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Resumo 

A rastreabilidade está a tornar-se uma qualidade indispensável de qualquer sistema de 
software moderno. A complexidade no desenvolvimento de software é de tal ordem que, 
se não contarmos com boas técnicas e ferramentas, torna-se rapidamente um fardo 
demasiado pesado, sendo dificil ligar os artefactos de software aos seus requisitos 
originais. 

Os modernos sistemas de software são constituídos por um grande número de 
artefactos (modelos, código, etc.). Qualquer alteração introduzida num artefacto pode 
repercutir-se por vários componentes. Avaliar este impacto é uma tarefa árdua, 
dispendiosa e propensa a erros. Esta complexidade inerente ao desenvolvimento de 
software é aumentada no contexto de Linhas de Produtos de Software. A rastreabilidade 
pretende responder a este desafio, ligando os artefactos de software que são utilizados, 
de forma a descobrir as influências que eles exercem entre si. 

A nossa proposta passa por especificar, desenhar e implementar um Framework de 
Rastreabilidade que forneça uma solução de rastreabilidade para linhas de produtos, ou 
a possibilidade de o estender para outros cenários de desenvolvimento. O trabalho desta 
dissertação de mestrado é desenvolver um framework extensível, utilizando tecnologias 
de Desenvolvimento Orientado a Modelos. Pretendemos ainda fornecer buscas básicas e 
avançadas, e vistas desenhadas para satisfazer as necessidades de cada utilizador. 

Palavras-chave: Rastreabilidade, Engenharia de Linhas de Productos de Software, 
Desenvolvimento Orientado a Modelos. 

 VII





 

Abstract 

Traceability is becoming a necessary quality of any modern software system. The 
complexity in modern systems is such that, if we cannot rely on good techniques and 
tools it becomes an unsustainable burden, where software artifacts can hardly be linked 
to their initial requirements. 

Modern software systems are composed by a many artifacts (models, code, etc.). 
Any change in one of them may have repercussions on many components. The 
assessment of this impact usually comes at a high cost and is highly error-prone. This 
complexity inherent to software development increases when it comes to Software 
Product Line Engineering. Traceability aims to respond to this challenge, by linking all 
the software artifacts that are used, in order to reason about how they influence each 
others. 
We propose to specify, design and implement an extensible Traceability Framework 
that will allow developers to provide traceability for a product line, or the possibility to 
extend it for other development scenarios. This MSc thesis work is to develop an 
extensible framework, using Model-Driven techniques and technologies, to provide 
traceability support for product lines. We also wish to provide basic and advanced 
traceability queries, and traceability views designed for the needs of each user. 

Keywords: Traceability, Software Product Line Engineering, Model-Driven 
Engineering.
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Chapter 1. Introduction 

In software development, traceability is becoming a necessary characteristic of any 
system, as it supports software management, evolution and validation [54]. The IEEE 
Standard Computer Dictionary [38] defines traceability as: 

1. The degree to which a relationship can be established between two or more 
products of the development process, especially products having a predecessor-
successor or master-subordinate relationship to one another; for example, the 
degree to which the requirements and design of a given software component 
match; 

2. The degree to which each element in a software development product establishes 
its reason for existing; for example, the degree to which each element in a 
bubble chart references the requirement that it satisfies. 

This definition is strongly influenced by the requirements management community, 
which were the originators of traceability [1]. Gotel and Finkelstein define requirements 
traceability as [32]: 

...the ability to describe and follow the life of a requirement, in both a forward and 
backward direction; i.e., from its origins, through its development and specification, to 
its subsequent deployment and use, and through periods of ongoing refinement and 
iteration in any of these phases. 

In other words, traceability allows identification of the artifacts implementing a 
given requirement or the originating requirement of a given software artifact. For 
instance, a function programmed in C++ can be traced back through the elements that 
led to its implementation, all the way up to the requirement that motivates the existence 
of that particular piece of source code. 

However, it is becoming clear that using traceability which is only concerned with 
requirements is not sufficient. In Aspect-Oriented Software Development (AOSD) [5], 
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traceability of crosscutting concerns could be used to guarantee the consistency of 
requirements [68]. In Model-Driven Engineering (MDE) [66] traceability links could be 
used to associate the target models created by model transformations to their source 
models and vice-versa. Some authors are beginning to regard traceability in a much 
broader scope, where traceability is seen as any relationship that exists between artifacts 
involved in the software life cycle [1]. 

With software systems growing in complexity and size, traceability has become a 
necessity for software developers. Proper traceability support can yield improvements in 
software quality and eliminate much of the overhead attached to tasks such as 
performing covering analysis, change impact analysis and other related tasks. Another 
benefit is that using automated and formally defined methods of capturing trace 
information lowers the chance of occurring errors and the costs (economic, time, 
organizational, etc.) inherent to performing this tasks by hand [32]. 

This thesis work is being developed in the context of Software Product Lines (SPL) 
Engineering, more specifically, for the support of traceability in SPL, filling the gap in 
this area. We will specify, design and implement a traceability framework for this 
software development methodology. For that purpose, several technologies were 
assessed, with a special focus on Model-Driven Engineering (MDE) for suitability in 
achieving our goals. 

1.1 Problem Description 

In modern software industry, the complexity inherent to the development of a software 
system can become an unsustainable burden if not properly dealt with. Understanding 
the relationships between the different artifacts used in software development plays a 
major role in ensuring that the delivered system meets the stakeholders’ needs [57]. It is 
within this context that traceability problems can occur when the artifacts found in a 
solution (the system implemented) cannot be easily matched against the corresponding 
set of problem features that are being addressed [34]. 

Without proper traceability methods, any change introduced, either in one of the 
requirements (e.g., new market rules), intermediate specification model, or in any of the 
solution artifact (e.g., source code file is edited) might lead to the inability to verify if 
the requirements are still being satisfied (forward traceability), or if the artifact is still 
implementing any requirement (backward traceability). 

The traceability problem requires a solution that allows the developers to reason 
about the relationships between the elements of the different spaces (problem space vs. 
solution space), in order to efficiently maintain and evolve a software system. 

This problem becomes even more complex in a SPL environment, where the 
existing complexity to traceability (a great deal of artifacts to be dealt with) is 
augmented by the increasing number of different variants that can be produced by the 
product line. This adds the necessity to provide not only traceability between the many 
artifacts that compose a system, but also to distinguish between the artifacts that belong 
to a variant that is created by simply choosing a configuration features. 

Many approaches for SPL development have been proposed over the years [9, 11, 
19, 20, 26, 31, 59, 61]. The vast majority of these approaches offer the possibility to 
specify the commonality and variability inherent to a product line and some of them 
even offer complete solutions for establishing an SPL [11, 59, 61]. The most common 
method for achieving this is through the use of feature models, initially presented by 
Kang et al. [44], which have been extended and adapted to include several 
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improvements [14, 21, 35]. Other proposals have also emerged, such as the Orthogonal 
Variability Model [59] or modeling features with UML [31]. These approaches are 
usually focused on combining variability information contained in a variation model 
(e.g., feature model) with requirements information contained in an appropriate model 
(e.g., use cases) which is an important aspect of product line engineering. 

The main problem is that most of them do not provide any traceability support 
other than combining elements from different domains. For instance, validating a 
feature implementation (e.g., a design class) against its requirements is a time 
consuming and error-prone task without a solution that provides traceability support 
throughout the entire SPL life cycle. Without traceability techniques, performing change 
impact analysis comes at a huge cost. Reasoning about the rationale associated with an 
artifact, information that is necessary for performing tradeoffs, is also very difficult to 
accomplish without proper traceability support. Finally, coverage analysis can also be 
performed quite easily with traceability mechanisms. Checking if all the requirements 
are being met or if an artifact is traceable to any requirement becomes a question of 
simply submitting the right query and browsing the results. 

The majority of the existing approaches does not address these issues or do so in a 
trivial way. Another important aspect is the appropriate tool support for an effective 
traceability solution. Most approaches do not provide a complete solution or do so in a 
strictly theoretical fashion without supporting tools, which must be an essential part of 
any traceability framework. 

1.2 Limitations of Existing Approaches 

Several approaches and tools have been developed over the years to address the 
traceability problem in software development. Almost all of the currently available tools 
[30, 37, 39, 65, 69] have been implemented for traceability in Single-Systems 
development. They are capable of managing the trace links between requirements and 
other software artifacts, however they do not address some key issues in product lines 
such as managing variability and linking it to the artifacts used throughout the SPL 
lifecycle. Recently, there has been as effort to integrate some of these traceability tools 
with SPL tools such as pure::variants [61] and GEARS [11], but although this enables 
to trace from feature models to other artifacts, there are still many useful and important 
trace queries that are left unanswered. For instance, trace links could be exploited to 
perform feature interaction detection or to discover how the artifacts of a product 
variant relate to another product variant. This is currently not possible to do using the 
tools currently available. Another problem is that commercial traceability tools are 
closed and cannot be adapted to extend their base capabilities, which makes it 
impossible to take an existing tool and adapt it to the SPL traceability scenario. 

Some approaches to address traceability in SPL have been proposed by several 
authors. Some authors prefer to model variability using a model created for that 
purpose, and to create traces from variability elements to other artifacts [59]. Other 
authors focus on traceability for certain aspects of SPL, keeping it comprehensive but 
not exhaustive [7, 47]. The problem with the majority of these approaches is the lack of 
appropriate tool support which limits its use in a real software development scenario. 
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1.3 Work Context 

AMPLE [60] is an RTD project funded by the European Union. AMPLE combines 
renowned academic and industrial expertise from UK, Portugal, France, Spain, 
Netherlands and Germany to provide a holistic software product line development 
methodology that improves modularization and traceability of variability. The list of 
participants includes: 

• Lancaster University, UK 

• Universidade Nova de Lisboa, Portugal 

• Darmstadt University of Technology, Germany 

• ARMINES and Ecole des Mines de Nantes, France 

• University of Twente, The Netherlands 

• Universidad de Malaga, Spain 

• HOLOS, Portugal 

• SAP AG, Germany 

• Siemens AG, Germany 

The project coordinator is Prof. Dr. Awais Rashid of Lancaster University. The 
coordinator for the FCT/UNL team is Prof. Ana Moreira. The project began in October 
2006 and has 3 years of duration, until September 2009. 

The aim of AMPLE is to provide a Software Product Line development 
methodology that offers improved modularization of variations, their holistic treatment 
across the software lifecycle and maintenance of their (forward and backward) 
traceability during SPL evolution. Currently, there is a big gap between research in 
requirements analysis, architectural modeling and implementation technology, and the 
industrial practice in SPL engineering. Furthermore, the focus tends to be on the design 
and code level when variations need to be identified, managed and analyzed from the 
very early stage of requirements engineering. Architecture models are related to 
requirements models in an ad-hoc fashion and implementation tends to rely on pre-
processors which are inadequate substitute for proper programming language support 
for variability. Nor is there any systematic traceability framework for relating variations 
across a SPL engineering lifecycle. 

AMPLE will combine AOSD and MDE techniques to not only address variability 
at each stage in the product line engineering lifecycle but also manage variations in 
associated artifacts such as requirements documents. Furthermore, it aims to bind the 
variation points in various development stages and dimensions into a coherent 
variability framework across the lifecycle thus providing effective forward and 
backward traceability of variations and their impact. This makes it possible to develop 
resilient yet adaptable SPL architectures for exploitation in industrial SPL engineering 
processes. 

Figure 1.1 shows the work package breakdown of AMPLE. This thesis work is 
being developed under the WP4 umbrella of the AMPLE Project. The WP4 is 
concerned with developing a framework for backward and forward traceability in 
product line engineering. 
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Figure 1.1 – Graphical representation of work packages in the AMPLE project 

1.4 Proposed Solution 

The solution that we propose is to specify an extensible Model-Driven Traceability 
Framework that allows for the definition and implementation of traceability 
mechanisms and tools for SPL. In a first stage, only traceability between features and 
requirements artifacts will be provided, but implementing a solution for other artifacts 
should be straight forward. This framework will be composed of four main modules, as 
shown in Figure 1.2. 

 
ATF (Trace Storage Module) 

Trace Register 
Module 

Trace Query 
Module 

Trace View 
Module 

Figure 1.2 – Traceability Framework architecture overview 

The “Trace Register Module” is responsible for creating, updating or deleting trace 
links between the different artifacts. It can be used to manage the links stored in the 
repository. The “Trace Query Module” provides means to select a subset of trace links, 
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from the traceability repository. It is used for submitting basic queries, like selecting the 
artifacts linked to a feature, or more complex queries, like coverage analysis and change 
impact analysis. The “Trace View Module” is responsible for supplying a graphical or 
textual view for the trace queries submitted. Finally, the “ATF (Trace Storage Module)” 
module is in charge of storing the trace links, the trace artifacts and associated 
information, such as the rationale, in a persistent way. 

The main idea behind this framework is to use the variability model as the base 
reference for traceability. It should allow the developers to perform traceability from the 
variability model to other models. Another important aspect is that the framework 
should be highly adaptable and evolvable, to satisfy the needs of different users. 
Initially, we will be using the feature models (modelled in FMP [4]) as our variability 
model and a use cases model as the requirements model, but these will be variation 
points for this framework. The framework will allow changing either the variability 
model or the requirements model or any other model used in a SPL, in order to suit each 
developer’s needs. For instance if one wishes to use viewpoints, it can be used instead 
of the default use cases model with a simple adaptation to the framework. This goal is 
achieved by using a traceability metamodel under development for the AMPLE’s WP4, 
which will be explained in more detail in Chapter 3. 

1.5 Document Structure 

The remainder of this document is divided in six chapters and four annexes. Chapter 1 
is this introduction. Several concepts regarding the traceability problem were presented 
with a special focus on traceability for Software Product Lines. 

Chapter 2 presents some related work. First the general concepts regarding 
traceability are discussed. We introduce some notions and methods on how to describe 
and use traceability to aid software development. The chapter also presents some of the 
existing traceability solutions for MDE and SPL, and the state-of-the-art in terms of 
research in this field. A survey of some traceability tools that were evaluated in the 
context of this thesis is also discussed. 

Chapter 3 presents our proposal for addressing the main problems discussed in 
Chapter 1 and Chapter 2. We are proposing a Model-Driven framework to address 
traceability in software development, especially in SPL development, an area where we 
found a big gap. In this chapter we describe the general architecture of the framework, 
the implementation that was achieved, and the necessary steps to instantiate the 
framework’s hotspots. We also discuss our plans of evolving the framework to a 
scenario of “Black Box” instances development, to ease the process of instantiating the 
framework hotspots.  

In Chapter 4 we discuss how we plan to use traceability techniques to address 
problems that arise during the SPL development stages. We describe three main 
problems that affect SPL development: covering analysis, change impact analysis and 
detection of feature interaction. We present the strategies that we have developed for 
addressing these problems and our plans to implement them as instances for our 
framework. 

Chapter 5 presents a case study based on a home automation product line. This case 
study is based on “Smart Home” case study provided by Siemens1. We validated our 
framework against this case study by demonstrating how we could implement an 

                                                 
1 Case study provided in the context of AMPLE project. 
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instance to provide detection of feature interactions. This kind of problem is not 
addressed in other traceability tools and remains untackled in the approaches discussed 
in Chapter 2. 

Chapter 6 concludes this document by presenting the contributions and our plans 
for future work. 
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Chapter 2. Related Work 

In this chapter we will discuss the work related to traceability and how it as been 
applied in the fields of Model-Driven Engineering (MDE) and Software Product Lines 
(SPL). We begin by introducing some definitions for traceability. Some usage 
scenarios, techniques on how to achieve traceability solutions and trace queries are also 
described in the first section. We also discuss the importance that traceability has in 
software development, has it provides means to address the growing complexity of 
software systems [34]. The following sections of the chapter discuss traceability 
solutions in the domains of MDE and SPL. We present a brief introduction to these 
subjects, and analyze several approaches that have been proposed for traceability in 
these areas of research. Each approach is evaluated by a set of criterion and the results 
are discussed at the end of each section. The final section presents the results of the 
traceability tools survey that was conducted as part of this thesis work. We also 
evaluated each tool against a set of criterion and present our results in the end of the 
chapter. 

2.1 Traceability 

With the increase of the software complexity, software engineers have realized that the 
assessment of the impact that a change in one requirement introduces in the rest of the 
system is a critical task [34]. When a requirement changes, it may introduce a conflict 
with the rest of the requirements of a system. For instance, if the system is required to 
evolve to provide enhanced security (e.g., using stronger encryption algorithms and 
larger encryption keys) it may conflict with the existing requirement that addresses the 
response time that the system should meet. 

If these conflicts go undetected, it may lead to a system that fails to meet the 
requirements of the stakeholders, meaning that the software system might not be good 
enough for its intended use [63]. It therefore becomes necessary to perform the task of 
detecting how requirements influence each other, and how they are implemented, so that 
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when a change is introduced in either a requirement, or in a software artifact, it is 
possible to assess the impact that reverberates on the rest of the software system. In his 
book “Software Requirements: Objects, Functions and States”, Davis classifies 
traceability information in four types [22]: 

• Backward-from traceability links requirements to their sources in other 
documents or people. 

• Forward-from traceability links requirements to the design and 
implementation components. 

• Backward-to traceability links design and implementation components back to 
requirements. 

• Forward-to traceability links other documents (which may have preceded the 
requirements document) to other relevant requirements. 

An important aspect is also the ability to define traceability between requirements 
themselves. Davis does not seem to clearly define this relationship, but Kotonya and 
Sommerville [50] state that by extending the backward-from and forward-to traceability 
in order to allow links between the same document (the requirements document), it is 
possible to cover this concern. 

Even though traceability as been defined to include links to the source of a 
requirement (backward-from traceability), in practice, it is usually maintained between 
requirements themselves and between a requirements and its design artifacts. Gotel et 
al. [32] give a comprehensive picture of the “requirements traceability problem” and 
discuss the necessity to perform traceability all the way up to the source of a 
requirement (people, other requirements, documents, standards, etc.). They introduce 
the notion of pre-RS (pre-Requirements Specification) traceability and post-RS (post-
Requirements Specification) traceability. This distinction is necessary because there are 
different needs in terms of the information that is dealt with in each level and the 
problems that arise. 

Post-RS traceability provides the ability to trace requirements from, and back to, a 
baseline (the requirements specification). Any change introduced in the requirements 
specification must be propagated though the linked elements. The pre-RS traceability 
consists on the ability to trace requirements from, and back to, their originating 
statement(s), from which requirements are produced with the information collected 
from the existing sources, and combined in a single requirements specification. Changes 
in this requirements production process must be reflected in the requirements 
specification, and vice-versa. 

To define traceability links, one of the most common methods used is by means of 
traceability tables. Figure 2.1 shows a traceability table example for a system with six 
requirements. Each requirement is listed in the vertical and horizontal axes of the table, 
and the cells are used to mark the relationships between them. These tables can also be 
used to mark any other kind of traceability relationship. This would require adding the 
traceable artifact to both axes. 

The proper way to read this table is by navigating its cells and interpreting the 
information depending on whether we are reading a row or a column. A mark in the row 
of a requirement indicates that this requirement is depending on the marked 
requirements. For instance, R3 in Figure 2.1 is dependent on R4 and R5. On the other 
hand, by navigating the column we can find which requirements are depending on a 
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specific requirement. We can also see that requirement R2 has R4 as dependent. Using 
this approach, it is possible to perform change impact analysis simply by navigating the 
column of the requirement that was changed. If a change was introduced to R5, by 
going down the R5 column, we could find that R2 and R3 are dependent requirements, 
and therefore the impact on R2 and R3 of the change introduced on R5 can be assessed. 

 R1 R2 R3 R4 R5 R6 
R1   * *   
R2     * * 
R3    * *  
R4  *     
R5      * 
R6       

Figure 2.1 – A simple traceability table (taken from [50]) 

These tables however, are not scalable. For a small number of requirements, it is 
possible to navigate the table with relative ease to perform the necessary analysis, but 
for a large number of requirements (hundreds or thousands) the table becomes 
unmanageable. To address this problem, an alternative to traceability tables can be used. 
Instead of using a table, it is possible to use two traceability lists to provide the same 
information. One list traces the “depends-on” traceability, while the other provides the 
“dependents-off” traceability. Figure 2.2 shows an example of these lists. 

 Depends-on 
R1 R3, R4 
R2 R5, R6 
R3 R4, R5 
R4 R2 
R5 R6 

 
 Dependents-off 

R2 R4 
R3 R1 
R4 R1, R3 
R5 R2, R3 
R6 R2, R5 

Figure 2.2 – “Depends-on” and “Dependents-off” traceability lists (adapted from [50]) 

Traceability lists have the advantage of being more compact and easy to read than 
traceability tables. If one wishes to find the requirements that are depending on a given 
requirement it is a matter of searching the “dependents-off” list. For instance it is easy 
to see that R3 as R1 as dependent. The inverse is also straightforward. By navigating the 
“depends-on” list, we can see that R5 is dependent on R6. The only drawback of using 
traceability lists is that the information is duplicated, leading to problems of maintaining 
the information in a coherent state in both lists. 

Finally another important aspect of traceability is the ability to perform queries on 
traceability information and viewing the results returned. The great majority of the 
authors do not provide any implementation of the approaches proposed. This is usually 
left for the developer of the system to either implement the traceability himself, or to be 
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performed by traceability tools [13, 30, 37, 39, 69]. Many different solutions can be 
used to achieve the same goal. Traceability tables can be implemented using a simple 
spreadsheet, or a relational database. Traceability lists can also be implemented using a 
relational database, a spreadsheet, a simple text file, or implemented in many 
programming languages (e.g., the standard Java Class Library [67] already contains a 
Hashtable implementation that could be used to implement this solution). 

Depending on the solution, the desired information can either be extracted 
manually (e.g., going though a spreadsheet) or automatically using predefined or 
custom queries (e.g., using SQL with a relational database). There are several kinds of 
traceability queries that can be performed. Traceability queries can occur at two 
different levels: 

• Inter-level Queries traceability between artifacts at different development levels 
(e.g., requirement with design artifact or design artifact with source-code). 

• Intra-level Queries traceability between artifacts at the same level of 
development (e.g., requirements models with requirements documents). 

The type of queries can also be divided between simple and complex types. Simple 
queries usually involve choosing an artifact or set of artifacts and viewing the related 
artifacts. The type of information returned should also be chosen (which kind of 
artifacts, etc.). The results can also be viewed in a variety of formats. It is possible to 
see it represented in a simple textual report, a graph or a table. Figure 2.3 shows an 
overview of the concepts that address traceability. 

 
Figure 2.3 – Traceability basic concepts (taken from [71]) 

More complex and sophisticated traceability queries can also be provided to the 
developers. These might include requirements coverage analysis, which aims to ensure 
that architecture, design and implementation artifacts cover specific requirements. This 
could be useful in satisfying the need of showing that the resulting system met the 
contractual agreements. Another important query might be the change impact analysis, 
mentioned previously, which allows the discovery of artifacts that are affected by a 
change introduced in a requirement. As mentioned in Chapter 1 the most common form 
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of traceability is performed between requirements themselves and/or the software 
artifacts that realize them. However, Aizenbud-Reshef et al. suggest a broader definition 
of traceability [1]. The authors consider traceability as “any relationship that exists 
between artifacts involved in the software-engineering life cycle”. This definition 
includes elements that fall out of the scope of requirements traceability but are essential 
for new paradigms and methodologies that have emerged in recent years (e.g., Model-
Driven Engineering [66] or Software Product Lines [19]), which will be discussed in 
more detail in the following sections. 

2.2 Model-Driven Engineering 

Model-Driven Engineering (MDE) refers to the systematic use of models as first-class 
entities throughout the software development process, where the software lifecycle is 
considered to be a chain of model transformations [28]. The main purpose of MDE is to 
provide the developers with methodologies that use models, raising the level of 
abstraction of creating software [66]. The goal of MDE is to make the process of 
creating new software automatic and to ease necessary changes in a rapidly changing 
environment by using model transformations. Model-Driven Engineering is sometimes 
referred to as Model-Driven Software Development or Model-Driven Development 
[66]2. 

According to Stahl and Völter [66], the idea of modeling, as in MDE’s point of 
view, is not exactly new, and has been used in software development for documenting 
the inner structure of software. Developers would then review each step of the 
development process to check the models for consistency and correct possible mistakes. 
Another approach is reverse engineering that is possible in many UML tools. However 
this approach is merely source code visualization in UML syntax. Visually it may be 
clearer and more understandable, but in essence, the abstraction level of these models is 
the same as the source code itself. 

Model-Driven Engineering offers a significantly more effective approach: models 
are abstract and rigorous at the same time. Abstractness does not stand for vagueness, 
but for compactness and reduction to the essence [66]. The difference between old 
modeling techniques and modern MDE is that the new vision is not to use models only 
as simple documentation to aid in software development, but use them as input/output 
for computer based tools implementing precise operations. MDE models have the exact 
meaning of program code in the sense that the bulk of the final implementation, not just 
the class and method skeletons, can be generated from them. Models are no longer only 
documentation, but they become actual parts of the software.  

Figure 2.4 shows the MDE process of model refinement and the relationship of 
each model with the developed system. The vertical arrows demonstrate the refinement 
achieved in each step, by means of a model transformation, from more abstract models, 
into more concrete ones. Since all the models are representations of the same system, 
each transformation step should preserve the intended meaning of the source model, 
while adding new details to the resulting model [28]. 

Bézivin compares the evolution of object technology in the past period with the 
new proposals and claims of MDE [10]. The basic principle in Object-Oriented 
technology was: “Everything is an object”. This had a great impact in driving the 
technology in the direction of simplicity, generality and better integration. With the 

                                                 
2 The acronym MDE will be used in this dissertation from now on. 
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appearance of MDE we seem to have entered in a shifting phase in the software 
development process, and “Everything is a model” is promising to replace the OO 
guiding principle [10]. What seems to be important now is capturing a particular view 
(or aspect) of a system in a model and that each model is written in the language of its 
metamodel. 

 
Figure 2.4 – Model refinement in MDE (taken from [28]) 

2.2.1 Traceability in Model-Driven Engineering 

When put in practice, the MDE process follows some general principles of software 
development, like iterative development, separation of concerns, reverse engineering 
and refactoring [28]. Since the system is developed as a series of model transformations 
until a system implementation is achieved, any change introduced in a model should be 
propagated throughout the rest of the models. To maintain a complete integrity in the 
system’s models, the changes should be propagated to models that were derived from 
the changed model but also to the models that originated the model that was changed. 

To effectively perform the necessary changes, one must solve the problem of 
knowing which models are related to the changed model. Traceability in MDE can be 
used to address this issue, providing a solution to this potentially complex problem. By 
using trace links that associate elements of different models, and due to transitivity 
inherent to model transformations, it is possible to completely identify all the elements 
that are affected by a change in an element. For instance, if a design class is changed, it 
is possible to trace that change all the way down to the C++ class that implements it. In 
the same way, it may be possible to trace all the way up to the requirement that derived 
a particular set of classes. It is then possible to analyze the impact of this change in 
those elements. A great deal of research as been developed and many approaches have 
been proposed to solve the problem of representing, capturing and querying the trace 
information during MDE development. They will be discussed next. 

Event-Based Traceability (EBT) is a method for automating the generation and 
maintenance of trace links [16]. With this method, the requirements and other artifacts 
are not connected directly as in other approaches. A publish-subscribe mechanism based 
on the Observer design pattern [29] is used to perform traceability. Instead of using 
direct links, these are established by an event service that uses information retrieval 
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techniques to extract links between the registered artifacts. This system is composed of 
three main components: the event server, the requirements manager and the subscriber 
manager. The requirements manager handles the requirements and is capable of 
publishing the changes that are performed in a requirement as events in the event server. 
The event server is used to manage the links between a requirement and its dependent 
artifacts. It is also responsible for receiving change notifications and sending messages 
to the subscriber manager of the affected artifacts. Each artifact has a subscriber 
manager, responsible for handling the messages received by the artifact and for 
executing the necessary steps to properly handle the message received. The subscriber 
manager is also responsible for registering the artifact in the event server. The main 
drawback of this approach is concerning scalability. As a project grows, the event server 
can become a bottleneck for the system and it becomes hard to maintain a good 
performance. 

Event-Based Traceability with Design Patterns (EBTDP) is another approach by 
Cleland-Huang and Schmelzer [17]. It builds on top of EBT, but defines a different 
process for dynamically tracing non-functional requirements (NFR) to design patterns. 
This approach consists of two distinct phases, depicted in Figure 2.5. In the first phase, 
which occurs during construction of the system, the initial user-defined traceability 
links are established. In the second phase, which occurs during the ongoing 
maintenance and refinement of the system, fine-grained links are dynamically 
generated. As NFRs are elicited during early software development stages, the 
relationships between them and design patterns are discovered. The elements that 
compose a design pattern (models and code) are grouped in a cluster and a trace link is 
established between that cluster and the related NFR. This decreases the number of 
links established between design artifacts and non-functional requirements.  

 
Figure 2.5 – The EBTDP process (taken from [17]) 

In the runtime phase, the well defined descriptions of a design pattern allow the 
automatic and dynamic generation of code during runtime, with the pleasant side-effect 
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of enabling automatic generation of fine-grained links. This characteristic increases the 
maintainability and the expressiveness of the method. The current techniques for 
detection of implemented design patterns are not precise enough to support a good level 
of traceability, but this approach promises to improve the precision and achieve a good 
level of dynamical link generation. 

Goal Centric Traceability is a proposal to effectively maintain non-functional 
requirements thorough the software life cycle made by Cleland-Huang[18]. The 
nonfunctional requirements and their dependencies are modeled using a Softgoal 
Interdependency Graph (SIG). The purpose of GCT is to allow the developers to assess 
how a change in a functional requirement affects the non-functional requirements of a 
system. According to the authors, it is possible to identify potentially impacted goals, to 
analyze the level of impact and to develop the desired strategy to minimize risks. 

Figure 2.6 shows the phases of GCT: (i) Goal modeling; (ii) Impact detection; (iii) 
Goal analysis; (iv) Decision making. Goal modeling occurs during the elicitation 
specification. In this phase, non-functional requirements are modeled as softgoals in a 
SIG. During impact detection the traceability links between functional and non-
functional requirements are created. A trace retrieval algorithm is used to return a set of 
potentially impacted goals, which are then evaluated by the user and any link that is 
incorrect is discarded. In the goal analysis phase the impact of a change is propagated 
though the related regions of the SIG in order to expose its effect in the system wide 
goals. Finally, during the decision making phase the stakeholders analyze the impact 
introduced by the change and evaluate if it should be implemented. 

 
Figure 2.6 – Goal-Centric Traceability (taken from [18]) 

Ramesh and Jarke studied a wide range of traceability practices, and submitted them 
to scrutiny by using an empirical approach and focus interviews conducted in a series of 

 16 



 

software organizations [62]. The result of this work was the creation of reference 
models that include the most important kinds of traceability links for the various 
software development elements, which reflect the actual needs of real users. The 
importance of this study is that it realized that different stakeholders have different 
traceability needs, and therefore should be presented with different reference models 
that respond to their specific needs. They also realized that traceability participants fell 
into two distinct categories, which are referred as high-end and low-end users. 

Low-end users see traceability as an obligation imposed by project sponsors, and 
use simple traceability schemes as a means of modeling dependencies between 
requirements, components and compliance verification procedures. High-end users 
consider traceability to be an indispensable component of the software engineering 
process and will usually employ richer traceability schemes. The authors then proposed 
a basic traceability metamodel, shown in Figure 2.7, that expresses the trace entities 
used by high-end and low-end users and customize a set of reference models, contained 
within the scope of the trace metamodel, for each group. The reference model aimed at 
low-end users provides only a handful of relationship types that satisfies the needs of 
this group. The reference model for high-end users provides a much broader set of link 
types that allow the users to establish a much better rationale about the dependencies 
between the different elements. 

 
Figure 2.7 – Essential traceability metamodel (taken from [62]) 

Egyed presents an approach to traceability analysis [24]. This approach consists of 
establishing trace dependencies by analyzing some of the elements that constitute a 
software system: test scenarios, model elements (use cases, class diagrams, etc.) and 
source code. The approach also requires an observable and executable software system, 
which is its major drawback since it cannot be applied on the early phases of the 
software lifecycle and only when an implementation of the system is available. Other 
elements required by the approach are: a list of development artifacts; scenarios 
describing test cases or usage scenarios for the development artifacts; and a set of initial 
hypothesized traces linking artifacts and scenarios. Figure 2.8 shows the steps required 
by this approach. 
The test scenarios are executed to observe the behavior of the system. By observing the 
execution of those scenarios it is possible to detect trace links between the scenarios and 
the source code that executes them. The user is also required to input a set of 
hypothesized traces between model elements and the test scenarios. With this 
information, it is possible to automatically perform trace analysis to extrapolate traces 
between model elements and scenarios, between model elements and source code, 
traces between model elements and also detecting inconsistencies and incompleteness. 
This approach reduces the complexity of generating and validating trace information, 
since it is only required to input the list of observed traces by running test scenarios and 
a set of hypothesized traces between those scenarios and model elements. The author 
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considers a footprint to be the source code that implements a model element. With this 
definition in sight, a footprint graph that represents the runtime behavior of the 
scenarios is created, and the algorithm proposed by the author generates trace links by 
analyzing how this graph relates to the hypothesized traces input and the elements to 
which they are linked. 

 
Figure 2.8 – Trace Analyzer overview (taken from [24]) 

Jouault shows a method for adding traceability to programs [42],  written in the 
ATLAS Transformation Language (ATL) [43]. ATL is a model transformation 
language that has built-in support for traceability used in model transformations. This 
form of traceability however, is not maintained once a transformation is completed. 
Jouault also argues that a single transformation program can be used in several different 
contexts and as such, it may be required to generate different kinds of traceability 
information, depending on the execution context. The approach proposed is to consider 
the traceability information generated as an additional target model for the 
transformation program. Since the trace information is considered to be a model, the 
author introduced a simple traceability metamodel, shown in Figure 2.9, to allow the 
creation of trace links during model transformation. 

 
Figure 2.9 – Trace metamodel (taken from [42]) 
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This approach uses the mechanisms already available in ATL to create traceability 
elements in the same manner that other target model elements are created. To integrate 
traceability in transformation programs, the developer simply needs to add a pattern 
element that will generate an external trace link in the traceability model. The drawback 
is that this ATL code must be manually added to the transformation program. But since 
transformation programs are models themselves, than an ATL program without 
traceability can be transformed in another ATL program that already includes this 
traceability code. The result was the creation of an ATL program called TraceAdder 
[42] that automatically inserts the traceability creation code in an ATL program. 

Kolovos et al. presented an approach generating annotated models on-demand by 
merging the primary models with their correspondent trace models [49]. These 
annotated models contain traceability information that is useful for inspection purposes. 
The authors define two approaches for storing and managing traceability links. The first 
approach, called embedded traceability, the traceability elements are kept inside the 
target models they are referring. This approach simplifies the definition of traceability 
and helps in its understanding, but it pollutes the target model with many elements that 
do not belong there. Another disadvantage is that this approach can only be applied to 
represent intra-model traceability links. The second approach, called external 
traceability, creates trace links as elements in a separate model. For this approach to 
work, all the related elements must have a unique and persistent identifier that 
eliminates ambiguity problems when resolving external links. The advantage of this 
approach is that storing the traceability in links in separate models facilitates loose 
coupling between the models and the links. The down side is that id-based links are not 
human-friendly which goes against one of the goals of traceability, i.e., to assist 
modelers in decision making. 

The authors argue that even though both approaches have disadvantages the 
external traceability model is more flexible and it allows managing intra-model and 
inter-model traceability, and present a technique of external traceability that overcomes 
the problem of user-friendliness [49]. This goal is achieved by automatic merging of 
traceability links (stored in separate models) with the elements to which they refer. This 
produces models annotated with traceability information. The Epsilon Merging 
Language (EML) [48] is used to perform the merging of models with traceability. This 
task is performed in two phases: matching and merging. The first phase establishes the 
correspondence between the source models (e.g., the traceability model and design 
model). The identified elements are then merged in the merging phase, resulting in a 
model annotated with traceability. 

Falleri et al. defined a traceability framework that is especially suited for gathering 
traceability when chains of transformations are applied [27]. Their work is inspired by 
[42] and is implemented in the model oriented language Kermeta [70]. The authors 
argue that to trace model transformations, the two main concepts involved must be 
clearly defined: what is a model and what is a transformation. The first answer as been 
answered by the proposal of several metamodels that represent what is a model (e.g., 
MOF [56]). When it comes to model transformations a consensus has not been found 
yet, primarily due to the fact that a transformation language and the respective 
transformation metamodel are not independent. In order to provide traceability for any 
kind of model transformations, one must discard a concrete transformation model [27]. 
The authors then provided some definitions for what they consider to be a model and a 
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transformation. Based on those definitions they concluded that a model transformations 
trace is simply a bipartite graph with two kinds of nodes: source nodes and target nodes. 

Figure 2.10 shows the specification for the basic elements of a transformation chain 
trace metamodel. In this metamodel, a transformation chain trace is represented by a 
trace. Every trace is an ordered set of steps, each one representing a single 
transformation (from a source model element to a target model element). The authors 
have implemented their framework using Kermeta that provides the following set of 
features: Generic traceability items; trace serialization; and trace visualization (achieved 
using Graphviz’s Dot language [33]). The framework does have a major disadvantage. 
The trace generation code must be placed inside the transformation code, and as such, it 
becomes tangled with the transformation code itself, leading to an approach that is less 
extendable and adaptable. 

 
Figure 2.10 – Transformation chain trace metamodel (taken from [27]) 

2.2.2 Discussion 

A survey in traceability approaches for MDE was conducted in the context of the 
AMPLE project [46]. Galvão and Goknil have also conducted a survey on traceability 
approaches for MDE and present their findings in [28]. Some of the approaches 
evaluated by these surveys were presented in the previous section. From all the 
approaches described in the surveys, we chose to discuss only the ones that, in our 
opinion, seem to provide a more complete solution (with regard to the evaluation 
criterion). The criteria used by authors for evaluating the performance of each approach 
were: representation of traceability information, mapping between models, scalability, 
change impact analysis, and tool support. These five criteria are summarized in Table 
2.1. The representation criterion characterizes how each approach represents traceability 
information. The mapping criterion indicates if an approach is capable of generating 
inter or intra traceability, i.e., the links are established between models at different 
levels of abstraction. The scalability criterion analyzes if it is possible to apply the 
approach to a large system. The change impact analysis criterion evaluates how the 
approach includes support for detecting the impact of changes on the related artifacts. 
Finally the tool support criterion evaluates whether the approach provides any kind of 
tool support for facilitating traceability. 

Traceability is becoming a major feature of any MDE approach, since it is 
intrinsically related with the main idea of Model-Driven Engineering of transforming 
abstract models into more concrete ones, until a system implementation is achieved. 
Trace links can play a crucial role in this process, since they allow the developers to 
discover how a change in a model should be propagated throughout the rest of the 
models. Without this kind of trace information evaluating the impact of a change is a 
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time consuming and error-prone task. The approaches summarized in Table 2.1 
represent the state-of-the-art in traceability approaches for MDE. 

Table 2.1 – MDE traceability approaches summary (adapted from [28] and [46]) 

Approach Representation Mapping Scalability Change impact 
analysis 

Tool 
support

Cleland-Huang et al. 
[16] 

event-based 
subscriptions inter no Yes Yes 

Cleland-Huang and 
Schmelzer [17] 

SIG graph and event-
based subscriptions 

intra and 
inter no Yes yes 

Cleland-Huang et al. 
[18] 

SIG graph and 
traceability matrix 

intra and 
inter partially Yes Partially

Ramesh and Jarke 
[62] 

Traceability 
metamodels 

intra and 
inter yes yes yes 

Egyed [24] Footprint graph intra and 
inter yes yes partially

Jouault [42] Trace model using ATL intra and 
inter no no yes 

Kolovos 
et al. [49] 

metamodel in EML and 
trace model in UML inter partially no Yes 

Falleri et al. [27] Kermeta models intra and 
inter no no Yes 

From this evaluation it should be pointed out that the path taken by some 
approaches offers great advantages. The external representation of the trace links, such 
as the one used in Kolovos et al. [49], that are later combined with the models they refer 
to, is a good method for implementing traceability, since it maintains the model 
decoupled from the traceability information. This satisfies the principle of separation of 
concerns, keeps the models clean and facilitates the evolution of the approach. Another 
important aspect discussed in [28] is that tool support is crucial for automating 
traceability generation in MDE, something that the majority of the approaches do not 
provide. 

2.3 Software Product Lines 

According to Clements and Northrop a Software Product Line (SPL), is a set of 
software-intensive systems sharing a common, managed set of features satisfying the 
specific needs of a particular market segment or mission and that are developed from a 
common set of core assets in a prescribed way [19]. Each product in a SPL is developed 
by using the necessary components, taken from the core assets base, and tailoring them 
as necessary using pre-planned variation mechanisms such as parameterization or 
inheritance, adding any new components that may be required and assembling the 
collection according to the rules of a common, product-line-wide architecture. A 
prescribed way of software development allows a more economic approach. Building a 
new system becomes more a question of integration rather than implementation. 
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There are many approaches that, at first glance, could be confused with a SPL. One 
might even think that a Software Product Line is just a new name for older approaches. 
It is therefore important to describe what a SPL is not [19]: 

• Fortuitous small-grained reuse; 

• Single-System development with reuse; 

• Just component-based development; 

• Just a reconfigurable architecture; 

• Releases and versions of single products; 

• Just a set of technical standards. 

It should be pointed out that many of the terms described above are present in a 
Software Product Line Engineering, and are used for assembling one (e.g., 
reconfigurable architectures, artifacts reuse) but the idea is that even though they are an 
integrating part of a SPL, they are not its definition. A product line is much more than 
just reusing code or integrating components. It is a classical example of: “The whole is 
greater than the sum of the parts” [63]. 

At its essence, a product line involves core asset development (also known as 
Domain Engineering) and product development (also known as Application 
Engineering) using the core assets, both under the supervision of technical and 
organizational management. Core asset development and product development from the 
core assets can occur in either order: new products are built from core assets, or core 
assets are extracted from existing products. Often, products and core assets are built in 
synergy with each other. Figure 2.11 illustrates this triad of essential activities. 

 
Figure 2.11 – Essential product lines activities (taken from [19]) 

Each rotating circle represents one of the essential activities. They are linked 
together and in perpetual motion, showing that all the activities are essential, 
inextricably linked, can occur in any order, and are highly iterative. The rotating arrows 
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indicate not only that core assets are used to develop products, but also that revisions of 
existing core assets or even new core assets might, and most often do, evolve out of 
product development. The diagram in Figure 2.11 is neutral in regard to which part of 
the effort is launched first. In some contexts, already existing products are mined for 
generic assets (perhaps a requirements specification, architecture, or software 
components) which are then migrated into the product line’s core asset base. In other 
cases, the core assets may be developed or procured for later use in the production of 
products. Clements and Northrop [19], provide a very good insight into Software 
Product Lines principles and practices, and these three activities are discussed in great 
detail by the authors. 

2.3.1 Traceability in Software Product Lines 

Berg et al. state that the management of variability plays an important role in successful 
software product line engineering [8]. In fact, the all concept of SPL is based on the 
ability to derive different products from the same core assets. This variation can be 
achieved in many ways depending on goal to be achieved, or the level of abstraction 
being modeled, for instance a feature model can be used to model the product line 
scope, stating which products fall in or out of the product line family. 

Due to the fact that any asset (a requirement, a test scenario, an architectural 
component, etc.) in a SPL can be included in several products, the impact that a change 
in one of these assets produces on the rest is even more complex to assess than in 
Single-System Engineering. This motivates the need for a universal variability 
management approach that is consistent and scalable and that provides traceability 
between variations at different levels of abstraction and across various generic 
development artifacts. The state-of-the-art in these approaches will now be discussed. 

The existing work in traceability for Software Product Lines can be divided in three 
main categories [46]:  

(i) variability on top approaches;  

(ii) artifact level traceability approaches;  

(iii) fine-grained traceability approaches.  

Variability on top approaches use the variability model as the main reference for all 
traceability. The variability model sits on top of the software artifacts. It is used through 
all development stages and all artifacts are linked to some variation point. This case is 
illustrated in Figure 2.12. The traceability links point from artifacts (or parts of an 
artifact) to the variability model. This allows tracing the impact of a single variation 
point to all the artifacts that depend on him, allowing to easily analyze the impact of a 
change in the variability model. The downside is that since all links point strictly to the 
traceability model, that means that there is no traceability information between the other 
artifacts. This makes it hard to assess the impact of changes in, for example, design to 
implementation artifacts. 
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Figure 2.12 – Variability on top approach (taken from [59]) 

Orthogonal Variability Model (OVM) is described by Pohl et al. in the book 
“Software Product Line Engineering: Foundations, Principles and Techniques” [59]. 
They defined the variability of a software product line in a separate model, which is 
then related to other software development models. Traceability links are created 
between a development artifact (a requirement, a use case, a design model, etc.) and a 
variant, or variation point within the OVM. This relationship can be or an arbitrary 
granularity, e.g., variation points can be related to an entire design model, or to a single 
class. The multiplicities of these associations was defined by the authors as follows 
[59]: 

• A development artifact can but does not have to be related to one or several 
variants (multiplicity 0..n). 

• A variant must be related to at least one development artifact and may be related 
to more than one development artifact (multiplicity 1..n). 

• A development artifact can but does not have to be related to one or several 
variation points (multiplicity 0..n). 

• A variation point can but does not have to be related to one or more 
development artifacts (multiplicity 0..n). 

A prototype variability model editor, called VARMOD [58], has been developed. 
In its current state, the tool only supports the visual representation of OVM models, 
without establishing any kind of links to real artifacts. 

Berg et al. presented an approach to represent traceability in SPL, but without a real 
system experience and tool support [8]. They argue that traceability will improve the 
understanding of the system’s variability, as well as better support for its maintenance 
and evolution. The authors focused on traceability of variability in SPL and state that 
establishing 100% of trace links between generic artifacts brings more benefits than 
relating only 80% of all the artifacts. In our opinion this supposition may not be valid, 
as empirical studies indicate that trying to capture all possible trace data without 
considering the actual project characteristics is most likely to fail [51]. In order to 
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capture 100 % of generic trace links one may need to ignore project specific 
characteristics, which may lead to a great number of unstructured and possibly unusable 
trace links. Another important aspect of this approach is the view that the authors have 
of the software engineering process. They understand that Single-System Engineering 
can be divided in two dimensions (the development process and the level of abstraction) 
and all development artifacts can be represented in these two dimensions. Variability 
however, adds a third dimension to explicitly capture the information regarding 
variability between the product line members. Figure 2.13 shows a conceptual model 
for traceability proposed by the authors that establishes the necessary mappings between 
all variation points with the artifacts represented in the two dimensional space 
(abstraction level and development process). The approach also lacks a description of 
how to define and store the trace links that are proposed by the authors. 

 
Figure 2.13 – Conceptual model for traceability (taken from [8]) 

Artifact level traceability approaches define directed and typed links between artifacts,  
on an artifacts level (these being usually files). This process is illustrated in Figure 2.14. 

 
Figure 2.14 – Artifact level traceability approach (taken from [59]) 

Ajila and Kaba manage the evolution of the software product line recurring to 
traceability [2]. They identified three distinct sources of possible changes introduced in 
product lines: (i) changes in an individual product; (ii) changes in the entire product 
line; (iii) importing an architectural component from an individual product into the 
product line. Their work is more focused in defining a reference model to represent 
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horizontal and vertical traceability for evolution purposes. They do not discuss the 
actual means of handling traceability. 

Knauber and Schneider describe an approach that enables traceability between the test 
case of a variant and its respective implementation [47]. The authors propose to 
implement variable features as aspects, and weave them to the core assets (the common 
features) of the product when needed. The test code is also supported by aspects, 
providing an automatic method for adapting it to the respective variant. Their approach 
shows that it is possible to combine the variable code with its test code into a single 
aspect. This provides traceability of a variable feature to its test cases. 

Mergel et al. present an repository for product line assets [52]. The repository supports 
various kinds of information, for retrieval purposes. An asset header includes 
information about the identity of the asset, its qualification, administrative details, the 
work product category (e.g., domain model, source code) and the kind of representation. 
Relationships between the assets can also de defined, enabling traceability relationships 
between them. Relationships can be navigable in both directions, have an m:n 
cardinality, and a relationship type associated. 

Jirapanthong and Zisman propose an approach with automatic generation of trace 
relationships [40]. The authors used FORM [45] that provides a reference model with 
two levels, two domains and specialized documents. XML Schemas for all these 
documents were also defined. At the core of this system lies a set of conditional rules, 
based in the XQuery language, that are responsible for parsing the XML documents and 
generate the relationships that exist between them. The authors use six different groups 
of relationships, and ten different kinds. A prototype tool called XTraQue [41] which 
implements the system described is also provided by the authors. 

Fine-grained traceability approaches allow for the definition of fine-grained, directed 
and typed links between parts of an artifact, e.g., design elements in a diagram or 
function defined in a class. The methodology of these approaches is illustrated in Figure 
2.15. 

 
Figure 2.15 – Fine-grained traceability approach (taken from [59]) 

Zisman et al. present an approach that automatically generates and maintains bi-
directional trace links between requirements specifications of product lines [73]. The 
approach is based in three types of specifications. The commercial requirements 
specification (CRS) is represented in natural language. The functional requirements 
specification (FRS) is represented recurring to use cases. The requirements object model 
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(ROM) is expresses in UML. The approach is capable of generating inter-requirements 
links and links between requirements and object models. 

Luttikhuizen et al. describe a modeling concept for product families [51]. They 
introduce a traceability model that supports forward and backward traceability from 
requirements to refined requirements, architecture and test cases. The traceability model 
is based on the identification of requirements with requirement tags in the existing 
specification documents, and these relationships are modeled in several tables. The 
Traceability Table associates each requirement with one or more higher level 
requirements and vice versa. The Allocation Table associates each requirement with one 
or more lower level components. The Details Table associates each ’container’ 
requirement (e.g., a use case or some general safety concept), with all its detail 
requirements. The use of tables might prove to be the major drawback of this approach. 
Form our experience, tables do not scale well and if the number or requirements is large 
enough, the table might prove to be unmanageable or quite hard to use in practice. This 
may prove to be the biggest disadvantage of the approach. 

Bayer and Widen give a general overview of the traceability needs and integration 
regarding product lines [7]. The authors argue that traceability is a key aspect for the 
successful and sustained development and maintenance of a SPL infrastructure. They 
provide a list of traceability requirements that consist of: 

1. Should be based in the semantics of models used in SPL; 

2. Should be customized to capture only the relevant types of traceability; 

3. Should be capable of handling variability; 

4. It is preferable to have a small set of trace links; 

5. As automated as possible. 

The paper continues by describing how traceability is integrated in PuLSE [6]. 
PuLSE uses a general metamodel of development artifacts as the core of the product 
line architecture. This metamodel includes traceability links, and it is possible to create 
certain types of traces. Their approach consists of first customizing and tailoring this 
generic metamodel to a specific SPL context. On a second phase this customized 
metamodel becomes the basis for creating models and establishing trace links. 

Moon et al. propose a metamodeling approach to trace variability between requirements 
and an architecture in SPL [53]. The approach is based on the principle that variation 
points may appear in all generic artifacts, since they are the realization of variability. 
This presents the need to capture the traceability between the variation points at least for 
requirements and architecture. The authors defined two metamodels for requirements 
and architecture, which extend the Reusable Asset Specification proposal recently 
adopted by OMG. The traceability between these artifacts is achieved by defining trace 
relationships between the two metamodels. The only variation mechanisms provided are 
wither common features or optional. Variability is represented as an attribute associated 
with an artifact (requirements, use cases and components) 
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2.3.2 Discussion 

A survey in traceability approaches for SPL was conducted in the context of the 
AMPLE project [46]. Some of the approaches evaluated were presented in the previous 
section of this dissertation. The approaches chosen to be discussed in this dissertation 
were the ones that seem to provide a more complete traceability solution (with regard to 
the evaluation criterion). The survey also used a common set of characteristics for 
evaluating the performance of each approach. These criteria were: representation of 
traceability information, mapping between models and granularity of relationships, 
scalability, change impact analysis, and tool support. These five criteria are 
summarized in Table 2.2. The representation criterion characterizes how each approach 
represents traceability information. The mapping criterion indicates if an approach is 
capable of generating forward and backward traceability and the level of granularity 
(coarse-grained means that only an entire artifact is traceable, fine-grained traceability 
means that it is possible to trace parts of an artifact). The scalability criterion analyzes if 
it is possible to apply the approach to a large system. The change impact analysis 
criterion evaluates how the approach includes support for detecting the impact of 
changes on the related artifacts. Finally the tool support criterion evaluates whether the 
approach provides any kind of tool support for facilitating traceability. Some criteria 
were not possible to evaluate due to the lack of information in the available 
bibliography. They are marked as “not discussed” in Table 2.2. 

Table 2.2 – SPL traceability approaches summary (adapted from [46]) 

Approach Representation Mapping and 
Granularity Scalability 

Change 
impact 

analysis 
Tool 

support 

Pohl et al. [59] Directed link 
Backward and 

forward, 
arbitrary granularity 

yes yes no 

Berg et al. [8] Directed link Fine-grained not discussed not discussed no 
Ajila and Kaba 
[2] Directed link Coarse-grained not discussed yes ad-hoc tool 

set 

Knauber and 
Schneider [47] Directed link Forward, 

coarse-grained not discussed not discussed Junit and
AspectJ 

Mergel et al. [52] Directed link and 
meta information 

Backward and 
forward  

coarse-grained 
yes not discussed not publicly 

available 

Jirapanthong 
and Zisman [40] Directed link 

Backward and 
forward, 

coarse-grained 
not discussed not discussed prototype 

(XtraQue) 

Zisman et al. 
[73] 

Directed link and 
meta information 

Backward and 
forward, 

fine-grained for 
requirements 

not discussed not discussed prototype 

Luttikhuizen et 
al. [51] 

Directed link and 
meta information 

Backward and 
forward  

Fine-grained for 
requirements 

not discussed yes no 

Bayer and 
Widen [7] Directed link 

Backward and 
forward, 

arbitrary granularity 
not discussed not discussed ad-hoc tool 

set 

Moon et al. [53] Directed link 
Backward and 

forward, 
arbitrary granularity 

yes not discussed not 
discussed 
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Traceability is considered by many researchers and practitioners as a very 
important concern for product line engineering. Some research work has been done on 
this issue, but a major drawback is the availability of appropriate tool support. Without 
tools, traceability tasks are performed manually and fail in achieving their goal. The 
purpose of traceability is to link the different artifacts used throughout the software 
lifecycle and to provide rationale about how they are linked. In traditional Single-
Systems this is achieved by defining trace links between the elements of the two 
dimensions of development: inter traceability (elements at different levels of 
abstraction) and intra traceability (elements at the same level of abstraction). This trace 
information can then be the means by which one can prove that the delivered product is 
according to the agreed requirements, and to also prove the absence of unnecessary 
functionalities. In a product line scenario environment this is taken a step further, by 
adding a third dimension to the traceability process, orthogonal to the previous ones, to 
handle variability and its implications [3]. This new dimension introduces new 
challenges that are not present in traditional (non SPL) development. Another aspect 
relevant to SPL development is that due to the fact that product family members share a 
common set of assets, a change introduced in a core asset might affect a great deal of 
different variants from the family of products. 

In the approaches described previously, some of the authors seem to prefer to 
model variability using a model created for that purpose, and to create traces from 
variability elements to other artifacts [8, 59]. The proposal of Orthogonal Variability 
Model [59] seems to provide a comprehensive and complete approach to address all the 
stages of SPL development, including the definition of trace links between the several 
artifacts used. However, in our opinion, this approach has the drawback of coupling the 
traceability information in the variability models. This imposes the need to use the 
OVM metamodel and establish trace links to it. In our opinion this limits the use of the 
approach as it binds the user to a metamodel, without giving him the freedom to choose 
how to represent the product line variability. It also incorporates traceability concepts 
inside the variability model, which goes against the principle of separations of concerns. 
We believe that traceability should be represented using a separate metamodel to 
facilitate an easier integration with different models (variability models, requirement 
models, architectural models, etc.) making the approach more reusable and easier to 
maintain and evolve. 

Other authors prefer to focus on traceability for certain aspects of SPL, keeping it 
comprehensive but not exhaustive [7, 47, 53, 73]. In our opinion, the first solution 
seems to be more cohesive, because even though providing traceability to a certain 
aspect of SPL development might be useful in some cases, in the end an approach that 
facilitates the tracing of elements across the entire software lifecycle proves to be more 
desirable to the developer, as it allows a unified representation of trace information, 
instead of several different and separated solutions. All the approaches go towards the 
need to create tools that support traceability. However, a gap still exists in this area, 
since the majority of the approaches do not provide any tool support, or only a 
prototype implementation. 

2.4 Traceability Tools 

This section presents a survey on traceability tools. The tools presented here were 
evaluated by AMPLE’s FCT/UNL research group. This survey was an activity relevant 
to the AMPLE project research, but also performed in the context of this thesis 
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preliminary work. The objectives of the survey were to investigate the current features 
provided by existing tools in order to assess their strengths and weaknesses, and identify 
possible fields of improvement. The tools were evaluated with regard to five criteria: 
management of traceability links, traceability queries, traceability views, extensibility 
and support for SPL and MDE development. We believe that these criteria are crucial 
for this kind of tools since they provide the basic support to satisfy traceability 
requirements (creation of trace information and querying it). Other important concerns 
regarding SPL development were also evaluated, since they evaluate the capacity of 
each tool for handling this paradigm of software development. In our opinion, this set of 
criteria can effectively evaluate if a tool responds to the problems described in Chapter 
1. The management of traceability links criterion evaluates how each tool is capable of 
creating trace links (manual or automatic) and what kind of trace information is 
generated. The traceability queries criterion analyzes what type of basic search query is 
provided by each tool and if advanced queries are supported (coverage analysis and 
change impact analysis). The traceability view criterion characterizes the supported 
views for the traceability information stored by each tool. The extensibility criterion 
evaluates if a tool as any extension mechanisms. Finally, the support for SPL and MDE 
development criterion indicates if a tool as any mechanism that supports these software 
paradigms. 

RequisitePro [37] is a powerful, easy-to-use requirements management tool that helps 
teams manage project requirements comprehensively, promotes communication and 
collaboration among team members, and reduces project risk. A RequisitePro project 
includes a database and optionally includes documents. The database is used to store the 
document types, requirement types and descriptors (attributes), discussions, information 
about requirement traceability and user/group security. The project and document 
templates used include the following structural information: 

• Document types, such as glossary document, vision statement, and use cases 
(which outline how the system behaves); 

• Requirement types, which are categories of requirements such as features, use 
cases, supplementary specifications, and so on; 

• Requirement attributes, which describe the requirements in terms of priority, 
status, stability, and other characteristics that are user defined. 

The tool supports manual creation of trace links and import from some file formats 
(Word and CVS). It creates forward and backward traceability and it is possible to 
create associations with parts of an artifact. It is possible to query requirements and 
trace links, and filter the desired information. The types of views supported for 
traceability are a Traceability Matrix View and a Traceability Tree View. It has no 
built-in mechanism for SPL or MDE. 

Borland CaliberRM [13] is an enterprise software requirements management tool that 
facilitates collaboration, impact analysis and communication, enabling software teams 
to deliver on key project milestones with greater accuracy and predictability. CaliberRM 
also helps small, large and distributed organizations ensure that applications meet the 
needs of end-users, by allowing analysts, developers, testers and other project 
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stakeholders to capture and communicate the users’ voice throughout the application 
lifecycle. 

This tool classifies requirements as objects defined in a hierarchy and offers 
requirements validation and error detection during requirements specification. All the 
artifacts are stored in a central repository, which facilitates the collaboration, 
cooperation and communication between all members involved in the project. The trace 
links are transitive and need to be created manually by developers. It supports backward 
and forward traceability and allows the creation of links between a requirement and any 
other artifact (source code, test cases, use cases, design). Trace links can be queried by 
means of using filters which will only return the requested information. Impact change 
analysis and detection of suspect links (due to a change in requirements) is also 
provided. The views regarding traceability are a Traceability Matrix, Traceability Graph 
and several types of reports. It has no built-in mechanism for SPL or MDE support. 

RaQuest [65] is a requirements management tool designed to integrate with Enterprise 
Architect a UML modeling tool developed by SparxSystems. RaQuest enables you to 
create lists of requirements, print them out, and export them as HTML or Word 
documents. Moreover, it is possible to display relationships or matrixes useful for 
analysis of change impact or coverage between requirements. The tool also allows the 
developers to relate requirements to Enterprise Architect items. Even though it was not 
originally designed to work with UML, it now includes functionalities that allow the 
transformation of requirements into UML diagrams smoothly. The creation of trace 
links is manual, but requirements can be imported from CVS, Excel or Word 
documents. It is possible to associate requirements with EA artifacts. The trace links 
provide forward and backward traceability. RaQuest supports change impact analysis 
and detect some types of inconsistencies between them. The views available for 
traceability are a Graph of dependencies, and traceability matrix. RaQuest does not 
support SPL development, but it allows the transformation of requirements into UML 
(as EA artifacts). 

Telelogic DOORS [69] is one of the most important requirements management 
application. It provides many features to capture, track and manage user requirements. It 
also addresses the tracking and management of requirements throughout the project life 
cycle using a variety of features, such as views, links and traceability analyzes. The 
trace links can be created manually but the information can also be imported from many 
formats (Word, Excel, ASCII, Interleaf, and RTF). DOORS provides traceability of 
requirements throughout the project lifecycle, allowing forward and backward 
traceability and associations with parts of an artifact. Any data stored in the project’s 
database can be queried, and the information returned can be filtered using a great 
number of options. It also provides change impact analysis and requirements coverage 
analysis. DOORS document hierarchies may be viewed graphically and traceability may 
be viewed as “tree” structures in the Traceability Explorer. No support for SPL or MDE 
is offered. 

Contour [39] is a web based collaborative requirements management solution. Contour 
projects contain groups of artifacts such as requirements, use cases, test cases and many 
other types. Each project may have multiple groups and can be configured to meet each 
project’s needs. Each group can contain as many artifacts of that type as necessary (e.g., 
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the requirements group can contain many artifacts of type requirement). In addition user 
roles can be given access to projects. Contour provides a flexible way to setup data, 
organizing the several artifacts using the following objects: 

• Containers - Solutions, products, projects, modules, etc. A high level collection. 

• Groups - A collection of similar artifacts such as a group of requirements, 
documents, use cases, test cases, etc. 

• Folders - A way of grouping artifacts. 

• Artifact - A single item with a unique set of fields and behaviors. Examples of 
artifacts are requirements, use cases, test cases, etc. 

Contour enables the creation of trace relationships between any combination of 
project artifacts and even to artifacts residing in other projects. The creation of 
relationship links is manual, but it is possible to be import artifacts from CVS or Word 
2003 XML files. The tool provides forward and backward traceability, change impact 
analysis, suspect links detection, and general purpose queries to browse the information 
stored a project. Two traceability views are available to the user, a Traceability Matrix 
and a Trace Relationships Report. Contour does no support SPL or MDE. 

GatherSpace [30] is a web based requirements management and use case tool for 
managing and sharing software requirements. It enables developers to focus on the 
requirements without concern for upgrades, infrastructure, and maintenance. It allows 
for the creation of multiple projects and the assignment of multiple users to the projects. 
Features, Requirements, Use cases and actors can all be modeled inside the tool. 
GatherSpace considers the software development cycle as a pyramid with three levels 
(shown in Figure 2.16).  

 
Figure 2.16 – The GatherSpace software requirements pyramid (taken from [30]) 

At the top level, reside the packages. Packages are the logical grouping of features. At 
the level below reside the Features. Features are the beginning point of constructing the 
project specifications. A feature is a simple description of something that the system 
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will do to solve the problem at hand. The requirements exist to support or supplement 
features. A requirement is a description of how a feature is carried out. Requirements 
can be associated with the features that they describe. Finally a use cases is created to 
specify the interaction of an actor with the system to achieve a goal. Use cases are 
associated with requirements and in turn with its feature. All the artifacts and links are 
created manually in GatherSpace. No type of query can be submitted and only coverage 
analysis is provided to the user. The only view available is a Traceability Report. This 
tool has no built-in mechanism for SPL or MDE support. 

The Trace Analyzer [23] is a tool for generating and validating the traceability links 
among software models, source code, and test scenarios. Models may include any 
product relevant model elements such as requirements, architecture, (UML) design, and 
test scenarios. This tool works based on the commonality principle [25]: 

“Commonality: if A is known to trace to some source code CA and B is known to trace 
to some source code CB then a trace dependency exists if CA and CB overlap.” 

Given a set of input models, source code and hypothesized trace links, the Trace 
Analyzer’s primary task is to reason about the ownership of the source code by the 
different model elements. Its secondary task is to infer trace dependencies among the 
model elements based on the ownership information. Trace links are created 
automatically from the set of input data. No trace query of any kind is available, but the 
identification of some inconsistencies is possible. The tool provides several views, 
being the most important the Footprint Graph, the Model to Model view and a textual 
report. Trace Analyzer does not support SPL or MDE. 

2.4.1 Discussion 

To provide a complete and effective traceability solution, tool support is essential, since 
it allows system developers to use it in real software development contexts. Without 
tools, any approach is doomed to failure, because in manual traceability schemes it is 
not easy to maintain the trace information updated and it is very hard to reason and 
evaluate change impact analysis, coverage analysis, etc. A summary of the survey 
results is presented in Table 2.3. Some criteria were not possible to evaluate due to the 
lack of information in the available manuals. They are marked as “n.d.” (not discussed). 

The traceability tools survey that was presented in the previous section shows that 
none of them as support for SPL and only one implemented some MDE techniques [65]. 
Even though some of these tools provide very complete solutions to traceability for 
Single-System development, the lack of support for addressing variability and 
establishing trace links between software artifacts and variation points in a product line 
is the biggest downside to their use in SPL. Another problem is that it is not possible to 
adapt them, due to their closed source and copyright infringements. Even though some 
tools provide some extension mechanisms, like the possibility to define new templates 
for reports, in the bottom line, these extensions prove to be very basic and cannot be 
used to extend their capabilities to enable traceability for product lines.  
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Table 2.3 – Traceability tools summary 

Tool Creation of 
Trace Links Mapping Type of 

Query 
Change 
Impact 

Analysis 
Covering 
Analysis Views Extensible 

Support 
for SPL 

and 
MDE 

RequisitePro 
[37] manual 

part of 
artifacts, 

forward and 
backward 

filters yes no matrix, 
tree no no 

Borland 
CaliberRM 
[13] 

manual 

requirements 
to artifacts, 
forward and 
backward 

filters yes no matrix, 
graph yes no 

RaQuest [65] 

manual, 
imports 

requirements 
from file 

requirements 
to artifacts, 
forward and 
backward 

n.d. yes no matrix, 
graph no 

partial 
support 
for MDE 

Telelogic 
DOORS [69] 

manual, 
imports 

requirements 
from file 

requirements 
to parts of 
artifacts, 

forward and 
backward 

custom 
queries, 

filters 
yes yes tree yes no 

Contour [39] 

manual, 
imports 

artifacts from 
file 

artifact to 
artifact, 

forward and 
backward 

filters yes no matrix, 
report yes no 

GatherSpace 
[30] manual 

requirement 
to other 
artifacts, 
forward 

n.d. no yes report no no 

Trace 
Analyzer [23] automatic 

models to 
source code, 

models to 
models, 
forward 

n.d. no yes 
matrix, 
graph, 
report 

no no 

2.5 Summary 

In this chapter a state-of-the-art in traceability research and tools was presented. 
The chapter began by giving a general view of the concepts regarding traceability, and 
the advantages that trace methods bring to software development. Traceability can yield 
significant improvements to software developers, by providing information that aids in 
the detection of problems existing in a system (e.g., orphan code). The remaining 
sections introduced the topics of Model-Driven Engineering and Software Product 
Lines and analyzed some approaches that have been proposed in these domains. We 
have discussed the strengths and weaknesses of these approaches. The major problem 
found with the majority of these approaches is the lack of appropriate tool support, a 
critical component in any traceability solution. Another important topic discussed was a 
traceability tools survey which presented our findings regarding the current available 
tools. The greatest shortcoming that we found was the tools ability to handle SPL 
development. We found it to be nonexistent in the majority of the tools analyzed.  

The next chapter will present our proposal for a Model-Driven Traceability 
Framework that was developed as the result of this master dissertation work. 
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Chapter 3. A Model-Driven 
Traceability Framework 

In this chapter we present our proposal for a traceability framework that provides a 
solution for defining trace links in the context of product lines development. The 
traceability framework that we are proposing is meant to provide an open and flexible 
platform to define trace links between the different artifacts used during SPL 
development. The general structure of the framework was already discussed in Chapter 
1. In the following sections we will describe the framework structure and 
implementation in more detail. The base of our framework is a traceability metamodel 
that will be presented to the reader. The reminder of the framework is built on top of 
this metamodel. We describe the architectural structure of the framework and how its 
several components are connected, along with the hotspots provided for instantiation to 
different development scenarios. The implementation that was achieved and the 
decisions that were made are also discussed. The final sections of the chapter present an 
instantiation example of the framework for a scenario of defining trace links between 
features (variability model) and use cases (requirements model). 

3.1 Framework Description 

Our proposal aims at providing an open and flexible platform to design and implement 
tools and methods that allow developers to define and store trace links between the 
different artifacts used during SPL development [64]. In this section, we will present 
and discuss the main topics regarding our SPL traceability framework. We begin by 
describing the traceability metamodel adopted by our framework (Section 3.1.1) 
followed by the framework’s architecture, as well as the class diagram for the main 
modules (Section 3.1.2). Since SPL development was the focus of this work, another 
important point is the use the of the variability model as the main reference for tracing 
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the SPL artifacts. However, the design of the framework is generic enough, so that it 
may be applied to other software development scenarios. 

The following main functionalities are provided by our traceability framework: 

1. Creation and maintenance of trace links between a variability model and other 
software artifacts (UML models, architecture models, source code); 

2. Persistent storage of trace links; 

3. Searching for specific trace links using pre-defined or customizable trace 
queries; 

4. Flexible visualization of trace query results using different types of trace views. 

3.1.1 Traceability Metamodel 

The traceability metamodel is the basis of the framework that we propose and is 
depicted in Figure 3.1. It is centered on the assumption that all trace information can be 
represented by a directed graph [64]. 

TraceLinkTraceableArtifact

- resourceId:  URI [0..1]

TraceableArtifactType
TraceLinkType

TraceContext

Scope

ScopeArea

+targets1..*

+outgoingLinks 0..*

+sources
1..*

+context +context

0..1 0..1

0..*

+incomingLinks
+type

+subTypes
+type 1
1 +scope

0..* 1

+baseTypes

0..*

+baseTypes

0..*

+subTypes

0..*+scopeAreas0..*

+validTargetTypes

1..*

+validSourceTypes1..*

 
Figure 3.1 – Traceability metamodel 

The main elements of the metamodel are the following: 

• A TraceableArtifact represents a (physical) artifact that plays a role in the 
development cycle. The granularity of such artifact is arbitrary. It may represent 
a requirement, a UML diagram, an element inside a diagram, a class or a method 
inside a class. An artifact is unambiguously identified by a locator (resourceId), 
which describes where this artifact is located (such as in a file or a directory) and 
how it may be accessed. 
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• TraceLink is the abstraction for the transition from one artifact to another. An 
instance corresponds to a hyperedge3 linking two artifacts in the trace graph. A 
transition is always directed; therefore a from-to-relation between artifacts is 
created by a trace link (between source and target artifacts). 

• During the process of tracing information about the design of a software system, 
different artifacts of different types must be taken into account. For this reason 
each TraceableArtifact has an instance of TraceableArtifactType assigned. This 
type separates artifacts from each other. Artifact types may be grouped in a 
hierarchical manner, which mimics the concept of multiple inheritance, known 
from object orientation. 

• Analogous to the type of an artifact, each link has a type because the relationship 
between two artifacts may differ. Examples for such types would be contains, 
depends of or is generated from. For this reason each instance of TraceLink is 
assigned to an instance of TraceLinkType. 

• The existence of an artifact or the relationship from one artifact to another may 
be justified in some way. Not all artifacts and transitions would require such a 
justification, for example a “contains” transition is rather self explanatory. The 
attachment of additional information to artifacts and links can be modelled by 
attaching a TraceContext to relations and/or artifacts. 

• Links of a certain type may only be valid between artifacts of a certain type. A 
link of type “contains” may be valid between a Method and a Class, but not 
between two Architectural Models. The narrowing of validity area of link types 
is modelled via the introduction of the elements ScopeArea and Scope. 

3.1.2 Traceability Framework Structure 

An architectural overview of the framework is show in Figure 3.2 as a UML component 
diagram, where the four main modules and their relationships are depicted. The 
framework has three hotspots that are meant to be instantiated to provide trace 
mechanisms for each desired scenario or stage of development. These extension 
mechanisms will be described in more detail in Sections 3.2 and 3.3. The ATF module 
is based on the traceability metamodel described in the previous section. It is 
responsible for providing a persistence mechanism for storage of trace information 
(trace artifacts, trace links, rationale, etc.), and for providing basic query and retrieval 
mechanism for accessing the stored information. This component was developed by 
SAP (one of the industrial partners in project AMPLE). The remaining framework 
modules were built on top of this persistence structure. 

Inside the “Framework Core” package reside three hotspots of the framework: 
TraceRegister, TraceQuery and TraceView. The TraceRegister instances are used for 
performing CRUD (create, read, update and delete) operations on the artifacts and links 
stored in ATF. This can be done using fully automatic techniques, by providing a GUI 
for manual definition and maintenance of the trace information, or a combination of 
both. TraceQuery instances provide means to perform specific queries on a set of trace 
links. It uses the basic query capabilities (trace links and trace artifact retrieval) of ATF 
                                                 
3 A hyperedge is a set of vertices of a hypergraph [55]. 
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to execute more complex and powerful queries, like feature interaction detection and 
change impact analysis. Finally, TraceView instances are responsible for supplying 
some sort of view (graphical, textual, etc.) for the results returned by a trace query 
execution. On top of this package lies the “Framework Manager” package. This package 
contains all the classes that are necessary for loading the instances that are provided for 
each hotspot. It is composed of a PluginsHandler which browses all the available 
instances and filters the ones of interest. Finally the RegisterLoader and 
QueryViewLoader simply load the chosen instance and execute the desired methods. 

«execution environment»
Eclipse IDE

Traceability Framework Plug-in

Framework Core

TraceQuery

ATF Plug-in

TraceViewTraceRegister

Framework Manager

RegisterLoader QueryViewLoaderPluginsHandler

Repository Manager

 
Figure 3.2 – Traceability Framework architecture overview 

The workflow for defining new trace links using a register is shown in Figure 3.3. 
The user first begins by populating the ATF repository with artifacts extracted from the 
source models (e.g., feature model, use case model, source code). Once that step is 
concluded, the selected Trace Register instance is executed which will be responsible 
for creating the trace links between the artifacts residing in ATF. As mentioned 
previously, this step can be automatic, manual or a combination of both. 

Figure 3.4 depicts the workflow for executing trace queries. The user begins by 
selecting a Trace Query instance to execute. The next step is choosing the query 
parameters if any exist (e.g., selecting which type of artifacts to be queried). The chosen 
Trace Query will then retrieve the relevant links and artifacts from ATF and pass then to 
the chosen Trace View for visualization. 
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Figure 3.3 – Trace link definition workflow 
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Figure 3.4 – Trace query and trace view workflow 
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3.2 Implementation 

Part of this dissertation work was to implement a prototype version of the traceability 
framework. The technological platform chosen was Eclipse IDE, which was a 
requirement for the AMPLE project, where this work is included. As mentioned 
previously, the ATF module was implemented by one of the AMPLE partners. The 
traceability metamodel described in the previous section has been implemented using 
EMF [15]. On top of EMF, several reusable components were also used, such as, EMF 
Query4 for information retrieval and Teneo5 which was used as the abstraction layer 
between the EMF and the actual database layer that is used to provide persistence for 
the EMF model instances. ATF provides the following extension point: 

• net.ample.tracing.core.traceExtractor – This extension point is used to plug in 
additional extractors to retrieve data into ATF. 

The remaining modules were part of the work developed during this thesis. To achieve 
this goal, an Eclipse plug-in with the required extension points was implemented [12]. 
This mechanism allows framework developers to implement new instances of each 
hotspot by implementing an extension of a specific extension point, thus adapting the 
framework to the desired scenario. Figure 3.5 shows a UML component diagram with 
the extension points provided by the framework (represented using component ports) 
and the base implementation for each extension point (represented by an abstract class). 
The extension points defined were: 

• net.ample.tracing.framework.core.traceRegister – This extension point is used to 
plug in additional trace registers for establishing trace links between SPL 
artifacts. Implemented in AbstractTraceRegister. 

• net.ample.tracing.framework.core.traceQuery – This extension point is used to 
plug in additional trace queries for performing new types of queries 
implemented in AbstractTraceQuery. 

• net.ample.tracing.framework.core.traceView – This extension point is used to 
plug in additional trace views. Implemented in AbstractTraceView. 

The schema for each extension point can be found in Annex 1 - , 2, 3 and 4. Each 
extension point has an abstract class that is used to provide a base implementation of all 
the methods that are common to all instances. The developer of an extension is only 
required to implement the code that is specific of a particular instance (e.g., the method 
that performs the necessary operations for implementing the feature interaction query). 

Another important point is the ability to add trace extractors to ATF to populate the 
repository with trace artifacts and/or links. The extension point 
net.ample.tracing.core.traceExtractor (shown as a component port in Figure 3.5) can be 
used to this end. By implementing an extractor that parses a source model (e.g., use case 
model modeled in Rational Rose, or Enterprise Architect) we can populate the 
repository with the artifacts extracted from the input model and on a later step just use a 
TraceRegister instance to define the trace links between the imported elements. Another 
option is to extract the trace artifacts and trace links in a single step. Whatever is the 

                                                 
4 http://www.eclipse.org/modeling/emf/?project=query 
5 http://www.eclipse.org/modeling/emf/?project=teneo#teneo 
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path chosen, a trace register can be used to perform maintenance of trace artifacts and 
links. 

Figure 3.5 also shows how the Framework Manager is used to load the framework 
instances. Each hotspot provides an abstract class and an interface. The PluginsHandler 
class searches the entire scope of Eclipse Plug-ins to find the ones that implement 
extensions to the desired extensions points (net.ample.tracing.framework.core.traceRegister, 
net.ample.tracing.framework.core.traceQuery and net.ample.tracing.framework.core.traceView), 
and passes that information to the RegisterLoader or the QueryViewLoader which use 
the provided interfaces to load the chosen hotspot instance. 

«execution environment»
Eclipse IDE

Traceability Framework Plug-in

net.ample.tracing.
framework.
core.traceRegister

net.ample.tracing.
framework.
core.traceQuery net.ample.tracing.

framework.
core.traceView

Framework Core

AbstractTraceQuery

+ submitQuery()

ITraceQuery

ATF Plug-in

net.ample.tracing.core.traceExtractor

AbstractTraceView

+ showResults()

ITraceView

AbstractTraceRegister

+ executeRegister()

ITraceRegister

... ... ...

FrameworkManager

RegisterLoader

+ run()

QueryViewLoader

+ run()

PluginsHandler

+ findExtensionPointsPlugins()
+ loadPluginFromExtensionPoint()

...
... ...

Repository
Manager

 
Figure 3.5 – Traceability Framework components diagram 
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Figure 3.6 illustrates the context menu provided by the framework, showing all the 
trace queries and trace views that are available. The new queries and views are 
automatically added to this list and the user is simply required to choose which instance 
is to be executed. 

 
Figure 3.6 – Trace query and trace view selection window 

3.3 Framework Instantiation 

This section presents an instantiation of our framework that addresses the tracing 
between feature and use case models. Our aim is to illustrate how the framework can be 
used and extended to address concrete scenarios of traceability in SPL development. All 
the framework extension points, presented in Section 3.1.2, are illustrated in this 
instantiation. A detailed description of how the Eclipse extension points mechanism 
works and its usage will not be explained in detail in this dissertation, as it falls out of 
the scope of this work. Some books have been written addressing this subject, and many 
tutorials and articles are also available on the internet. The Traceability Framework 
User Guide can also be found in Annex 5 - , and it gives a detailed explanation of the 
framework usage and how to implement each hotspot instance as a new Eclipse plug-in. 
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The features used to specify the commonalities/variabilities were created using the 
Feature Modeling Plug-in (FMP) [4] that allows the creation of feature models and 
feature model configurations. The requirements were modeled using a use case model 
designed in Rational Rose [36]. The idea is to implement extensions as described in the 
previous section (using the ATF net.ample.tracing.core.traceExtractor extension point) to 
parse the input models. Once that step is concluded, the TraceRegister is executed to 
manually define trace links between the artifacts. 

3.3.1 Extractor Instantiation 

To provide an instance for parsing use case models created using Rational Rose, one 
must simply create an extension to the net.ample.tracing.core.traceExtractor and 
implement the respective Java class that will parse the input file and store the extracted 
information into the repository. ATF provides an abstract implementation of an 
extractor (AbstractTraceExtractor). The only method missing is the run() that will be 
invoked when this extractor is selected. Figure 3.7 depicts this instantiation. 

«execution environment»
Eclipse IDE

ATF Plug-in

net.ample.tracing.core.traceExtractor

Rational Rose Extractor Plug-in

RoseExtractor

+ run(RepositoryManager, IProgressMonitor) : void

AbstractTraceExtractor

+ run(RepositoryManager, IProgressMonitor) : void

TraceExtractor

«extension of»

 
Figure 3.7 – Rational Rose extractor instance 

The implemented Rational Rose extractor is shown in Figure 3.8. The new 
extractor can be added to the list of available extractors, and by choosing the run 
method it automatically performs the extraction of artifacts and stores them in the ATF 
repository. Extractors for parsing use case models from Enterprise Architect files, and 
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feature models from FMP files were also implemented. The instantiation mechanism 
follows the same principle described in this section. 

 
Figure 3.8 – Rational Rose extractor runtime 

3.3.2 Register Instantiation 

For our TraceRegister instance we have chosen to implement a register that allows 
manual definition of trace links between variability and requirements. Our register 
instance can be used to define new trace links, or perform maintenance operations on 
existing ones. As shown in Figure 3.5, the extension point used is 
net.ample.tracing.framework.core.traceRegister. Figure 3.9 depicts this instantiation. 

«execution environment»
Eclipse IDE

Traceability Framework Plug-in

net.ample.tracing.framework.
core.traceRegister

Framework Core

AbstractTraceRegister

+ executeRegister()

ITraceRegister

...

Feature to USe Case Trace Register Plug-in

FeatureToUCTraceRegister

+ executeRegister()

«extension of»

 
Figure 3.9 – Feature to Use Case trace register instance 
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The Traceability Framework provides an abstract implementation of a register 

(AbstractTraceRegister), which implements the common methods to all register 
instances. The only method missing is the executeRegister() that will be invoked 
when an extractor instance is selected. The instance that was implemented provides the 
GUI shown in Figure 3.10. This instance displays a tree of features and use case 
elements (e.g., use cases, use case steps, actors and packages) that were previously 
stored in the repository. The user can then use the checkboxes to create or remove trace 
links between the different elements. Once the “Save” button is pressed, the changes 
performed are committed to the ATF repository. 

 
Figure 3.10 – Feature to Use Case trace register GUI 
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3.3.3 Query Instantiation 

The first TraceQuery instance that was implemented is used to query which artifacts are 
associated with a given feature. There are plans to implement other types of queries, 
which will be discussed in Chapter 4. The instantiation of the trace query for related 
artifacts is shown in Figure 3.11. The extension point used is the 
net.ample.tracing.framework.core.traceQuery. 

«execution environment»
Eclipse IDE

Traceability Framework Plug-in

net.ample.tracing.framework.
core.traceQuery

Framework Core

AbstractTraceQuery

+ submitQuery()

ITraceQuery

...

Related Artifacts Query Plug-in

RelatedArtifactsQuery

+ submitQuery()

«extension of»

 
Figure 3.11 – Related artifacts query instance 

The AbstractTraceRegister provides a base implementation for the Trace Query 
extension point. Instances of this hotspot can be implemented by extending this abstract 
class and by providing an implementation of the method submitQuery() which will 
perform the query on the ATF repository and return the set of trace links that are 
desired. The instance that is implemented, provides the user with an interface for 
selecting the features (among the features stored in the repository) that he whishes to 
query. Figure 3.12 shows the RelatedArtifactsQuery interface. After the user selects 
desired features and presses the submit button, the results will be displayed on the 
chosen view. 
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Figure 3.12 – Related artifacts query GUI 

3.3.4 View Instantiation 

The TraceView instances that were implemented display a tree view of the queried 
artifacts.  Other types of views may be implemented in the future, as the need arises. To 
implement new trace views, it is necessary to extend the hotspot defined in the 
framework. This hotspot uses the net.ample.tracing.framework.core.traceView extension 
point. Figure 3.13 depicts the implementation of two trace views, both extending the 
same extension point and inheriting from the abstract implementation provided 
(AbstractTraceView). 

The two views that are currently implemented display the results of a query using a 
tree. When applying this view to the RelatedArtifactsQuery described in the previous 
section, the result shown is a tree with the features in the first level, and in the second 
level it displays the use case elements that are linked to a feature. The DetailedTreeView 
shows the results in a more detailed manner, with the features, the use cases and the 
respective steps of each use case. The TreeOverview implementation shows a view with 
less detail, showing only the features and the use cases, actor and packages. These 
instances are shown in Figure 3.14 and Figure 3.15, respectively. 
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«execution environment»
Eclipse IDE

Traceability Framework Plug-in

net.ample.tracing.framework.
core.traceView

Framework Core

AbstractTraceView

+ showResults()

ITraceView

...

Tree Views Plug-in

DetailedTreeView

+ showResults()

TreeOv erv iew

+ showResults()

«extension of» «extension of»

 
Figure 3.13 – Overview and detailed trace view instances 

 
Figure 3.14 – Detailed tree view interface 
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Figure 3.15 – Tree overview interface 

3.4 Framework Evolution 

The current implementation of our traceability framework allows users to create new 
framework instances to suit their specific needs. This mechanism makes our framework 
highly reusable. However, the instantiation mechanism may sometimes be non-trivial, 
requiring some expertise that fall outside the scope of the actual framework 
instantiation. (e.g., an instance that provides a window to the user must use the SWT6 or 
Swing7 for handling the graphical components). These mechanisms fall outside of the 
framework core, because some instances may not require a graphical interface (e.g., a 
register that creates trace links without manual intervention). 

These limitations lead to a “white box” development scenario of framework 
instances. The developer must not only be aware of the framework instantiation, but 
also of Eclipse components and controls. Based on the knowledge acquired during the 
development of the first version, and to facilitate the process of creating new framework 
instances, we wish to provide generic hotspot instances for rapid and simple framework 
instantiation. The goal is to provide enough generic instances, so that new instances can 
be developed in a “black box” manner, where framework developers need only to take a 
generic instance, tailor it to their specific needs (e.g., choosing what type of icons to 
use) and abstract from the underlying architecture. 

This approach is depicted in Figure 3.16. The framework core is represented by the 
three hotspots TraceRegister, TraceQuery and TraceView. On top of this sits the “White 
Box” layer, where developers are concerned with implementing a generic instance for 
one of the hotspots. For instance, the GenericTreeRegister could be implemented to 
provide a generic checkbox tree for definition of trace links. This generic instance 
would implement all the widgets and necessary visual controls, while remaining generic 
enough to be used for a features to use case model scenario or a features to class 

                                                 
6 http://www.eclipse.org/swt/ 
7 http://java.sun.com/javase/6/docs/technotes/guides/swing/ 
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diagram scenario. Finally on top is the “Black Box” layer. Developers only need to 
choose a generic instance from the “White Box” layer and perform some minor 
customization (choosing the type of artifacts to trace, or the icons to be displayed, etc.), 
to provide a framework instantiation to a specific scenario with minimal effort. The 
FeaturesUCTreeRegister is an example of this, where the type of artifacts has been 
chosen to be features and use case models. The end result could be something like the 
window shown in Figure 3.10. 

«execution environment»
Eclipse IDE

Traceability Framework Plug-inFramework Core

TraceQuery

ATF Plug-in

TraceViewTraceRegister

"White Box" Layer

GenericTreeRegister

GenericMatrixRegister

GenericQueryWindow

GenericTreeView

GenericMatrixView

"Black Box" Layer

FeaturesUCTreeRegister ChangeImpactAnalysis ChangeImpactMatrixView

Repository Manager

 
Figure 3.16 – "Black Box" framework instantiation scenario 

3.5 Summary 

This chapter introduced our proposal for a Model-Driven Traceability Framework. This 
framework addresses traceability in the context of SPL development. The solution that 
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we presented addresses the major shortcomings found in the approaches and tools 
discussed in Chapter 2: the lack of proper tool support and the need for an extensible 
solution that could be tailored for many scenarios. Our solution decouples the trace 
information from the remaining models used in software development. This keeps the 
models clean, goes towards the separation of concerns principle and makes the 
framework easier to evolve and maintain. Any kind of variability model, requirement 
model, architectural model, and other software elements can be used in our approach. 
Since the desired elements are stored in our repository as traceable artifacts we can 
create trace links between any two elements that we desire. The ability to define trace 
link types and traceable artifact types also gives a good mechanism for restricting the 
kind of trace information that one whishes to collect and facilitates a good filtering 
strategy for trace queries. The variation mechanisms built in our traceability framework 
provide a powerful mechanism for extensibility and evolution of our proposal. Basic 
users can benefit from the default implementation to establish trace links in the context 
of SPL. More advanced users can implement extensions to provide new types of trace 
registers, queries and views to suit their needs. Even though the initial goal was to 
design and specify a framework for product lines traceability, the achieved solution is 
generic enough to be usable in product lines, or instantiated to other software 
development scenarios (e.g., Single-Systems). 

Some problems and difficulties were encountered during the design of our 
framework. One of the major problems found was during the implementation stages. 
The lack of good documentation regarding Eclipse plug-ins development was the source 
of many problems. Even though some tutorials and documentation exist in these topics, 
they are usually treated in a very simplistic manner and leave out several important 
aspects that proved to be necessary to achieve the current status of our traceability 
framework. Another problem was in defining the workflow for executing trace queries 
and viewing the results in a trace view. As mentioned previously, this thesis work was 
developed in the context of the AMPLE project, and several partners were involved in 
the framework specification by providing feedback for our proposal. One of the points 
of discussion is the current workflow for trace queries and views that was described in 
the previous sections. The current proposal is quite static, allowing the user to execute 
the chosen query, and viewing the results in the desired view. This workflow is under 
revision, as it seems to be more interesting to provide a more dynamic solution, 
allowing the user to execute a query, view the results, and submit a new query from the 
viewed results. This process seems to be more appealing, but introduces new challenges 
in the round-trip that will exist between a trace query and a trace view. 

Another problem that is present in our approach is related with the need to keep the 
artifacts updated. As the software system evolves, the models that represent it may also 
evolve and suffer changes. These changes may have repercussions in the traceable 
artifacts and trace links that are stored in the ATF repository. It is therefore necessary to 
develop some strategy to handle the problems caused by changes. We have not 
developed such a strategy yet, but we plan to do so as future work. The major problem 
with the update mechanism is related with the fact that we use a separate metamodel to 
represent variability. In our approach the artifacts are imported into the trace repository 
and trace links are defined between the imported artifacts. This poses some challenges 
for the automatic detection of changes in the original models. It may be necessary to 
provide some manual mechanism to the user, so that an update event is launched. 

In this chapter we have also discussed the instantiation mechanisms for each 
hotspot of our traceability framework. We demonstrated how to implement an instance 
(in the form of an Eclipse plug-in). The current version of our proposal already 
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facilitates these variation mechanisms. However, we do recognize that hotspot 
instantiation can be a complex task that comes with a great overhead attached, due to 
the need of implementing all the necessary controls and widgets using the graphical 
libraries available for the Eclipse platform. To address this issue, we plan to evolve the 
framework to a “black box” development scenario. In this scenario, a collection of 
generic instances are provided to the developers of new framework instances, so that 
they can abstract from the underlying Eclipse platform implementation and concentrate 
solely on the traceability scenario that is being implemented. We believe that it will 
provide a much easier way for implementing framework instances. 

In the following chapter we will describe some techniques to address problems that 
may occur during the SPL development, and how traceability can aid developers by 
providing valuable information. 
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Chapter 4. Addressing Software 
Product Lines Development with 
Traceability 

This chapter will discuss how we plan to use some techniques and heuristics to support 
SPL development. By performing specific analysis on existing trace artifacts and trace 
links we wish to detect problems that may arise during the SPL lifecycle. We will 
present the problem of change impact analysis and covering analysis. Even though these 
problems are also present in Single-System development, we discuss the particular 
differences that are present in SPL domain and our proposal for addressing these issues. 
The third problem that is discussed is the detection of feature interactions, which is 
more applicable to a product line environment (although not exclusively). We describe 
the problem of feature interaction detection and propose a solution for it by processing 
the trace links that exist between the different SPL artifacts. All this approaches are 
planed to be implemented as instances of the traceability framework described in the 
previous chapter. 

4.1 Covering Analysis 

Covering analysis in traditional Single-System development is usually established by 
creating trace links between requirements and the software artifacts that describe or 
implement them. The covering analysis process then consists of querying the available 
trace information to discover requirements that have not been satisfied, or artifacts that 
are not linked to a requirement (i.e., superfluous artifacts). 

In SPL the requirements of a single product are not derived individually, but are 
generated from the requirements of the entire product line, by choosing which 
variabilities to incorporate in a product variant. In our opinion, this makes the variability 
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model the center of all SPL traceability. This is the reason for the choice of establishing 
trace links from features to all other software artifacts used in a SPL. This also 
introduces a small change in the covering analysis problem. Since the trace links 
between requirements and other artifacts no longer exist, one can no longer use that 
information to reason about requirements not being satisfied or unused artifacts. In our 
approach this analysis must be performed by querying the available trace links between 
features and other artifacts to detect possible features that are not satisfied (i.e., do not 
have a requirements specification, an implementation, etc.) or artifacts that are 
superfluous (i.e., artifacts that are not linked to any feature). 

Figure 4.1 represents this idea for covering analysis. It shows the variability model 
(feature model), a requirements model (use case model), some implementation artifacts 
(files, Java classes, etc.) and some trace links between features and the remaining 
artifacts. The trace links begin in a feature and end in some artifact. By simply 
searching for features with no outgoing trace links we can find unsatisfied features 
(marked by a red circle). On the other hand, searching for artifacts with no incoming 
trace links yields the superfluous artifacts (marked by a blue square). 

 
Figure 4.1 – SPL covering analysis 

4.2 Change Impact Analysis 

As mentioned previously, in SPL development, we propose to use the feature model as 
the center of all traceability information. All trace links originate from a feature and end 
in a certain artifact. Starting from this premise, we are proposing to perform change 
impact analysis in two phases. The first phase is done by querying the traceability 
information available in the repository. We would then search for trace links that 
originate in the same feature and reach two different artifacts (red links in Figure 4.2). 
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We can then reason that a change in one of these artifacts might trigger a change in the 
other artifacts, because they are linked to the same feature. 

 
Figure 4.2 – SPL change impact analysis 

On the second phase we query the source model to find additional impact caused 
by the change. Looking at Figure 4.2 we can see that “Class B” is inherited by “Class 
C” and is crosscut by “Aspect B”. “Class A” is also crosscut by “Aspect A”. We would 
then use this links to discover additional artifacts affected by a change (blue links in 
Figure 4.2). 

4.3 Detection of Feature Interaction 

Feature interactions have been defined has [72]: 

…some way in which a feature or features modify or influence another feature in 
defining overall system behavior. 

A feature interaction can be either good or bad. Good feature interactions occur 
when the interaction results in a desired system behavior or state. Bad feature 
interactions occur when the system does not behave as expected as a result of the 
interaction [72]. Due to the nature of SPL development, where new features can be 
added or removed to the existing product line, the feature interaction problem is a major 
concern, because unhandled feature interactions can produce undesired results in the 
product variants that come out of the SPL. On the other hand, detecting feature 
interactions is a complex task to perform manually, because feature interaction is 
implicit in feature composition and therefore difficult to understand. It becomes clear 
that feature interactions must be detected in order to be properly addressed by software 
developers. 

The solution that we propose is to use trace links to discover feature interaction 
candidates. Our proposal it to detect feature interactions by discovering artifacts (a use 
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case, a class, etc.) that are linked to two, or more, features. This idea is illustrated in 
Figure 4.3. In this example, a feature model and a class diagram have been defined 
during some SPL development stage. Some trace links between the elements of both 
models have also been derived during SPL development. The search for features that are 
connected to the same element returns two trace links (red arrows in Figure 4.3), a 
candidate for the point where the feature interaction occurs (Class A) and a possible 
feature interaction between features “F1” and “F3”. 

 
Figure 4.3 – Feature interaction detection 

With the results from this analysis, the developers could then take special attention 
to the way that “Class A” is modeled. Also, some constraints may need to be defined 
between features “F1” and “F3” as the result of this interaction (e.g., feature “F1” 
requires feature “F3”). 

It should be pointed out that we are only detecting possible feature interactions. 
Detecting feature interactions with an absolute degree of certainty can be very difficult, 
as sometimes the information available is limited. For instance, the example shown in 
Figure 4.3 might not even constitute a feature interaction. Even though two features 
collide in “Class A” they may be linked to completely separate blocks of code inside the 
class, and thus not having any interaction whatsoever. 

4.4 Summary 

With the increasing complexity of software systems the need to facilitate mechanisms 
that reason about the quality of a system seems to become a necessity for software 
developers [57]. A system that fails to meet its requirements will probably be discarded 
by its users. One of the metrics that can be used to assess the quality of a software 
system can therefore be the degree to which it fulfills the requirements that were 
specified. Another important quality may be the absence of undesired functionalities. 
We demonstrated that by performing covering analysis we can determine if there are 
requirements that are not satisfied, or detect artifacts that are not linked to a requirement 
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and may therefore clobber the system without any reason for it. We have also proposed 
an approach to address this problem in the context of Software Product Lines. In our 
opinion, the techniques used in traditional (non SPL) systems cannot be applied in this 
domain due to the variability dimension that is not present in Single-Systems [3]. The 
second problem is related to the detection of how a change in an artifact reverberates 
over the rest of the system. As software artifacts (architectural models, code, 
requirements, etc.) are linked to each other, any change introduced in an artifact should 
be evaluated to see if it produces undesired results in the related artifacts. For instance, 
if the requirements change, the architecture of the system may need to be adapted to 
reflect that change. Discovering these relationships manually, is an error-prone and 
resource consuming task. As with covering analysis, this problem is not exclusive to 
SPL, but the variability inherent to product families requires a new kind of approach to 
achieve a solution. We presented a proposal that provides the visualization of the impact 
of changes. We believe that our proposals for covering and change impact analysis have 
the ability to address these two concerns in SPL development. 

The third problem discussed was the detection of feature interactions. From our 
experience, not much literature exists on this topic and the largest source of research is 
the telecommunications industry, where this problem is quite common. This problem 
can also appear in SPL, due to the use of features to model the variabilities and 
commonalities of a product line. To effectively handle feature interactions, the first step 
that must be taken is to detect them. That is the goal of the approach that we have 
presented in this chapter. We believe that it could provide detection of feature 
interactions based on the trace links that are defined between artifacts during domain 
analysis. In our opinion it may be easier for domain engineers to define the trace links 
between the different artifacts and let tools perform the detection phase, than to detect 
feature interactions from scratch. 

To our knowledge, the approaches presented in this chapter constitute new 
contributions to the existing traceability research, as no one else has tackled these 
problems. In addition to the theoretical proposals, we plan to implement these analysis 
mechanisms in our framework, by implementing the appropriate instances (trace queries 
and views) to provide tool support for the discussed approaches. This implementation 
will also serve to validate our proposals. 

In the next chapter we present a case study to validate our traceability framework. 
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Chapter 5. Case Study 

This chapter will present a case study for a home automation product line. This case 
study will be used to validate the framework that we propose. We plan to demonstrate 
the traceability framework usage and how it could be instantiated to perform detection 
of feature interaction in the SPL domain. The case study consists of a feature model 
describing the product line variability and a use cased model modeling the 
requirements. 

5.1 Home Automation Product Line 

The home automation product line8 that is used in this section is meant to provide 
management functionalities to the home owner. The feature model shown in Figure 5.1 
shows the several variants that can be generated from the product line core assets. 

 
Figure 5.1 – Feature model for a home automation system 

                                                 
8 Based on the “Smart Home” case study provided by Siemens in the context of the AMPLE project. 
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A Home Management product is composed of several optional features: “Manage 
rooms lighting”, “Manage rooms temperature” and “Manage house security (the names 
are self explanatory). It is also composed of several devices that are used to automate 
the required functionalities. Two types of sensors exist, one for light detection and 
another to determine the room temperature. Finally, a selection of actuators is also 
available, each responsible for providing a certain functionality. 

The use case model shown in Figure 5.2 displays the requirements of this home 
automation system. This use case is modeling the entire product line, and not an 
individual product. It contains an actor “Home Owner” to represent the person in charge 
of managing configurations of the system. The remaining actors represent the devices 
that are available for selection. 

Home Owner

Set room ilumination

Activ ate security

Set room temperature

Lights Actuator

Air Conditioned Actuator

Blinds Actuator

Deactiv ate secutiry

Manage temperature

Manage room ilumination

Manage house security

Light Sensor

Thermometer

«include»

«include»

«include»

«include»

 
Figure 5.2 – Use case model of a home automation system 

The system allows a home owner to define the temperature to be maintained in a 
room. A thermometer is used to measure the temperature and the air conditioned and 
blinds actuators are used to regulate the temperature (e.g., closing the blinds to prevent 
the sun from heating the room). The light of the room can also be defined by the user 
which will them be automatically maintained by the system. A light sensor is used to 
measure the amount of light and the blinds and light actuators can be used to regulate 
the light to the appropriate level (e.g., opening the blinds to allow more sun light to get 

 60 



 

in). The security management on the other hand, is defined to close the blinds in certain 
conditions (e.g., close the blinds after 8 PM). 

5.2 Framework Usage 

To provide traceability support for this home automation product line, we could use the 
traceability framework that we proposed. The framework would enable the creation of 
trace links between the elements of the feature model and the elements of the use case 
model. The artifacts could be imported into the ATF repository by executing the 
corresponding extractors that were described in Chapter 3. In Section 5.2.1 we describe 
the trace links that are defined during domain analysis and Section 5.2.2 describes a 
framework instance that would perform the detection of possible feature interactions, 
according to the strategy discussed in Chapter 4. 

5.2.1 Defining Trace Links 

The trace links that have been identified are represented in Table 5.1. The feature model 
elements are represented in the columns, while the use case model elements are 
represented in the rows. 

Table 5.1 – Trace links for the home automation system 

Feature 
UC       Model 

 Model 

Manage 
Rooms 
Lighting 

Manage 
Rooms 

Temperature 

Manage 
House 

Security 

Windows 
Blinds 

Actuator 

Lights 
Actuator 

Air 
Conditioned 

Actuator 

Light 
Sensor Thermometer 

Home Owner X X X      
Set Room 
Ilumination X        
Set Room 

Temperature  X       
Activate 
Security   X      

Deactivate 
Security   X      

Manage Room 
Ilumination X        

Manage 
Temperature  X       

Manage House 
Security   X      

Light Sensor X      X  

Thermometer  X      X 

Lights Actuator X    X    
Air Conditioned 

Actuator  X    X   

Blinds Actuator X X X X     

A mark in one of the cells means that a trace link between the feature model and 
use case model elements has been identified. The definition of these relationships is one 
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of the problems in traceability. These trace links are usually defined by domain 
engineers which possess a great deal of knowledge in the domain that is being modeled. 
Some trace links might be derived automatically, as described in some of the 
approaches discussed in Section 2.2.1, but in a product lines development scenario we 
whish to link elements from different dimensions and these relationships are not always 
obvious and easy to automatically deduct. The validation of these trace links is another 
concern in which traceability researchers dwell. Even the automatic generation of trace 
links (e.g., links generated during a model transformation) is seen with some 
skepticism, as no formal validation mechanism is usually provided. To our knowledge, 
this validation problem remains largely untackled and a reasonable solution does not 
exist.  

The representation shown in Table 5.1 is used in this document to enhance the 
ratability of this example, and it works because the number of artifacts is relatively 
small. In practice traceability matrixes do not scale well, and become unusable if the 
number of artifacts is too big. For instance, based on our experience a SPL system with 
twenty features and an equal number of requirements would be quite hard to represent 
using a traceability matrix. In reality the trace register instance that was implemented 
uses a tree of checkboxes to allow the manual definition of trace links between features 
and use cases models. We believe that a tree representation is much more scalable, as it 
allows a user to expand only the desired subtree and concentrate only on a smaller 
portion of the artifacts. An example of this register execution is shown in Figure 5.3. 

 
Figure 5.3 – Trace register execution for the home automation system  

 62 



 

5.2.2 Detecting Feature Interaction 

Once the trace artifacts and respective trace links are stored in the repository, we can 
perform queries and analysis on that information. Our goal is to implement a trace query 
instance that performs the feature interaction analysis, returning the list of feature 
interaction candidates found. An example of how this analysis is performed is shown in 
Figure 5.4. To enhance the understanding of this example, only a subset of all the trace 
links is shown. 

 
Figure 5.4 – Feature interaction in home automation system 

By querying the trace information for links that have different source features and 
the same destination artifact, we can detect possible feature interactions. This example 
is demonstrated by the red arrows in Figure 5.4, which originate from three different 
features (Manage Rooms Lighting, Manage Rooms Temperature and Manage House 
Security), and arrive at the same actor (Blinds Actuator). In fact, this does constitute a 
feature interaction example. While the Manage Rooms Lighting feature might try to 
open the blinds to let natural light come in, the Manage Rooms Temperature feature 
may want to close the blinds to cool the room down. Some tradeoff must be made to 
properly handle this conflict. Our contribution is not meant to address the handling of 
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these conflicts, but rather to provide a means of detecting them and provide this 
information to the system developer. 

This case study constitutes a clear example of a limitation found in existing 
approaches and traceability tools, which we are planning to address with our traceability 
framework. This instantiation scenario for detection of feature interactions is not yet 
implemented. We plan to create the necessary trace query and trace view instances to 
implement this type of analysis. 

5.2.3 Implementing a Feature Interaction Instance 

As mentioned in the beginning of the chapter, our idea is to instantiate our traceability 
framework to provide an implementation of the solution presented in the previous 
section. This instantiation is shown in Figure 5.5. The FeatureInteractionQuery is an 
extension of the net.ample.tracing.framework.core.traceQuery extension point. This class 
implements the algorithm described in the previous section and returns the set of 
relevant trace links to be passed for the corresponding trace view. The 
FeatureInteractionTraceView is used to provide an instance capable of presenting the 
results of the feature interaction query. For instance, the visualization could be a simple 
list of the feature interactions that were detected, or a graph view of the query. 

 

«execution environment»
Eclipse IDE

Traceability Framework Plug-in

net.ample.tracing.framework.
core.traceQuery

net.ample.tracing.framework.
core.traceView

Framework Core

AbstractTraceQuery

+ submitQuery()

ITraceQuery

...

Feature Interaction Plug-in

FeatureInteractionQuery

+ submitQuery()

AbstractTraceView

+ showResults()

ITraceView

...

FeatureInteractionView

+ showResults()

«extension of» «extension of»

 
Figure 5.5 – Feature interaction detection instance 
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5.3 Comparison of Results 

In Chapter 2 we presented some of the existing approaches for traceability support in 
MDE and SPL development and discussed their strengths and weaknesses. We have 
also presented the traceability tools survey and discussed the benefits and shortcomings 
of the tools analyzed. We will now compare our approach with the remainder of the 
SPL approaches. The MDE approaches will not be presented, because even though our 
traceability framework uses MDE techniques, and could be extended to facilitate 
traceability support for MDE, our main goal was to provide a platform for definition, 
maintenance, query and visualization of trace information in the context of SPL. We 
will also compare our implementation with the traceability tools that were presented in 
that chapter and discuss the improvements and benefits that we have introduced. 

Table 5.2 summarizes the results of the SPL approaches discussed in Section 2.3.1. 
Our approach has been added to the last line of the table to facilitate the comparison. 
The criterion used here are the same as the ones used previously. 

Table 5.2 – Comparison of SPL approaches with Traceability Framework 

Approach Representation Mapping and 
Granularity Scalability 

Change 
impact 

analysis 
Tool 

support 

Pohl et al. [59] Directed link 
Backward and 

forward, 
arbitrary granularity 

yes yes no 

Berg et al. [8] Directed link Fine-grained not discussed not discussed no 
Ajila and Kaba 
[2] Directed link Coarse-grained not discussed yes ad-hoc tool 

set 

Knauber and 
Schneider [47] Directed link Forward, 

coarse-grained not discussed not discussed Junit and
AspectJ 

Mergel et al. [52] Directed link and 
meta information 

Backward and 
forward  

coarse-grained 
yes not discussed not publicly 

available 

Jirapanthong 
and Zisman [40] Directed link 

Backward and 
forward, 

coarse-grained 
not discussed not discussed prototype 

(XtraQue) 

Zisman et al. 
[73] 

Directed link and 
meta information 

Backward and 
forward, 

fine-grained for 
requirements 

not discussed not discussed prototype 

Luttikhuizen et 
al. [51] 

Directed link and 
meta information 

Backward and 
forward  

Fine-grained for 
requirements 

not discussed yes no 

Bayer and 
Widen [7] Directed link 

Backward and 
forward, 

arbitrary granularity 
not discussed not discussed ad-hoc tool 

set 

Moon et al. [53] Directed link 
Backward and 

forward, 
arbitrary granularity 

yes not discussed not 
discussed 

Traceability 
Framework Directed link 

Backward and 
forward, 

arbitrary granularity 
yes yes yes 

As can be seen from the previous table, our framework proposal provides many of 
the benefits that are found in the best SPL approaches. We have also been able to 
respond to the tool support criteria. In our opinion, this is one of the major requirements 
for an efficient traceability solution, a requirement that is missing from many 
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approaches. In Table 5.3 we present the summary of the traceability tools survey 
presented in Section 2.4. The implementation of our traceability framework has been 
added to the last line of the table to facilitate the comparison. The criterion used here are 
the same as the ones used in that chapter. 

Table 5.3 – Comparison of existing traceability tools with Traceability Framework  

Tool Creation of 
Trace Links Mapping Type of 

Query 
Change 
Impact 

Analysis 
Covering 
Analysis Views Extensible 

Support 
for SPL 

and 
MDE 

RequisitePro 
[37] manual 

part of 
artifacts, 

forward and 
backward 

filters yes no matrix, 
tree no no 

Borland 
CaliberRM 
[13] 

manual 

requirements 
to artifacts, 
forward and 
backward 

filters yes no matrix, 
graph yes no 

RaQuest [65] 

manual, 
imports 

requirements 
from file 

requirements 
to artifacts, 
forward and 
backward 

n.d. yes no matrix, 
graph no 

partial 
support 
for MDE 

Telelogic 
DOORS [69] 

manual, 
imports 

requirements 
from file 

requirements 
to parts of 
artifacts, 

forward and 
backward 

custom 
queries, 

filters 
yes yes tree yes no 

Contour [39] 

manual, 
imports 

artifacts from 
file 

artifact to 
artifact, 

forward and 
backward 

filters yes no matrix, 
report yes no 

GatherSpace 
[30] manual 

requirement 
to other 
artifacts, 
forward 

n.d. no yes report no no 

Trace 
Analyzer [23] automatic 

models to 
source code, 

models to 
models, 
forward 

n.d. no yes 
matrix, 
graph, 
report 

no no 

Traceability 
Framework 

automatic, 
manual, 
import 

artifacts  
from models 

arbitrary 
granularity, 
forward and 
backward 

custom 
queries 

yes 
(planed) 

yes 
(planed) 

custom 
views yes yes 

The previous table demonstrates the benefits that our framework provides over the 
remaining tools. We have provided a solution that allows for automatic, manual or 
semi-automatic definition of trace links, execution of custom queries, visualization of 
query results in custom views and an arbitrary level of granularity in trace links. We 
have also presented our ideas for implementing analysis mechanisms to perform 
covering analysis, change impact analysis and feature interaction detection in the 
context of SPL development (the implementation of this analysis is not available yet, 
but it is planed to be provided in the next version of the tool). These types of queries are 
missing in all of the surveyed tools. Finally we proposed a truly open and extensible 
solution for traceability, allowing other developers to extend the framework capabilities 
in terms of registers, queries and views, and adapting it to their specific needs. We 
believe that these instantiation mechanisms make our proposal highly adaptable and 
reusable to satisfy SPL and other software development scenarios. 
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5.4 Summary 

This chapter presented a case study based on a product line of home automation 
systems. The case study was composed of a variability model (feature model) and a 
requirements model (use case model). We validated our traceability framework proposal 
with this case study, by demonstrating how to address a problem that exists in SPL 
development and that, to our knowledge, is not supported by any other tool or approach. 
The case study process consisted of importing the feature and requirements model into 
the ATF repository. Once that step was concluded, the domain engineer would define 
the trace links that were identified between the elements from these two models. This 
step is the one that requires the greatest amount of work from the developer, as it 
requires the user to identify the trace links manually. We are not aware of the possibility 
to perform automatic identification of these links, because this information is very 
domain specific and will probably require a great deal of knowledge in the domain that 
is being modeled. The following steps are automatic. The user must simply execute the 
trace query instance that implements feature interaction detection and the results are 
reported back. 

As mentioned in the previous chapter, we can only detect possible feature 
interactions. Detecting feature interactions with an absolute degree of certainty can be 
very difficult, if not impossible, as the trace information that is available may be 
limited. Because our framework allows an arbitrary granularity for the traceable 
artifacts, even though the same artifact may be linked, to different features, there may 
not exist a feature interaction between them. For instance, if we link two features to a 
use case, our approach detects a feature interaction between those two features. 
However, if we further specify the use case by defining its steps, and instead link the 
features to the steps of the use case, the previous feature interaction may not exist 
anymore, if the features are no longer related in the same steps. From this example we 
can see that fine-grained traceability yields much better results than coarse-grained 
traceability. Never the less, we can only provide feature interaction candidates, because 
the level of granularity to be used in our framework is a decision of the developer. 

The last section of the chapter also presented a comparison between the work 
developed in this thesis and the SPL approaches and traceability tools surveyed in 
Chapter 2. We demonstrated the benefits that our framework achieves, in terms of the 
evaluation criterion, over the remaining solutions. We have proposed a solution that is 
highly adaptable and extensible, provides tool support and tackles the concrete 
challenges introduced by SPL development. 

In the next chapter we will present the conclusions of this thesis, along with the 
contributions and the future work that is planed. 
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Chapter 6. Conclusion 

The focus of this master thesis dissertation is traceability. We discussed how traceability 
can provide a valuable aid in addressing some of the problems associated with software 
development. A special focus was given on traceability in the context of SPL, where the 
approaches and tools for Single-System development do not cope well with the new 
challenges presented by this paradigm. To address this gap, we presented a proposal for 
a Model-Driven traceability framework that aims to provide a platform for design and 
implementation of traceability mechanisms and tools for SPL. This framework uses a 
traceability metamodel for storage of trace information and three hotspots that allow 
instantiating it to serve different SPL needs. The first hotspot is used to create different 
trace registers, used for performing CRUD operations in the trace repository. The 
second hotspot is used to implement different trace queries to perform analysis in the 
stored trace information. The last hotspot allows framework developers to implement 
distinct views for visualization of query results. 

To validate our ideas we have implemented a version of this framework. The 
implementation consists of the framework core with the hotspots. The framework was 
implemented as an Eclipse plug-in with several extension points defined. Each hotspot 
instance is implemented by extending the desired extension point. Included in this first 
implementation, are instances of each hotspot to allow the definition, query and 
visualization of traceability information between features and requirements artifacts. 

Some proposals for addressing SPL development problems using traceability were 
also discussed. We presented our ideas on how to use traceability to perform covering 
analysis and change impact analysis in the context of product lines. A proposal for 
detection of feature interactions, a complex problem that exists in the SPL domain, was 
also presented. We plan to implement our ideas in the following versions of our 
framework. 

Finally, we have presented a case study for a SPL system based in a home 
automation product line. This example was composed of a variability model and the 
requirements model for the entire SPL. We demonstrated how our solution can be used 
to store the trace links between the elements of these different domains. We have also 
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shown how the framework can be instantiated to solve problems that are found in SPL 
development and that are not addressed by other approaches. 

6.1 Contributions 

The following contributions are direct results of this work: 

• A Model-Driven Traceability Framework (Chapter 3). Specification of a 
framework for the definition and implementation of methods and tools for 
traceability in the context of Software Product Lines. 

• An implementation of the Framework Core. The core of the framework was 
implemented in the form of an Eclipse plug-in with a set of extension points that 
allow instantiating to other scenarios. 

• Framework instances to trace from features to requirements (Chapter 3). 
The base implementation that is provided allows users to import requirements 
(modeled with use case models) and variability models (modeled with feature 
models) and trace links between the artifacts of these separate domains and 
perform queries on this information. 

• A proposal for addressing SPL development problems through traceability 
(Chapter 4). A proposal for detection of feature interactions was presented. 
Methods for performing covering analysis and change impact analysis in the 
context of SPL were also discussed. 

6.2 Future Work 

Much research is still under development and may be addressed as future work. 

• Implementation of new framework instances. The detection of feature 
interaction, covering analysis and change impact analysis are thought to be 
implemented as instances of the TraceQuery and TraceView hotspots. 

• Refactoring the framework UI. The framework interface will be revised and 
will be subjected to a major transformation. New functionalities to be included 
are under revision. 

• Evolve to “black-box” instantiation scenario. Implement generic hotspot 
instances that allow developers to provide new instances with minimal effort. 

• Framework evolution. The framework will be used and extended by the 
partners of the AMPLE project. Suggestions for improvement and necessary 
adaptations will be analyzed and implemented in future versions. 

• Handle system evolution. As a software system evolves, its models might 
change. These changes must trigger updates in the repository. We plan to 
develop some strategy for performing this task. 
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Annex 1 -  Trace Extractor Extension Point 

Identifier: net.ample.tracing.core.traceExtractor 

Since: 0.1.0  

Description: Extension point for trace extractors.  

Configuration Markup: 

<!ELEMENT extension (extractor)+> 
<!ATTLIST extension 
 point CDATA #REQUIRED  
 id  CDATA #IMPLIED  
 name CDATA #IMPLIED> 

<!ELEMENT register (parameter)> 
<!ATTLIST register 
 Id  CDATA #REQUIRED  
 class CDATA #REQUIRED  
 description CDATA #REQUIRED> 

• id - The unique identifier of this extractor. 

• class - The implementing class.  

• description - A short description of what the extractor actually does.  

<!ELEMENT parameter EMPTY> 
<!ATTLIST parameter 
 name CDATA #REQUIRED 
 type (string|boolean|int|float|resource)  
 required (true | false)  
 description CDATA #IMPLIED 
 default CDATA #IMPLIED> 

Each extractor is configured via several parameters, which can be defined with this tag. 

• name - Name of the parameter. 

• type - Type of the parameter. There are five types of possible parameters: string, 
boolean, int, float and resource. 

• required - Flag to indicate that this parameter is required for the trace extractor to work 
properly. 

• description - A short description of the parameter, that might be displayed in a user 
interface. 

• default - The default value of the parameter. 
 
Examples: The following is an example of the extension point usage: 

<extension point="net.ample.tracing.core.traceExtractor"> 
   <extractor 
      id="net.ample.tracing.sample_extractor" 
      class="net.ample.tracing.SampleExtractor” 
      description="some description"> 
        <parameter 
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           name="Sample Parameter" 
           type="boolean" 
           required="true" 
           description="some description" 
           default="false"> 
        </parameter> 
   </extractor> 
</extension> 

API Information: Plug-ins that want to extend this extension point must implement 
net.ample.tracing.core.TraceExtractor interface.  
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Annex 2 -  Trace Register Extension Point 

Identifier: net.ample.tracing.framework.core.traceRegister 

Since: 0.1.0  

Description: This extension point is used to plug in additional trace registers for establishing 
trace links between SPL artifacts.  

Configuration Markup: 

<!ELEMENT extension (register)+> 
<!ATTLIST extension 
 point CDATA #REQUIRED  
 id  CDATA #IMPLIED  
 name CDATA #IMPLIED> 

<!ELEMENT register (description)> 
<!ATTLIST register 
 id  CDATA #REQUIRED  
 name CDATA #REQUIRED  
 class CDATA #REQUIRED> 

• id - a unique name that will be used to reference this trace register.  

• name - a translatable name that will be used for presenting this trace register in the UI.  

• class - Plug-ins that want to extend this extension point must implement 
net.ample.tracing.framework.core.traceregister.ITraceRegister interface.  

<!ELEMENT description (#PCDATA)> 

Examples: The following is an example of the extension point usage: 

<extension point="net.ample.tracing.framework.core.traceRegister"> 
   <register 
      id="net.ample.tracing.sample_register" 
      name="Sample Trace Register" 
      class="net.ample.tracing.SampleRegister"> 
        <description>some description.</description> 
   </register> 
</extension> 

API Information: Plug-ins that want to extend this extension point must implement 
net.ample.tracing.framework.core.traceregister.ITraceRegister interface.  

Supplied Implementation: Traceability Framework Plug-in provides a default implementation 
of a trace register. 
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Annex 3 -  Trace Query Extension Point 

Identifier: net.ample.tracing.framework.core.traceQuery 

Since: 0.1.0  

Description: This extension point is used to plug in additional trace queries.  

Configuration Markup: 

<!ELEMENT extension (query)+> 
<!ATTLIST extension 
 point CDATA #REQUIRED  
 id  CDATA #IMPLIED  
 name CDATA #IMPLIED> 

<!ELEMENT query (description)> 
<!ATTLIST query 
 id  CDATA #REQUIRED  
 name CDATA #REQUIRED  
 class CDATA #REQUIRED> 

• id - a unique name that will be used to reference this trace query.  

• name - a translatable name that will be used for presenting this trace query in the UI.  

• class - Plug-ins that want to extend this extension point must implement 
net.ample.tracing.framework.core.tracequery.ITraceQuery interface.  

<!ELEMENT description (#PCDATA)> 

Examples: The following is an example of the extension point usage: 

<extension point="net.ample.tracing.framework.core.traceQuery"> 
   <query 
      id="net.ample.tracing.sample_query" 
      name="Sample Trace Query" 
      class="net.ample.tracing.SampleQuery"> 
        <description>some description.</description> 
   </query> 
</extension> 

API Information: Plug-ins that want to extend this extension point must implement 
net.ample.tracing.framework.core.tracequery.ITraceQuery interface.  

Supplied Implementation: Traceability Framework Plug-in provides a default implementation 
of a trace query. 
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Annex 4 -  Trace View Extension Point 

Identifier: net.ample.tracing.framework.core.traceView 

Since: 0.1.0  

Description: This extension point is used to plug in additional trace views.  

Configuration Markup: 

<!ELEMENT extension (view)+> 
<!ATTLIST extension 
 point CDATA #REQUIRED  
 id  CDATA #IMPLIED  
 name CDATA #IMPLIED> 

<!ELEMENT view (description)> 
<!ATTLIST view 
 id  CDATA #REQUIRED  
 name CDATA #REQUIRED  
 class CDATA #REQUIRED  

• id - a unique name that will be used to reference this trace view.  

• name - a translatable name that will be used for presenting this trace view in the UI.  

• class - Plug-ins that want to extend this extension point must implement 
net.ample.tracing.framework.core.traceview.ITraceView interface.  

<!ELEMENT description (#PCDATA)> 

Examples: The following is an example of the extension point usage: 

<extension point="net.ample.tracing.framework.core.traceView"> 
   <view 
      id="net.ample.tracing.sample_view" 
      name="Sample Trace View" 
      class="net.ample.tracing.SampleView"> 
        <description>some description.</description> 
   </view> 
</extension> 

API Information: Plug-ins that want to extend this extension point must implement 
net.ample.tracing.framework.core.traceview.ITraceView interface.  

Supplied Implementation: Traceability Framework Plug-in provides a default implementation 
of a trace view 
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Introduction 
 
This document describes a Framework that provides an open and flexible platform to 
implement trace links between artifacts from SPL development. In order to address 
this aim, the framework was designed and implemented with several hotspots that 
allow developers to extend its capabilities as needed. 

The document is divided into three main parts: framework description, tutorial and 
framework instantiation. The first part describes the concepts behind this trace 
framework and gives an overview of the same. The second chapter contains tutorials 
to guide the user in his first steps. The third section shows how to instantiate the 
hotspots of this framework to extend the functionalities provided by default. 

 
 
 
 
System Requirements 
 
This framework was developed as an Eclipse plug-in and was designed to work with 
the following set of requirements. 
 

• JRE 5.0 (the framework core runs on JRE 5.0, however the framework 
extensions provided by default require JRE 6.0 to run). 

• Eclipse SDK 3.3.2  
• ATF 0.1.7 (All ATF requirements must also be satisfied. Check ATF 

documentation) 
 
 
 
 
Installation 
 
To install this framework, simply copy the contents of the file 
spl_traceability_framework_core_X.X.X.zip (core) and 
spl_traceability_framework_extensions_Y.Y.Y.zip (framework instances) to your Eclipse 
installation directory and launch Eclipse. 
 
 
 
 
Framework Description 
 
This section describes the fundamental concepts of the trace repository 
 
 
 
Traceability Framework Structure 
 
Our traceability framework aims to provide an open and flexible platform to 
implement trace links between different artifacts from SPL development. For now the 
variability model (feature model) is used in this approach as the main reference to 
trace the SPL artifacts. However, the design of the framework is generic, so it may be 
applied outside SPL development. 
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The following main functionalities are provided by our framework to support the 
tracing of SPL artifacts: 
 

• creation and maintenance of trace links between a variability model and other 
existing artifacts (UML models, architecture models, source code); 

 
• persistent storage of trace links using a repository (ATF); 

 
• searching of specific trace links between artifacts using pre-defined or 

customized trace queries. Trace queries can be executed over the trace links 
in order to select interesting traceability information to help the SPL 
development or evolution; 

 
• flexible visualization of the results of trace queries using different types of 

trace views, such as, tree views, graphs, tables, etc. 
 
The architecture of this traceability framework is shown in Figure 1 using a UML 
class diagram. The classes that represent a hotspot (interfaces and abstract classes) 
must be instantiated in to provide the required functionalities. 

Our traceability framework is structured as an object-oriented framework that defines 
an infrastructure to provide basic services to search and store trace links and it also 
offers a set of extension points to create specific SPL traceability functionalities (trace 
queries and views).  

The ITraceRegister, ITraceQuery and ITraceView interfaces, along with the 
respective abstract classes (AbstractTraceRegister and AbstractTraceQuery) 
represent the extension points of the framework’s main components. 

Each of them must be instantiated and customized to address specific traceability 
scenarios in SPL development. 

The AbstractTraceRegister class must be specialized to create specific ways to 
create and store trace links between artifacts. The executeRegister() abstract 
method must be implemented for this purpose. The trace links are stored using the 
services provided by an ATF repository. The framework does not specify the 
concrete ways that the trace links must be obtained. This functionality can be 
provided, for example, by specifying a strategy to automatically identify possible trace 
links between artifacts or by providing a graphical interface to allow the SPL 
developers to manually define the desired trace links. 

The AbstractTraceQuery class establishes the general structure to implement 
traceability queries. The method submitQuery() allows each instance to 
implement a specific type of trace query. It uses the query services provided by ATF 
component to search trace links of interest in the repository. After that, it delegates 
the resulted trace links from its query to an associated trace view by calling the 
showResults() method. 

Annex 5 - Traceability Framework User Guide



 5

Trace Register

Trace View

Trace Query

AbstractTraceQuery

- repositoryName:  String
- traceView:  ITraceView

+ executeQuery() : void
# getQueryManagerInstance() : QueryManager
+ getRepository() : String
+ getTraceView() : ITraceView
+ setRepository(String) : void
+ setTraceView(ITraceView) : void
+ submitQuery() : List<TraceLink>

AbstractTraceRegister

- repositoryName:  String

+ executeRegister() : void
# getItemManagerInstance() : ItemManager
# getPersistenceManagerInstance() : PersistenceManager
# getQueryManagerInstance() : QueryManager
+ getRepository() : String
+ setRepository(String) : void

«interface»
ITraceQuery

+ executeQuery() : void
+ getRepository() : String
+ getTraceView() : ITraceView
+ setRepository(String) : void
+ setTraceView(ITraceView) : void
+ submitQuery() : List<TraceLink>

«interface»
ITraceRegister

+ executeRegister() : void
+ getFeatureExtractor() : IExtractFeatures
+ getRepository() : String
+ getSoftwareArtefactExtractor() : IExtractSoftwareArtefacts
+ setFeatureExtractor(IExtractFeatures) : void
+ setRepository(String) : void
+ setSoftwareArtefactExtractor(IExtractSoftwareArtefacts) : void

«interface»
ITraceView

+ showResults(List<TraceLink>) : void

ATF

 
 

Figure 1 - Traceability Framework Architecture 
 
The trace views are implemented as classes implementing the ITraceView interface. 
The ATF component provides basic traceability services to retrieve and query basic 
trace links between specific artifacts. Our framework aims to create more advanced 
traceability queries (such as, requirements/feature coverage, change impact 
analysis, product variants tracing) built on top of these basic ones. 
 
 
 
Framework Implementation 
 
The framework described above, has been implemented as an Eclipse plug-ins 
called net.ample.tracing.framework.core. This plug-in defined several extension 
points that are used to create instances of each of the framework’s hotspots. Figure 2 
shows the five extension points defined in net.ample.tracing.framework.core. Each of 
these extension points as an attached Schema that explains how this extension can 
be used by extending plug-ins. Check the Extension Points Reference in Appendix III 
for this info. 

 
 

Figure 2 - net.ample.tracing.framework.core extension points 
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To automate the detection and usage of new extension added to the base 
framework, another Eclipse plug-in (net.ample.traceabilityProject) has been 
implemented, which provides a front-end that allows users to define a traceability 
project and perform the actions desired on the framework instances. When new 
extensions are defined, this front-end makes them automatically available. 
 
 
 
API Reference 
 
The Framework API and Extension Points Reference can be checked at 
http://ample.di.fct.unl.pt/TraceFramework/ 
 
 
 
Default Instantiation 
 
The Traceability Framework that is provided has some default instantiations for each 
of the hotspots.  
 
 
 
Trace Register 
 
The trace register instance provides a GUI that allows developers to define trace 
links between the features and requirement artifacts extracted using any of the 
provided extractors. This trace register provides a GUI for manual definition of trace 
links. The tutorial section contains more details on how to perform this task. 
 
 
 
Trace Query 
 
Two trace query instances are provided by default. One is capable of finding the 
artifacts that are related with a set of chosen features. The second performs a 
change impact analysis query. For now these are the only queries available, but 
there are plans to develop queries capable of detecting feature interactions, query by 
product variant and others. The tutorial section contains more details on how to 
perform this task. 
 
 
 
Trace View 
 
The results returned by a query can be seen in one of the trace view instances 
available. There are currently four views implemented, each designed to show the 
results of a type of query. Two instances provide a tree view of the artifacts related 
with each feature, a more detailed one (which includes the steps of each use case) 
and a general overview (excluding use case steps). These two views should be used 
to browse the results returned by a related artifacts query. The two remaining views 
are used for presenting the results of a change impact analysis query. As with the 
related artefacts view, a more detailed and a general overview are available. If the 
wrong view is used, (for instance, using a related artifacts query with a change 
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impact analysis view), it may result in presenting trace information that does not 
correspond to the expected results. This is due to the fact that each view is prepared 
to process the list of links returned by the appropriate query. The tutorial section 
contains more details on how to perform this task. 
 
 
 
Tutorials 
 
This section of the documentation contains some tutorials for common tasks to be 
carried out when working with the traceability framework. These tutorials will be 
based on the default framework instantiation explained previously and the SPL case 
study found in Appendix I and Appendix II. Please refer to them for info on the case 
study. 
 
 
 
How to Create a Traceability Project 
 
Traceability Projects can be created via the user interface. The first step is to create 
a new project in Eclipse (you can also use an existing one if you wish). Inside that 
project you can either create folders to contain your traceability project files, or just 
dump them into the newly created project. Select File > New > Project. 
 
 
 

 
 
 
 
Once the project is created select File > New > Other… and choose the new 
Traceability Project option. A wizard will open, guiding you through the process of a 
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new traceability project creation. You must choose the traceability project file, the 
name of the ATF repository to use, and the desired extractors. 
 
 

 
 
 
 
After pressing the finish button, a new ATF repository is created (with the chosen 
name), and initialized with several new types of trace links and traceable artifacts. 
The new types of traceable artifacts are Feature, Use Case, Step, Actor and 
Package, which can be use to store the appropriate traceable artifacts. The new 
types of trace links are Relationship and Hierarchy. Relationship is used to create a 
link between a feature (from the variability model) and an Actor/Use 
case/Step/Package (from the requirements model). A Hierarchy link is used to define 
hierarchical information, such as the fact that a step belongs to its parent use case. 

Once the project is created a popup menu will be available for the traceability project 
file. To access it, just right click on the project file and choose the desired action. 
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Defining new Trace Links 
 
To define new trace links, we must initialize a trace register instance. 

Choose Initiate Trace Register from the popup menu and then choose the desired 
trace register instance from the list of available trace registers. 
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Now define the desired trace links between features and requirement artifacts by 
checking the corresponding boxes. For instance, the box labeled “Read callers ID” 
under the “Display Photo for incoming Call” feature is checked, so a link between that 
feature and that use case step will be created in the repository. 

When the Save button is pressed the changes performed in the trace register window 
are committed to the ATF repository. 
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Submitting Queries and Viewing Results 
 
To submit a query to the ATF repository, choose Submit Query from the popup menu 
and then choose the desired trace query instance and trace view from the list of 
available extensions. 
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On the next window just choose your FMP features model file, and once the feature 
model tree is displayed you should choose which features are to be queried. As 
explained previously, the Trace Related Artefacts by Feature query, finds the 
artifacts that are linked to a set of chosen features. 

Once the choice has been made, click the Submit Query button, and the results will 
be displayed in the chosen view. 
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The menu Output can be used to write the results of shown in the selected view to 
an output file chosen by the user. 

The “Change Impact Analysis Query” usage follows the same guidelines. 
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Framework Instantiation 
 
This section of the documentation describes how the framework hotspots can be 
instantiated to allow developers to add new functionality to the base implementation 
provided by default. To help demonstrating these steps, the tutorial shown here are 
based on some fictitious examples (the file formats, algorithms and heuristics 
described in this section are meant to be used only for demonstrating how to create 
framework instances. They are in no way meant to be used in a real software 
development environment). 

The complete mechanism behind Eclipse plug-in development will not be explained 
here, as it falls out of the scope of this document. The user is expected to have a 
basic understanding on this subject. 

 
 
 
 
Trace Register Instance 
 
To create a new trace register instance we begin by creating a new plug-in. File > 
New > Project and choose Plug-in Project. 
 

 
 
Then we will define this plug-in settings. For the project name we will choose 
net.ample.tracing.simpleFeaturesExtractor. Leave the rest of the settings as follows. 
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On the last window we will not use one of the templates, so we will uncheck that box. 
 

 
 
Press the Finish button and after Eclipse finishes creating all the files, we are place in 
the Plug-in Development view for our newly created plug-in. 
 

 
 
No we must define our new extension point. To do this, we will go to the extensions 
tab and add a new extension. Click Add… and in the new window put 
net.ample.tracing.framework in the Extension Point Filter, to remove all the other 
extension points from the list. 
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If you recall the definition of the ITraceRegister in the Framework description, there is 
no information on how the links are to be created. That is a decision that must be 
made by the person that implements a trace register. You can devise a method to 
automatically create trace links between elements (for instance, based on some 
heuristic), or you can just simply ask the user to manually define (using a GUI) the 
trace links that he wishes to store. 

We are going to create a very simple trace register that is not meant to be used in 
real SPL development. It is used solely for the purpose of demonstrating how to 
create a trace register instance. With that in mind, we are going to implement a trace 
register that creates a new trace link between all the extracted features and use case 
artifacts, i.e. every feature will be linked to every use case. 

After creating the new Plug-in Project, go to the Extensions tab and add a new 
extension. Choose the net.ample.tracing.framework.core.traceRegister extension 
and press Finish. 
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Now we must complete the configuration of our new extension in order for it to 
behave as expected. Expand the extension point tree, and go to the extractor 
element. Each field in this element has the following meaning: 
 
 

 
Property 

 

 
Description 

id A unique name that will be used to reference this trace 
register. 

name A translatable name that will be used for presenting this trace 
register in the UI. 

class 

Plug-ins that want to extend this extension point must 
implement 
net.ample.tracing.framework.core.traceregister.ITraceRegister 
interface. 

 
Fill in each of these fields with the following values (without the quotes): 
 

 
id = “net.ample.tracing.simpleTraceRegister.register” 
 
name = “Simple Trace Register” 
 
class = “net.ample.tracing.simpleTraceRegister.SimpleTraceRegister” 
 

 
If you want, you can also add a description for this extension point in the 
corresponding element. 

Once we have defined all the attributes for our extension point, we are now going to 
implement a Java class that implements the required interface, i.e. ITraceRegister 
(check Figure 1). 

Because there is an abstract class that implements some of the standard methods, 
and to make the process simpler, we can get Eclipse to do some of the work for us. 
Click on class*. 

 

 
 

And in the new window, just press Finish. 

Now we must implement our SimpleTraceRegister class, and the method 
executeRegister() to create the trace links. To implement this class just copy the 
code shown below. 

 
package net.ample.tracing.simpleTraceRegister; 
 
import java.io.IOException; 
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import java.util.Hashtable; 
import java.util.List; 
import net.ample.tracing.core.ItemManager; 
import net.ample.tracing.core.PersistenceManager; 
import net.ample.tracing.core.QueryManager; 
import net.ample.tracing.core.TraceLink; 
import net.ample.tracing.core.TraceLinkType; 
import net.ample.tracing.core.TraceableArtefact; 
import net.ample.tracing.core.TraceableArtefactType; 
import net.ample.tracing.core.query.Constraints; 
import net.ample.tracing.core.query.Query; 
import net.ample.tracing.framework.core.TRACEABILITY_FRAMEWORK; 
import net.ample.tracing.framework.core.exceptions.ExtractionException; 
import net.ample.tracing.framework.core.exceptions.MissingRepositoryException; 
import net.ample.tracing.framework.core.extraction.Artefact; 
import net.ample.tracing.framework.core.traceregister.AbstractTraceRegister; 
import net.ample.tracing.framework.core.traceregister.ITraceRegister; 
import org.eclipse.core.runtime.CoreException; 
 
public class SimpleTraceRegister extends AbstractTraceRegister implements 
ITraceRegister { 
 
  private ItemManager itemManager; 
  private PersistenceManager persistenceManager; 
  private QueryManager queryManager; 
 
  public SimpleTraceRegister() { 
  } 
 
  @Override 
  public void executeRegister() throws MissingRepositoryException, 
CoreException, IOException, ExtractionException { 
    Hashtable<Artefact,TraceableArtefact> createdArtefacts = new 
Hashtable<Artefact,TraceableArtefact>(); 
    itemManager = getItemManagerInstance(); 
    persistenceManager = getPersistenceManagerInstance(); 
    queryManager = getQueryManagerInstance(); 
    List<Artefact> features = getFeatureExtractor().getFeatures(); 
    List<Artefact> artefacts = 
getSoftwareArtefactExtractor().getSoftwareArtefacts(); 
    for(int i=0; i<features.size(); i++) { 
      for(int j=0; j<artefacts.size(); j++) { 
        if(artefacts.get(j).getArtefactType().equals( 
TRACEABILITY_FRAMEWORK.USE_CASE_ARTEFACT)) { 
          TraceableArtefact feature = createArtefact(features.get(i), 
createdArtefacts); 
          TraceableArtefact artefact = createArtefact(artefacts.get(j), 
createdArtefacts); 
          TraceLinkType linkType = 
getTraceLinkType(TRACEABILITY_FRAMEWORK.RELATIONSHIP_LINK); 
          TraceLink link = itemManager.createTraceLink(feature, artefact, 
linkType); 
          persistenceManager.begin(); 
          persistenceManager.add(feature); 
          persistenceManager.add(artefact); 
          persistenceManager.add(link); 
          persistenceManager.commit(); 
        } 
      } 
    } 
  } 
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  private TraceableArtefact createArtefact(Artefact artefact, 
Hashtable<Artefact,TraceableArtefact> createdArtefacts) { 
    TraceableArtefactType artType = getTraceableArtefactType( 
artefact.getArtefactType()); 
    //verify if it as already created this artifact. 
    if(createdArtefacts.containsKey(artefact)) { 
      return createdArtefacts.get(artefact); 
    } 
    //verify if this artifact is already stored in the repository. 
    TraceableArtefact target = 
getTraceableArtifact(artefact.getArtefactName(),artType); 
    if(target != null) { 
      return target; 
    } 
    //if it does not exist, then create a new one. 
    else { 
      target = itemManager.createTraceableArtefact(artType, 
artefact.getArtefactName()); 
      createdArtefacts.put(artefact, target); 
      return target; 
    } 
  } 
 
  private TraceableArtefact getTraceableArtifact(String name, 
TraceableArtefactType type) { 
    Query<TraceableArtefact> query = queryManager.queryOnArtefacts(); 
    query.add(Constraints.and(Constraints.name(name),Constraints.type(type))); 
    return query.executeUnique(); 
  } 
 
  private TraceableArtefactType getTraceableArtefactType(String name) { 
    Query<TraceableArtefactType> query = queryManager.queryOnArtefactTypes(); 
    query.add(Constraints.name(name)); 
    return query.executeUnique(); 
  } 
 
  private TraceLinkType getTraceLinkType(String name) { 
    Query<TraceLinkType> query = queryManager.queryOnLinkTypes(); 
    query.add(Constraints.name(name)); 
    return query.executeUnique(); 
  } 
} 
 
If you copy this code, you will get some errors regarding some missing 
dependencies. To solve this just go to the Dependencies tab and add the following 
dependencies to your plug-in 
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We must take some considerations into account when creating extension points. All 
extension points classes must provide a constructor with no arguments. This is 
necessary due to the reflection mechanisms included in the framework that allow 
new extensions to be detected and launched automatically. 

Now that we have written our code to parse the input file, we can finish up our plug-in 
and finally pack it in a JAR file, ready to be used. 

The first thing to do is going to Overview tab and right clicking on it. You will see a 
menu with an option Externalize Strings. Choose this option and in this menu just 
press Select All and then Finish. Still in the Overview tab go to Organize Manifests 
Wizard and put in your preferences as follows. 

 

 
 
Now we must edit the list of exported packages. This is necessary, because other    
plug-ins will only see the packages available in this list. If you forget to add the 
package containing the SimpleTraceRegister class, it will not be accessible by 
anyone. 

There are two ways of doing this, you can manually edit you MANIFEST.MF (for 
experts only) or you can use the Eclipse Plug-in Development Environment to help 
you out. 

Just go to the Runtime tab and add net.ample.tracing.simpleTraceRegister to your 
list of exported packages. 
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Finally go to the Build tab and choose the following configurations. 
 

 
 
This will ensure that your binary build will include all the necessary files. 
 
Once you are done with the configurations, all there is left to do is exporting the plug-
in as a JAR file. This is also an easy task to perform, since Eclipse provides a wizard 
to do all the hard work. 
 
So, just go back to the Overview tab and click on Export Wizard. Now select an 
output directory or an archive file (whichever you prefer) and make sure that you 
select Package plug-ins as individual JAR archives. Press Finish and wait until 
Eclipse finishes the exporting process. 
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After the plug-in as been exported, you should copy the JAR file into your “plugins” 
directory inside the Eclipse installation directory. 

Restart Eclipse, and right click your traceability project file and choose “Initiate Trace 
Register”. 

 

 
 
The new trace register extension is automatically displayed and ready to be used. 
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Trace Query Instance 
 
The definition of the ITraceQuery in the framework description, showed that there 
was an abstract method submitQuery() which must be implemented. This is the 
method that will perform the desired query, returning a list of trace links form the ATF 
repository. Different types of queries can be implemented by instantiating this hotspot 
with the desired query. 

For this trace query example we are going to create a query that extracts all the trace 
links, between features and use case artifacts, stored in a repository. 

Start by creating a new Plug-in Project named net.ample.tracing.simpleTraceQuery. 
Put the same configurations as for the trace register instance. 

After creating the new Plug-in Project, go to the Extensions tab and add a new 
extension. Choose the net.ample.tracing.framework.core.traceQuery extension and 
press Finish. 
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Now we must complete the configuration of our new extension in order for it to 
behave as expected. Expand the extension point tree, and go to the extractor 
element. Each field in this element has the following meaning: 
 
 

 
Property 

 

 
Description 

id A unique name that will be used to reference this trace query. 

name A translatable name that will be used for presenting this trace 
query in the UI. 

class 

Plug-ins that want to extend this extension point must 
implement 
net.ample.tracing.framework.core.tracequery.ITraceQuery 
interface. 

 
Fill in each of these fields with the following values (without the quotes): 
 

 
id = “net.ample.tracing.simpleTraceQuery.query” 
 
name = “Simple Trace Query” 
 
class = “net.ample.tracing.simpleTraceQuery.SimpleTraceQuery” 
 

 
If you want, you can also add a description for this extension point in the 
corresponding element. Once we have defined all the attributes for our extension 
point, we are now going to create a Java class that implements the required 
interface, i.e. ITraceQuery (check Figure 1). 

Follow the steps described in the features extractor instance, and create the new 
class SimpleTraceQuery. 

To implement our SimpleTraceQuery class, and the method submitQuery()just 
copy the code shown below. 

 
package net.ample.tracing.simpleTraceQuery; 
 
import java.util.ArrayList; 
import java.util.List; 
import net.ample.tracing.core.QueryManager; 
import net.ample.tracing.core.TraceLink; 
import net.ample.tracing.core.TraceableArtefact; 
import net.ample.tracing.core.TraceableArtefactType; 
import net.ample.tracing.core.query.Constraints; 
import net.ample.tracing.core.query.Query; 
import net.ample.tracing.framework.core.tracequery.AbstractTraceQuery; 
import net.ample.tracing.framework.core.tracequery.ITraceQuery; 
import net.ample.tracing.framework.core.utils.MissingRepositoryException; 
import org.eclipse.core.runtime.CoreException; 
 
public class SimpleTraceQuery extends AbstractTraceQuery implements 
ITraceQuery { 
 
  private QueryManager queryManager; 
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  public SimpleTraceQuery() { 
  } 
 
  @Override 
  public List<TraceLink> submitQuery() throws MissingRepositoryException, 
CoreException { 
    queryManager = getQueryManagerInstance(); 
    List<TraceLink> results = new ArrayList<TraceLink>(); 
    Query<TraceableArtefact> query = queryManager.queryOnArtefacts(); 
    query.add(Constraints.type(getArtefactTypeByName("Feature"))); 
    List<TraceableArtefact> queryResult = query.execute(); 
    for (int i=0; i<queryResult.size(); i++) { 
      TraceableArtefact feature = queryResult.get(i); 
      List<TraceLink> outgoingLinks = feature.getOutgoingLinks(); 
      results.addAll(outgoingLinks); 
    } 
    return results; 
  } 
 
  private TraceableArtefactType getArtefactTypeByName(String name) { 
    Query<TraceableArtefactType> query = 
queryManager.queryOnArtefactTypes(); 
    query.add(Constraints.name(name)); 
    return query.executeUnique(); 
  } 
} 
 
 
For this code to work properly, we need to add some missing dependencies. The 
ones that are needed are shown in following figure. 
 
 

 
 
 
Finally, follow the steps mentioned previously to define your exported packages, 
organize your manifest files, etc. when you are done export the new trace query into 
a JAR file (same as for the features extractor instance), and copy it to your “plugins” 
directory inside your Eclipse installation directory. Restart Eclipse, and right click your 
traceability project file and choose the menu “Submit Query”. 
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The new trace query extension is automatically displayed and ready to be used. 

 
 

 
 
 
 
 
Trace View Instance 
 
The definition of the ITraceView in the framework description, showed that there was 
an abstract method showResults(List<TraceLink> results) which must be 
implemented. This is the method that will present, to the user, the list of trace links 
returned by a query execution. Different types of trace views can be implemented by 
instantiating this hotspot with the desired view. 

As with the previous examples, we are going to create a very simple trace view that 
is not meant to be used in real SPL development. We will be creating a view that 
opens a window which displays the list of trace links passed as argument to the 
method showResults. For each trace link in the list, we will create a string with the 
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source and target artifacts of the trace link and add each string to a list of strings 
(each string represents a link). Finally, that list will be shown inside a window. 

Start by creating the new Plug-in Project as mentioned previously and name it 
net.ample.tracing.simpleTraceView. The rest of the options, are the same as the 
ones used for the trace register instance. 

After creating the new Plug-in Project, go to the Extensions tab and add a new 
extension. Choose the net.ample.tracing.framework.core.traceQuery extension and 
press Finish. 

 
 
 

 
 
 
 
Now we must complete the configuration of our new extension in order for it to 
behave as expected. Expand the extension point tree, and go to the extractor 
element. Each field in this element has the following meaning: 
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Property 

 

 
Description 

id A unique name that will be used to reference this trace view. 

name A translatable name that will be used for presenting this trace 
view in the UI. 

class 

Plug-ins that want to extend this extension point must 
implement 
net.ample.tracing.framework.core.traceview.ITraceView 
interface. 

 
 
Fill in each of these fields with the following values (without the quotes): 
 

 
id = “net.ample.tracing.simpleTraceView.view” 
 
name = “Simple Trace View” 
 
class = “net.ample.tracing.simpleTraceView.SimpleTraceView” 
 

 
If you want, you can also add a description for this extension point in the 
corresponding element. Once we have defined all the attributes for our extension 
point, we are now going to create a Java class that implements the required 
interface, i.e. ITraceView (check Figure 1). 

Follow the steps described in the features extractor instance, and create the new 
class SimpleTraceView. Use The code shown below to implement the 
SimpleTraceView class which includes the method showResults(List<TraceLink> 
results) responsible for presenting the results to the user. 
 
package net.ample.tracing.simpleTraceView; 
 
import java.util.ArrayList; 
import java.util.List; 
import net.ample.tracing.core.TraceLink; 
import net.ample.tracing.core.TraceableArtefact; 
import net.ample.tracing.framework.core.traceview.ITraceView; 
import org.eclipse.jface.window.Window; 
 
public class SimpleTraceView implements ITraceView { 
 
  public SimpleTraceView() { 
  } 
 
  @Override 
  public void showResults(List<TraceLink> results) { 
    List<String> resultsList = new ArrayList<String>(); 
    for(int i=0; i<results.size(); i++) { 
      List<TraceableArtefact> sources = results.get(i).getSources(); 
      List<TraceableArtefact> targets = results.get(i).getTargets(); 
      for(int j=0; j<sources.size(); j++) { 
        for(int k=0; k<targets.size(); k++) { 
          String link = "'" + sources.get(j).getName() + "' links to '" + 
targets.get(k).getName() + "'"; 
          resultsList.add(link); 
        } 
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      } 
    } 
    SimpleTraceViewWindow window = new SimpleTraceViewWindow(resultsList); 
    openWindow(window); 
  } 
 
  private static void openWindow(Window window) { 
    window.setBlockOnOpen(true); 
    window.open(); 
  } 
} 
 
 
The code in SimpleTraceView class processes the list of results to create a list of 
strings containing all the sources and targets of each link. However, to show them in 
a window, we will create another class called SimpleTraceViewWindow which will 
launch a window with the desired contents. 

To do this, just choose File > New > Class and fill in the remaining options as follows.  

 

 
 
And to implement this window just paste the code shown below in the 
SimpleTraceViewWindow class. 
 
package net.ample.tracing.simpleTraceView; 
 
import org.eclipse.jface.window.ApplicationWindow; 
import org.eclipse.swt.SWT; 
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import org.eclipse.swt.graphics.Point; 
import org.eclipse.swt.widgets.Composite; 
import org.eclipse.swt.widgets.Control; 
import org.eclipse.swt.widgets.Label; 
import org.eclipse.swt.widgets.List; 
import org.eclipse.swt.widgets.Shell; 
 
public class SimpleTraceViewWindow extends ApplicationWindow { 
 
  private Composite container; 
  private java.util.List<String> links; 
 
  public SimpleTraceViewWindow(java.util.List<String> links) { 
    super(null); 
    this.links = links; 
  } 
 
  @Override 
  protected Control createContents(Composite parent) { 
    this.container = new Composite(parent, SWT.NONE); 
 
    final Label linksReturnedByLabel = new Label(container, 
SWT.NONE); 
    linksReturnedByLabel.setText("Links returned by query 
execution:"); 
    linksReturnedByLabel.setBounds(30, 15, 222, 13); 
 
    final List list = new List(container, SWT.V_SCROLL | SWT.H_SCROLL 
| SWT.BORDER); 
    list.setBounds(30, 45, 329, 584); 
    for(int i=0; i<links.size(); i++) { 
      list.add(links.get(i)); 
    } 
    return container; 
  } 
 
  @Override 
  protected Point getInitialSize() { 
    return new Point(400, 700); 
  } 
 
  @Override 
  protected void configureShell(Shell newShell) { 
    super.configureShell(newShell); 
    newShell.setText("Simple Trace View"); 
  } 
} 
 
All that is missing for this code to compile work is adding the necessary 
dependencies. The ones that are needed are shown in following figure. 
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Finally, follow the steps mentioned previously to define your exported packages, 
organize your manifest files, etc. When you are done export the new trace query into 
a JAR file (same as for the features extractor instance), and copy it to your “plugins” 
directory inside your Eclipse installation directory. Restart Eclipse, and right click your 
traceability project file and choose the menu “Submit Query”. 

 

 
 
The new trace view extension is automatically displayed and ready to be used. 
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 APPENDIXES 
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Appendix I - Mobile Photo Variability Model 
 
 
 
 
 
 
 
 
 

 
 

 
Figure 3 – Mobile Photo Feature Model 
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Appendix II - Mobile Photo Use Case Model 
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Figure 4 – Mobile Photo Use Case Model 

 

Annex 5 - Traceability Framework User Guide



 36

Request photo album
name

Insert album name

Show error Message album exists?

Create new album

[yes]

[no]

 
 

Figure 5 - Create new Photo Album Steps 
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Figure 6 - Label Photo Steps 
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Figure 7 - Link Photo to Address Book Entry Steps 
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Figure 8 - Display Photo of Incoming Call Steps 
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Appendix III - Extension Points Reference 
 
 
 
 
 
 
 

Trace Register 
 
Identifier: net.ample.tracing.framework.core.traceRegister 
 
Since: 0.1.0  
 
Description: This extension point is used to plug in additional trace registers for establishing 
trace links between SPL artefacts.  
 
Configuration Markup: 
 
<!ELEMENT extension (register)+> 
<!ATTLIST extension 
 point CDATA #REQUIRED  
 id  CDATA #IMPLIED  
 name CDATA #IMPLIED> 
 
<!ELEMENT register (description)> 
<!ATTLIST register 
 id  CDATA #REQUIRED  
 name CDATA #REQUIRED  
 class CDATA #REQUIRED  
 

• id - a unique name that will be used to reference this trace register.  
• name - a translatable name that will be used for presenting this trace register in the 

UI.  
• class - Plug-ins that want to extend this extension point must implement 

net.ample.tracing.framework.core.traceregister.ITraceRegister interface.  
 
<!ELEMENT description (#PCDATA)> 
 
Examples: The following is an example of the extension point usage: 
 
<extension point="net.ample.tracing.framework.core.traceRegister"> 
   <register 
      id="net.ample.tracing.sample_register" 
      name="Sample Trace Register" 
      class="net.ample.tracing.SampleRegister"> 
        <description>some description.</description> 
   </register> 
</extension> 
 
API Information: Plug-ins that want to extend this extension point must implement 
net.ample.tracing.framework.core.traceregister.ITraceRegister interface.  
Supplied Implementation: Traceability Framework Plug-in provides a default implementation 
of a trace register. 
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Trace Query 
 
Identifier: net.ample.tracing.framework.core.traceQuery 
 
Since: 0.1.0  
 
Description: This extension point is used to plug in additional trace queries.  
 
Configuration Markup: 
 
<!ELEMENT extension (query)+> 
<!ATTLIST extension 
 point CDATA #REQUIRED  
 id  CDATA #IMPLIED  
 name CDATA #IMPLIED> 
 
<!ELEMENT query (description)> 
<!ATTLIST query 
 id  CDATA #REQUIRED  
 name CDATA #REQUIRED  
 class CDATA #REQUIRED  
 

• id - a unique name that will be used to reference this trace query.  
• name - a translatable name that will be used for presenting this trace query in the UI.  
• class - Plug-ins that want to extend this extension point must implement 

net.ample.tracing.framework.core.tracequery.ITraceQuery interface.  
 
<!ELEMENT description (#PCDATA)> 
 
Examples: The following is an example of the extension point usage: 
 
<extension point="net.ample.tracing.framework.core.traceQuery"> 
   <query 
      id="net.ample.tracing.sample_query" 
      name="Sample Trace Query" 
      class="net.ample.tracing.SampleQuery"> 
        <description>some description.</description> 
   </query> 
</extension> 
 
API Information: Plug-ins that want to extend this extension point must implement 
net.ample.tracing.framework.core.tracequery.ITraceQuery interface.  
 
Supplied Implementation: Traceability Framework Plug-in provides a default implementation 
of a trace query. 
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Trace View 
 
Identifier: net.ample.tracing.framework.core.traceView 
 
Since: 0.1.0  
 
Description: This extension point is used to plug in additional trace views.  
 
Configuration Markup: 
 
<!ELEMENT extension (view)+> 
<!ATTLIST extension 
 point CDATA #REQUIRED  
 id  CDATA #IMPLIED  
 name CDATA #IMPLIED> 
 
<!ELEMENT view (description)> 
<!ATTLIST view 
 id  CDATA #REQUIRED  
 name CDATA #REQUIRED  
 class CDATA #REQUIRED  
 

• id - a unique name that will be used to reference this trace view.  
• name - a translatable name that will be used for presenting this trace view in the UI.  
• class - Plug-ins that want to extend this extension point must implement 

net.ample.tracing.framework.core.traceview.ITraceView interface.  
 
<!ELEMENT description (#PCDATA)> 
 
Examples: The following is an example of the extension point usage: 
 
<extension point="net.ample.tracing.framework.core.traceView"> 
   <view 
      id="net.ample.tracing.sample_view" 
      name="Sample Trace View" 
      class="net.ample.tracing.SampleView"> 
        <description>some description.</description> 
   </view> 
</extension> 
 
API Information: Plug-ins that want to extend this extension point must implement 
net.ample.tracing.framework.core.traceview.ITraceView interface.  
 
Supplied Implementation: Traceability Framework Plug-in provides a default implementation 
of a trace view. 
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Appendix IV – Rational Rose Use Case Modeling 
 
 
 
To create use case models that will be correctly imported by the framework, start by creating 
a new project and then open the Use Case View (Main). 
 
 
 

 
 
 
 
Then create the use case model elements that you desire. 
To create use case steps, use activity diagrams inside each use case, and model the steps of 
the use case using the newly created activity diagram. 
 
 
 

 
 
 
 

Once all the elements have been modeled, just save you project and it is ready to be 
imported in the Traceability Framework. 
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Appendix V – Enterprise Architect Use Case Modeling 
 
 
 
To create use case models that will be correctly imported by the framework, start by creating 
a new project and select “Use Case”. 
 
 
 

 
 
 
 
Then create the use case model elements that you desire. 
To create use case steps, use activity diagrams inside each use case, and model the steps of 
the use case using the newly created activity diagram. 
 
 

 
Now, we must export our model in XMI format. Go to Project > Import/Export > Export 
Package to XMI… and them insert the name of the file you which to export to (the extension 
of the file must be XMI), choose UML 1.3 (XMI 1.1) as the XMI type and unselect all the other 
options. Finally press Export and we can use the exported file to extract the elements to our 
framework. 
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