 

elicited. Elicitation implies the definition of mandatory and optional requirements, 

and the relationships or dependencies between the said requirements. Variability 

models (such as feature models) are commonly used to represent the PL 

requirements (Soltani et al., 2012). 

• Modeling domain components. Commonly, PL requirements are realized through 

the development of software components or pieces of code. In this activity, the PL 

domain components, their domain files (including fragments and customization files) 

and the relationship between these elements, are defined using a component 

model. 

• Implementing domain components is the activity in which the components and 

files are developed based on the component model. The main idea is to develop 

reusable domain components that could be used for different PL software products. 

These components and files should be designed to be as generic as possible with 

respect to the corresponding domain (Correa & Mazo, 2018). This activity implies 

(i) developing the domain components with their domain files’ code, (ii) including the 

fragmentation points, (iii) codifying the fragments, (iv) including the customization 

points, and (v) codifying the customization files. Here, a PL developer could use a 

preferred IDE that supports the codification process. The result of this activity is the 

development of a domain component pool that includes the reusable assets of the 

PL. 

• Binding domain requirements and domain components is the activity in which 

a binding model between the component model and the variability model is created. 

The binding is an activity that links components and requirements; it specifies which 

domain requirements are realized by which domain components. FragOP allows a 

domain component to be linked with a domain requirement (one-to-one 
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relationship). Later, this information is used in the configuration and derivation 

activities. 

3.2.2 Application engineering 

In SPLE, the application engineering process derives the applications of the SPL from the 

domain artifacts and based on customer needs (Metzger & Pohl, 2014). FragOP defines 

four activities related to this process which are summarized below: (i) configuring products, 

(ii) deriving products, (iii) customizing products, and (vi) verifying products. 

• Configuring products consists of selecting the specific features that a specific 

product will contain based on the stakeholder requirements (Soltani et al., 2012). 

The result is a configured variability model.  

• Deriving products consists of generating specific software products based on the 

configured variability model. The selected features and the variability model are 

taken as an input. Then, the binding is resolved to show what components should 

be assembled based on the selected features. Then, the components are 

assembled in a product folder (the output). In this activity, the fragments’ codes are 

injected over the product’s file codes, which allows the product derivation activity to 

be automated. 

• Customizing products. Even when PL software products are derived based on the 

customer’s needs, it is very common for these products to require customization 

(Montalvillo et al., 2017), for example, to parameterize configuration files or 

variables, to modify dummy texts, and to include specific customer requirements, 

among others. FragOP takes advantage of the customization files and 

customization points and facilitates the customization activity. It shows which 

product’s files should be customized and at what specific points. This activity is 

automated to permit the easy customization of the software products. 

• Verifying products. The last activity in the application engineering process is 

product syntax verification. Due to the fact that FragOP allows component file codes 

to be injected and modified (through the use of fragments), it becomes relevant to 

verify the resulting products. FragOP suggests including the use of lexers and 

parsers to verify the syntax of each resulting file code. With the use of VariaMos this 

activity is automated which improves the software product quality. 
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The entire FragOP process is described in detail in Chapter 5. 

3.3 FragOP implementation 

FragOp was implemented as part of the VariaMos tool. VariaMos1 is a modeling tool that 

incorporates a language to represent and simulate families of systems and (self) adaptive 

systems (Mazo et al., 2015). VariaMos was initially developed at the Computer Science 

Research Center (CRI) of Université Paris 1 Panthéon-Sorbonne in Paris, France. 

Subsequently, different research groups in Colombia and France have been improving this 

tool. During recent years, this tool has been used in several SPL projects and approaches 

(Sawyer et al., 2012; Mazo et al., 2015; Correa et al., 2018, Correa et al., 2019). 

 

Currently, VariaMos offers some capabilities such as product line requirements modeling 

and product simulation which are useful for designing, reasoning, and implementing SPLs. 

We took advantage of these capabilities and we extended VariaMos with new capabilities 

to support the FragOP process: (i) modeling domain components, (ii) binding (or weaving) 

the product line requirements model and the domain component model, (iii) configuring new 

products from the domain models, (iv) deriving the configured products, (v) customizing the 

derived products, and (vi) verifying the domain models and the derived products. Only one 

FragOP activity (“implementing domain components”) is not supported by VariaMos and 

must be carried out with external software. In this case, we recommend using an integrated 

development environment (IDE), such as Sublime2, IntelliJ3, NetBeans4, or Eclipse5.  

 

Instructions about how to use VariaMos and the IDEs to carry out each of the previous 

activities are provided in Chapter 5. 

3.4 Summary 

This chapter introduced an overview of the thesis proposal. It presented FragOP as a 

framework used to design, implement and reuse domain components in the context of an 

 
 

1 https://variamos.com/home/  
2 https://www.sublimetext.com/  
3 https://www.jetbrains.com/idea/  
4 https://netbeans.org/projects/www/  
5 https://www.eclipse.org/   

https://variamos.com/home/
https://www.sublimetext.com/
https://www.jetbrains.com/idea/
https://netbeans.org/projects/www/
https://www.eclipse.org/
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SPL. FragOP is defined as a mix of compositional and annotative approaches and is based 

on the definition of six fundamental elements: (i) domain components (i) domain files, (iii) 

fragmentation points, (iv) fragments, (v) customization points, and (vi) customization files. 

 

This chapter also presents the FragOP metamodel which describes each FragOP element, 

their relationships, how are made up, and the information they store. Therefore, it presents 

the FragOP process which is divided into eight main activities. 

 

Finally, this chapter introduces VariaMos, which is a software modeling tool used to 

represent and analyze variability-based systems. VariaMos already contains relevant 

functionalities that support most of the FragOP process activities, in fact, VariaMos has 

been enhanced to support seven of the eight FragOP process activities.  

 

The next two chapters describe in detail each FragOP metamodel element and each 

FragOP process activity.





 

 
 

4. FragOP fundamentals 

In the previous chapter, we mentioned that there are six FragOP fundamental elements. In 

this chapter, we will describe these elements and use the running example to exemplify 

and demonstrate the use of these elements. In this way, we will explain how these elements 

support the two FragOP main capabilities (assembling and customization). 

 

Each SPL implementation approach has its advantages and disadvantages, and all of them 

have different capabilities. For example, AOP is a good candidate to implement crosscutting 

concerns, annotative is a good candidate to support the implementation and assembling of 

multiple software languages and both fine-grained and coarse-grained extensions, and 

SOA supports web services and BPM processes. In this case, FragOP’s main capabilities 

are both supporting generic assembling and customization (for different kinds of 

components developed in several software languages). 

 

Below, we discuss two FragOP fundamental elements (domain components and domain 

files). These FragOP fundamental elements are transversal elements that are used in the 

two FragOP main capabilities. We will also discuss the FragOP assembling and 

customization capabilities with their own fundamental elements. These fundamental 

elements have been presented and described in detail in two articles (Correa et al., 2018; 

Correa et al., 2019). 

 

Finally, the definition of these FragOP fundamental elements will allows us to answer the 

RQ1 because these elements specify the way in which the SPL components should be 

implemented. 
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4.1 Domain component 

Related work has documented several approaches for the implementation of domain 

components (Thüm et al., 2014), such as:  

• Feature-oriented programming with AHEAD (Java 1.4), FeatureC++ (C++), 

and FeatureHouse (C, Java 1.5, JML, Haskell, XML, JavaCC). 

• Aspect-oriented programming with AspectJ (Java). 

• Delta-oriented modeling and programming with DeltaEcore and DeltaJ (Java). 

• Annotation-based implementation with CIDE (multi-language), 

preprocessor Antenna, C preprocessor CPP by Colligens, and 

preprocessor Munge. 

 

Each of these specifies its own manner of implementing the domain components. For 

example: 

• In OOP, components are implemented with classes. 

• In AOP, components are implemented with aspects. 

• In DOP, components are implemented with core modules and delta modules. The 

core module comprises a set of classes that implements a complete product. Delta 

modules specify changes to be applied to the core module. 

• In FOP, components are implemented with feature modules, which can be seen as 

increments of product functionality. 

• In SOA, components are implemented with web services, which are independent 

functionalities that can be reused in multiple software systems. 

• In annotative approaches, such as CIDE, developers simply annotate code 

fragments inside the original code and use tool support to view and navigate through 

the annotations. 

 

In FragOP, a domain component is a grouping of domain files, fragments and 

customization files DC = {DF, FR, CF}. In this approach, each domain component is 

stored in an independent folder that contains its respective domain files, fragments and 

customization files. Figure 4-1 shows how the FragOP metamodel relates domain 

components with their files. It also shows that a domain component contains an ID. This ID 

represents the domain component folder name. Additionally, a domain component must 

contain at least one domain file or fragment. 
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Figure 4-1: FragOP metamodel highlighting the domain component, domain file, 

fragment, and customization file relationship 

 

 

The property of each domain component stored in its own folder has been used in 

approaches such as Feature IDE with AHEAD (FOP) or with FeatureHouse (FOP). 

However, other approaches such as DeltaJ (DOP), AspectJ (AOP) and CIDE (annotative 

approach) do not store a domain component in a separate folder, rather they create a base 

project in which everything could be stored at the same level. Storing a domain component 

in its own dedicated folder supports the SPL maintainability and evolution because an SPL 

developer can easily find the specific files that are related to a specific domain component. 

It is also important to highlight that FragOP and most of the approaches that store domain 

components in their own folder do not allow a hierarchy to be specified among the domain 

components. This means that the storing of a domain component inside another domain 

component is not allowed. We think that restricting the hierarchy of components improves 

the reusability because it keeps the domain components as independent as possible. 
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4.2 Domain file 

In FragOP, domain components are made up of domain files that represent HTML, CSS, 

JavaScript, Java, and JSP files, among others. Any file that could be reused for the 

development of multiple SPL products can be considered a domain file. This means that in 

the FragOP approach, a domain file could be as complex as a software class that allows 

communication with a database, or as simple as a text file that contains configuration 

variables. The FragOP metamodel (see Figure 4-1) indicates that a domain file contains (i) 

an ID, (ii) a filename, (iii) the file code, and (iv) a destination which represents the final 

location in which the domain file must be assembled. This final location must be consistent 

with the SPL basic project structure (see Figure 2-3). 

 

Supporting different domain files developed in several software languages is a key 

characteristic of FragOP. As we mentioned in the Introduction: (i) according to Mayer and 

Bauer (2015) who analyzed 1150 open source projects, a mean number of 5 different 

languages are used in each project; (ii) compositional approaches are usually attached to 

a particular host language (Kästner & Apel, 2008); and (iii) annotative approaches usually 

use #ifdef and #endif statements to surround the component code, although not all 

software languages provide these statements, and many other annotative approaches 

provide limited support to few software languages. 

 

For instance, if an SPL adopts a DOP (DeltaJ) approach, the Java assets can be easily 

managed with the DeltaJ tool. However, other assets such as images, HTML files, CSS 

files, and XML files must be manually managed by the SPL developer. 

 

Below, we present some examples of real domain files. Listing 4-1 shows the source code 

of three ClothingStores domain files: (i) BasicViewsGeneral-Header (header.jsp), (ii) 

UserManagement-ManageUsers (ManageUsers.java), and (iii) 

DatabaseManagement-Config (Config.java). 

• ID: BasicViewsGeneral-Header – Filename: header.jsp – Destination: 

WebContent/views/header.jsp is a file which is written in JSP and HTML and 

represents the header of the application. This code contains a menu (the highlighted 

code), which corresponds to an unordered list with only one element (i.e., Home) 
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that is linked to the home section of the application. This domain file belongs to the 

BasicViewsGeneral domain component. 

• ID: UserManagement-ManageUsers – Filename: ManageUsers.java – 

Destination: src/controllers/admin/ManageUsers.java is a file which is written in 

Java and represents a controller for managing the user information. It contains three 

functions: (i) doGet which is used to display the users and to remove users, (ii) 

doPost which is used to create new users, and (iii) validation (the highlighted 

code) which was created with the intention of executing some validations before the 

doGet and doPost execution. This domain file belongs to the UserManagement 

domain component. 

• ID: DatabaseManagement-Config – Filename: Config.java – Destination: 

src/db/Config.java is a file which is written in Java and represents a database 

configuration file. It defines four variables (the highlighted code) which allow 

communication with the database engine. As a domain file, these variables present 

sample values, however, the value of each variable must be changed (customized) 

for the final product. This domain file belongs to the DatabaseManagement 

domain component. 

 

Listing 4-1: BasicViewsGeneral-Header (header.jsp), UserManagement-ManageUsers 

(ManageUsers.java), and DatabaseManagement-Config (Config.java) component file 

source codes 

BasicViewsGeneral-Header (header.jsp) 
<%@ page contentType="text/html" pageEncoding="UTF-8"%> 

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %> 

<%@ taglib uri="http://java.sun.com/jsp/jstl/functions" prefix = "fn" %> 

<html> 

  <head> 

    <title>${title}</title> 

    <link rel="stylesheet" type="text/css" href="<c:url value = 

"/assets/css/bootstrap.min.css"/>" /> 

    <link rel="stylesheet" type="text/css" href="<c:url value = 

"/assets/css/style.css"/>" /> 

  </head> 

 

  <body> 

    <nav class="navbar navbar-expand-md navbar-dark fixed-top bg-dark"> 

      <button class="navbar-toggler" type="button" data-toggle="collapse" 

data-target="#navbarsExampleDefault" aria-controls="navbarsExampleDefault" 

aria-expanded="false" aria-label="Toggle navigation"> 

        <span class="navbar-toggler-icon"></span> 

      </button> 

 

      <div class="collapse navbar-collapse" id="navbarsExampleDefault"> 



74 A Generic Method for Assembling Software Product Line Components 

 

 

        <ul class="navbar-nav mr-auto"> 

          <li class="nav-item active"> 

            <a class="nav-link" href="<c:url value='Home'/>">Home <span 

class="sr-only">(current)</span></a> 

          </li> 

        </ul> 

      </div> 

    </nav>     

   <div> 

UserManagement-ManageUsers (ManageUsers.java) 
package controllers.admin; 

 

import java.io.IOException; import javax.servlet.RequestDispatcher; import 

javax.servlet.ServletException; 

import javax.servlet.annotation.WebServlet; import 

javax.servlet.http.HttpServlet;  

import javax.servlet.http.HttpServletRequest; import 

javax.servlet.http.HttpServletResponse; 

import javax.servlet.http.HttpSession; import models.User; import 

models.UserDAO; 

 

@WebServlet(urlPatterns = {"/Admin/Users"}) 

public class ManageUsers  extends HttpServlet { 

  

      protected boolean validation(HttpServletRequest request, 

HttpServletResponse response) throws ServletException, IOException{ 

     return true; 

      } 

  

      @Override 

      protected void doGet(HttpServletRequest request, HttpServletResponse 

response) 

      throws ServletException, IOException { 

      

  if(this.validation(request, response)){      

           String remove = request.getParameter("remove"); 

       if(remove != null){ 

     UserDAO.remove(Integer.parseInt(remove)); 

       } 

       

           request.setAttribute("users",UserDAO.getUsers()); 

           request.setAttribute("title", "Admin Panel - Users"); 

                    RequestDispatcher view = 

request.getRequestDispatcher("../views/admin/users.jsp"); 

                    view.forward(request, response); 

  } 

       } 

  

 protected void doPost(HttpServletRequest request, HttpServletResponse 

   response) throws ServletException, IOException { 

   

  if(this.validation(request, response)){ 

   String user = request.getParameter("user"); 

   String pass = request.getParameter("pass"); 

   String name = request.getParameter("name"); 

   String type = request.getParameter("type"); 

    

   User u = new User(name,type,user,pass); UserDAO.insert(u); 

   response.sendRedirect("Users"); 

  } 

 } 

} 

DatabaseManagement-Config (Config.java) 
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package db; 

 

public class Config { 

 public static final String db_driver = "com.mysql.jdbc.Driver"; 

 public static final String db_url = "URL"; 

 public static final String db_user = "USER"; 

 public static final String db_pass = "PASS"; 

} 

4.3 FragOP assembling capability 

To implement software product lines efficiently, the domain component code has to be 

variable. Variability is defined as the ability to derive different products from a common set 

of artifacts (Apel et al., 2013). This means the approach, tool, paradigm or methodology 

used to implement the SPL domain components should support the code variability. 

 

For a better understanding of the variability concept, we present the following scenario. 

Suppose that an SPL contains two domain components, login and user management. If a 

customer wants an application that includes the previous two components, then, it is very 

common that these components must be assembled as part of the product derivation 

activity (to include some functionalities of the login component inside the user management 

component). The variability scenario can be also applied to the files presented in Listing 4-

1. For example, other domain components could require the modification of the 

BasicViewsGeneral-Header file, specifically to add new elements in the header menu.  

 

To conclude, if the domain component code supports variability, the assembly activity could 

be automated. However, if the domain component code does not support variability, the 

assembly activity must be carried out manually, which affects the SPL efficiency. 

 

The FragOP approach supports the domain component assembly through the use of three 

FragOP fundamental elements, domain files, fragmentation points and fragments (Correa 

et al., 2018; see Figure 4-2). Figure 4-3 shows an example of the connection between these 

FragOP fundamental elements involved in a realistic assembly scenario. It also shows how 

FragOP supports variability at the code level. In this example, a domain file (header.jsp) 

supports the code variability through the inclusion of a fragmentation point (menu-

modificator). Additionally, a fragment (alterHeader.frag) specifies a code alteration in the 

previous fragmentation point of the previous domain file. The fragmentation point, fragment, 

and the example are fully explained in the next two subsections. 
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Figure 4-2: FragOP metamodel highlighting the domain file, fragment, and 

fragmentation point relationship 

 

 

Figure 4-3: An example of the connection between a domain file, a fragment, and a 

fragmentation point 
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4.3.1 Fragmentation point 

In FragOP, we use annotations to support code variability. In this approach, we call them 

fragmentation points. A fragmentation point is an annotation (a very simple mark) that 

specifies a “point” at which a domain file can be altered. This is a key FragOP element 

because it allows developers to define very specific code locations in which a domain file 

could be extended or refined (could vary). 

 

Listing 4-2 shows the fragmentation point shape. FragOP suggests creating fragmentation 

points by starting with a comment block LanguageCommentBlock based on the current 

file language type. For example, for a file written in Java, the fragmentation point should 

start with /* and should end with */. For a file written in HTML, the fragmentation point 

should start with <!-- and should end with -->. This way, the source code of a file is not 

altered by the addition of the fragmentation points, ensuring code consistency and code 

maintainability. If a specific file code does not provide a comment block (like txt files), then, 

we suggest creating a regular expression, like [FragAnnot][/FragAnnot].  

Listing 4-2: Fragmentation point shape 

LanguageCommentBlock<B|E>-<PointID>LanguageCommentBlock 

 

After the LanguageCommentBlock opening section, the fragmentation point continues 

with <B|E>-<PointID>. <B|E> corresponds to a fragmentation point begin section (B) or 

end section (E). At the first occurrence of a fragmentation point, it should contain the letter 

B. The end section is optional because it is used to delimitate where a fragmentation point 

ends, which is only required to replace and hide actions that we will describe in the next 

section. The fragmentation point continues with a minus (-) symbol and a PointID, which 

is a custom text that is used to identify the fragmentation point. Finally, the 

LanguageCommentBlock closing section should be added. Listing 4-3 shows a 

fragmentation point example. Listing 4-3 shows a fragmentation point example. 

Listing 4-3: Fragmentation point shape example 

<!--B-menu-modificator--> 

 

We decided to use annotations because it supports fine-grained extensions (changes at 

lower levels, such as changes in a fixed position inside a class method). This is also very 
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useful for specifying changes to non-object-oriented software assets, such as HTML or 

CSS. However, fragmentation points have some important differences from the common 

annotations used by other approaches: 

• Fragmentation points do not use if, else statements. Some annotative 

approaches use these statements to specify when a code variation should be 

executed or not. However, as we mentioned, not all software languages provide if, 

else statements. 

• Fragmentation points do not include the variant code. For example, in the 

Munge approach, code variations are annotated by feature directives using IF and 

END inside comments. This means that the domain files include the base code, and 

also all the possible variant codes (this also applies for other approaches such as 

CIDE and Antenna). This affects the domain files readability, maintainability, and 

evolution because in an SPL there can be thousands of code variants. In FragOP, 

the variable code is located inside a new type of file called fragment which will be 

discussed in the next section. 

• Fragmentation points in the form of comment blocks. In the Munge approach, 

the conditional tags are contained in Java comments (so they do not interfere with 

development environments such as Eclipse). In FragOP, fragmentation points are 

also defined with language comments. 

 

Finally, Listing 4-4 shows the source code of the new BasicViewsGeneral-Header 

(header.jsp) and UserManagement-ManageUsers (ManageUsers.java) files. They were 

refined with the inclusion of two fragmentation points. 

• menu-modificator is a fragmentation point which was included inside the 

header.jsp file (inside the menu navigation bar). The main idea is that other domain 

components could require the modification of the header.jsp file, specifically to add 

new elements to the header menu. 

• validation-function is a fragmentation point which was included inside the 

ManageUsers.java file (surrounding the validation function). The main idea is 

that a component such as Login could require the modification of the 

ManageUsers.java file. If Login is present in the derived product, the 

ManageUsers.java validation function should be replaced with a new one that 

includes a call to the login class or to the login elements. This way, the new 
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validation function is able to check that only permitted users (for instance 

admins) are using the ManageUsers.java class. 

 

Listing 4-4: Refined BasicViewsGeneral-Header (header.jsp) and UserManagement-

ManageUsers (ManageUsers.java) component files 

BasicViewsGeneral-Header (header.jsp) 
<%@ page contentType="text/html" pageEncoding="UTF-8"%> 

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %> 

<%@ taglib uri="http://java.sun.com/jsp/jstl/functions" prefix = "fn" %> 

<html> 

  <head> 

    <title>${title}</title> 

    <link rel="stylesheet" type="text/css" href="<c:url value = 

"/assets/css/bootstrap.min.css"/>" /> 

    <link rel="stylesheet" type="text/css" href="<c:url value = 

"/assets/css/style.css"/>" /> 

  </head> 

 

  <body> 

    <nav class="navbar navbar-expand-md navbar-dark fixed-top bg-dark"> 

      <button class="navbar-toggler" type="button" data-toggle="collapse" 

data-target="#navbarsExampleDefault" aria-controls="navbarsExampleDefault" 

aria-expanded="false" aria-label="Toggle navigation"> 

        <span class="navbar-toggler-icon"></span> 

      </button> 

 

      <div class="collapse navbar-collapse" id="navbarsExampleDefault"> 

        <ul class="navbar-nav mr-auto"> 

          <li class="nav-item active"> 

            <a class="nav-link" href="<c:url value='Home'/>">Home <span 

class="sr-only">(current)</span></a> 

          </li> 

          <!--B-menu-modificator--> 

 

        </ul> 

      </div> 

    </nav>     

   <div> 

UserManagement-ManageUsers (ManageUsers.java) 
package controllers.admin; 

import java.io.IOException; import javax.servlet.RequestDispatcher; import 

javax.servlet.ServletException; 

import javax.servlet.annotation.WebServlet; import 

javax.servlet.http.HttpServlet;  

import javax.servlet.http.HttpServletRequest; import 

javax.servlet.http.HttpServletResponse; 

import javax.servlet.http.HttpSession; import models.User; import 

models.UserDAO; 

 

@WebServlet(urlPatterns = {"/Admin/Users"}) 

public class ManageUsers  extends HttpServlet { 

 

 /*B-validation-function*/ 

 protected boolean validation(HttpServletRequest request, 

HttpServletResponse response) throws ServletException, IOException{ 

     return true; 

 } 
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       /*E-validation-function*/ 

  

            @Override 

            protected void doGet(HttpServletRequest request, 

HttpServletResponse response) 

            throws ServletException, IOException { 

      

  if(this.validation(request, response)){      

           String remove = request.getParameter("remove"); 

       if(remove != null){ 

     UserDAO.remove(Integer.parseInt(remove)); 

       } 

       

           request.setAttribute("users",UserDAO.getUsers()); 

           request.setAttribute("title", "Admin Panel - Users"); 

                    RequestDispatcher view = 

request.getRequestDispatcher("../views/admin/users.jsp"); 

                    view.forward(request, response); 

  } 

             } 

  

        protected void doPost(HttpServletRequest request, 

HttpServletResponse response) throws ServletException, IOException { 

   

  if(this.validation(request, response)){ 

   String user = request.getParameter("user"); 

   String pass = request.getParameter("pass"); 

   String name = request.getParameter("name"); 

   String type = request.getParameter("type"); 

    

   User u = new User(name,type,user,pass); UserDAO.insert(u); 

   response.sendRedirect("Users"); 

  } 

 } 

} 

4.3.2 Fragment 

Fragmentation points define specific points in which a file can be altered, but how to alter 

those files? That is the objective of fragments. A fragment is a special type of file in which 

the SPL developers specify code alterations to the domain files. It is worth noting that these 

alterations are designed at the domain level to be used at the application level when 

components are being assembled for the derivation of new products (described in Section 

5.6), which guarantees the reusability of the domain components. In general, a fragment 

respects the shape presented in Listing 4-5 and is explained thereafter. 

 

Listing 4-5: Fragment shape 

Fragment <ID> { 

 Action: <add || replace || hide> 

 Priority: <high || medium || low || priority_number> 

 PointBracketsLan: <language> 
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 FragmentationPoints: <pointID1, pointID2, ...> 

 Destinations: <fileID1, fileID2, ... || path1, path2, ...> 

 SourceFile: <filename> 

 SourceCode: [ALTERCODE-FRAG]<code>[/ALTERCODE-FRAG] 

} 

 

Fragment <ID>. ID serves as an identifier for the fragment. The ID is used when the 

components are assembled, allowing the developers to find the fragment that has been 

responsible for any alteration, which is useful for code traceability. 

Action: <add || replace || hide>. Specifies the type of the alteration. 

   • add allows a piece of code to be injected at specific PointIDs. 

   • replace allows a piece of code to be replaced at specific PointIDs or (ii) allows a file 

to be replaced on specific destination paths. 

   • hide allows a piece of code to be hidden at specific fragmentation PointIDs (the 

pieces of code are placed inside a comment block). 

Priority: <high || medium || low || priority_number>. Specifies the fragment priority 

(high, medium or low). Fragments with high priority are assembled before fragments 

with medium or low priority. Therefore, it is possible to specify a priority_number (INT 

number). By default, high priority takes a value of 10, medium priority takes a value of 500, 

and low priority takes a value of 1000. This feature could be useful in a case where two or 

more different fragments inject code at the same fragmentation point. For example, two 

different fragments could inject code into the header menu (in order to include new menu 

options). Depending on each fragment priority, one code will be injected first and the other 

will be injected second (which allows a code integration order to be defined). 

PointBracketsLan: <language> (Optional). Language specifies the comment bracket 

language in which the fragmentation points are defined. For example: PHP, HTML or Java. 

FragmentationPoints: <pointID1, pointID2, …> (Optional). PointIDs are unique 

texts which serve to identify fragmentation points. The user is able to define multiple 

fragmentation points and destinations, which means that the fragment source code or 

source file will be injected in several places. 

Destinations: <fileID1, fileID2, … || path1, path2, …>. 

   • FileIDs represent the domain files to be altered. 

   • Paths represent the locations where a file should be replaced. 
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SourceFile: <filename> (Optional). Filename represents the new file to be added. 

SourceCode: <code> (Optional). Code contains the source code that will be injected. 

 

We took advantage of different characteristics of several composable units, such as 

aspects, deltas modules and feature modules to design the fragment shape. Below, we 

discuss some of the main characteristics. 

• Fragments as composable units. The advantage of having the code variants as 

independent composable units is that domain files do not contain all the possible 

code variants, as is common in most annotative approaches. 

• Fragments linked to the fragmentation points. Commonly, compositional 

approaches present two different types of component elements. In FOP, there are 

classes and class refinements. In DOP, there are base modules and a set of delta 

modules. In AOP, there are program files and aspects. One of the previous two 

elements of each approach modifies the other element (for instance, delta modules 

modify the base modules code). These modifications are commonly linked to an 

object-oriented specific element (such as a class, class method or class attribute) 

or to a tree element (some approaches such as FeatureHouse model the domain 

components by tree structures). The problem is that many domain files are not 

object-oriented, such as HTML files or XML files; and other domain files do not 

provide tree structures, such as SQL files, or TXT files. Therefore, the compositional 

approaches do not allow fine-grained extensions. In the present case, the fragment 

element establishes a connection to the domain file element through a 

fragmentation point, which allows fine-grained extensions (see Figure 4-3). 

• Fragments work for multiple domain file languages. Compositional approaches 

that rely on object-oriented elements to execute code variants are usually attached 

to host languages. For example, DeltaJ (DOP) only works with Java files and 

FeatureC++ (FOP) only works with C++ files. Compositional approaches that rely 

on tree structures, such as FeatureHouse (FOP), only work with languages that 

provide tree structures (such as Java, C, and XML). FragOP fragments do not rely 

on object-oriented elements or tree structures, solely relying on fragmentation 

points that can be added to many different domain file languages. This makes 

fragments a good candidate to support variability over multiple domain file 

languages. 
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• Fragments that replace entire files. Another key characteristic of this approach is 

that fragments are able to replace an entire file. This could be useful for domain files 

that cannot be modified with the inclusion of fragmentation points, such as images 

or PDF files. For example, suppose that an SPL contains a “general views” 

component that includes a “default logo”. The SPL also contains a “premium 

version” component with a “premium logo”. In this case, it is recommended to create 

a fragment that will replace the “default logo” with the “premium logo” when the 

“premium version” component is assembled. 

• Fragments specify the alteration order. Compositional approaches use 

composable units to generate the application code. However, in most of these, it is 

not possible to specify the order or the code line in which composable units are 

included. In annotative approaches, this problem does not exist because the domain 

files contain all possible code variations, this way the SPL developer can specify 

the order and the code line of the code variations. Fragments allow to specify the 

alteration order through the fragments’ priority; here the SPL developer can define 

if a fragment code should be injected before other fragment codes with lower 

priority; and with fragmentation points, the code variations can be easily located in 

specific domain file code lines. 

• Fragments allow a piece of code to be injected at multiple locations. 

Approaches such as FeatureHouse (FOP), FeatureC++ (FOP), and DeltaJ (DOP) 

only allow a specific piece of code to be injected (method and attribute, among 

others) into a specific file or class. For example, if an SPL developer wants to include 

the same class attribute into two different classes, he/she has to create two delta 

modules to include the same attribute in the two classes. In annotative approaches, 

the same code variation (new attribute) must be specified twice (once for each 

class). On the other hand, AspectJ (AOP) allows an aspect (a code variation) to be 

included in several places, but it is limited to object-oriented elements. In FragOP, 

a single piece of code can be easily injected at multiple locations, through the 

definition of multiple fragment destinations. 

 

For a better understanding of how fragments work, consider the following case based on 

the ClothingStores example. Listing 4-6 shows (i) the ListOfProducts-AlterHeader 

(alterHeader.frag) code which specifies that the BasicViewsGeneral-Header file 
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(Destinations) will be altered in the menu-modificator (FragmentationPoints) with a 

high priority. In this case, the fragment will add (Action) a new menu element 

(SourceCode) inside the file. This is consistent with the example presented in Figure 4-3. 

And (ii) the Login-AlterAdmin (alterAdmin.frag) code specifies that the 

UserManagement-ManageUsers file (Destinations) will be altered in the validation-

zone (FragmentationPoints) with a high priority. In this case, the fragment will replace 

(Action) the UserManagement-ManageUsers validation function with a new validation 

function (SourceCode). 

 

Listing 4-6: ListOfProducts-AlterHeader (alterHeader.frag) and Login-AlterAdmin 

(alterAdmin.frag) fragment source codes. 

ListOfProducts-AlterHeader (alterHeader.frag) 
Fragment ListOfProducts-AlterHeader {  

   Action: add 

   Priority: high 

   FragmentationPoints: menu-modificator 

   PointBracketsLan: html 

   Destinations: BasicViewsGeneral-Header 

   SourceCode: [ALTERCODE-FRAG]<li> 

            <a class="nav-link" href="<c:url value='Products'/>">Products</a> 

           </li>[/ALTERCODE-FRAG] 

} 
Login-AlterAdmin (alterAdmin.frag) 

Fragment Login-AlterAdmin {  

   Action: replace 

   Priority: high 

   FragmentationPoints: validation-function 

   PointBracketsLan: java 

   Destinations: UserManagement-ManageUsers 

   SourceCode: [ALTERCODE-FRAG]protected boolean validation(HttpServletRequest 

request, HttpServletResponse response) throws ServletException, IOException{ 

  HttpSession session = request.getSession(); 

     User u = (User) session.getAttribute("datauser"); 

     if(u == null) { response.sendRedirect("../Home"); return false; } 

     else if(!u.getType().equals("admin")){ 

      response.sendRedirect("../Home"); return false; 

     } 

     return true; 

 }[/ALTERCODE-FRAG] 

} 

 

It is important to highlight that the previous fragments are designed to inject their code only 

when a software product is derived. This is carried out later as part of the FragOP derivation 

activity, which is described in Section 5.6 (Listing 5-1). 
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4.4 FragOP customization capability 

Product customization is a critical task of SPLE. The domain components hardly ever fully 

satisfy the requirements of a specific software product. Thus, a customization process is 

required in almost all PL (Cobaleda et al., 2018). 

 

The FragOP approach supports the product customization through the use of three FragOP 

fundamental elements, domain files, customization points and customization files (Correa 

et al., 2019; see Figure 4-4). Figure 4-5 shows an example of the connection between these 

FragOP fundamental elements involved in a realistic customization scenario. It also shows 

how FragOP supports product customization. In this case, a domain file (Config.java) 

supports product customization through the inclusion of a customization point (vars). 

Additionally, a customization file (customization.json) specifies the customization points of 

the domain files of the current domain component DatabaseManagement. The 

customization point, customization file, and the example are fully explained in the following 

two subsections. 

 

Figure 4-4: FragOP metamodel highlighting the domain file, customization file, and 

customization point relationship 
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Figure 4-5: An example of the connection between a domain file, a customization file, 

and a customization point 

 

4.4.1 Customization point 

In FragOP, we use annotations to support product customization. In this approach, we call 

them customization points. A customization point is an annotation (a very simple mark) 

that specifies a “point” in which a domain file should be customized. 

 

Customization point shape is very similar to fragmentation point shape, the main difference 

is that a customization point shape should contain a begin part (BCP) and an end part (ECP). 

Listing 4-7 shows the customization point shape. The code to be customized at the 

application level should be placed in the middle of both BCP and ECP parts. 

 

Listing 4-7: Customization point shape 

LanguageCommentBlock<BCP>-<PointID>LanguageCommentBlock 

LanguageCommentBlock<ECP>-<PointID>LanguageCommentBlock 

 

We decided to use annotations once again because it allows developers to define very 

specific customization locations, and it can be used for many kinds of software assets 

(including non-object-oriented assets). The customization points have the following 

characteristics: 
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• Customization points are different from fragmentation points. Customization 

points and fragmentation points are very similar, however, we decided to distinguish 

between the two elements. This is due to the fact that: (i) fragmentation points are 

used to specify points in which a domain file code can vary, and they are connected 

with fragments that modify the domain file code. The possible code variations are 

pre-defined inside the fragments’ code (which are stored in the domain component 

pool). And these variations are executed in the product derivation activity (see 

Section 5.6). (ii) Customization points are used to specify points in which a domain 

file code should be customized. The code customizations are not pre-defined, 

because each product customization is unique, and it is customer-dependent. And 

these customizations must be manually applied by the SPL developer after the 

product derivation (see Section 5.7). 

• Customization points guide SPL developers in the customization activity. 

Most of the SPL implementation approaches do not provide a product customization 

capability (such as CIDE, DeltaJ, Munge, Antenna, AspectJ, and AHEAD, among 

others). Nevertheless, the literature presents different customization strategies. Kim 

et al. (2005) propose three strategies: selection, plug-in, and external profile 

technique. However, these strategies only work with interface classes and are not 

applied in SPL scenarios. Rabiser et al. (2009) suggest a decision-oriented software 

product line approach to support the end-user personalization of a system based on 

their needs. However, the personalization is limited to the elements that the decision 

model supports. Pleuss et al. (2012) propose the use of abstract UI models to bridge 

the gap between automated, traceable product derivation and customized high-

quality user interfaces. However, it requires to create abstract UI models with all 

possible scenarios, and this is only applied to user interfaces. Other strategies 

include inheritance, overloading, dynamic class loading, but again not all assets are 

object-oriented. Finally, in FragOP we decided to avoid the use models, decisions 

and object elements to support the product customization. This is because we 

wanted to support the customization of most kinds of files (generic customization), 

and we know that most product customizations are unique. However, even the most 

complete model will not fulfill all customer customizations. In this case, we decided 

to use customization points to indicate sections inside the domain files that should 

be customized. Later, the SPL developer should manually customize these 
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sections. Although the customization is manual, we provide a way to guide the 

developer in the customization activity (see Section 5.7).  

 

In order to present an example of customization points in action, the ClothingStores 

DatabaseManagement-Config (Config.java) file is detailed in full. Listing 4-1 shows the 

Config.java code which is a configuration file that contains four variables which allow 

communication with the database engine. As a domain file, these variables present sample 

values, however, for a final product the value of each variable must be changed. As a 

consequence, we refined the DatabaseManagement-Config (Config.java) file with the 

inclusion of a customization point (see Listing 4-8). Later, the SPL developer will be able to 

customize this file in order to establish the real values for each variable (described in 

Section 5.7). 

 

Listing 4-8: Refined DatabaseManagement-Config (Config.java) file source code 

DatabaseManagement-Config (Config.java) 
package db; 

 

public class Config { 

 /*BCP-vars*/ 

 public static final String db_driver = "com.mysql.jdbc.Driver"; 

 public static final String db_url = "URL"; 

 public static final String db_user = "USER"; 

 public static final String db_pass = "PASS"; 

 /*ECP-vars*/ 

} 

4.4.2 Customization file 

A customization file is a file which specifies the domain files (for the current domain 

component) that should be customized. Only one customization file is allowed per domain 

component, its filename must be customization.json, and it must respect the shape 

presented in Listing 4-9 and explained below. 

 

Listing 4-9: Customization file shape 

{  

   "IDs": ["FileID1", "FileID2", "..."], 

   "CustomizationPoints": ["PointID1", "PointID2", "..."], 

   "PointBracketsLangs": ["language1", "language2", "..."] 

} 
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IDs: <FileID1, FileID2, …>.  This represents the domain files to be customized. 

CustomizationPoints: <pointID1, pointID2, …> (Optional). PointIDs are unique 

texts which serve to identify customization points. 

PointBracketsLangs: <language1, language2, …> (Optional). This specifies the 

comment bracket languages in which the customization points are defined. For example, 

PHP, HTML, and Java. 

 

The customization points and the point brackets languages are optional, this way a 

customization file is able to specify entire domain files that must be customized (replaced) 

or specific customization points to be customized. Customizing an entire domain file is 

useful when it is not possible to include customization points. For example, when there is a 

domain file such as a default logo, that must be customized with the real client company 

logo. 

 

As shown in the Listing 4-8, the DatabaseManagement component contains the 

DatabaseManagement-Config (Config.java) file which was refined with a customization 

point. It means that the SPL developer must create a customization file inside the 

DatabaseManagement component to specify the customization points for the current 

component. Listing 4-10 shows the DatabaseManagement-Custom (customization.json) 

customization file source code. This code indicates that for the current component 

(DatabaseManagement) one customization point (vars) that belongs to the 

DatabaseManagement-Config file has been defined. The complete relationship 

between the domain file, customization point, and customization file can be found in Figure 

4-5. 

 

Listing 4-10: DatabaseManagement-Custom (customization.json) file source code 

DatabaseManagement-Custom (customization.json) 
{  

   "CustomizationPoints": "vars", 

   "PointBracketsLangs": "java", 

   "IDs": "DatabaseManagement-Config" 

} 

 

The component file customization will be executed and applied later in the product 

customization activity which is described in Section 5.7.  
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Finally, it is important to highlight that customization files and customization points are very 

useful for simple customizations, such as parametrizing variables, changing a default text, 

or replacing an image file, nevertheless, complex customization like the creation of a new 

component must be applied manually by the SPL developer. 

4.5 Summary 

This chapter presented the FragOP fundamental elements: (i) domain components (i) 

domain files, (iii) fragmentation points, (iv) fragments, (v) customization points, and (vi) 

customization files. The six FragOP fundamental elements are summarized below: 

• Domain components are folders that store domain files, fragments and 

customization files.  

• Domain files represent the files that could be reused for the development of multiple 

SPL products (such as HTML, Python, JavaScript, Java, and JSP files). 

• Fragmentation points are annotations (simple marks) that specify “points” in which 

a domain file can be altered. 

• Fragments are a special type of file in which the SPL developers specify code 

alterations to the domain files.  

• Customization points are annotations (simple mark) that specify “points” in which a 

domain file should be customized.  

• A customization file specifies the domain files to be customized and the 

customization points of the domain files of the current domain component. 

 

We explained in this chapter the decisions to create each of the previous FragOP’s 

fundamental elements, the functionalities from the literature that were taken into account to 

improve the FragOP fundamental elements, and the main characteristics of each FragOP 

fundamental element.  

 

This chapter also presented the two FragOP main capabilities, assembling and 

customization; and we used the running example to provide a practical way of 

understanding both the FragOP fundamental elements and the two FragOP main 

capabilities. The two FragOP main capabilities are summarized below: 

• The assembling capability provides an effective and generic way to support software 

variability. The use of domain files, fragmentation points, and fragments, allow 
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specifying variation points inside most software language files (because it only 

requires the use of language comment blocks or regular expressions). And even, if 

it is not possible to modify the file source code to include the variation points (i.e., 

an image or PDF file), the FragOP fragments allow replacing an entire file. 

• The customization capability provides an effective and generic way to support 

component customization. The use of domain files, customization points, and 

customization files, allow specifing customization points inside most software 

language files (because it only requires the use of language comment blocks, or 

regular expressions). And even, if it is not possible to modify the file source code to 

include the customization points (i.e., an image or PDF file), the FragOP 

customization files allow customizing an entire file. 

 

To conclude, the definition of these six elements allows us to answer RQ1 because these 

elements specify the way in which the SPL components should be implemented. The next 

chapter will describe each activity in the FragOP process and will provide a practical way 

to implement an SPL with the FragOP approach. 

 

 

 





 

 
 

5. FragOP process 

The FragOP process provides a course of action for implementing an SPL using the 

FragOP approach. This process was designed following the common SPLE structure. The 

FragOP process contains eight main activities (i) modeling PL requirements, (ii) modeling 

domain components, (iii) implementing domain components, (iv) binding domain 

requirements and domain components, (v) configuring products, (vi) deriving products, (vii) 

customizing products, and (viii) verifying products. These activities describe from very early 

SPLE processes such as variability modeling to later SPLE processes such as product 

derivation.  

 

In this chapter, we present each of the previous activities in detail. For each, (i) we 

summarize the theory from the SPLE literature and discuss how it should be applied using 

the FragOP approach, (ii) we show how VariaMos supports it, and (iii) we carried out a 

demonstration in the running example and so exemplify the use of this approach in a 

realistic scenario. 

5.1 Modeling product line requirements 

The definitions of a requirement according to the Institute of Electrical and Electronics 

Engineers (IEEE, 1990) are: 

1. A condition or capability needed by a user to solve a problem or achieve an 

objective. 

2. A condition or capability that must be met or possessed by a system or system 

component to satisfy a contract, standard, specification, or other formally imposed 

documents. 

3. A documented representation of a condition or capability as in (1) or (2). 
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Requirements are often classified into functional requirements and non-functional 

requirements. Functional requirements specify a function that a system must be able to 

perform. Non-functional requirements specify quality attributes (such as usability, 

reliability, performance, and supportability) and constraints on a system (such as time, 

budget, hardware, and material). 

 

Establishing the product line requirements is a difficult task that involves the participation 

of different stakeholders and should be done through a requirement engineering process. 

This process consists of three steps: 

• Requirements elicitation consists of finding and identifying the relevant PL 

requirements. First, it is important to identify the different stakeholders (such as final 

users, employees, software developers, and executives) that could be interested in 

a product (relevant to the PL domain). Second, the analyst should identify the 

information sources (such as stakeholders, documents, laws, and social networks) 

that are relevant for defining the PL requirements. Third, the analyst starts with the 

requirement elicitation, which consists of finding and identifying the PL requirement 

based on the previous information sources. There are different strategies for the PL 

requirement elicitation, one of them consists of analyzing the market segment 

relevant to the PL domain. Then, the existing products should be analyzed in order 

to discover PL requirements and finally define the common and variable 

requirements. And fourth, the requirements are written with the use of a template or 

specification. 

• Requirements analysis consists of a formal documentation of the PL 

requirements. Commonly, PL analysts use variability models, such as feature 

models, goal models, and the Orthogonal Variability Model (OVM), to represent the 

PL requirements. Each model has its own advantages and disadvantages. Feature 

models are the most used; they represent the PL variability through a tree structure 

in which the features form the nodes of the tree, and the arcs and groupings of 

features represent feature variability (Beuche & Dalgarno, 2007). Feature models 

are commonly used to represent functional requirements, however, they are not well 

adapted to represent non-functional requirements and their particular relationships 

with the functional requirements. Goal models are graphs where a goal node is 

refined into several subgoal nodes (Yu et al., 2008). In this approach, functional 

requirements are modeled by goals, and quality attributes (non-functional 
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requirements) are modeled as softgoals. The softgoals have a multi-valued label to 

indicate the degree of its satisfaction: fully satisfied (FS), partially satisfied (PS), fully 

denied (FD) or partially denied (PD). Thus, for instance, a security requirement will 

not have a true or false value but a certain degree of satisfaction.  

• Requirements management consists of documenting, planning and coordinating 

the PL requirements. Here the requirements are stored, and traceability is defined. 

 

The FragOP approach requires the domain requirements to be elicited and then formally 

specified within a modeling language.  Figure 5-1 shows that in FragOP an SPL contains 

two or more domain requirements. There should be a minimum of two domain requirements 

because it guarantees at least two configurations of two different products. It is also 

important to highlight that this approach does not restrict the way in which the domain 

requirements are modeled. It means that the SPL developer can use feature models, OVM, 

and goal models, among others.  

Figure 5-1: FragOP metamodel highlighting the concepts of SPL and domain 

requirement 
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5.1.1 VariaMos support 

Modeling product line requirements is an activity that is fully supported by VariaMos. 

VariaMos allows for domain requirements to be specified in the form of a “Feature model”. 

After downloading and running VariaMos, the user should select a “Component-based 

project”. This kind of project allows navigating between three different views: (i) feature 

model, (ii) domain component model, and (iii) binding model. Figure 5-2 shows the feature 

model view. Here the SPL developer is able to graphically represent the domain 

requirements through the feature model. VariaMos also provides some verification options, 

such as (i) more than one root element, (ii) child elements without parents, (iii) dead 

elements, and (iv) false optional elements. A complete tutorial on how to use VariaMos to 

represent feature models, configure and verify them can be found online (Correa, 2018). 

Figure 5-2: VariaMos “feature model” view main elements 

 

Currently, the “Component-based project” only supports feature models, however, 

VariaMos offers the possibility of creating new models, such as goals models or OVM, and 

even offers the possibility of creating user custom models. 

Other current approaches also support the domain requirements specification, for example: 

• FeatureIDE with AHEAD (FOP) or FeatureHouse (FOP) or AspectJ (AOP). After 

the creation of a FeatureIDE project, a model.xml file is automatically created. When 

the model.xml file is opened, a graphical editor is presented. There the SPL 

developer can edit the SPL feature model. 
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• DeltaJ (DOP). This approach provides a .spl file, in this file, there is a variable called 

“Features” where the SPL developer types the feature names (there is no graphical 

support). 

• CIDE (annotative). This approach provides three ways to execute feature 

modeling: (i) the definition of a list of features, which are all optional and unrelated, 

(ii) a graphical feature model editor from FeatureIDE, and (iii) a connector to the 

pure::variants tool, where the SPL developer is able to use pure::variants feature 

models. 

 

ClothingStores SPL 

We used the VariaMos feature model view to define the 25 features of the ClothingStores 

example (see Figure 2-1). A developer can create those features manually or load a pre-

developed model (Correa, 2018) which contains the complete feature model as shown in 

Figure 5-3. 

Figure 5-3: Feature model of the complete ClothingStores running example (VariaMos) 
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5.2 Modeling domain components 

Modeling domain components is not a typical activity in most of the current SPL 

implementation approaches. Many of the current approaches have a direct link between 

the features (defined in the feature model) and the component files that operationalize 

them, thereby, there is no need for a component model. On the other hand, a domain 

component model allows the software components, their files, and their relationships to be 

represented. The SPL domain component model provides a general insight for software 

architects and software developers into the SPL domain system. Therefore, it allows having 

a complete separation between the domain requirements (problem space) and the domain 

components (solution space). 

 

In FragOP, an SPL contains two or more domain components (see Figure 5-4), which 

guarantee the derivation of at least two different products. The FragOP domain component 

model also serves to define: (i) the links between domain components and their files, (ii) 

the domain file destinations, (iii) the domain component IDs and file IDs, and (iv) a future 

connection between the domain requirements and the domain components (see Section 

5.4). Later, each domain component file must be operationalized with its code 

implementation (see Section 5.3). 

 

Figure 5-4: FragOP metamodel highlighting the concepts of SPL and domain 

component 
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5.2.1 VariaMos support 

Before starting the domain component modeling activity, the SPL developer has to define 

the domain components and files that the SPL will contain. In this case, we used the 

ClothingStores requirements (see Table 2-1), and we defined a list of 20 domain reusable 

components. Each domain component is also connected to its own list of files which 

operationalize it as shown in Table 5-1. The first element in the table is the domain 

component identifier, which is a simple text with the domain component name. This text is 

going to represent a real folder, so the PL developer should avoid spaces or strange 

symbols. Table 5-1 also records the following information for each file: (i) File ID: we 

suggest that it be created as a combination of the domain component identifier plus a minus 

symbol (“-“), plus the file identifier; (ii) Filename: the real filename including its extension; 

and (iii) Destination: the destination in which the file is going to be derived at the end of 

the FragOP process, based on the SPL basic project folder structure (see Figure 2-3). 

 

Table 5-1: ClothingStores list of domain components and their files  

# Component ID File ID Filename Destination 

C01 
BasicViewsGener
al 

BasicViewsGeneral-Index index.jsp 
WebContent/views/i
ndex.jsp 

BasicViewsGeneral-Banner banner.jpg 
WebContent/assets
/img/banner.jpg 

BasicViewsGeneral-
Bootstrap 

bootstrap.min.css 
WebContent/assets
/css/bootstrap.min.
css 

BasicViewsGeneral-
Bootstrap2 

bootstrap.min.js 
WebContent/assets
/js/bootstrap.min.js 

BasicViewsGeneral-Header header.jsp 
WebContent/views/
header.jsp 

BasicViewsGeneral-Footer footer.jsp 
WebContent/views/
footer.jsp 

BasicViewsGeneral-Home Home.java 
src/controllers/Hom
e.java 

BasicViewsGeneral-Popper popper.js 
WebContent/assets
/js/popper.js 

BasicViewsGeneral-Style style.css 
WebContent/assets
/css/style.css 

BasicViewsGeneral-JQuery jquery-3.2.1.min.js 
WebContent/assets
/js/jquery-
3.2.1.min.js 

BasicViewsGeneral-Custom customization.json  

C02 ContactUs 

ContactUs-Contact Contact.java 
src/controllers/Cont
act.java 

ContactUs-View  contact.jsp 
WebContent/views/
contact.jsp 

ContactUs-AlterHeader alterHeader.frag  

ContactUs-Custom customization.json  

C03 Shipping Shipping-Shipping Shipping.java 
src/controllers/Ship
ping.java 
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Shipping-View  shipping.jsp 
WebContent/views/
shipping.jsp 

Shipping-AlterHeader alterHeader.frag  

Shipping-Custom customization.json  

C04 
DatabaseManage
ment 

DatabaseManagement-DB DB.java src/db/DB.java 

DatabaseManagement-
Config 

Config.java src/db/Config.java 

DatabaseManagement-
MainSQL 

main.sql main.sql 

DatabaseManagement-
Custom 

customization.json  

C05 DemoData DemoData-DemoSQL demo.sql demo.sql 

C06 ProductModel 

ProductModel-Product Product.java 
src/models/Product.
java 

ProductModel-ProductDAO ProductDAO.java 
src/models/Product
DAO.java 

ProductModel-AlterMainSQL alterMainSQL.frag  

C07 ListOfProducts 

ListOfProducts-ListProducts ListProducts.java 
src/controllers/ListP
roducts.java 

ListOfProducts-View listproducts.jsp 
WebContent/views/l
istproducts.jsp 

ListOfProducts-OneProduct oneproduct.jsp 
WebContent/views/
oneproduct.jsp 

ListOfProducts-AlterStyle alterStyle.frag  

ListOfProducts-AlterHeader alterHeader.frag  

C08 Comments 

Comments-Comment Comment.java 
src/models/Comme
nt.java 

Comments-CommentDAO CommentDAO.java 
src/models/Comme
ntDAO.java 

Comments-AddComment AddComment.java 
src/controllers/Add
Comment.java 

Comments-AlterDemoSQL alterDemoSQL.frag  

Comments-AlterMainSQL alterMainSQL.frag  

Comments-AlterListProducts alterListProducts.frag  

Comments-AlterOneProduct alterOneProduct.frag  

C09 SharingSystem 

SharingSystem-Fb fb.png 
WebContent/assets
/img/fb.png 

SharingSystem-Twitter twitter.png 
WebContent/assets
/img/twitter.png 

SharingSystem-
AlterOneProduct 

alterOneProduct.frag  

C10 Rating 

Rating-AlterListProducts alterListProducts.frag  

Rating-AlterMainSQL alterMainSQL.frag  

Rating-AlterManageProducts 
alterManageProducts.
frag 

 

Rating-AlterOneProduct alterOneProduct.frag  

Rating-AlterProduct alterProduct.frag  

Rating-AlterProductDAO alterProductDAO.frag  

Rating-AlterStyle.frag alterStyle.frag  

C11 UserModel 

UserModel-User User.java 
src/models/User.jav
a 

UserModel-UserDAO UserDAO.java 
src/models/UserDA
O.java 

UserModel-AlterDemoSQL alterDemoSQL.frag  

UserModel-AlterMainSQL alterMainSQL.frag  

C12 Account 

Account-Account Account.java 
src/controllers/Acco
unt.java 

Account-AccountView account.jsp 
WebContent/views/
account.jsp 
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Account-Img user.png 
WebContent/assets
/img/user.png 

Account-AlterHeader alterHeader.frag  

C13 Login 

Login-Login Login.java 
src/controllers/Logi
n.java 

Login-LoginForm login_form.jsp 
WebContent/views/l
ogin_form.jsp 

Login-AlterAccount alterAccount.frag  

Login-AlterAdmin alterAdmin.frag  

Login-AlterHeader alterHeader.frag  

C14 Cart 

Cart-Cart Cart.java 
src/controllers/Cart.
java 

Cart-CartView cart.jsp 
WebContent/views/
cart.jsp 

Cart-AlterProductDAO alterProductDAO.frag  

Cart-AlterOneProduct alterOneProduct.frag  

Cart-AlterHeader.frag alterHeader.frag  

C15 OnlinePayment OnlinePayment-AlterCart alterCart.frag  

C16 OfflinePayment OfflinePayment-AlterCart alterCart.frag  

C17 BasicViewsAdmin 

BasicViewsAdmin-Home Home.java 
src/controllers/admi
n/Home.java 

BasicViewsAdmin-Index index.jsp 
WebContent/views/
admin/index.jsp 

BasicViewsAdmin-Header header.jsp 
WebContent/views/
admin/header.jsp 

BasicViewsAdmin-Custom customization.json  

C18 
ProductManagem
ent 

ProductManagement-
ManageProducts 

ManageProducts.java 
src/controllers/admi
n/ManageProducts.
java 

ProductManagement-View products.jsp 
WebContent/views/
admin/products.jsp 

ProductManagement-
AlterAdminHeader 

alterAdminHeader.fra
g 

 

ProductManagement-
AlterProductDAO 

alterProductDAO.frag  

C19 UserManagement 

UserManagement-
ManageUsers 

ManageUsers.java 
src/controllers/admi
n/ManageUsers.jav
a 

UserManagement-View users.jsp 
WebContent/views/
admin/users.jsp 

UserManagement-
AlterAdminHeader 

alterAdminHeader.fra
g 

 

UserManagement-
AlterUserDAO 

alterUserDAO.frag  

C20 
CommentManage
ment 

CommentManagement-
ManageComment 

ManageComment.jav
a 

src/controllers/admi
n/ManageComment
.java 

CommentManagement-View comments.jsp 
WebContent/views/
admin/comments.js
p 

CommentManagement-
AlterCommentDAO 

alterCommentDAO.fr
ag 

 

CommentManagement-
AlterAdminHeader 

alterAdminHeader.fra
g 

 

 

Table 5-1 also highlights three different types of files: (i) blue background refers to domain 

files (see Section 4.2), (ii) white background refers to fragments (see Section 4.3.2), and 
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(iii) red background refers to customization files (see Section 4.4.2). Destination 

information must not be provided for fragments and customization files, because those files 

will not be included as part of the final derived products. 

 

After developing the list of domain components and their files, the SPL developer should 

use VariaMos to create the domain component model. This activity requires the SPL 

developer to navigate to the “Domain component model” view (see Figure 5-5). The process 

consists of graphically representing the domain components and their files based on the 

previous list (see Table 5-1).  

 

Figure 5-5: VariaMos “Domain component model” view main elements 

 

 

Finally, we use the VariaMos component model view to represent the ClothingStores 

domain components and files. An SPL developer can create these domain components 

and files manually (by using the information in Table 5-1) or load a pre-developed model 

(Correa, 2018) which contains the ClothingStores complete domain component model as 

shown in Figure 5-6. 
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Figure 5-6: ClothingStores complete domain component model 

 

5.3 Implementing domain components 

Implementing the reusable domain component is one of the most important tasks in an 

SPLE. These components will serve as the base from which any SPL product will be 

derived. As explained in Section 4.1, depending on the selected approach, this activity will 
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require to codify object classes (OOP), aspects (AOP), delta modules (DOP), web services, 

agents, and features (FOP), among others. Therefore, any reusable asset, such as images, 

scripts, HTML views, among others need to be included. 

 

Additionally, it is important to highlight that the domain components are not always designed 

and implemented from scratch. Domain components could also be acquired or rented 

through external companies, like with commercial off-the-shelf (COTS) components (Lago 

et al., 2004); inherited from previous developments; or outsourced through third party 

companies. 

 

In FragOP, this activity requires that SPL developers implement the (i) domain components, 

(ii) domain files, (iii) fragmentation points, (iv) fragments, (v) customization points, and (vi) 

customization files. We have already explained how to implement these elements in 

Chapter 4, where we showed some of the differences between the FragOP approach and 

other similar approaches. 

Finally, these components have to be verified and validated after the domain component 

implementation. There are different kinds of tests that could be applied, such as (i) unit 

tests, which allows a class, component or a piece of code to be tested independently of the 

entire system. (ii) integration tests, which allows the integration of two or more components 

to be tested. And (iii) regression tests, which are carried out when changes are made to 

components or pieces of code that have already been tested (Neto et al., 2011). 

5.3.1 IDE support 

To start the domain components implementation, PL developers must create a domain 

component pool directory to store the corresponding components and files. In FragOP, the 

domain component pool directory must be consistent with the Component Identifiers 

defined in Table 5-1. Figure 5-7-A shows an example of the default folder structure, which 

can be used as a template to create the final folder structure (e.g., for the ClothingStores 

SPL) as can the one presented in Figure 5-7-B. 
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We also suggest connecting the component pool directory with a web-based version control 

repository, such as Bitbucket1 or GitHub2, to manage the domain component evolution and 

traceability. 

 

Figure 5-7: Component pool folders and files structure 

 

 

Figure 5-8 shows the ClothingStores component pool folder structure based on the 20 

domain components defined in Table 5-1. 

 

Figure 5-8: Clothing stores component pool folder 

 

After the definition of the component pool, we recommend selecting a preferred IDE to 

develop the component file source code such as Sublime3, IntelliJ4, NetBeans5, and 

Eclipse6, among others. Figure 5-9 shows the example of Sublime being used to create the 

 
 

1 https://bitbucket.org/  
2 https://github.com/  
3 https://www.sublimetext.com/  
4 https://www.jetbrains.com/idea/  
5 https://netbeans.org/projects/www/  
6 https://www.eclipse.org/   

https://bitbucket.org/
https://github.com/
https://www.sublimetext.com/
https://www.jetbrains.com/idea/
https://netbeans.org/projects/www/
https://www.eclipse.org/
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component files. Finally, the PL developer has to codify all of the domain component files, 

fragments, fragmentation points, customization points, and customization files. Additionally, 

we created an online folder (Correa, 2018) which contains the complete domain component 

file source codes. 

 

Figure 5-9: Sublime IDE with an example of a component file development 

 

 

Note: most of the SPL implementation approaches (such as AHEAD, FeatureHouse, 

DeltaJ, CIDE, and Antenna) are designed as Eclipse plugins. In this case, the SPL 

developers create a new Eclipse project and use Eclipse to develop and store the domain 

components. 

5.4 Binding domain requirements and domain 
components 

As seen in previous sections, domain requirements can be implemented by means of 

several approaches. The relationship between the domain requirements and their 

implementations (commonly domain components) is very important for the SPLE because 

it connects the work of the PL requirement engineers with the PL software developers and 

the component suppliers. 
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The relationship could be defined as a one-to-one relationship (for example, one domain 

component linked to one domain requirement). Nevertheless, the relationship could be 

complex when there are multiple domain components that satisfy a specific domain 

requirement, or multiple component suppliers. 

There are some models and approaches that have been proposed for linking the domain 

requirements and the domain components: 

• Weaving models are intermediary models which define the relationships between 

the variability model and the component model. The features are located on one 

side and the components on the other (Cetina et al., 2013). 

• Mappings are used to define complex connections between features from feature 

models and the software artefacts that are realizing those features (Heidenreich et 

al., 2008). For example, in FeatureMapper, these mappings usually do not only 

contain mappings between features and software artefacts, but also between 

feature expressions and software artefacts, where a feature expression is a logical 

combination of features (e.g. FeatureA AND FeatureB). 

• Cardinality constraints are used in models such as DOPLER (Dhungana et al., 

2011), and they connect the decision models (variability elements) with the asset 

models (domain components). These constraints group components and allow min 

and max values to be defined (cardinality) which are used to implement specific 

features. For example, a DOPLER decision DOPLER_tools (variability element) 

could be linked to three possible values ConfigurationWizard, DecisionKing 

and ProjectKing (components), and the user should select between 0 and 3 of 

the previous possible values (cardinality). 

  

The reality is that most current approaches do not use graphical binding models, using 

instead a direct connection between the features and the components. For example: 

• In DeltaJ (DOP), there is a file with an extension “.spl”. That file includes a section 

called partitions, in which the user manually types the name of the features that are 

connected to the delta modules. 

• In CIDE (annotative), the SPL developer is able to select the specific files or pieces 

of code that are related to specific features. He/she makes a right click on the 

specific piece of code or file and select the name of the feature that wants to link it 

with. 
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• In AspectJ with FeatureIDE (AOP), once a new feature is created in the feature 

model, the application generates a new file with the same name of the feature and 

with “.aj” extension. 

• In Antenna with FeatureIDE (annotative), the file code that belongs to a specific 

feature is surrounded by IF and ENDIF statements. The IF statement must contain 

the name of the feature that links to it. 

• Approaches such as AHEAD (FOP) and FeatureHouse (FOP) with FeatureIDE 

create a folder with the same name of each leaf feature; there the user stores the 

domain components that operationalize those features. Again, there is a direct link 

between the feature and the component. 

 

In FragOP, this activity consists of developing a binding model between the domain 

requirements model (such as a feature model) and the domain component model. The 

binding model represents how the domain components operationalize the domain 

requirements. Figure 5-10 shows how the FragOP metamodel relates the domain 

requirements to the domain components in a many-to-many relationship. 

 

Figure 5-10: FragOP metamodel highlighting the domain requirement and domain 

component relationship 
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5.4.1 VariaMos support 

Modeling the binding with VariaMos requires the developer to navigate to the third view 

“Binding model” (see Figure 5-11). This view presents the same distribution as the previous 

feature model and domain component model views. There are two elements components 

and leaf features which are automatically loaded from the two previous views. Here, the 

developer only needs to link the domain components with the leaf features that they 

operationalize. 

 

Figure 5-11: VariaMos “Binding model” view main elements 

 

 

At present, VariaMos only allows a one-to-one binding relationship. Nevertheless, we plan 

to implement a constraint network (Lecoutre, 2009) to graphically represent more complex 

domain implementation relationships such as “Domain components C1 or C2, but not both, 

can be used to implement feature F”. 

 

ClothingStores SPL 

The ClothingStores feature model (presented in Figure 5-3) and the ClothingStores 

component model (presented in Figure 5-6) are connected by means of the binding model. 

Figure 5-12 shows the ClothingStores complete binding model. The complete feature 

model, component model, and binding model can be found online (Correa, 2018). 
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Figure 5-12: ClothingStores complete binding model 

 

5.5 Configuring products 

In SPLE, the configuration is a step-wise process that aims to deliver new software products 

that both satisfy the domain constraints, provided by the product line model, and the 

stakeholders’ requirements. A product configuration can be a complex task because 

variability models can contain thousands of options (Siegmund et al., 2008), and feature 

selection must consider several factors, such as technical limitations, implementation costs, 

requirements and the stakeholders’ expectations. Therefore, the product configuration 

activity is usually tool supported. These software tools accelerate the configuration activity 

through the propagation of decisions and constraints, which reduce the number of errors. 
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In some cases, these tools auto-complete the configurations or guide the users through the 

configuration process. 

 

Once the product requirements are identified, there are different ways to carry out the 

product configuration (Mazo et al., 2018). 

• Selection approach is an iterative process which consists of selecting the desired 

features that will be included in the final product. This approach starts with the 

selection of one desired feature F1, and the system looks for all possible 

configurations that include F1. The process continues by selecting a second 

desired feature F2 and the system looks for all possible configurations that include 

F1 and F2. The process is repeated until a final valid solution is found. 

• Reject approach is an iterative process which consists of rejecting the features 

that will be excluded in the final product. This approach starts with the selection of 

one unwanted feature F1, and the system looks for all possible configurations that 

exclude F1. The process continues by selecting a second unwanted feature F2 and 

the system looks for all possible configurations that exclude F1 and F2. The 

process is repeated until a final valid solution is found. 

• Value reduction approach consists of reducing step by step the values of some 

variables of the variability model, for example, reducing the range of a group 

cardinality. 

• Optimization approach consists of finding a product configuration based on 

specific requirements that optimize the product with respect to specific criteria, for 

example, finding the product with the highest security level. 

 

In FragOP, this activity consists of selecting the specific domain requirements that a certain 

product will contain. This configuration activity must satisfy the domain restrictions (which 

are represented in the PL models) and the customer needs. 

5.5.1 VariaMos support 

Product configuration is carried out in the feature model. There, the SPL developer selects 

the leaf features that the new SPL software product will contain, based on the customer 

needs. 

 



112 A Generic Method for Assembling Software Product Line Components 

 

 

Figure 5-13: VariaMos product configuration elements 

 

 

By default, VariaMos presents all the leaf features with a green arrow above them. This 

means that the leaf feature is already selected to be part of a new software product. Then, 

the SPL developer should deselect the SelectedToIntegrate option of those features 

that the SPL developer does not want to include in the new SPL software product (see 

Figure 5-13). 

 

Note: VariaMos also provides a “Model configuration/Simulation” perspective which allows 

product configurations to be simulated. This way, SPL developers can verify if a specific 

product configuration is valid or not and compare it with the previous product configuration. 

The “Model configuration/Simulation” contains some capabilities such as create a first 

random configuration, go to the next random configuration, specify features that must be 

configured, and specify features that must not be configured, among others. A document 

explaining the “Model configuration/Simulation” perspective and its functionalities can be 

found online (Correa, 2018). 

 

Other current approaches also support the product configuration, for example: 

• FeatureIDE with AHEAD (FOP) or FeatureHouse (FOP) or AspectJ (AOP). A 

FeatureIDE project allows creating a configuration file “.config”. The SPL developer 
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should open the configuration file and select the features that he/she wants to 

include in the current configuration. 

• DeltaJ (DOP). This approach provides a .spl file, in this file, there is a variable called 

“Products” where the SPL developer types the name of a product and types the 

names of the deltas that he/she wants to include in each product. 

• CIDE (annotative). This approach provides an option called "Generate Variant" 

from the project's context menu. There, the SPL developer has to select the features 

that he/she wants to include in the current configuration. 

 

ClothingStores SPL 

In order to present a realistic scenario, suppose that there is a “Customer A” who requires 

a new e-commerce clothing store application. After an elicitation process, the SPL 

developer deduced that “Customer A” requires the following list of functionalities: manage 

products, manage users, a sharing system for the products, a contact us section, a login 

system, demo data, and an offline payment system. Using this information, the SPL 

developer should try to configure a new SPL product. 

 

Figure 5-14: ClothingStores final product configuration (VariaMos) 
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Based on the customer requirements, an SPL developer must deselect the 

SelectedToIntegrate option for each of the following features: (i) shipping, (ii) 

rating, (iii) comments, (iv) comment management, (v) online payment, and (vi) 

account. Figure 5-14 shows the final product configuration. 

5.6 Deriving products 

One of the key activities for an SPLE is the product derivation. Product derivation aims to 

create specific software products based on the assembling of the reusable domain 

components. Depending on the approach selected to build the domain components and 

the tool that supports the product derivation activity, the product derivation could be a quick 

automated activity or a slow manual activity. Therefore, effective product derivation activity 

is critical to ensure that the effort required to develop the common assets will be lower than 

the benefits achieved through their use (de Souza et al., 2015). 

 

Figure 5-15: FragOP metamodel highlighting the SPL, product and application file 

relationship 
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In the FragOP approach, the product derivation activity consists of generating a specific 

product which contains application files (see Figure 5-15). Figure 5-16 shows a realistic 

product derivation scenario. In this case, a domain file (header.jsp) and a fragment 

(alterHeader.frag) will be assembled. These two component files belong to two components 

(BasicViewsGeneral and ListOfProducts), that are bounded to two mandatory leaf 

features (List of products and Basic views). This means, that any ClothingStores 

product configuration will include these two leaf features. At application level, this means 

that the files of BasicViewsGeneral and ListOfProducts will be assembled. The 

product derivation activity requires tool support, so, the complete product derivation process 

will be explained in the following section. 

 

Figure 5-16: An example of two component files being assembled 
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5.6.1 VariaMos support 

VariaMos offers two functionalities to support the FragOP product derivation activity. In the 

VariaMos “domain implementation” menu, the SPL developer can find Set derivation 

parameters and Product derivation. 

The Set derivation parameters option allows the definition of (i) the “component 

pool folder path” which is the path where components and files are stored, and (ii) 

the “product folder path” which is the path where the configured product will be 

derived. Figure 5-17 shows a “set derivation parameters” configuration. 

The Product derivation option allows the specific software product to be derived 

based on an automated algorithm that follows a series of instructions as presented 

in Figure 5-18. 

 

Figure 5-17: VariaMos “set derivation parameters” configuration 

 

 

Figure 5-18: VariaMos product derivation activity 
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At the beginning of the VariaMos product derivation algorithm, the information is taken from 

the component pool folder and the developed models. Then, the algorithm (i) extracts the 

information of the selected leaf features (based on the product configuration activity, see 

Section 5.5); (ii) resolves the binding relationships of the selected features to establish the 

corresponding components and files (based on the binding activity, see Section 5.4); (iii) 

creates a copy of the component domain files (from the domain component pool) and 

moves the copied files to the product folder (these files represent the application files). 

The application files are moved to a specific subfolder based on the domain file destination. 

Finally, the algorithm (iv) applies the domain component fragment alterations to the 

application files by priority order. The output is a product folder, which contains the 

assembled domain components and the specific software product. This algorithm also 

provides different alerts, such as invalid fragment definition, missing fields, invalid 

fragmentation point definition, invalid actions, and invalid filenames and paths.  

The FragOP product derivation activity and the VariaMos algorithm allows us to answer 

RQ2. Therefore, the VariaMos support to the product derivation activity also allows us to 

answer RQ4. 

Other current approaches also support the product derivation, for example: 

• FeatureIDE with AHEAD (FOP) or FeatureHouse (FOP) or AspectJ (AOP). After 

the SPL developer completes the configuration file which contains the selected 

features. The SPL developer must save the configuration file, and FeatureIDE will 

compose the features (or aspects) and compile the generated Java code. 

• DeltaJ (DOP). After the SPL developer completes the .spl file information. The SPL 

developer saves the file and a popup displays the available products to be derived. 

The SPL developer selects the desired product, and the application composes the 

deltas. After all deltas are composed, the generated classes are serialized and 

written into the JAVA source files in the file system (in a folder called src-gen/). 

Therefore, Eclipse will automatically compile the generated files. 

• CIDE (annotative). Once the product is configured (i.e., the features are selected), 

CIDE will copy the source code to the target project and remove all colored code 

that is not included in the product configuration. 
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ClothingStores SPL 

The first step is to “set the derivation parameters” according to the “component pool folder 

path” and the “product folder path”. Then, the SPL developer should click on the “product 

derivation” option. In this case, the reusable domain components are assembled and stored 

in the “product folder”, and as stated previously, the fragment alterations are applied. 

 

Following the running example and based on the current product configuration (see Figure 

5-14), the ListOfProducts-AlterHeader (alterHeader.frag) and the Login-

AlterAdmin (alterAdmin.frag) fragments (see Listing 4-6) are executed in the 

BasicViewsGeneral-Header (header.jsp) and UserManagement-ManageUsers 

(ManageUsers.java) application files respectively (see Listing 4-4). The component 

assembly results are shown in Listing 5-1. 

 

Listing 5-1: Derived BasicViewsGeneral-Header (header.jsp) and UserManagement-

ManageUsers (ManageUsers.java) application files 

BasicViewsGeneral-Header (header.jsp) 
<%@ page contentType="text/html" pageEncoding="UTF-8"%> 

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %> 

<%@ taglib uri="http://java.sun.com/jsp/jstl/functions" prefix = "fn" %> 

<html> 

  <head> 

    <title>${title}</title> 

    <link rel="stylesheet" type="text/css" href="<c:url value = 

"/assets/css/bootstrap.min.css"/>" /> 

    <link rel="stylesheet" type="text/css" href="<c:url value = 

"/assets/css/style.css"/>" /> 

  </head> 

 

  <body> 

    <nav class="navbar navbar-expand-md navbar-dark fixed-top bg-dark"> 

      <button class="navbar-toggler" type="button" data-toggle="collapse" 

data-target="#navbarsExampleDefault" aria-controls="navbarsExampleDefault" 

aria-expanded="false" aria-label="Toggle navigation"> 

        <span class="navbar-toggler-icon"></span> 

      </button> 

 

      <div class="collapse navbar-collapse" id="navbarsExampleDefault"> 

        <ul class="navbar-nav mr-auto"> 

          <li class="nav-item active"> 

            <a class="nav-link" href="<c:url value='Home'/>">Home <span 

class="sr-only">(current)</span></a> 

          </li> 

          <!--B-menu-modificator--> 

            <!--Code injected by: ListOfProducts-AlterHeader--> 

           <li> 

              <a class="nav-link" href="<c:url 

value='Products'/>">Products</a> 

           </li> 

           <!--Code injected by: ListOfProducts-AlterHeader--> 
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           <!--Code injected by: Login-AlterHeader--> 

           <c:choose> 

              <c:when test="${sessionScope.logged != '1'}"> 

                 <li> 

                    <a class="nav-link" href="<c:url 

value='Login'/>">Login</a> 

                 </li> 

              </c:when> 

              <c:otherwise> 

                 <!--B-menu-modificator-login--> 

                 <!--Code injected by: Account-AlterHeader--> 

                 <li> 

                    <a class="nav-link" href="<c:url 

value='Account'/>">Account</a> 

                 </li> 

                 <!--Code injected by: Account-AlterHeader--> 

                 <li> 

                    <a class="nav-link" href="<c:url 

value='Login?logout=1'/>">Logout</a> 

                 </li> 

              </c:otherwise> 

           </c:choose> 

           <!--Code injected by: Login-AlterHeader--> 

           <!--Code injected by: ContactUs-AlterHeader--> 

           <li> 

              <a class="nav-link" href="<c:url 

value='Contact'/>">Contact Us</a> 

           </li> 

           <!--Code injected by: ContactUs-AlterHeader--> 

           <!--Code injected by: Cart-AlterHeader--> 

           <li> 

              <a class="nav-link" href="<c:url value='Cart'/>">Cart</a> 

           </li> 

           <!--Code injected by: Cart-AlterHeader--> 

        </ul> 

      </div> 

    </nav>     

   <div> 

UserManagement-ManageUsers (ManageUsers.java) 
package controllers.admin; 

import java.io.IOException; import javax.servlet.RequestDispatcher; import 

javax.servlet.ServletException; 

import javax.servlet.annotation.WebServlet; import 

javax.servlet.http.HttpServlet;  

import javax.servlet.http.HttpServletRequest; import 

javax.servlet.http.HttpServletResponse; 

import javax.servlet.http.HttpSession; import models.User; import 

models.UserDAO; 

 

@WebServlet(urlPatterns = {"/Admin/Users"}) 

public class ManageUsers extends HttpServlet { 

 

 /*B-validation-function*/ 

 /*Code replaced by: Login-AlterAdmin*/ 

       protected boolean validation(HttpServletRequest request, 

HttpServletResponse response) throws ServletException, IOException{ 

   HttpSession session = request.getSession(); 

       User u = (User) session.getAttribute("datauser"); 
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       if(u == null) { response.sendRedirect("../Home"); return false; } 

       else if(!u.getType().equals("admin")){ 

      response.sendRedirect("../Home"); return false; 

       } 

       return true; 

 } 

       /*Code replaced by: Login-AlterAdmin*/ 

       /*E-validation-function*/ 

 

  

            @Override 

            protected void doGet(HttpServletRequest request, 

HttpServletResponse response) 

            throws ServletException, IOException { 

      

  if(this.validation(request, response)){      

           String remove = request.getParameter("remove"); 

       if(remove != null){ 

     UserDAO.remove(Integer.parseInt(remove)); 

       } 

       

           request.setAttribute("users",UserDAO.getUsers()); 

           request.setAttribute("title", "Admin Panel - Users"); 

                    RequestDispatcher view = 

request.getRequestDispatcher("../views/admin/users.jsp"); 

                    view.forward(request, response); 

  } 

             } 

  

        protected void doPost(HttpServletRequest request, 

HttpServletResponse response) throws ServletException, IOException { 

   

  if(this.validation(request, response)){ 

   String user = request.getParameter("user"); 

   String pass = request.getParameter("pass"); 

   String name = request.getParameter("name"); 

   String type = request.getParameter("type"); 

    

   User u = new User(name,type,user,pass); UserDAO.insert(u); 

   response.sendRedirect("Users"); 

  } 

 } 

} 

 

Now we can see the BasicViewsGeneral-Header which contains a new menu element 

that links to the products section (highlighted code), which is also presented in Figure 5-16. 

It also contains other menu element modifications carried out by the Login-

AlterHeader, Account-AlterHeader, ContactUs-AlterHeader, and Cart-

AlterHeader fragments. The UserManagement-ManageUsers was also modified by 

the Login-AlterAdmin fragment. This fragment injected a new validation function which 

replaced the default version (highlighted code). 
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5.7 Customizing products 

Product customization is a typical activity within SPLE. A product derivation hardly ever 

ends with a finalized software product. There are different kinds of product customizations, 

such as component parameterization, component adaptation, and component 

augmentation, among others (Cobaleda et al., 2018).  

• Parameterization consists of providing values to the product parameters, with the 

objective of adjusting them to the specific customer needs and the environment, for 

example, the configuration files may need to be parameterized. 

• Adaptation customization should be applied when the domain component does not 

satisfy the customer needs fully. Commonly, it consists of modifying the component 

code. 

• Augmentation is about the development of new components to supply product 

functionalities that are not included in the domain components. Commonly, 

augmentation is carried out when there are very specific requirements that were not 

considered during the domain engineering. 

 

In FragOP, the use of customization points and customization files serve to make clear the 

specific places in which the products should be customized. These elements allow some 

specific product customizations to be applied, such as component parameterization and 

some component adaptations. Nevertheless, most of the complex product customizations 

such as a component augmentation, which involves the development of a new component, 

must be carried out manually by the SPL developer. 

The FragOP product customization activity is supported by VariaMos and explained in the 

next section. 

5.7.1 VariaMos support 

In the VariaMos “domain implementation” menu, the SPL developer can find “product 

customization” option. After clicking the “product customization” option, VariaMos displays 

a popup menu which contains two buttons: start and next (see Figure 5-19). The start 

button initiates an algorithm that looks for customization files (based on the derived 

components). If a customization file is found, then the algorithm analyzes (i) the 

customization points, looks for the application files that contain the previous customization 
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points and collects the code surrounded by each customization point. That code is 

displayed in the Default content text area. Next, the developer provides a new 

customized content. Here the developer customizes each application file, as is 

presented in Figure 5-19. And (ii) the domain files to be customized that do not include 

customization points. In this case, two buttons, upload and save, are presented. The 

developer uploads the new customized file using the upload button, and the save button 

stores the new customized file in the product folder. The next button sends the provided 

information and modifies the derived application files, therefore, if there are other pending 

customization points or customization files, the default content is refreshed with the new 

code or file to be customized. Finally, once there are no pending customization points or 

customization files, the next button is disabled and the customization activity finishes. 

 

As mentioned in the previous chapter, most of the SPL implementation approaches do not 

provide a product customization capability (these include CIDE, DeltaJ, Munge, Antenna, 

AspectJ, and AHEAD, among others). Even when VariaMos (FragOP) does not 

automatically customize the application files (because the SPL developers should modify 

the code that appears in the popups), the reality is that this activity is streamlined. 

Otherwise, without the use of customization points and customization files, the SPL 

developers would need to manually look over each derived application file, trying to figure 

out what pieces of code and files should be customized. 

 

Figure 5-19: VariaMos product customization activity  
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ClothingStores SPL 

In the ClothingStores SPL, the DatabaseManagement-Config contained a 

customization point which was surrounded by some variables that had to be parameterized 

(presented in Listing 4-8). This parametrization could be easily carried out using VariaMos. 

The SPL developer executes the “product customization” option, and a popup with the 

customization points is presented. Figure 5-20 shows the vars customization point which 

belongs to the DatabaseManagement-Config (Config.java) derived application file. 

Finally, the developer should manually provide the final database variable values for the 

new customized content. 

 

Figure 5-20: ClothingStores product customization execution (VariaMos)  

 

5.8 Verifying products 

After the product derivation and customization, it is critical to verify and validate the software 

product by applying tests, such as integration tests, system tests and acceptance tests 

(Engström & Runeson, 2011). 

• Integration tests allow the assembly of the components to be tested. In this kind 

of test, it is suggested that the critical subsystems of the entire product be identified, 

and the proper tests executed. There are different strategies to execute integration 

tests, such as big-bang in which all the components of the subsystem are 

assembled, and the test is executed. Top-down is a strategy in which a specific 

component is tested, and some additional components are later included for 

testing. The process is repeated until all components are tested. 



124 A Generic Method for Assembling Software Product Line Components 

 

 

• System tests take the complete assembled product as an entity for testing. This 

test tries to find the resulting errors of the subsystem interactions. It also allows the 

compliance of the functional and non-functional requirements to be evaluated. 

There are different kinds of system tests, such as security tests, user interface 

tests, recovery tests, and compatibility tests, among others. 

• Acceptance tests are applied after the system tests. These tests include the 

execution of the system functionalities of the finalized product. The tests have to 

be executed by the user or group of users who will use the system. If the product 

passes the tests the stakeholder will accept it, which confirms that it fulfills the 

stakeholder needs. 

 

In FragOP it is critical to verify the product application files before the integration, system 

and acceptance tests. The FragOP approach allows multiple pieces of code which are 

developed in several languages to be injected. This is due to the FragOP structure and the 

FragOP concepts, such as fragmentation points, fragments, customization points, and 

customization files, among others. It implies that any time a fragment is executed, a derived 

application file will probably be altered through code injection. Therefore, as part of the 

product customization activity, the SPL developer could inject wrong code or remove 

essential code. As a consequence, ensuring a proper application file code structure and 

grammar is essential. 

 

This code verification can be carried out using an IDE. For instance, an SPL developer can 

move the product application files to a new Eclipse project, and the Eclipse platform will 

highlight the code errors. Alternatively, the VariaMos tool can also be used. 

5.8.1 VariaMos support 

VariaMos provides automated product syntax verification. To execute it, the SPL 

developer goes to the “domain implementation” menu and clicks on the “product 

verification” option. If the product was properly derived and the files contain the correct 

syntax, VariaMos shows the “no errors found” message. Nevertheless, if there are files with 

incorrect structure or grammar, VariaMos shows an alert with the specific code line in which 

each file contains errors. 
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How does the product syntax verification activity work? 

The product syntax verification activity allows grammar errors to be found over the derived 

application files. To this end, VariaMos uses ANother Tool for Language Recognition 

(ANTLR; Parr, 2013) which is a language tool that provides a framework for constructing 

recognizers, compilers, and translators from grammatical descriptions. VariaMos 

implements ANTLR 4.7.1 and uses a series of parsers and lexers for languages, such as 

PHP, Java, CSS, and MySQL, among others. Once the product derivation is executed and 

once the SPL developer clicks the “product verification” option, VariaMos extracts the 

product folder information. Based on each derived application file extension, VariaMos 

analyses the grammar of each file and generates alerts if errors are found. This product 

syntax verification support allows us to answer RQ3. 

 

ClothingStores SPL 

To explore the workings of the product syntax verification, we will apply a very small 

modification to the Login-AlterAdmin (alterAdmin.frag) fragment source code (see 

Listing 5-2). In this case, instead of giving protected visibility to the validation 

function, we wrote the protecte, which is a typographical error. 

 

Listing 5-2: Introducing an error to the Login-AlterAdmin (alterAdmin.frag) fragment 

source code 

Login-AlterAdmin (alterAdmin.frag) 
Fragment Login-AlterAdmin {  

   Action: replace 

   Priority: high 

   FragmentationPoints: validation-function, validation-function, validation-

function, validation-function 

   PointBracketsLan: java 

   Destinations: BasicViewsAdmin-Home, CommentManagement-ManageComment, 

ProductManagement-ManageProducts, UserManagement-ManageUsers 

   SourceCode: [ALTERCODE-FRAG]protecte boolean validation(HttpServletRequest 

request, HttpServletResponse response) throws ServletException, IOException{ 

  HttpSession session = request.getSession(); 

     User u = (User) session.getAttribute("datauser"); 

     if(u == null) { response.sendRedirect("../Home"); return false; } 

     else if(!u.getType().equals("admin")){ 

      response.sendRedirect("../Home"); return false; 

     } 

     return true; 

 }[/ALTERCODE-FRAG] 

} 

 

The Login-AlterAdmin (alterAdmin.frag) will inject the wrong code into four different 

files: BasicViewsAdmin-Home, UserManagement-ManageUsers, 
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CommentManagement-ManageComment and ProductManagement-

ManageProducts (depending on whether the corresponding components will be derived 

or not). Based on the current example and configuration (see Section 5.5), three files will 

contain the wrong code: BasicViewsAdmin-Home, UserManagement-ManageUsers, 

and ProductManagement-ManageProducts. 

 

Now, in order to see how VariaMos displays the alerts, we must (i) modify the Login-

AlterAdmin (alterAdmin.frag) as shown in Listing 5-2, (ii) click the “product derivation” 

option and (iii) click the “product verification” option. Figure 5-21 shows the VariaMos alerts 

for the current derivation and configuration, which states that “protecte boolean” is invalid 

for the following derived application files: src/controllers/admin/Home.java, 

src/controllers/admin/ManageUsers.java, and src/controllers/admin/ManageProducts.java. 

 

Figure 5-21: Verify derivation alert (VariaMos)  

 

 

It is important to note that VariaMos product syntax verification is not enough, there are 

more product verifications and product validations that should be carried out manually. We 

also recommend applying different system tests (Sawant et al., 2012), such as security 

testing, graphical user interface testing, compatibility testing, and recovery testing, among 

others. 

 

Finally, the software product is ready to be deployed in the production environment. Section 

6.1 shows some finalized ClothingStores products that are running over on an Apache 

Tomcat server. 
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5.9 Summary 

This chapter presented the FragOP process with its eight main activities. For each activity, 

we presented (i) the theory from the SPLE literature and how it should be applied using the 

FragOP approach, (ii) how VariaMos supported it, and (iii) a demonstration and 

exemplification in the running example which provided a realistic scenario. A summary of 

each activity is presented below. 

1. Modeling PL requirements is about the elicitation and formally specification of the 

domain requirements. Commonly, this activity is carried out with the use of a 

variability model. FragOP and VariaMos allow for domain requirements to be 

specified in the form of a feature model. There are some plans to provide support 

to languages such as OVM, and goal models, among others. 

2. Modeling domain components allows specifying the SPL domain components, 

which includes information about the components, their files and their relationships. 

FragOP and VariaMos allow for domain components to be graphical represented in 

the form of a component model. This representation allows having a complete 

separation between the domain requirements (problem space) and the domain 

components (solution space). 

3. Implementing domain components refers to the realization of each component and 

file represented in the domain component model. This is one of the most complex 

activities in the FragOP process because it requires the codification of domain 

component files, fragmentation points, fragments, customization points, and 

customization files. For this activity there is not VariaMos support, so the SPL 

developers should use their preferred IDE to codify the components’ code. 

4. Binding domain requirements and domain components is about the connection 

between the domain requirements (problem space) and the domain components 

(solution space). This connection is commonly carried out through the use of models 

or configuration documents. FragOP and VariaMos allow creating a binding model 

which specifies how the domain components operationalize the domain 

requirements. At present, VariaMos only allows a one-to-one binding relationship 

(one component linked to one feature), however, we plan to implement constraint 

networks to graphically represent more complex relationships. 

5. Configuring products is a step-wise process that aims to deliver new software 

products that both satisfy the domain constraints, provided by the product line 
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model, and the stakeholders’ requirements. In FragOP and VariaMos, this activity 

consists of selecting the specific leaf feature that a certain product will contain, 

based on the customer needs. 

6. Deriving products is a complex activity that aims to create specific software products 

based on the integration of the reusable domain components. FragOP and 

VariaMos allow an automated product derivation through the execution of an 

algorithm which takes as inputs the developed models, the component pool folder, 

and the selected leaf features; the output is a derivation folder which includes the 

assembled component files. Fragments’ codes are injected in this activity.  

7. Customizing products is about to apply the final modifications to the derived files 

based on the customer specific needs, such as component parameterizations, 

adaptations, and augmentations. Thanks to the customization points and 

customization files, FragOP and VariaMos provide a way to guide the SPL 

developers in the customization activity. However, complex product customizations 

such as a component augmentation must be carried out manually by the SPL 

developer. 

8. Verifying products is about ensuring the quality of the derived and customized 

products. VariaMos allows verifying that the derived files contain a proper structure 

and proper grammar. In this instance, VariaMos uses ANTLR and based on each 

derived component file extension, it analyses the grammar of each file and 

generates alerts if errors are found. It is important to highlight that other verifications 

and tests such as integration tests, system tests, and acceptance tests must be 

applied manually. 

 

To conclude, the definition of the FragOP product derivation activity and the VariaMos 

derivation algorithm (see Section 5.6) allows us to answer RQ2 because of that activity 

details and specifies the way in which the SPL components should be assembled. The 

definition of the FragOP product syntax verification activity and the VariaMos support (see 

Section 5.8) allows us to answer RQ3 because of that activity details and specifies the way 

in which the SPL components should be verified. And the development and enhancement 

of the VariaMos tool allow us to answer RQ4 because that tool supports and improves the 

SPL component implementation and assembly. 

 

 



 

 
 

6. Evaluation 

Having the FragOP approach defined, and a stable version of VariaMos, it is important to 

evaluate how FragOP and VariaMos support the SPL implementation. In order to do that, 

we defined 3 evaluation questions: 

• EQ1. Is VariaMos (FragOP) expressive enough to implement a real world, variant-

rich multi-language software system? 

• EQ2. What are the differences between VariaMos (FragOP) and similar SPL 

implementation mechanism and tools? 

• EQ3. Is VariaMos a useful tool that supports the FragOP approach? 

 

In order to analyze and try to find an answer to the previous questions, we present in the 

next three subsections: (i) a discussion about the ClothingStores SPL results, (ii) a 

discussion about the comparison between VariaMos (FragOP) and other SPL 

implementation mechanisms, and (iii) a usability test of VariaMos to support the FragOP 

approach. 

6.1 ClothingStores results 

The ClothingStores SPL was designed with the intention to provide a real example of the 

use of VariaMos (FragOP) to design and implement an SPL. Therefore, it was designed as 

an initial case study to gain insights about if VariaMos (FragOP) is expressive enough to 

implement a real world, variant-rich multi-language software system. 

 

We used the Koscielny et al. (2014) DeltaJ 1.5 case study as the base to present the 

VariaMos ClothingStores results. In their study, they: (i) evaluated DeltaJ 1.5 (which is a 

DOP approach), (ii) used a similar question to our EQ1 question, and (iii) used a 

SimpleTextEditor SPL as the subject system. In comparison, the SimpleTextEditor 

consisted of 11 features, while the ClothingStores consists of 25 features. 
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Koscielny et al. (2014) also included an extra research question about a comparison 

between DeltaJ 1.5 and a plugin-based approach (ECLIPSE RCP). In our case study, we 

decided to leave a discussion about the ClothingStores results compared with other 

approaches to the end of this section. This is due to most current SPL implementation tools 

do not support all the software languages involved in the ClothingStores implementation. 

Furthermore, in Section 6.2 we present a deeper analysis of the SPL implementation 

mechanisms compared with VariaMos (FragOP). 

 

The subject study (ClothingStores SPL) was properly defined and detailed in Chapter 2. 

There, we described the SPL requirements and software architecture. The ClothingStores 

was designed as a real-world example, covering most of the problems SPL developers face 

when implementing an SPL (which is of particular importance for EQ1). These problems 

include crosscutting concerns, fine-grained extensions, coarse-grained extensions, product 

customization, and managing multiple language files. These problems are detailed in 

Chapter 2. 

 

In the next subsections, we will show the evaluation metrics and the initial case study 

results. 

6.1.1 Evaluation metrics 

The analysis and evaluation of VariaMos source code are difficult, because of missing tool 

support to measure variability-aware metrics. To overcome this problem and to cover all 

the SPL features, we derived five products (as seen in Table 6-1), and we manually 

measured the generated application files source code. For each derived product, we 

recorded: 

• Name. Product name. 

• Leaf features selected. The leaf features that were selected in order to derive the 

product, which was based on the feature model (see Figure 5-3). 

• Linked domain files. The number of domain files that were linked to the previous 

leaf features, which was based on the component model (see Figure 5-6) the 

binding model (see Figure 5-12). 

• Derived files. The number of application files that were included in the product 

folder, after the product derivation activity. 
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• Total derived LOC. The number of lines of code of all derived files (image files 

were not included). 

• Total injected LOC. The number of lines of code that were automatically injected 

by the fragments in the product derivation activity. 

• Customized LOC. The number of lines of code that were customized to finalize 

the product. 

• Percent of injected LOC. The percentage of lines of code that were injected, 

compared with the total derived LOC. 

• Time to derive (sec). The seconds that took to derive each product. We applied a 

little change over the VariaMos tool, in order to record the time spent in the product 

derivation activity. 

 

Table 6-1: Derived products 

Product name SPL leaf features selected 

P1 Basic views, Database management, Demo data, List of products, Product Model 

P2 
Basic views, Comments, Contact Us, Database management, Demo data, List of 

products, Product Model, Shipping 

P3 

Basic views, Basic views (web management), Comment Management, Comments, 

Contact Us, Database management, Demo data, List of products, Login, Product 

Management, Product Model, Shipping, User model 

P4 

Basic views, Basic views (web management), Comment Management, Comments, 

Contact Us, Database management, Demo data, List of products, Login, Product 

Management, Product Model, Rating, Sharing system, Shipping, User model 

P5 

Account, Basic views, Basic views (web management), Cart, Comment 

Management, Comments, Contact Us, Database management, Demo data, List of 

products, Login, Product Management, Online Payment, Offline Payment, Product 

Model, Rating, Sharing system, Shipping, User Management, User model 

6.1.2 Results 

After following the FragOP process (see Chapter 5), we completed the derivation of the five 

products. The product finalization was very easy: (i) the derived products were located in 

Eclipse web projects, (ii) a couple of Java libraries were added to the projects (a MySQL 

connector, and a JSTL library), (iii) the SQL files were imported into a MySQL database, 

and (iv) the projects were run over an Apache Tomcat server. 
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Figure 6-1: Product section of a derived product (P1); Product section of a derived 

product (P5) 

 

 

Figure 6-1 shows the P1 and P5 products running over a web browser; Figure 6-1-a shows 

the P1 “product section” which contains a very basic configuration where the final user is 

able to read the product information; and Figure 6-1-b shows the P5 “product section” which 

contains a complete configuration where the final user is able to rate, share, comment and 

add the product to the cart. 

 

The results show that VariaMos (FragOP) is expressive enough (EQ1) to implement a real-

world, variant-rich multi-language software system. An inspection of the product code 

shows that: 

• Multiple assets of different types (such as SQL, images, JavaScript, HTML, JSP, 

Java, and CSS) were automatically assembled and deployed in the respective 

project folder structure (see Figure 6-2). 

• Several LOC were derived and automatically injected (see Figure 6-3 and Figure 6-

4). For instance, 27.72 percent of the P5 LOC were automatically injected. This 
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means that a P5 product derivation carried manually without the use of VariaMos 

will require to manually modify 560 LOC. 

• Between 21 and 50 lines of code were manually customized (supported by the 

VariaMos tool) to complete each product finalization (see Table 6-2 and Figure 6-

5). Even, the database queries were automatically generated. 

• If we try to derive the P5 with a compositional approach that is attached to a host 

language like Java (such as AspectJ, DeltaJ, AHEAD), (i) 26 files must be manually 

included in the product folder structure, and (ii) a minimum of 284 LOC (14% of the 

total derived LOC) must be manually modified to finalize the product derivation. 

Even, without counting the LOC of Java that implies fine-grained extensions that 

are not supported by these approaches. 

• If we try to derive the P5 with annotative approaches, the results could vary 

depending on the annotative approach language support (for instance, Antenna 

only supports Java); however, as mentioned before, annotative approaches inject 

all code variations inside the domain files, which is not the case in VariaMos 

(FragOP). It means that a domain file such as ListOfProducts-OneProduct 

(oneproduct.jsp) will contain at least 104 LOC in an annotative approach. 

Nevertheless, in VariaMos (FragOP) it only contains 31 LOC and the code variations 

are located in separated files (fragments). This characteristic makes domain files of 

annotative approaches difficult to maintain and evolve. 

 

Table 6-2: ClothingStores derivation results 

Name 

Leaf 

features 

selected 

Linked 

domain 

files 

Derived 

files 

Total 

derived 

LOC 

Total 

injected 

LOC 

Customized 

LOC 

% 

Injected 

LOC 

Time to 

derive 

(sec) 

P1 5 24 19 486 37 21 7.61 0.04386 

P2 8 39 26 802 103 48 12.84 0.05396 

P3 13 60 37 1410 240 50 17.02 0.08725 

P4 15 70 39 1602 432 50 26.97 0.13434 

P5 20 85 46 2020 560 50 27.72 0.18426 
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Figure 6-2: Number of files of each derived ClothingStores product by file type 

 

 

Figure 6-3: LOC of each derived ClothingStores product by file type 

 

 

Figure 6-4: LOC automatically injected in each derived ClothingStores product by file 

type 
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Figure 6-5: Summary of LOC reused, automatically injected and customized of each 

derived ClothingStores product by file type 

 

6.1.3 Threads to validity 

Although we conducted our evaluation with care, it exhibits some limitations. First, our case 

study consists of only one system that is small in size and has been implemented for this 

purpose only. Hence, our findings are not generalizable to other (large-scale) systems. 

Second, we have not implemented the system with other approaches for implementing 

variant-rich systems. However, we made some theoretical comparisons that show the 

benefits of the VariaMos (FragOP) approach. We also suggest implementing 

ClothingStores with multiple approaches in the future. Third, we analyzed concrete variants 

rather than the complete code base. Especially for quality-related measures, such as 

complexity or cohesion, this may be limited. However, the main focus of this paper was 

rather the technical realization of VariaMos (FragOP), whereas the evaluation was 

complementary in order to demonstrate the applicability of VariaMos (FragOP) for 

implementing SPLs. We will address the aforementioned shortcomings in a comprehensive 

case study in future work. 



136 A Generic Method for Assembling Software Product Line Components 

 

 

6.2 SPL implementation mechanisms comparison 

The SMS developed in this thesis and many additional references have shown some 

different software tools and SPL implementation approaches used to implement an SPL. In 

this section, we compare five SPL implementation approaches which are automated with 

the use of non-commercial tools. The comparison is done based on (see Table 6-3): 

• Approach type, compositional or annotative or a mix. 

• Approach language independence refers to the way in which the approach is 

attached to a particular language and its structure, or if it is language independent.  

• Tool analyzed, the SPL tool used to support the SPL implementation approach, 

and which was analyzed for this comparison. 

• Tool software language support, the software languages that the selected tool 

currently supports. 

• Variation points refer to the way to include the variation points inside the 

component files, or the elements that are used a based to include the variability.  

• Requires modifying the component code to include the variation points, yes 

or no depending on the way the approach or tool support the variation points 

inclusion. 

• Variant units refer to the way in which the code to be injected, modified, or 

removed is codified. 

• Allow injecting a variant unit in multiple variant points refers to the possibility 

of injecting a code variant in multiple places. 

• Granularity support, the type of extensions that can be applied with the current 

approach or tool (coarse-grained or fine-grained extensions). 

• Type of files used in the component implementation. 

• Variability model support refers to the variability models supported by the tool. 

• Product configuration refers to the way to configure a specific product. 

• Support product customization, yes or no depending on if the approach or tool 

support the product customization.  

 

Table 6-3: SPL implementation approaches and tools comparison summary 

 AOP CIDE DOP FOP FragOP 

Approach type Compositional Annotative Compositional Compositional 
Compositional 
and annotative 
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Approach 
language 

independence 

Usually 
depending on a 
particular host 

language 

Language 
independent 

Usually 
depending on a 
particular host 

language 

Usually 
depending on a 
particular host 

language 

Language 
independent 

Tool analyzed 
AspectJ with 
FeatureIDE 

CIDE DeltaJ 
AHEAD with 
FeatureIDE 

VariaMos 

Tool software 
language 
support 

Java Multiple Java Java Multiple 

Variation 
points 

Object-oriented 
elements such 

as classes, 
methods, and 

attributes 

Markers 
(annotations) 

Object-oriented 
elements such 

as classes, 
methods, and 

attributes 

Object-oriented 
elements such 

as classes, 
methods, and 

attributes 

Fragmentation 
points 

(annotations)  

Requires 
modifying the 
component 

code to 
include the 
variation 
points 

No Yes No No 

Yes (minimum 
modification with 

language 
comments) 

Variant units 
Separated 

(aspect files) 

Combined 
(with the 

original file) 

Separated (delta 
module files) 

Separated (Jak 
files) 

Separated 
(fragment files) 

Allow injecting 
a variant unit 

in multiple 
variant points 

Yes No No No Yes 

Granularity 
support 

Coarse-grained 
extensions 

Coarse-
grained and 
fine-grained 
extensions 

Coarse-grained 
extensions 

Coarse-grained 
extensions 

Coarse-grained 
and fine-grained 

extensions 

Type of files 
used in the 
component 

implementatio
n 

Component files 
and aspects 

Component 
files with 

annotations 

Delta modules 
(delta files) 

Feature modules 
(Jak files) 

Component files 
(with 

fragmentation 
points and 

customization 
points), 

fragments, and 
customization 

files 

Variability 
model support 

Feature model 
(graphical) 

Feature model 
(graphical and 

textual) 

Feature model 
(textual) 

Feature model 
(graphical) 

Feature model 
(graphical)  

Product 
configuration 

Through feature 
selection 

(graphical) 

Through 
feature 

selection 
(graphical) 

Through delta 
selection 
(textual) 

Through feature 
selection 

(graphical) 

Through leaf 
feature selection 

(graphical) 

Support 
product 

customization 
No No No No Yes 

 

As the previous table shows, FragOP (VariaMos) presents some important advantages 

versus other approaches (i) FragOP (VariaMos) as other annotative approaches (such as 

CIDE) is language independent, this characteristic allows implementing different 

components developed in different software language under the same approach. (ii) 
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FragOP (VariaMos) as other annotative approaches permits coarse-grained and fine-

grained extensions, which is very useful for applying changes in very specific locations. (iii) 

FragOP (VariaMos) as other compositional approaches separates the variations unit from 

the domain component files, which reduce the complexity and improves the maintainability 

of the domain components files. (iv) FragOP (VariaMos) as other annotative approaches 

requires the modification of the domain component files to include the variations points, 

however, this modification is different from most annotative approaches; because the 

modification is minimum and does not interfere with the code, since it uses language 

comments blocks. (v) FragOP (VariaMos) as many other approaches supports feature 

model, however, it is designed in a way that new custom models can be included. (vi) 

FragOP (VariaMos) as AOP approaches allow injecting a single variant unit in multiple 

variant points, which improves the reusability and maintainability. And (vii) FragOP 

(VariaMos) compared to other approaches is the only one that supports product 

customization. 

 

The comparison presented in this section was made based on some previous work 

(Schaefer et al., 2010; Correa et al., 2018) and the official documentation of these 

approaches1,2,3,4. Therefore, More details and comparisons of the new approach and other 

approaches can be found in Chapters 4 and 5. 

6.3 Usability test 

This section presents a usability test of VariaMos (version 1.1.0.1). The main idea is to test 

the VariaMos usability to support the FragOP approach (EQ3). And so, gain insight into 

how easy or difficult is to follow and understand the FragOP approach. 

 

Usability is defined by the International Standard Organization (ISO 9241-11, 1998) as “the 

extent to which a product can be used by specified users to achieve specified goals with 

effectiveness, efficiency, and satisfaction in a specified context of use”. That means that if 

 
 

1 https://www.eclipse.org/aspectj/docs.php  
2 http://ckaestne.github.io/CIDE/  
3 http://deltaj.sourceforge.net/  
4 https://github.com/FeatureIDE/FeatureIDE/wiki/Tutorial  

https://www.eclipse.org/aspectj/docs.php
http://ckaestne.github.io/CIDE/
http://deltaj.sourceforge.net/
https://github.com/FeatureIDE/FeatureIDE/wiki/Tutorial
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a product (a software tool in our case) does not provide effectiveness, efficiency and 

satisfaction to its users, it is not usable, and therefore will probably not be used. 

 

We intended to evaluate the usability of the VariaMos tool to support the FragOP approach 

(EQ3), so, we took as a base two similar studies related to usability testing. First, we 

analyzed the work of Rabiser et al. (2012), which presented an implementation of the 

capabilities in a configuration tool called DOPLER CW. They performed a qualitative 

investigation on the usefulness of the tool’s capabilities for user guidance in product 

configuration by involving nine business-oriented experts of two industry partners from the 

domain of industrial automation. Their tool was also used in software product lines. Second, 

we analyzed the work of Teruel et al. (2014), which presented a usability evaluation of the 

CSRML tool 2012; which is a Requirements Engineering CASE Tool for the Goal-Oriented 

Collaborative Systems Requirements Modeling Language (CSRML). They involved 28 

fourth-year Computer Science students in the evaluation, which was reported by following 

the ISO/IEC 25062:2006 Common Industry Format for usability tests. 

 

Subsequently, we decided to develop and conduct a usability test by using the ISO/IEC 

Common Industry Format (CIF) for usability tests (ISO/IEC 25062, 2006). We also applied 

three evaluation techniques: (i) one for the definition of the experimental tasks (Condori-

Fernández et al., 2013), (ii) another for evaluating user satisfaction by gathering their 

opinion through a survey (Lund, 2001), and finally a semi-structured interview to enrich this 

usability test. Eight graduate students participated in this study. They were asked to carry 

out a set of tasks about a sample of an e-commerce software product line. The usability of 

the tool was measured by several variables such as tasks completion rate, elapsed time, 

and a satisfaction questionnaire. 

 

Following we present: (i) product description, (ii) test objectives, (iii) context of use, (iv) 

usability metrics, (v) usability test process, (vi) results, and (vii) validation threads. 

 

Note: the usability test format completed for this evaluation can be found in an online 

repository (Correa, 2018). That repository also contains all the documents used in the 

usability test. Including pre-questionnaire, post-questionnaire, pre-experiment setup A, 

experiment part A, pre-experiment setup B, experiment part B, and program installation. 
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6.3.1 Product description 

Product name: VariaMos 

Product Version: 1.1.0.1 

Website: https://variamos.com 

GitHub: https://github.com/SPLA/VARIAMOS 

VariaMos target users: this tool is intended to be used for researchers, students, software 

developers and industrials which are interested in the software product line methodology. 

This includes people with experience in the software product lines field and novice people 

who are interested in adopting a software product line methodology. Finally, this tool can 

be also used for people who are interested in component-based software development. 

VariaMos assistive technologies: SWI-Prolog, MXGraph. 

VariaMos evaluated parts: (a) feature modeling, (b) domain component modeling, (c) 

binding modeling, (d) product configuration, (e) product derivation, (f) product syntax 

verification, and (g) product customization. Additionally, we evaluated the “implementing 

domain components” FragOP activity, which is not supported by VariaMos, but it is very 

important inside the FragOP process. 

6.3.2 Test objectives 

As previously stated, the main idea is to test the VariaMos usability to support the FragOP 

approach (EQ3). This is why we focused on seven VariaMos features as seen in Figure 6-

6. Additionally, we consider the domain component implementation, which was not 

supported by VariaMos, but it is very important inside the FragOP process. So, we plan to 

test: 

a) Feature modeling: the ability of the users to interact and modify the feature models. 

b) Domain component modeling: the ability of the users to interact and modify the 

component models. 

c) Binding modeling: the ability of the users to interact and modify the binding 

models. 

d) Product configuration: the ability of the users to interact and create custom 

product configuration. 

e) Product derivation: the ability of the users to derive software products and to find 

product derivation errors. 
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f) Product syntax verification: the ability of the users to verify software products and 

to find product syntax verification errors. 

g) Product customization: the ability of the users to customize software products. 

h) Domain component implementation (not supported by VariaMos): the ability of 

the users to interact, modify and create domain files. 

 

Figure 6-6: VariaMos tool highlighting the evaluated features 

 

6.3.3 Context of use 

Test facilities 

• Intended context of use: any workplace with people interested in SPL or 

component-based software development. 

• Context used for this test: the usability test was conducted in a laboratory of the 

Facultad de Minas at the Universidad Nacional de Colombia. The participants use 

their own computers with a list of software programs previously installed and 

configured. They were requested to record their tasks through the use of google 

drive documents. Additionally, two test administrators were observing and attending 
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the participants’ questions. Finally, we use audio record programs to record the 

participants’ opinions at the end of the experiment. 

 

Participants’ computer environment 

• Intended context of use: VariaMos 1.1.0.1 is intended to use for any PC running 

Windows or Unix operating systems. 

• Context used for this test: as previously stated, we requested the participants to 

bring their own PC. This way we will test how the tool performs over very different 

PC configurations. Some of the participant PC included: (i) operating systems, such 

as Windows, Linux, and macOS; (ii) RAM between 2 GB and 12 GB; (iii) display 

units between 14” and 17”; and (iv) the software programs required to execute the 

projects. The software programs included: VariaMos 1.1.0.1, Eclipse Oxygen EE 3, 

Java (JDK 8), Apache Tomcat 8.5. 

6.3.4 Usability metrics 

A product (or a software tool in our case) must provide effectiveness, efficiency, and 

satisfaction to its users, based on that, we defined the next usability metrics. 

A) Effectiveness 

• Completion rate: unassisted completion rate was defined as the percentage of 

participants who completed each task correctly without any assistance from the test 

administrator. The assisted completion rate was defined as the percentage of 

participants who completed each task correctly with the test administrator 

intervention.  

• Errors: an error was defined as a task completed wrongly or not completed. 

• Assists: an assist was defined as verbal help given by the test administrators to 

guide the participant to the next step in completing the task. Test administrators also 

provide help to the participants to understand a task definition that was not very 

clear to them, but this type of assists was not recorded. 

 

B) Efficiency  

• Task time: the amount of time to complete each task. 

• Completion rate efficiency: mean completion task rate/mean task time. 
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C) Satisfaction 

At the end of the experiment, participants completed a post-questionnaire. Subjects rated 

some questions on a 5-point Likert scale, and there were other questions about VariaMos 

and FragOP. Scores were given for each participant's perception of ease of use, easy to 

learn, easy to remember and subjective satisfaction. Therefore, a semi-structured group 

interview was carried out about tool usability. 

6.3.5 Usability test process 

The usability test was designed as a process with nine activities (see Figure 6-7), which is 

described next. 

 

Figure 6-7: Usability test process (UML activity diagram) 

 

6.3.5.1 Participants’ selection 

Eight graduate students from the Universidad Nacional de Colombia participated in this 

testing. These students were attending a postgraduate course in software modeling. The 

participants agreed to develop the usability test during two sessions of their software 

modeling course (each session lasted four hours). We told them that we want to find errors 

and evaluate the usability of a tool called VariaMos. We told them that their personal 

information (such as name, email, and company, among others) won’t be exposed so they 

will appear in the report as participant 1..N. We explained to them that the usability test was 

about a software tool used to design and implement SPL components, and they will be 

requested to complete some tasks. Next, participants were asked to sign a document to 

participate in the experiment. 
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6.3.5.2 Pre-questionnaire 

The usability test started with a request to the participants to complete a pre-questionnaire 

about their background and software experience (see Appendix C). The pre-questionnaire 

was designed using a Likert scale (Likert, 1932), which had a five-point format: (1) strongly 

disagree, (2) somewhat disagree, (3) neither agree nor disagree, (4) some-what agree, and 

(5) strongly agree. The intention was to collect information about the participants’ 

background and experience and in order to confirm the participants’ lack of knowledge with 

FragOP and VariaMos (see Table 6-4 and Table 6-5). The pre-questionnaire took 15 

minutes of the first session. 

 

Table 6-4: Participants’ pre-questionnaire information summary first part 

Participant Gender Job occupation 
Professional 

experience (years) 

P1 Male 
Software Development and 

Automatization 
3 

P2 Male Software Development 7 

P3 Male Software Development 3 

P4 Male Software Development 3 

P5 Male Web development 3 

P6 Male 
Software Development and 

Database Analyst 
5 

P7 Male Software Development 8 

P8 Male Web development 3 

 

Table 6-5: Participants’ pre-questionnaire information summary second part 

Participant Experience 
with 

software 
development 

Experience 
with 

component 
development 

Experience 
with SPL 

implementation 

Experience 
with 

VariaMos 

Experience 
with FragOP 

P1 5 3 1 1 1 

P2 4 3 2 1 1 

P3 3 3 1 1 1 

P4 4 4 2 1 1 

P5 4 4 1 1 1 

P6 4 3 1 1 1 

P7 4 2 1 1 1 

P8 4 3 1 1 1 

Mean 4.000 3.125 1.250 1.000 1.000 

Standard 
Deviation 

0.535 0.641 0.463 0.000 0.000 

Standard 
Error 

0.189 0.227 0.164 0.000 0.000 

Min 3 2 1 1 1 

Max 5 4 2 1 1 
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The participants’ background and experience were very important to develop the usability 

test. The pre-questionnaire results showed that participants have knowledge in software 

development (mean = 4,000; stdev = 0,535) and more or less knowledge in component 

development (mean = 3,125; stdev = 0,641). The pre-questionnaire also shows that the 

participants have lack of knowledge in SPL (mean = 1,250; stdev = 0,463), VariaMos (mean 

= 1; stdev = 0), and FragOP (mean = 1; stdev = 0). The last two results were mandatory to 

execute this usability test. 

 

Based on the participants’ background and experience, these participants could be 

classified as “novice people who are interested in adopting a software product line 

methodology” who are one of the VariaMos user target population. 

6.3.5.3 SPL, FragOP and VariaMos introduction 

After the pre-questionnaire, we started a magistral class. In this class, we presented the 

main concepts of SPL, FragOP, and VariaMos, and we developed a very small example of 

the use of FragOP and VariaMos. This introduction was important because the participants 

didn’t have knowledge about SPL, so, we introduced topics, such as software product lines, 

software product line engineering, feature modeling, domain engineering, application 

engineering, fragment-oriented programming, and product derivation, among others. The 

introduction took 3 hours of the first session. 

6.3.5.4 Pre-experiment setup part A 

The second session started with the “pre-experiment setup part A”. Here, the participants 

were introduced to a document which presented a series of steps to set up an SPL project 

with the use of VariaMos. Therefore, it showed how to run a derived product in the Eclipse 

EE environment. This project was the base to carry out the experiment part A. The pre-

experiment setup took 30 minutes of the second session. 

6.3.5.5 Experiment part A 

Once all participants completed the pre-experiment setup part A, we shared with them a 

personal Google Drive folder with the experiment part A (see Appendix D). Then, they 

started to complete the five experiment part A tasks. There was a limit of 90 minutes for 
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this part. Additionally, two test administrators were observing and attending the participants’ 

questions. The experiment part A tasks were about: 

• Task 1: Deriving and customizing a different product based on the pre-experiment 

base SPL project. 

• Task 2: Understanding how the fragments work. Here the participant completes 

some information about the previous derived product. 

• Task 3: Modifying a domain component. Here the participant tries to figure out how 

to modify a domain component based on a screenshot of a derived product. 

• Task 4: Creating a fragmentation point and fragment. Here the participant is 

requested to create a modification of the component pool which includes a new 

feature, new component, and new binding, among others. 

• Task 5: Deriving a new product which includes the previous created feature. 

6.3.5.6 Pre-experiment setup part B 

After the experiment part A, the participants were requested to follow a “pre-experiment 

setup part B”, here, the participants were introduced to a document which presented a 

series of steps to set up a new SPL project with the use of VariaMos. The pre-experiment 

setup took 15 minutes of the second session. 

6.3.5.7 Experiment part B 

Once all participants completed the pre-experiment setup part B, we shared with them a 

personal Google Drive folder with the experiment part B (see Appendix E). Then, they 

started to complete the two experiment part B tasks. There was a limit of 30 minutes for 

this part. Additionally, two test administrators were observing and attending the participants’ 

questions. The experiment part B tasks were about: 

• Task 1: Finding and fixing product derivation errors on the pre-experiment base 

SPL project. 

• Task 2: Finding and fixing product syntax verification errors on the pre-experiment 

base SPL project. 

6.3.5.8 Post-questionnaire 

The participants were submitted to a post-questionnaire, which included questions about 

(i) experiment environment, (ii) overall satisfaction, (iii) VariaMos and FragOP performance, 
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(iv) general question, and (v) specific questions about the VariaMos and FragOP theory 

(see Appendix F). The post-questionnaire was also designed using a Likert scale. The post-

questionnaire took 15 minutes of the second session. The post-questionnaire results can 

be found in Section 6.3.6. 

6.3.5.9 Semi-structured group interview 

At the end of the testing, a semi-structured group interview with all the participants was 

carried out. We asked them four open questions about the tool usability, and we recorded 

the participants’ answers. The questions were: 

• What did you like?  

• What did you dislike/What should be improved?  

• What are the opportunities when using this tool in daily business?  

• What are the risks when using this tool in daily business? 

 

The group interview results can be found in Section 6.3.6.2. 

6.3.6 Results 

Next, we discuss the usability test results, based on the performance results and the 

satisfaction results. 

6.3.6.1 Performance results 

All the eight participants completed all the seven tasks. Three of them completed all seven 

tasks without assistance. A total of seven assistances were given to the participants, five 

of these assistances were requested to the Task 4 – Part A, which was the most the 

complex task (participants spend a mean of 31 minutes to complete this task). The mean 

total time to complete all the seven tasks was approximately 72 minutes. There were not 

errors because all the participants completed all the tasks properly (see Table 6-6). 

 

Table 6-6: Participants’ performance result summary 

Participant 

Assisted 
task 

completion 
rate 

Unassisted 
task 

completion 
rate 

Total 
Task 
time 

Errors Assistance 
Mean 
task 
time 

Efficiency 

P1 100 100 81 0 2 11.571 8.642 

P2 100 100 72 0 1 10.286 9.722 
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P3 - 100 71 0 0 10.143 9.859 

P4 100 100 85 0 1 12.143 8.235 

P5 - 100 61 0 0 8.714 11.475 

P6 - 100 53 0 0 7.571 13.208 

P7 100 100 90 0 2 12.857 7.778 

P8 100 100 64 0 1 9.143 10.938 

Mean 100.000 100.000 72.125 0.000 0.875 10.304 9.982 

Standard 
Dev 

0.000 0.000 12.654 0.000 0.835 1.808 1.826 

Standard 
Error 

0.000 0.000 4.474 0.000 0.295 0.639 0.646 

Min 100.000 100.000 53 0 0 7.571 7.778 

Max 100 100 90 0 2 12.857 13.208 

 

Figure 6-8 shows that the participants spend more time developing Task 4 – Part A (mean 

of 31 minutes). This task was about creating a fragmentation point and a fragment. This 

task involved: (i) the creation of a new feature, (ii) the creation of a new domain component 

and file, (iii) the development of a fragment and a new fragmentation point (without the 

support of VariaMos), and (iv) the update of the binding model. It also shows that the 

participants spend little time in the development of Task 5 – Part A and Task 2 – Part B. 

Task 5 – Part A was about a new product derivation, which took on average approximately 

4 minutes; Task 2 – Part B was about finding validation errors, we included a syntax error 

over a domain file and on average the participants only spend approximately 4 minutes in 

finding and fixing the error. 

 

Figure 6-8: Participants’ average time to complete each task 

 

The results of this study show that all the participants were able to complete a set of tasks 

in which VariaMos supported the FragOP process. Including:  

• Feature modeling, through Task 4 – Part A. 

• Domain component modeling, through Task 4 – Part A. 
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• Binding modeling, through Task 4 – Part A. 

• Product configuration, through Task 1 – Part A, Task 5 – Part A. 

• Product derivation, through Task 1 – Part A, Task 1 – Part B, Task 5 – Part A. 

• Product syntax verification, through Task 2 – Part B. 

• Product customization, through Task 1 – Part A. 

• Domain component implementation, through Task 2 – Part A, Task 3 – Part A, Task 

4 – Part A, Task 1 – Part B, Task 2 – Part B.  

 

Finally, it is important to highlight that all the participants were novice SPL developers and 

FragOP novice developers. So, the results in this test provide preliminary evidence that 

VariaMos is a usable tool that properly supports the FragOP approach (EQ3). All the 

participants completed all the tasks (effectiveness), and the mean task time was 

approximately 10 minutes (efficiency). The tool also provides properly errors notifications 

that help developers to find fragment errors or domain component errors easily. Task 1 – 

Part B and Task 2 – Part B were about finding errors in fragments and domain components 

that even the participants did not develop. The mean for Task 1 – Part B time was 

approximately 10 minutes, and the mean for Task 2 – Part B time was approximately 4 

minutes. 

6.3.6.2 Satisfaction results 

The satisfaction results were obtained from two sources. First, we analyzed 21 of the 26 

post-questionnaire questions. Scores for the 21 questions were given for each participant, 

based on four usability attributes: ease of use, ease of learning, ease of remembering and 

subjective satisfaction. It is important to realize that usability is not a single, one-

dimensional property of a user interface. Usability has multiple components and is 

traditionally associated with different usability attributes (Nielsen, 1993). Second, we 

analyzed the semi-structured interview results which will be presented at the end of this 

section. Finally, the other five post-questionnaire questions results are used in Section 6.3.7 

as a source of information for the validation threads. 

The summary of the 21 questions results can be seen in Table 6-7. The highest satisfaction 

result was about the “ease of use” of VariaMos with a mean of 4.153 (see Figure 6-9). 

Therefore, on average the participants had 4.6 correct answers of a total of 6 when asked 

about VariaMos and FragOP functionalities (see Figure 6-10). 
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• Ease of use was calculated as the mean value between the results obtained by the 

participant in the post-questionnaire “About VariaMos and FragOP performance” 

(Question VF1 to question VF9). The results show that the most perceived easy 

FragOP process was binding modeling (mean = 4.375; stdev = 0.518) and the less 

perceived easy FragOP process were product configuration (mean = 3.625; stdev 

= 0.916) and domain component implementation (mean = 3.875; stdev = 1.246). 

• Ease of learning was calculated based on the result obtained by the participant in 

the post-questionnaire “General Questions” (Question G1). 

• Ease of remembering was calculated based on the result obtained by the 

participant in the post-questionnaire “About VariaMos and FragOP performance” 

(Question VF11). 

• Subjective satisfaction was calculated as the mean value between the results 

obtained by the participant in the post-questionnaire “About VariaMos and FragOP 

performance” (Question VF10 and question VF12) and “General Questions” 

(Question G2 and Question G3). 

• VariaMos and FragOP correct answers were calculated as the mean value 

between the results obtained by the participant in the post-questionnaire “Specific 

Questions” (Question SQ1 and question SQ6). This also provides support to the 

“ease of remembering” attribute. 

 

Table 6-7: Participants’ satisfaction result summary 

Participant Ease of use 
Ease of 
learning 

Subjective 
satisfaction 

Ease of 
remembering 

VariaMos 
and FragOP 

correct 
answers 

P1 4.2 4.0 2.5 5.0 5.0 

P2 4.1 5.0 5.0 4.0 5.0 

P3 3.9 4.0 4.0 4.0 5.0 

P4 4.0 4.0 3.5 3.0 3.0 

P5 5.0 1.0 3.8 4.0 4.0 

P6 4.6 5.0 3.3 4.0 5.0 

P7 3.8 4.0 3.5 4.0 5.0 

P8 3.7 2.0 2.8 3.0 5.0 

Mean 4.153 3.625 3.531 3.875 4.625 

Standard Dev 0.440 1.408 0.773 0.641 0.744 

Standard 
Error 

0.156 0.498 0.273 0.227 0.263 

Min 3.7 1.0 2.5 3.0 3.0 

Max 5.0 5.0 5.0 5.0 5.0 
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Figure 6-9: Satisfaction question average results 

 

 

Figure 6-10: Participants’ correct answers about VariaMos and FragOP 

 

 

Finally, the semi-structured interview showed that in general participants liked the software 

application and saw the potential of this tool and the FragOP approach. They mentioned 

that is a good strategy to reuse the domain components and assembled them. Some of 

them think this tool could improve their work at their companies and liked the way the 

FragOP approach worked. 

 

There were also some recommendations to improve the tool: (i) the graphical interface 

could be improved. A participant mentioned that future work could be to move the graphical 

interface into a web project. Allowing to use cellphones or tablet to open the application or 
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to avoid the installation of software programs. And (ii) another participant suggested to 

automatically generate the component model based on the component pool folder 

information, which will save time. 

6.3.7 Validation threads 

The outcome of validation is to gather enough scientific evidence to provide a sound 

interpretation of the results. Validation threats are issues and scenarios that may distort 

that evidence and thus incorrectly support (or discard) expected results. Each validation 

threat should be expected and addressed a priori in order to yield unbiased results or, at 

least, minimize posterior with effective counter-measures. This section addresses expected 

validation threats and how these were discarded, while others should be attentively focused 

in future experiments. Table 6-8 shows the participants post-questionnaire results of some 

questions which help to discard some threats. 

 

Table 6-8: Participants’ post-questionnaire external factors and overall satisfaction 

result summary 

Participant EF1 EF2 EF3 OS1 OS2 
P1 3 3 2 5 5 
P2 4 4 2 5 5 
P3 4 4 1 4 4 
P4 2 4 3 4 3 
P5 1 3 2 4 4 
P6 1 4 1 5 5 
P7 3 4 3 3 4 
P8 2 2 2 4 2 

Mean 2.500 3.500 2.000 4.250 4.000 
Standard Dev 1.195 0.756 0.756 0.707 1.069 

Standard 
Error 

0.423 0.267 0.267 0.250 0.378 

Min 1 2 1 3 2 
Max 4 4 3 5 5 

 

• Participants sample. The number of participants may seem relatively small. 

However, the ISO/IEC Common Industry Format (CIF) for usability tests states 

“eight or more subjects are recommended” (ISO/IEC 25062, 2006). Therefore, 

these participants belong to one of the VariaMos user target population (novice 

people who are interested in adopting a software product line methodology). 

• Conclusion validity. There is a threat that many of the results are not based on 

statistical relationships but on qualitative data. However, given that the main aim of 
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the study was to study the behavior and opinions of users of a tool, qualitative 

research methods are well suited. The analysis of the collected data still depends 

on our interpretation. The work was performed by a single researcher, but the result 

was carefully checked by two other researchers. 

• Project size. We selected a basic SPL project due to target users that participated 

in this usability test (novice people who are interested in adopting a software product 

line methodology). However, we have shown in previous sections that the tool also 

works with complex SPL projects (see Section 6.1). 

• Insufficient skills to execute the tasks. The tasks required participants to have 

the necessary skill to work with a modeling tool (VariaMos) and to have knowledge 

in software development. We designed a basic SPL project for the novice SPL 

developers, and we prepared an introduction to the modeling tool and SPL. This 

threat was discarded by the participants’ pre-questionnaire results, through 

questions 2 to 6. 

• Lack of documentation and guides. Due to the length of the tasks, and the fact 

that participants were novice in SPL, VariaMos, and FragOP, the lack of proper 

documentation or guides could hinder the outcome. This threat is discarded by post-

questionnaire questions OS1 and OS2. 

• External factors. Despite the noise or disturbance that could be generated in a 

laboratory by other students, it was necessary to make sure that the experiment 

environment was not a threat to validity. This threat was analyzed by the post-

questionnaire questions EF1, EF2, and EF3. EF2 shows the participants more or 

less enjoyed modeling and developing in the experiment (mean 3.5). EF3 shows 

got a little distracted by other colleagues (mean 2), and EF1 shows found the 

experience environment a little intimidating (mean 2.5). However, the results show 

the participant completed all the tasks. 

6.4 Summary 

This chapter presented three evaluations which were designed to confirm how FragOP and 

VariaMos support the SPL implementation. 

 

The first evaluation showed that VariaMos (FragOP) is expressive enough to implement a 

real-world, variant-rich multi-language software system. After a code inspection of the result 
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of deriving five different products, we found that multiple assets of different types were 

automatically assembled and deployed in the respective project folder structure, several 

LOC were derived and automatically injected, between 21 and 50 lines of code were 

manually customized (with VariaMos support), and we described some theoretical 

differences in the case of trying to derive those products with other approaches. 

 

The second evaluation showed the differences between VariaMos (FragOP) and similar 

SPL implementation mechanism and tools. In this case, we compared VariaMos FragOP 

with AspectJ (AOP), CIDE (annotative), DeltaJ (DOP), and AHEAD (FOP). We found many 

differences and some advantages of the FragOP versus the other approaches.  

 

The third evaluation performed a usability test of the VariaMos tool to support the FragOP 

approach by using the ISO/IEC Common Industry Format (CIF) for usability tests. For the 

usability test, we defined some experimental tasks, evaluated the user satisfaction and 

developed a semi-structured interview. Eight graduate students participated in the usability 

test and were asked to carry out a set of tasks about a sample of an e-commerce software 

product line. In the end, all the participants completed all the seven tasks, and the mean 

task time was approximately 10 minutes. The results in this test provide preliminary 

evidence that VariaMos supports the SPLE and the FragOP approach. 

 

Finally, there is much future work and research to do, such as the development of more 

tests and experiments under real industrial settings, development of more complex SPL 

projects under the FragOP approach, and practical comparisons of the FragOP approach 

and other approaches, among others.  

 

 



 

 
 

7. Conclusions and future research 

The main objective of this thesis is to answer the research question: How can software 

product line components be automatically assembled independently of their software 

language in a generic and reusable way? To answer this question, this thesis proposes: 

• An SMS in SPL implementation, including SPL component implementation. 

• A new SPL implementation approach called FragOP, which is a mix of 

compositional and annotative approaches. The new approach includes a 

metamodel and a process to implement SPLs. It also defines two main capabilities, 

generic assembling, and generic customization. 

• A running example to exemplify and demonstrate the use of the new approach. 

• A tool to automate the new SPL implementation approach. 

• An analysis of multiple product derivations. 

• A comparison of the new approach with other current approaches. 

• A usability test of the new approach and tool. 

7.1 Conclusions 

The proposals used to answer the research questions of this thesis are summarized in the 

next sub-sections. 

7.1.1 State of art in SPL implementation 

State of the art in SPL implementation including SPL component implementation shows: 

• The most discussed SPL implementation approaches are AOP, SOA, annotative 

approaches, FOP, and DOP; which are commonly grouped in two categories, 

compositional and annotative approaches. 

• There are a few studies that mix compositional and annotative approaches. 
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• Most of the current approaches use Java as a base to design the SPL components 

or are attached to a specific software language. However, software applications use 

on average of 5 different software languages. 

• All the current approaches present some limitations, for example, some of them 

support only coarse-grained extensions, are attached to a specific software 

language, and include the code variations inside the reusable component files which 

increases the component complexity, among others. 

• There is no approach that allows the generic assembling of SPL components 

independent of their software language and reduces component complexity. 

7.1.2 FragOP SPL implementation approach 

This thesis proposes a new SPL implementation approach called FragOP. FragOP is a 

framework used to design, implement and reuse domain components in the context of an 

SPL. This framework is a mix of compositional and annotative approaches, which is based 

on the definition of six fundamental elements: (i) domain components, (ii) domain files, (iii) 

fragmentation points, (iv) fragments, (v) customization points, and (vi) customization files. 

 

FragOP contains two main capabilities generic assembling and customization. The 

assembling capability provides an effective and generic way to support component 

variability and improve product derivation. The customization capability provides an 

effective and generic way to support component customization and guide SPL developers 

in the product customization activity. Both capabilities are designed to support multiple 

software languages, which includes assembly and customization at code level (in a generic 

way), or in the cases that this is not possible, then assembly and customization at entire file 

level (in a generic way). 

 

Therefore, we defined the FragOP process which describes the way to implement an SPL 

under the FragOP approach. This process contains eight activities that go from modeling 

PL requirements to verify products. 

 

Additionally, a running example was designed as a real-world example, covering most of 

the problems SPL developers face when implementing an SPL. The use of the running 
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example helps to demonstrate and exemplify the capabilities of the FragOP approach in a 

practical way. 

7.1.3 VariaMos automation  

FragOP approach includes the use of six fundamental elements and eight FragOP process 

activities, and there is a need to automate the FragOP approach, otherwise, the benefits of 

this approach are dismissed. There is a tool that already supports some of the FragOP 

process activities such as modeling PL requirements and configuring products; that tool is 

called VariaMos. VariaMos was enhanced to support seven of the eight FragOP process 

activities. 

VariaMos connects and uses some software tools to support some of the previous activities. 

For example, (i) the use of MxGraph which is a diagramming library that enables interactive 

graph and charting applications to be quickly created, which allows creating the different 

models such as feature models and component models. (ii) The use of ANTLR which is a 

language tool that provides a framework for constructing recognizers, compilers, and 

translators from grammatical descriptions. This tool allows us to check the derived 

component file grammar and execute the product syntax verification activity. And (iii) the 

use of SWI-Prolog which is a free implementation of the programming language Prolog that 

allows checking the models’ semantics. 

7.1.4 FragOP and VariaMos evaluation  

Three evaluations were applied to confirm how FragOP and VariaMos support the SPL 

implementation. 

• The first evaluation included the development and analysis of the ClothingStores 

and a derivation of five products. The results show that VariaMos (FragOP) is 

expressive enough to implement a real-world, variant-rich multi-language software 

system. The derivations showed that (i) multiple assets of different types and 

software languages were automatically assembled and deployed in the respective 

project folder structure. (ii) Several LOC were derived and automatically injected. 

And (iii) the product customization was successfully supported. In the end, no single 

line of code had to be manually modified (without the use of VariaMos) to complete 
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the product derivation; this is an important result that shows that the manual 

intervention can be reduced at minimum. 

• The second evaluation was about SPL implementation mechanisms comparison. It 

described in detail the differences between FragOP and other approaches, 

therefore, it highlighted some benefits of the FragOP approach. 

• The third evaluation presented and evaluated the usability of the VariaMos tool to 

support the FragOP approach. This test was applied with the use of the ISO/IEC 

Common Industry Format (CIF) for usability tests. Eight graduate students 

participated and carried out a set of tasks about a sample of an e-commerce 

software product line. The results provide preliminary evidence that VariaMos 

supports the SPLE and the FragOP approach. 

7.2 Future Research 

A desirable aspect of any research is that in addition to providing solutions to initial issues 

or questions, it should identify new research topics that would allow researchers to further 

work to eventually produce more useful knowledge and progress. This section presents 

some research directions and required additional work on SPL implementation, component 

implementation, and also some particular research directions in the improvement of the 

FragOP approach and VariaMos, including and further validation of the approach presented 

in this thesis. 

7.2.1 Future work in variability modeling  

Future works in SPL variability modeling include the following items: 

• Implement complex binding relationships. Currently, VariaMos (FragOP) only 

allows a one-to-one binding relationship. One component connected to one feature. 

Nevertheless, we plan to implement a constraint network (Lecoutre, 2009) to 

graphically represent more complex domain implementation relationships such as 

“Domain components C1 or C2, but not both, can be used to implement feature F”. 

• Support more variability models. There are different types of models that can be 

used to represent the SPL requirements and variability. Currently, VariaMos 

(FragOP) only supports feature models, however, we think it is important to support 

more variability models, such as goals models (Asadi et al., 2011). For example, 
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goal models allow representing quality attributes (non-functional requirements) 

which is not supported by the feature models. 

• PLA variability. The domain components developed for the FragOP approach or 

for most of the SPL implementation approaches are designed and codified based 

on a single SPL software architecture. So, implementing and supporting PLA 

models and refining SPL components to support variability at architectural level 

arises as an interesting research topic. 

7.2.2 Future work in SPL testing 

Future works in SPL testing include the following items: 

• Test variability. SPL components support variability, so, how to design, store, and 

execute tests that can be applied to variable components is an important research 

topic. 

• Unit tests, integration tests, and systems tests. Developing new test approaches 

that allow FragOP testing at different levels such as at domain and application level 

is an important future work. 

7.2.3 Future work in tool automation 

The result of the usability test, some VariaMos developers’ suggestions, and the trend to 

develop applications in the cloud were considered to redesign the VariaMos project as a 

web application. Web SPL tools present some advantages versus desktop applications, 

such as distributed computing, responsive design (user interfaces), collaborative modeling, 

easy maintenance, improve usability, and improve connectivity, among others. 

 

That is the reason why we decided to create a new VariaMos version called VariaMos web1. 

This new version was developed with trending technologies, such as HTML, CSS, 

JavaScript, Vue.js (a JavaScript framework), MxGraph-JS (the modeling library in which 

DRAW.IO is based), Java, Spring MVC (a Java framework), and SWI-PROLOG (an 

implementation of the programming language Prolog). 

 

 
 

1 https://variamos.com/home/variamos-web/  

https://variamos.com/home/variamos-web/
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Figures 6-11 and 6-12 show the new VariaMos web user interface. This new version 

contains all the FragOP functionalities from the VariaMos old version (desktop version), 

from feature modeling to product derivation. And the source code can be found in two 

GitHub repositories, one contains the front-end application and the other contains the back-

end application. This web version is currently under development and many other 

functionalities from the VariaMos old version are in process to be included. 

 

Figure 7-1: VariaMos web feature model view 

 

 

Figure 7-2: VariaMos web component model view 
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Finally, future works in SPL tool automation include the following items: 

• Support static code analysis. There are different tools that support static code 

analysis, such as CheckStyle1, SonarQube2, and Infer3. We think we can take 

advantage of some of these tools to analyze the code of the domain and application 

files, in order to detect potential bugs and issues. 

• Support verification of more languages. Currently, VariaMos (FragOP) support 

verification of some software languages, such as Java, PHP, and HTML. However, 

we plan to extend the support for more languages. 

• Support VariaMos component verification at domain level. Currently, it is only 

possible to verify the application files after the product derivation, however, we plan 

to extend the support to verify the domain component files at domain level with the 

execution of some integration tests.  

• Improve VariaMos to automate partially the creation of the component model 

based on the directories. We plan to use the information of the component pool 

directory to allow a partial automation of the domain component model creation.  

• Support the storage of component tests. We also plan to extend the domain 

component pool structure and domain component model to support sorting and 

managing component tests. 

7.2.4 Future work in evaluation 

Future works in SPL implementation approach evaluations include the following items: 

• Test with real companies. Future work can focus on testing the new approach in 

real industrial settings. Including the development and implementation of complex 

software product lines. 

• Complex comparison between the different approaches. It is important to 

compare and test the different approaches with practical experiments and 

evaluations. To gain insights about the support, benefits, and issues with each 

approach.  

 
 

1 https://checkstyle.sourceforge.io/ 
2 https://www.sonarqube.org/  
3 https://fbinfer.com/ 

https://checkstyle.sourceforge.io/
https://www.sonarqube.org/
https://fbinfer.com/
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C. Appendix: Pre-questionnaire 

 

The following is a copy of the pre-questionnaire handed to the participants before the 

beginning of the usability test. 
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D. Appendix: Experiment Part A 

The following is a copy of the Experiment Part A handed to the participants during the 

usability test. 
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E. Appendix: Experiment Part B 

The following is a copy of the Experiment Part B handed to the participants during the 

usability test. 
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F. Appendix: Post-questionnaire 

The following is a copy of the post-questionnaire handed to the participants at the end of 

the usability test. 
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