Andreé Luis Sequeira de Sousa

Traceability Support in
Software Product Lines

Lishoa
2008

Universidade Nova de Lisboa
Faculdade de Ciéncias e Tecnologia
Departamento de Informatica

Traceability Support in Software
Product Lines

André Luis Sequeira de Sousa (aluno n°® 26823)

Orientadora: ~ Prof. Doutora Ana Maria Dinis Moreira
Co-orientadores: Prof. Doutor Vasco Amaral, Doutor Uira Kulesza

Dissertacao apresentada na Faculdade de Ciéncias e
Tecnologia da Universidade Nova de Lisboa para a obtengdo
do grau de Mestre em Engenharia Informatica.

Lisboa
2008

Acknowledgments

To my wife, parents and family for all their support on my educational path.

To all my teachers and colleagues that accompanied me during my academic path.

To all members of the FCT/UNL AMPLE research group with whom I had the pleasure
of working, especially Uirda Kulesza, Mauricio Alferez, Antonielly Rodriguez, and Jodo
Santos.

To professors Ana Moreira and Vasco Amaral from Departamento de Informatica
(FCT/UNL) for the orientation provided during this stage of my master thesis. To
professor Jodo Araujo for also providing his guidance and council.

Also to my Comunidade Neocatecumenal, for all their support and prayers when they
were needed the most.

Resumo

A rastreabilidade esta a tornar-se uma qualidade indispensavel de qualquer sistema de
software moderno. A complexidade no desenvolvimento de software ¢ de tal ordem que,
se ndo contarmos com boas técnicas e ferramentas, torna-se rapidamente um fardo
demasiado pesado, sendo dificil ligar os artefactos de software aos seus requisitos
originais.

Os modernos sistemas de software sdo constituidos por um grande numero de
artefactos (modelos, codigo, etc.). Qualquer alteragdo introduzida num artefacto pode
repercutir-se por varios componentes. Avaliar este impacto ¢ uma tarefa ardua,
dispendiosa e propensa a erros. Esta complexidade inerente ao desenvolvimento de
software ¢ aumentada no contexto de Linhas de Produtos de Software. A rastreabilidade
pretende responder a este desafio, ligando os artefactos de software que sdo utilizados,
de forma a descobrir as influéncias que eles exercem entre si.

A nossa proposta passa por especificar, desenhar e implementar um Framework de
Rastreabilidade que forne¢a uma solugdo de rastreabilidade para linhas de produtos, ou
a possibilidade de o estender para outros cenarios de desenvolvimento. O trabalho desta
dissertacdo de mestrado ¢ desenvolver um framework extensivel, utilizando tecnologias
de Desenvolvimento Orientado a Modelos. Pretendemos ainda fornecer buscas basicas e
avancadas, e vistas desenhadas para satisfazer as necessidades de cada utilizador.

Palavras-chave: Rastreabilidade, Engenharia de Linhas de Productos de Software,
Desenvolvimento Orientado a Modelos.

VII

Abstract

Traceability is becoming a necessary quality of any modern software system. The
complexity in modern systems is such that, if we cannot rely on good techniques and
tools it becomes an unsustainable burden, where software artifacts can hardly be linked
to their initial requirements.

Modern software systems are composed by a many artifacts (models, code, etc.).

Any change in one of them may have repercussions on many components. The
assessment of this impact usually comes at a high cost and is highly error-prone. This
complexity inherent to software development increases when it comes to Software
Product Line Engineering. Traceability aims to respond to this challenge, by linking all
the software artifacts that are used, in order to reason about how they influence each
others.
We propose to specify, design and implement an extensible Traceability Framework
that will allow developers to provide traceability for a product line, or the possibility to
extend it for other development scenarios. This MSc thesis work is to develop an
extensible framework, using Model-Driven techniques and technologies, to provide
traceability support for product lines. We also wish to provide basic and advanced
traceability queries, and traceability views designed for the needs of each user.

Keywords: Traceability, Software Product Line Engineering, Model-Driven
Engineering.

IX

TABLE OF CONTENTS

CHAPTER 1. INTRODUCTION 1
O T o (0] 1 (3 40 B D 1T 0 o) () o TP USSS 2
1.2 Limitations of EXiSting APPrOaches..........coeuiriiriierieiieieeie ettt sneeseeas 3
1.3 WOTK COMEEXL ..ottt ettt st sh ettt et e a e s bt e s b et e e s e enbesbeesbeennean 4
1.4 PropoSEd SOIULIONecuviieiiieiiiiieiieecie ettt ettt e v e et e esesteeste e beesbeessesssesseesseesseenseessesssesssessseses 5
1.5 DOCUMENE STIUCLUIEeiutiiiieiiie ittt ettt ettt ettt ettt e sb e sae et et e saeesbe e bt et e enteentesseesbeennean 6

CHAPTER 2. RELATED WORK 9
B B B 1o 1 o) U TSRS RUPRI 9
2.2 Model-Driven ENGINEEIINGcccecveriieiiiiieiieriesieeteeteeseesteesteesseesesssessaessaesseessesssesseesseessesssenns 13

2.2.1 Traceability in Model-Driven ERGINEETINGccccociiieiinieiininiiesteeeeeereese s 14
2,22 DUESCUSSION.......ccuveveeeiieeeeie ettt e et e e et e e e et e e e etb e e e e aaaeeeestbeeeeareeeeeneas 20
2.3 Software Product LINEScoeeeeieieiiieniininiesieeieeteteeste ettt st sttt 21
2.3.1 Traceability in Software Product LIResc..cccccoioiioiaioiiniaiiiiesiee e 23
2.3.2 DESCUSSTON ..ottt ettt ettt s e et e a ettt et a et et e et eneas 28
B b v 1ot 1 o) 1 2 e 1o ST 29
2041 DESCUSSTON. ..ottt ettt ettt et et ettt enees 33
2.5 SUIMIMATY ..ottt ettt ettt ettt ettt ettt e e e eb e e sb e e bt e et e et satesbeesbe e bt enteenteebeesbee bt enbeenbesneesaee 34

CHAPTER 3. A MODEL-DRIVEN TRACEABILITY FRAMEWORK 35

3.1 Framework DESCIIPLION.c..ccviiiertieriietieteettesttesteeteeteseteseeesseesseesseessessaesseesseessesssesssesssesseessensns 35
3.1.1 Traceability Metamodel......................c..ccociiueiieeieiiiiciieie et 36
3.1.2 Traceability Framework SIFUCHUTEccccoccioiviiiiieiiininiit ittt 37

T U1 0) (55 101113 o) 1 LR USSP 40

3.3 Framework INStantiationccceeoieiiriinininineneeietet ettt sttt 42
3.3. 1 EXtractor INSIANEIATIONcc.ouiueieeeiiee ettt 43
3.3.2 RegiSter INSIANTIALIONc..ccooceeeieeeee ettt ettt ettt ettt 44
3.3.3 QUETY INSIARLIATION ..ottt ettt 46
334 VIEW INSEANIIQLION.oceeiieiieeee ettt ettt 47

3.4 Framework EVOIULION.ooiiiiiitieieieee ettt sttt et 49

3.5 SUIMIMATY ..ottt ettt ettt et e a e sb e sb e e bt e et et e satesheesbe e bt enteen e ebeesbee bt enbeenbeeneesaee 50

CHAPTER 4. ADDRESSING SOFTWARE PRODUCT LINES DEVELOPMENT WITH

TRACEABILITY 53
4.1 COVETING ANALYSIS . .etiiuieiieieieiteite ettt ettt sb ettt ettt be st e bt e bt ea e et et et e st e ebesaeebe et ennenee 53
4.2 Change IMPact ANALYSISc.cccuerieriieiiieiesieete et eteete et et et et e eaessaesseesseesseessesnsesseesseanseenseans 54
4.3 Detection of Feature INteraction..........cccueouiriiririneririnietetentestesie ettt 55
44 SUIMIMATY ..eeouveeeuteeiteeeieesteeeteesbeeeateesbeesabeesabeesateesabeeeateesabeesateesabeesabeesabeesateesabeesateesabeenateesaseenases 56

CHAPTERS. CASE STUDY 59
5.1 Home Automation Product LNcceeeieiiieiiiiieieiiesee et 59
5.2 Framework USAZEccieiuiiiieiieie ettt ettt ettt et ettt ees e e st e beeneeneeeneeenes 61

52,1 Defining Trace LINKSccccoociioiioiiiiieee ettt 61
5.2.2 Detecting Feature INTEraCIIONcccccoveivueiiiiieiiest ettt 63
5.2.3 Implementing a Feature Interaction INStANCE...................c...ccoveeevvemieesieiiiieeeeeiieeseeeeannes 64

5.3 CompariSOn Of RESUILScccuieiiieiiiiiiieceesit ettt ettt beesaesreesteesbeesseesseessessaensees 65

54 SUIMIMATY cuetieiiieiteeie ettt ettt ettt e s bt e st eesabeesateesabaesateesabaessseesaseesnseesasaesnseesnsaesnseesnseesnseenn 67

CHAPTER 6. CONCLUSION 69
6.1 CONMTIDULIONS. ...ttt ettt ettt bbbt bbb e et et s b s bt beebeenseneennen 70
6.2 FULUIE WOTK ..ottt ettt ettt ettt b ettt e e aes 70

REFERENCES 71

GLOSSARY OF ABBREVIATIONS 77

XI

ANNEXES 79

Annex 1 - Trace Extractor EXtension POINtc.ccccovieriiiiiiiiiciesieieeieeiesee e ees 80
Annex 2 - Trace Register EXtension POINt...........cocoiiiiiiiiiiiiiii e 82
Annex 3 - Trace Query EXtension POINTccccceivieriiiriieiiiieeiesieec ettt sreesae s esne e 83
Annex 4 - Trace View EXtension POINtccoeciiiiiiiiiiei ettt 84
Annex 5 - Traceability Framework UsSer GUIAE..........ceecviiiirienieiieieeieeeseeeeee e 85

XII

LIST OF FIGURES

Figure 1.1 — Graphical representation of work packages in the AMPLE project...........ccocevoerencnieincenenne. 5
Figure 1.2 — Traceability Framework architecture OVEIVIEW..........ccvevuieriieiieieniieiieieeie e eens 5
Figure 2.1 — A simple traceability table (taken from [SOT)......ccereririniniiiiieeeee e 11
Figure 2.2 — “Depends-on” and “Dependents-off” traceability lists (adapted from [50])ceeevvrveriennnns 11
Figure 2.3 — Traceability basic concepts (taken from [717]).....cceieriiiriiiiieeeeee e 12
Figure 2.4 — Model refinement in MDE (taken from [28])........cccceeiirierieniieieeiesiesiese e 14
Figure 2.5 — The EBTpp process (taken from [17]) .cc.oooeiiiiniiniiieieeeeeeee e 15
Figure 2.6 — Goal-Centric Traceability (taken from [18])cccveceeierierieiieieeiece e 16
Figure 2.7 — Essential traceability metamodel (taken from [62])cccocevieiriieiieninine e 17
Figure 2.8 — Trace Analyzer overview (taken from [24]).......cccoevieiiieierienieeeese et 18
Figure 2.9 — Trace metamodel (taken from [42])ocoiioiiiiieeee e 18
Figure 2.10 — Transformation chain trace metamodel (taken from [27])cceovveevercieiienienieeeeeieeeeiene 20
Figure 2.11 — Essential product lines activities (taken from [197])......cccoeveiiiniiiiiiiiiineeeeeee 22
Figure 2.12 — Variability on top approach (taken from [S9])ccccocerimirinininiiiiiniineceeeceeeeee 24
Figure 2.13 — Conceptual model for traceability (taken from [8])cccceverieieieiieeeeee e 25
Figure 2.14 — Artifact level traceability approach (taken from [59])......cccoovevieiiiiieiiienieieee e 25
Figure 2.15 — Fine-grained traceability approach (taken from [597])ccoceeirieieiiniiiieeeeeeeee 26
Figure 2.16 — The GatherSpace software requirements pyramid (taken from [30]).....c..cccceceeveevieniencnenne. 32
Figure 3.1 — Traceability MetamOdel..........cceiiiiiiiieiiiie ettt 36
Figure 3.2 — Traceability Framework architeCture OVEIVIEW..........cc.vecverieriienieeiiesiesieseeneeeee e sneeseeeneeens 38
Figure 3.3 — Trace link definition WOTKTIOWcooiiiiiiiiiii e 39
Figure 3.4 — Trace query and trace VIeW WOTKEIOWccooieriieiiieiieienieiceie e 39
Figure 3.5 — Traceability Framework components diagram............ccccoeereeieiieienienene e 41
Figure 3.6 — Trace query and trace view Selection WINAOWccceevuerierienieenienie et 42
Figure 3.7 — Rational R0Se eXtractor INStANCEcocuerieriieriieiieie ettt ettt sttt sae e ens 43
Figure 3.8 — Rational R0Se eXtractor TUNTIME.eecveiierieriieie et eteeteeie et eae et e st ee e saeseeesseenseeseeneeens 44
Figure 3.9 — Feature to Use Case trace register iNStanCeeevueeierierieniieiieeieniiesicenieeee st 44
Figure 3.10 — Feature to Use Case trace register GUI...........oooiiiiieiirienieiieeee et 45
Figure 3.11 — Related artifacts qUETY INSTANCE.eiueruiruirieeeieiieieie ettt ettt s see e e e e neas 46
Figure 3.12 — Related artifacts qUEry GUL.......c.cocuiiiiiiiiieiet ettt ens 47
Figure 3.13 — Overview and detailed trace VIew INStANCES.........ccueruereruireeieieieieie et 48
Figure 3.14 — Detailed tree VIEW INtEITACE.......cciervieiiieiecierieit ettt e e seeee e s see s e e eneeens 48
Figure 3.15 — Tree OVerview INTETTACE.cc.ciouiiiiiiiiieic ettt sttt e 49
Figure 3.16 — "Black Box" framework instantiation SCENArioc.cceceverereeierienieneneneneneneeceeeeennes 50
Figure 4.1 — SPL COVEIING ANALYSIS ..c..eetiiiiiieiiieitieieee ettt ettt et ee et s iee b e nae et ens 54
Figure 4.2 — SPL change impact aNalySiS..........cuecieriirrieioierieniiesieeeeeieeseeieeseeaestaesseesseesesnnessaesseesseansenns 55
Figure 4.3 — Feature interaction deteCtIONcc.eeruiiiuiiiiiieiieit ettt s 56
Figure 5.1 — Feature model for a home automation SYSteM..........ccecuveverierierieenienie e se e 59
Figure 5.2 — Use case model of a home automation SYSteIMccereririeieiierieiereee e 60
Figure 5.3 — Trace register execution for the home automation System..........cc.ccecevererinienerenieeeenennennes 62
Figure 5.4 — Feature interaction in home automation SYSEEIMc.eeiririeienieierieseee et 63
Figure 5.5 — Feature interaction detection INSTANCEccevvieriierieeieeeierieieeieeeesieeseeseeae e sreesseeseeneeens 64

LIST OF TABLES

Table 2.1 — MDE traceability approaches summary (adapted from [28] and [46]).....ccccevcererericeienieneenne. 21
Table 2.2 — SPL traceability approaches summary (adapted from [46])cccoevevieriiecirecienieniereee e 28
Table 2.3 — Traceability t00]S SUMIMATYcciiiiieieieie ettt ae e e eeeneas 34
Table 5.1 — Trace links for the home automation SYStEMccververierieriieiieieete e 61
Table 5.2 — Comparison of SPL approaches with Traceability Framework.............ccocoociviiininniienenene. 65
Table 5.3 — Comparison of existing traceability tools with Traceability Frameworkc..c..cccceceeeuennnne. 66

XV

Chapter 1. Introduction

In software development, traceability is becoming a necessary characteristic of any
system, as it supports software management, evolution and validation [54]. The IEEE
Standard Computer Dictionary [38] defines traceability as:

1. The degree to which a relationship can be established between two or more
products of the development process, especially products having a predecessor-
successor or master-subordinate relationship to one another, for example, the
degree to which the requirements and design of a given software component
match;

2. The degree to which each element in a software development product establishes
its reason for existing, for example, the degree to which each element in a
bubble chart references the requirement that it satisfies.

This definition is strongly influenced by the requirements management community,
which were the originators of traceability [1]. Gotel and Finkelstein define requirements
traceability as [32]:

...the ability to describe and follow the life of a requirement, in both a forward and
backward direction; i.e., from its origins, through its development and specification, to
its subsequent deployment and use, and through periods of ongoing refinement and
iteration in any of these phases.

In other words, traceability allows identification of the artifacts implementing a
given requirement or the originating requirement of a given software artifact. For
instance, a function programmed in C++ can be traced back through the elements that
led to its implementation, all the way up to the requirement that motivates the existence
of that particular piece of source code.

However, it is becoming clear that using traceability which is only concerned with
requirements is not sufficient. In Aspect-Oriented Software Development (AOSD) [5],

traceability of crosscutting concerns could be used to guarantee the consistency of
requirements [68]. In Model-Driven Engineering (MDE) [66] traceability links could be
used to associate the target models created by model transformations to their source
models and vice-versa. Some authors are beginning to regard traceability in a much
broader scope, where traceability is seen as any relationship that exists between artifacts
involved in the software life cycle [1].

With software systems growing in complexity and size, traceability has become a
necessity for software developers. Proper traceability support can yield improvements in
software quality and eliminate much of the overhead attached to tasks such as
performing covering analysis, change impact analysis and other related tasks. Another
benefit is that using automated and formally defined methods of capturing trace
information lowers the chance of occurring errors and the costs (economic, time,
organizational, etc.) inherent to performing this tasks by hand [32].

This thesis work is being developed in the context of Software Product Lines (SPL)
Engineering, more specifically, for the support of traceability in SPL, filling the gap in
this area. We will specify, design and implement a traceability framework for this
software development methodology. For that purpose, several technologies were
assessed, with a special focus on Model-Driven Engineering (MDE) for suitability in
achieving our goals.

1.1 Problem Description

In modern software industry, the complexity inherent to the development of a software
system can become an unsustainable burden if not properly dealt with. Understanding
the relationships between the different artifacts used in software development plays a
major role in ensuring that the delivered system meets the stakeholders’ needs [57]. It is
within this context that traceability problems can occur when the artifacts found in a
solution (the system implemented) cannot be easily matched against the corresponding
set of problem features that are being addressed [34].

Without proper traceability methods, any change introduced, either in one of the
requirements (e.g., new market rules), intermediate specification model, or in any of the
solution artifact (e.g., source code file is edited) might lead to the inability to verify if
the requirements are still being satisfied (forward traceability), or if the artifact is still
implementing any requirement (backward traceability).

The traceability problem requires a solution that allows the developers to reason
about the relationships between the elements of the different spaces (problem space vs.
solution space), in order to efficiently maintain and evolve a software system.

This problem becomes even more complex in a SPL environment, where the
existing complexity to traceability (a great deal of artifacts to be dealt with) is
augmented by the increasing number of different variants that can be produced by the
product line. This adds the necessity to provide not only traceability between the many
artifacts that compose a system, but also to distinguish between the artifacts that belong
to a variant that is created by simply choosing a configuration features.

Many approaches for SPL development have been proposed over the years [9, 11,
19, 20, 26, 31, 59, 61]. The vast majority of these approaches offer the possibility to
specify the commonality and variability inherent to a product line and some of them
even offer complete solutions for establishing an SPL [11, 59, 61]. The most common
method for achieving this is through the use of feature models, initially presented by
Kang et al. [44], which have been extended and adapted to include several

improvements [14, 21, 35]. Other proposals have also emerged, such as the Orthogonal
Variability Model [59] or modeling features with UML [31]. These approaches are
usually focused on combining variability information contained in a variation model
(e.g., feature model) with requirements information contained in an appropriate model
(e.g., use cases) which is an important aspect of product line engineering.

The main problem is that most of them do not provide any traceability support
other than combining elements from different domains. For instance, validating a
feature implementation (e.g., a design class) against its requirements is a time
consuming and error-prone task without a solution that provides traceability support
throughout the entire SPL life cycle. Without traceability techniques, performing change
impact analysis comes at a huge cost. Reasoning about the rationale associated with an
artifact, information that is necessary for performing tradeofts, is also very difficult to
accomplish without proper traceability support. Finally, coverage analysis can also be
performed quite easily with traceability mechanisms. Checking if all the requirements
are being met or if an artifact is traceable to any requirement becomes a question of
simply submitting the right query and browsing the results.

The majority of the existing approaches does not address these issues or do so in a
trivial way. Another important aspect is the appropriate tool support for an effective
traceability solution. Most approaches do not provide a complete solution or do so in a
strictly theoretical fashion without supporting tools, which must be an essential part of
any traceability framework.

1.2 Limitations of Existing Approaches

Several approaches and tools have been developed over the years to address the
traceability problem in software development. Almost all of the currently available tools
[30, 37, 39, 65, 69] have been implemented for traceability in Single-Systems
development. They are capable of managing the trace links between requirements and
other software artifacts, however they do not address some key issues in product lines
such as managing variability and linking it to the artifacts used throughout the SPL
lifecycle. Recently, there has been as effort to integrate some of these traceability tools
with SPL tools such as pure::variants [61] and GEARS [11], but although this enables
to trace from feature models to other artifacts, there are still many useful and important
trace queries that are left unanswered. For instance, trace links could be exploited to
perform feature interaction detection or to discover how the artifacts of a product
variant relate to another product variant. This is currently not possible to do using the
tools currently available. Another problem is that commercial traceability tools are
closed and cannot be adapted to extend their base capabilities, which makes it
impossible to take an existing tool and adapt it to the SPL traceability scenario.

Some approaches to address traceability in SPL have been proposed by several
authors. Some authors prefer to model variability using a model created for that
purpose, and to create traces from variability elements to other artifacts [59]. Other
authors focus on traceability for certain aspects of SPL, keeping it comprehensive but
not exhaustive [7, 47]. The problem with the majority of these approaches is the lack of
appropriate tool support which limits its use in a real software development scenario.

1.3 Work Context

AMPLE [60] is an RTD project funded by the European Union. AMPLE combines
renowned academic and industrial expertise from UK, Portugal, France, Spain,
Netherlands and Germany to provide a holistic software product line development
methodology that improves modularization and traceability of variability. The list of
participants includes:

e Lancaster University, UK

e Universidade Nova de Lisboa, Portugal

e Darmstadt University of Technology, Germany

e ARMINES and Ecole des Mines de Nantes, France
e University of Twente, The Netherlands

e Universidad de Malaga, Spain

e HOLOS, Portugal

e SAP AG, Germany

e Siemens AG, Germany

The project coordinator is Prof. Dr. Awais Rashid of Lancaster University. The
coordinator for the FCT/UNL team is Prof. Ana Moreira. The project began in October
2006 and has 3 years of duration, until September 2009.

The aim of AMPLE is to provide a Software Product Line development
methodology that offers improved modularization of variations, their holistic treatment
across the software lifecycle and maintenance of their (forward and backward)
traceability during SPL evolution. Currently, there is a big gap between research in
requirements analysis, architectural modeling and implementation technology, and the
industrial practice in SPL engineering. Furthermore, the focus tends to be on the design
and code level when variations need to be identified, managed and analyzed from the
very early stage of requirements engineering. Architecture models are related to
requirements models in an ad-hoc fashion and implementation tends to rely on pre-
processors which are inadequate substitute for proper programming language support
for variability. Nor is there any systematic traceability framework for relating variations
across a SPL engineering lifecycle.

AMPLE will combine AOSD and MDE techniques to not only address variability
at each stage in the product line engineering lifecycle but also manage variations in
associated artifacts such as requirements documents. Furthermore, it aims to bind the
variation points in various development stages and dimensions into a coherent
variability framework across the lifecycle thus providing effective forward and
backward traceability of variations and their impact. This makes it possible to develop
resilient yet adaptable SPL architectures for exploitation in industrial SPL engineering
processes.

Figure 1.1 shows the work package breakdown of AMPLE. This thesis work is
being developed under the WP4 umbrella of the AMPLE Project. The WP4 is
concerned with developing a framework for backward and forward traceability in
product line engineering.

e i
| | WP6: Case Studies WP7: Dissemination | !
and Validation and Exploitation

WP1: Aspect-Oriented,
Model-Driven
Requirements Engineering
Framework for Software
Product Line Engineering

WP4: Traceability

WP2: Aspect-Oriented,

WPT: Project Model-Driven Architecture . Framework Supporting
! > . . Forward and Backward

Management i Design and Evaluation Traceability in Software
' Approach for SPLs y

Product Line Engineering

WP3: Aspect-Oriented,
Model-Driven
Implementation
Techniques for Software
Product Lines

Figure 1.1 — Graphical representation of work packages in the AMPLE project

1.4 Proposed Solution

The solution that we propose is to specify an extensible Model-Driven Traceability
Framework that allows for the definition and implementation of traceability
mechanisms and tools for SPL. In a first stage, only traceability between features and
requirements artifacts will be provided, but implementing a solution for other artifacts
should be straight forward. This framework will be composed of four main modules, as
shown in Figure 1.2.

Trace Register Trace Query | > Trace View
Module Module Module

4........
‘llllllll

ATF (Trace Storage Module)

Figure 1.2 — Traceability Framework architecture overview

The “Trace Register Module” is responsible for creating, updating or deleting trace
links between the different artifacts. It can be used to manage the links stored in the
repository. The “Trace Query Module” provides means to select a subset of trace links,

from the traceability repository. It is used for submitting basic queries, like selecting the
artifacts linked to a feature, or more complex queries, like coverage analysis and change
impact analysis. The “Trace View Module” is responsible for supplying a graphical or
textual view for the trace queries submitted. Finally, the “ATF (Trace Storage Module)”
module is in charge of storing the trace links, the trace artifacts and associated
information, such as the rationale, in a persistent way.

The main idea behind this framework is to use the variability model as the base
reference for traceability. It should allow the developers to perform traceability from the
variability model to other models. Another important aspect is that the framework
should be highly adaptable and evolvable, to satisty the needs of different users.
Initially, we will be using the feature models (modelled in FMP [4]) as our variability
model and a use cases model as the requirements model, but these will be variation
points for this framework. The framework will allow changing either the variability
model or the requirements model or any other model used in a SPL, in order to suit each
developer’s needs. For instance if one wishes to use viewpoints, it can be used instead
of the default use cases model with a simple adaptation to the framework. This goal is
achieved by using a traceability metamodel under development for the AMPLE’s WP4,
which will be explained in more detail in Chapter 3.

1.5 Document Structure

The remainder of this document is divided in six chapters and four annexes. Chapter 1
is this introduction. Several concepts regarding the traceability problem were presented
with a special focus on traceability for Software Product Lines.

Chapter 2 presents some related work. First the general concepts regarding
traceability are discussed. We introduce some notions and methods on how to describe
and use traceability to aid software development. The chapter also presents some of the
existing traceability solutions for MDE and SPL, and the state-of-the-art in terms of
research in this field. A survey of some traceability tools that were evaluated in the
context of this thesis is also discussed.

Chapter 3 presents our proposal for addressing the main problems discussed in
Chapter 1 and Chapter 2. We are proposing a Model-Driven framework to address
traceability in software development, especially in SPL development, an area where we
found a big gap. In this chapter we describe the general architecture of the framework,
the implementation that was achieved, and the necessary steps to instantiate the
framework’s hotspots. We also discuss our plans of evolving the framework to a
scenario of “Black Box” instances development, to ease the process of instantiating the
framework hotspots.

In Chapter 4 we discuss how we plan to use traceability techniques to address
problems that arise during the SPL development stages. We describe three main
problems that affect SPL development: covering analysis, change impact analysis and
detection of feature interaction. We present the strategies that we have developed for
addressing these problems and our plans to implement them as instances for our
framework.

Chapter 5 presents a case study based on a home automation product line. This case
study is based on “Smart Home” case study provided by Siemens'. We validated our
framework against this case study by demonstrating how we could implement an

' Case study provided in the context of AMPLE project.

instance to provide detection of feature interactions. This kind of problem is not
addressed in other traceability tools and remains untackled in the approaches discussed
in Chapter 2.

Chapter 6 concludes this document by presenting the contributions and our plans
for future work.

Chapter 2. Related Work

In this chapter we will discuss the work related to traceability and how it as been
applied in the fields of Model-Driven Engineering (MDE) and Software Product Lines
(SPL). We begin by introducing some definitions for traceability. Some usage
scenarios, techniques on how to achieve traceability solutions and trace queries are also
described in the first section. We also discuss the importance that traceability has in
software development, has it provides means to address the growing complexity of
software systems [34]. The following sections of the chapter discuss traceability
solutions in the domains of MDE and SPL. We present a brief introduction to these
subjects, and analyze several approaches that have been proposed for traceability in
these areas of research. Each approach is evaluated by a set of criterion and the results
are discussed at the end of each section. The final section presents the results of the
traceability tools survey that was conducted as part of this thesis work. We also
evaluated each tool against a set of criterion and present our results in the end of the
chapter.

2.1 Traceability

With the increase of the software complexity, software engineers have realized that the
assessment of the impact that a change in one requirement introduces in the rest of the
system is a critical task [34]. When a requirement changes, it may introduce a conflict
with the rest of the requirements of a system. For instance, if the system is required to
evolve to provide enhanced security (e.g., using stronger encryption algorithms and
larger encryption keys) it may conflict with the existing requirement that addresses the
response time that the system should meet.

If these conflicts go undetected, it may lead to a system that fails to meet the
requirements of the stakeholders, meaning that the software system might not be good
enough for its intended use [63]. It therefore becomes necessary to perform the task of
detecting how requirements influence each other, and how they are implemented, so that

when a change is introduced in either a requirement, or in a software artifact, it is
possible to assess the impact that reverberates on the rest of the software system. In his
book “Software Requirements: Objects, Functions and States”, Davis classifies
traceability information in four types [22]:

e Backward-from traceability links requirements to their sources in other
documents or people.

e Forward-from traceability links requirements to the design and
implementation components.

e Backward-to traceability links design and implementation components back to
requirements.

¢ Forward-to traceability links other documents (which may have preceded the
requirements document) to other relevant requirements.

An important aspect is also the ability to define traceability between requirements
themselves. Davis does not seem to clearly define this relationship, but Kotonya and
Sommerville [50] state that by extending the backward-from and forward-to traceability
in order to allow links between the same document (the requirements document), it is
possible to cover this concern.

Even though traceability as been defined to include links to the source of a
requirement (backward-from traceability), in practice, it is usually maintained between
requirements themselves and between a requirements and its design artifacts. Gotel et
al. [32] give a comprehensive picture of the “requirements traceability problem” and
discuss the necessity to perform traceability all the way up to the source of a
requirement (people, other requirements, documents, standards, etc.). They introduce
the notion of pre-RS (pre-Requirements Specification) traceability and post-RS (post-
Requirements Specification) traceability. This distinction is necessary because there are
different needs in terms of the information that is dealt with in each level and the
problems that arise.

Post-RS traceability provides the ability to trace requirements from, and back to, a
baseline (the requirements specification). Any change introduced in the requirements
specification must be propagated though the linked elements. The pre-RS traceability
consists on the ability to trace requirements from, and back to, their originating
statement(s), from which requirements are produced with the information collected
from the existing sources, and combined in a single requirements specification. Changes
in this requirements production process must be reflected in the requirements
specification, and vice-versa.

To define traceability links, one of the most common methods used is by means of
traceability tables. Figure 2.1 shows a traceability table example for a system with six
requirements. Each requirement is listed in the vertical and horizontal axes of the table,
and the cells are used to mark the relationships between them. These tables can also be
used to mark any other kind of traceability relationship. This would require adding the
traceable artifact to both axes.

The proper way to read this table is by navigating its cells and interpreting the
information depending on whether we are reading a row or a column. A mark in the row
of a requirement indicates that this requirement is depending on the marked
requirements. For instance, R3 in Figure 2.1 is dependent on R4 and RS5. On the other
hand, by navigating the column we can find which requirements are depending on a

10

specific requirement. We can also see that requirement R2 has R4 as dependent. Using
this approach, it is possible to perform change impact analysis simply by navigating the
column of the requirement that was changed. If a change was introduced to RS, by
going down the RS column, we could find that R2 and R3 are dependent requirements,
and therefore the impact on R2 and R3 of the change introduced on R5 can be assessed.

Rl [R2 [R3 | R4 | RS | R6
R1 * *
R2 * *
R3 * *
R4 *
RS *
R6

Figure 2.1 — A simple traceability table (taken from [S0])

These tables however, are not scalable. For a small number of requirements, it is
possible to navigate the table with relative ease to perform the necessary analysis, but
for a large number of requirements (hundreds or thousands) the table becomes
unmanageable. To address this problem, an alternative to traceability tables can be used.
Instead of using a table, it is possible to use two traceability lists to provide the same
information. One list traces the “depends-on” traceability, while the other provides the
“dependents-off™ traceability. Figure 2.2 shows an example of these lists.

Depends-on
R1 R3, R4
R2 R5, R6
R3 R4, R5
R4 R2
RS R6

Dependents-off

R2 R4
R3 R1
R4 R1,R3
RS R2,R3
R6 R2,R5

Figure 2.2 — “Depends-on” and “Dependents-off” traceability lists (adapted from [S0])

Traceability lists have the advantage of being more compact and easy to read than
traceability tables. If one wishes to find the requirements that are depending on a given
requirement it is a matter of searching the “dependents-off” list. For instance it is easy
to see that R3 as R1 as dependent. The inverse is also straightforward. By navigating the
“depends-on” list, we can see that RS is dependent on R6. The only drawback of using
traceability lists is that the information is duplicated, leading to problems of maintaining
the information in a coherent state in both lists.

Finally another important aspect of traceability is the ability to perform queries on
traceability information and viewing the results returned. The great majority of the
authors do not provide any implementation of the approaches proposed. This is usually
left for the developer of the system to either implement the traceability himself, or to be

11

performed by traceability tools [13, 30, 37, 39, 69]. Many different solutions can be
used to achieve the same goal. Traceability tables can be implemented using a simple
spreadsheet, or a relational database. Traceability lists can also be implemented using a
relational database, a spreadsheet, a simple text file, or implemented in many
programming languages (e.g., the standard Java Class Library [67] already contains a
Hashtable implementation that could be used to implement this solution).

Depending on the solution, the desired information can either be extracted
manually (e.g., going though a spreadsheet) or automatically using predefined or
custom queries (e.g., using SQL with a relational database). There are several kinds of
traceability queries that can be performed. Traceability queries can occur at two
different levels:

o Inter-level Queries traceability between artifacts at different development levels
(e.g., requirement with design artifact or design artifact with source-code).

o Intra-level Queries traceability between artifacts at the same level of
development (e.g., requirements models with requirements documents).

The type of queries can also be divided between simple and complex types. Simple
queries usually involve choosing an artifact or set of artifacts and viewing the related
artifacts. The type of information returned should also be chosen (which kind of
artifacts, etc.). The results can also be viewed in a variety of formats. It is possible to
see it represented in a simple textual report, a graph or a table. Figure 2.3 shows an
overview of the concepts that address traceability.

Requirement Architecture/

Model Design Model

]
1
] |
] -
1
] : . ‘ -

Reports with
1 .
: Metrics Graphics
i

Traceability Views
Legend
~¢--+++=-» Trace Link <> Trace Query

Figure 2.3 — Traceability basic concepts (taken from [71])

More complex and sophisticated traceability queries can also be provided to the
developers. These might include requirements coverage analysis, which aims to ensure
that architecture, design and implementation artifacts cover specific requirements. This
could be useful in satisfying the need of showing that the resulting system met the
contractual agreements. Another important query might be the change impact analysis,
mentioned previously, which allows the discovery of artifacts that are affected by a
change introduced in a requirement. As mentioned in Chapter 1 the most common form

12

of traceability is performed between requirements themselves and/or the software
artifacts that realize them. However, Aizenbud-Reshef et al. suggest a broader definition
of traceability [1]. The authors consider traceability as “any relationship that exists
between artifacts involved in the software-engineering life cycle”. This definition
includes elements that fall out of the scope of requirements traceability but are essential
for new paradigms and methodologies that have emerged in recent years (e.g., Model-
Driven Engineering [66] or Software Product Lines [19]), which will be discussed in
more detail in the following sections.

2.2 Model-Driven Engineering

Model-Driven Engineering (MDE) refers to the systematic use of models as first-class
entities throughout the software development process, where the software lifecycle is
considered to be a chain of model transformations [28]. The main purpose of MDE is to
provide the developers with methodologies that use models, raising the level of
abstraction of creating software [66]. The goal of MDE is to make the process of
creating new software automatic and to ease necessary changes in a rapidly changing
environment by using model transformations. Model-Driven Engineering is sometimes
referzred to as Model-Driven Software Development or Model-Driven Development
[66]°.

According to Stahl and Volter [66], the idea of modeling, as in MDE’s point of
view, is not exactly new, and has been used in software development for documenting
the inner structure of software. Developers would then review each step of the
development process to check the models for consistency and correct possible mistakes.
Another approach is reverse engineering that is possible in many UML tools. However
this approach is merely source code visualization in UML syntax. Visually it may be
clearer and more understandable, but in essence, the abstraction level of these models is
the same as the source code itself.

Model-Driven Engineering offers a significantly more effective approach: models
are abstract and rigorous at the same time. Abstractness does not stand for vagueness,
but for compactness and reduction to the essence [66]. The difference between old
modeling techniques and modern MDE is that the new vision is not to use models only
as simple documentation to aid in software development, but use them as input/output
for computer based tools implementing precise operations. MDE models have the exact
meaning of program code in the sense that the bulk of the final implementation, not just
the class and method skeletons, can be generated from them. Models are no longer only
documentation, but they become actual parts of the software.

Figure 2.4 shows the MDE process of model refinement and the relationship of
each model with the developed system. The vertical arrows demonstrate the refinement
achieved in each step, by means of a model transformation, from more abstract models,
into more concrete ones. Since all the models are representations of the same system,
each transformation step should preserve the intended meaning of the source model,
while adding new details to the resulting model [28].

Bézivin compares the evolution of object technology in the past period with the
new proposals and claims of MDE [10]. The basic principle in Object-Oriented
technology was: “Everything is an object”. This had a great impact in driving the
technology in the direction of simplicity, generality and better integration. With the

? The acronym MDE will be used in this dissertation from now on.

13

appearance of MDE we seem to have entered in a shifting phase in the software
development process, and “Everything is a model” is promising to replace the OO
guiding principle [10]. What seems to be important now is capturing a particular view
(or aspect) of a system in a model and that each model is written in the language of its
metamodel.

Model,

¢ [representation of]

N
A

representation o
Model, [rep f » System

v 7

[representation of]

Model,

Figure 2.4 — Model refinement in MDE (taken from [28])

221 Traceability in Model-Driven Engineering

When put in practice, the MDE process follows some general principles of software
development, like iterative development, separation of concerns, reverse engineering
and refactoring [28]. Since the system is developed as a series of model transformations
until a system implementation is achieved, any change introduced in a model should be
propagated throughout the rest of the models. To maintain a complete integrity in the
system’s models, the changes should be propagated to models that were derived from
the changed model but also to the models that originated the model that was changed.

To effectively perform the necessary changes, one must solve the problem of
knowing which models are related to the changed model. Traceability in MDE can be
used to address this issue, providing a solution to this potentially complex problem. By
using trace links that associate elements of different models, and due to transitivity
inherent to model transformations, it is possible to completely identify all the elements
that are affected by a change in an element. For instance, if a design class is changed, it
is possible to trace that change all the way down to the C++ class that implements it. In
the same way, it may be possible to trace all the way up to the requirement that derived
a particular set of classes. It is then possible to analyze the impact of this change in
those elements. A great deal of research as been developed and many approaches have
been proposed to solve the problem of representing, capturing and querying the trace
information during MDE development. They will be discussed next.

Event-Based Traceability (EBT) is a method for automating the generation and
maintenance of trace links [16]. With this method, the requirements and other artifacts
are not connected directly as in other approaches. A publish-subscribe mechanism based
on the Observer design pattern [29] is used to perform traceability. Instead of using
direct links, these are established by an event service that uses information retrieval

14

techniques to extract links between the registered artifacts. This system is composed of
three main components: the event server, the requirements manager and the subscriber
manager. The requirements manager handles the requirements and is capable of
publishing the changes that are performed in a requirement as events in the event server.
The event server is used to manage the links between a requirement and its dependent
artifacts. It is also responsible for receiving change notifications and sending messages
to the subscriber manager of the affected artifacts. Each artifact has a subscriber
manager, responsible for handling the messages received by the artifact and for
executing the necessary steps to properly handle the message received. The subscriber
manager is also responsible for registering the artifact in the event server. The main
drawback of this approach is concerning scalability. As a project grows, the event server
can become a bottleneck for the system and it becomes hard to maintain a good
performance.

Event-Based Traceability with Design Patterns (EBTpp) is another approach by
Cleland-Huang and Schmelzer [17]. It builds on top of EBT, but defines a different
process for dynamically tracing non-functional requirements (NFR) to design patterns.
This approach consists of two distinct phases, depicted in Figure 2.5. In the first phase,
which occurs during construction of the system, the initial user-defined traceability
links are established. In the second phase, which occurs during the ongoing
maintenance and refinement of the system, fine-grained links are dynamically
generated. As NFRs are elicited during early software development stages, the
relationships between them and design patterns are discovered. The elements that
compose a design pattern (models and code) are grouped in a cluster and a trace link is
established between that cluster and the related NFR. This decreases the number of
links established between design artifacts and non-functional requirements.

Identify \

appropriate > Imp\ement
famrn Design Pattern \.
Pattern(s) into system
Create logical Initial
A ‘class cluster’ of Phase
— . all participating
(4

\i“)/
NFR Catalog e > Establish
SIG coarse
. — user-
SEEE § defined
NFR Create EBT links
subscription
}?BT e from class-
links Link type = cluster to NFR
DesignPattern: /
j [PatternName]
User-defined links provide , ™
conlext for generating .
Jfine-grained links. | Runtime
v Phase
Fine-grained Dynamic A ‘change event’ >- Establish
links support generation | triggers need fine-grained
regression testing of fine-grained for Impact analysis link
and/or impact analysis traceability links or regression testing (;n S icall
ynamically

N~ _J

Figure 2.5 — The EBTpp process (taken from [17])

In the runtime phase, the well defined descriptions of a design pattern allow the
automatic and dynamic generation of code during runtime, with the pleasant side-effect

15

of enabling automatic generation of fine-grained links. This characteristic increases the
maintainability and the expressiveness of the method. The current techniques for
detection of implemented design patterns are not precise enough to support a good level
of traceability, but this approach promises to improve the precision and achieve a good
level of dynamical link generation.

Goal Centric Traceability is a proposal to effectively maintain non-functional
requirements thorough the software life cycle made by Cleland-Huang[18]. The
nonfunctional requirements and their dependencies are modeled using a Softgoal
Interdependency Graph (SIG). The purpose of GCT is to allow the developers to assess
how a change in a functional requirement affects the non-functional requirements of a
system. According to the authors, it is possible to identify potentially impacted goals, to
analyze the level of impact and to develop the desired strategy to minimize risks.

Figure 2.6 shows the phases of GCT: (i) Goal modeling; (ii) Impact detection; (iii)
Goal analysis; (iv) Decision making. Goal modeling occurs during the elicitation
specification. In this phase, non-functional requirements are modeled as softgoals in a
SIG. During impact detection the traceability links between functional and non-
functional requirements are created. A trace retrieval algorithm is used to return a set of
potentially impacted goals, which are then evaluated by the user and any link that is
incorrect is discarded. In the goal analysis phase the impact of a change is propagated
though the related regions of the SIG in order to expose its effect in the system wide
goals. Finally, during the decision making phase the stakeholders analyze the impact
introduced by the change and evaluate if it should be implemented.

1 2
Comsraet SIG GOAL i - IMPACT
| onstruct STt MODELING Link Retrieval DETECTION
Elicit, analyze, negotiate, f!}ld Probabilistic retrieval algorithm
specify NFRs using a SIG dynamically returns links
during system design. ‘hang between impacted classes and
%/” elements in the SIG.
Maintain SIG User Evaluation 35’6?:]}
Update SIG elements and =S User assesses the set of ’ o
contributions to reflect Goals l-etur;eeldqﬁ;el:; f,;dfcfep?s or zs{?gacrcd
implemented change. modeled rejects each one. olements
within SIG ‘ ’
r 3
4 3 v
Impact Evaluation D]{Z/IEI;{(N)E Contribution Re-Analysis GOAL
. Sta}(elltg)llder N evaluzcllte\ﬁhe User modifies contributions ANALYSIS
mpact of the proposed change from impacted SIG elements to
upon NFR goals, & identify risk their parents as necessary.
mitigation strategies -
Go/
T no-go l
decision
Decision &.r{'sk) Goal Re-evaluation
Stakeholders determine mitigation For each impacted element, Goal
whether to proceed with the changes are propagated evaluation
proposed change. throughout the SIG to identify report
potentially impacted goals.

Figure 2.6 — Goal-Centric Traceability (taken from [18])

Ramesh and Jarke studied a wide range of traceability practices, and submitted them
to scrutiny by using an empirical approach and focus interviews conducted in a series of

16

software organizations [62]. The result of this work was the creation of reference
models that include the most important kinds of traceability links for the various
software development elements, which reflect the actual needs of real users. The
importance of this study is that it realized that different stakeholders have different
traceability needs, and therefore should be presented with different reference models
that respond to their specific needs. They also realized that traceability participants fell
into two distinct categories, which are referred as high-end and low-end users.

Low-end users see traceability as an obligation imposed by project sponsors, and
use simple traceability schemes as a means of modeling dependencies between
requirements, components and compliance verification procedures. High-end users
consider traceability to be an indispensable component of the software engineering
process and will usually employ richer traceability schemes. The authors then proposed
a basic traceability metamodel, shown in Figure 2.7, that expresses the trace entities
used by high-end and low-end users and customize a set of reference models, contained
within the scope of the trace metamodel, for each group. The reference model aimed at
low-end users provides only a handful of relationship types that satisfies the needs of
this group. The reference model for high-end users provides a much broader set of link
types that allow the users to establish a much better rationale about the dependencies
between the different elements.

STAKEHOLDER

HAS ROLE IN
MANAGES

TRACES TO \

OBJECT < SOURCE

DOCUMENTS

Figure 2.7 — Essential traceability metamodel (taken from [62])

Egyed presents an approach to traceability analysis [24]. This approach consists of
establishing trace dependencies by analyzing some of the elements that constitute a
software system: test scenarios, model elements (use cases, class diagrams, etc.) and
source code. The approach also requires an observable and executable software system,
which is its major drawback since it cannot be applied on the early phases of the
software lifecycle and only when an implementation of the system is available. Other
elements required by the approach are: a list of development artifacts; scenarios
describing test cases or usage scenarios for the development artifacts; and a set of initial
hypothesized traces linking artifacts and scenarios. Figure 2.8 shows the steps required
by this approach.

The test scenarios are executed to observe the behavior of the system. By observing the
execution of those scenarios it is possible to detect trace links between the scenarios and
the source code that executes them. The user is also required to input a set of
hypothesized traces between model elements and the test scenarios. With this
information, it is possible to automatically perform trace analysis to extrapolate traces
between model elements and scenarios, between model elements and source code,
traces between model elements and also detecting inconsistencies and incompleteness.
This approach reduces the complexity of generating and validating trace information,
since it is only required to input the list of observed traces by running test scenarios and
a set of hypothesized traces between those scenarios and model elements. The author

17

considers a footprint to be the source code that implements a model element. With this
definition in sight, a footprint graph that represents the runtime behavior of the
scenarios is created, and the algorithm proposed by the author generates trace links by
analyzing how this graph relates to the hypothesized traces input and the elements to
which they are linked.

Scenario Testing (manual)

Observed Traces w_‘ Test (] Scenarios
, e Y 5. User
‘ Alomize ¢ LL [Traces between Model |
/Elements and Scenarios|
. X ; Finding
I ormaiize Hypothesized
v Traces
’ Generalize (1) (manual) ',
T Trace Analysis | ~ Trace
-4 (automated) Reuse Generators
’ Refine
h 4
’ Generalize (2)
\ v /
v
Interpret Result Interpretation
T — (automated)
A AN
| Traces between Model™ ~ ===/ Inconsistencies
/Elements and Scenanos‘; NS e { Incompleteness
| Traces between Model ;',." Traces among Model //
| Elements and Code |/ Elements ‘

Figure 2.8 — Trace Analyzer overview (taken from [24])

Jouault shows a method for adding traceability to programs [42], written in the
ATLAS Transformation Language (ATL) [43]. ATL is a model transformation
language that has built-in support for traceability used in model transformations. This
form of traceability however, is not maintained once a transformation is completed.
Jouault also argues that a single transformation program can be used in several different
contexts and as such, it may be required to generate different kinds of traceability
information, depending on the execution context. The approach proposed is to consider
the traceability information generated as an additional target model for the
transformation program. Since the trace information is considered to be a model, the
author introduced a simple traceability metamodel, shown in Figure 2.9, to allow the
creation of trace links during model transformation.

+sourceElements

TraceLink AnyModelElement
+targetElements

+ruleName : String

*

Figure 2.9 — Trace metamodel (taken from [42])

18

This approach uses the mechanisms already available in ATL to create traceability
elements in the same manner that other target model elements are created. To integrate
traceability in transformation programs, the developer simply needs to add a pattern
element that will generate an external trace link in the traceability model. The drawback
is that this ATL code must be manually added to the transformation program. But since
transformation programs are models themselves, than an ATL program without
traceability can be transformed in another ATL program that already includes this
traceability code. The result was the creation of an ATL program called TraceAdder
[42] that automatically inserts the traceability creation code in an ATL program.

Kolovos et al. presented an approach generating annotated models on-demand by
merging the primary models with their correspondent trace models [49]. These
annotated models contain traceability information that is useful for inspection purposes.
The authors define two approaches for storing and managing traceability links. The first
approach, called embedded traceability, the traceability elements are kept inside the
target models they are referring. This approach simplifies the definition of traceability
and helps in its understanding, but it pollutes the target model with many elements that
do not belong there. Another disadvantage is that this approach can only be applied to
represent intra-model traceability links. The second approach, called external
traceability, creates trace links as elements in a separate model. For this approach to
work, all the related elements must have a unique and persistent identifier that
eliminates ambiguity problems when resolving external links. The advantage of this
approach is that storing the traceability in links in separate models facilitates loose
coupling between the models and the links. The down side is that id-based links are not
human-friendly which goes against one of the goals of traceability, i.e., to assist
modelers in decision making.

The authors argue that even though both approaches have disadvantages the
external traceability model is more flexible and it allows managing intra-model and
inter-model traceability, and present a technique of external traceability that overcomes
the problem of user-friendliness [49]. This goal is achieved by automatic merging of
traceability links (stored in separate models) with the elements to which they refer. This
produces models annotated with traceability information. The Epsilon Merging
Language (EML) [48] is used to perform the merging of models with traceability. This
task is performed in two phases: matching and merging. The first phase establishes the
correspondence between the source models (e.g., the traceability model and design
model). The identified elements are then merged in the merging phase, resulting in a
model annotated with traceability.

Falleri et al. defined a traceability framework that is especially suited for gathering
traceability when chains of transformations are applied [27]. Their work is inspired by
[42] and is implemented in the model oriented language Kermeta [70]. The authors
argue that to trace model transformations, the two main concepts involved must be
clearly defined: what is a model and what is a transformation. The first answer as been
answered by the proposal of several metamodels that represent what is a model (e.g.,
MOF [56]). When it comes to model transformations a consensus has not been found
yet, primarily due to the fact that a transformation language and the respective
transformation metamodel are not independent. In order to provide traceability for any
kind of model transformations, one must discard a concrete transformation model [27].
The authors then provided some definitions for what they consider to be a model and a

19

transformation. Based on those definitions they concluded that a model transformations
trace is simply a bipartite graph with two kinds of nodes: source nodes and target nodes.

Figure 2.10 shows the specification for the basic elements of a transformation chain
trace metamodel. In this metamodel, a transformation chain trace is represented by a
trace. Every trace is an ordered set of steps, each one representing a single
transformation (from a source model element to a target model element). The authors
have implemented their framework using Kermeta that provides the following set of
features: Generic traceability items; trace serialization; and trace visualization (achieved
using Graphviz’s Dot language [33]). The framework does have a major disadvantage.
The trace generation code must be placed inside the transformation code, and as such, it
becomes tangled with the transformation code itself, leading to an approach that is less
extendable and adaptable.

target, | [Object
1

£ Link >

T name: String [1..1] SOUrce

A & oid])

' name: String [1..1]

1

links

£ Step steps
,

5 namez: String [1..1]

Figure 2.10 — Transformation chain trace metamodel (taken from [27])

2.2.2 Discussion

A survey in traceability approaches for MDE was conducted in the context of the
AMPLE project [46]. Galvao and Goknil have also conducted a survey on traceability
approaches for MDE and present their findings in [28]. Some of the approaches
evaluated by these surveys were presented in the previous section. From all the
approaches described in the surveys, we chose to discuss only the ones that, in our
opinion, seem to provide a more complete solution (with regard to the evaluation
criterion). The criteria used by authors for evaluating the performance of each approach
were: representation of traceability information, mapping between models, scalability,
change impact analysis, and tool support. These five criteria are summarized in Table
2.1. The representation criterion characterizes how each approach represents traceability
information. The mapping criterion indicates if an approach is capable of generating
inter or intra traceability, i.e., the links are established between models at different
levels of abstraction. The scalability criterion analyzes if it is possible to apply the
approach to a large system. The change impact analysis criterion evaluates how the
approach includes support for detecting the impact of changes on the related artifacts.
Finally the tool support criterion evaluates whether the approach provides any kind of
tool support for facilitating traceability.

Traceability is becoming a major feature of any MDE approach, since it is
intrinsically related with the main idea of Model-Driven Engineering of transforming
abstract models into more concrete ones, until a system implementation is achieved.
Trace links can play a crucial role in this process, since they allow the developers to
discover how a change in a model should be propagated throughout the rest of the
models. Without this kind of trace information evaluating the impact of a change is a

20

time consuming and error-prone task. The approaches summarized in Table 2.1
represent the state-of-the-art in traceability approaches for MDE.

Table 2.1 — MDE traceability approaches summary (adapted from [28] and [46])

. . - Change impact Tool

Approach Representation Mapping | Scalability analysis support
Cleland-Huang et al. event-based inter no Yes Yes
[16] subscriptions
Cleland-Huang and | SIG graph and event- intra and no Yes s
Schmelzer [17] based subscriptions inter y
Cleland-Huang et al. SIG graph and intra and . .
[18] traceability matrix inter partially Yes Partially
Ramesh and Jarke Traceability intra and s s s
[62] metamodels inter y y y
Egyed [24] Footprint graph 'ntir:t:rnd yes yes partially
Jouault [42] Trace model using ATL 'ntir:t:rnd no no yes
Kolovos metamodel in EML and inter artiall o Yes
et al. [49] trace model in UML partially
Falleri et al. [27] Kermeta models |ntirnat:rnd no no Yes

From this evaluation it should be pointed out that the path taken by some
approaches offers great advantages. The external representation of the trace links, such
as the one used in Kolovos et al. [49], that are later combined with the models they refer
to, is a good method for implementing traceability, since it maintains the model
decoupled from the traceability information. This satisfies the principle of separation of
concerns, keeps the models clean and facilitates the evolution of the approach. Another
important aspect discussed in [28] is that tool support is crucial for automating
traceability generation in MDE, something that the majority of the approaches do not
provide.

2.3 Software Product Lines

According to Clements and Northrop a Software Product Line (SPL), is a set of
software-intensive systems sharing a common, managed set of features satisfying the
specific needs of a particular market segment or mission and that are developed from a
common set of core assets in a prescribed way [19]. Each product in a SPL is developed
by using the necessary components, taken from the core assets base, and tailoring them
as necessary using pre-planned variation mechanisms such as parameterization or
inheritance, adding any new components that may be required and assembling the
collection according to the rules of a common, product-line-wide architecture. A
prescribed way of software development allows a more economic approach. Building a
new system becomes more a question of integration rather than implementation.

21

There are many approaches that, at first glance, could be confused with a SPL. One
might even think that a Software Product Line is just a new name for older approaches.
It is therefore important to describe what a SPL is not [19]:

e Fortuitous small-grained reuse;

Single-System development with reuse;
e Just component-based development;

e Just a reconfigurable architecture;

e Releases and versions of single products;
e Just a set of technical standards.

It should be pointed out that many of the terms described above are present in a
Software Product Line Engineering, and are used for assembling one (e.g.,
reconfigurable architectures, artifacts reuse) but the idea is that even though they are an
integrating part of a SPL, they are not its definition. A product line is much more than
just reusing code or integrating components. It is a classical example of: “The whole is
greater than the sum of the parts” [63].

At its essence, a product line involves core asset development (also known as
Domain Engineering) and product development (also known as Application
Engineering) using the core assets, both under the supervision of technical and
organizational management. Core asset development and product development from the
core assets can occur in either order: new products are built from core assets, or core
assets are extracted from existing products. Often, products and core assets are built in
synergy with each other. Figure 2.11 illustrates this triad of essential activities.

Product Line Development

Core Asset
Development

Product
Development

Domain Engineering Application Engineering

Figure 2.11 — Essential product lines activities (taken from [19])

Each rotating circle represents one of the essential activities. They are linked
together and in perpetual motion, showing that all the activities are essential,
inextricably linked, can occur in any order, and are highly iterative. The rotating arrows

22

indicate not only that core assets are used to develop products, but also that revisions of
existing core assets or even new core assets might, and most often do, evolve out of
product development. The diagram in Figure 2.11 is neutral in regard to which part of
the effort is launched first. In some contexts, already existing products are mined for
generic assets (perhaps a requirements specification, architecture, or software
components) which are then migrated into the product line’s core asset base. In other
cases, the core assets may be developed or procured for later use in the production of
products. Clements and Northrop [19], provide a very good insight into Software
Product Lines principles and practices, and these three activities are discussed in great
detail by the authors.

2.3.1 Traceability in Software Product Lines

Berg et al. state that the management of variability plays an important role in successful
software product line engineering [8]. In fact, the all concept of SPL is based on the
ability to derive different products from the same core assets. This variation can be
achieved in many ways depending on goal to be achieved, or the level of abstraction
being modeled, for instance a feature model can be used to model the product line
scope, stating which products fall in or out of the product line family.

Due to the fact that any asset (a requirement, a test scenario, an architectural
component, etc.) in a SPL can be included in several products, the impact that a change
in one of these assets produces on the rest is even more complex to assess than in
Single-System Engineering. This motivates the need for a universal variability
management approach that is consistent and scalable and that provides traceability
between variations at different levels of abstraction and across various generic
development artifacts. The state-of-the-art in these approaches will now be discussed.

The existing work in traceability for Software Product Lines can be divided in three
main categories [46]:

(1) variability on top approaches;
(i1) artifact level traceability approaches;

(ii1)) fine-grained traceability approaches.

Variability on top approaches use the variability model as the main reference for all
traceability. The variability model sits on top of the software artifacts. It is used through
all development stages and all artifacts are linked to some variation point. This case is
illustrated in Figure 2.12. The traceability links point from artifacts (or parts of an
artifact) to the variability model. This allows tracing the impact of a single variation
point to all the artifacts that depend on him, allowing to easily analyze the impact of a
change in the variability model. The downside is that since all links point strictly to the
traceability model, that means that there is no traceability information between the other
artifacts. This makes it hard to assess the impact of changes in, for example, design to
implementation artifacts.

23

(Variability Model)

- *\ /*\ /J;\ /'L\

bk

\\Requirementsr/’ L‘\,, Design /" ‘\\I@plementatiog ¥ “\1 Test J

Figure 2.12 — Variability on top approach (taken from [59])

Orthogonal Variability Model (OVM) is described by Pohl et al. in the book
“Software Product Line Engineering: Foundations, Principles and Techniques™ [59].
They defined the variability of a software product line in a separate model, which is
then related to other software development models. Traceability links are created
between a development artifact (a requirement, a use case, a design model, etc.) and a
variant, or variation point within the OVM. This relationship can be or an arbitrary
granularity, e.g., variation points can be related to an entire design model, or to a single
class. The multiplicities of these associations was defined by the authors as follows
[59]:

e A development artifact can but does not have to be related to one or several
variants (multiplicity 0..n).

e A variant must be related to at least one development artifact and may be related
to more than one development artifact (multiplicity 1..n).

e A development artifact can but does not have to be related to one or several
variation points (multiplicity 0..n).

e A wvariation point can but does not have to be related to one or more
development artifacts (multiplicity 0..n).

A prototype variability model editor, called VARMOD [58], has been developed.
In its current state, the tool only supports the visual representation of OVM models,
without establishing any kind of links to real artifacts.

Berg et al. presented an approach to represent traceability in SPL, but without a real
system experience and tool support [8]. They argue that traceability will improve the
understanding of the system’s variability, as well as better support for its maintenance
and evolution. The authors focused on traceability of variability in SPL and state that
establishing 100% of trace links between generic artifacts brings more benefits than
relating only 80% of all the artifacts. In our opinion this supposition may not be valid,
as empirical studies indicate that trying to capture all possible trace data without
considering the actual project characteristics is most likely to fail [51]. In order to

24

capture 100 % of generic trace links one may need to ignore project specific
characteristics, which may lead to a great number of unstructured and possibly unusable
trace links. Another important aspect of this approach is the view that the authors have
of the software engineering process. They understand that Single-System Engineering
can be divided in two dimensions (the development process and the level of abstraction)
and all development artifacts can be represented in these two dimensions. Variability
however, adds a third dimension to explicitly capture the information regarding
variability between the product line members. Figure 2.13 shows a conceptual model
for traceability proposed by the authors that establishes the necessary mappings between
all variation points with the artifacts represented in the two dimensional space
(abstraction level and development process). The approach also lacks a description of
how to define and store the trace links that are proposed by the authors.

High Abstraction

Simple Decision

Variability Information /I”"""""""""’”""”"”"""""""”W"""""""”"’*"””7777771
/

RN S
3 i 1
, . 1
s ! Requirements 7 1
" i N A |
- ! -
/ .
i“ e -
i J i
| L
i

I
i)
[

[
1
P |

Architecture

i
I vp | — i
= e i
Component !
Design !
o
e o AH
- 1 I ource
! i ! Variation Point | | I Code i
Problem } i | (Decision) 1 oo | Solution
! i i (Qecision) i« Low Abstraction e :
Space ! i v ; i Space

Variability

Figure 2.13 — Conceptual model for traceability (taken from [8])

Artifact level traceability approaches define directed and typed links between artifacts,
on an artifacts level (these being usually files). This process is illustrated in Figure 2.14.

THEL

f

Requirements Design Implementation Test

Figure 2.14 — Artifact level traceability approach (taken from [59])

Ajila and Kaba manage the evolution of the software product line recurring to
traceability [2]. They identified three distinct sources of possible changes introduced in
product lines: (i) changes in an individual product; (ii) changes in the entire product
line; (iii) importing an architectural component from an individual product into the
product line. Their work is more focused in defining a reference model to represent

25

horizontal and vertical traceability for evolution purposes. They do not discuss the
actual means of handling traceability.

Knauber and Schneider describe an approach that enables traceability between the test
case of a variant and its respective implementation [47]. The authors propose to
implement variable features as aspects, and weave them to the core assets (the common
features) of the product when needed. The test code is also supported by aspects,
providing an automatic method for adapting it to the respective variant. Their approach
shows that it is possible to combine the variable code with its test code into a single
aspect. This provides traceability of a variable feature to its test cases.

Mergel et al. present an repository for product line assets [52]. The repository supports
various kinds of information, for retrieval purposes. An asset header includes
information about the identity of the asset, its qualification, administrative details, the
work product category (e.g., domain model, source code) and the kind of representation.
Relationships between the assets can also de defined, enabling traceability relationships
between them. Relationships can be navigable in both directions, have an m:n
cardinality, and a relationship type associated.

Jirapanthong and Zisman propose an approach with automatic generation of trace
relationships [40]. The authors used FORM [45] that provides a reference model with
two levels, two domains and specialized documents. XML Schemas for all these
documents were also defined. At the core of this system lies a set of conditional rules,
based in the XQuery language, that are responsible for parsing the XML documents and
generate the relationships that exist between them. The authors use six different groups
of relationships, and ten different kinds. A prototype tool called XTraQue [41] which
implements the system described is also provided by the authors.

Fine-grained traceability approaches allow for the definition of fine-grained, directed
and typed links between parts of an artifact, e.g., design elements in a diagram or
function defined in a class. The methodology of these approaches is illustrated in Figure
2.15.

mnsie EabnceTaWebSaner). .

xndWWMupellDBg:ﬂnillﬂ(d]l] e

I

{ansie BaknoeTaWebS ewerSecur)...) |

inilateSecur Seszian); —

andWWWjapanDB getdmau miid]); T
rSesian;

I

Requirements

Implementation Test

Figure 2.15 — Fine-grained traceability approach (taken from [59])

Zisman ect al. present an approach that automatically generates and maintains bi-
directional trace links between requirements specifications of product lines [73]. The
approach is based in three types of specifications. The commercial requirements
specification (CRS) is represented in natural language. The functional requirements
specification (FRS) is represented recurring to use cases. The requirements object model

26

(ROM) is expresses in UML. The approach is capable of generating inter-requirements
links and links between requirements and object models.

Luttikhuizen et al. describe a modeling concept for product families [51]. They
introduce a traceability model that supports forward and backward traceability from
requirements to refined requirements, architecture and test cases. The traceability model
is based on the identification of requirements with requirement tags in the existing
specification documents, and these relationships are modeled in several tables. The
Traceability Table associates each requirement with one or more higher level
requirements and vice versa. The Allocation Table associates each requirement with one
or more lower level components. The Details Table associates each ’container’
requirement (e.g., a use case or some general safety concept), with all its detail
requirements. The use of tables might prove to be the major drawback of this approach.
Form our experience, tables do not scale well and if the number or requirements is large
enough, the table might prove to be unmanageable or quite hard to use in practice. This
may prove to be the biggest disadvantage of the approach.

Bayer and Widen give a general overview of the traceability needs and integration
regarding product lines [7]. The authors argue that traceability is a key aspect for the
successful and sustained development and maintenance of a SPL infrastructure. They
provide a list of traceability requirements that consist of:

1. Should be based in the semantics of models used in SPL;

2. Should be customized to capture only the relevant types of traceability;
3. Should be capable of handling variability;

4. Tt is preferable to have a small set of trace links;

5. As automated as possible.

The paper continues by describing how traceability is integrated in PuLSE [6].
PuLSE uses a general metamodel of development artifacts as the core of the product
line architecture. This metamodel includes traceability links, and it is possible to create
certain types of traces. Their approach consists of first customizing and tailoring this
generic metamodel to a specific SPL context. On a second phase this customized
metamodel becomes the basis for creating models and establishing trace links.

Moon et al. propose a metamodeling approach to trace variability between requirements
and an architecture in SPL [53]. The approach is based on the principle that variation
points may appear in all generic artifacts, since they are the realization of variability.
This presents the need to capture the traceability between the variation points at least for
requirements and architecture. The authors defined two metamodels for requirements
and architecture, which extend the Reusable Asset Specification proposal recently
adopted by OMG. The traceability between these artifacts is achieved by defining trace
relationships between the two metamodels. The only variation mechanisms provided are
wither common features or optional. Variability is represented as an attribute associated
with an artifact (requirements, use cases and components)

27

2.3.2 Discussion

A survey in traceability approaches for SPL was conducted in the context of the
AMPLE project [46]. Some of the approaches evaluated were presented in the previous
section of this dissertation. The approaches chosen to be discussed in this dissertation
were the ones that seem to provide a more complete traceability solution (with regard to
the evaluation criterion). The survey also used a common set of characteristics for
evaluating the performance of each approach. These criteria were: representation of
traceability information, mapping between models and granularity of relationships,
scalability, change impact analysis, and tool support. These five criteria are
summarized in Table 2.2. The representation criterion characterizes how each approach
represents traceability information. The mapping criterion indicates if an approach is
capable of generating forward and backward traceability and the level of granularity
(coarse-grained means that only an entire artifact is traceable, fine-grained traceability
means that it is possible to trace parts of an artifact). The scalability criterion analyzes if
it is possible to apply the approach to a large system. The change impact analysis
criterion evaluates how the approach includes support for detecting the impact of
changes on the related artifacts. Finally the tool support criterion evaluates whether the
approach provides any kind of tool support for facilitating traceability. Some criteria
were not possible to evaluate due to the lack of information in the available
bibliography. They are marked as “not discussed” in Table 2.2.

Table 2.2 — SPL traceability approaches summary (adapted from [46])

Mapping and Change Tool
Approach Representation . Scalability impact
Granularity . support
analysis
Backward and
Pohl et al. [69] Directed link forward, yes yes no
arbitrary granularity
Berg et al. [8] Directed link Fine-grained not discussed | not discussed no
Ajila and Kaba Directed link Coarse-grained not discussed yes ad-hoc tool
[2] set
Knauber and . . Forward, . . Junit and
Schneider [47] Directed link coarse-grained not discussed | not discussed Aspect]
. . Backward and :
Mergel et al. [52] D|rect.ed link apd forward yes not discussed not p.ubllcly
meta information . available
coarse-grained
Jirapanthon Backward and rototype
pa g Directed link forward, not discussed | not discussed P yp
and Zisman [40] . (XtraQue)
coarse-grained
Backward and
Zisman et al. Directed link and forward, not discussed | not discussed rototvoe
[73] meta information fine-grained for P yp
requirements
Backward and
Luttikhuizen et Directed link and forward not discussed s no
al. [61] meta information Fine-grained for y
requirements
Bayer and Backward and ad-hoc tool
; Directed link forward, not discussed | not discussed
Widen [7] . . set
arbitrary granularity
Backward and not
Moon et al. [63] Directed link forward, yes not discussed di
. . iscussed
arbitrary granularity

28

Traceability is considered by many researchers and practitioners as a very
important concern for product line engineering. Some research work has been done on
this issue, but a major drawback is the availability of appropriate tool support. Without
tools, traceability tasks are performed manually and fail in achieving their goal. The
purpose of traceability is to link the different artifacts used throughout the software
lifecycle and to provide rationale about how they are linked. In traditional Single-
Systems this is achieved by defining trace links between the elements of the two
dimensions of development: inter traceability (elements at different levels of
abstraction) and intra traceability (elements at the same level of abstraction). This trace
information can then be the means by which one can prove that the delivered product is
according to the agreed requirements, and to also prove the absence of unnecessary
functionalities. In a product line scenario environment this is taken a step further, by
adding a third dimension to the traceability process, orthogonal to the previous ones, to
handle variability and its implications [3]. This new dimension introduces new
challenges that are not present in traditional (non SPL) development. Another aspect
relevant to SPL development is that due to the fact that product family members share a
common set of assets, a change introduced in a core asset might affect a great deal of
different variants from the family of products.

In the approaches described previously, some of the authors seem to prefer to
model variability using a model created for that purpose, and to create traces from
variability elements to other artifacts [8, 59]. The proposal of Orthogonal Variability
Model [59] seems to provide a comprehensive and complete approach to address all the
stages of SPL development, including the definition of trace links between the several
artifacts used. However, in our opinion, this approach has the drawback of coupling the
traceability information in the variability models. This imposes the need to use the
OVM metamodel and establish trace links to it. In our opinion this limits the use of the
approach as it binds the user to a metamodel, without giving him the freedom to choose
how to represent the product line variability. It also incorporates traceability concepts
inside the variability model, which goes against the principle of separations of concerns.
We believe that traceability should be represented using a separate metamodel to
facilitate an easier integration with different models (variability models, requirement
models, architectural models, etc.) making the approach more reusable and easier to
maintain and evolve.

Other authors prefer to focus on traceability for certain aspects of SPL, keeping it
comprehensive but not exhaustive [7, 47, 53, 73]. In our opinion, the first solution
seems to be more cohesive, because even though providing traceability to a certain
aspect of SPL development might be useful in some cases, in the end an approach that
facilitates the tracing of elements across the entire software lifecycle proves to be more
desirable to the developer, as it allows a unified representation of trace information,
instead of several different and separated solutions. All the approaches go towards the
need to create tools that support traceability. However, a gap still exists in this area,
since the majority of the approaches do not provide any tool support, or only a
prototype implementation.

2.4 Traceability Tools

This section presents a survey on traceability tools. The tools presented here were
evaluated by AMPLE’s FCT/UNL research group. This survey was an activity relevant
to the AMPLE project research, but also performed in the context of this thesis

29

preliminary work. The objectives of the survey were to investigate the current features
provided by existing tools in order to assess their strengths and weaknesses, and identify
possible fields of improvement. The tools were evaluated with regard to five criteria:
management of traceability links, traceability queries, traceability views, extensibility
and support for SPL and MDE development. We believe that these criteria are crucial
for this kind of tools since they provide the basic support to satisfy traceability
requirements (creation of trace information and querying it). Other important concerns
regarding SPL development were also evaluated, since they evaluate the capacity of
each tool for handling this paradigm of software development. In our opinion, this set of
criteria can effectively evaluate if a tool responds to the problems described in Chapter
1. The management of traceability links criterion evaluates how each tool is capable of
creating trace links (manual or automatic) and what kind of trace information is
generated. The traceability queries criterion analyzes what type of basic search query is
provided by each tool and if advanced queries are supported (coverage analysis and
change impact analysis). The traceability view criterion characterizes the supported
views for the traceability information stored by each tool. The extensibility criterion
evaluates if a tool as any extension mechanisms. Finally, the support for SPL and MDE
development criterion indicates if a tool as any mechanism that supports these software
paradigms.

RequisitePro [37] is a powerful, easy-to-use requirements management tool that helps
teams manage project requirements comprehensively, promotes communication and
collaboration among team members, and reduces project risk. A RequisitePro project
includes a database and optionally includes documents. The database is used to store the
document types, requirement types and descriptors (attributes), discussions, information
about requirement traceability and user/group security. The project and document
templates used include the following structural information:

e Document types, such as glossary document, vision statement, and use cases
(which outline how the system behaves);

e Requirement types, which are categories of requirements such as features, use
cases, supplementary specifications, and so on;

e Requirement attributes, which describe the requirements in terms of priority,
status, stability, and other characteristics that are user defined.

The tool supports manual creation of trace links and import from some file formats
(Word and CVS). It creates forward and backward traceability and it is possible to
create associations with parts of an artifact. It is possible to query requirements and
trace links, and filter the desired information. The types of views supported for
traceability are a Traceability Matrix View and a Traceability Tree View. It has no
built-in mechanism for SPL or MDE.

Borland CaliberRM [13] is an enterprise software requirements management tool that
facilitates collaboration, impact analysis and communication, enabling software teams
to deliver on key project milestones with greater accuracy and predictability. CaliberRM
also helps small, large and distributed organizations ensure that applications meet the
needs of end-users, by allowing analysts, developers, testers and other project

30

stakeholders to capture and communicate the users’ voice throughout the application
lifecycle.

This tool classifies requirements as objects defined in a hierarchy and offers
requirements validation and error detection during requirements specification. All the
artifacts are stored in a central repository, which facilitates the collaboration,
cooperation and communication between all members involved in the project. The trace
links are transitive and need to be created manually by developers. It supports backward
and forward traceability and allows the creation of links between a requirement and any
other artifact (source code, test cases, use cases, design). Trace links can be queried by
means of using filters which will only return the requested information. Impact change
analysis and detection of suspect links (due to a change in requirements) is also
provided. The views regarding traceability are a Traceability Matrix, Traceability Graph
and several types of reports. It has no built-in mechanism for SPL or MDE support.

RaQuest [65] is a requirements management tool designed to integrate with Enterprise
Architect a UML modeling tool developed by SparxSystems. RaQuest enables you to
create lists of requirements, print them out, and export them as HTML or Word
documents. Moreover, it is possible to display relationships or matrixes useful for
analysis of change impact or coverage between requirements. The tool also allows the
developers to relate requirements to Enterprise Architect items. Even though it was not
originally designed to work with UML, it now includes functionalities that allow the
transformation of requirements into UML diagrams smoothly. The creation of trace
links is manual, but requirements can be imported from CVS, Excel or Word
documents. It is possible to associate requirements with EA artifacts. The trace links
provide forward and backward traceability. RaQuest supports change impact analysis
and detect some types of inconsistencies between them. The views available for
traceability are a Graph of dependencies, and traceability matrix. RaQuest does not
support SPL development, but it allows the transformation of requirements into UML
(as EA artifacts).

Telelogic DOORS [69] is one of the most important requirements management
application. It provides many features to capture, track and manage user requirements. It
also addresses the tracking and management of requirements throughout the project life
cycle using a variety of features, such as views, links and traceability analyzes. The
trace links can be created manually but the information can also be imported from many
formats (Word, Excel, ASCII, Interleaf, and RTF). DOORS provides traceability of
requirements throughout the project lifecycle, allowing forward and backward
traceability and associations with parts of an artifact. Any data stored in the project’s
database can be queried, and the information returned can be filtered using a great
number of options. It also provides change impact analysis and requirements coverage
analysis. DOORS document hierarchies may be viewed graphically and traceability may
be viewed as “tree” structures in the Traceability Explorer. No support for SPL or MDE
is offered.

Contour [39] is a web based collaborative requirements management solution. Contour
projects contain groups of artifacts such as requirements, use cases, test cases and many
other types. Each project may have multiple groups and can be configured to meet each
project’s needs. Each group can contain as many artifacts of that type as necessary (e.g.,

31

the requirements group can contain many artifacts of type requirement). In addition user
roles can be given access to projects. Contour provides a flexible way to setup data,
organizing the several artifacts using the following objects:

e Containers - Solutions, products, projects, modules, etc. A high level collection.

e Groups - A collection of similar artifacts such as a group of requirements,
documents, use cases, test cases, etc.

e Folders - A way of grouping artifacts.

e Artifact - A single item with a unique set of fields and behaviors. Examples of
artifacts are requirements, use cases, test cases, etc.

Contour enables the creation of trace relationships between any combination of
project artifacts and even to artifacts residing in other projects. The creation of
relationship links is manual, but it is possible to be import artifacts from CVS or Word
2003 XML files. The tool provides forward and backward traceability, change impact
analysis, suspect links detection, and general purpose queries to browse the information
stored a project. Two traceability views are available to the user, a Traceability Matrix
and a Trace Relationships Report. Contour does no support SPL or MDE.

GatherSpace [30] is a web based requirements management and use case tool for
managing and sharing software requirements. It enables developers to focus on the
requirements without concern for upgrades, infrastructure, and maintenance. It allows
for the creation of multiple projects and the assignment of multiple users to the projects.
Features, Requirements, Use cases and actors can all be modeled inside the tool.
GatherSpace considers the software development cycle as a pyramid with three levels
(shown in Figure 2.16).

Figure 2.16 — The GatherSpace software requirements pyramid (taken from [30])

At the top level, reside the packages. Packages are the logical grouping of features. At
the level below reside the Features. Features are the beginning point of constructing the
project specifications. A feature is a simple description of something that the system

32

will do to solve the problem at hand. The requirements exist to support or supplement
features. A requirement is a description of how a feature is carried out. Requirements
can be associated with the features that they describe. Finally a use cases is created to
specify the interaction of an actor with the system to achieve a goal. Use cases are
associated with requirements and in turn with its feature. All the artifacts and links are
created manually in GatherSpace. No type of query can be submitted and only coverage
analysis is provided to the user. The only view available is a Traceability Report. This
tool has no built-in mechanism for SPL or MDE support.

The Trace Analyzer [23] is a tool for generating and validating the traceability links
among software models, source code, and test scenarios. Models may include any
product relevant model elements such as requirements, architecture, (UML) design, and
test scenarios. This tool works based on the commonality principle [25]:

“Commonality: if A is known to trace to some source code CA and B is known to trace
to some source code CB then a trace dependency exists if CA and CB overlap.”

Given a set of input models, source code and hypothesized trace links, the Trace
Analyzer’s primary task is to reason about the ownership of the source code by the
different model elements. Its secondary task is to infer trace dependencies among the
model elements based on the ownership information. Trace links are created
automatically from the set of input data. No trace query of any kind is available, but the
identification of some inconsistencies is possible. The tool provides several views,
being the most important the Footprint Graph, the Model to Model view and a textual
report. Trace Analyzer does not support SPL or MDE.

2.4.1 Discussion

To provide a complete and effective traceability solution, tool support is essential, since
it allows system developers to use it in real software development contexts. Without
tools, any approach is doomed to failure, because in manual traceability schemes it is
not easy to maintain the trace information updated and it is very hard to reason and
evaluate change impact analysis, coverage analysis, etc. A summary of the survey
results is presented in Table 2.3. Some criteria were not possible to evaluate due to the
lack of information in the available manuals. They are marked as “n.d.” (not discussed).

The traceability tools survey that was presented in the previous section shows that
none of them as support for SPL and only one implemented some MDE techniques [65].
Even though some of these tools provide very complete solutions to traceability for
Single-System development, the lack of support for addressing variability and
establishing trace links between software artifacts and variation points in a product line
is the biggest downside to their use in SPL. Another problem is that it is not possible to
adapt them, due to their closed source and copyright infringements. Even though some
tools provide some extension mechanisms, like the possibility to define new templates
for reports, in the bottom line, these extensions prove to be very basic and cannot be
used to extend their capabilities to enable traceability for product lines.

33

Table 2.3 — Traceability tools summary

Change Support
Creation of . Type of Covering . . for SPL
Tool - Mapping Impact . Views | Extensible
Trace Links Query . Analysis and
Analysis
MDE
part of
RequisitePro manual artifacts, filters es no matrix, no no
[37] forward and y tree
backward
requirements
Bor {and to artifacts, ' matrix,
CaliberRM manual forward and filters yes no graph yes no
[13] backward
manual, requirements partial
imports to artifacts, matrix,
RaQuest [65] requirements | forward and n.d. yes no graph no le;ﬁ)\ﬁgré
from file backward
requirements
manual,
Telelogic imports to p_arts of custgm
. artifacts, queries, yes yes tree yes no
DOORS [69] | requirements forward and filters
from file
backward
manual, artifact to
imports artifact,) matrix,
Contour [39] artifacts from | forward and filters yes no report yes no
file backward
requirement
GatherSpace manual to other n.d no es report no no
[30] artifacts, -d- y P
forward
models to
Trace source code, matrix,
automatic models to n.d. no es raph, no no
Analyzer [23] models Y gep‘())rt
forward
2.5 Summary

In this chapter a state-of-the-art in traceability research and tools was presented.
The chapter began by giving a general view of the concepts regarding traceability, and
the advantages that trace methods bring to software development. Traceability can yield
significant improvements to software developers, by providing information that aids in
the detection of problems existing in a system (e.g., orphan code). The remaining
sections introduced the topics of Model-Driven Engineering and Software Product
Lines and analyzed some approaches that have been proposed in these domains. We
have discussed the strengths and weaknesses of these approaches. The major problem
found with the majority of these approaches is the lack of appropriate tool support, a
critical component in any traceability solution. Another important topic discussed was a
traceability tools survey which presented our findings regarding the current available
tools. The greatest shortcoming that we found was the tools ability to handle SPL
development. We found it to be nonexistent in the majority of the tools analyzed.

The next chapter will present our proposal for a Model-Driven Traceability
Framework that was developed as the result of this master dissertation work.

34

Chapter 3. A Model-Driven
Traceability Framework

In this chapter we present our proposal for a traceability framework that provides a
solution for defining trace links in the context of product lines development. The
traceability framework that we are proposing is meant to provide an open and flexible
platform to define trace links between the different artifacts used during SPL
development. The general structure of the framework was already discussed in Chapter
1. In the following sections we will describe the framework structure and
implementation in more detail. The base of our framework is a traceability metamodel
that will be presented to the reader. The reminder of the framework is built on top of
this metamodel. We describe the architectural structure of the framework and how its
several components are connected, along with the hotspots provided for instantiation to
different development scenarios. The implementation that was achieved and the
decisions that were made are also discussed. The final sections of the chapter present an
instantiation example of the framework for a scenario of defining trace links between
features (variability model) and use cases (requirements model).

3.1 Framework Description

Our proposal aims at providing an open and flexible platform to design and implement
tools and methods that allow developers to define and store trace links between the
different artifacts used during SPL development [64]. In this section, we will present
and discuss the main topics regarding our SPL traceability framework. We begin by
describing the traceability metamodel adopted by our framework (Section 3.1.1)
followed by the framework’s architecture, as well as the class diagram for the main
modules (Section 3.1.2). Since SPL development was the focus of this work, another
important point is the use the of the variability model as the main reference for tracing

35

the SPL artifacts. However, the design of the framework is generic enough, so that it
may be applied to other software development scenarios.
The following main functionalities are provided by our traceability framework:

3.1.1

Creation and maintenance of trace links between a variability model and other
software artifacts (UML models, architecture models, source code);

Persistent storage of trace links;

Searching for specific trace links using pre-defined or customizable trace

querics;

Flexible visualization of trace query results using different types of trace views.

Traceability Metamodel

The traceability metamodel is the basis of the framework that we propose and is
depicted in Figure 3.1. It is centered on the assumption that all trace information can be
represented by a directed graph [64].

+context

0..1

TraceContext +context

0..1

+sources
1.*

TraceableArtifact

1.* +targets

resourceld: URI [0..1]

+outgoingLinks 0..*

TraceLink

+subTypes

]

0.*

+type
1

0..* [TraceableArtifactType 1..* +validSourceTypes

+incomingLinks

+type

1

0.*

+baseTypes

1.%

+validTargetTypes

Scope
+scope
1
0.* J +scopeAreas
ScopeArea

Figure 3.1 — Traceability metamodel

The main elements of the metamodel are the following:

TraceLinkType

f

0.*

0..*

+subTypes

+baseTypes

A TraceableArtifact represents a (physical) artifact that plays a role in the
development cycle. The granularity of such artifact is arbitrary. It may represent
a requirement, a UML diagram, an element inside a diagram, a class or a method
inside a class. An artifact is unambiguously identified by a locator (resourceld),
which describes where this artifact is located (such as in a file or a directory) and

how it may be accessed.

36

e TracelLink is the abstraction for the transition from one artifact to another. An
instance corresponds to a hyperedge’ linking two artifacts in the trace graph. A
transition is always directed; therefore a from-to-relation between artifacts is
created by a trace link (between source and target artifacts).

¢ During the process of tracing information about the design of a software system,
different artifacts of different types must be taken into account. For this reason
each TraceableArtifact has an instance of TraceableArtifactType assigned. This
type separates artifacts from each other. Artifact types may be grouped in a
hierarchical manner, which mimics the concept of multiple inheritance, known
from object orientation.

¢ Analogous to the type of an artifact, each link has a type because the relationship
between two artifacts may differ. Examples for such types would be contains,
depends of or is generated from. For this reason each instance of TraceLink is
assigned to an instance of TraceLinkType.

e The existence of an artifact or the relationship from one artifact to another may
be justified in some way. Not all artifacts and transitions would require such a
justification, for example a “contains” transition is rather self explanatory. The
attachment of additional information to artifacts and links can be modelled by
attaching a TraceContext to relations and/or artifacts.

e Links of a certain type may only be valid between artifacts of a certain type. A
link of type “contains” may be valid between a Method and a Class, but not
between two Architectural Models. The narrowing of validity area of link types
1s modelled via the introduction of the elements ScopeArea and Scope.

3.1.2 Traceability Framework Structure

An architectural overview of the framework is show in Figure 3.2 as a UML component
diagram, where the four main modules and their relationships are depicted. The
framework has three hotspots that are meant to be instantiated to provide trace
mechanisms for each desired scenario or stage of development. These extension
mechanisms will be described in more detail in Sections 3.2 and 3.3. The ATF module
is based on the traceability metamodel described in the previous section. It is
responsible for providing a persistence mechanism for storage of trace information
(trace artifacts, trace links, rationale, etc.), and for providing basic query and retrieval
mechanism for accessing the stored information. This component was developed by
SAP (one of the industrial partners in project AMPLE). The remaining framework
modules were built on top of this persistence structure.

Inside the “Framework Core” package reside three hotspots of the framework:
TraceRegister, TraceQuery and TraceView. The TraceRegister instances are used for
performing CRUD (create, read, update and delete) operations on the artifacts and links
stored in ATF. This can be done using fully automatic techniques, by providing a GUI
for manual definition and maintenance of the trace information, or a combination of
both. TraceQuery instances provide means to perform specific queries on a set of trace
links. It uses the basic query capabilities (trace links and trace artifact retrieval) of ATF

3 A hyperedge is a set of vertices of a hypergraph [55].

37

to execute more complex and powerful queries, like feature interaction detection and
change impact analysis. Finally, TraceView instances are responsible for supplying
some sort of view (graphical, textual, etc.) for the results returned by a trace query
execution. On top of this package lies the “Framework Manager” package. This package
contains all the classes that are necessary for loading the instances that are provided for
each hotspot. It is composed of a PluginsHandler which browses all the available
instances and filters the ones of interest. Finally the RegisterLoader and
QueryViewLoader simply load the chosen instance and execute the desired methods.

«execution environment»
Eclipse IDE

Traceability Framework Plug-in

Framework Manager |

RegisterLoader PluginsHandler QueryViewLoader

T T

1 ! :
1 ’ 1 |
T 7 T ~ - 1
Framework Core | s I - N '

i

H]
| 4 I - ~

V & Vo« A Y

TraceRegister TraceQuery TraceView

él/ Repository Manager

ATF Plug-in

Figure 3.2 — Traceability Framework architecture overview

The workflow for defining new trace links using a register is shown in Figure 3.3.
The user first begins by populating the ATF repository with artifacts extracted from the
source models (e.g., feature model, use case model, source code). Once that step is
concluded, the selected Trace Register instance is executed which will be responsible
for creating the trace links between the artifacts residing in ATF. As mentioned
previously, this step can be automatic, manual or a combination of both.

Figure 3.4 depicts the workflow for executing trace queries. The user begins by
selecting a Trace Query instance to execute. The next step is choosing the query
parameters if any exist (e.g., selecting which type of artifacts to be queried). The chosen
Trace Query will then retrieve the relevant links and artifacts from ATF and pass then to
the chosen Trace View for visualization.

38

Extract artifatcs

Artifacts already extracted? into ATF

[yes]

Execute Register
instance

Define trace
links

Store links
in ATF

Figure 3.3 — Trace link definition workflow

Select query
parameters

Execute Query
instance

Retrieve trace

artifacts and trace
links from ATF

Pass results to
View instance

Display
results

Figure 3.4 — Trace query and trace view workflow

39

3.2 Implementation

Part of this dissertation work was to implement a prototype version of the traceability
framework. The technological platform chosen was Eclipse IDE, which was a
requirement for the AMPLE project, where this work is included. As mentioned
previously, the ATF module was implemented by one of the AMPLE partners. The
traceability metamodel described in the previous section has been implemented using
EMF [15]. On top of EMF, several reusable components were also used, such as, EMF
Query”* for information retrieval and Teneo® which was used as the abstraction layer
between the EMF and the actual database layer that is used to provide persistence for
the EMF model instances. ATF provides the following extension point:

e net.ample.tracing.core.traceExtractor — This extension point is used to plug in
additional extractors to retrieve data into ATF.

The remaining modules were part of the work developed during this thesis. To achieve
this goal, an Eclipse plug-in with the required extension points was implemented [12].
This mechanism allows framework developers to implement new instances of each
hotspot by implementing an extension of a specific extension point, thus adapting the
framework to the desired scenario. Figure 3.5 shows a UML component diagram with
the extension points provided by the framework (represented using component ports)
and the base implementation for each extension point (represented by an abstract class).
The extension points defined were:

¢ net.ample.tracing.framework.core.traceRegister — This extension point is used to
plug in additional trace registers for establishing trace links between SPL
artifacts. Implemented in AbstractTraceRegister.

e net.ample.tracing.framework.core.traceQuery — This extension point is used to
plug in additional trace queries for performing new types of queries
implemented in AbstractTraceQuery.

¢ net.ample.tracing.framework.core.traceView — This extension point is used to
plug in additional trace views. Implemented in AbstractTraceView.

The schema for each extension point can be found in Annex 1 -, 2, 3 and 4. Each
extension point has an abstract class that is used to provide a base implementation of all
the methods that are common to all instances. The developer of an extension is only
required to implement the code that is specific of a particular instance (e.g., the method
that performs the necessary operations for implementing the feature interaction query).

Another important point is the ability to add trace extractors to ATF to populate the
repository with trace artifacts and/or links. The extension point
net.ample.tracing.core.traceExtractor (shown as a component port in Figure 3.5) can be
used to this end. By implementing an extractor that parses a source model (e.g., use case
model modeled in Rational Rose, or Enterprise Architect) we can populate the
repository with the artifacts extracted from the input model and on a later step just use a
TraceRegister instance to define the trace links between the imported elements. Another
option is to extract the trace artifacts and trace links in a single step. Whatever is the

* http://www.eclipse.org/modeling/emf/?project=query
> http://www.eclipse.org/modeling/emf/?project=teneo#teneo

40

path chosen, a trace register can be used to perform maintenance of trace artifacts and

links.

Figure 3.5 also shows how the Framework Manager is used to load the framework
instances. Each hotspot provides an abstract class and an interface. The PluginsHandler
class searches the entire scope of Eclipse Plug-ins to find the ones that implement
extensions to the desired extensions points (net.ample.tracing.framework.core.traceRegister,
net.ample.tracing.framework.core.traceQuery and net.ample.tracing.framework.core.traceView),
and passes that information to the RegisterLoader or the QueryViewLoader which use

the provided interfaces to load the chosen hotspot instance.

«execution environment»

Eclipse IDE

Traceability Framework Plug-in

FrameworkManager

RegisterLoader

PluginsHandler

+

run()

© ; + findExtensionPointsPlugins()

+ loadPluginFromExtensionPoint()

E S + run()

QueryViewLoader

nef.ample.tracing.
frafnework.
core.traceQuery

_—————

net.ample.tragi
framework.
core.traceVieV

re | \/
O ~
ITraceRegister ITraceQuery ITraceView
AbstractTraceRegister AbstractTraceQuery AbstractTraceView
+ executeRegister() + submitQuery() S ; + showResults()
(g Repository
k|/ Manager
ATF Plug-in
1
L

net.ample.tracing.core.traceExtractor

Figure 3.5 — Traceability Framework components diagram

41

Figure 3.6 illustrates the context menu provided by the framework, showing all the
trace queries and trace views that are available. The new queries and views are
automatically added to this list and the user is simply required to choose which instance
is to be executed.

-
Ay

AEE|

Select Trace Query:

Trace Related Artefacts by Feature
Change Impact Analysis Query

Select Trace Wiew:

Prefuse Radial Yigw
Features ta Use Case Tree Yiew

Features to Use Case with Steps Tree Yiew

Change Impact Analysis Overview
hange Impact Analysis Detailed View

Figure 3.6 — Trace query and trace view selection window

3.3 Framework Instantiation

This section presents an instantiation of our framework that addresses the tracing
between feature and use case models. Our aim is to illustrate how the framework can be
used and extended to address concrete scenarios of traceability in SPL development. All
the framework extension points, presented in Section 3.1.2, are illustrated in this
instantiation. A detailed description of how the Eclipse extension points mechanism
works and its usage will not be explained in detail in this dissertation, as it falls out of
the scope of this work. Some books have been written addressing this subject, and many
tutorials and articles are also available on the internet. The Traceability Framework
User Guide can also be found in Annex 5 -, and it gives a detailed explanation of the
framework usage and how to implement each hotspot instance as a new Eclipse plug-in.

42

The features used to specify the commonalities/variabilities were created using the
Feature Modeling Plug-in (FMP) [4] that allows the creation of feature models and
feature model configurations. The requirements were modeled using a use case model
designed in Rational Rose [36]. The idea is to implement extensions as described in the
previous section (using the ATF net.ample.tracing.core.traceExtractor extension point) to
parse the input models. Once that step is concluded, the TraceRegister is executed to
manually define trace links between the artifacts.

3.3.1 Extractor Instantiation

To provide an instance for parsing use case models created using Rational Rose, one
must simply create an extension to the net.ample.tracing.core.traceExtractor and
implement the respective Java class that will parse the input file and store the extracted
information into the repository. ATF provides an abstract implementation of an
extractor (AbstractTraceExtractor). The only method missing is the run () that will be
invoked when this extractor is selected. Figure 3.7 depicts this instantiation.

«execution environment»
Eclipse IDE

ATF Plug-in

AbstractTraceExtractor

+ run(RepositoryManager, IProgressMonitor) : void <I—

>J) TraceExtractor

net.ample.tracing.core.traceExtractor

-
|

1

«extension of»

Rational Rose Extractor Plug-in

RoseExtractor

+ run(RepositoryManager, IProgressMonitor) : void

Figure 3.7 — Rational Rose extractor instance

The implemented Rational Rose extractor is shown in Figure 3.8. The new
extractor can be added to the list of available extractors, and by choosing the run
method it automatically performs the extraction of artifacts and stores them in the ATF
repository. Extractors for parsing use case models from Enterprise Architect files, and

43

feature models from FMP files were also implemented. The instantiation mechanism
follows the same principle described in this section.

41 Repository Browser 53

= %L repo
£ 5 artefact Types
+-og Link Types
B Arkefacts
2 Links
=g+ Trace Extractors
B Rational Rose Extrackor
4§ Feature Extractor

@ Java Source Extractar

Refresh

Figure 3.8 — Rational Rose extractor runtime

3.3.2 Register Instantiation

For our TraceRegister instance we have chosen to implement a register that allows
manual definition of trace links between variability and requirements. Our register
instance can be used to define new trace links, or perform maintenance operations on
existing ones. As shown in Figure 3.5, the extension point used is
net.ample.tracing.framework.core.traceRegister. Figure 3.9 depicts this instantiation.

«execution environment»
Eclipse IDE

5]

Feature to USe Case Trace Register Plug-in

FeatureToUCTraceRegister

+ executeRegister()

T
«extension of»
1

net.ample.tracing.framework.
core.traceRegister

Traceability Framework Plug-in

Framework Core \l/

ITraceRegister

AbstractTraceRegister

+ executeRegister() ﬂ

Figure 3.9 — Feature to Use Case trace register instance

44

The Traceability Framework provides an abstract implementation of a register
(AbstractTraceRegister), which implements the common methods to all register
instances. The only method missing is the executeRegister () that will be invoked
when an extractor instance is selected. The instance that was implemented provides the
GUI shown in Figure 3.10. This instance displays a tree of features and use case
elements (e.g., use cases, use case steps, actors and packages) that were previously
stored in the repository. The user can then use the checkboxes to create or remove trace
links between the different elements. Once the “Save” button is pressed, the changes
performed are committed to the ATF repository.

& Trace Links Definition Window

[]¥& Photo Management
=[] ¥ Create Photo Album
Iser
[] 7 Calee

[]® addPhoto to Album
= 0 reate new Photo Album
8 Request photo album name
8 Insert album name
§ Show error Message
8 Create new album
[]% Delete Phato
[]® Delete Photo Album
Display Photo of Incaming Call
Label Photo
Link Phoka ko Address Book Entry
Remove Phaota from Album
Send Photo
Send Photo by Email
Send Phato by M5
[]® Yiew Photo
]9 Delete Photo Album
[]¥& Delete Phato
[]¥& Add Phato
[]¥¥ Label Phato
¥ view Photo
[]¥& List albuns
D'ﬁ' Link Photo with Address Book. Entry
[]¥& Photo Transfering
[]9 5MS Transfer
[¥ Email Transfer

[]¥& Incoming Call
[] ¥ Display Phota For Tncoming Call

-
=

OoooOd

E B E B EE

Save Cancel

Figure 3.10 — Feature to Use Case trace register GUI

45

333 Query Instantiation

The first TraceQuery instance that was implemented is used to query which artifacts are
associated with a given feature. There are plans to implement other types of queries,
which will be discussed in Chapter 4. The instantiation of the trace query for related
artifacts is shown in Figure 3.11. The extension point used is the
net.ample.tracing.framework.core.traceQuery.

«execution environment»
Eclipse IDE

Related Artifacts Query Plug-in

RelatedArtifactsQuery

+ submitQuery()

«extension of»
!
net.ample.tracing.framework;
core.traceQuery

Traceability Imework Plug-in

Framework Core |

ITraceQuery

AbstractTraceQuery

+ submitQuery() :]

Figure 3.11 — Related artifacts query instance

The AbstractTraceRegister provides a base implementation for the Trace Query
extension point. Instances of this hotspot can be implemented by extending this abstract
class and by providing an implementation of the method submitQuery () which will
perform the query on the ATF repository and return the set of trace links that are
desired. The instance that is implemented, provides the user with an interface for
selecting the features (among the features stored in the repository) that he whishes to
query. Figure 3.12 shows the RelatedArtifactsQuery interface. After the user selects
desired features and presses the submit button, the results will be displayed on the
chosen view.

46

& Related Artefacts Query

Select Features of interest:

[¥ Photo Management

[]¥& Wiew Photo

[¥ Incoming Call

[+] & Link Photo with Address Book Entry
[¥ List albuns

[]¥& Delete Photo album

[+ ¥ Delete Phato

[] ¥ Label Photo

[¥ Photao Transfeting |

[+ Y& SMS Transfer
[¥& Email Transfer

[+] & Display Photo For Incoming Call

[#] & Add Fhoto
[#] & Create Photo Album

Submit Quiery |

| Cancel |

Figure 3.12 — Related artifacts query GUI

3.34 View Instantiation

The TraceView instances that were implemented display a tree view of the queried
artifacts. Other types of views may be implemented in the future, as the need arises. To
implement new trace views, it is necessary to extend the hotspot defined in the
framework. This hotspot uses the net.ample.tracing.framework.core.traceView extension
point. Figure 3.13 depicts the implementation of two trace views, both extending the
same extension point and inheriting from the abstract implementation provided
(AbstractTraceView).

The two views that are currently implemented display the results of a query using a
tree. When applying this view to the RelatedArtifactsQuery described in the previous
section, the result shown is a tree with the features in the first level, and in the second
level it displays the use case elements that are linked to a feature. The DetailedTreeView
shows the results in a more detailed manner, with the features, the use cases and the
respective steps of each use case. The TreeOverview implementation shows a view with
less detail, showing only the features and the use cases, actor and packages. These
instances are shown in Figure 3.14 and Figure 3.15, respectively.

47

«execution environment»
Eclipse IDE

Tree Views Plug-in

DetailedTreeView |
TreeOverview

+ showResults() + showResults()

«extension of» «extension of»

net.ample.tracing.framewor]
core.trapeView

L E

Traceability Frapnework Plug-in

Framework Core |

N
I~

ITraceView

AbstractTraceView

L[>+ showResults() <}—

Figure 3.13 — Overview and detailed trace view instances

& Features to Use Cases with Steps View E]@E|

Oukput

= * Lirk Phioko
User
[= Link Photo to Address Book Entry
5 Select desired address book entry
§ Store photo reference in address book enkey
[=- @ Label Photo
§ Select desired phoko
‘* Delete Photo
Yo 5MS Transfer
= ﬁ Display Phato For Incoming Call
Zalee
(= Display Photo of Incoming Call
§ Read callers ID
§ Search calers ID in address book,
§ Search for photo of address book enkrey
§ Show phato in display
Y Add Photo
ﬁ Create Phoko Album

Figure 3.14 — Detailed tree view interface

& Features to Use Cases View E@g|

kot

= - dView Photo
O Yiew Photo
User
=Y SM3 Transfer
User
O Send Photo
O 3end Photo by 3MS
=Y Email Transfer
Ilser
O 5end Photo by Email
O Send Photo
=Y Create Photo Album
User

U Create new Photo Album

Figure 3.15 — Tree overview interface

34 Framework Evolution

The current implementation of our traceability framework allows users to create new
framework instances to suit their specific needs. This mechanism makes our framework
highly reusable. However, the instantiation mechanism may sometimes be non-trivial,
requiring some expertise that fall outside the scope of the actual framework
instantiation. (e.g., an instance that provides a window to the user must use the SWT® or
Swing’ for handling the graphical components). These mechanisms fall outside of the
framework core, because some instances may not require a graphical interface (e.g., a
register that creates trace links without manual intervention).

These limitations lead to a “white box” development scenario of framework
instances. The developer must not only be aware of the framework instantiation, but
also of Eclipse components and controls. Based on the knowledge acquired during the
development of the first version, and to facilitate the process of creating new framework
instances, we wish to provide generic hotspot instances for rapid and simple framework
instantiation. The goal is to provide enough generic instances, so that new instances can
be developed in a “black box” manner, where framework developers need only to take a
generic instance, tailor it to their specific needs (e.g., choosing what type of icons to
use) and abstract from the underlying architecture.

This approach is depicted in Figure 3.16. The framework core is represented by the
three hotspots TraceRegister, TraceQuery and TraceView. On top of this sits the “White
Box” layer, where developers are concerned with implementing a generic instance for
one of the hotspots. For instance, the GenericTreeRegister could be implemented to
provide a generic checkbox tree for definition of trace links. This generic instance
would implement all the widgets and necessary visual controls, while remaining generic
enough to be used for a features to use case model scenario or a features to class

S http://www.eclipse.org/swt/
7 http://java.sun.com/javase/6/docs/technotes/guides/swing/

49

diagram scenario. Finally on top is the “Black Box™ layer. Developers only need to
choose a generic instance from the “White Box” layer and perform some minor
customization (choosing the type of artifacts to trace, or the icons to be displayed, etc.),
to provide a framework instantiation to a specific scenario with minimal effort. The
FeaturesUCTreeRegister is an example of this, where the type of artifacts has been
chosen to be features and use case models. The end result could be something like the
window shown in Figure 3.10.

«execution environment»
Eclipse IDE

"Black Box" Layer

FeaturesUCTreeRegister ChangelmpactAnalysis ChangelmpacthafiEey
/ \
% "White Box[' Layer
GenericTreeRegister] v

GenericQueryWindow

GenericMatrixView

GenericMatrixRegister GenericTreeView

7 \
/ \

Framew ork| Core | / Traceability Framhework Plug-in \

V[V LV

TraceRegister TraceQuery TraceView

Kéﬁ/ Repository Manager

ATF Plug-in

Figure 3.16 — "Black Box" framework instantiation scenario

3.5 Summary

This chapter introduced our proposal for a Model-Driven Traceability Framework. This
framework addresses traceability in the context of SPL development. The solution that

50

we presented addresses the major shortcomings found in the approaches and tools
discussed in Chapter 2: the lack of proper tool support and the need for an extensible
solution that could be tailored for many scenarios. Our solution decouples the trace
information from the remaining models used in software development. This keeps the
models clean, goes towards the separation of concerns principle and makes the
framework easier to evolve and maintain. Any kind of variability model, requirement
model, architectural model, and other software elements can be used in our approach.
Since the desired elements are stored in our repository as traceable artifacts we can
create trace links between any two elements that we desire. The ability to define trace
link types and traceable artifact types also gives a good mechanism for restricting the
kind of trace information that one whishes to collect and facilitates a good filtering
strategy for trace queries. The variation mechanisms built in our traceability framework
provide a powerful mechanism for extensibility and evolution of our proposal. Basic
users can benefit from the default implementation to establish trace links in the context
of SPL. More advanced users can implement extensions to provide new types of trace
registers, queries and views to suit their needs. Even though the initial goal was to
design and specify a framework for product lines traceability, the achieved solution is
generic enough to be usable in product lines, or instantiated to other software
development scenarios (e.g., Single-Systems).

Some problems and difficulties were encountered during the design of our
framework. One of the major problems found was during the implementation stages.
The lack of good documentation regarding Eclipse plug-ins development was the source
of many problems. Even though some tutorials and documentation exist in these topics,
they are usually treated in a very simplistic manner and leave out several important
aspects that proved to be necessary to achieve the current status of our traceability
framework. Another problem was in defining the workflow for executing trace queries
and viewing the results in a trace view. As mentioned previously, this thesis work was
developed in the context of the AMPLE project, and several partners were involved in
the framework specification by providing feedback for our proposal. One of the points
of discussion is the current workflow for trace queries and views that was described in
the previous sections. The current proposal is quite static, allowing the user to execute
the chosen query, and viewing the results in the desired view. This workflow is under
revision, as it seems to be more interesting to provide a more dynamic solution,
allowing the user to execute a query, view the results, and submit a new query from the
viewed results. This process seems to be more appealing, but introduces new challenges
in the round-trip that will exist between a trace query and a trace view.

Another problem that is present in our approach is related with the need to keep the
artifacts updated. As the software system evolves, the models that represent it may also
evolve and suffer changes. These changes may have repercussions in the traceable
artifacts and trace links that are stored in the ATF repository. It is therefore necessary to
develop some strategy to handle the problems caused by changes. We have not
developed such a strategy yet, but we plan to do so as future work. The major problem
with the update mechanism is related with the fact that we use a separate metamodel to
represent variability. In our approach the artifacts are imported into the trace repository
and trace links are defined between the imported artifacts. This poses some challenges
for the automatic detection of changes in the original models. It may be necessary to
provide some manual mechanism to the user, so that an update event is launched.

In this chapter we have also discussed the instantiation mechanisms for each
hotspot of our traceability framework. We demonstrated how to implement an instance
(in the form of an Eclipse plug-in). The current version of our proposal already

51

facilitates these variation mechanisms. However, we do recognize that hotspot
instantiation can be a complex task that comes with a great overhead attached, due to
the need of implementing all the necessary controls and widgets using the graphical
libraries available for the Eclipse platform. To address this issue, we plan to evolve the
framework to a “black box” development scenario. In this scenario, a collection of
generic instances are provided to the developers of new framework instances, so that
they can abstract from the underlying Eclipse platform implementation and concentrate
solely on the traceability scenario that is being implemented. We believe that it will
provide a much easier way for implementing framework instances.

In the following chapter we will describe some techniques to address problems that
may occur during the SPL development, and how traceability can aid developers by
providing valuable information.

52

Chapter 4. Addressing Software
Product Lines Development with
Traceability

This chapter will discuss how we plan to use some techniques and heuristics to support
SPL development. By performing specific analysis on existing trace artifacts and trace
links we wish to detect problems that may arise during the SPL lifecycle. We will
present the problem of change impact analysis and covering analysis. Even though these
problems are also present in Single-System development, we discuss the particular
differences that are present in SPL domain and our proposal for addressing these issues.
The third problem that is discussed is the detection of feature interactions, which is
more applicable to a product line environment (although not exclusively). We describe
the problem of feature interaction detection and propose a solution for it by processing
the trace links that exist between the different SPL artifacts. All this approaches are
planed to be implemented as instances of the traceability framework described in the
previous chapter.

4.1 Covering Analysis

Covering analysis in traditional Single-System development is usually established by
creating trace links between requirements and the software artifacts that describe or
implement them. The covering analysis process then consists of querying the available
trace information to discover requirements that have not been satisfied, or artifacts that
are not linked to a requirement (i.e., superfluous artifacts).

In SPL the requirements of a single product are not derived individually, but are
generated from the requirements of the entire product line, by choosing which
variabilities to incorporate in a product variant. In our opinion, this makes the variability

53

model the center of all SPL traceability. This is the reason for the choice of establishing
trace links from features to all other software artifacts used in a SPL. This also
introduces a small change in the covering analysis problem. Since the trace links
between requirements and other artifacts no longer exist, one can no longer use that
information to reason about requirements not being satisfied or unused artifacts. In our
approach this analysis must be performed by querying the available trace links between
features and other artifacts to detect possible features that are not satisfied (i.e., do not
have a requirements specification, an implementation, etc.) or artifacts that are
superfluous (i.e., artifacts that are not linked to any feature).

Figure 4.1 represents this idea for covering analysis. It shows the variability model
(feature model), a requirements model (use case model), some implementation artifacts
(files, Java classes, etc.) and some trace links between features and the remaining
artifacts. The trace links begin in a feature and end in some artifact. By simply
searching for features with no outgoing trace links we can find unsatisfied features
(marked by a red circle). On the other hand, searching for artifacts with no incoming
trace links yields the superfluous artifacts (marked by a blue square).

Feature model

QH
i

/ s

F2

S

Custorner Internet Customen

OO

<< mdand s . FRequest Cdabyg

B G

Flace Oner \“Ezmcmq{» £,
T : Jarua
Sunoly Custoamrer Data
Requirements artifacts Implementation artifacts

Figure 4.1 — SPL covering analysis

4.2 Change Impact Analysis

As mentioned previously, in SPL development, we propose to use the feature model as
the center of all traceability information. All trace links originate from a feature and end
in a certain artifact. Starting from this premise, we are proposing to perform change
impact analysis in two phases. The first phase is done by querying the traceability
information available in the repository. We would then search for trace links that
originate in the same feature and reach two different artifacts (red links in Figure 4.2).

54

We can then reason that a change in one of these artifacts might trigger a change in the
other artifacts, because they are linked to the same feature.

Feature model Class diagram

F1

Class A

x

Class B

F3

F2

<<crqs§curs>> E
! <<crossCuts>>

Aspect
A

Figure 4.2 — SPL change impact analysis

On the second phase we query the source model to find additional impact caused
by the change. Looking at Figure 4.2 we can see that “Class B” is inherited by “Class
C” and is crosscut by “Aspect B”. “Class A” is also crosscut by “Aspect A”. We would
then use this links to discover additional artifacts affected by a change (blue links in
Figure 4.2).

4.3 Detection of Feature Interaction

Feature interactions have been defined has [72]:

...some way in which a feature or features modify or influence another feature in
defining overall system behavior.

A feature interaction can be either good or bad. Good feature interactions occur
when the interaction results in a desired system behavior or state. Bad feature
interactions occur when the system does not behave as expected as a result of the
interaction [72]. Due to the nature of SPL development, where new features can be
added or removed to the existing product line, the feature interaction problem is a major
concern, because unhandled feature interactions can produce undesired results in the
product variants that come out of the SPL. On the other hand, detecting feature
interactions is a complex task to perform manually, because feature interaction is
implicit in feature composition and therefore difficult to understand. It becomes clear
that feature interactions must be detected in order to be properly addressed by software
developers.

The solution that we propose is to use trace links to discover feature interaction
candidates. Our proposal it to detect feature interactions by discovering artifacts (a use

55

case, a class, etc.) that are linked to two, or more, features. This idea is illustrated in
Figure 4.3. In this example, a feature model and a class diagram have been defined
during some SPL development stage. Some trace links between the elements of both
models have also been derived during SPL development. The search for features that are
connected to the same element returns two trace links (red arrows in Figure 4.3), a
candidate for the point where the feature interaction occurs (Class A) and a possible
feature interaction between features “F1” and “F3”.

Feature interaction
candidate

F1 \

Possible feature
interaction

— Class A

Class B

F3

)
Class C

| —

F2

Feature model Class diagram

Figure 4.3 — Feature interaction detection

With the results from this analysis, the developers could then take special attention
to the way that “Class A” is modeled. Also, some constraints may need to be defined
between features “F1” and “F3” as the result of this interaction (e.g., feature “F1”
requires feature “F3”).

It should be pointed out that we are only detecting possible feature interactions.
Detecting feature interactions with an absolute degree of certainty can be very difficult,
as sometimes the information available is limited. For instance, the example shown in
Figure 4.3 might not even constitute a feature interaction. Even though two features
collide in “Class A” they may be linked to completely separate blocks of code inside the
class, and thus not having any interaction whatsoever.

4.4 Summary

With the increasing complexity of software systems the need to facilitate mechanisms
that reason about the quality of a system seems to become a necessity for software
developers [57]. A system that fails to meet its requirements will probably be discarded
by its users. One of the metrics that can be used to assess the quality of a software
system can therefore be the degree to which it fulfills the requirements that were
specified. Another important quality may be the absence of undesired functionalities.
We demonstrated that by performing covering analysis we can determine if there are
requirements that are not satisfied, or detect artifacts that are not linked to a requirement

56

and may therefore clobber the system without any reason for it. We have also proposed
an approach to address this problem in the context of Software Product Lines. In our
opinion, the techniques used in traditional (non SPL) systems cannot be applied in this
domain due to the variability dimension that is not present in Single-Systems [3]. The
second problem is related to the detection of how a change in an artifact reverberates
over the rest of the system. As software artifacts (architectural models, code,
requirements, etc.) are linked to each other, any change introduced in an artifact should
be evaluated to see if it produces undesired results in the related artifacts. For instance,
if the requirements change, the architecture of the system may need to be adapted to
reflect that change. Discovering these relationships manually, is an error-prone and
resource consuming task. As with covering analysis, this problem is not exclusive to
SPL, but the variability inherent to product families requires a new kind of approach to
achieve a solution. We presented a proposal that provides the visualization of the impact
of changes. We believe that our proposals for covering and change impact analysis have
the ability to address these two concerns in SPL development.

The third problem discussed was the detection of feature interactions. From our
experience, not much literature exists on this topic and the largest source of research is
the telecommunications industry, where this problem is quite common. This problem
can also appear in SPL, due to the use of features to model the variabilities and
commonalities of a product line. To effectively handle feature interactions, the first step
that must be taken is to detect them. That is the goal of the approach that we have
presented in this chapter. We believe that it could provide detection of feature
interactions based on the trace links that are defined between artifacts during domain
analysis. In our opinion it may be easier for domain engineers to define the trace links
between the different artifacts and let tools perform the detection phase, than to detect
feature interactions from scratch.

To our knowledge, the approaches presented in this chapter constitute new
contributions to the existing traceability research, as no one else has tackled these
problems. In addition to the theoretical proposals, we plan to implement these analysis
mechanisms in our framework, by implementing the appropriate instances (trace queries
and views) to provide tool support for the discussed approaches. This implementation
will also serve to validate our proposals.

In the next chapter we present a case study to validate our traceability framework.

57

Chapter 5. Case Study

This chapter will present a case study for a home automation product line. This case
study will be used to validate the framework that we propose. We plan to demonstrate
the traceability framework usage and how it could be instantiated to perform detection
of feature interaction in the SPL. domain. The case study consists of a feature model

describing the product line variability and a use cased model modeling the
requirements.

5.1 Home Automation Product Line

The home automation product line® that is used in this section is meant to provide
management functionalities to the home owner. The feature model shown in Figure 5.1
shows the several variants that can be generated from the product line core assets.

= .j't. Harme Aukamation System

=M Home Management
O Manage rooms lighking
QO Manage rooms temperature
@ Manage house security
L

= Dievicas * Alandatory Feature
=M 203 & Optional Feature
o wWindow Elinds actuator ﬁ\ Or Feature Group

O Lights actuakor

o Air Conditioned actuator
Az

g Light sensar

O Thermometer

Figure 5.1 — Feature model for a home automation system

¥ Based on the “Smart Home” case study provided by Siemens in the context of the AMPLE project.

59

A Home Management product is composed of several optional features: “Manage
rooms lighting”, “Manage rooms temperature” and “Manage house security (the names
are self explanatory). It is also composed of several devices that are used to automate
the required functionalities. Two types of sensors exist, one for light detection and
another to determine the room temperature. Finally, a selection of actuators is also
available, each responsible for providing a certain functionality.

The use case model shown in Figure 5.2 displays the requirements of this home
automation system. This use case is modeling the entire product line, and not an
individual product. It contains an actor “Home Owner” to represent the person in charge
of managing configurations of the system. The remaining actors represent the devices
that are available for selection.

Lights Actuator

%ght Sensor

Set room ilumination

Air Conditioned Actuator

- — -«include». _ =S

Set room temperature Manage temperature

/

Home Owl\

Blinds Actuator

Activ ate security

~~«include»

Manage house security

«include»

Deactiv ate secutiry

Thermometer

Figure 5.2 — Use case model of a home automation system

The system allows a home owner to define the temperature to be maintained in a
room. A thermometer is used to measure the temperature and the air conditioned and
blinds actuators are used to regulate the temperature (e.g., closing the blinds to prevent
the sun from heating the room). The light of the room can also be defined by the user
which will them be automatically maintained by the system. A light sensor is used to
measure the amount of light and the blinds and light actuators can be used to regulate
the light to the appropriate level (e.g., opening the blinds to allow more sun light to get

60

in). The security management on the other hand, is defined to close the blinds in certain
conditions (e.g., close the blinds after 8§ PM).

5.2 Framework Usage

To provide traceability support for this home automation product line, we could use the
traceability framework that we proposed. The framework would enable the creation of
trace links between the elements of the feature model and the elements of the use case
model. The artifacts could be imported into the ATF repository by executing the
corresponding extractors that were described in Chapter 3. In Section 5.2.1 we describe
the trace links that are defined during domain analysis and Section 5.2.2 describes a
framework instance that would perform the detection of possible feature interactions,
according to the strategy discussed in Chapter 4.

5.2.1 Defining Trace Links

The trace links that have been identified are represented in Table 5.1. The feature model
elements are represented in the columns, while the use case model elements are
represented in the rows.

Table 5.1 — Trace links for the home automation system

Feature | Manage Manage Manage | Windows Lights Air Light
uc odel | Rooms Rooms House Blinds Act%ator Conditioned 9
Model Lighting | Temperature | Security | Actuator Actuator

Thermometer
Sensor

Home Owner X X X

Set Room X
llumination

Set Room X
Temperature

Activate
Security

Deactivate
Security

Manage Room X
llumination

Manage X
Temperature

Manage House X
Security

Light Sensor X X

Thermometer X X

Lights Actuator X X

Air Conditioned
Actuator X X

Blinds Actuator X X X X

A mark in one of the cells means that a trace link between the feature model and
use case model elements has been identified. The definition of these relationships is one

61

of the problems in traceability. These trace links are usually defined by domain
engineers which possess a great deal of knowledge in the domain that is being modeled.
Some trace links might be derived automatically, as described in some of the
approaches discussed in Section 2.2.1, but in a product lines development scenario we
whish to link elements from different dimensions and these relationships are not always
obvious and easy to automatically deduct. The validation of these trace links is another
concern in which traceability researchers dwell. Even the automatic generation of trace
links (e.g., links generated during a model transformation) is seen with some
skepticism, as no formal validation mechanism is usually provided. To our knowledge,
this validation problem remains largely untackled and a reasonable solution does not
exist.

The representation shown in Table 5.1 is used in this document to enhance the
ratability of this example, and it works because the number of artifacts is relatively
small. In practice traceability matrixes do not scale well, and become unusable if the
number of artifacts is too big. For instance, based on our experience a SPL system with
twenty features and an equal number of requirements would be quite hard to represent
using a traceability matrix. In reality the trace register instance that was implemented
uses a tree of checkboxes to allow the manual definition of trace links between features
and use cases models. We believe that a tree representation is much more scalable, as it
allows a user to expand only the desired subtree and concentrate only on a smaller
portion of the artifacts. An example of this register execution is shown in Figure 5.3.

& Trace Links Definition Window

= D'ﬁ' Manage rooms lighting -~
Sensar

Haome Cwner

Ackuatars

Blinds Actuataor

Air Conditioned Actustor
Light Sensar

Lights Actuator
Thermometer

Ackivabe securiby
Manage house security
Manage room ilumination
Set room kemperature
Manage temperature
Sek room iumination
Deactivate secutiry

D'ﬁ' Manage rooms kemperature
=[] Manage house security

OROOROOOEEOEORO

E B EEE B IE

[]+ Sensor

Home Owner

[+ Actuators

Blinds Actuator

[] + air Conditioned Actuatar

[] + Light Sensor w

Save Zancel

Figure 5.3 — Trace register execution for the home automation system

62

5.2.2 Detecting Feature Interaction

Once the trace artifacts and respective trace links are stored in the repository, we can
perform queries and analysis on that information. Our goal is to implement a trace query
instance that performs the feature interaction analysis, returning the list of feature
interaction candidates found. An example of how this analysis is performed is shown in
Figure 5.4. To enhance the understanding of this example, only a subset of all the trace
links is shown.

Lights Actuator Manage Rooms
- Lighting

Light Sensor

Manage room ilumination

Air Conditioned Actuator Ma nage Rooms

- Temperature
Manage temperature

_ Manage House

Blinds Actuator
Manage house security Secu r|ty

Thermometer

Use Case Model Feature Model

Figure 5.4 — Feature interaction in home automation system

By querying the trace information for links that have different source features and
the same destination artifact, we can detect possible feature interactions. This example
is demonstrated by the red arrows in Figure 5.4, which originate from three different
features (Manage Rooms Lighting, Manage Rooms Temperature and Manage House
Security), and arrive at the same actor (Blinds Actuator). In fact, this does constitute a
feature interaction example. While the Manage Rooms Lighting feature might try to
open the blinds to let natural light come in, the Manage Rooms Temperature feature
may want to close the blinds to cool the room down. Some tradeoff must be made to
properly handle this conflict. Our contribution is not meant to address the handling of

63

these conflicts, but rather to provide a means of detecting them and provide this
information to the system developer.

This case study constitutes a clear example of a limitation found in existing
approaches and traceability tools, which we are planning to address with our traceability
framework. This instantiation scenario for detection of feature interactions is not yet
implemented. We plan to create the necessary trace query and trace view instances to
implement this type of analysis.

5.2.3 Implementing a Feature Interaction Instance

As mentioned in the beginning of the chapter, our idea is to instantiate our traceability
framework to provide an implementation of the solution presented in the previous
section. This instantiation is shown in Figure 5.5. The FeaturelnteractionQuery is an
extension of the net.ample.tracing.framework.core.traceQuery extension point. This class
implements the algorithm described in the previous section and returns the set of
relevant trace links to be passed for the corresponding trace view. The
FeaturelnteractionTraceView is used to provide an instance capable of presenting the
results of the feature interaction query. For instance, the visualization could be a simple
list of the feature interactions that were detected, or a graph view of the query.

«execution environment»

Eclipse IDE
Feature Interaction Plug-in
FeaturelnteractionQuery FeaturelnteractionView
+ submitQuery()] + showResults()
«extenlsion of» «extension of»
net.ample.tracing.framewo net.ample.tracing.framework.
core.traceQuery core.traceView
LI

L E

Framework Core | Traceability Framework Plug-in

ITraceQuery éé ITraceView éé

AbstractTraceQuery AbstractTraceView

<
+ showResults() <)—
<

+ submitQuery()

Figure 5.5 — Feature interaction detection instance

64

5.3

Comparison of Results

In Chapter 2 we presented some of the existing approaches for traceability support in
MDE and SPL development and discussed their strengths and weaknesses. We have
also presented the traceability tools survey and discussed the benefits and shortcomings
of the tools analyzed. We will now compare our approach with the remainder of the
SPL approaches. The MDE approaches will not be presented, because even though our
traceability framework uses MDE techniques, and could be extended to facilitate
traceability support for MDE, our main goal was to provide a platform for definition,
maintenance, query and visualization of trace information in the context of SPL. We
will also compare our implementation with the traceability tools that were presented in
that chapter and discuss the improvements and benefits that we have introduced.

Table 5.2 summarizes the results of the SPL approaches discussed in Section 2.3.1.
Our approach has been added to the last line of the table to facilitate the comparison.
The criterion used here are the same as the ones used previously.

Table 5.2 — Comparison of SPL approaches with Traceability Framework

Mapping and Change Tool
Approach Representation pping a Scalability impact
Granularity . support
analysis
Backward and
Pohl et al. [59] Directed link forward, yes yes no
arbitrary granularity
Berg et al. [8] Directed link Fine-grained not discussed | not discussed no
Ajila and Kaba Directed link Coarse-grained not discussed yes ad-hoc tool
2] set
Knauber and . . Forward, . . Junit and
Schneider [47] Directed link coarse-grained not discussed | not discussed Aspect]
. . Backward and .
Mergel et al. [52] Dlrect'ed link apd forward yes not discussed not p'ubl|cly
meta information . available
coarse-grained
Jirapanthong Backward and prototype
; Directed link forward, not discussed | not discussed
and Zisman [40] ; (XtraQue)
coarse-grained
Backward and
Zisman et al. Directed link and forward, not discussed | not discussed rototvoe
[73] meta information fine-grained for P yp
requirements
Backward and
Luttikhuizen et Directed link and forward not discussed es no
al. [61] meta information Fine-grained for y
requirements
Bayer and Backward and ad-hoc tool
; Directed link forward, not discussed | not discussed
Widen [7] . . set
arbitrary granularity
Backward and not
Moon et al. [53] Directed link forward, yes not discussed .
. . discussed
arbitrary granularity
Traceabilit Backward and
y Directed link forward, yes yes yes
Framework . .
arbitrary granularity

As can be seen from the previous table, our framework proposal provides many of
the benefits that are found in the best SPL approaches. We have also been able to
respond to the tool support criteria. In our opinion, this is one of the major requirements
for an efficient traceability solution, a requirement that is missing from many

65

approaches. In Table 5.3 we present the summary of the traceability tools survey
presented in Section 2.4. The implementation of our traceability framework has been
added to the last line of the table to facilitate the comparison. The criterion used here are
the same as the ones used in that chapter.

Table 5.3 — Comparison of existing traceability tools with Traceability Framework

Change Support
Creation of . Type of Covering . . for SPL
Tool - Mapping Impact . Views | Extensible
Trace Links Query h Analysis and
Analysis
MDE
part of
RequisitePro manual artifacts, filters s no matrix, no no
[37] forward and y tree
backward
Borland requm_ements _
; to artifacts, ' matrix,
CaliberRM manual f d and filters yes no h yes no
[13] orward an grap
backward
manual, requirements .
imports to artifacts matrix partial
RaQuest [65] . ’ n.d. yes no ’ no support
requirements | forward and graph for MDE
from file backward
manual requirements
.) ’ to parts of custom
Telelogic '”.‘pO”S artifacts queries yes yes tree yes no
DOORS [69] | requirements ’) ’
from file forward and filters
backward
manual, artifact to
imports artifact,) matrix,
Contour [39] artifacts from | forward and filters yes no report yes no
file backward
requirement
GatherSpace manual to other n.d no es report no no
[30] artifacts, a y P
forward
models to
source code, matrix,
Trace automatic models to n.d no yes graph no no
Analyzer [23] h X
models, report
forward
automatic, .
- manual arb'"ar.y
Traceability . ’ granularity, custom yes yes custom
import - . yes yes
Framework artifacts forward and | queries | (planed) (planed) views
backward
from models

The previous table demonstrates the benefits that our framework provides over the

remaining tools. We have provided a solution that allows for automatic, manual or
semi-automatic definition of trace links, execution of custom queries, visualization of
query results in custom views and an arbitrary level of granularity in trace links. We
have also presented our ideas for implementing analysis mechanisms to perform
covering analysis, change impact analysis and feature interaction detection in the
context of SPL development (the implementation of this analysis is not available yet,
but it is planed to be provided in the next version of the tool). These types of queries are
missing in all of the surveyed tools. Finally we proposed a truly open and extensible
solution for traceability, allowing other developers to extend the framework capabilities
in terms of registers, queries and views, and adapting it to their specific needs. We
believe that these instantiation mechanisms make our proposal highly adaptable and
reusable to satisfy SPL and other software development scenarios.

66

5.4 Summary

This chapter presented a case study based on a product line of home automation
systems. The case study was composed of a variability model (feature model) and a
requirements model (use case model). We validated our traceability framework proposal
with this case study, by demonstrating how to address a problem that exists in SPL
development and that, to our knowledge, is not supported by any other tool or approach.
The case study process consisted of importing the feature and requirements model into
the ATF repository. Once that step was concluded, the domain engineer would define
the trace links that were identified between the elements from these two models. This
step is the one that requires the greatest amount of work from the developer, as it
requires the user to identify the trace links manually. We are not aware of the possibility
to perform automatic identification of these links, because this information is very
domain specific and will probably require a great deal of knowledge in the domain that
is being modeled. The following steps are automatic. The user must simply execute the
trace query instance that implements feature interaction detection and the results are
reported back.

As mentioned in the previous chapter, we can only detect possible feature
interactions. Detecting feature interactions with an absolute degree of certainty can be
very difficult, if not impossible, as the trace information that is available may be
limited. Because our framework allows an arbitrary granularity for the traceable
artifacts, even though the same artifact may be linked, to different features, there may
not exist a feature interaction between them. For instance, if we link two features to a
use case, our approach detects a feature interaction between those two features.
However, if we further specify the use case by defining its steps, and instead link the
features to the steps of the use case, the previous feature interaction may not exist
anymore, if the features are no longer related in the same steps. From this example we
can see that fine-grained traceability yields much better results than coarse-grained
traceability. Never the less, we can only provide feature interaction candidates, because
the level of granularity to be used in our framework is a decision of the developer.

The last section of the chapter also presented a comparison between the work
developed in this thesis and the SPL approaches and traceability tools surveyed in
Chapter 2. We demonstrated the benefits that our framework achieves, in terms of the
evaluation criterion, over the remaining solutions. We have proposed a solution that is
highly adaptable and extensible, provides tool support and tackles the concrete
challenges introduced by SPL development.

In the next chapter we will present the conclusions of this thesis, along with the
contributions and the future work that is planed.

67

Chapter 6. Conclusion

The focus of this master thesis dissertation is traceability. We discussed how traceability
can provide a valuable aid in addressing some of the problems associated with software
development. A special focus was given on traceability in the context of SPL, where the
approaches and tools for Single-System development do not cope well with the new
challenges presented by this paradigm. To address this gap, we presented a proposal for
a Model-Driven traceability framework that aims to provide a platform for design and
implementation of traceability mechanisms and tools for SPL. This framework uses a
traceability metamodel for storage of trace information and three hotspots that allow
instantiating it to serve different SPL needs. The first hotspot is used to create different
trace registers, used for performing CRUD operations in the trace repository. The
second hotspot is used to implement different trace queries to perform analysis in the
stored trace information. The last hotspot allows framework developers to implement
distinct views for visualization of query results.

To validate our ideas we have implemented a version of this framework. The
implementation consists of the framework core with the hotspots. The framework was
implemented as an Eclipse plug-in with several extension points defined. Each hotspot
instance is implemented by extending the desired extension point. Included in this first
implementation, are instances of each hotspot to allow the definition, query and
visualization of traceability information between features and requirements artifacts.

Some proposals for addressing SPL development problems using traceability were
also discussed. We presented our ideas on how to use traceability to perform covering
analysis and change impact analysis in the context of product lines. A proposal for
detection of feature interactions, a complex problem that exists in the SPL domain, was
also presented. We plan to implement our ideas in the following versions of our
framework.

Finally, we have presented a case study for a SPL system based in a home
automation product line. This example was composed of a variability model and the
requirements model for the entire SPL. We demonstrated how our solution can be used
to store the trace links between the elements of these different domains. We have also

69

shown how the framework can be instantiated to solve problems that are found in SPL
development and that are not addressed by other approaches.

6.1

Contributions

The following contributions are direct results of this work:

6.2

A Model-Driven Traceability Framework (Chapter 3). Specification of a
framework for the definition and implementation of methods and tools for
traceability in the context of Software Product Lines.

An implementation of the Framework Core. The core of the framework was
implemented in the form of an Eclipse plug-in with a set of extension points that
allow instantiating to other scenarios.

Framework instances to trace from features to requirements (Chapter 3).
The base implementation that is provided allows users to import requirements
(modeled with use case models) and variability models (modeled with feature
models) and trace links between the artifacts of these separate domains and
perform queries on this information.

A proposal for addressing SPL development problems through traceability
(Chapter 4). A proposal for detection of feature interactions was presented.
Methods for performing covering analysis and change impact analysis in the
context of SPL were also discussed.

Future Work

Much research is still under development and may be addressed as future work.

Implementation of new framework instances. The detection of feature
interaction, covering analysis and change impact analysis are thought to be
implemented as instances of the TraceQuery and TraceView hotspots.

Refactoring the framework UI. The framework interface will be revised and
will be subjected to a major transformation. New functionalities to be included
are under revision.

Evolve to “black-box” instantiation scenario. Implement generic hotspot
instances that allow developers to provide new instances with minimal effort.

Framework evolution. The framework will be used and extended by the
partners of the AMPLE project. Suggestions for improvement and necessary
adaptations will be analyzed and implemented in future versions.

Handle system evolution. As a software system evolves, its models might
change. These changes must trigger updates in the repository. We plan to
develop some strategy for performing this task.

70

References

[10]

[11]

[12]

[13]

[14]

N. Aizenbud-Reshef, B. T. Nolan, J. Rubin, and Y. Shaham-Gafni, "Model
Traceability", IBM Systems Journal, vol. 45, pp. 515-526, 2006.

S. Ajila and B. A. Kaba, "Using Traceability Mechanisms to Support Software
Product Line Evolution", in Proceedings of the 2004 IEEE International
Conference on Information Reuse and Integration (IEEE IRI-2004), Las Vegas,
Nevada, USA, 8-10 Nov. 2004, pp. 157-162.

N. Anquetil, B. Grammel, . Galvao, J. Noppen, S. S. Khan, H. Arboleda, A.
Rashid, and A. Garcia, "Traceability for Model Driven, Software Product Line
Engineering", presented at 4th ECMDA Traceability Workshop, Berlin,
Germany, 2008.

M. Antkiewicz and K. Czarnecki, "FeaturePlugin: Feature Modeling Plug-In for
Eclipse", in Proceedings of the Workshop on Eclipse Technology eXchange
(OOPSLA 2004), Vancouver, BC, Canada, ACM, October 24-28, 2004, pp. 67-
72.

AOSD Steering Committee, "Aspect-Oriented Software Development
Community & Conference", http://aosd.net/.

J. Bayer, O. Flege, P. Knauber, R. Laqua, D. Muthig, K. Schmid, T. Widen, and
J.-M. DeBaud, "PuLSE: A Methodology to Develop Software Product Lines", in
Proceedings of the 1999 symposium on Software reusability, Los Angeles,
California, USA, ACM Press, 1999, pp. 122-131.

J. Bayer and T. Widen, "Introducing Traceability to Product Lines", presented at
the 4th International Workshop on Software Product-Family Engineering,
Bilbao, Spain, 2002.

K. Berg, J. Bishop, and D. Muthig, "Tracing Software Product Line Variability —
From Problem to Solution Space", in Proceedings of the 2005 Annual Research
Conference of the South African Institute of Computer Scientists and
Information Technologists on IT Research in Developing Countries (SAICSIT
'05), White River, South Africa, South African Institute for Computer Scientists
and Information Technologists, 2005, pp. 182-191.

D. Beuche and M. Dalgarno, "Software Product Line Engineering with Feature
Models", Methods & Tools, vol. 14, pp. 42, 2006.

J. Bézivin, "On the Unification Power of Models", Software and Systems
Modeling, vol. 4, pp. 171-188, 2005.

BigLever Software Inc., "Software Product Lines - BiglLever Software",
http://www.biglever.com/.

A. Bolour, "Notes on the Eclipse Plug-in Architecture",
http://www.eclipse.org/articles/Article-Plug-in-
architecture/plugin_architecture.html.

Borland, "Borland® CaliberRM™" |
http://www.borland.com/us/products/caliber/rm.html.

A. Braganga and R. J. Machado, "Automating Mappings between Use Case
Diagrams and Feature Models for Software Product Lines", in Proceedings of
the 11th International Software Product Line Conference (SPLC 2007), Kyoto,
Japan, IEEE Computer Society, 10-14 Sept. 2007, pp. 3-12.

71

http://aosd.net/
http://www.biglever.com/
http://www.eclipse.org/articles/Article-Plug-in-architecture/plugin_architecture.html
http://www.eclipse.org/articles/Article-Plug-in-architecture/plugin_architecture.html
http://www.borland.com/us/products/caliber/rm.html

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]
[23]
[24]

[25]

[26]

[27]

[28]

[29]

[30]
[31]

F. Budinsky, S. A. Brodsky, and E. Merks, Eclipse Modeling Framework:
Pearson Education, 2003.

J. Cleland-Huang, C. K. Chang, and M. Christensen, "Event-Based Traceability
for Managing Evolutionary Change", [EEE Transactions on Software
Engineering, vol. 29, pp. 796 - 810, 2003.

J. Cleland-Huang and D. Schmelzer, "Dynamically Tracing Non-Functional
Requirements through Design Pattern Invariants", presented at 2nd International
Workshop on Traceability in Emerging Forms of Software Engineering
(TEFSE’03), Montreal, Canada, 2003.

J. Cleland-Huang, R. Settimi, O. BenKhadra, E. Berezhanskaya, and S.
Christina, "Goal-Centric Traceability Managing Non-Functional Requirements",
in Proceedings of the 27th International Conference on Software Engineering
(ICSE 2005), St. Louis, Missouri, USA, ACM, 15-21 May, 2005, pp. 362-371.
P. Clements and L. M. Northrop, Sofiware Product Lines: Practices and
Patterns, 1st ed., Boston, MA, USA: Addison-Wesley, 2002.

K. Czarnecki and M. Antkiewicz, "Mapping Features to Models: A Template
Approach Based on Superimposed Variants", in Proceedings of the 4th
International Conference on Generative Programming and Component
Engineering, Tallinn, Estonia, Springer, September, 2005, pp. 422-437.

K. Czarnecki, S. Helsen, and U. Eisenecker, "Staged Configuration Using
Feature Models", in Proceedings of the 3rd International Software Product Line
Conference (SPLC 2004), Boston, MA, USA, Springer, August 30-September 2,
2004, pp. 266-283.

A. M. Davis, Software Requirements: Objects, Functions and States, Upper
Saddle River, NJ, USA: Prentice-Hall, Inc., 1993.

A. Egyed, "Trace Analyzer =~ WebPage", http://www.alexander-
egyed.com/tools/trace_analyzer_ tool.html.

A. Egyed, "A Scenario-Driven Approach to Trace Dependency Analysis", [EEE
Transactions on Software Engineering, vol. 29, pp. 116-132, 2003.

A. Egyed, "Resolving Uncertainties during Trace Analysis", in Proceedings of
the 12th ACM SIGSOFT Symposium on Foundations of Software Engineering
(FSE), Newport Beach, California, USA, ACM, November 2004, pp. 3-12.

M. Eriksson, J. Borstler, and K. Borg, "The PLUSS Approach - Domain
Modeling with Features, Use Cases and Use Case Realizations", in Software
Product Lines, 9th International Conference, Rennes, France, Springer, 2005,
pp. 33-44.

J.-R. Falleri, M. Huchard, and C. Nebut, "Towards a Traceability Framework for
Model Transformations in Kermeta", presented at the 2nd ECMDA Traceability
Workshop (ECMDA-TW), Bilbao, Spain, 2006.

I. Galvao and A. Goknil, "Survey of Traceability Approaches in Model-Driven
Engineering", in Proceedings of the 11th IEEE International Enterprise
Distributed Object Computing Conference (EDOC 2007), Annapolis, Maryland,
USA, IEEE Computer Society, 15-19 Oct. 2007, pp. 313.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software, Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 1995.

GatherSpace.com, "GatherSpace", http://www.gatherspace.com/.

H. Gomaa, Designing Software Product Lines with UML: From Use Cases to
Pattern-Based Software Architectures: Addison-Wesley, 2004.

72

http://www.alexander-egyed.com/tools/trace_analyzer_tool.html
http://www.alexander-egyed.com/tools/trace_analyzer_tool.html
http://www.gatherspace.com/

[32]

[33]
[34]

[35]

[36]
[37]

[38]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

O. C. Z. Gotel and A. C. W. Finkelstein, "An Analysis of the Requirements
Traceability Problem", in Proceedings of the First International Conference on
Requirements Engineering, Colorado Springs, CO, USA, IEEE Computer
Society Press, 18-22 Apr. 1994, pp. 94-101.

Graphviz, "Graph Visualization Software", http://www.graphviz.org/.

J. Greenfield and K. Short, Sofiware Factories: Assembling Applications with
Patterns, Models, Frameworks, and Tools, Indianapolis, IN, USA: Wiley, 2004.
M. L. Griss, J. Favaro, and M. d' Alessandro, "Integrating Feature Modeling
with the RSEB", in Proceedings of the 5th International Conference on Software
Reuse, Victoria, British Columbia, Canada, IEEE Computer Society, June 2-5,
1998, pp. 76-85.

IBM, "Rational Rose Modeler", http://www-
306.ibm.com/software/awdtools/developer/rose/modeler/.
IBM, "Rational® RequisitePro®", http://www-

306.1ibm.com/software/awdtools/reqpro/.

Institute of Electrical and Electronics Engineers Inc., /EEE Standard Computer
Dictionary: A Compilation of IEEE Standard Computer Glossaries. New York,
NY, USA: IEEE, 1991.

Jama Software, "Jama Contour", http://www.jamasoftware.com/contour.htm.

W. lJirapanthong and A. Zisman, "Supporting Product Line Development
through Traceability", in Proceedings of the 12th Asia-Pacific Software
Engineering Conference (APSEC'05), Taiwan, IEEE Computer Society, 15-17
Dec. 2005, pp. 506-514.

W. Jirapanthong and A. Zisman, "XTraQue: Traceability for Product Line
Systems", Software and Systems Modeling, 2007.

F. Jouault, "Loosely Coupled Traceability for ATL", in Proceedings of the
ECMDA Traceability Workshop (ECMDA-TW), Nuremberg, Germany,
November 2005, pp. 29-37.

F. Jouault and I. Kurtev, "Transforming Models with ATL", in Proceedings of
the Model Transformations in Practice Workshop at MoDELS 2005, Montego
Bay, Jamaica, Springer, 2005, pp. 128-138.

K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson, "Feature-Oriented
Domain Analysis (FODA) Feasibility Study", Software Engineering Institute,
Technical report, CMU/SEI-90-TR-021, 1990.

K. C. Kang, S. Kim, J. Lee, K. Kim, E. Shin, and M. Huh, "FORM: A Feature-
Oriented Reuse Method with Domain-Specific Reference Architectures", Annals
of Software Engineering, vol. 5, pp. 143-168, 1998.

S. S. Khan, A. Rashid, A. Goknil, I. Galvao, I. Groher, C. Schwanninger, J.-C.
Royer, K. Garces, and C. Pohl, "State-of-the-art for traceability in software
product line development, with specific focus on aspect traceability in the
software development process. Evaluate the potential benefits of aspectoriented
programming and model-driven engineering." Aspect-Oriented, Model-Driven,
Product Line Engineering (AMPLE), Survey, M4.1, 2007.

P. Knauber and J. Schneider, "Tracing Variability from Implementation to Test
Using Aspect-Oriented Programming", in Proceedings of the International
Workshop on Software Product Line Testing (SPLiT 2004), Boston,
Massachusetts, USA, August 2004, pp. 36-44.

D. S. Kolovos, R. F. Paige, and F. A. C. Polack, "Merging Models with the
Epsilon Merging Language (EML)", in Procedings of the ACM/IEEE 9th

73

http://www.graphviz.org/
http://www-306.ibm.com/software/awdtools/developer/rose/modeler/
http://www-306.ibm.com/software/awdtools/developer/rose/modeler/
http://www-306.ibm.com/software/awdtools/reqpro/
http://www-306.ibm.com/software/awdtools/reqpro/
http://www.jamasoftware.com/contour.htm

[49]

[50]
[51]
[52]

[53]

[54]

[55]

[56]

[57]

[58]
[59]
[60]
[61]
[62]

[63]
[64]

International Conference on Model Driven Engineering Languages and Systems
(Models/UML 2006), Genova, Italy, Springer, October 2006, pp. 215-229.

D. S. Kolovos, R. F. Paige, and F. A. C. Polack, "On-Demand Merging of
Traceability Links with Models", presented at the 2nd ECMDA Traceability
Workshop (ECMDA-TW), Bilbao, Spain, 2006.

G. Kotonya and 1. Sommerville, Requirements Engineering: Processes and
Techniques, 1st ed., New York, NY, USA: John Wiley & Sons, Inc., 1998.

P. Luttikhuizen, "Requirements Modelling and Traceability", ESAPS project,
Consortiumwide deliverable, 2001.

M. Mergel, S. Thiel, and S. Ferber, "Product Line Asset Classification and
Dependency Specification", ESAPS project, Consortiumwide deliverable, 2000.
M. Moon, H. S. Chae, and K. Yeom, "A Metamodel Approach to Architecture
Variability in a Product Line", in Proceedings of the 9th International
Conference on Software Reuse, Torino, Italy, Springer Berlin, 11-15 June 2006,
pp- 115-126.

L. Naslavsky, T. A. Alspaugh, D. J. Richardson, and H. Ziv, "Using Scenarios to
Support Traceability", in Proceedings of the 3rd International Workshop on
Traceability in Emerging Forms of Software Engineering (TEFSE '05), Long
Beach, California, USA, ACM, 8 Nov. 2005, pp. 25 - 30.

National Institute of Standards and Technology, "Dictionary of Algorithms and
Data Structures", http://www.nist.gov/dads/.

Object Management Group (OMG), "Meta Object Facility (MOF)
Specification", http://www.omg.org/docs/formal/02-04-03.pdf, 2002,
03.04.2002.

J. D. Palmer, "Traceability", in Software Requirements Engineering, R. Thayer
and M. Dorfman, Eds., 2nd ed., Los Alamitos, California: IEEE Computer
Society Press, 2000, pp. 412-422.

K. Pohl, "VARMOD-EDITOR", http://www.sse.uni-
due.de/wms/de/index.php?go=256.

K. Pohl, G. Bockle, and F. van der Linden, Software Product Line Engineering:
Foundations, Principles and Techniques, Berlin, Germany: Springer, 2005.
Project AMPLE, "Aspect-Oriented, Model-Driven Product Line Engineering",
http://ample.holos.pt/.

pure-systems GmbH, "pure::variants", http://www.pure-
systems.com/Variant Management.49.0.html.

B. Ramesh and M. Jarke, "Toward Reference Models for Requirements
Traceability", IEEE Transactions on Software Engineering, vol. 27, pp. 58-93,
2001.

I. Sommerville, Software Engineering, 8th ed.: Addison-Wesley, 2007.

A. Sousa, U. Kulesza, A. Rummler, N. Anquetil, R. Mitschke, A. Moreira, V.
Amaral, and J. Aragjo, "A Model-Driven Traceability Framework to Software
Product Line Development", presented at 4th ECMDA Traceability Workshop,
Berlin, Germany, 2008.

Sparx Systems Japan, "RaQuest", http://www.raquest.com/.

T. Stahl and M. Volter, Model-Driven Software Development, 1st ed., Glasgow,
UK: Wiley, 2006.

Sun Microsystems, "Java™ Platform, Standard Edition 6 API Specification ",
http://java.sun.com/javase/6/docs/api/.

74

http://www.nist.gov/dads/
http://www.omg.org/docs/formal/02-04-03.pdf
http://www.sse.uni-due.de/wms/de/index.php?go=256
http://www.sse.uni-due.de/wms/de/index.php?go=256
http://ample.holos.pt/
http://www.pure-systems.com/Variant_Management.49.0.html
http://www.pure-systems.com/Variant_Management.49.0.html
http://www.raquest.com/
http://java.sun.com/javase/6/docs/api/

[68]

[69]
[70]
[71]
[72]

[73]

M. S. Tabares and A. Moreira, "Towards a Meta Aspect for Traceability",
presented at Early Aspects: Traceability of Aspects in the Early Life Cycle
Workshop (AOSD'06), Bonn, Germany, 2006.

Telelogic, "Telelogic DOORS",
http://www.telelogic.com/products/doors/index.cfm.

Triskel Project (IRISA), "The Metamodeling Language Kermeta",
http://www.kermeta.org/.

UNL/FCT, "Traceability Requirements", Aspect-Oriented, Model-Driven,
Product Line Engineering (AMPLE), AMPLE Internal Documentation, 2007.

P. Zave, "FAQ Sheet on Feature Interaction",
http://www.research.att.com/~pamela/fag.html.

A. Zisman, G. Spanoudakis, E. Pérez-Mifiana, and P. Krause, "Towards a
Traceability Approach for Product Families Requirements", presented at 3rd
International Workshop on Software Product Lines: Economics, Architectures,
and Implications, Orlando, Florida, USA, 2002.

75

http://www.telelogic.com/products/doors/index.cfm
http://www.kermeta.org/
http://www.research.att.com/%7Epamela/faq.html

Glossary of Abbreviations

AMPLE — Aspect-Oriented Model-Driven Product Line Engineering
AOSD — Aspect-Oriented Software Development

ATL — ATLAS Transformation Language

CRS — Commercial Requirements Specification

CRUD - Create, Read, Update and Delete

EBT — Event Based Traceability

EBTpp — Event Based Traceability with Design Patterns
EMF — Eclipse Modeling Framework

EML — Epsilon Merging Language

FCT/UNL - Faculdade de Ciéncias e Tecnologia da Universidade Nova de Lisboa
FRS — Functional Requirements Specification

GCT - Goal Centric Traceability

GUI — Graphical User Interface

MDE — Model-Driven Engineering

MOF — Meta-Object Facility

NFR — Non-Functional Requirement

OMG - Object Management Group

OVM - Orthogonal Variability Model

ROM - Requirements Object Model

RTD — Research and Technological Development

SIG — Softgoal Interdependency Graph

SPL — Software Product Lines

UML — Unified Modeling Language

XML - eXtensible Markup Language

77

Annexes

Annex 1 - Trace Extractor Extension Point

Identifier: net.ample.tracing.core.traceExtractor
Since: 0.1.0

Description: Extension point for trace extractors.
Configuration Markup:

<IELEMENT extension (extractor)+>
<IATTLIST extension
point CDATA #REQUIRED
id CDATA #IMPLIED
name CDATA #IMPLIED>

<IELEMENT register (parameter)>
<IATTLIST register
Id CDATA #REQUIRED
class CDATA #REQUIRED
description CDATA #REQUIRED>

e id - The unique identifier of this extractor.
e class - The implementing class.

e description - A short description of what the extractor actually does.

<IELEMENT parameter EMPTY>
<IATTLIST parameter
name CDATA #REQUIRED
type (string|booleanl|int|float|resource)
required (true | false)
description CDATA #IMPLIED
default CDATA #IMPLIED>

Each extractor is configured via several parameters, which can be defined with this tag.

e name - Name of the parameter.

o type - Type of the parameter. There are five types of possible parameters: string,
boolean, int, float and resource.

e required - Flag to indicate that this parameter is required for the trace extractor to work
properly.

o description - A short description of the parameter, that might be displayed in a user
interface.

e default - The default value of the parameter.
Examples: The following is an example of the extension point usage:

<extension point="net.ample.tracing.core.traceExtractor">
<extractor
id="net.ample.tracing.sample extractor"
class="net.ample.tracing.SampleExtractor”
description="some description">
<parameter

80

name="Sample Parameter"
type="boolean"
required="true"
description="some description"
default="false">
</parameter>
</extractor>
</extension>

API Information: Plug-ins that want to extend this extension point must implement
net.ample.tracing.core.TraceExtractorinteﬁéce.

81

Annex 2 - Trace Register Extension Point

Identifier: net.ample.tracing.framework.core.traceRegister
Since: 0.1.0

Description: This extension point is used to plug in additional trace registers for establishing
trace links between SPL artifacts.

Configuration Markup:

<IELEMENT extension (register)+>
<IATTLIST extension

point CDATA #REQUIRED
id CDATA #IMPLIED
name CDATA #IMPLIED>

<IELEMENT register (description)>
<IATTLIST register

id CDATA #REQUIRED
name CDATA #REQUIRED
class CDATA #REQUIRED>

¢ id - a unique name that will be used to reference this trace register.
e name - a translatable name that will be used for presenting this trace register in the Ul.

e class - Plug-ins that want to extend this extension point must implement
net.ample.tracing.framework.core.traceregister.ITraceRegisterinteﬁéce.

<IELEMENT description (#PCDATA)>
Examples: The following is an example of the extension point usage:

<extension point="net.ample.tracing.framework.core.traceRegister">
<register
id="net.ample.tracing.sample register"
name="Sample Trace Register"
class="net.ample.tracing.SampleRegister">
<description>some description.</description>
</register>
</extension>

API Information: Plug-ins that want to extend this extension point must implement
net.ample.tracing.framework.core.traceregister.ITraceRegister interface.

Supplied Implementation: Traceability Framework Plug-in provides a default implementation
of a trace register.

82

Annex 3 - Trace Query Extension Point

Identifier: net.ample.tracing.framework.core.traceQuery
Since: 0.1.0
Description: This extension point is used to plug in additional trace queries.
Configuration Markup:
<IELEMENT extension (query)+>
<IATTLIST extension
point CDATA #REQUIRED
id CDATA #IMPLIED
name CDATA #IMPLIED>

<IELEMENT query (description)>
<IATTLIST query

id CDATA #REQUIRED
name CDATA #REQUIRED
class CDATA #REQUIRED>

e id - a unique name that will be used to reference this trace query.
e name - a translatable name that will be used for presenting this trace query in the Ul.

e class - Plug-ins that want to extend this extension point must implement
net.ample.tracing.framework.core.tracequery.ITraceQueryinteﬁéce.

<IELEMENT description (#PCDATA)>
Examples: The following is an example of the extension point usage:

<extension point="net.ample.tracing.framework.core.traceQuery">
<query
id="net.ample.tracing.sample query"
name="Sample Trace Query"
class="net.ample.tracing.SampleQuery">
<description>some description.</description>
</query>
</extension>

API Information: Plug-ins that want to extend this extension point must implement
net.ample.tracing.framework.core.tracequery.ITraceQuery interface.

Supplied Implementation: Traceability Framework Plug-in provides a default implementation
of a trace query.

&3

Annex 4 - Trace View Extension Point

Identifier: net.ample.tracing.framework.core.traceView
Since: 0.1.0
Description: This extension point is used to plug in additional trace views.
Configuration Markup:
<IELEMENT extension (view)+>
<IATTLIST extension
point CDATA #REQUIRED

id CDATA #IMPLIED
name CDATA #IMPLIED>

<IELEMENT view (description)>
<IATTLIST view

id CDATA #REQUIRED
name CDATA #REQUIRED
class CDATA #REQUIRED

e id - a unique name that will be used to reference this trace view.
e name - a translatable name that will be used for presenting this trace view in the UL.

e class - Plug-ins that want to extend this extension point must implement
net.ample.tracing. framework.core.traceview.ITraceView interface.

<IELEMENT description (#PCDATA)>
Examples: The following is an example of the extension point usage:

<extension point="net.ample.tracing.framework.core.traceView">
<view
id="net.ample.tracing.sample view"
name="Sample Trace View"
class="net.ample.tracing.SampleView">
<description>some description.</description>
</view>
</extension>

API Information: Plug-ins that want to extend this extension point must implement
net.ample.tracing.framework.core.traceview.ITraceView interface.

Supplied Implementation: Traceability Framework Plug-in provides a default implementation
of a trace view

84

Annex 5 - Traceability Framework User Guide

85

Annex 5 - Traceability Framework User Guide
FACULDADE DE
CIENCIAS E TECNOLOGIA
UNIVERSIDADE NOVA DE LISBOA

Traceability Framework to
SPL Development

User Guide
&
Instantiation Manual

(V 0.3)

André Sousa

DI — FCT/UNL

Annex 5 - Traceability Framework User Guide

TABLE OF CONTENTS

T goTo U1 1o o [PPSR 3
SYStEM REQUITEMENTS. ...ttt e e e e e e e rb e e e 3
115 7= 1 =T o U 3
Framework DeSCIIPLIONii i e e e e e e aara s 3
Traceability Framework StrUCtUIE...........coiiiiiiiieiiic e 3
Framework Implementationoooii i 5
AP RETEIENCEot e e e e 6
Default INSTANTIALION.uuuiiiiiiiiiiieiiie bbb neeenee 6
TraCe REQISIEN ...t e et e e e e e e eeeanees 6
TTACE QUETY ..ttt e e et e et e e e e e e e eennnne 6
TTACE VIBW ..ottt e e e e e ettt e e e e e e e e e e e ettaaneaeeeeeeeennees 6
TULOTIAIS ..o e e e e e e e et s e e e e e e e e e eetba e e e eeeeeeennnes 7
How to Create a Traceability Project.............cuuciiiiiieeiiiieecee e 7
Defining NEW Trace LINKScoooviiiiiiiie e 9
Submitting Queries and Viewing ReSUItS ..., 11
Framework INSTantiation.............oooviiiiieiiiiiiee e eeeeeeeens 14
Trace RegiSter INSLANCEoiii i i e e e e eeaees 14
Trace QUEIY INSTANCEccuuiiiie e eaas 24
Trace VIEW INSTANCEcovuiiiiie e e e e e eeeees 27
APPENDIXES ... ot 33
Appendix | - Mobile Photo Variability Modelccccovvviiiiiiiee e, 34
Appendix Il - Mobile Photo Use Case Model.............ccoovvviiiiiiiiieeiiieieiin, 35
Appendix Il - Extension Points Referenceccoevvvvviiiiiiiiiie e 38
Appendix IV — Rational Rose Use Case Modelingcceevvvviiiiiiiieeeennee. 41

Appendix V — Enterprise Architect Use Case Modeling...........cc..ccevvvvennnns 42

Annex 5 - Traceability Framework User Guide

Introduction

This document describes a Framework that provides an open and flexible platform to
implement trace links between artifacts from SPL development. In order to address
this aim, the framework was designed and implemented with several hotspots that
allow developers to extend its capabilities as needed.

The document is divided into three main parts: framework description, tutorial and
framework instantiation. The first part describes the concepts behind this trace
framework and gives an overview of the same. The second chapter contains tutorials
to guide the user in his first steps. The third section shows how to instantiate the
hotspots of this framework to extend the functionalities provided by default.

System Requirements

This framework was developed as an Eclipse plug-in and was designed to work with
the following set of requirements.

e JRE 5.0 (the framework core runs on JRE 5.0, however the framework
extensions provided by default require JRE 6.0 to run).

e Eclipse SDK 3.3.2

e ATF 0.1.7 (Al ATF requirements must also be satisfied. Check ATF
documentation)

Installation

To install this framework, simply copy the contents of the file
spl_traceability_framework_core_X.X.X.zip (core) and
spl_traceability_framework_extensions_Y.Y.Y.zip (framework instances) to your Eclipse
installation directory and launch Eclipse.

Framework Description

This section describes the fundamental concepts of the trace repository

Traceability Framework Structure

Our traceability framework aims to provide an open and flexible platform to
implement trace links between different artifacts from SPL development. For now the
variability model (feature model) is used in this approach as the main reference to
trace the SPL artifacts. However, the design of the framework is generic, so it may be
applied outside SPL development.

Annex 5 - Traceability Framework User Guide

The following main functionalities are provided by our framework to support the
tracing of SPL artifacts:

e creation and maintenance of trace links between a variability model and other
existing artifacts (UML models, architecture models, source code);

e persistent storage of trace links using a repository (ATF);

e searching of specific trace links between artifacts using pre-defined or
customized trace queries. Trace queries can be executed over the trace links
in order to select interesting traceability information to help the SPL
development or evolution;

o flexible visualization of the results of trace queries using different types of
trace views, such as, tree views, graphs, tables, etc.

The architecture of this traceability framework is shown in Figure 1 using a UML
class diagram. The classes that represent a hotspot (interfaces and abstract classes)
must be instantiated in to provide the required functionalities.

Our traceability framework is structured as an object-oriented framework that defines
an infrastructure to provide basic services to search and store trace links and it also
offers a set of extension points to create specific SPL traceability functionalities (trace
gueries and views).

The ITraceRegister, ITraceQuery and ITraceView interfaces, along with the
respective abstract classes (AbstractTraceRegister and AbstractTraceQuery)
represent the extension points of the framework’s main components.

Each of them must be instantiated and customized to address specific traceability
scenarios in SPL development.

The AbstractTraceRegister class must be specialized to create specific ways to
create and store trace links between artifacts. The executeRegister() abstract
method must be implemented for this purpose. The trace links are stored using the
services provided by an ATF repository. The framework does not specify the
concrete ways that the trace links must be obtained. This functionality can be
provided, for example, by specifying a strategy to automatically identify possible trace
links between artifacts or by providing a graphical interface to allow the SPL
developers to manually define the desired trace links.

The AbstractTraceQuery class establishes the general structure to implement
traceability queries. The method submitQuery() allows each instance to
implement a specific type of trace query. It uses the query services provided by ATF
component to search trace links of interest in the repository. After that, it delegates
the resulted trace links from its query to an associated trace view by calling the
showResults() method.

Annex 5 - Traceability Framework User Guide

Trace Register Trace Query

«interface»
ITraceRegister «interface»

executeRegister() : void ITraceQuery
getFeatureExtractor() : I[ExtractFeatures executeQuery() : void
getRepository() : String getRepository() : String
getSoftwareArtefactExtractor() : [ExtractSoftwareArtefacts getTraceView() : [TraceView
setFeatureExtractor(IExtractFeatures) : void setRepository(String) : void
setRepository(String) : void setTraceView(ITraceView) : void
setSoftwareArtefactExtractor([ExtractSoftwareArtefacts) : void submitQuery() : List<TraceLink>

& o

+ o+ o+ o+ o+ o+ o+
+ o+ o+ o+ o+ o+

AbstractTraceRegister

Trace View

repositoryName: String

- - AbstractTraceQuery
+ executeRegister() : void
getltemManagerinstance() : ltemManager - repositoryName: String
getPersistenceManagerinstance() : PersistenceManager - traceView: ITraceView «interfa(_:e»
getQueryManagerinstance() : QueryManager ITraceView
+ getRepository() : String executeQuery() : void I : + showResults(List<TraceLink>) : void
+ setRepository(String) : void getQueryManagerinstance() : QueryManager
getRepository() : String

getTraceView() : ITraceView
setRepository(String) : void

setTraceView(ITraceView) : void
submitQuery() : List<TraceLink>

+ o+ o+ o+ o+ I+

V V

ATF

Figure 1 - Traceability Framework Architecture

The trace views are implemented as classes implementing the ITraceView interface.
The ATF component provides basic traceability services to retrieve and query basic
trace links between specific artifacts. Our framework aims to create more advanced
traceability queries (such as, requirements/feature coverage, change impact
analysis, product variants tracing) built on top of these basic ones.

Framework Implementation

The framework described above, has been implemented as an Eclipse plug-ins
called net.ample.tracing.framework.core. This plug-in defined several extension
points that are used to create instances of each of the framework’s hotspots. Figure 2
shows the five extension points defined in net.ample.tracing.framework.core. Each of
these extension points as an attached Schema that explains how this extension can
be used by extending plug-ins. Check the Extension Points Reference in Appendix I
for this info.

= traceR.egister
= braceView
=l traceQuery

Figure 2 - net.ample.tracing.framework.core extension points

Annex 5 - Traceability Framework User Guide

To automate the detection and usage of new extension added to the base
framework, another Eclipse plug-in (net.ample.traceabilityProject) has been
implemented, which provides a front-end that allows users to define a traceability
project and perform the actions desired on the framework instances. When new
extensions are defined, this front-end makes them automatically available.

APl Reference

The Framework APl and Extension Points Reference can be checked at
http://ample.di.fct.unl.pt/TraceFramework/

Default Instantiation

The Traceability Framework that is provided has some default instantiations for each
of the hotspots.

Trace Register

The trace register instance provides a GUI that allows developers to define trace
links between the features and requirement artifacts extracted using any of the
provided extractors. This trace register provides a GUI for manual definition of trace
links. The tutorial section contains more details on how to perform this task.

Trace Query

Two trace query instances are provided by default. One is capable of finding the
artifacts that are related with a set of chosen features. The second performs a
change impact analysis query. For now these are the only queries available, but
there are plans to develop queries capable of detecting feature interactions, query by
product variant and others. The tutorial section contains more details on how to
perform this task.

Trace View

The results returned by a query can be seen in one of the trace view instances
available. There are currently four views implemented, each designed to show the
results of a type of query. Two instances provide a tree view of the artifacts related
with each feature, a more detailed one (which includes the steps of each use case)
and a general overview (excluding use case steps). These two views should be used
to browse the results returned by a related artifacts query. The two remaining views
are used for presenting the results of a change impact analysis query. As with the
related artefacts view, a more detailed and a general overview are available. If the
wrong view is used, (for instance, using a related artifacts query with a change

Annex 5 - Traceability Framework User Guide

impact analysis view), it may result in presenting trace information that does not
correspond to the expected results. This is due to the fact that each view is prepared
to process the list of links returned by the appropriate query. The tutorial section
contains more details on how to perform this task.

Tutorials

This section of the documentation contains some tutorials for common tasks to be
carried out when working with the traceability framework. These tutorials will be
based on the default framework instantiation explained previously and the SPL case
study found in Appendix | and Appendix Il. Please refer to them for info on the case
study.

How to Create a Traceability Project

Traceability Projects can be created via the user interface. The first step is to create
a new project in Eclipse (you can also use an existing one if you wish). Inside that
project you can either create folders to contain your traceability project files, or just
dump them into the newly created project. Select File > New > Project.

& New Project |Z|@@

Select a wizard

Create a new project resource

Wizards:
type Filker bext

lg Jawa Project ~
Java Project from Existing Ant Buildfils
L2 Plug-in Project
== General
I Froject
= Aspect]
== Cws
= Desigrer
= Eclipse Modeling Framewark,
= Graphical Modeling Framewark.

(=N YT

[= RN R = R

Once the project is created select File > New > Other... and choose the new
Traceability Project option. A wizard will open, guiding you through the process of a

Annex 5 - Traceability Framework User Guide

new traceability project creation. You must choose the traceability project file, the
name of the ATF repository to use, and the desired extractors.

Select a wizard

Wizards:

bype filker bext

= dava ~
(= Java Emitter Templates
== opendrchitecture\Ware
(== Plug-in Development
[Software Product Lines
[=- [Tracing
£
3 Trace Repository
(== User Assistance

Tracebility Project

(= wmL

(= ¥text DSL Wizards

= Other

(= Examples v

After pressing the finish button, a new ATF repository is created (with the chosen
name), and initialized with several new types of trace links and traceable artifacts.
The new types of traceable artifacts are Feature, Use Case, Step, Actor and
Package, which can be use to store the appropriate traceable artifacts. The new
types of trace links are Relationship and Hierarchy. Relationship is used to create a
link between a feature (from the variability model) and an Actor/Use
case/Step/Package (from the requirements model). A Hierarchy link is used to define
hierarchical information, such as the fact that a step belongs to its parent use case.

Once the project is created a popup menu will be available for the traceability project
file. To access it, just right click on the project file and choose the desired action.

Annex 5 - Traceability Framework User Guide

[=1-1=F testing
3] frace kracepr]

Google Web Toolkit 4
‘Web Project 4
Mew 4

Open F3
Open With 4
Show In Alc+Shift-+w ¥

|i= Copy Chrl+C

=
(2] Paste ChrlW
¥ Delete Delete

Euild Path 4
Refactor Alc+shift+1 ¥

£2g Import...
&5 Export. ..

7 Refresh FS
Assign Warking Sets. .

Validate

Run As
Debug As
Team
Compate With
Replace Wwith
Solrce

* T ¥ v v w

Properties Alk+Enter

AMPLE Tracebility L4 j] Edit Traceahiliby Praject Settings
@ Clean Repository
<2 Initiate Trace Register
ﬁ. Submit Query

Defining new Trace Links

To define new trace links, we must initialize a trace register instance.

Choose Initiate Trace Register from the popup menu and then choose the desired
trace register instance from the list of available trace registers.

Properties Alt+Enker

AMPLE Tracebility 3 (1 Edit Traceabilty Project Settings
& Clean Repository

Initiate Trace Register

ﬁ. Submit Query

Annex 5 - Traceability Framework User Guide

& Select the Desired Trace Register

This traceability reqgister implements a tree GUI that allows users to
define trace links between features nad software artefacts {use
cases, Use case skeps, actors and packages).

Now define the desired trace links between features and requirement artifacts by
checking the corresponding boxes. For instance, the box labeled “Read callers ID”
under the “Display Photo for incoming Call” feature is checked, so a link between that
feature and that use case step will be created in the repository.

When the Save button is pressed the changes performed in the trace register window
are committed to the ATF repository.

10

Annex 5 - Traceability Framework User Guide

& Trace Links Definition Window:

[Create Photo Album
[19 Delete Phato Album
[Delete Photo
[add Photo
¥ Label Photo
¥ view Phato
¥ List Albuns
[Link Photo with Address Eook Entry
¥ Fhoto Transfering
¥ sMs Transfer
¥ Email Transfer
¥ Incoming Cal
=] D* Display Phota For Incoming Cal
[+ User
Cales
@ sendPhota
[1'® Send Phaoto by Email
[Create new Phota Album
1@ View Phata
1@ Link Phato to Address Book Entry
1@ send Photo by SMS
@ Label Phata
1 Delete Phato Album
[=-[+] @ Display Phota of Incoming Call
§ Search callers ID in address book,
S Read callers ID
5 Search for photo of address book entry
8 Show photoin dysplay
@ Delete Photo
[1® Remave Phato from Album
1'% Link Photo to Address Book Entry
@ Add Photo ta Album
[J1E3 Use Case Model

3

|3

Save Zancel

Submitting Queries and Viewing Results

To submit a query to the ATF repository, choose Submit Query from the popup menu
and then choose the desired trace query instance and trace view from the list of

available extensions.

Properties Alt+Enter

AMPLE Tracebility L j] Edit Traceability Project Setkings

& Clean Repository

<z Initiate Trace Register

% Submit O

11

Annex 5 - Traceability Framework User Guide

& Select the Desired Trace Query & View

Select Trace Query:

Trace Felated Artefacks by Feature
Change Impact Analysis Quetry

Select Trace Yiew:

Features to Use Case Tree Yiew

Features ko Use Case with Steps Tree Yiew

Change Impact Analysis Overview
Change Impact Analysis Detailed Yiew

This trace guery instance
implements a query for a
set of features,

It allows users bo see
which artefacts are
related ko a set of
features,

This wiew implements a

tree of Features to use
cases with skeps,

On the next window just choose your FMP features model file, and once the feature
model tree is displayed you should choose which features are to be queried. As
explained previously, the Trace Related Artefacts by Feature query, finds the

artifacts that are linked to a set of chosen features.

Once the choice has been made, click the Submit Query button, and the results will

be displayed in the chosen view.

12

Annex 5 - Traceability Framework User Guide

& Related Artefacts Query

Select Features of interest:

I d Display Photo For Incoming Call
1% Photo Management
1% List albuns

Submit Query

Cancel

& Features to Use Cases with Steps View |Z||i|g|

Qukput

= v [EEE
User
=Y Email Transfer
User
© Send Phato
© send Photo by Email
=2 ‘ﬁ' Display Photo For Incoming Call
Calee
=@ Display Phota of Incoming Call
8§ Search callers IDin address book.
8§ Read callers ID
8§ Search for photo of address book entry
5 Show photo in dysplay
= 'ﬁ' Create Phota album
User
=@ Create new Phoka Album
8 Create new album
8 Reqguest phota album name
8§ Insert albur narme

5 Show error Message
5 Album already exists
= Yi Delete Photo
User
@ Delete Photo
= Y4 SMS TransFer
User
@ Send Photo
@ Send Photo by SMS

The menu Output can be used to write the results of shown in the selected view to
an output file chosen by the user.

The “Change Impact Analysis Query” usage follows the same guidelines.

13

Annex 5 - Traceability Framework User Guide

Framework Instantiation

This section of the documentation describes how the framework hotspots can be
instantiated to allow developers to add new functionality to the base implementation
provided by default. To help demonstrating these steps, the tutorial shown here are
based on some fictitious examples (the file formats, algorithms and heuristics
described in this section are meant to be used only for demonstrating how to create
framework instances. They are in no way meant to be used in a real software
development environment).

The complete mechanism behind Eclipse plug-in development will not be explained
here, as it falls out of the scope of this document. The user is expected to have a
basic understanding on this subject.

Trace Register Instance

To create a new trace register instance we begin by creating a new plug-in. File >
New > Project and choose Plug-in Project.

& New Project |:|@gl

Select a wizard

Create a Plug-in Project

Wizards:

bype filter text

+-[=- openArchitectureiware -~
== Plug-in Development

7% Feature Patch

L% Feature Project

=g= Fragment Project

% Plug-in From existing 18R archives

iy

Plug-in Project
4" Update Site Project

4= Tracing
+-[=- mtext DL Wizards
+-[= Examples -

Then we will define this plug-in settings. For the project name we will choose
net.ample.tracing.simpleFeaturesExtractor. Leave the rest of the settings as follows.

14

Annex 5 - Traceability Framework User Guide

& New Plug-in Project

Plug-in Project

Create a new plug-in project

Project name: | nek, ample. tracing, simple TraceRegister

Lse default location

Browwse,

Projeck Settings
Creabe a Java project

Source Folder: | sFC

Qukput Folder: | bin

Targek Platform
This plug-in is targeted to run with:

(%) Eclipse version:

) an ©5Gi Framework:

working seks
[]Add project to working sets

@ < Back ” Mext =

Select...

& New Plug-in Project

Plug-in Content

Enter the data required ko generate the plug-in.

Plug-in Properties

Flug-in 1D | nek. ample. tracing. simple TraceR egister |
Flug-in Yersion: | 0.1.0 |
Flug-in Mame: | Simple Trace Reqister Plug-in |
Plug-in Provider: | andré Sousa |

Execution Environment: |JavaSE-1 B

L | lEngironments. "]

Plug-in Options

[] Generate an activator, a Java class that contrals the plug-in's life cyde

[this plug-in will make: contributions to the UL
[JEnable aPI Analysis

Rich Client Application
‘Would vou like ko create a rich client application?

) < Back][Mext = H

Finish] ’ Cancel

15

Annex 5 - Traceability Framework User Guide

On the last window we will not use one of the templates, so we will uncheck that box.

& New Plug-in Project |Z|@@

Templates - ?; :

[icreate a plug-in using one of the templates:

Available Templates:

BEEEBEERERS

A
o

)] [Finish ” Cancel l

Press the Finish button and after Eclipse finishes creating all the files, we are place in
the Plug-in Development view for our newly created plug-in.

-@ ek, ample, bracing simpleTraceRegister 5

i Overview

General Information Plug-in Content
This section describes general information about this plug-in,
The content of the plug-in is made up of bwo sections:

D | net. ample. tracing.simpleTraceRegister | [Dependencies: lists all the plug-ins required on this plug-in's classpath to compile and run,
Version: | 0.1.0 | J Fuunkime ; lists the libraries that make up this plug-in's runkime,
Mame: | Simple Trace Register Plug-in |
Extension / Extension Point Content
Provider: | André Sousa |

Flatform Filker; | This plug-in may define extensions and extension points:

,_',y Extensions: declares contributions this plug-in makes ta the platform,

Activator: | ‘ [Bruwse‘ o0]

,_)? Extension Points : declares new function points this plug-in adds to the platform.

[[] Activate this plug-in when one of its classes is lnaded
This plug-in is a singleton Testing
Test this plug-in by launching a separate Edlipse application:

{3 Launch an Eclipse application
%‘ Launch an Eclipse application in Debug mode

Execution Environments
Specify the minimum execution environments required ko run this plug-in,

Add...
Exporting

To package and export the plug-in:
1. Organize the plug-in using the Organize Manifests Wizard

2. Externalize the strings within the plug-in using the Externalize Strings Wizard

Corfiqurs JRE associations... 3. Specify what needs to be packaged in the deployable plug-in on the Build Configuration page
4, Export the plug-in in a format suitable For deployvment using the Export Wizard

Update the dasspath settings

Cwerview | Dependencies | Runtime | Extensions | Extension Points | Build | MANIFEST.MF | plugin.xml | build. properties

No we must define our new extension point. To do this, we will go to the extensions
tab and add a new extension. Click Add... and in the new window put
net.ample.tracing.framework in the Extension Point Filter, to remove all the other
extension points from the list.

16

OB E@

Annex 5 - Traceability Framework User Guide

If you recall the definition of the ITraceRegister in the Framework description, there is
no information on how the links are to be created. That is a decision that must be
made by the person that implements a trace register. You can devise a method to
automatically create trace links between elements (for instance, based on some
heuristic), or you can just simply ask the user to manually define (using a GUI) the
trace links that he wishes to store.

We are going to create a very simple trace register that is not meant to be used in
real SPL development. It is used solely for the purpose of demonstrating how to
create a trace register instance. With that in mind, we are going to implement a trace
register that creates a new trace link between all the extracted features and use case
artifacts, i.e. every feature will be linked to every use case.

After creating the new Plug-in Project, go to the Extensions tab and add a new
extension. Choose the net.ample.tracing.framework.core.traceRegister extension
and press Finish.

& New Extension |:|@

Extension Point Selection

=
Creake a new Trace Register exkension. =_,|

Extension Paoints | Extension \Wizards

Exkension Paint filker: | nek, ample, tracing. framewark,

=] net,ample. tracing, framewark, core. traceQuery
b |met. ample. tracing . framewark., core. braceReqisker

=] net, ample.tracing, framewark, core, traceview

[]show only extension paints fram the required plug-ins

Extension Point Descripkion: Trace Register

Thiz extension pointis used to plug in additional trace registers for establishing
trace links hetween SPL artefacts.

Available kemplates Faor trace regisker:

7 Finish] [Cancel

17

Annex 5 - Traceability Framework User Guide

Now we must complete the configuration of our new extension in order for it to
behave as expected. Expand the extension point tree, and go to the extractor
element. Each field in this element has the following meaning:

Property Description
id A l_Jnique name that will be used to reference this trace

register.
A translatable name that will be used for presenting this trace

name : :
register in the Ul.
Plug-ins that want to extend this extension point must

class implement . , .
net.ample.tracing.framework.core.traceregister.ITraceRegister
interface.

Fill in each of these fields with the following values (without the quotes):

id = “net.ample.tracing.simpleTraceRegister.register”
name = “Simple Trace Register”

class = “net.ample.tracing.simpleTraceRegister.SimpleTraceRegister”

If you want, you can also add a description for this extension point in the
corresponding element.

Once we have defined all the attributes for our extension point, we are now going to
implement a Java class that implements the required interface, i.e. ITraceRegister
(check Figure 1).

Because there is an abstract class that implements some of the standard methods,
and to make the process simpler, we can get Eclipse to do some of the work for us.
Click on class*.

Set the properties of "register”, Required Figlds are denoked by "+,

id*: net. ample.tracing. simpleTraceReqister register

name*; | Simple Trace Register

nek, ample.tracing. simpleTraceRegisker, SimpleTraceRegisker

And in the new window, just press Finish.

Now we must implement our SimpleTraceRegister class, and the method
executeRegister () to create the trace links. To implement this class just copy the
code shown below.

package net.ample.tracing.simpleTraceRegister;

import java.io.lOException;

18

Annex 5 - Traceability Framework User Guide

import java.util_Hashtable;

import java.util.List;

import net.ample.tracing.core.ltemManager;

import net.ample.tracing.core.PersistenceManager;

import net.ample.tracing.core.QueryManager;

import net.ample.tracing.core.TracelLink;

import net.ample.tracing.core.TraceLinkType;

import net.ample.tracing.core.TraceableArtefact;

import net.ample.tracing.core.TraceableArtefactType;

import net.ample.tracing.core.query.Constraints;

import net.ample.tracing.core.query.Query;

import net.ample.tracing.framework.core.TRACEABILITY_FRAMEWORK;

import net.ample.tracing.framework.core.exceptions.ExtractionException;
import net.ample.tracing.framework.core.exceptions.MissingRepositoryException;
import net.ample.tracing.framework.core.extraction.Artefact;

import net.ample.tracing.framework.core.traceregister.AbstractTraceRegister;
import net._ample.tracing.framework.core.traceregister.lTraceRegister;

import org.eclipse.core.runtime.CoreException;

public class SimpleTraceRegister extends AbstractTraceRegister implements
ITraceRegister {

private ltemManager itemManager;
private PersistenceManager persistenceManager;
private QueryManager queryManager;

public SimpleTraceRegister() {
}

@Override
public void executeRegister() throws MissingRepositoryException,
CoreException, l10Exception, ExtractionException {
Hashtable<Artefact,TraceableArtefact> createdArtefacts = new
Hashtable<Artefact,TraceableArtefact>();
itemManager = getltemManagerlinstance();
persistenceManager = getPersistenceManagerlnstance();
queryManager = getQueryManagerInstance();
List<Artefact> features = getFeatureExtractor().getFeatures();
List<Artefact> artefacts =
getSoftwareArtefactExtractor() .getSoftwareArtefacts();
for(int 1=0; i<features.size(); 1++) {
for(int j=0; j<artefacts.size(); J++) {
if(artefacts.get(j) -getArtefactType() -equals(
TRACEABILITY_FRAMEWORK.USE_CASE_ARTEFACT)) {
TraceableArtefact feature = createArtefact(features.get(i),
createdArtefacts);
TraceableArtefact artefact = createArtefact(artefacts.get(),
createdArtefacts);
TraceLinkType linkType =
getTraceL inkType(TRACEABILITY_FRAMEWORK.RELATIONSHIP_LINK);
TraceLink link = itemManager.createTracelLink(feature, artefact,
l1inkType);
persistenceManager.begin();
persistenceManager .add(feature);
persistenceManager .add(artefact);
persistenceManager.add(link);
persistenceManager.commit();

19

Annex 5 - Traceability Framework User Guide

private TraceableArtefact createArtefact(Artefact artefact,
Hashtable<Artefact,TraceableArtefact> createdArtefacts) {
TraceableArtefactType artType = getTraceableArtefactType(
artefact.getArtefactType());
//verify if it as already created this artifact.
if(createdArtefacts.containsKey(artefact)) {
return createdArtefacts.get(artefact);
by
//verify if this artifact is already stored in the repository.
TraceableArtefact target =
getTraceableArtifact(artefact.getArtefactName(),artType);
if(target = null) {
return target;
ks
//1f 1t does not exist, then create a new one.
else {
target = itemManager.createTraceableArtefact(artType,
artefact.getArtefactName());
createdArtefacts.put(artefact, target);
return target;
}
}

private TraceableArtefact getTraceableArtifact(String name,
TraceableArtefactType type) {
Query<TraceableArtefact> query = queryManager.queryOnArtefacts();
query.add(Constraints.and(Constraints.name(name),Constraints.type(type)));
return query.executeUnique();

}

private TraceableArtefactType getTraceableArtefactType(String name) {
Query<TraceableArtefactType> query = queryManager.queryOnArtefactTypes();
query.add(Constraints.name(name));
return query.executeUnique();

}

private TraceLinkType getTraceLinkType(String name) {
Query<TraceLinkType> query = queryManager.queryOnLinkTypes(Q);
query.add(Constraints.name(name));
return query.executeUnique();

}
}

If you copy this code, you will get some errors regarding some missing
dependencies. To solve this just go to the Dependencies tab and add the following
dependencies to your plug-in

Required Plug-ins la

Specify the lisk of plug-ins required For the operation of this plug-in.

% -
=[=ret.ample. bracing. framewark, core

b))
“Jr=org. eclipse, core, runtime
5)
wf=net.ample. tracing.core

Tokal: 3

20

Annex 5 - Traceability Framework User Guide

We must take some considerations into account when creating extension points. All
extension points classes must provide a constructor with no arguments. This is
necessary due to the reflection mechanisms included in the framework that allow
new extensions to be detected and launched automatically.

Now that we have written our code to parse the input file, we can finish up our plug-in
and finally pack it in a JAR file, ready to be used.

The first thing to do is going to Overview tab and right clicking on it. You will see a
menu with an option Externalize Strings. Choose this option and in this menu just
press Select All and then Finish. Still in the Overview tab go to Organize Manifests
Wizard and put in your preferences as follows.

& Organize Manifests Wizand

Organize Manifests

Crganize and clean up plug-in projects.

Exported Packages

[]1Emsure that all packages appear in the MANIFEST.MF
Mark as internal all packages that match the Fallowing Filter:

Package filker: | *.internal®
Remove unresolved packages

[]caleulate 'uses' directive for public packages (khis may be a long-running operation)

Dependencies

Handle unresolved dependencies by: (%) removing them () marking them as optional
[[]remove unused dependencies (this may be a long-running operation)

add required dependencies (this may be a long-running operation)

General Manifest Cleanup

Remove unnecessary Eclipse-Lazy3tart headers

Internationalization

Prefix icon paths in plug-in extensions with an nl segment
Remove unused kews from the plug-in's properties file

(7 I Finish H Cancel]

Now we must edit the list of exported packages. This is necessary, because other
plug-ins will only see the packages available in this list. If you forget to add the
package containing the SimpleTraceRegister class, it will not be accessible by
anyone.

There are two ways of doing this, you can manually edit you MANIFEST.MF (for
experts only) or you can use the Eclipse Plug-in Development Environment to help
you out.

Just go to the Runtime tab and add net.ample.tracing.simpleTraceRegister to your
list of exported packages.

21

Annex 5 - Traceability Framework User Guide

L0t mek.ample.tracing, simpleTraceReqister 23 =8
=i Runtime (3 I WO

Exported Packages Package Visibility (Eclipse 3.1 or later)

Enumerate all the packages that this plug-in exposes to dients, All other packages will be wwhien the runtime is in strict mode, the selected package is:

hidden From clisnts at all times,

3 ret, ample. tracing, simpleTraceRegister
Calculate Uses
Classpath

Specify the libraries and Falders that constituke the plug-in classpath, IF
unspecified, the classes and resources are assumed to be at the root of
the plug-in.

Mew, ..

Total: 1

Overviews | Dependencies | Runtime | Extensions | Extension Points | Build | MANIFEST.MF | plugin.xml | build. properties

Finally go to the Build tab and choose the following configurations.

Binary Build
Select the Folders and files to include in the binary build,

[11%] .classpath
[]1%] .project
+-[] = META-INF
+-[_]l= hin
[]lm¢ build.properties
|Z| plugin.properties
< plugin, il
[]l= src

This will ensure that your binary build will include all the necessary files.

Once you are done with the configurations, all there is left to do is exporting the plug-
in as a JAR file. This is also an easy task to perform, since Eclipse provides a wizard
to do all the hard work.

So, just go back to the Overview tab and click on Export Wizard. Now select an
output directory or an archive file (whichever you prefer) and make sure that you
select Package plug-ins as individual JAR archives. Press Finish and wait until
Eclipse finishes the exporting process.

22

Annex 5 - Traceability Framework User Guide

& Export |:|® & Export |:|®

Deployable plug-ins and fragments Deployable plug-ins and fragments
Export the selected projects inta a form suitable For deploving in an Edlipse 4 Export the selected projects into a Farm suitable for deplaying in an Eclipse y
product: k| 'G.’IJ—‘ product 1 qaj—‘
Available Plug-ins and Fragments: Available Plug-ins and Fragments:
“Jr=ret.ample tracing simpleTraceRegister (0,1.0) Select Al “J net.ample.tracing. simple TraceRegister {0.1.0) Select Al

Deselect Al Deselect Al
‘WWorking Set... ‘Working Set...

1 of 12 selected. 1 of 12 selected.
Destination | Options || JAR Signing Destination | OPtions | JAR Signing
() Directary: [1nclude source code
Erowse... Package plug-ins as individual JAR. archives
(%) archive File: [oualifier replacement (default value is today's date): |
| re\Desktoplspl_traceabilty_framework_sxtensions_0.1.2.zip + | [Browse... [5ave as ank script: Browse. ..
@ [Fnish][cancel | @ [ermish][concel |

After the plug-in as been exported, you should copy the JAR file into your “plugins”
directory inside the Eclipse installation directory.

Restart Eclipse, and right click your traceability project file and choose “Initiate Trace
Register”.

Properties Alt+Enter

AMPLE Tracebility 3 [Edit Traceability Project Settings
& Clean Repositary

Initiate Trace Register

ﬁ. Submit Query

The new trace register extension is automatically displayed and ready to be used.

& Select the Desired Trace Register

Ler
ase Tree Trace Regisker

& simple trace register instance,

23

Annex 5 - Traceability Framework User Guide

Trace Query Instance

The definition of the ITraceQuery in the framework description, showed that there
was an abstract method submitQuery() which must be implemented. This is the
method that will perform the desired query, returning a list of trace links form the ATF
repository. Different types of queries can be implemented by instantiating this hotspot
with the desired query.

For this trace query example we are going to create a query that extracts all the trace
links, between features and use case artifacts, stored in a repository.

Start by creating a new Plug-in Project named net.ample.tracing.simpleTraceQuery.
Put the same configurations as for the trace register instance.

After creating the new Plug-in Project, go to the Extensions tab and add a new
extension. Choose the net.ample.tracing.framework.core.traceQuery extension and
press Finish.

Extension Point Selection

Create a new Trace Query extension, -D

Extension Paoints | Extensian Wizards

Extension Point Filker: | net ., ample. tracing. Framewark, care

=i net.ample.tracing. framewark. core. featuresExtractar

= net.ample.tracing. framewaork. core, sofbwaredrtefacksExtractor
b | rick. ample. bracing. Framewark, core. traceCiuery

=i net.ample.tracing, framewark. core. traceRegister

= nek.ample.tracing. framewark, core, braceYiew

[] show only extension points from the required plug-ins

Extension Point Descripkion: Trace Query
This extension pointis used to plug in additional trace gueries.

Available templates For trace query:

2 Finish l [Cancel

24

Annex 5 - Traceability Framework User Guide

Now we must complete the configuration of our new extension in order for it to
behave as expected. Expand the extension point tree, and go to the extractor
element. Each field in this element has the following meaning:

Property Description
id A unique name that will be used to reference this trace query.

A translatable name that will be used for presenting this trace

name .
guery in the Ul
Plug-ins that want to extend this extension point must

class implement
net.ample.tracing.framework.core.tracequery.ITraceQuery
interface.

Fill in each of these fields with the following values (without the quotes):

id = “net.ample.tracing.simpleTraceQuery.query”

name = “Simple Trace Query”

class = “net.ample.tracing.simpleTraceQuery.SimpleTraceQuery”

If you want, you can also add a description for this extension point in the
corresponding element. Once we have defined all the attributes for our extension
point, we are now going to create a Java class that implements the required
interface, i.e. ITraceQuery (check Figure 1).

Follow the steps described in the features extractor instance, and create the new
class SimpleTraceQuery.

To implement our SimpleTraceQuery class, and the method submitQuery()just
copy the code shown below.

package net.ample.tracing.simpleTraceQuery;

import java.util.
import java.util.

import
import
import
import
import
import
import
import
import
import

public

net.
net.
net.
net.
net.
net.
net.
net.
.ample.
org.

net

ample.
ample.
ample.
ample.
ample.
ample.
ample.
ample.

ArraylList;

List;

tracing.
tracing.
tracing.
tracing.
tracing.
tracing.
tracing.
tracing.
tracing.

core.QueryManager;

core.TraceLink;

core.TraceableArtefact;
core.TraceableArtefactType;
core.query.Constraints;

core.query.Query;
framework.core._tracequery.AbstractTraceQuery;
framework.core.tracequery. ITraceQuery;
framework.core.utils._MissingRepositoryException;

eclipse.core.runtime.CoreException;

class SimpleTraceQuery extends AbstractTraceQuery implements
ITraceQuery {

private QueryManager queryManager;

25

Annex 5 - Traceability Framework User Guide

public SimpleTraceQuery() {
}

@Override
public List<TraceLink> submitQuery() throws MissingRepositoryException,
CoreException {
queryManager = getQueryManagerInstance();
List<TraceLink> results = new ArrayList<TraceLink>();
Query<TraceableArtefact> query = queryManager.queryOnArtefacts();
query.add(Constraints.type(getArtefactTypeByName(*'Feature')));
List<TraceableArtefact> queryResult = query.execute();
for (int i=0; i<queryResult._size(); i++) {
TraceableArtefact feature = queryResult.get(i);
List<TracelLink> outgoinglLinks = feature.getOutgoingLinks();
results.addAll (outgoingLinks);

}

return results;

private TraceableArtefactType getArtefactTypeByName(String name) {
Query<TraceableArtefactType> query =
queryManager .queryOnArtefactTypes();
query.add(Constraints.name(name));
return query.executeUnique();
}

}

For this code to work properly, we need to add some missing dependencies. The
ones that are needed are shown in following figure.

Required Plug-ins la
Specify the lisk of plug-ins required For the operation of this plug-in,

W .
=Jr=net. ample.tracing. framework, core

@ . .
sf=org. eclipse . core.runtime
@ .

==net, ample.tracing.core

Takal: 3

Finally, follow the steps mentioned previously to define your exported packages,
organize your manifest files, etc. when you are done export the new trace query into
a JAR file (same as for the features extractor instance), and copy it to your “plugins”
directory inside your Eclipse installation directory. Restart Eclipse, and right click your
traceability project file and choose the menu “Submit Query”.

26

Annex 5 - Traceability Framework User Guide

Properties Alt+Enter

AMPLE Tracehility 4 31 Edit Traceability Project Settings
& Clean Repositary

%2 Initiake Trace Reqisker

2 Submit Query

The new trace query extension is automatically displayed and ready to be used.

& Select the Desired Trace Query & View |Z||E|rg|

Seleck Trace Query:

Trace Related Artefacks by Feature A simple trace query
Simple Trace Query inskance:,

“hange Impact Analysis Query

Seleck Trace View:
Features to Use Case Tree Yiew
Features to Use Case with Steps Tree Yiew

hange Impact Analysis Crverview
Change Impact Analysis Detailed Yiew

Trace View Instance

The definition of the ITraceView in the framework description, showed that there was
an abstract method showResults(List<TraceLink> results) which must be
implemented. This is the method that will present, to the user, the list of trace links
returned by a query execution. Different types of trace views can be implemented by
instantiating this hotspot with the desired view.

As with the previous examples, we are going to create a very simple trace view that
is not meant to be used in real SPL development. We will be creating a view that
opens a window which displays the list of trace links passed as argument to the
method showResults. For each trace link in the list, we will create a string with the

27

Annex 5 - Traceability Framework User Guide

source and target artifacts of the trace link and add each string to a list of strings
(each string represents a link). Finally, that list will be shown inside a window.

Start by creating the new Plug-in Project as mentioned previously and name it
net.ample.tracing.simpleTraceView. The rest of the options, are the same as the
ones used for the trace register instance.

After creating the new Plug-in Project, go to the Extensions tab and add a new
extension. Choose the net.ample.tracing.framework.core.traceQuery extension and
press Finish.

& New Extension |Z|E| El

Extension Point Selection

Create a new Trace View extension, -D

Extension Paints | Extension Wizards

Extension Point Filber: | net. ample. kracing. Franewark

=] net,ample tracing. framewark, core, FeaturesExtractar

=4 net,ample.tracing Framework, core, softwaresrtefactsExtractor
=4 net,ample.tracing Framework. core. braceQuery

=i net, ample.tracing Framewark, core, braceRegister

b | net. arnple. tracing Framewark, core traceView

[I5how anly extension points from the required plug-ins

Extension Point Description: Trace Yiew

This extension pointis used to plug in additional trace views.,

Available kemplates For trace view:

(7 Finish] [Cancel

Now we must complete the configuration of our new extension in order for it to
behave as expected. Expand the extension point tree, and go to the extractor
element. Each field in this element has the following meaning:

28

Annex 5 - Traceability Framework User Guide

Property Description
id A unique name that will be used to reference this trace view.

A translatable name that will be used for presenting this trace

name L
view in the Ul.
Plug-ins that want to extend this extension point must

class implement
net.ample.tracing.framework.core.traceview.ITraceView
interface.

Fill in each of these fields with the following values (without the quotes):

id = “net.ample.tracing.simpleTraceView.view”

name = “Simple Trace View”

class = “net.ample.tracing.simpleTraceView.SimpleTraceView”

If you want, you can also add a description for this extension point in the
corresponding element. Once we have defined all the attributes for our extension
point, we are now going to create a Java class that implements the required
interface, i.e. ITraceView (check Figure 1).

Follow the steps described in the features extractor instance, and create the new
class SimpleTraceView. Use The code shown below to implement
SimpleTraceView class which includes the method showResults(List<TraceLink>
results) responsible for presenting the results to the user.

package net.ample.tracing.simpleTraceView;

import java.util _ArraylList;

import java.util_List;

import net.ample.tracing.core.TracelLink;

import net.ample.tracing.core.TraceableArtefact;

import net.ample.tracing.framework.core.traceview.lTraceView;
import org.eclipse.jface._window.Window;

public class SimpleTraceView implements ITraceView {

public SimpleTraceView() {

}

@Override

public void showResults(List<TraceLink> results) {

List<String> resultsList = new ArrayList<String>();
for(int i=0; i<results.size(); i++) {

List<TraceableArtefact> sources = results.get(i).getSources();
List<TraceableArtefact> targets = results.get(i).getTargets(Q);

for(int j=0; j<sources.size(); j++) {
for(int k=0; k<targets.size(); k++) {
String link = """ + sources.get(j).getName() + "" links to
targets.get(k) .getName() + """;
resultsList.add(link);

}

29

the

Annex 5 - Traceability Framework User Guide

}
}

SimpleTraceViewWindow window = new SimpleTraceViewWindow(resultsList);
openWindow(window) ;

private static void openWindow(Window window) {
window.setBlockOnOpen(true);
window.open();

}
}

The code in SimpleTraceView class processes the list of results to create a list of
strings containing all the sources and targets of each link. However, to show them in
a window, we will create another class called SimpleTraceViewWindow which will
launch a window with the desired contents.

To do this, just choose File > New > Class and fill in the remaining options as follows.

& New Java Class |Z|@@

Java Class

Create a new lava class, Q-;)
.

Source Folder: net. ample. tracing. simpleTracehiewsrc
Package: net, ample. tracing. simpleTraceview

[TJEndlosing kype:
Mame: SimpleTraceviewindom
Modifiers: () public () defaulk
[abstract [final
Superclass: org.eclipse. jface, window , Applicationiindow
Interfaces:

Which method stubs woold wou like b create?
[public static woid main{String[] args)
[] constructors from superclass
Inherited abstract methods
Do woud wank ko add comments as configured in the properties of the current project?

|:| Generate corments

7 [Finish H Cancel]

And to implement this window just paste the code shown below in the
SimpleTraceViewWindow class.

package net.ample.tracing.simpleTraceView;

import org.eclipse.jface.window.ApplicationWindow;
import org.eclipse.swt._SWT;

30

Annex 5 - Traceability Framework User Guide

import
import
import
import
import
import

public

org.eclipse.swt.graphics.Point;
org.eclipse.swt.widgets.Composite;
org.eclipse.swt.widgets.Control;
org.eclipse.swt_.widgets.Label;
org.eclipse.swt.widgets._List;
org.eclipse.swt.widgets.Shell;

class SimpleTraceViewWindow extends ApplicationWindow {

private Composite container;
private java.util.List<String> links;

public SimpleTraceViewWindow(Jjava.util_List<String> links) {
super(null);
this.links = links;

}

@Override
protected Control createContents(Composite parent) {
this.container = new Composite(parent, SWT.NONE);

final Label linksReturnedByLabel = new Label (container,
SWT.NONE) ;
linksReturnedByLabel .setText("'Links returned by query

execution:");
linksReturnedByLabel .setBounds(30, 15, 222, 13);

final List list = new List(container, SWT.V_SCROLL | SWT.H_SCROLL
| SWT.BORDER);

list.setBounds(30, 45, 329, 584);

for(int 1=0; i<links.size(); 1++) {

}

list.add(links.get(i));

return container;

}

@Override
protected Point getilnitialSize() {
return new Point(400, 700);

}

@Override

protected void configureShell(Shell newShell) {
super.configureShell (newShell);
newShell .setText("'Simple Trace View);

}
}

All that is missing for this code to compile work is adding the necessary
dependencies. The ones that are needed are shown in following figure.

31

Annex 5 - Traceability Framework User Guide

Required Plug-ins laz
Specify the lisk of plug-ins required For the operation of this plug-in,

Q-i;_I:net.ample.tracing.Fnamen-\mrk.cnre add. ..
& '
sJ=net.ample tracing.core
Ej}org.eclipse.ui
Tokal: 3

Finally, follow the steps mentioned previously to define your exported packages,
organize your manifest files, etc. When you are done export the new trace query into
a JAR file (same as for the features extractor instance), and copy it to your “plugins”

directory inside your Eclipse installation directory. Restart Eclipse, and right click your
traceability project file and choose the menu “Submit Query”.

Properties Alt+Enter

AMPLE Tracehility

k j_l Edit Traceahility Project Setkings
& Clean Repository

g2 Inikiake Trace Register

2 Submit Query

The new trace view extension is automatically displayed and ready to be used

& Select the Desired Trace Query & View

Select Trace QuUery:

Trace Related Artefacts by Feature
Simple Trace Query
Change Impact Analysis Query

Select Trace View:

Features ko Use Case Tree Yiew
Features ko Use Case with Steps Tree Yiew

nalysis Crveryisw

A
Change Impact Analvsis Detailed Yiew

A simple trace view
instance.

32

Annex 5 - Traceability Framework User Guide

APPENDIXES

33

Annex 5 - Traceability Framework User Guide

Appendix | - Mobile Photo Variability Model

= 44 Mohile Photo System
= Mabile Phata

=/ @ Pho
L

-

L

L

-

L

i

i

Fhi

= A

ko Management

Create Photo Album

Delete Photo Alburn

Delete Phoko

fdd Photio

Label Phato

Yiew Photo

List albuns

Link, Photo with Address Boolk Entry
ko Transfering

O sMS Transfer
O Email Transfer

=l @ Incoming Call

=]

Display Photo for Incoming Call

Figure 3 — Mobile Photo Feature Model

34

User

Annex 5 - Traceability Framework User Guide

Appendix Il - Mobile Photo Use Case Model

Mobile Photo

Add Photo to Album

View Photo

Remov e Photo from
Album Delete Photo

Create new Photo
Album

Delete Photo Album

N

Label Photo

Link Photo to Send Photo

Address Book Entry,

Display Photo of

Incoming Call

Send Photo by Email

Send Photo by SMS

Figure 4 — Mobile Photo Use Case Model

35

Calee

Annex 5 - Traceability Framework User Guide

Request photo album
name
‘ Insert album name)

album exists?

Show error Message

[yes]

[no]

Create new album

Figure 5 - Create new Photo Album Steps

(Select desired photo)

(Request photo label)

[no]

yrevious label exists?

[yes]

Delete existing photo
label store photo label

Figure 6 - Label Photo Steps

36

Annex 5 - Traceability Framework User Guide

Select desired address
book entry
(Select desired photo)

Store photo reference in
address book entry

Figure 7 - Link Photo to Address Book Entry Steps

(Read callers ID)
Search callers ID in
address book

[no]
address book entry exists?
[ves]
Search for photo of
address book entry
photo found? [no]
[yes]

(Show photo in dysplay) %

Figure 8 - Display Photo of Incoming Call Steps

37

Annex 5 - Traceability Framework User Guide

Appendix Il - Extension Points Reference

Trace Register
Identifier: net.ample.tracing.framework.core.traceRegister
Since: 0.1.0

Description: This extension point is used to plug in additional trace registers for establishing
trace links between SPL artefacts.

Configuration Markup:

<IELEMENT extension (register)+>
<IATTLIST extension

point CDATA #REQUIRED
id CDATA #IMPLIED
name CDATA #IMPLIED>

<IELEMENT register (description)>
<IATTLIST register

id CDATA #REQUIRED
name CDATA #REQUIRED
class CDATA #REQUIRED

e id - a unique name that will be used to reference this trace register.

e name - a translatable name that will be used for presenting this trace register in the
ul.

e class - Plug-ins that want to extend this extension point must implement
net.ample.tracing.framework.core.traceregister. 1TraceRegister interface.

<IELEMENT description (#PCDATA)>

Examples: The following is an example of the extension point usage:

<extension point="net.ample.tracing.framework.core.traceRegister'>
<register
id=""net.ample.tracing.sample_register”
name="Sample Trace Register"
class=""net.ample.tracing.SampleRegister'>
<description>some description.</description>
</register>
</extension>

APl Information: Plug-ins that want to extend this extension point must implement
net.ample.tracing.framework.core.traceregister.ITraceRegister interface.
Supplied Implementation: Traceability Framework Plug-in provides a default implementation
of a trace register.

38

Annex 5 - Traceability Framework User Guide

Trace Query
Identifier: net.ample.tracing.framework.core.traceQuery
Since: 0.1.0
Description: This extension point is used to plug in additional trace queries.
Configuration Markup:

<IELEMENT extension (query)+>
<IATTLIST extension

point CDATA #REQUIRED
id CDATA #IMPLIED
name CDATA #IMPLIED>

<IELEMENT query (description)>
<IATTLIST query

id CDATA #REQUIRED
name CDATA #REQUIRED
class CDATA #REQUIRED

e id - a unigue name that will be used to reference this trace query.
e name - a translatable name that will be used for presenting this trace query in the Ul.

e class - Plug-ins that want to extend this extension point must implement
net.ample.tracing.framework.core.tracequery. ITraceQuery interface.

<IELEMENT description (#PCDATA)>

Examples: The following is an example of the extension point usage:

<extension point="net.ample.tracing.framework.core.traceQuery'>
<query
id="net.ample.tracing.sample_query"
name="Sample Trace Query"
class=""net.ample.tracing.SampleQuery">
<description>some description.</description>
</query>
</extension>

APl Information: Plug-ins that want to extend this extension point must implement
net.ample.tracing.framework.core.tracequery.TraceQuery interface.

Supplied Implementation: Traceability Framework Plug-in provides a default implementation
of a trace query.

39

Annex 5 - Traceability Framework User Guide

Trace View
Identifier: net.ample.tracing.framework.core.traceView
Since: 0.1.0
Description: This extension point is used to plug in additional trace views.
Configuration Markup:

<IELEMENT extension (view)+>
<IATTLIST extension

point CDATA #REQUIRED
id CDATA #IMPLIED
name CDATA #IMPLIED>

<IELEMENT view (description)>
<IATTLIST view

id CDATA #REQUIRED
name CDATA #REQUIRED
class CDATA #REQUIRED

e id - a unigue name that will be used to reference this trace view.
e name - a translatable name that will be used for presenting this trace view in the UL.

e class - Plug-ins that want to extend this extension point must implement
net.ample.tracing.framework.core.traceview. ITraceView interface.

<IELEMENT description (#PCDATA)>

Examples: The following is an example of the extension point usage:

<extension point="net.ample.tracing.framework.core.traceView'>
<view
id=""net.ample.tracing.sample_view"
name="Sample Trace View"
class="net.ample.tracing.SampleView">
<description>some description.</description>
</view>
</extension>

APl Information: Plug-ins that want to extend this extension point must implement
net.ample.tracing.framework.core.traceview. ITraceView interface.

Supplied Implementation: Traceability Framework Plug-in provides a default implementation
of a trace view.

40

Annex 5 - Traceability Framework User Guide

Appendix IV — Rational Rose Use Case Modeling

To create use case models that will be correctly imported by the framework, start by creating
a new project and then open the Use Case View (Main).

B [untitled]
=-[[7 Use Casze View
Eor Iy
=, Associations
+-[J Logical Yiew
+-[[J Component Yiew
Deployrment Yigw
[#8 WModel Properties

Then create the use case model elements that you desire.

To create use case steps, use activity diagrams inside each use case, and model the steps of
the use case using the newly created activity diagram.

B [untitled]
=7 Usze Caze View

Ex Main

Ll

3 Pemoy CPEN Specification, .,

<> Lagin |

—?>, A gzoc,
+-[J Logical Vie Delste

+-[_J Componen Rename

| Deployment Vi
Mn:lpdel-lrlF'ererties Stakechart Diagram

Collaboration Diagram
Sequence Diagram
Class Diagram

Use Case Diagram

Ackiviky Diagram

File
LRL

Once all the elements have been modeled, just save you project and it is ready to be
imported in the Traceability Framework.

41

Annex 5 - Traceability Framework User Guide

Appendix V — Enterprise Architect Use Case Modeling

To create use case models that will be correctly imported by the framework, start by creating
a new project and select “Use Case”.

Select model(s) gl
Select model{s) ta add to vour praject Select Fram: |Common vl
Technolagy Mare
Iil <default= E | Business Process
|_ Requirerments
=l
F5 | Domain Modsl
B [Class
D [Database
ﬂ |_ Companent
W B Deployment
@ [Testing
EI |— Maintenance
Ld [Project Management
0 T user nterface
System behavior described with Use Cases and Actors
| W

Then create the use case model elements that you desire.
To create use case steps, use activity diagrams inside each use case, and model the steps of
the use case using the newly created activity diagram.

= Iil Primaty Use Cases
22 Primary Use Cases

O [

20 Login u Properties. ..
I Remoy
| Add P| Analysis Diagram
| Ackivity Diagram
Seguence Diagram
Carmunication Diagram
Statechart
= Find in Diagrams. .. Chrl+U CreatzLink...
Locate in Current Diagram

Now, we must export our model in XMl format. Go to Project > Import/Export > Export
Package to XMI... and them insert the name of the file you which to export to (the extension
of the file must be XMI), choose UML 1.3 (XMI 1.1) as the XMl type and unselect all the other
options. Finally press Export and we can use the exported file to extract the elements to our
framework.

42

Annex 5 - Traceability Framework User Guide

Export Package to XMI

R oot
Package |Llse Caze kodel |

Filename: ||:Z"'.MIII|:li|E Photo, smi

L

Stylesheet | s+ | [Optional stylesheet to post process XM content]
eneral Options Faor Expart to Other Tools
] Export Diagrams] Enable full E& Roundtip
[JFomat XM Dutput XM Typer [UML13pMITY) v
[]write Log file
[]UseDTD [] Unisys/Fose Format
[Generate Diagram Images [Exclude EA Tagged Values
Farmat: YWarning: Thesze options are for exporting

Ed model elements to ather boalz anly.

i b |] I Expaort l [Cloze] [

Help]

Progress

B

3

43

	Chapter 1. Introduction
	Chapter 2. Related Work
	Chapter 3. A Model-Driven Traceability Framework
	Chapter 4. Addressing Software Product Lines Development with Traceability
	Chapter 5. Case Study
	Chapter 6. Conclusion

