30 research outputs found

    Cross-layer latency-aware and -predictable data communication

    Get PDF
    Cyber-physical systems are making their way into more aspects of everyday life. These systems are increasingly distributed and hence require networked communication to coordinatively fulfil control tasks. Providing this in a robust and resilient manner demands for latency-awareness and -predictability at all layers of the communication and computation stack. This thesis addresses how these two latency-related properties can be implemented at the transport layer to serve control applications in ways that traditional approaches such as TCP or RTP cannot. Thereto, the Predictably Reliable Real-time Transport (PRRT) protocol is presented, including its unique features (e.g. partially reliable, ordered, in-time delivery, and latency-avoiding congestion control) and unconventional APIs. This protocol has been intensively evaluated using the X-Lap toolkit that has been specifically developed to support protocol designers in improving latency, timing, and energy characteristics of protocols in a cross-layer, intra-host fashion. PRRT effectively circumvents latency-inducing bufferbloat using X-Pace, an implementation of the cross-layer pacing approach presented in this thesis. This is shown using experimental evaluations on real Internet paths. Apart from PRRT, this thesis presents means to make TCP-based transport aware of individual link latencies and increases the predictability of the end-to-end delays using Transparent Transmission Segmentation.Cyber-physikalische Systeme werden immer relevanter für viele Aspekte des Alltages. Sie sind zunehmend verteilt und benötigen daher Netzwerktechnik zur koordinierten Erfüllung von Regelungsaufgaben. Um dies auf eine robuste und zuverlässige Art zu tun, ist Latenz-Bewusstsein und -Prädizierbarkeit auf allen Ebenen der Informations- und Kommunikationstechnik nötig. Diese Dissertation beschäftigt sich mit der Implementierung dieser zwei Latenz-Eigenschaften auf der Transport-Schicht, sodass Regelungsanwendungen deutlich besser unterstützt werden als es traditionelle Ansätze, wie TCP oder RTP, können. Hierzu wird das PRRT-Protokoll vorgestellt, inklusive seiner besonderen Eigenschaften (z.B. partiell zuverlässige, geordnete, rechtzeitige Auslieferung sowie Latenz-vermeidende Staukontrolle) und unkonventioneller API. Das Protokoll wird mit Hilfe von X-Lap evaluiert, welches speziell dafür entwickelt wurde Protokoll-Designer dabei zu unterstützen die Latenz-, Timing- und Energie-Eigenschaften von Protokollen zu verbessern. PRRT vermeidet Latenz-verursachenden Bufferbloat mit Hilfe von X-Pace, einer Cross-Layer Pacing Implementierung, die in dieser Arbeit präsentiert und mit Experimenten auf realen Internet-Pfaden evaluiert wird. Neben PRRT behandelt diese Arbeit transparente Übertragungssegmentierung, welche dazu dient dem TCP-basierten Transport individuelle Link-Latenzen bewusst zu machen und so die Vorhersagbarkeit der Ende-zu-Ende Latenz zu erhöhen

    Intelligent Circuits and Systems

    Get PDF
    ICICS-2020 is the third conference initiated by the School of Electronics and Electrical Engineering at Lovely Professional University that explored recent innovations of researchers working for the development of smart and green technologies in the fields of Energy, Electronics, Communications, Computers, and Control. ICICS provides innovators to identify new opportunities for the social and economic benefits of society.  This conference bridges the gap between academics and R&D institutions, social visionaries, and experts from all strata of society to present their ongoing research activities and foster research relations between them. It provides opportunities for the exchange of new ideas, applications, and experiences in the field of smart technologies and finding global partners for future collaboration. The ICICS-2020 was conducted in two broad categories, Intelligent Circuits & Intelligent Systems and Emerging Technologies in Electrical Engineering

    Proceedings of the Doctoral Consortium in Computer Science (JIPII 2021)

    Get PDF
    Actas de las Jornadas de Investigación Predoctoral en Ingeniería InformáticaThis volume contains the proceedings of the Primeras Jornadas de Investigación Predoctoral en Ingeniería Informática - First Doctoral Consortium in Computer Science, JIPII 2021, which was held online on June 15th, 2021. The aim of JIPII 2021 was to provide a forum for PhD students to present and discuss their research under the guidance of a panel of senior researchers. The advances in their PhD theses under development in the Doctoral Program in Computer Science were presented in the Consortium. This Doctoral Program belongs to the Doctoral School of the University of Cadiz (EDUCA). Different stages of research were covered, from the most incipient phase, such as the PhD Thesis plans (or even a Master’s Thesis), to the most advanced phases in which the defence of the PhD Thesis is imminent. We enjoyed twenty very nice and interesting talks, organized in four sessions. We had a total of fifty participants, including speakers and attendees, with an average of thirty-two people in the morning sessions and an average of twenty people in the afternoon sessions. Several people contributed to the success of JIPII 2021. We are grateful to the Academic Committee of the Doctoral Program in Computer Science and the School of Engineering for their support. We would like also to thank the Program Committee for their work in reviewing the papers, as well as all the students and supervisors for their interest and participation. Finally, the proceedings have been published by the Department of Computer Science and Engineering. We hope that you find the proceedings useful, interesting, and challenging

    Building the Future Internet through FIRE

    Get PDF
    The Internet as we know it today is the result of a continuous activity for improving network communications, end user services, computational processes and also information technology infrastructures. The Internet has become a critical infrastructure for the human-being by offering complex networking services and end-user applications that all together have transformed all aspects, mainly economical, of our lives. Recently, with the advent of new paradigms and the progress in wireless technology, sensor networks and information systems and also the inexorable shift towards everything connected paradigm, first as known as the Internet of Things and lately envisioning into the Internet of Everything, a data-driven society has been created. In a data-driven society, productivity, knowledge, and experience are dependent on increasingly open, dynamic, interdependent and complex Internet services. The challenge for the Internet of the Future design is to build robust enabling technologies, implement and deploy adaptive systems, to create business opportunities considering increasing uncertainties and emergent systemic behaviors where humans and machines seamlessly cooperate

    Building the Future Internet through FIRE

    Get PDF
    The Internet as we know it today is the result of a continuous activity for improving network communications, end user services, computational processes and also information technology infrastructures. The Internet has become a critical infrastructure for the human-being by offering complex networking services and end-user applications that all together have transformed all aspects, mainly economical, of our lives. Recently, with the advent of new paradigms and the progress in wireless technology, sensor networks and information systems and also the inexorable shift towards everything connected paradigm, first as known as the Internet of Things and lately envisioning into the Internet of Everything, a data-driven society has been created. In a data-driven society, productivity, knowledge, and experience are dependent on increasingly open, dynamic, interdependent and complex Internet services. The challenge for the Internet of the Future design is to build robust enabling technologies, implement and deploy adaptive systems, to create business opportunities considering increasing uncertainties and emergent systemic behaviors where humans and machines seamlessly cooperate
    corecore