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Kurze Zusammenfassung

Cyber-physikalische Systeme werden immer relevanter für viele Aspekte des Alltages.
Sie sind zunehmend verteilt und benötigen daher Netzwerktechnik zur koordinierten Er-
füllung von Regelungsaufgaben. Um dies auf eine robuste und zuverlässige Art zu tun, ist
Latenz-Bewusstsein und -Prädizierbarkeit auf allen Ebenen der Informations- und Kom-
munikationstechnik nötig. Diese Dissertation beschäftigt sich mit der Implementierung
dieser zwei Latenz-Eigenschaften auf der Transport-Schicht, sodass Regelungsanwendun-
gen deutlich besser unterstützt werden als es traditionelle Ansätze, wie TCP oder RTP,
können. Hierzu wird das PRRT-Protokoll vorgestellt, inklusive seiner besonderen Eigen-
schaften (z.B. partiell zuverlässige, geordnete, rechtzeitige Auslieferung sowie Latenz-
vermeidende Staukontrolle) und unkonventioneller API. Das Protokoll wird mit Hilfe
von X-Lap evaluiert, welches speziell dafür entwickelt wurde Protokoll-Designer dabei
zu unterstützen die Latenz-, Timing- und Energie-Eigenschaften von Protokollen zu
verbessern. PRRT vermeidet Latenz-verursachenden Bufferbloat mit Hilfe von X-Pace,
einer Cross-Layer Pacing Implementierung, die in dieser Arbeit präsentiert und mit
Experimenten auf realen Internet-Pfaden evaluiert wird. Neben PRRT behandelt diese
Arbeit transparente Übertragungssegmentierung, welche dazu dient dem TCP-basierten
Transport individuelle Link-Latenzen bewusst zu machen und so die Vorhersagbarkeit
der Ende-zu-Ende Latenz zu erhöhen.

Short Abstract

Cyber-physical systems are making their way into more aspects of everyday life. These
systems are increasingly distributed and hence require networked communication to co-
ordinatively fulfil control tasks. Providing this in a robust and resilient manner demands
for latency-awareness and -predictability at all layers of the communication and com-
putation stack. This thesis addresses how these two latency-related properties can be
implemented at the transport layer to serve control applications in ways that traditional
approaches such as TCP or RTP cannot. Thereto, the Predictably Reliable Real-time
Transport (PRRT) protocol is presented, including its unique features (e.g. partially
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reliable, ordered, in-time delivery, and latency-avoiding congestion control) and uncon-
ventional APIs. This protocol has been intensively evaluated using the X-Lap toolkit
that has been specifically developed to support protocol designers in improving latency,
timing, and energy characteristics of protocols in a cross-layer, intra-host fashion. PRRT
effectively circumvents latency-inducing bufferbloat using X-Pace, an implementation
of the cross-layer pacing approach presented in this thesis. This is shown using ex-
perimental evaluations on real Internet paths. Apart from PRRT, this thesis presents
means to make TCP-based transport aware of individual link latencies and increases the
predictability of the end-to-end delays using Transparent Transmission Segmentation.



Abstract

Cyber-physical systems are making their way into more and more aspects of every-
day life (e.g. self-driving vehicles in logistics or telemedicine for medical services). In
contrast to pure information-processing systems, these systems come with strict require-
ments towards resilience but in particular also to reliable timing. Providing the latter
is challenging, given that timing is mostly considered as a performance aspect of cy-
ber systems. A further challenge is that these systems are increasingly distributed and
hence require a network infrastructure to fulfil control tasks in a coordinated manner.
As these systems are supposed to interoperate, protocols and standards should be open
and accessible—which makes it straightforward to look at the Internet Architecture and
its protocols.

Providing this interoperability in a robust and resilient manner demands for latency-
awareness and -predictability at all layers of the information-processing and commu-
nication stack. This requires a detailed look at the fundamental network functions
for CPS—including the trade-offs they pose with respect to latency and other desirable
properties. This thesis addresses how both, latency-awareness and -predictability, can be
implemented at the transport layer to serve control applications in ways that traditional
approaches such as TCP or RTP cannot.

Thereto, the Predictably Reliable Real-time Transport (PRRT) protocol is presented,
which comes with unique features and unconventional APIs compared to state-of-the-
art transport layer protocols. Among these features is, for instance, the exposure of
all link characteristics (latency, throughput, reliability) towards the application. These
measurements are carried out by PRRT to provide error, congestion, as well as rate
control and can be accessed via the socket object. In contrast to the fully reliable
TCP, PRRT implements partially reliable ordered in-time delivery which allows to trade
resilience for latency—enabling applications to explicitly state their requirements and let
PRRT adapt to those requirements and the dynamic link characteristics. By providing
this unconventional service, PRRT as well as the application become latency-aware,
which leads to increased predictability in terms of timing.

The PRRT protocol has been intensively evaluated using the X-Lap toolkit that
supports protocol stack analysis in a low-overhead, cross-layer, and intra-host fashion.
Thereby, it supports protocol developers in improving latency, timing, and energy char-
acteristics by changing the protocol implementation or choosing appropriate configura-
tions. A further step towards reproducible network experiments is the Network Experi-
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ment Automation Tool (NEAT), which leverages state-of-the-art tools from continuous
development and integration, configuration management and network automation.

An unconventional approach to tackle the increased latencies due to bufferbloat is the
novel cross-layer pacing approach presented in this thesis—and implemented in PRRT
in the form of X-Pace. Thereto, processing and communication paces are measured
at all steps of an end-to-end transport stack and afterwards exchanged between these
steps so that the position and pace of the current bottleneck is known at runtime.
This synchronization of pace information is continuously done and individual steps act
upon this information to achieve near-zero queuing delay and avoid processing data too
fast (which usually requires more resources). Using experimental evaluations on real
Internet paths, it is shown how X-Pace allows PRRT to achieve predictable end-to-end
delivery times that are close to the theoretical optimum.

Finally, this thesis investigates how TCP-based network transport can achieve in-
creased latency-awareness and -predictability. This is done using the Transparent Trans-
mission Segmentation (TTS) paradigm that deploys so-called relays in the network using
Software-Defined Networking as well as Network Function Virtualization. Acting as ter-
mination points for the transport protocol, these systems allow a transport layer to act
on granularities down to a single physical link, so that its operation can be fine-tuned
to the link’s unique characteristics. Various experiments show that indeed the TTS
paradigm is able to reduce end-to-end flow completion times for different scenarios (e.g.
a lossy last mile link or networks with high jitter) as well as increase its predictability.
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True happiness comes from the joy of deeds well
done, the zest of creating things new.

Antoine de Saint-Exupéry

Chapter 1

Preface

We live in a time where digital computation and communication (i.e. cyber) systems
are making their way into more and more aspects of everyday (physical) life. While
this is straightforward for information-processing domains and services (e.g. knowledge
work or governance), it is not that apparent for areas that involve control of physical
processes1 (e.g. self-driving vehicles or manufacturing facilities). These control processes
are in many cases already involving digital electronic components, but are dwarfed by
the apparent capabilities of soft- and hardware developed for communication and en-
tertainment purposes. If we consider the Internet as the unified network infrastructure
for any communication service that is accessed from nearly everywhere and everyone,
it is straightforward to expect major gains for these control applications in leveraging
Internet technology—in particular with respect to interoperability that further paves
the way for the merging of cyber and physical worlds.

This rise in capabilities of digital technology is due to advances in manufacturing of
computing hardware with high computational power, vast amounts of storage and mem-
ory, low energy footprint, and at a low cost2. Having access to this capable and afford-
able technology allows engineers to build highly sophisticated cyber systems. Lee [Lee17]
argues that it is the symbiosis of these cyber systems with physical systems—leading
to Cyber-Physical Systems (CPS)—that will allow new application types that help to
advance humanity. In Lee’s point of view, this is particularly the case because both
computational as well as physical processes are (highly likely to be) fundamentally dif-
ferent and therefore complement each other in an invaluable manner. To get the terms
clear, it should be noted that CPS are comprised of embedded systems (i.e. information
processing systems integrated into products) and have a strong focus on the physical
environment with respect to its quantities such as time, energy, and space [Mar11].

1This thesis considers physical processes as physical phenomena that gradually change along a
(continuous) series of states.

2It should be noted that though the costs have reduced, there has also been an increase in demands
that—to some extent—alleviate the efficiency gains. This can be considered as the computing incar-
nation of the rebound effect known from energy economics. This effect is originally a hypothesis by
Jevons [Jev65] and received a recent treatment by the Nature journal [GKRW13]).

1



2 CHAPTER 1. PREFACE

Figure 1.1: Distributed Cyber-Physical Systems enable new applications in various do-
mains, but must fulfil strict requirements, such as dependability (CPS Summit [DS16]).

Considering the different application domains of CPS, as depicted in Figure 1.1 and
described further in Chapter 2, there is enormous potential for coupling the cyber and
physical worlds as tightly as possible, for instance in mobility/logistics (self-driving ve-
hicles), manufacturing (Industry 4.0), smart spaces (Internet-of-Things), and medical
services (telemedicine).

From an engineering perspective, the previously mentioned applications require tight
integration of communication, control, and system design. By having a closer look, it is
evident that any of the applications for CPS depend on communication networks that
have properties, such as resilience and dependability, but also interoperability. The pro-
tocols and systems that are used in today’s Internet cannot provide all of the properties
that CPS require. Considering Clark [Cla18], it is evident that the Internet of tomor-
row might be a different internet than the Internet we use today, in particular because
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the Internet architecture is separate from the implementation of its mechanisms and its
actual deployment. In order to support CPS, both the implementation and deployment
are bound to change.

With the current networked and distributed systems that leverage the Internet, one
cannot answer any of the following questions reliably: How long does a remote operation
or transmission take? How likely will it finish on time? Would an extra millisecond of
delay be acceptable? How likely will a message arrive? How to deal with faults? How
to increase the success rate of the applied measures? How to ensure proper (temporal
and functional) operation? How can system layers be crossed to improve performance?

Answering these questions requires the application of cross-layer design paradigms
and holistic analysis of all system layers, starting from the physical hardware, over the
operating systems, through different communication systems, and up to the applica-
tions [Lee08, Mar11]. While briefly touching all of these layers, the main focus and
contributions of this thesis are in the design and implementation of latency-aware and
-predictable communication systems, with strong interconnections to the other layers.

1.1 Problem Statement
While the challenges for distributed CPS are manifold (e.g. achieving reliable timing,
being fault-tolerant, and incorporating human behaviour), this thesis addresses three
aspects that are related to networking technology and proposes solutions for all of them.

A1: Cross-layer Network Protocol Design and Implementation Looking at
transport protocols that are common today, there is a gap between the services these
provide and the requirements that CPS have towards the communication. In particular,
these protocols (e.g. TCP [Pos81], QUIC [Goo18]) lack the capability to exchange and
consider timing constraints of the application, for instance a maximum tolerable age-
of-information to ensure reliable operations. Only by knowing about the applications’
demands and the actual latencies caused by intermediate computation and communi-
cation steps, one is able to find suitable configurations or notify the application when
demands cannot be fulfilled—allowing graceful and safe handling.

A2: Flow-level Optimization of Transmissions at the Network Core The
channel characteristics of links on today’s Internet are highly heterogeneous, as they are
using different physical media, employ varying multiple access schemes and use different
protocols. In the future, this heterogeneity is going to increase further with the use
of new link technologies (e.g. 5G NewRadio [DPS18]). CPS are expected to leverage
these links to achieve distributed control loops over long distances with high reliability.
Using pure end-to-end approaches for network transport is bound to miss the potential
of applying link- or segment-local optimizations for communication of CPS.

Figure 1.2 depicts a control scenario where the link from a cloud server (inside a
datacenter) to an edge radio and the link from this radio to an edge device have dif-
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Figure 1.2: End-to-end (E2E) scenario with heterogeneous link characteristics that lead
to suboptimal performance of network functions, e.g. error and congestion control.

ferent delay and loss characteristics. If we use a fully reliable transport such as TCP,
there are multiple issues with this: First, losses on the last link cause retransmission
with higher latency, as they have to traverse the first link again. Second, loss-based
congestion control reduces the sending rate regularly, so that it is unlikely that one can
fully use the maximum data rate of the first link and especially not the maximum data
rate of the second link. The pure end-to-end operation [SRC84] prevents a link-level
operation of network functions for a particular flow of data. Consequently, it is neces-
sary to systematically investigate segmentation approaches that enable link-level flow
optimization, which reduces latency as well as data overhead and increases utilization.

A3: Measurement and Control for Cross-layer Optimization Developing ro-
bust networked systems relies on measurement and analysis of communication param-
eters to optimize the transmission. With respect to the protocols with predictable re-
liability and latency, thorough knowledge about the channel characteristics, i.e. delay,
data rate, and loss rate, is required. This is also true for applying segmentation as one
can only find out about heterogeneity by constantly measuring the network and devel-
oping good models for current and future link parameters. Consequently, we need to
employ data science approaches, algorithms, as well as statistical knowledge to tackle
these challenges3.

1.2 Research Question
If we consider the layers of which digital computing systems are composed (cf. Fig-
ure 1.3), it can be seen that while the (in this abstract model two) lower layers expose
predictable and reliable timing, i.e. the digital circuits or wires, the higher layers cannot
achieve the same due to abstractions that ignore timing [Lee08]. The highest layer (i.e.
the intent of one or more users) in contrast has a very differentiated notion of require-
ments with respect to latency, e.g. the consumption of a live video stream or the usage of
a control application has a maximum tolerable latency for each unit of data. In fact, the
middle layers (marked in light grey) are mostly agnostic of latency that their operation
induces. This leads to a situation where the latency that the higher layers face is not
predictable and it gets harder for these to be aware of the latencies lower layers cause.

3cf. Andreas Schmidt: “Network Traffic and Infrastructure Analysis in Software Defined Networks”,
Master Thesis, Saarland Informatics Campus, 2015
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Figure 1.3: Both communication and computation parts of systems have layered archi-
tectures. With respect to latency, there are layers that have reliable and predictable
latency (black), that are aware of latency (dark grey), and which are often agnostic of
latency (light grey).

The research question of this thesis is how we can bridge this gap for communication
systems to provide both latency-awareness and -predictability beyond existing knowledge
and solutions in the field—with a particular focus on the transport layer. These two
properties are defined as follows:

Latency-awareness A layer is latency-aware when it knows (a) what latency char-
acteristics it requires from the layer below and (b) what latency it causes to the layer
above. Furthermore, a layer should ideally share information about its own latency with
the layer above, which can then adapt.

Latency-predictability As soon as awareness is established, a further step is to make
the latency of a layer predictable and also share this confidence about the timing with the
adjacent layers. A reduction of the latency on an absolute scale could also be achieved,
but it should be ensured that having a predictable latency is always preferred over hav-
ing a low latency.
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The compute half of Figure 1.3 is also relevant, because transport layers are effectively
executed by operating systems, which must not be agnostic of the latency induced by
certain operations in order to allow CPS operations. Due to tight interconnection, it is
a necessity to jointly analyse both sides, computing and communication. Therefore, this
thesis elaborates on computing system aspects wherever necessary while having a clear
focus on the communication aspects.

Besides communication and computation, control is the third component that we
find in cybernetics [Wie48], which is going to be further elaborated on in Chapter 2
and is represented in Figure 1.3 by the intent. To give a concrete example, a user of a
self-driving car has the intent (and strong demand) to not crash into anything, which,
together with the physics of driving, govern what she expects from the computing as
well as communication system.

In summary, we investigate ways to properly treat latency as a functional aspect in
CPS, in contrast to traditional information processing where it is only a non-functional,
performance-related aspect [LS17].

1.3 Contributions
With respect to this research question, this thesis contributes the following theoretical
considerations, empirical observations, and practical implementations to achieve reliable
latency-awareness and -predictability in transport layers of CPS. These contributions are
essential artefacts of the Latency- And Resilience-aware Networking (LARN) project4,
as they allow a tight cooperation of the networking and operating system domains to
support CPS applications.

Predictably Low Latency and Latency-awareness in Transport Protocols First
and foremost, this thesis describes the Predictably Reliable Real-time Transport (PRRT)
protocol, a straightforward to use, openly available5 transport protocol that can replace
existing UDP or TCP solutions. PRRT (as described in Chapter 4) is (a) channel-aware
with respect to all parameters (latency, throughput, reliability), (b) system-aware with
respect to processing latencies that are incurred by the communication-related compu-
tations as well as the application itself, and (c) application-aware in that it allows the
application to explicitly state its demand with respect to maximum age-of-information.
This holistic awareness is leveraged in decisions about the configuration of hybrid error
control, loss-avoiding congestion control, as well as cross-layer packet pacing—leading
to predictably low latencies and hence reliable timing.

Cross-layer Latency and Timing Analysis While designing PRRT to provide pre-
dictable latency to control applications, we have created the tool X-Lap, which allows

4http://larn.systems (accessed August 15, 2019)
5http://prrt.larn.systems (accessed August 15, 2019)

http://larn.systems
http://prrt.larn.systems
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cross-layer latency and timing analysis. In particular, X-Lap uses a minimally invasive
run-time capturing system to take timestamps at various steps within the communication
stack to properly quantify latencies. This allows to identify the sources of latency and
jitter across end-hosts and among the layers in the stack. X-Lap and its extension ∆elta
thereby close a gap that existing network- or system-only profilers (e.g. wireshark and
gprof) leave open. Thereto, X-Lap serves as a tool to validate predictable and reliable
timing and provides empirical measurements to further guide the engineering process.

Cross-layer Pacing Even though it is a well-known fact in manufacturing that one
can achieve just-in-time processing when bottlenecks are known and communicated, this
approach is not yet widely used in communication and information-processing systems.
This thesis makes the case for a thorough capturing and synchronization of processing
latencies across all the steps that are involved in process-to-process communication.
Leveraging this awareness, sub-systems which are not the bottleneck can take measures
to avoid “waste”6, leading to lower latencies due to empty buffers, fewer losses due to
avoiding bursts, and lower energy demand by slower execution—achieving savings with
respect to the time, memory, or energy resources. This cross-layer pacing approach
X-Pace is designed as well as implemented (as an extension to PRRT) and able to
outperform TCP variants that are optimised for low latency. Thereby, cross-layer pacing
increases predictability of latencies and increase overall reliability by avoiding losses.

Transparent Transmission Segmentation Accompanying these end-host-centric
contributions of this thesis, a further look is taken at transparent transmission seg-
mentation (TTS) approaches that allow to localize network functions for improved per-
formance. A thorough description of the segmentation problem is given, considering
the demands we have towards this technology, the dimensions it affects, as well as the
network functions that are involved. The approach is formalized, allowing exemplary
theoretical considerations with respect to flow control that are later validated empir-
ically. In order to do this, a complete relaying approach is presented that leverages
software-defined networking for deployment in open networks and presents a virtual
networking function in the form of two different relay implementations that are able
to segment transmissions. Further positive effects of the segmentation are measured
and analysed, while more light is shed on limitations of the segmentation approach—in
particular when TTS achieves too little gain to compensate for the overhead it induces.

1.4 Outline
This thesis is composed of two parts: Chapters 2 to 4 lay the foundation to and set
the context of this work. Within Chapter 4, the thesis smoothly transitions into the
contribution part in Chapters 5 to 7. The chapters are structured as follows.

6This follows the Toyota Production System [Ohn88] terminology, where waste or muda is any
human or natural resource and even time that one could have spared.
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First, Chapter 2 introduces cyber-physical systems, their application domains, and
why it is not straightforward to fulfil their communication needs with existing technology.
Particular attention is paid to distributed, networked CPS where reliable timing of the
communication is essential. In this context, the Reliable Network Atom (RNA) and the
OpenNetworking testbed are introduced as demonstrators for building communication
stacks for CPS using off-the-shelf components paired with unconventional transport layer
and operating system approaches. Chapter 3 holistically investigates latency aspects
in distributed CPS, showing where individual latencies are caused, how systems are
made aware of them and how latencies can be decreased as well as how the latency-
predictability can be increased. With the knowledge about the composition of end-to-end
latency, several transport layer functions are revisited regarding their impact on certain
sub-latencies. Transport layer protocols are essential components that are required to
bring latency-awareness and predictability to communicating CPS.

The PRRT protocol that is introduced in Chapter 4 provides such a CPS-enabled
transport layer. PRRT is thoroughly analysed for its latency characteristics by X-Lap,
a tool that is presented in Chapter 5. This chapter also considers reproducibility of
experiments, which is essential when building reliable systems. Chapter 6 presents X-
Pace, which allows to determine a system’s bottleneck, communicate this information
and allows the other non-bottleneck components to adapt. Thereto, a brief overview of
the history of packet pacing is given, together with a general formulation of the cross-
layer pacing process. At the network core, transparent transmission segmentation, as
described in Chapter 7, is able to reduce latencies and increase predictability. This claim
is proven by providing a practical segmentation solution for TCP and evaluating it in
comparison to unmodified end-to-end communication.

The final Chapter 8 concludes the thesis by summarizing the contributions and giving
an outlook to further directions of research, which add additional capabilities to the
transport layer to be able to support CPS.



The machine does not isolate man from the
great problems of nature but plunges him more
deeply into them.

Antoine de Saint-Exupéry

Chapter 2

Networking in Distributed
Cyber-Physical Systems

While the field of networking and telecommunications is well established—with the first
documented networks consisting of fire signals in ancient Greece—demands have changed
over the centuries and new network infrastructures have been created over and over
again. The most prominent one today is the Internet, providing global access to a shared
infrastructure for information flows that are fast and large in volume—independent of
the actual service or content that they provide.

It is still a common (mis-)conception that the Internet, and the technologies it is
composed of, are not suitable for services that are time-critical and require high reliabil-
ity. In fact, such a generalization is inadequate and whether Internet technologies are
used does not imply anything on its characteristics with respect to timing, reliability, or
communication capacity. As Clark [Cla18] points out, the Internet is only the current
choice of architecture and there are various other ways to build an internet1 that will be
considered in the future and can change how it operates. Instead of providing specific
performance guarantees, the use of Internet protocols, software, and hardware allows
interoperability—the core goal of the design of the Internet. This can be seen by a
recent trend towards the use of Internet technology in the manufacturing industries2; a
field that has for most of its time refused to use these due to the assumed insufficiencies.

Communication and networking that fosters interoperability is guaranteed to stay
an essential building block of technology to solve current and future societal challenges.
However, the course of the Internet’s success does not stop at solving challenges in
the domains of information or knowledge exchange, but continues to make its way to
domains that change the world in a more literal way—through establishing control loops
with physical processes.

1The capitalization and definiteness of the articles is in line with Clark and expresses that we can
build inter-networks in many ways but currently have a single, though changing, implementation.

2Often referred to as the (Industrial) Internet-of-Things (https://www.iiconsortium.org/, accessed
July 24, 2019) or Industry 4.0.

9

https://www.iiconsortium.org/
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2.1 Cyber-Physical Systems
The prefix cyber, which is often associated with digital (and sometimes conceived of
as parallel) worlds, has been originally coined by the American mathematician Norbert
Wiener in his classic work Cybernetics or Control and Communication in the Animal
and the Machine [Wie48]. At the core of this is the combination of communication,
computation, and control based on closed-loop feedback to continuously measure and
steer physical processes. Though his thoughts at this time could not consider digital
computers or the Internet we know today, he already presents the theoretical ingredients
and concepts that are at the core of the technology that we build and envision today.

From cybernetics, a domain of science, we get to the engineering term cyber-physical
systems, which has been coined by Helen Gill in 2006 at the National Science Foundation
in the US and can be defined as:

Definition 1 (Cyber-Physical System) Cyber-Physical Systems (CPS) are inte-
grations of computation with physical processes. [LS17]

While this is apparently an extremely general definition, it captures the essence of
CPS and how these differ from pure information processing (e.g. for financial or en-
tertainment applications). Other (non-contradictory) definitions exist that characterize
CPS as “a confluence of embedded systems, real-time systems, distributed sensor sys-
tems and controls” [RLSS10] or “[integrations of] software-intensive embedded systems
with (potentially global) information systems” [DS16].

2.1.1 Applications of Cyber-Physical Systems
With this definition, and in particular the differentiation from information-processing, we
can identify domains in which CPS are already essential or will be essential in the future.
Unsurprisingly, these application domains are manifold and in most cases already include
electronic components and software (i.e. cyber parts). But despite these circumstances,
these contexts do not (yet) leverage the full potential of a holistic approach where cyber
and physical components are at equal parts.

This upcoming evolution of technical systems is widely considered to improve oper-
ations in these application domains with respect to different metrics and objectives. As
this is an engineering—and therefore creative—task3, it is up to the humans who cre-
ate (or are told to create) it to balance these demands with what is technically possible.
A contemporary approach would be to consider the United Nations Sustainable Devel-
opment Goals4 (SDG) in order to achieve a sustainable use of technology that serves

3See [Lee17] for a detailed treatment of the difference between science and engineering.
4https://sustainabledevelopment.un.org/?menu=1300 (accessed July 23, 2019)

https://sustainabledevelopment.un.org/?menu=1300
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the society. The following provides a highly abridged list of relevant aspects and gives
clues on how we can advance humankind through enabling more sophisticated CPS:

Environmental Footprint & Climate Action (SDG 13) Even though the en-
vironmental footprint metric (e.g. CO2 emissions or non-renewable resource usage) is
central to all domains of human life and has to be considered more thoroughly, there
are primary domains where CPS can reduce environment-unfriendly operations (lead-
ing to higher efficiency) or even avoid them completely (leading to better sufficiency).
These improvements are possible even though CPS themselves increase the footprint of
individual technology artefacts (e.g. through the use of rare materials to host the cyber
components) but require careful investigation and system design. Promising domains
are logistics (e.g. through improved scheduling or platooning [AAGJ10]), individual
mobility (and its absence due to telepresence [Ste92]), as well as structures & build-
ings (e.g. through improved air conditioning [Sno03]). Finally, the advent of affordable
and clean energy (SDG 7) can be achieved through the implementation of distributed
energy grids [FMXY11] that are able to tackle the challenges that renewable, intermit-
tent energy sources pose—eventually providing a sufficient and sustainable amount of
energy to everyone.

Human Health and Well-Being (SDG 3) Due to their high reliability constraints
and extensive certification procedures [Sta17], medical systems and devices can usually
not keep up with the speed of innovation and often appear antique when compared with,
for instance, state-of-the-art consumer technology. This situation can only change when
newly created technology is robust and its reliability can be certified in a straightfor-
ward and brisk way. Furthermore, medical operations can also benefit from the use of
real-time information systems as well as remote control. Telemedicine is expected to
increase the range and frequency at which surgeons can operate and the use of advanced
robotics is going to also reduce the invasiveness of treatments. In addition to these
clinical applications, the fields of assisted living as well as (automated) medial & tech-
nical emergency services can benefit from advanced CPS technology. Lastly, through
employing improved traffic control and safety systems as well as safe control of critical
infrastructures, human lives can be saved by avoiding accidents or reducing their impact.

Process Efficiency, Cost-Efficiency, and Adaptability (SDG 9) In the domains
of manufacturing and process control, major inefficiencies lie in the interfaces between
involved partners and domains. While the former is often due to information that is lost
between suppliers due to missing (or abundance of incompatible) standards, the latter
is caused by the still-present divide between information technology and operations
technology5. This divide is not just a cause to inefficiencies in the production process,

5Consider e.g. https://ics.sans.org/media/IT-OT-Convergence-NexDefense-Whitepaper.pdf for a
security-focused view on the issue (accessed November 29, 2019).

https://ics.sans.org/media/IT-OT-Convergence-NexDefense-Whitepaper.pdf
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but also an impediment to achieving higher product quality [LNPV18]. Furthermore, it
harms adaptability and makes production facilities often highly static and inflexible.

Overcoming this divide is envisioned by several efforts, for instance Industry 4.0
(I4.0) [LFK+14], the Industrial Internet-of-Things (IIoT) [DXHL14, JBM+17], or the
Internet-of-Production (IoP) [PGH+19]. Embracing these ideas and enabling them
through advanced CPS is considered to reduce overhead at the interfaces, improve cost-
effectiveness, and enable adaptability. When used in an appropriate and responsible
way, this can help to secure and increase prosperity6.

2.1.2 Challenges and Traits of Cyber-Physical Systems
With these applications in mind, it becomes evident that there is a multitude of chal-
lenges with today’s technology that must be solved in order to enable implementa-
tions (cf. [BA07, Lee08, Sta17]). This is particularly relevant because CPS have signifi-
cantly higher demands with respect to safety and reliability in comparison with general
purpose information processing (cf. [Mar11], p. 10).

Timing The most important challenge is that the notion of time is not present in
most of the computing and communication technology that is available today—a stark
contrast to the fact that CPS are inherently concurrent and reliable timing is essential
for correct operation. In information-processing software, timing is mostly considered as
a non-functional aspect (i.e. a performance measure) and not as a functional aspect (i.e.
a correctness measure). In spite of digital circuitry being extremely reliable and having
reliable timing, the abstractions we use today do not capture timing in an appropriate
way [Lee08]. This deficiency of the abstractions is present at most layers above the dig-
ital circuits, e.g. instruction set architectures, operating systems including concurrency
primitives, as well as programming languages7.

For the networking regime, the same is true as there are established (e.g. wavelength-
division-multiplexing) and upcoming (e.g. Time-Sensitive Networking (TSN)8) solutions
that provide predictable timing but do not use appropriate abstractions to forward this
information up the stack (i.e. towards the application). In the top-down direction,
it is still the case that network applications (e.g. messaging servers) are not able to
explicitly state timing constraints—even though they might well have some and could
share them. This is especially problematic as “passage of time is inexorable” [Lee08].
Due to this fact, CPS that come with software that does not properly consider timing
are destined to only be best-effort systems, where reliable operation is a coincidence and
not a guarantee with high confidence. Furthermore, CPS typically operate outside of

6It should not just lead to more production and consumption, as has been the case with many
inventions that boost efficiency.

7A programming language approach to solve this has been presented in [SG10], but as of today
there are no general purpose and widely used programming languages with temporal semantics.

8The work group was formerly known as the audio/video bridging task group: http://www.ieee802.
org/1/pages/tsn.html (accessed August 14, 2019)

http://www.ieee802.org/1/pages/tsn.html
http://www.ieee802.org/1/pages/tsn.html
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controlled environments and are faced with unpredictable, unexpected conditions and
must handle partial failures.

Applications of today also have certain expectations about the reliability of subsys-
tems (including the communication) and would be able to share them if the programming
abstractions would allow to do so. Sharing these expectations allow the subsystems to
optimize their operations accordingly and striving to fulfil them. This means that new
ways to express, measure, and validate reliable timing must be developed that are fun-
damentally different from state-of-the-art approaches.

Reliability Reliable timing alone does not make a system reliable, and it is inter-
esting to see how the demands and expectations of the general public towards software
systems are fundamentally different between pure information processing and embedded
systems. With respect to Internet-based multimedia services, people got used to the fact
that video streams stall, rebuffer, or switch quality, while such a behaviour would be
unacceptable for the traditional TV broadcast service. While people got used to reboot-
ing their computer if something does not work as expected, they would certainly return
their car (or insulin pump) if they were supposed to do the same. Therefore, technology
has to evolve to fulfil the expectations users have towards embedded systems right from
day one—which means that many domains (e.g. manufacturing, avionics) cannot do a
partial migration to modern (hard- as well as software) technology while the technology
is not yet reliable enough. With CPS, this is even more challenging as the environments
they operate in are often harsh and full of noise, interference, and other effects that
hinder a reliable real-time communication.

In this spirit, [Lee08] argues that components at all layers should be made as reliable
as possible; if infeasible, the next higher layer should compensate and create robustness.

Feasibility Another central argument of [Lee08] is that even though the current soft-
ware and technology cannot support advanced CPS, it is not a fundamental contradiction
that software similar to the current one can do so. While the layer below software (i.e.
digital circuits) is extremely reliable, software is in many cases not reliable because the
employed abstractions do not properly capture timing and reliability constraints. The
same holds for networks, which are built on increasingly reliable circuitry and physical
modulation schemes, but lose this reliability as soon as they provide best-effort services,
like on most of the Internet. Therefore, it is essential to the analysis and implementation
of CPS to create good latency-aware models and abstractions9 that allow to have a high
confidence that their proven formal properties hold in the physical realizations.

Further Challenges There are certainly more challenges to CPS than the three that
have been mentioned previously. One of them is the increasing number of devices which
raises the density of systems that must be concurrently operated and controlled. Having

9[LS17] follows the aphorism “all models are wrong, but some are useful”, which is commonly
attributed to George Box.
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these many devices, which are often also mobile, requires that they have an adequately
low energy demand that can be fulfilled in a sustainable manner and without regularly
imposing the need for charging. The vast number of devices also come with increased in-
tegration into human-centered perimeters, which brings two additional challenges. First,
extensions of models are needed to incorporate human actions, which is particularly chal-
lenging due to the non-linearities human behaviour exhibits. Second, maintaining pri-
vacy is crucial in the presence of an unprecedented number of sensors that continuously
measure the surroundings and could enable privacy-violating derivations.

While all these additional challenges are certainly important and must be considered
by CPS designers and engineers, they are not the major focus of this thesis. Instead, we
focus on interoperable and predictably reliable real-time communication infrastructures
that are a building block to CPS that fulfil all of the mentioned requirements.

2.2 Distributed Cyber-Physical Systems
Many of the applications that were mentioned in Section 2.1.1 include means of network-
ing and telecommunication. So even though [Wie48] already considered communication
as an essential component of cybernetics, most control designs have simplistic commu-
nication models and most network solutions abstract control applications in a simplistic
way: as processes that want to communicate. While no control system can exist without
communication (i.e. actor, sensor, and controller must exchange information), for most
of the time communication has been neglected as it did not require explicit treatment.
In local scenarios, with information travelling across short distances and highly reliable
media (e.g. wires), the major challenge for CPS has been to compensate for latencies
caused by the sensing, acting and control processes themselves, not the communication.
In contrast, the control systems that are envisioned today should cover large physi-
cal distances and traverse multiple potentially unreliable communication media so that
communication aspects are central to fulfilling the control task. As delay and jitter
can severely impact the quality of control [BPZ00, BA07, CSL18], their communication-
induced causes have to be treated carefully in a distributed scenario.

In control engineering, these systems are considered as networked control systems, of
which we give one definition here (cf. [HVLA+07]):

Definition 2 (Networked Control System) A Networked Control System
(NCS) is a control system in which sensors, actuators, and controllers are connected
by means of a network or other shared medium.

Even though this term emphasizes the role of networking, most of the research about
CPS carried out over the first decade after the rise of the term NCS did not put a major
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focus on the networking challenges—apart from treatment of the lowest layer in the
OSI model10. Networking research in contrast has been majorly focused on providing
high throughput over flexible packet-switched networks, considering latency primarily
as a performance parameter11 of the lower layers (physical and link layer), but not as
a reliability metric for the transport layer. More details on the recent shift in research
from increasing throughput to decreasing latency are going to be presented in Chapter 3.

In order to overcome this, there have recently been a number of endeavours to bring
together the disciplines of control, network, and systems engineering at an equal level.
First, the priority programme 1914 “Cyber-Physical Networking”12 has been established,
which is funded by the German Science Foundation (DFG) since 2015, with the second
project phase starting at the end of 2019 after the first ran from end of 2016 to 2019.
Second, the International Symposium on Networked Cyber-Physical Systems (NetCPS)
took place in September 2016, where several initial ideas on Cyber-Physical Network-
ing [SH16a] have been presented, which have been implemented in the aftermath and
are described in the remainder of this thesis. Finally, there have been several presenta-
tions and workshops on this topic at major networking conferences, hosted by the ACM
SIGCOMM and IEEE ComSoc, as well as control engineering communities.

In order to stay in line with the historical development of the term cybernetics (which
by definition includes communication), it is therefore canonical to talk about distributed
cyber-physical systems. This term stresses that the system is either distributed or mul-
tiple systems cooperate13. In either case, communication and (inter-)networking are
essential to be able to control the physical world. For simplicity, the rest of this thesis
uses the term CPS, but always having in mind those distributed instantiations where it
is essential to have predictably reliable networking solutions to allow robust control.

2.2.1 The Internet as a Universal Communication System
Considering the increasing importance of the networking components in CPS, it is
straightforward to look at the Internet—the most universal and widely distributed com-
munication system humankind has created so far. This universality has been achieved
by a clear separation of concerns and assigning functions to multiple independent but
well-defined layers14 that are stacked together. This approach has been codified in the
ISO/OSI model15, a cornerstone of the Internet’s success. Keeping the network core as
simple as possible and putting complex applications in the end-systems has been a fur-
ther contributor to this universality [SRC84]. This way, it became tremendously simple

10For instance within the priority programme 1305 “Control Theory of Digitally Networked Dynamic
Systems” (https://gepris.dfg.de/gepris/projekt/29058575, accessed September 6, 2019), funded by the
DFG, which dealt in particular with wireless networking and the control theory to be developed to
handle these dynamic communication systems.

11The same hazardous paradigm that was mentioned before with respect to software dynamics.
12https://spp1914.de (accessed August 15, 2019)
13These alternatives are more philosophical and subject to the bounds we put on a system.
14Or “models of models [...] of things” [Lee17].
15https://www.itu.int/ITU-T/recommendations/rec.aspx?rec=2820 (accessed April 17, 2019)

https://gepris.dfg.de/gepris/projekt/29058575
https://spp1914.de
https://www.itu.int/ITU-T/recommendations/rec.aspx?rec=2820
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to create applications that involve information exchange on-top of the Internet. The
wide distribution and scaling has been enabled by the design goal of the creator’s of the
Internet to keep things as simple as possible—as complexity is considered as a major
impediment to scaling [BM02].

In summary, it would be straightforward to conclude that the Internet as it is today
is an appropriate solution to connect parts of distributed CPS. The following section
shows why it is not (yet) and why it should only be considered as a good starting point
to enable distributed CPS that are interoperable. In the spirit of Clark [Cla18], this is a
perfectly valid approach to take the Internet and gradually transform it into a different
internet—a process that is happening while you read this line.

2.2.2 Interoperable CPS using Internet Technologies
The increasing grade of digitalization of all domains of daily life and business, mainly
due to some form of symbiosis with the Internet, makes it natural for CPS to also employ
this communication network instead of creating a proprietary one. If we consider future
applications such as self-driving cars, it is evident that no market player is going to
establish a network infrastructure of its own but will instead at some point interface with
the Internet16. Nevertheless, the access technologies vary, with fibre-optic links, cellular
services (e.g. 5G New Radio), local wireless networking (e.g. 802.11p) or low-power wide
range networking (e.g. LoRaWAN) representing a highly abridged list. In addition, the
approaches for the placement of the computing part of these applications are not yet
clear, which is also discussed in the edge and fog computing domains [BMZA12, SCZ+16].
Both the network access technology as well as the placement of computing functions
influence the system performance dramatically and can make solutions infeasible if they
cannot provide sufficient latency and resilience properties.

In addition to these considerations, RFC3439 [BM02] discusses several aspects of the
design philosophy behind the Internet that can become obstacles for CPS:

• While the end-to-end argument [SRC84] demands that there should be no state in
the network, the actual implementations of today indeed have state (e.g. routes),
which has a direct impact on the timing and reliability.

• Large scale systems exhibit non-linearities, amplification effects, and resonances
that do not show in small scales—and can be a major impediment when imple-
menting reliable CPS.

• Synchronization, which is often essential for predictable operation, can be harmful
as faults occur synchronously and lead to amplification or cascading failures.

16It should be noted that some non-ISPs (e.g. BMW, BASF) are pushing to get dedicated frequencies
by the German Bundesnetzagentur (https://www.spiegel.de/international/business/a-1257798.html,
accessed July 24, 2019). Nevertheless, interoperability is key and having physical layer independence
does not free from interfacing with the Internet for collaborative applications.

https://www.spiegel.de/international/business/a-1257798.html
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• The (horizontal or vertical) coupling is problematic for the same reason.

• Layering (at runtime) is considered harmful, as it implies potentially duplicate
work and too many layers can lead to higher complexity, which counteracts the
simplicity principle.

Therefore we can conclude that as of today, the Internet and most of its technologies
are not ready for demanding CPS applications. In particular, networking technologies
are missing time- and resilience-awareness that are essential for distributed CPS. We
expect distributed CPS to be large, complex and require scaling—but also to be interop-
erable. In consequence of the need for interoperability, the solutions shown in this thesis
adhere to the concepts governing Internet design, in particular the E2E principle (cf.
Chapters 4 and 6). However, this thesis also incorporates evolutionary approaches that
overcome weaknesses caused by strict application of the E2E principle (cf. Chapter 7).
In summary, we are confident that it is possible but challenging to provide communi-
cation and networking technology for CPS that is reliable, exposes reliable timing, and
fosters interoperability.

2.3 Reliable Networking Atoms (RNA)
As a first step, the reliable networking atom17 (RNA) has been developed within the
LARN project18 and serves as a suitable component for composing interoperable CPS.
The RNA in general comprises two components: (1) a recent Linux version with system-
level adaptations to improve performance of the communication stack and (2) a recent
version of the PRRT protocol (cf. Chapter 4) to allow process-to-process communication.
The RNA comes in several forms and serves as a constrained evaluation platform to
empirically test the approaches developed in this thesis in real-life CPS applications.

2.3.1 Sine Control App
In order to evaluate the control performance when using the RNA, the Sine application
that is depicted in Figure 2.1a has been developed. In this control system, the plant
works on signals in the form of a three-tuple (tc,vc, tp), where tc and tp are the timestamps
of the control message at the controller (when it was sent) and the plant (when it
was received). The controller derives its actions from a sinus function, so that vc =
sin(k · tc), and k scales the sine to achieve an appealing visualization. To achieve a
visual representation of how good the communication systems works, these samples
are plotted at (tp,vc) in yellow. White dots resemble the expected samples that are
derived by knowing the control function at the plant. The figure clearly shows how
the PRRT variant can reliably reproduce the sine at the plant, while the UDP variant

17http://rna.larn.systems (accessed July 2, 2019)
18http://larn.systems (accessed July 2, 2019)

http://rna.larn.systems
http://larn.systems
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(a) The Sine App resembles a minimalis-
tic control application where the controller
transmits a control signal (i.e. the sine) and
the plant monitors how reliably and timely
this signal arrives.

(b) In its Drone form, the RNA can be used to
stream mobile video and it is also envisioned
to act as a bridge to allow control of the drone
via off-the-shelf wireless technologies such as
WiFi.

Figure 2.1: The RNA is a building block for distributed CPS.

shows scattering. For this scenario, a synthetic 1ms delay with 1ms of jitter is used.
The PRRT controller also exhibits various runtime parameters that yield insights into
its current configuration as well as channel characteristics—information that is exposed
to any application that uses PRRT sockets. This application serves as a minimalistic
demonstrator to highlight the latency-awareness and -predictability that can be achieved
by PRRT—a essential quality that is needed for communication in CPS.

2.3.2 Drone
A more challenging incarnation of the RNA is the drone depicted in Figure 2.1b. The
drone is a highly customized CrazyFlie 2.1 provided by BitCraze19, which is equipped
with a Raspberry Pi Zero W that allows to run the RNA software (on Raspbian) and
interface with the drone platform. The drone is used for two scenarios: (a) PRRT is used
to reliably stream live video over WLAN from the platform to a pilot, and (b) PRRT
over WLAN is used to control the drone—instead of using the proprietary CrazyRadio
link. The latter is still under development.

The point here is not to demonstrate that drones can be controlled and video can
be streamed, but instead to show how this can be achieved using open, off-the-shelf
solutions (such as Linux and WiFi) in combination with a straightforward use of PRRT—
all in a reliable and latency-aware manner. This brings the core interoperability design
principle of Internet protocols to the highly demanding domain of CPS.

19https://www.bitcraze.io/ (accessed July 2, 2019)

https://www.bitcraze.io/
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Figure 2.2: The OpenNetworking testbed at Saarland Informatics Campus spans across
multiple remote locations in addition to the core network at uds.

2.4 The OpenNetworking Testbed
The evaluations in the contribution chapters of this thesis (Chapters 5 to 7) have been ex-
ecuted in the OpenNetworking Testbed at Saarland University20. Apart from evaluations
with respect to networking for CPS, the testbed is also used to investigate approaches
in network softwarization, i.e. with software-defined networking (SDN) [KRV+14] and
network function virtualization (NFV) [MSG+15]. The testbed’s topology can been seen
in Figure 2.2 and is composed of the core at Saarland University and remote sites op-
erated by scientific partners. Regarding the systems inside the network, we distinguish
between nodes, hosts, and relays (relays will be covered in Chapter 7), as well as an

20https://www.on.uni-saarland.de (accessed May 10, 2019)

https://www.on.uni-saarland.de
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SDN controller, which is not depicted as it is part of the control plane.
All systems in the network run Ubuntu 18.04 and employ the Linux kernel 4.15. The

nodes have Intel Xeon CPUs with 4 cores and 8GB of RAM, which is also used to run
virtual hosts, e.g. using Docker. The controller, which is located at Saarland University,
has 6 cores and 32GB of RAM.

In order to facilitate the experiments and profit from the SDN approach, the network
is divided into three separate planes: control, data, and time.

Control-Plane In SDN, the control plane carries traffic between the SDN controller
and the individual nodes in the network, which is, for instance, used to control the flow
tables in OpenFlow [MAB+08]. The testbed can host different SDN controllers and uses
dedicated nodes that come with OpenvSwitch as a software-switch implementation. For
most non-SDN related scenarios, the switches are operated in stand-alone mode that
runs STP to avoid loops and create a spanning tree. The control plane connection to
remote locations is established via IPsec over the public Internet or the DFN21 for links
between German universities.

Data-Plane The data plane is, in our case, separate from the control plane to ensure
that there is no interference. The links are 1Gbit/s twisted pair cables and the NICs
are Intel I350T server adapters that support 1GbE. The data link to remote locations
is established using L2TP tunnelling and covers the same Internet paths as the control
plane, i.e. experiments that run across remote links contend with many third parties.

Time-Plane A recent addition to the testbed is the time plane that ensures that the
nodes at Saarland Informatics Campus are sufficiently synchronized to a world clock.
In particular, a GPS integrated grandmaster clock is used that is able to broadcast
IEEE1588/PTPv222 messages and synchronize the receiving systems. The switching of
the time signal is done with a PTP transparent clock and the receiving systems use the
hardware timestamping capabilities of their I350T NICs. This enables precise measure-
ments within the core of the testbed, but also opens up opportunities to execute highly
distributed experiments where timestamps are taken in relation to the GPS world time.

While the composition of the ON-Testbed does not look like being specifically tailored
towards low-latency networks of cyber-physical systems (except for the time-plane), this
is indeed intended. The goal of this thesis is not to show that application-specific
or special-purpose hard- and software systems are capable of supporting reliable real-
time communication in CPS—we are sure they do—but to show what we can achieve
today when using off-the-shelf, commercially available hardware and pairing it with
unconventional, evolutionary approaches at the transport layer. The major gain of
this approach is that we do not let go of interoperability and end-to-end semantics,

21https://www.dfn.de/ (accessed July 30, 2019)
22https://www.eecis.udel.edu/~mills/ptp.html (accessed July 3, 2019)

https://www.dfn.de/
https://www.eecis.udel.edu/~mills/ptp.html
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something that highly customized technology stacks do23. Certainly, there are evolutions
of hardware and lower-layer software systems required to further push the limits of what
kind of CPS can be created. But without evolutions at the upper layers, in particular
the network layer, transport layer and the operating system, these advances cannot
provide gains to the applications—leading to an extremely capable (and probably costly)
fundament whose full potential cannot be leveraged.

2.5 Conclusion
In summary, this thesis is concerned with cyber-physical systems that come with strict
timing and reliability constraints. A particular focus is put on distributed and therefore
networked CPS or networked control systems, where knowledge of the latency and jitter
caused by communication is essential to tell whether the system operates reliably or not.
These CPS must be open to allow the interoperability that many application domains
demand. The design ideas and technologies of the Internet can serve as a basis, but
need adaptation to support CPS. A building block for these interoperable and reliable
cyber-physical systems is the RNA, which uses components developed in this thesis. Pre-
dictable timing in interoperable systems is evaluated using the OpenNetworking testbed,
where transport layer performance is measured using commercial, off-the-shelf solutions.

23What we see today in industry (and also smart home) applications is a vast number of
adapters/converters/bridges which allow isolated networks of devices to interact. Even though these
interfaces are necessary to connect various link-layer technologies, these interfaces do not include ap-
propriate notions of time and hence are impediments to predictable end-to-end timing. True support
for widely distributed CPS can only be achieved when predictable performance goes hand-in-hand with
a sufficient degree of interoperability.





The only reason for time is so everything does
not happen at once.

Albert Einstein

Chapter 3

Latency-Awareness and
Predictability for Computer
Networks

When designing and implementing the systems introduced in Chapter 2, their latency
and timing constraints must be considered to achieve reliable operations. This involves a
careful look into the theoretical limits of system performance as well as the composition
of the end-to-end latency and its relation to transport layer network functions.

3.1 The Networking Triad
On an abstract level, a (networked) system can be characterised by the timeliness,
throughput, and resilience it provides:

Timeliness considers the time it takes a system to react or communicate and is quan-
tified in relation to the application that uses the system and has some constraints to be
fulfilled. In consequence, a system that has an average latency of 50ms is not per se
more timely than a system that has 1 s latency, especially when an application requires
1ms delay—which both cannot fulfil.

Throughput measures the information exchange and can be quantified in absolute
terms, e.g. in bit/s. Depending on the use case, the utilization can be used instead,
which is unit-less and gives the data rate in relative terms with respect to the maximum
available capacity of a given network path.

Resilience measures how robust a communication system is, i.e. how it can cope with
faults on the network or system layer, temporary outages, or packet losses. A resilient
communication system ensures that its own behaviour does not harm others or itself.

23
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Based on these informal definitions, we claim that a system cannot maximize all
three dimensions at the same time (cf. the triad in Figure 3.1). The reasoning behind
is that for all systems that attempt to maximize two parameters at the same time, the
third is bound to suffer:

• Maximizing timeliness and resilience requires the usage of forward error correction.
To achieve the highest timeliness, this error correction must use proactively sent
redundancy data. To achieve a high resilience, there must be a high amount of
redundancy, which reduces the throughput of the actual application.

• Maximizing timeliness and throughput prohibits the use of error control mecha-
nisms as they need time (retransmissions, coding) and increase the overall through-
put, which is constrained by the channel capacity. Hence, resilience is sacrificed.

• Maximizing resilience and throughput leads to the usage of efficient error control
mechanisms that require time for (a) aggregation of data and (b) generation of
redundant information. From Shannon [Sha48], we know that perfect resilience
can be achieved, given infinite time and hence no timeliness.

This impossibility of joint maximization can already be

 



Figure 3.1: The net-
working triad implies
that one cannot achieve
optimal throughput, re-
silience, and timeliness
at the same time.

seen when a maximization of two parameters is aimed for. For
instance, maximizing resilience involves error control which
inherently increased the latency—rendering timeliness max-
imization impossible. It is therefore a careful engineering
effort to balance these demands and design networked CPS
that provide performance that is optimal for the application,
given these constraints on the simultaneous fulfilment in the
three dimensions.

In consequence, we see that some of the advances in high-
throughput data networks achieved over the last decades must
be sacrificed for implementing CPS that are latency- and
resilience-aware. As a side-note, this throughput sacrifice
is even done within datacenters when robustness is impor-
tant [AKEP12]. The following sections separate components
of a communication system’s latency, allowing to treat them
individually and aim for a better latency-awareness that can
be provided to the application—together with an increased latency-predictability.

3.2 The Contributors to End-to-End Latency
In [Che96], a relation is clarified that is often wrongly worded and hence badly un-
derstood outside the networking research world—namely that “being fast” is primarily
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Figure 3.2: Age-of-Information (AoI) describes the time that has elapsed since a physical
quantity has been in the state the piece of information indicates.

related to latency and not to bandwidth (or more correctly data rate)1. A major insight
is that an insufficient data rate can be compensated by adding more capacities (e.g.
aggregating two links). This is not possible for inappropriate latency, where fundamen-
tally different approaches are required to optimize it. In its very nature, latency is an
additive size as time that has been spent on a specific activity can never be regained.
Therefore, the following investigates where these latencies are caused, how they can be
avoided, or how they can be hidden2.

3.2.1 End-to-End Latency
Given the demands that have been discussed in Chapter 2, it is evident that CPS
applications require communication that ensures that the received data has a low age-
of-information (AoI)—a measure that describes the time that has elapsed since a piece
of information was current. Figure 3.2 depicts how the AoI increases during the process
of forwarding and processing in a system. It should be noted that the first step, namely
capturing, is not instantaneous and there is a lower bound on the AoI that the cyber
parts of the system will see. But in contrast to the steps that happen afterwards, the
latency caused by capturing is often highly predictable and comparably small.

CPS demand low AoI because outdated data has no more value and is in many cases
simply ignored. In addition to the AoI caused by delays in the capturing facilities (e.g.
the time between a physical quantity being in a certain state and a sensor taking a
sample), the communication system adds the application layer end-to-end (E2E) latency
to the AoI.

When it comes to measurement, any application is, in principle, able to quantify
how long it takes a message to be delivered and to be acknowledged by taking times-
tamps. Measuring only the time to deliver a message is also possible, but requires
that the sending and receiving systems are sufficiently time-synchronized (or the clocks
do not drift and have a systematic synchronization error) to allow correlation of the

1More than 20 years later, ISPs still advertise “high-speed broadband” access suggesting short
latencies and broad spectrum, but actually delivering high data rates.

2Latencies can be hidden to a (human or non-human) user of a system, for instance by executing
preparatory work before it is necessary or running independent sub-tasks in parallel and not in sequence.
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timestamps. Without this, it is not possible to separate the latency incurred on the
forward-trip (delivery) and the backward-trip (feedback).

The E2E latency is the sum of latencies that are involved in the communication
process. This latency is composed of the propagation (Dprop), transmission (Dtrans),
queuing (Dqueue), and processing (Dproc) latencies, which are all subject to certain dy-
namics:

DE2E = Dprop + Dtrans + Dqueue + Dproc (3.1)

The following considers the E2E latency and its summands as random variables with
distinct distributions. For each component, investigations around its origin and distri-
bution are made, together with approaches on how to make an application aware of this
latency and how to increase this latency’s predictability.

3.2.2 Propagation Latency Dprop

Fundamentally, transmitting a unit of data involves a physical distance to be covered
between the sender and receiver. This travelling—much as any other form of travelling—
happens across a route (that is in most cases far from optimal [SCGM14]) and with a
certain speed. Therefore, the distribution of the propagation latency Dprop depends on
the used routes and the speeds along segments on this route. If the segment’s medium is
shared, access latencies can be involved, e.g. waiting for a well-known timeslot in time-
division multiple access (TDMA) or waiting for random backoff in carrier-sense multiple
access (CSMA)3.

Making an application aware of the propagation latency is hard to accomplish, as
it must be measured between the physical endpoints of any segment of its route, i.e.
it requires correlating and summing up the hardware timestamps taken at the network
interface cards. In cellular systems, it is possible to use cross-layer design to bring this
piece of information about the physical wireless (last or first) hop to higher layers in
the OSI stack. This is not feasible on multi-hop paths as this would require additional
network support. The same holds for systems without direct access to information about
the physical layer or systems without network cards that have timestamping facilities.

Making the propagation latency more predictable is a task of network operations and
of physical communication system design, achieved by keeping routes and link latencies
stable, respectively. These tasks are out of scope for this thesis and we instead focus on
being aware of the propagation latency—independent of it being predictable or not. In
consequence, it is going to be assumed that the propagation latency is a stable component
with a narrow distribution and a small magnitude. For the Tactile Internet [FA14], it
would be smaller than 1ms and hence space-limited to a radius of 300km).

3In this thesis, this latency is treated as a component of Dprop, even though it is dependent on the
packet length and closely related to Dtrans. If one creates a cross-layer solution with a stronger focus
on lower layers than in this thesis, it is imperative to separately model a medium access latency Dmac.
For our scenario, Dmac either changes Dprop by a constant shift (TDMA) or additive jitter (CSMA).



3.2. THE CONTRIBUTORS TO END-TO-END LATENCY 27

3.2.3 Transmission Latency Dtrans

The transmission delay Dtrans is determined by the size of packets and the data rate of
the sender’s first link. In domains that prioritize low-latency over throughput the packet
size is often static, as control applications, for instance, have fixed-length payloads. In
contrast, the achievable data rates are not deterministic, e.g. due to wireless interference,
mobility, or contention. The distribution of the transmission latency is hence a function
of the data rate distribution.

Awareness about the transmission latency can be achieved using cross-layer infor-
mation, while a prediction relies on appropriate physical layer models. For the sake of
this thesis, delivery rate estimation [CCYJ17] is providing measurements of the bottle-
neck data rate, which can be used as a proxy for the data rate and in consequence a
conservative upper bound for the transmission latency.

3.2.4 Queueing Latency Dqueue

The queueing latency Dqueue quantifies the additional delay a packet faces when it arrives
at a busy link. For store-and-forward switches, we do not consider the latency that is
required to store a packet in a queue, retrieve it and transmit it again on the next link.
Instead, the queueing is the latency that is either self-induced (i.e. an application with a
fast first link transmitting bursts of data that cannot be handled by the bottleneck link)
or due to cross-traffic (i.e. multiple applications sending more data simultaneously than
the bottleneck link can handle). This detrimental effect is due to inappropriate rate and
congestion control in combination with large buffers at the system and network layers—
commonly referred to as bufferbloat [GN12]. While buffers are required to compensate for
bursts and fluctuations, their increased number and sizes are detrimental when aiming
for low latency. Most importantly, large buffers delay the detection of loss events caused
by congestion. The queueing delay distribution depends on the used congestion control
algorithm (CCA) and the sizes of the buffers along the routes.

While the first CCAs used loss as a signal for congestion, delay-based congestion
control (early examples are e.g. TCP Vegas [BOP94]) evolved, which use RTT-inflation
as a signal of congestion and forming queues at the bottleneck. The idea is to build a
model of the round-trip latency that is not affected by queueing latency when less than
one bandwidth-delay product (BDP) is in flight. Latency-avoiding CCAs (cf. [ZMSS19])
respect this bound and aim to not cause significant RTT-inflation over the baseline
propagation latency. What we can also deduce from Zarchy et al. (ibid.), is that a
latency-avoiding algorithm has certain drawbacks: (a) It is bound to suffer in the pres-
ence of CCAs that are loss-based, i.e. they back off only when the bottleneck buffer
is filled and congestion has been present for longer. (b) Any algorithm that avoids
loss (something that is also the case when aiming to avoid latency) is not able to achieve
a high utilization after short flow startup time. In consequence, we must sacrifice high-
est throughput and utilization to go for low and predictable latency; and we shall not
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compete with loss-based congestion control algorithms4.
The rule-of-thumb of having only one BDP in-flight is based on Kleinrock [Kle78,

Kle18], who showed that this is indeed the optimal steady-state operation point for
deterministic systems, where throughput and latency are optimal at the same time.
Stochastic systems, in contrast, cannot achieve the same operating point as deterministic
systems due to unpredictability of arrival times (i.e. variation of inter-packet-times) and
service times (i.e. processing latency of the transport stack). The optimal operating point
for these systems is neither where loss-based TCP is (throughput maximized, but also
very high delay) nor where BBR [CCG+16] is. Actually, BBR’s claimed operating point
is not attainable in stochastic systems according to [Kle18]. For stochastic systems and
dynamic parameters, enough headroom to one BDP must be kept in order to achieve low
latency with high confidence—but at the cost of throughput, as mentioned in Section 3.1.
Kleinrock suggests that an optimal algorithm should track the profile of latency in
dependence of data in-flight (RTprop(N)) and adapt the operating point (N = RTprop·
DataRate) to the amount of data in-flight in which the tangent of this curve crosses
the origin. Alizadeh et al. formulate a similar idea that “less throughput is more for
achieving low latency” [AKEP12] in data center networks and Vulimiri et al. [VGM+13]
suggest the use of redundant operations (and hence reduction of throughput) can help
to achieve low latency. In Silo [JSBM15], this is achieved using pacing mechanisms to
achieve guaranteed latencies for multi-tenant VM setups in data centers. At the network
layer, active queue management (AQM) solutions, such as CoDel [NJ12] provide means
to counter the bufferbloat problem.

In Chapter 6, this issue is going to be investigated further and an approach is pre-
sented that tackles this issue and leads to predictably low queuing latencies. In conjunc-
tion with other measures to make the transport layer more deterministic (cf. Chapter 4),
it is also evident that the achievable power curves (as by Kleinrock) get closer to a curve
of a deterministic system and better operating points get attainable.

3.2.5 Processing Latency Dproc

The processing latency Dproc occurs in end-systems and is still considered a major con-
tributor to high E2E latencies as shown by Rumble et al. [ROS+11]. The processing
latency in pure forwarding devices is significant (ibid.) and must be reduced by means
that are out of scope for this thesis—which again focusses on being aware of whatever la-
tency is caused by them. This thesis considers more complex middleboxes as end-systems
as they break the E2E paradigm.

Considering end-systems, the layers where processing latencies can occur are the
application layer (i.e. user-controlled code), the transport layer (i.e. protocol-related
code) and the kernel layer (i.e. operating system code).

4Most of the recently developed CCAs (e.g. Copa [AB18]) sense if they are competing with loss-
based congestion control and change their strategy to avoid getting a smaller-than-fair share.
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Application Layer processing latencies are only a minor focus of this thesis as these
are controlled by the user and should also be determined by the user—though the ap-
proach in Chapter 6 estimates them and uses this to support just-in-time processing.

Transport Layer processing occurs in conjunction with functions of the transport
protocol, e.g. error, congestion, or rate control. Nearly any transport protocol operates
in a concurrent manner in which several events can happen at the same time (e.g.
feedback is received or a new piece of data is to be sent). This leads to the usage of
non-blocking approaches or leveraging multiple processes or threads—in-between which
communication has to take place.

Kernel Layer latencies stem from the interaction with and the execution of the op-
erating system, which involves additional processing overhead, e.g. for scheduling or
copying as well as moving data.

System noise [TEFK05], as is caused by caching effects, interrupts, or other means,
is a major source of processing latencies and in particular low predictability for this
portion of the E2E latency. Rumble et al. [ROS+11] also argue that it requires research
from the operating systems community to push latencies in the datacenter down to the
microsecond regime [BMPR17]. One approach they propose is to move the NIC to the
CPU so that compute and communication get closer—achieving datacenter round-trips
of about 1 µs.

Awareness of the Processing Latency

Knowing about these sources of processing latencies, the question arises how systems
can become aware of these. Tsafrir et al. [TEFK05] propose means to measure and in
the next step eliminate OS noise that is caused by the need for synchronization between
multiple concurrent processes. The approach X-Lap, which we present in Chapter 5,
is a cross-layer solution to measure the processing latencies that occur for each piece
of data that travels from the sending to the receiving application. Furthermore, the
cross-layer pacing approach presented in Chapter 6 uses the processing latencies to tell
system-layer bottlenecks apart from network-layer bottlenecks and react appropriately.

Predictable Processing Latency

Several approaches are possible to make the processing latency more predictable. The IX
system [BPK+14], a dataplane operating system, aims to provide low processing latency
using hardware virtualization. IX comes with a native, zero-copy API that processes
a bounded patch of packets to completion to amortize context-switch costs and exploit
data locality. Central to this system is the division of the OS into two layers, namely
the control plane (which takes care of management tasks) and the data plane (which
executes the packet processing).
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The line of work on Arrakis [PA13, PLZ+14, PLZ+15] determined that a major
portion of processing latency for networking in Linux comes from “software demulti-
plexing, security checks, and overhead due to indirection at various layers”. A solution
to this is implementing kernel-bypassing, which means giving direct access to I/O devices
through proper virtualization instead of kernel-based multiplexing—providing increased
predictability of the latency. Furthermore, copy and other unnecessary operations are
eliminated, which helps to achieve an improvement of the absolute latency.

Another approach is qJump [GSG+15], bringing the idea of Internet-QoS to the
operating system in the form of a Linux Traffic Control module. At its core, this ap-
proach allows traffic with higher latency sensitivity to jump over queues filled with lower
sensitivity traffic to meet latency bounds.

In the realm of kernel-bypassing solutions, there are frameworks such as DPDK5 or
fd.io6 that aim to provide low latency. Their performance gains has been validated by
solutions using the frameworks, e.g. FastPass [POB+15], mTCP [JWJ+14], or Moon-
Gen [EGR+15] as well as general studies (e.g. [PFLL18]). In Section 7.4.7, these solutions
are employed to improve the processing latencies involved into transparent transmission
segmentation approaches.

Further, it is possible to use symbolic execution methods to derive the performance
of network processing units, in particular with respect to the incurred latency. This
is leveraged by methodologies, such as SymPerf [RKR+17], that automatically reason
about the code and its behaviour under different inputs, i.e. packets.

In consequence, being aware of and predicting a processing latency can help to take
it into account for scheduling and synchronizing tasks or when deciding on appropriate
error control mechanisms (cf. Chapter 4).

3.3 Network Functions
The unquestioned success of the Internet as a global and universal communication net-
work was only possible with the OSI model7, whose role in this process is often under-
rated and the model itself considered as purely academic. History has shown that only
by separating communication systems into layers with well-defined—but to some ex-
tent also exchangeable—functions has enabled wide interoperability using a planet-scale
communication system that is easy to access. Most network functions (e.g. reliable com-
munication or multiplexing in a shared medium) implemented in some of these layers
are not new to the Internet, but inherent to all communication systems that have been
developed in human history.

As different applications have different requirements and want to rely on certain
network functions without needing to implement them themselves, traditions and best
practises for placing these functions on certain layers have evolved. A fundamental work

5https://dpdk.org/ (accessed May 15, 2019)
6https://fd.io/ (accessed June 24, 2019)
7https://www.itu.int/ITU-T/recommendations/rec.aspx?rec=2820 (accessed April 17, 2019)

https://dpdk.org/
https://fd.io/
https://www.itu.int/ITU-T/recommendations/rec.aspx?rec=2820


3.3. NETWORK FUNCTIONS 31

in this area is End-to-End Arguments in System Design by Saltzer et al. [SRC84], arguing
that a function should be placed on the highest layer that needs it (making lower layers
as simple as possible) and on the lowest layer that is used by other layers with this
requirement (applying the don’t repeat yourself (DRY) principle8). This work has been
questioned since its original release (e.g. by [Moo02]) and practice shows that placement
of these functions on different layers is dependent on the performance requirements
of the applications using these lower layers (cf. Chapter 7). Generally speaking, the
higher the performance requirements are, the likelier a system designer will chose to
move a function into the network, migrating from E2E transport layer mode to network
layer mode [BKG+01]), and also to smear the abstract interfaces imposed by the OSI
model. The latter is referred to as cross-layer design, where optimizations are made
by exchanging knowledge between and making assumptions about the layers that are
adjacent to the layer under consideration (cf. Chapter 6).

This thesis aims to bring the abstract function of latency-awareness to the transport
layer—providing a service to the application layer that existing transport layer protocols
do not. It does so by extensive measuring of lower layers (e.g. estimating round-trip time
and delivery rates) and by interaction with the end-host platform (Chapter 5). The pro-
tocol that is described in Chapter 4 provides exactly this service and runs on top of any
layer that provides end-host addressing and process multiplexing (if it is required to have
multiple processes per host). In the following, we revisit the network functions that are
provided by existing Internet transport protocols (e.g. TCP [Pos81], SCTP [SRX+04],
RTP [SCFJ03], QUIC [Goo18]) and what role latency and the predictability of latency
plays with respect to these network functions.

The design of network functions is oriented towards the challenges they should tackle,
which includes missing data (e.g. due to unreliable channels or buffer overflows), late
data (e.g. due to increased latencies), or insufficient data rate (e.g. due to cross-traffic).
The former are control functions that create feedback loops to compensate for these
challenges of the network (Sections 3.3.1 to 3.3.3), the latter are management functions
that are required to exchange state, handle multiple applications, or consider different
link sizes (Sections 3.3.4 to 3.3.7).

3.3.1 Error Control
Error control aims to ensure a certain resilience (at the cost of latency) so that com-
munication can be robust. Central to this function are results from information theory,
most notably the Shannon channel theorem [Sha48] and recent results by Polyanski et
al. [PPV09]. Conceptually, error control relies on knowledge about the channel’s re-
silience (either through feedback or a priori information) and employs proactive as well
as reactive measures.

A joint approach that uses these two mechanisms is hybrid automated repeat re-
quest (HARQ) [CC84]. The parametrization of this mechanism, i.e. code block dimen-

8Often attributed to Hunt and Thomas, authors of The Pragmatic Programmer (1999).
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sions and retransmission schedule, has been thoroughly studied by Tan [Tan08]. A
concrete coding configuration determines the added latency (due to coding, aggrega-
tion, and retransmissions) and throughput (for the redundancy information) to achieve
a resilience gain (in terms of residual loss rate).

In order to find such a configuration, the application demands (latency, resilience, and
throughput) must be taken into account as well as the current channel conditions [Gor12].
An implementation of error control for a latency-aware and -predictable transport is
given in Section 4.5. Finally, the process of finding such a configuration takes time and,
depending on the system design, might interfere with the actual transmission process.

3.3.2 Flow and Congestion Control
Both flow and congestion control define the maximum amount of data in flight—in
TCP via the cwnd sender-side variable and the rwnd header field. If this value is not
appropriate for the current path (e.g. due to a small receiver buffer, connection startup,
cross-traffic, ...) the system cannot achieve the highest possible data rate. This in turn
leads to increased idle latencies due to waiting for ACKs to advance the sender’s window
and increases the overall time to complete a flow.

For congestion control, this could be due to an algorithm not reacting appropri-
ately to physical losses (i.e. treating them as congestion signals and hence reducing the
cwnd) or not fully and fairly utilizing the available data rate by having the steady-state-
optimum of one BDP in flight [Kle18]. For flow control, an insufficient receiver buffer is
an effective limit for the achievable throughput (c.f. Section 7.3.2). The reason behind
that is that it takes at least one RTT for the receiver to signal empty buffer space and
for the sender to provide new data. In consequence, a receiver can at maximum signal
to have a full receiver buffer available, i.e. the maximum achievable throughput is the
buffer size divided by the RTT.

State of the Art in Congestion Control Algorithms

Solving the bufferbloat issue [GN12] is necessary to allow low-latency applications, and it
is clear that congestion control algorithms that solve this must become latency-avoiding.
The latest standardized state of TCP congestion control on the Internet can be found
in RFC5681 [APB09], which defines a control algorithm that is bound to fill buffers
until they are completely filled and congestion losses occur. In the research community,
several novel approaches have evolved in the last years and aim to provide low-latency.

BBR [CCG+16] is an approach that builds a model of the bottleneck-bandwidth
and round-trip time (hence the abbreviation) and uses this to follow the rule by Klein-
rock [Kle18] to have at most one BDP of data in-flight. The original design of BBR
included several weaknesses that have been pointed out by several authors (including
[HBZ17, ALH+18, ZMRP19]), including proposals for fixing them. Also, the Google
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team developing BBR has proposed several changes9 that are gradually integrated into
the kernel implementation. BBR changes only the sender-side of the TCP connection
by adding delivery rate estimation as well as packet pacing.

Performance-oriented congestion control (PCC) [DLZ+15], which is also a purely
sender-based modification, controls its congestion window by carrying out experiments.
This means that the algorithm regularly tests certain actions (i.e. increase or reduce
rate) and pairs them with the resulting performance in terms of a user-defined utility to
serve as a base-line for future decisions—performing a form of online learning.

TCP LoLa [HNZB17] aims to keep buffers at a low, non-zero value. Thereto, it
implements feedback control where a certain target queuing delay (and hence buffer
fill-level) is to be met.

Copa [AB18] uses an objective function on utility that can be tweaked to favour delay
over throughput and vice versa using the parameter δ. This function incorporates the
estimated queueing delay and estimated rate. Using samples of the current queueing
delay dq, a target rate λt is computed as 1/(δ ·dq) and actions are taken in order to move
the current estimated rate λ (and cwnd) towards the target rate.

With this large number of congestion control algorithms in existence and still in de-
velopment, the Pantheon [YMH+18] has been developed to act as a competition ground
where different implementations are executed in a reproducible manner.

In [PWSB11], several challenges for congestion control are pointed out that are going
to be considered in the remainder of this thesis. In particular, link heterogeneity and
resulting dynamics lead to a situation where none of the current CCAs is performing
best across all of them. The solution that is presented in Chapter 7 also allows to choose
a CCA on a link granularity across a path—leading to what the authors of the RFC call
multi-domain congestion control.

Lastly, for effective congestion control, it is evident that network support must also be
considered, e.g. through AQM, explicit congestion notification (ECN), or other advanced
techniques as are developed in the L4S project10.

3.3.3 Rate Control
While congestion control limits the amount of data in-flight to never occupy more than
the path can transmit, it is not sufficient to achieve lowest latency, especially when
the bottleneck data rate is not on the first hop from sender to receiver. A first hop
that allows a high data rate can create bursts of data that are bound to form a queue
at the bottleneck link, as the packets cannot be forwarded fast enough. These en-
queued packets experience increased E2E latencies, which is why recent practical ef-
forts [CCG+16, JSBM15, AB18] as well as theoretical considerations [ZMSS19] consider
latency-avoiding congestion control as well as pacing mechanisms for rate control. The

9https://datatracker.ietf.org/doc/slides-105-iccrg-bbr-v2-a-model-based-congestion-control/ (ac-
cessed August 15, 2019)

10https://riteproject.eu/dctth/ (accessed June 22, 2019)

https://datatracker.ietf.org/doc/slides-105-iccrg-bbr-v2-a-model-based-congestion-control/
https://riteproject.eu/dctth/
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protocol that is presented in Chapter 4 implements such an approach by also incorpo-
rating the system layer, leading to rate control via cross-layer pacing (Chapter 6).

3.3.4 Fragmentation
Each physical link comes with a maximum transmission unit (MTU) that is defined
by its medium as well as the employed medium access technique. The distribution of
these MTUs across a path can lead to a situation where large packets must be first
fragmented and later reassembled again at the end of the path. The splitting of a packet
induces additional processing latency at middle-boxes in the network, while reassembly
induces both processing latency as well as aggregation latency at the receiver. Therefore,
avoiding fragmentation can avoid latencies and in particular reduce jitter, because inter-
packet-times can get skewed when a packet gets fragmented.

3.3.5 Multiplexing
Generally speaking, the multiplexing of multiple users or processes can be done in two
ways: using fixed or flexible schemes. With fixed multiplexing schemes, e.g. TDMA, a
process must wait for its slot to transmit something. In this situation, a worst-case bound
for the latency can be given—which is the latency between two slots. For flexible (or
best-effort) schemes, congestion avoidance and control come into play and it is hard to
give bounds on the incurred latency. In summary, there is always going to be additional
latency induced when multiple parties share a communication system.

3.3.6 Addressing and Naming
Apart from the functions mentioned before, it is also necessary to discover and ad-
dress other participants—two processes that incur additional latency. If we consider
protocols such as the address-resolution protocol (ARP) [Plu82] and the domain name
system (DNS) [Moc87], it is obvious that (in addition to the connection setup men-
tioned later) retrieval of meta-data is necessary before a transmission can start. For
this reason, many system designs attempt to operate in a multicast or broadcast mode
that avoids direct addressing. In combination with publish and subscribe mechanisms,
a communicating device does not need to know to whom to talk and can start sending
and receiving immediately as soon as it is connected to its message broker.

3.3.7 Connection Setup and Startup
In particular in highly flexible communication systems where state must be kept or
communication parameters must be agreed upon, it is often necessary to setup a con-
nection in prior to the actual communication—a process that induces additional latency.
Considering systems that require security, this step is also necessary to admit the com-
munication or ensure the proper identity of all participants. If the communication
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channel has an elastic data rate, it might also be necessary to probe for the available
data rate (i.e. via congestion control), so the setup is followed by a startup phase before
we can continuously exchange data at high rates.

In consequence, many system designs attempt to operate in a connection-less mode
using e.g. multicast or broadcast mechanisms to avoid the need for direct addressing. At
this level, security must be ensured by a priori sharing of cryptographic information—
something that is not always practical. Depending on the communication patterns, it
could be possible that an association or subscription replaces the individual connection
setup, so that everything is in place when actual information packets must be trans-
mitted. Also, the available portion of data rate must be known at this point (cf. open
challenges in RFC6077 [PWSB11]).

The problem of increased latency due to a long handshake (in particular for short-
lived flows) has been studied by the Internet community for quite some time (e.g.
[Mog95]). Solutions have to consider security and deployability issues, as the hand-
shake fulfils a purpose that cannot simply be removed. There are different solutions
for TCP, e.g. TCP Fast Open [RCC+11], where a security cookie is issued some time
before the actual flow starts and then presented together with the initial data upon
the first packet of the flow. Zero-RTT handshakes are one of the major features of
QUIC [Goo18, CDCM15] and there are additional mechanisms to shorten the startup
times until sufficient data rate is available to the flow [RWS+19].

In summary, systems that aim for lowest latency should make sure that either:
(a) connections are not needed because all information that would require a handshake
is exchanged a priori to the actual (time-critical) transmission or (b) the connection
setup has a low and predictable latency that is adequate for the use case.

3.4 Becoming Latency-aware and -predictable
In consequence, it is essential for distributed cyber-physical systems to be aware of
latencies that occur at runtime. Being aware of what causes these latencies and how
they are distributed enables to avoid them in the first place or accurately predict them
if they cannot be avoided. How this can be achieved within the various network control
functions that are part of transport protocols is going to be the focus of the next chapters
and is the major contribution of this thesis.





It is difficult to make predictions, especially
about the future.

Danish Proverb

Chapter 4

Predictably Reliable Real-time
Transport

Considering existing transport layer protocols, there is a lack of latency-awareness and
latency-predictability even though many sources [Lee08, DB13] argue that this is re-
quired for CPS and large-scale cloud systems. For instance, TCP [Pos81], as a fully
reliable, ordered byte-stream protocol, has no capabilities to express timing require-
ments, e.g. an expiry date for information. As soon as latency-awareness is present,
various transport layer functions can be modified in order to take latency into account.
This chapter introduces an alternative transport protocol, namely PRRT, to support
these specific needs of applications in distributed CPS that were described in Chapter 2.
An intensive analysis of PRRT’s timing characteristics is given in Chapter 5 and one of
its advanced features is described in Chapter 6.

4.1 The Origins of the PRRT Protocol
The original motivation behind the design of an alternative transport protocol to TCP
has been that multimedia applications have constraints (i.e. maximum tolerable loss,
maximum tolerable latency) that are not as in traditional file-transfer or web applica-
tions (i.e. 0 % loss and indefinite latency).

Following Shannon’s channel coding theorem [Sha48, Fei54], one can deduce that
any protocol with full reliability (i.e. an residual error of 0 %) demands an infinite block-
length that corresponds to infinite time. Therefore, it was envisioned to use an appli-
cation’s tolerable loss as a loss budget that can be used for making statements about
latency—both theoretically and practically. Certain applications also have a tolerable
latency that has two effects: (a) This delay budget can be used for increasing reliabil-
ity through error control, if the current achievable end-to-end (E2E) latency is below
this. (b) If the current E2E latency is above this tolerable latency, messages lose their
value (i.e. they expire) and all components of the transmission system can stop forward-
ing this piece of information, thereby allowing succeeding messages to reach in time.

37
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Figure 4.1: Exemplary transmission of time-critical data (expiry time indicated by PE=?)
experiencing loss, leading to different behaviour depending on the implemented mode
of reliability. With partial reliability, data that is buffered out of order does not expire
and packets that cannot make it in time are not resent.

Figure 4.1 depicts the difference between fully reliable protocols (e.g. TCP) and
partially reliable protocols (such as PRRT) when dealing with time-critical data with
limited validity time. The first transmission of packet P2 is lost in both situations
and would be retransmitted after three time units, i.e. too late to make it in time.
In Figure 4.1a, the succeeding packet P3 is buffered, but cannot be delivered as full-
reliability enforces order so that P2 must be received before. As the retransmission
of P2 takes longer than the validity period of P3, the latter expires before getting to
the application. Note that an implementation might still forward the packet to the
application, but it has no value anymore. In contrast, in Figure 4.1b, P3 is delivered
when it is due, so that the application can work on it while it is still valid. When P2 is
to be retransmitted, it is no longer relevant and is ignored.

Based on this idea of partial reliability and bounded latency, Tan [Tan08] devel-
oped a mathematical framework around Hybrid Automated Repeat reQuest (HARQ) (cf.
[LC04]), a generalization of the two traditional approaches of proactive (FEC) and re-
active error coding (ARQ). The framework is used to analyse HARQ parameters and
optimize them with respect to transmission of minimal redundancy information while
fulfilling the application constraints. The next step was to extend these theoretical find-
ings about the steady-state of a channel in two ways: (a) an implementation of an HARQ
parameter search and (b) doing this in an adaptive way. The latter is achieved by mak-
ing the search efficient enough to be carried out in real-time, which in our case means
that a search yields a result within less than the coherence time of the channel. This
means that the search inputs are still valid and the resulting configuration is still feasible
as well as efficient. These advancements have been done by Gorius [Gor12] through the
implementation of the initial Predictably Reliable Real-time Transport (PRRT) proto-
col. This prototype implementation of PRRT is running in kernel-space and is tightly
integrated into the Linux kernel and its concurrency and scheduling features.

In the meantime, research and practice in the area of transport layer network pro-
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tocols have shifted towards the usage of (a) user-space implementations that overcome
deployment issues1 and (b) kernel-bypass technologies to circumvent the performance
penalties induced by user-space implementations (e.g. in FastPass [POB+15]). As a
side effect, kernel-bypassing and the associated features of network interface controllers
enable the exploitation of cross-layer information [PBA17]. In particular the need for
user-space implementations led to a shift of the development focus from the PRRT kernel
module to the start of an independent user-space re-implementation.

A further reason for this greenfield development, which is presented in this thesis,
has been the idea to broaden the scope of PRRT’s applicability from pure multimedia-
oriented application towards other applications with the same characteristics (i.e. maxi-
mum tolerable loss, maximum tolerable latency), in particular applications of CPS. This
involved a reconsideration of assumptions made during the original design of PRRT that
manifested in the resulting implementation.

4.2 Design Principles for a CPS-enabled PRRT
In consequence, it is the goal of this thesis to provide a latency-aware and -predictable
communication system for process-to-process communication with the following con-
straints and dependencies on other layers:

• No timing, reliability, or throughput information or guarantees are needed by
PRRT per se. Nevertheless, PRRT can only use “what it gets”, so if the lower
layer cannot fulfil (e.g. the latency) constraints of the application, the application
MUST adapt and can be notified about this circumstance by PRRT.

• PRRT only requires addressing and multiplexing to be done by the lower layer (e.g.,
UDP/IP, Ethernet, or industrial field buses).

The reasoning behind is that any network has its way to identify communicating
processes (e.g. industrial buses, Ethernet, Wifi, LTE) and hence it should neither be part
of PRRT nor should PRRT have specific needs. These channels established between the
processes have varying parameters that the transport layer should be aware of and cope
with to ensure reliability and latency constraints of the application.

4.2.1 Applications
As PRRT had been designed for video transport, it has been necessary to rethink many
of the design decisions [SH16a] that were made during its first implementation. Thereto,
two major application domains have been identified: live-multimedia applications and
control applications.

1For instance QUIC [Goo18] which is in the progress of being standardized by the IETF [IET18].



40 CHAPTER 4. PREDICTABLY RELIABLE REAL-TIME TRANSPORT

Live-Multimedia Applications There are various domains in which the real-time
streaming of multimedia content is required, e.g. for entertainment or education pur-
poses, as well as for ensuring safety in industrial monitoring or traffic surveillance sce-
narios. Recently, advances in the field of computer vision have led to scenarios where
closed-loop feedback control incorporates visual data as raw sensor input and extracts
several features from it. Considering the traditional inverted pendulum scenario from
control, one would replace the position, speed and angle sensors with a camera that
provides data from which these samples are derived. In general, multimedia content
comes with a strict temporal order of messages, i.e. if a video frame is to be played,
earlier (skipped) frames are no longer of interest. Furthermore, the user has an upper
bound on the latency that can be tolerated until she considers the service as useless, e.g.
because she is the last to hear about a scored goal or because she cannot react quick
enough to stabilize a pendulum. Apart from that, there is also a tolerable unreliability,
which is due to how coding schemes and in particular decoder implementations can cope
with missing frames, e.g. using error concealment.

Control Applications In addition to the previously mentioned video-based control
applications, any networked closed-loop feedback system exposes strict time constraints.
Typically, controllers are designed in a way that a tolerable worst-case round-trip time
is considered [GSC11]. This class of systems includes, for instance, process control in
various industries as well as coordinated and collaborating vehicles (e.g. truck platoon-
ing [AAGJ10]). In various scenarios, control systems are based on Markov decision
processes (MDP)2, so the same applies as in live-multimedia: a new message is making
any older message completely obsolete as the process model is memoryless. In case of
learning a system’s behaviour through model extraction or when a system has mem-
ory that cannot be modelled in a MDP, it can be crucial to reliably (re-)transmit or
reconstruct messages that have been generated earlier than the most current received
one. While MDP-based control systems cannot leverage all of PRRT’s features (e.g.
retransmissions), functions such as congestion control are still relevant for reliable op-
eration. The suitability of PRRT for wireless gain scheduled control applications have
been shown through evaluations in [GGG+19].

4.2.2 Required Transport Layer Features
Both broad application categories demand that the transport layer provides additional
features than pure process-to-process message exchange. First, error control is required
to compensate for losses, hence increasing the reliability at the expense of increased
latency. Second, congestion control avoids congestion losses and increased latencies that
are either queueing- or loss-induced. Congestion control also probes for the available
bottleneck data rate. Finally, rate and flow control avoid buffer overflows at (a) the

2Markov decision processes [Bel57] are stochastic, memoryless processes using discrete time.
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network systems (which are caused by bursts) and (b) the receiving system (which are
caused by insufficient buffer draining).

4.2.3 Availability and Deployability
Following the ideas of kernel-bypass networks and QUIC [Goo18], we have been devel-
oping a new protocol version as a library that can be used directly by any user-space
application and is available as an open source project [Tel19a]. There are only dependen-
cies on glibc and POSIX threads which allows porting the protocol to different platforms.
The protocol core is implemented in plain C, compiled with the gnu11 compiler, and
can be installed on a system as a static or shared library.

The API follows the POSIX socket terminology as close as possible (allowing a
straightforward usage) and adds additional configuration mechanisms (in comparison to
a UDP socket) that are required to leverage PRRT’s additional features. During the de-
velopment of PRRT-based applications for demonstration and evaluation, an additional
API was created for Python using the Cython framework [Cyt18]. The Python-API
aims to expose the full set of PRRT features using a pythonic [Mar05] interface, e.g. a
Python PrrtSocket object is created as opposed to C-style file descriptor handling.

The project code comes with a set of tests that allow to check some of the functional,
memory, and concurrency related aspects of PRRT. There is also a proof-of-concept
Gstreamer[Gst18] plugin, called gst-prrt [Tel18], that allows to use and evaluate PRRT
with different types of multimedia processing pipelines.

Currently, PRRT works on the transport layer (on top of UDP) to use it within IP
networks, but the requirements towards the lower layer are minimal, i.e. PRRT could also
be used on top of Ethernet or other MAC protocols directly. The send_to_socket()
functional unit is encapsulated, i.e. minimal effort is required to replace this UDP im-
plementation with, for instance, a SocketCAN [Lin18] implementation.

4.3 Protocol Specification
PRRT packets are carried within their underlying data unit and have no direct inter-
action with it. In IP-based networks, it is advisable to use UDP as a minimal-cost
process-multiplexing service underneath PRRT. PRRT does not segment the incoming
data and keeps the packet boundaries intact. Therefore, it is strongly recommended that
the PRRT packet (i.e. application payload plus PRRT header) fits into one physical-layer
MTU so that the coding blocks (cf. Section 4.5) have a 1:1 relationship to packets on
the medium and hence to individual losses.

Timestamps in PRRT are measured with respect to a PRRT clock that works at
1 µs precision and has a 32 bit resolution, i.e. a wraparound happens every 71.58min.
For the applications we address, the absolute current world time is not essential, but
the relative time differences should have a high resolution. Sequence numbers use a
16 bit field. Given that the applications that we target are unlikely to have an inter-
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Figure 4.2: PRRT Header Format

packet-interval of less that 1 µs, the sequence numbers are unique in a window of half
an hour. For the real-time applications we target, both the timestamp and sequence
number spaces are adequate.

The general PRRT packet header3 is depicted in Figure 4.2. The Type field indicates
whether a data, redundancy, or feedback packet is sent. The Priority is the second
half of the first byte and is currently unused. The Index field specifies the position of
the (data or redundancy) packet within the error coding block. Lastly, the sequence
number allows to tell packets apart. It should be noted that a PRRT packet is identified
by its sequence number and the type in order to, e.g., make statements about gaps
in reception. This avoids the well-known problem in TCP where retransmissions are
identified by the same sequence number [KP87]. In general, PRRT can be used for
bidirectional communication, but it treats both directions independently. That means
that when talking about senders and receivers in the following, we refer to a single
communication direction. Sequence numbers, channel measurements, and other values
are assigned or measured with respect to this single direction.

After the general header there are additional, packet-type-specific headers:

Data Packets encapsulate the application messages and incorporate metadata that
is relevant for the receiving system. The header, as depicted in Figure 4.3, includes the
PRRT Timestamp at which the packet was generated as well as the Packet Timeout
at which it will expire. This timeout has been computed by the sender by adding the
tolerable latency to the timestamp at which the packet was accepted from the applica-
tion. In addition, the sender side bottleneck pace is communicated, together with the
estimated bottleneck data rate and propagation delay on the link towards the receiver.
The data payload starts immediately after the last header field.

Redundancy Packets are sent in case hybrid error control is used. They can be sent
proactively (FEC) as well as reactively (ARQ), which is not indicated by the header but
defined by the moment in time they are sent. These packets also carry current samples
of the bottleneck pace to achieve a higher feedback rate for the pacing. As PRRT uses
a block code (cf. Section 4.5) and the sizes can change between blocks, the redundancy
packets of a block include the Base Sequence Number (from the data packet sequence
number space) that started the block. n and k give the overall dimensions of the block

3As PRRT is a protocol under development, this listing reflects the most recent state (v0.4.0 as
of September 6, 2019), which can be found here: https://git.nt.uni-saarland.de/LARN/PRRT/tree/
f463a13086665594e6c103b03c9d98fce1e4424d

https://git.nt.uni-saarland.de/LARN/PRRT/tree/f463a13086665594e6c103b03c9d98fce1e4424d
https://git.nt.uni-saarland.de/LARN/PRRT/tree/f463a13086665594e6c103b03c9d98fce1e4424d
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Figure 4.3: PRRT Data Header Format
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Figure 4.5: PRRT Feedback Header Format

and the portion of data and redundancy blocks (the latter is n − k). The redundancy
payload also starts immediately after the last header field.

Feedback Packets allow the receiver to transmit channel state measurements to the
sender to optimize the sender’s operation. These are the propagation delay estimation,
the receiver’s bottleneck pace, and several fields to compute the loss rate and correlation.
As a feedback packet can be sent for data and redundancy packets, ACK Type indicates
which type was ACKed and ACK Sequence Number gives the respective number.

The project code also comes with a Wireshark dissector [Wir18], allowing to debug
the network behaviour of the currently used PRRT protocol version.
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Figure 4.6: The PRRT API supports multiple send and recv calls that allow to fulfil
the demands of different applications with respect to timing behaviour.

4.4 Application Programmable Interface (API)
The API aims to be in line with the way that most transport layer APIs work. Due
to the distinct features of PRRT, this is not always possible or desired4. This section
describes ways a PRRT socket can be used or queried for information that is not found
in other protocols.

Receive Modes and Calls As mentioned before, flows of data can have a strict
temporal relation between packets, e.g. in a live video stream, where a packet with a
frame older that the one currently displayed to the user is irrelevant. Additionally, they
have a point in time when they are considered relevant, so they only become useful to
the application in a short window before they expire (e.g. the decoding time stamp that
indicates the latest point a time a frame can still “make it to the display”). This is not
the case for all applications and some applications might have more complex conditions
and strategies for judging the relevance of a message. To cater both types of applications,
PRRT supports two distinct receive calls types: ASAP and ordered.

The ASAP calls ensure that data is delivered as fast as possible to the application
after it was received from the network interface controller (see red line in Figure 4.6a).
After delivery, PRRT has no more means to enforce expiry and reordering.

In contrast, the ordered call type delivers data destined for the current moment in
time, independent of when it was received by the network interface controller. This is
achieved by initially specifying a tolerable delay that determines the maximum latency
a packet should face between the send() call at the sender’s and recv() call at the

4Future PRRT versions should consider the TAPS architecture that is in the process of standardiza-
tion at the IETF (https://datatracker.ietf.org/doc/draft-ietf-taps-arch/ (accessed October 2, 2019)).

https://datatracker.ietf.org/doc/draft-ietf-taps-arch/
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receiver’s application layer. After this time has passed, a packet is considered expired
and is no longer forwarded by any layer of the stack. The ordered receive calls also take
a time window (w in Figure 4.6a) parameter that specifies how close to the deadline a
packet should be considered to be due “now”. The choice of this parameter influences
the amount of residual reordering5, in a way that the chance of reordering increases with
the size of the window. In general, the minimal time between sending of packets at the
sender application and the minimal reception time at the receiver application must be
taken into account when specifying this parameter.

Send Calls Applications have different requirements towards the behaviour of a send
call in terms of their blocking behaviour and the completed transmission steps before
they return (cf. Figure 4.6b).

The send_async() call returns as soon as PRRT has accepted the packet to be
transmitted. This accepted but not yet transmitted queue can be limited and if it is
full, this call blocks. try_send_async() returns an error message when send_async()
would have blocked due to a full queue.

The send_sync() call returns as soon as PRRT has encapsulated the payload in a
PRRT data packet and forwarded it to the kernel’s UDP socket. In case pacing is used,
continuously calling send_sync() results in periodic behaviour with a frequency that
is proportional to the bottleneck data rate and the packet size (f = bottleneck data rate

packet size ).
This is further discussed in Chapter 6 where the cross-layer pacing approach is explained
in more detail and it is shown why send_sync() is essential for incorporating the ap-
plication into the pacing process.

Additional Features PRRT exposes channel measurements, which is in line with the
design of Copa [AB18], where it is highlighted that exposing throughput measurements
from the transport layer to the application is essential for applications that require this
information (e.g. in dynamic adaptive streaming). Running in user-space, timestamps
related to PRRT protocol events (e.g. packet reception) include a portion of processing
delay imposed by Linux. PRRT sockets can operate in hardware timestamping mode,
where the packet timestamps are taken by the network interface controller and forwarded
together with the packet to the higher layers. Latency evaluations (cf. Chapter 5) require
the use of thread-pinning6 to allow correlation of processor-cycle stamps taken during a
processing step of one thread. As this is also a means to reduce unpredictable overhead
imposed by the kernel’s scheduler, applications can choose to use this feature for reduced
runtime [KOWT11] and increased timing predictability.

5Residual reordering refers to the following phenomenon: A packet with sequence number n could
be delivered as it is close to the deadline. After this was done, the packet with sequence number n − 1
arrives, which is still valid for some portion of the time window, and gets delivered—out of order.

6Thread-pinning is binding a specific process to a specific core, which reduces the (potentially
harmful) impact of the operating system’s scheduler.
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Figure 4.7: PRRT uses block coding, where packets are treated as columns, parity bytes
are computed along a row, and afterwards recomposed into redundancy packets (repro-
duced from [Gor12]).
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Figure 4.8: Transmissions are grouped into blocks of k (4 in this case) proactive and
NP ([1,1,2] in this case) reactive transmissions. Transmissions belonging to a block are
marked by a line. Application packets arrive with an inter-packet-time IPT and it takes
one RTT between retransmission rounds (reproduced from [Gor12]).

4.5 Implementation Details
PRRT’s implementation has a set of unique features that allow it to implement latency-
awareness and -predictability while at the same time ensuring reliability and making it
a ready-to-use transport layer implementation.

Error Control

At the core of PRRT’s HARQ scheme [Tan08] is a block code as depicted in Figure 4.7.
Each column represents a packet and rows are used to compute redundancy bytes based
on data bytes from the application data packets. The code works in a way that any
combination of k unique packets (data or redundancy) can be used to compute all
remaining n − k packets. For latency reasons, it is beneficial if data packets arrive, as
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they are forwarded immediately, but if they are missing, an equal number of redundancy
packets allows to recompute them as soon as a total of k packets have arrived.

The coding of single rows is done using Reed-Solomon coding with a Vandermonde
matrix. In principle, packets can have different lengths, so the redundancy packets
always have the length of the longest packet in a block. Shorter packets are padded
with zeros to allow the coding to work on a full row. Nevertheless, it is uncommon in
both control and multimedia communication that packets have variable length. Control
applications typically have a distinct packet composition that encapsulate the action
parameters (e.g. speeds or temperatures) with well-known precision, i.e. the sizes are
fixed and known. For video transport, many coding schemes have fixed size units, e.g.
MPEG transport stream, so these packets also have a fixed size.

During operation, PRRT always keeps a current coding configuration (k,n,NP )
where k is the number of application data packets, n the overall block size and NP

the retransmission schedule, with k,n ∈ N, and NP ∈ NNc,max+1. Nc,max is the max-
imum number of possible retransmission rounds which is per definition arbitrary but
fixed in concrete implementations. The first element of NP is special in that it specifies
the amount of proactive redundancy, i.e. the redundancy that is sent out immediately
after the block was filled and the redundancy was coded. The subsequent elements spec-
ify how many redundancy packets NP [i] should be sent for retransmission round i. It
should be noted that the protocol aims to send out redundancy packets it has not sent
out before, in order to maximize the probability of the receiver completing its block.

When PRRT starts to fill a block, the current coding configuration becomes the
configuration of the block and cannot be changed afterwards for that block. It can
however be changed in-between blocks in order to provide adaptive HARQ [Gor12].
Figure 4.8 shows how transmissions with coding configuration k = 4, n = 7, and NP =
[1,1,2] look on a time axis. The pro- and reactive transmissions of redundancy are
interleaved with the sending of application data and several coding blocks can overlap
in time. The latency impact of this configuration can be derived from the temporal
distance between the first data packet of the block and the last redundancy packet.

Suitable coding configurations for PRRT ensure that by the time the last redundancy
packet is received, there is still sufficient time to—in the worst case—reconstruct the
first packet while it is still valid. These configurations ideally fulfil the following criteria:

• The reliability constraint of the application is met, i.e. the coding configuration
incorporates enough redundancy and can schedule it over multiple retransmissions
rounds in a way that the residual loss is smaller than the tolerable loss.

• The latency constraints of the application are met, i.e. the transmissions happen
in a way that packets can be retrieved or reconstructed before they expire (and if
they cannot, this happens so rarely that this residual loss is tolerable).

• The coding configuration minimizes the used redundancy information (RI) and
attains the optimal RI given residual error as close as possible.
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Channel Measurements

Recently, transport layers are increasingly built in a model-based manner, i.e. they
measure the channel state information. Most implementations estimate the round-trip
time and some are starting to consider the delivery rate. In addition to these, PRRT also
measures the reliability by looking at erasure patterns. In consequence, PRRT estimates
the following parameters:

• Round-Trip Propagation Time is measured similarly to the way NTP measures the
RTT [MMBK10] by communicating timestamps in every packet and extracting the
channel propagation time.

• Delivery Rate is estimated based on an IETF draft [CCYJ17] that shows a general
scheme for this task in ACK-based transport protocols. This has been adapted to
PRRT as it considers packets instead of bytes as the units that get ACKed.

• Loss information is captured by success-failure sequences. Computing the current
loss statistics for a channel is done over a time-limited window and results in a
average success rate as well as a burstiness—or correlation—of errors. The time-
window should be proportional to the assumed correlation time of the channel, i.e.
how long the gathered evidence is related to the current state of the channel.

Congestion Control

As congestion control is also a crucial feature to achieve predictability of latency and
throughput on the network layer, we added an implementation of BBR [CCG+16] to
PRRT. This requires careful tuning as PRRT provides a different service compared to
TCP or QUIC, for which BBR implementations already exist.

During operation, BBR controls a pacing_gain variable to regularly increase the
pacing rate and to send faster than the current Rbtl to probe for more available data
rate. The Rbtl rate is stored in a windowed maximum filter with a size of 10 · RT prop

7

to compensate for fluctuations. If a permanent drop in the measured Rbtl is recognized,
which happens as soon as the windowed maximum filter is updated, it also reduces the
amount of data in flight and increases the pauses between data to keep the pace.

Rate and Flow Control

As has been motivated in Sections 3.3.2 and 3.3.3, these two functions are essential for
ensuring predictable low-latency communication. A joint treatment of these is given in
Chapter 6 where the cross-layer pacing scheme X-Pace is described in more detail.

7RTprop = 2 · Dprop in this case
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PRRT TCP UDP RTP QUIC
[Goo18]

SRT
[Hai18]

Reliability < 100 %
(config-
urable)

100 % best
effort

configurable
via profile

100 % < 100 %

Error Control HARQ ARQ n/a configurable
via profile

ARQ &
XOR-
FEC

ARQ

Acknowledgment
Scheme

SACK CACK &
SACK

n/a configurable
via profile

SACK &
NACK

SACK &
NACK

Congestion
Control

BBR-
based

[CCG+16]

various n/a see [PS17] various custom
(live & file

mode)

Segmentation no yes no yes yes yes

Latency-
Awareness

yes no no no no no

Latency-
Predictability

high low low low low low

Table 4.1: Comparison of PRRT to other transport layer protocols.

Comparison to other Transport Layer Protocols

The design of PRRT is unique and provides many features that other protocols do not
provide or only provide partially. An abridged comparison of established and emerging
transport protocols is given in Table 4.18. PRRT stands out in the categories reliability,
latency-awareness and -predictability, which is what was intended by the design. Only
allowing less than full reliability makes dependable statements about the latency pos-
sible. In this sense, even though the application scenarios for protocols such as PRRT
and SRT look similar, PRRT provides a unique set of features that make it well suited
for CPS and other real-time applications.

4.6 Conclusion
In consequence, PRRT builds upon the theoretical foundation of Shannon: The only
way to bound time is to accept partial reliability. As many9 applications have this
bound on communication latency, it is essential that this information is conveyed to the

8The version of QUIC that was considered is Google QUIC, because the IETF version of QUIC is still
in the process of standardization (https://datatracker.ietf.org/doc/draft-ietf-quic-transport (accessed
August 22, 2019)).

9To be precise, even protocols that use the fully reliable TCP, e.g. HTTP, have a time limit that
takes the form of a human being’s (im-)patience.

https://datatracker.ietf.org/doc/draft-ietf-quic-transport
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transport layer, together with a statement about the required, non-zero loss-tolerance.
The latency constraint the application specifies is further used to parametrize PRRT’s
control functions, namely error, congestion, and rate control. PRRT provides several
send and receive modes of operation to cater to different applications’ needs. Thereby,
the new version of PRRT presented here provides a unique set of features and its latency-
awareness makes it particularly suited for control and live-multimedia applications.



We have to remember that what we observe is
not nature herself, but nature exposed to our
method of questioning.

Werner Heisenberg

Chapter 5

Cross-layer Latency and Timing
Analysis

When providing communication facilities for cyber-physical systems, it is essential to
know about their timing characteristics and be aware of the distribution of the latency
that is added (cf. Chapter 3). This chapter in particular considers the processing latency
incurred by the end-system’s communication stack—including software and hardware
components. As soon as one is aware of these latencies and their distributions, it is
possible to execute a root-cause analysis and plan optimizations that reduce the latency
itself or narrow its distribution. As these latencies are directly and indirectly related to
the network protocol and the operating system platform, it is essential to holistically
analyse the system’s processing latencies together with the network conditions.

5.1 Challenges in Reproducible Low-latency
Cross-layer Profiling

Though the vision of such a holistic analysis toolchain is clear, its implementation is
faced with several challenges: First, networked systems often come with layers that
allow interoperability but impede a holistic analysis. Second, CPS operate in latency
regimes that have not yet been sufficiently investigated and where adequate optimiza-
tion approaches are still to be found. Third, these latency regimes demand for testing
and profiling utilities that are minimally invasive to not distort the analysis. Lastly,
the investigation results must be produced and documented in a form that allows repro-
ducibility in order to comply with the strict reliability constraints of distributed CPS.

5.1.1 Cross-layer Profiling
The rapid growth and overwhelming success of the Internet is often attributed to the
central design principle of interoperability, most notably defined by the ISO/OSI model.
Though these abstractions foster interoperability by clearly defined APIs, they impede
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cross-layer analysis as a layer’s functionality is often opaque at runtime. Cross-layer
profiling must thereby dissolve these layers at analysis time and holistically analyse the
whole communication system.

Measuring latency on a system level is challenging1 as the measurement process itself
adds additional latencies whose magnitude depends on the approach used. Measuring
externally is not an option as that would require adding code that creates external signals
via IO, which involves syscalls and adds severe latencies. Such an approach would, in
many cases, also loose the direct relationship of a piece of code to the execution latency.
Measuring internally, in contrast, allows to use a finer granularity (i.e. smaller blocks
of code), but poses the challenge of correlating system time to real-world time—the
measure we are eventually interested in. Even though these measurements are challeng-
ing, solutions exist that profile programs on a source code level to investigate which
functions take how much time (e.g. gprof2). What is missing is the relation to the exe-
cuting hardware—a crucial aspect in CPS—as well as application level parameters and
demands, which provide context for the latency analysis. Furthermore, most profiling
tools add excessive latency due to the instrumentation process—an issue that prohibits
the analysis of real-time communication stacks.

Analysing latency on a network packet level is straightforward and well-supported
by tools (e.g. wireshark3). Nevertheless, the granularity of single packets and inter-
packet latencies is not sufficient to analyse the impact of certain protocol functions to
the incurred latency. Automated protocol testing is provided by Google’s PacketDrill4,
but its major focus is on functional correctness (i.e. protocol unit tests) and not on non-
functional properties, such as incurred latency and energy demand. Symbolic execution
frameworks, such as SymPerf [RKR+17], allow a characterization of network function
processing delays and functional correctness, but focus more on middleboxes and not
on end-systems with their transport layer protocols. Having a protocol view on the
interactions between systems does not allow for a straightforward correlation with the
code and functions that implement these interactions—and whose execution is the source
of latency.

For distributed CPS, it is essential to profile and analyse the network and sys-
tem domains at the same time [BIYC06, DB13]. There are distinct branches of re-
search dealing with worst-case execution time (WCET) [WEE+08] and worst-case travel
time (WCTT) [FFF09, LBBN16], providing empirical or theoretical bounds for practical
or modelled systems. Schimmel et al. [SZ10] compute WCET figures for communication
in closed industrial systems under the assumption that the channel is static and there
is no competing traffic. [LEL+16] uses these findings to give bounds on the end-to-end
response times in distributed IEC 61499 applications that are leveraging commercial-
off-the-shelf Ethernet hardware and coexisting with best effort traffic. For distributed

1http://btorpey.github.io/blog/2014/02/18/clock-sources-in-linux/ provides an excellent tutorial
on how to measure latencies in Linux (accessed August 27, 2019).

2https://sourceware.org/binutils/docs/gprof/ (accessed April 17, 2019)
3https://www.wireshark.org/ (accessed April 17, 2019)
4https://github.com/google/packetdrill (accessed April 17, 2019)

http://btorpey.github.io/blog/2014/02/18/clock-sources-in-linux/
https://sourceware.org/binutils/docs/gprof/
https://www.wireshark.org/
https://github.com/google/packetdrill
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CPS, this coexistence must be considered and isolated solutions as in [SZ10] can—in
many cases—no longer be assumed. As of today, it is not possible to provide worst-case
end-to-end times that consider both the network- and system-incurred latencies in the
context of distributed CPS.

Therefore, the tools developed in the aforementioned domains cannot be used for
cross-layer timing analysis and profiling, and new approaches are required.

5.1.2 The Microsecond Regime
The technical advances that happened over the last decade lead to the situation where
the orders of magnitude of certain latency distributions have drastically changed. As
Barroso et al. [BMPR17] point out, system designers used to deal with and optimize for
hardware operations (e.g. cache access) in the nanosecond domain and software opera-
tions in the millisecond domain (e.g. context switch). In order to prove that this has
changed, they give an example from the domain of datacenter network infrastructure,
where 40Gbit/s links are no longer uncommon. In this scenario, a packet with a de-
fault MTU of 1500B takes about 300ns to be serialized, and a distance of 200m is
covered in 1 µs assuming fibre optics with nearly speed of light propagation speed. The
same is the case in the Tactile Internet [FA14] where the physical layer is expected to
have end-to-end latencies that are below 1ms, in order to meet human thresholds for
haptic feedback which range from 1 to 10ms. Existing solutions cannot easily scale to
the microsecond regime that is increasingly important for new devices and application
scenarios. While this research challenge is tackled from different directions, the focus
of our work is on the measurement of latencies caused by certain hard- and software
operations—enabling latency-awareness of network transport stacks. There are no off-
the-shelf approaches for executing empirical analysis in distributed CPS that operate
accurately at sub-millisecond latencies.

5.1.3 Reproducibility
There have always been concerns about reproducibility in various fields of science (cf.
the set of references mentioned by Munafo et al. [MNB+17]), making reproducibility a
core trait of science that has a sustainable impact. The computer science community in
general—and networking community in particular [BBF+19]—is facing a high complex-
ity in terms of systems (aka. collection of environment variables) where the interplay of
numerous factors leads to high variability. Therefore, several conferences and organiza-
tions (e.g. ACM5, Usenix, or Nature6) are pushing to improve the reproducibility of the
science that is published through the peer-review process. Finally, as many disciplines
are increasingly using computational methods [SNTH13], the purely textual scientific
paper as the primary artefact of advancement in science is questioned7.

5https://www.acm.org/publications/policies/artifact-review-badging (accessed April 17, 2019)
6https://www.nature.com/collections/prbfkwmwvz/ (accessed April 26, 2019)
7https://github.com/andreas-zeller/papers-as-modules (accessed April 16, 2019)

https://www.acm.org/publications/policies/artifact-review-badging
https://www.nature.com/collections/prbfkwmwvz/
https://github.com/andreas-zeller/papers-as-modules
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When it comes to reproducibility, the ACM defines three levels:

Repeatability assures that the same team of researchers is—using the exact same
experimental setup—able to produce the same results.

Replicability is achieved when the same experimental setup can be used by a different
(team of) researcher(s) to produce the same results.

Reproducibility is when the same results can be achieved by another team of re-
searchers, using different conditions or custom solutions that follow the spirit of
the solution to be reproduced.

The area of CPS is expected to cover a large range of devices and systems at different
scales. For supporting all of these and providing the reliability and real-time character-
istics that CPS are demanding, it is essential that evaluation results are reproducible.
The last part of this chapter describes some of our work that helps adhering to the fol-
lowing rules: (1) Store and keep track of software artefacts and their version. Many of
the artefacts are stored in Docker8 containers and related to a specific git commit in the
GitLab installation of the Telecommunications Chair at Saarland University9. (2) The
evaluation process is automated as much as possible, using Python scripts as well as or-
chestrations solutions, such as Salt10—effectively having experiment documentation as
code. (3) Evaluations and analyses are done using version-controlled scripts and Jupyter
notebooks11 operating on the raw captured data.

5.1.4 Solution Approaches
In summary, these challenges demand for a solution that is able to jointly capture
network as well as system latencies with minimal overhead. Such a solution allows
the validation of latency- and timing behaviour of distributed CPS. For this reason, the
open source tool X-Lap [RSH+17, RSH+18, Tel19b] is developed to profile PRRT (cf.
Chapter 4). Finally, the Network Experiment Automation Tool (NEAT) [SH17a] that
aims to increase the reproducibility of evaluations is presented and details on additional
means to make the research reproducible are given.

5.2 Time in Systems
As pointed out by [Lee08], in many systems “timing is merely an accident of the imple-
mentation”. While we are still lacking system architectures and programming languages
that allow arguing about their precise timing under real-world conditions, this section

8https://docker.io (accessed April 17, 2019)
9https://git.nt.uni-saarland.de (accessed April 17, 2019)

10https://www.saltstack.com/ (accessed April 17, 2019)
11https://jupyter.org/ (accessed April 17, 2019)

https://docker.io
https://git.nt.uni-saarland.de
https://www.saltstack.com/
https://jupyter.org/
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describes the means that are currently available to systems to measure and argue about
time. As long as predictable timing down to the silicon is not available, these means
have to suffice. For our cross-layer profiling, we demand timing measurements that
(a) are accurate enough to be able to profile short code sections and (b) induce minimal
run-time overhead.

As of today, most computer systems are equipped with some form of crystal oscillator
that acts as a low-overhead source of human time, which is often called a real-time
clock. Depending on their quality, drift speeds might differ and lead to different levels of
precision and reliability. Apart from that, computer systems have system clocks provided
by the operating system kernel. They are typically initialized based on measurements
from the real-time clock. In order to measure time of operations for certain code blocks,
the real-time clocks are the most crucial in a CPS context.

For latency analysis, there are several types of (time-)stamps that can be taken:

• Timestamps that are related to human time, i.e. measured in seconds, can be taken
from the real-time or system clocks through the OS (e.g using clock_gettime(),
querying CLOCK_MONOTONIC with nanosecond granularity). The drawback of this
approach is that taking a timestamp through a system call takes additional latency—
a process that makes the actual measurement less reliable. Later sections show
that in our evaluations, taking a timestamp took around 70ns.

• Cyclestamps, in contrast, use the processor’s cycle counter as the cycle count
increases while time passes (e.g. using the rdtsc instruction on x86). Due to
changing processor speeds and code that runs on multiple cores, this measure
must be treated carefully—though it being obtainable in short time is highly ben-
eficial (about 10ns according to our evaluations).

When considering code sections that execute within a single thread on a single core,
it is straightforward to map a number of cycles to a duration in fractions of seconds,
using linear interpolation, as can be seen in Figure 5.1 [RSH+17]. Thereto, the first
and last cycle stamp for a thread are accompanied with a timestamp sample, allowing
a count of seconds (e.g. TStart) to be directly mapped to a count of cycles (e.g. CStart).
This allows to take only a minimum number of expensive timestamps and reconstruct
the remaining timestamps from cyclestamps that can be captured faster.

Finally, modern systems provide multiple layers at which timestamps can be taken,
e.g. hardware timestamps, where the network interface controller queries the real-time-
clock immediately after packet reception, or software timestamps, which are taken within
kernel or userspace applications.

5.3 Cross-layer Timing Analysis with X-Lap
In order to tackle the challenges around predictably low latency in CPS, we have devel-
oped a custom toolchain, X-Lap, which allows to profile communication stacks using
minimally invasive time- and cyclestamping.
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Figure 5.1: Mapping per-thread cyclestamps to respective timestamps using linear in-
terpolation to achieve sufficient precision with reduced overhead.
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5.3.1 Approach

Using X-Lap involves three phases that are depicted in Figure 5.2. Initially, the devel-
oper has to set up the xlap.yml file that describes the capturing details. This file is
used to generate a header file for usage in the code to be profiled. The user specifies all
stamps that should be taken and whether these are taken as time- or cyclestamps. She
also specifies the threads (e.g. transmission or coding) that are involved and the stamps
that act as cycle references for the interpolation. Additionally, the sides (i.e. sender
and receiver) are specified including their respective reference timestamps (i.e. at which
timestamp the processing of a side starts and ends). Lastly, durations can be specified
as pairs of stamps, which are computed at analysis time automatically.
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void data_transmitter_loop() {
PrrtPacket* pkt;
do {
pkt = pull(sendDataQueue);

}
while (!pkt);
transmit(pkt);

}

void transmit(PrrtPacket* pkt) {
XlapStamp_Time(PrrtTransmitStart, pkt->seqno);
XlapStamp_Cycle(PrrtTransmitStart, pkt->seqno);
create_coding_block_if_not_present();
add_feedback_information_to_packet(pkt);

int result = send_packet(pkt);
if (result) {
XlapStamp_Time(PrrtTransmitEnd, pkt->seqno);
XlapStamp_Cycle(PrrtTransmitEnd, pkt->seqno);

add_packet_to_current_coding_block(pkt);

if (coding_block_ready()) {
code_and_send_redundancy();

}
}

}

void send_packet(PrrtPacket* pkt) {
pace(); // delays sending of data using cross-layer pacing
wait_for_free_congestion_window_space();
compute_next_send_time(); // for cross-layer pacing
char[] bytes = serialize_packet_to_bytes(pkt);

XlapStamp_Cycle(LinkTransmitStart, pkt->seqno);
struct timespec timestamp;
uint64_t cyclestamp;
send(sock_fd, bytes, &timestamp, &cyclestamp); // UDP send() + hardware stamps
XlapStamp_TimeValue(ChannelTransmit, timestamp, pkt->seqno);
XlapStamp_CycleValue(ChannelTransmit, cyclestamp, pkt->seqno);
track_outstanding_packet(pkt);

XlapStamp_Cycle(LinkTransmitEnd, pkt->seqno);
}

Listing 5.1: Simplified code that deals with the actual transmission of a data packet that
was given to the PRRT stack by the application thread (cf. https://git.nt.uni-saarland.
de/LARN/PRRT/blob/prrt-0.4.1/prrt/proto/processes/dataTransmitter.c).

https://git.nt.uni-saarland.de/LARN/PRRT/blob/prrt-0.4.1/prrt/proto/processes/dataTransmitter.c
https://git.nt.uni-saarland.de/LARN/PRRT/blob/prrt-0.4.1/prrt/proto/processes/dataTransmitter.c
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At design time the networking code is extended by calls to capturing facilities. For
the sake of usability, these calls are C macros that also take care of preparing and post-
processing of the measurements. Furthermore, there are several distinct calls to capture
time and processor cycles and deal with sequence numbers. An example of this can
be seen in Listing 5.1. The transmit() function starts by taking both time and cycle
stamps to serve as a starting point for the thread’s processing of one packet. Similarly,
both stamps are taken after the packet was successfully sent to the network—serving
as the ending point for the thread’s processing of one packet. The ChannelTransmit
stamps are provided by hardware timestamping facilities, if they are available to the
evaluation system. All the other stamps are only taken as cyclestamps in order to
achieve a minimal profiling footprint.

At run time, the capturing is initially set up, which is a costly operation but does not
affect the measurements. During the processing of each packet, low-overhead capture
calls are used to store the current time or cycle. Cycle calls (XlapStamp_Cycle()) are
preferred wherever possible to reduce the instrumentation overhead (cf. Section 5.2). In
order to ensure that time and cycles are related for a given thread, the evaluations use
thread-pinning (cf. Section 4.4). After the experiment has ended and all samples are
taken, the in-memory traces are serialized to CSV files, enabling further processing.

In the evaluation, the analyses are carried out offline. The analyses are provided as
Python scripts and methods, accompanied with a Jupyter Notebook making use of sev-
eral scientific computation libraries for Python (numpy12, pandas13, and matplotlib14).

5.3.2 Analysis
X-Lap’s evaluation starts with generic preprocessing steps and continues with specific
steps for the desired analysis. First, the data set is cleaned by removing those trace
numbers that do not have the full set of stamps associated with them. In the context
of lossy communication links or steps with high delay, this cleaning step must filter out
packets that got lost or have been expired before reaching the receiver application. In
any case, the number of dropped traces is reported to the analyst so that she is aware
and can confirm if this dropping is intended and does not distort the analysis results.

The two data sets (i.e. sender and receiver) are joined, based on the sequence num-
bers of the packets. Based on this full data set, the low-overhead cyclestamps are used
to reconstruct timestamps based on thread-based linear interpolation. Additionally, the
durations (e.g. pairs of timestamps defined in xlap.yml) are computed, which are often
associated with a certain processing step.

12http://www.numpy.org/ (accessed April 23, 2019)
13https://pandas.pydata.org/ (accessed April 23, 2019)
14https://matplotlib.org/ (accessed April 23, 2019)

http://www.numpy.org/
https://pandas.pydata.org/
https://matplotlib.org/
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Figure 5.3: Timeline of a single packet trace, showing when and for how long a packet
has been in a certain processing or communication step.

After preprocessing the raw data set, the following analyses can be carried out:

Packet Trace represents a detail view on each individual packet (cf. Figure 5.3),
providing a timeline of when the packet has been in which processing step. The sides
are marked by separate colours and the communication delay is omitted. Thereby,
the history of a certain packet can be analysed a posteriori—making exceptional cases
visible.

Trace Jitter Based on the durations in the traces, box-plots are created to show the
latency distribution for each step. The Figure 5.4 [RSH+17] shows that Inter-Process
Communication (IPC) used to be one of the main causes of jitter—a circumstance we
have tackled in recent PRRT versions using wait-free synchronisation mechanisms.

Outlier Detection Using the outliers identified through the trace jitter analysis, Fig-
ure 5.5 provides an overview on the processing steps that are frequently causing this
type of anomaly. When making systems more reliable and predictable, these are the
first to be addressed. We consider outliers (w.r.t. a specific duration) as being beyond a
margin of 50% of the inter-quartile range (IQR) around the IQR. For the root causes of
increased end-to-end (E2E) delay, we consider traces where the E2E latency is an outlier
and count the partial latencies of this trace that are also outliers. Eventually, we arrive
at a frequency measure of how many times a certain partial latency was exceptionally
high and correlated with exceptionally high E2E delay.
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Figure 5.4: Trace jitter for different steps within PRRT, including transmission and
inter-process-communication, which cannot be jointly measured by other tools.
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Figure 5.5: A histogram of processing latencies shows cases where the partial latency
and the end-to-end latency are outliers simultaneously.

Correlations between partial latencies and the E2E latency are visualised in diagrams
such as Figure 5.6. While we cannot directly infer causation from correlation, this
analysis reveals which partial latencies are promising candidates for a further code-based
root cause analysis.

Generalization and Usability

As of today and to the best of our knowledge, X-Lap has been used only with PRRT.
The X-Lap facilities are nevertheless generic and allow for the analysis of any datagram-
oriented transport (e.g. UDP). We are confident that a segment-level analysis of TCP
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Figure 5.6: Correlations between partial latencies and the end-to-end latency reveal
whether a processing step is likely to influence the end-to-end delay.

is also possible, though extra care must be taken to comply with TCP’s semantics and
its implementation, e.g. in the Linux kernel.

5.3.3 ∆elta Extension
∆elta [RSH+18] extends X-Lap by additional analysis methods and capturing facili-
ties. The former includes means to evaluate multiple experiments at the same time to
investigate code or environment changes. The latter is concerned with capturing the
energy demand during the evaluation. Thereto, ∆elta extends X-Lap by the following
additional evaluations:

Multi-series Analyses allow to compare multiple experiments (e.g. full repetition,
same-code with varying processor speeds, or several code versions) and check how
changes to the environment or code have an impact on timing (e.g. Figure 5.7).

Energy Efficiency Evaluations investigate how the processor speed affects a certain
processing step’s latency (cf. Figure 5.7). While it is evident that faster, more energy-
intensive execution generally leads to shorter latencies, the relationship is non-trivial as
the curves show (see also [MLVH+02, LSH11]). The average ET2 metric [MNP02] is a
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Figure 5.7: CDFs for latency of specific steps—depending on processor speed.
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Figure 5.8: Control-flow graphs can be extracted from the data set, shedding light on
concurrency aspects of the transport stack. The last few segments are omitted.

fair comparison for dynamic voltage and frequency scaling (DVFS) settings. Latencies
are measured using X-Lap and the energy demand using RAPL [Int18]. For the data
that is shown in Figure 5.7, we have achieved different average energy efficiencies (1GHz:
0.27nJs2, 2GHz: 0.13nJs2, 3GHz: 0.16nJs2), showing that the most energy-efficient
configuration is neither achieved by the fastest nor the slowest processor speed.

Control-flow Extraction is an intermediate analysis step and allows X-Lap to argue
about the sequence of events by evaluating the happens-directly-before relation [Lam78]—
a subgraph is displayed in Figure 5.8. While we expect whitebox testing for X-Lap,
i.e. this information is known, this algorithm saves the experimenter from manually
specifying and updating this relation—saving time, avoiding mistakes and making the
analysis more robust to further cater to reproducibility. Furthermore, it captures this
relation between threads by analysing the experienced interleavings.

Latency-criticality Using the control-flow graph as a basis, we consider all code
segments (i.e. edges between nodes in the graph). Afterwards, we compute the non-
parametric Spearman correlation coefficient to identify code segments that have a high
positive correlation with the end-to-end latency, i.e. high partial latencies correlate with
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Figure 5.9: Based on the extracted control-flow graph, the Spearman correlation between
partial latencies and the end-to-end latencies are computed.

high E2E latencies. The results can be seen in Figure 5.9. When looking at the associated
source code, we find that some of these segments with high correlation contain code that
deals with process synchronisation—while others contain sequential data processing.
The former gives incentives to further decouple processes. The latter indicates that
optimization of these process steps is likely to improve the E2E latency.

5.4 Network Experiment Automation Tool (NEAT)
Empirical studies of networking research are often concerned with physical or virtual
testbeds that provide higher fidelity than pure simulations. The drawback of testbeds,
in comparison to simulations, is that the environment is not automatically documented
and harder to reproduce. Using state-of-the-art tools from the domain of network and
systems operations, these drawbacks can be compensated. Thereto, a number of infor-
mation systems are used together with specific technologies to make the experimental
setup as transparent as possible. These include:

Configuration Management provides means to have infrastructure-as-code, i.e. to
use a software tool and a well-known, human- and machine-readable configuration
language to enforce a specific state of the infrastructure. For network experiments,
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this could be the configuration of kernel parameters or the presence of specific
configuration files.

Version Control (VC) Systems such as Git or SVN allow to keep track of the changes
that are made to specific files—independent of the fact whether they are used for
building software artefacts or act as descriptions for configuration management.
As each commit has a unique identifier, it is possible to relate results to this specific
code version.

Continuous Integration (CI) is often built into collaboration solutions that also in-
clude version control systems (e.g. GitHub, GitLab, or the Atlassian tool suite).
CI allows to automate the generation of software artefacts used in the evaluation—
ideally in a reproducible manner15. Especially when the artefacts itself cannot be
archived, having a way to reproduce them after some time has passed is valuable.

Software-defined Networking (SDN) makes routing and forwarding policies trans-
parent, which means that system as well as networking aspects are documented.
SDN controllers can help, and even be drivers for network experiments.

Network Function Virtualization (NFV) enables to orchestrate and deploy exper-
iment components in a straightforward and automated way. Having these compo-
nents as virtual network function (VNF) allows to (a) integrate them into version
control, (b) capture their placement in configuration management, and (c) auto-
mate their configuration (using the fact that a VNF typically has a more common
interface, e.g. REST, than most physical network functions).

As this degree of automation is not common in networking research yet, we developed
the Network Experiment Automation Tool (NEAT) [SH17a]—a first prototype that uses
all of these features to automate experiments.

Figure 5.10 shows NEAT in action: First, a researcher commits and pushes her
code to a version control system with CI 1 . After that, she updates the experiment
description in case anything needs to be updated for the next experiment 2 . When the
description is ready, the experimentation process is started 3 . Thereto, the experiment
description is parsed by NEAT 4 and related software artefacts and infrastructure
descriptions are retrieved from VC 5 . As soon as everything is in place and the testbed
is configured, the actual experiment runs 6 . Afterwards, NEAT makes sure that all
evaluation artefacts (e.g., logs, measurements) are retrieved and stored together with a
copy of the experiment description 7 .

Using this approach, a vast majority of otherwise opaque experiment parameters are
gathered and archived together with the results—which in the aftermath will be used
to generate analyses or visualisations. By following the rules described in [SNTH13,

15Mainly (but not only) for security reasons, there is recently an increasing interest in mak-
ing software build processes reproducible; e.g. in the Debian project (https://wiki.debian.org/
ReproducibleBuilds, accessed August 14, 2019).

https://wiki.debian.org/ReproducibleBuilds
https://wiki.debian.org/ReproducibleBuilds
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Figure 5.10: NEAT decouples the experiment description process from the (fully auto-
mated) execution of the experiments and archiving of gathered data.

BBF+19], these analyses are also under version control—leading to a situation where we
can, e.g., backtrace a diagram in a publication to all the relevant parameters and code
artefacts that were used during execution. The tool is available as open source16.

5.5 Conclusion
Distributed cyber-physical systems rely on reliable timing of communication stacks.
Using X-Lap, these stacks can be measured by considering protocol interactions (i.e.
packets) and system interactions (i.e. code blocks) at the same time—and in a minimally
invasive manner. Having access to this data, various evaluations are possible, in order
to analyse timing as well as energy aspects and further guide the engineering process by
uncovering correlations and interdependencies. This holistic measurement approach is
also going to be relevant for tuning a system to achieve cross-layer pacing that makes
latencies more predictable and is going to be covered in the next chapter.

16http://neat.larn.systems (accessed April 17, 2019)

http://neat.larn.systems




The right word may be effective, but no word
was ever as effective as a rightly timed pause.

Mark Twain

Chapter 6

Cross-layer Pacing

Queuing is a major source of high and unpredictable latencies in packet-switched net-
works of cyber-physical systems, as discussed previously in Chapter 3. In general, there
are two approaches to avoid queuing: (a) making the network deterministic and getting
rid of extensive buffers or (b) adapting the sending behaviour of end-systems, attempting
to keep the queues empty.

Deterministic Buffer-free Networks

Uncontrolled queuing delays can be avoided by making the whole network as predictable
and deterministic as possible [KAGS05]. This involves scheduling traffic upfront, usually
in offline-analysis, and making all participants adhere to the schedule using admission
control. One such solution is Time-sensitive networking (TSN)1, a collection of stan-
dards to bring determinism and real-time behaviour to, e.g., industrial networks. This
determinism is achieved using three mechanisms: (a) time synchronization, (b) schedul-
ing and traffic shaping, as well as (c) routing, reservation, and fault tolerance. These
approaches impose reduced flexibility in workloads as re-computation and roll-out of
transmission schedules can be expensive [PRGS18]. These schedules can only be en-
forced when we have full control over the network topology and when this topology as
well as the network workloads are mostly stable.

This is unlikely to be the case for all future low-latency applications, especially those
that interface with infrastructure on the Internet (where a fully deterministic mode
of operation is infeasible—and would contradict the design-principle of the Internet in
itself [BM02]) For instance, a manufacturing site might be under the control of an enter-
prise, but connecting multiple factories involves links with minimal control—most likely
through application-agnostic service-level agreements). So while there is ongoing work
at the IETF to develop Deterministic Networks (DetNets), this is primarily focussing on
networks that are under the control of a single authority2 and interoperable solutions
will need different approaches.

1http://www.ieee802.org/1/pages/tsn.html (accessed August 14, 2019)
2https://datatracker.ietf.org/wg/detnet/about/ (accessed August 20, 2019)
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Coordinatively Rate-controlled Senders

As the end-to-end path in a distributed cyber-physical system is likely not to be under
full control by the operator, the only measures available are those in the end systems.
Systems have—to a variable extent—control over their sending behaviour, in particular
the data in-flight and the sending rate.

The data in flight can be given in two ways, either in packets or bits/bytes. Apart
from the unit the data in flight is measured in, the process of measurement depends on
the type of the protocol. For reliable protocols, the data that is not ACKed is considered
to be in flight. After a certain time has passed, e.g. when a retransmission timer has
a timeout, this data is considered as lost and no longer in flight (cf. TCP[Pos81]). For
unreliable protocols, the data in flight is typically the data that has been sent within a
recent time window, e.g. dimensioned by the RTT.

The sending rate is subject to the packet sizes and the packet intervals. The packet
sizes can be controlled if applications have variable payloads or allow for aggregation
without risking a violation of application constraints (e.g. message deadlines). The
packet intervals can be controlled if payload sizes are fixed, using a strategy commonly
known as pacing.

In this regime, it should be noted what RFC6077 [PWSB11] highlights as the haz-
ardous assumptions made about the relationship between packets and bits during the
design of networking hardware and congestion control algorithms during the last decades.
With increasing data rates, the per-packet overhead is a dominant performance factor
as packet sizes are not increasing in today’s Internet. In particular, a shift to packet-
(and not byte-) oriented congestion control is considered by the authors and it is going
to be a major concern in the next years.

The current lack of pacing in latency-sensitive—as well as other—networks is expen-
sive, as buffers need to be big (hardware cost), en- and dequeuing packets is done regu-
larly (energy cost), and buffers are filled most of the time (latency cost). This chapter
presents X-Pace, an approach to reducing queuing delays by implementing cross-layer
pacing to rate control the end-hosts. Thereby, system as well as network buffers are
kept mostly empty, resulting in close to the optimum end-to-end transmission times
and reduced costs. In the end, an evaluation across the public Internet will show that
X-Pace is able to reduce tail latencies in comparison with optimized low-latency TCP
by up to 54%.

6.1 A Brief History of Pacing
Before we look at the design and implementation of X-Pace, we describe what pacing
is and why it is not (yet) present in transport layer protocols and adjacent operating
system components.
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6.1.1 Bufferbloat & The Need for Pacing
The queuing delay (Dqueue) is a major threat to latency predictability in best-effort
packet-switched networks, as empirical evaluations show that bufferbloat [GN12, DB13,
BMPR17] can easily cause a round-trip time of a residential Internet access to in-
crease from 10ms to 1 second or more. This is due to the large capacity of queues
or buffers to compensate bursty payloads without causing loss—an architectural conse-
quence of congestion incidents on the early Internet [JK88]. These queues can be net-
work queues found in routers on the Internet, but also within system software and hard-
ware, where increasing complexity causes an increase in layers with—often unmanaged—
buffers [GN12].

The root cause of bufferbloat is that end-host applications are not aware of two
aspects: (a) the size of existing queues at system and network level as well as (b) the
throughput provided by the different steps of the processing chain and hops on the
network. The former requires coordinated network management strategies, e.g. using
active queue management [BCC+98, BF15]; the latter requires pacing as defined in Def. 3
and introduced for TCP by Zhang et al. [ZSC91].

6.1.2 The Pacing Concept
The is no general, commonly used definition of pacing in a data networking context, so
this thesis refers to the following definition of the term:

Definition 3 (Pacing) Pacing is the intentional delaying of a transmission in order
to create temporal gaps to pre- or succeeding transmissions.

The general concept of TCP pacing that can be found in the literature covers both:
delaying the sending of ACKs after data reception and sending of data after ACK re-
ception. Pacing attempts to evenly spread the transmission of a set of packets across,
for instance, the entire round trip time so that no bursts occur.

Figure 6.1 shows the processing of work units 1 to 4 through steps S1 to S3, where
step S2 is the bottleneck. Without pacing, queues form at the bottleneck while the
throughput stays the same (cf. Figure 6.1a). In contrast, pacing the first step to the
pace of the bottleneck helps to keep the buffer empty (cf. Figure 6.1b). This also means
that both steps S1 and S3 can decide to process work units slower as long as they do
it faster than the bottleneck. The bottleneck of a system can be at various locations,
including a fully utilized CPU, a fully utilized link, or inadequate timing behaviour at
the network or system layer.
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Figure 6.1: Pacing keeps the bottleneck throughput, but avoids excessive buffering laten-
cies (marked with red stripes) and increased E2E latencies (marked with blue hatches).

6.1.3 Controversy Around TCP Pacing
There have been numerous apparently contradicting research studies on TCP pacing
over the last decades, leading to different conclusions with respect to its positive effects
and viability. Shenker, Zhang, and Clark [SZC90, ZSC91] were the first to propose a
pacing approach for TCP congestion control (Tahoe [JK88] in this case) in order to avoid
harmful “clustering” of TCP traffic. At that time, the research community was discussing
about whether window-based ACK-clocking or explicit rate control should be used for
controlling the sending behaviour of TCP. Pacing represents a hybrid approach [ASA00],
as it uses windows, ACK-clocking, and controls the rate by delaying packets.

Aggarwal et al. [ASA00]

Aggarwal et al. started with the intuition that pacing should be unconditionally adopted
by Internet protocols, but found that pacing is “too good”, as it delays the congestion
events too far and causes severe synchronized drops. From today’s perspective, this result
must be revisited for two reasons: First, model-based CCAs (e.g. [CCG+16, AB18]) are
able to detect congestion earlier, mostly by a rise in E2E latencies that are attributed to
increasing queuing delays3. Second, explicit-congestion notification (ECN) [RFB01] is
increasingly deployed on the Internet [KNT13] and interactions with the transport layer
protocols are proposed [FWK16] to allow an earlier handling or avoidance of congestion
events [FW17].

3Other effects that increase E2E latency are re-routing events in which a back-off is also advisable
as the path changed and is likely to have a different bottleneck data rate too.
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From the body of work on TCP pacing, it is not evident whether synchronization
should generally considered as good or bad. Aggarwal et al. highlight that pacing has
a de-synchronizing effect as tail-drops affect random flows leading to higher aggregate
in-flight windows. Cardwell et al. [CCG+16] argue that a self-synchronizing CCA can
approach the desired state of an empty queue better than other CCAs. In contrast, a
perfect synchronization can lead to traffic oscillations [FJ94] where systems first over-
whelm the network by jointly increasing their sending rate, back off, and overwhelm the
network again after a short time.

Aggarwal et al. also highlight that bursty connections make the paced connections
suffer, leading to fairness problems. This coexistence of paced and non-paced flows is
described as a general problem that leads to unfairness with respect to the traditional
fairness metrics, as non-paced flows are likely to have larger in-flight windows.

In summary, pacing can provide better fairness, higher throughput and lower loss
rates, but not for all scenarios, which is also due to the implementations present at that
time—in particular drop-only congestion detection.

Wei et al. [WL06]

Wei et al. review the TCP pacing concept and results from Aggarwal et al. in the light
of new network topologies with higher link speeds and new TCP implementations. The
authors introduce a worst-flow latency as an additional non-throughput-oriented metric
into the evaluation. Wei et al. also strengthen the positive aspects of pacing, with respect
to reduced burstiness and an increased flow synchronization. They conclude that there
are enough incentives for applications to migrate from non-paced TCP to paced TCP—a
clear contradiction to Aggarwal et al. Even though non-paced flows—acting somewhat
egotistical—gain higher benefits than paced ones, flows of both types gain after a critical
mass of flows employ pacing. Hence, they advise to gradually add pacing to network
flows, eventually migrating to a scenario where all flows are paced.

Ghobadi et al. [GG13]

Ghobadi et al. show that with TCP and a specific buffer size, there is an upper bound or
point of inflection (PoI) on the number of concurrent flows that can be paced and lead
to significant benefits for all participants. It is important to note that their performance
measures, which are used to quantify the benefits, are all about throughput or consider
a throughput-maximizing network design. The flow completion time (FCT) [DM06]
measure depends mainly on the throughput, transmission time, and in-flight window
size; not on the end-to-end latency inflation caused by queueing.

In distributed cyber-physical systems, where predictably low latency is preferred at
the expense of a smaller throughput (cf. Alizadeh et al. [AKEP12]), this PoI must
be questioned and needs to undergo further examination. This PoI is in absolute
terms (number of flows), while the critical mass by Wei et al. [WL06] is in relative
terms (portion of flows), so in an ideal controlled scenario one would limit the number
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of concurrent flows to the maximum and ensure that they are all paced. In case the
network is expected to support more flows, a best-effort approach must be considered
together with pacing (if latency is of highest priority) or without pacing (if utilization
and throughput are of highest priority). The authors also proposed leveraging SDN
technology to communicate the number of flows in data centers and thereby adaptively
decide to pace or not, a form of network-assisted pacing.

Summary

In summary, most of the work has focused on the throughput and fairness aspects of
pacing, coming to a conclusion that controlled pacing can lead to increased throughput
and fairness. Nevertheless, a number of common scenarios could be identified where
there is evidence that higher throughput can be achieved without pacing. Most of these
studies have not considered the end-to-end latency improvements of pacing and how
this can lead to predictably low latencies that are essential to real-time applications—an
open question that is going to be investigated in this chapter.

6.1.4 Recent Pacing Endeavours
Apart from the controversial studies of TCP pacing, there is a set of recent publications
that present solutions that involve general forms of pacing or rate control; primarily in
a data center context.

Alizadeh et al. [AKEP12] The authors leave link capacity unused in order to com-
pensate for the rise in congestion window size during the time between congestion detec-
tion and reaction of end-points. They also argue that pacing should be done between the
last “component” that aggregates data and might cause bursts of data (in their concrete
example Large Send Offloading). Their approach can significantly reduce application
end-to-end times (at mean and tail) by combining this capacity headroom and pacing.

Jang et al. [JSBM15] (Silo) The authors present a multi-tenant data-center solu-
tion to achieve guaranteed network bandwidth, guaranteed packet delay, and guaranteed
burst allowance. They identify network guarantees required for predictable message la-
tency and present admission control and virtual-machine placement algorithms to guar-
antee these properties.

Saeed et al. [SDV+17] (Carousel) The “Carousel” is another traffic shaping solu-
tion that combines rate limiting with packet pacing—highlighting that the latter is a key
technique to achieve low latency. The authors argue that shaping must be done at end-
host as the network does not have enough knowledge about the flows and end-systems
states in order to do the pacing right. They highlight that the performance overhead
caused by end-host shaping in general limits overall scalability of the approach. This is
for instance due to the increased CPU and memory consumption, packet drop due to
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overflows, head-of-line blocking, and a lack of backpressure. With their approach, they
use a single shaper for various processes involving multi-cores. While their approach
provides backpressure to the application, they do not implement cross-layer pacing that
takes the paces of all layers into account and makes it an explicit measure that is com-
municated using feedback.

6.1.5 Pacing outside of Networking
Pacing itself is not an invention of the computer networking community, but has its roots
in the design of production lines [BSW73, BS06]. Pacing is a tool to implement lean
manufacturing, a method to minimize the waste caused by a production process. The
underlying just-in-time (JIT) approach has its origins in the Japanese Toyota Production
System (TPS) [Ohn88], but is nowadays used in many production environments [Ahm91]
and also in other fields of computer science [Ayc03].

While waste avoidance is not a central design goal of research around Internet com-
munication yet, there are several studies that investigate this aspect [GS03, CSB+08,
HSM+10, BBDC11, OAL14]. The avoidance of wasted energy is going to be of increas-
ing importance for future energy-aware and energy-sufficient systems. But also with
respect to latency—time between order and delivery for a manufacturing system—there
are enormous reductions possible by implementing pacing.

6.2 The Cross-layer Pacing Concept
Cross-layer pacing aims at reducing the end-to-end (E2E) latency (cf. Section 3.2.1) at
the application level, both in terms of absolute value as well as variance. The pacing
approach is increasingly relevant for distributed CPS to achieve predictably low latency
by not filling buffers excessively [GN12] and avoiding harmful load spikes when complet-
ing operating system tasks [ROS+11]. For the remainder of this thesis, we define a pace
as follows:

Definition 4 (Pace) A pace (P, [P ] = time
unit of work ) is the time spent to apply a cer-

tain step to a certain unit of data.

Paces are often stated in terms of time only, implicitly assuming a “per work unit”4.
Most of the following considerations assume the unit of work to be one application layer
datagram or message. For paces, it intuitively holds that “lower is better”, and one often
talks about “fast pace” (low value) and “slow pace” (high value). A general system

4An amateur runner can achieve a pace of “5:00 minutes” (per kilometre).
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processes and communicates data in a sequence of n steps, where step i ∈ [0 : n − 1]
happens with pace P (i).

In any system of steps ([0 : n−1]), there exists at least one bottleneck step S(btl) with
a pace of P (btl) so that ∀j ∈ [0 : n − 1] : P (btl) ≥ P (j). In theory, there could be multiple
bottlenecks with the same pace, in which case the last one (the one with the highest
index) is the bottleneck that must be used as a starting point for back- and forward
propagation of paces (cf. Section 6.4.2). In practice, measuring dynamic paces is unlikely
to lead to this case, not to mention that this state is probably going to last for so short
that special treatment is futile. A bottleneck is sometimes characterised as a step or
transition between steps that has a non-negligible effect on the system’s performance as
the succeeding step is slower than the preceding (also referred to as choke points). This
thesis does not use this local perspective, but a global perspective where there is only a
single bottleneck on a path that must not cause measurable performance degradation,
but is simply the slowest step. This characterisation is also different from the bottleneck-
link used to achieve max-min fairness [LB05] where the bottleneck is related to a source
and the rates of other sources sharing this link.

Definition 5 (Cross-layer Pacing and Paced Systems) A (sub-)system S im-
plements cross-layer pacing if it ensures that each step i ∈ [0 : n − 1] is executed at
a pace P (i) that considers the bottleneck pace P (btl) in the overall system’s chain of
processing steps. A system is paced if each step needs less (or equal) time to process
a unit of work than a previous step, or more formally:

S is paced iff ∀i, j ∈ [0 : n − 1] : i < j ⇒ P (i) ≥ P (j)

6.3 Benefits of Cross-layer Pacing
Systems that implement cross-layer pacing—and are thereby paced—gain multiple ben-
efits. Most of them are reductions of the muda or waste as identified by the Toyota
Production System [Ohn88], in particular the types of inventory (a message is only use-
ful when it is delivered to the receiver), waiting (a message loses value over time, i.e.
the age-of-information is important5), and over-processing (sending a message as-fast-
as-possible with significant effort might not be required by the end-user):

5There is an increasing interest in age-of-information and information freshness for recent inter-
active communication systems: https://infocom2019.ieee-infocom.org/age-information-workshop (ac-
cessed December 3, 2019)

https://infocom2019.ieee-infocom.org/age-information-workshop
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Near Zero Queuing Delay The pacing of work units to the processing rate of a step
ensures that these units would not arrive faster than the bottleneck rate. Thereby, units
of work are not put into buffers, effectively avoiding queuing delays.

Just-in-time Processing When the pace at which units of work are handled is known,
the respective succeeding layer can run preparation tasks, e.g. allocate memory or wake
up threads, so that everything is ready as soon as the next unit of work is passed along.

Reduced Waste of Work When the rate at which the transport stack processes data
and can transmit it over a link is known, the operating system and the physical com-
putation platform can run at exactly this speed. This reduces clock-cycles, as polling
can be avoided and a slow-down of the processor can reduce the energy demand and
prolong the runtime of battery-driven devices. This is also the case for wireless com-
munication links that could pick a throughput and scheduling scheme that can reduce
energy demand or increase reliability.

Lower Resource Footprint As soon as buffers—at system and network level—are
not filled and required to compensate for insufficiencies of the processing chain (e.g.
TCP sending in bursts), the resources allocated for buffers can be reduced. This leads
to a lower memory footprint for pure software systems and reduced cost for memory in
hardware systems.

In dynamic systems with changing paces—and, in consequence, switching bottlenecks—
the system cannot continuously be in the paced state. Due to imperfections of the
measurement and latencies in the control itself, cross-layer pacing cannot remove the
need for intermediate buffers completely or continuously achieve zero queueing delay.
Nevertheless, a prototypical cross-layer implementation is able to approach these goals
successfully (cf. Section 6.6).

6.4 A General Cross-layer Pacing Architecture
As many of the studies around pacing (cf. Section 6.1) focus on the networking aspects
and in particular TCP, this section describes an abstract pacing architecture that is
going to be implemented in the concrete X-Pace system presented in Section 6.5.

6.4.1 Measuring Paces
For synchronizing the paces across the different layers, it is essential to precisely measure
the pace of each layer. Their quantification can be done in three ways:
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A Priori Paces can be known at design-time, e.g. time per packet transmission (the
transmission pace) on an Ethernet link or time per computation step in a real-time
operating system running on known hardware.

A Posteriori The system is quantified once using dedicated profiling measurement
runs, and the resulting values are considered during operation but without measuring
again and validating, i.e. the pace is static across runs of the identically configured
system.

In Vivo Finally, it can be required to measure paces because they can depend on a
platform and the current load, i.e. the pace is dynamic.

These approaches represent a scale between purely static (a priori) to fully dy-
namic (in vivo) characterisation of paces. In the following, only in vivo measurements
are used as CPS are expected to be dynamic and interface with highly flexible systems
such as the Internet. However, on systems where more accurate models are available, for
instance in data centers or network-on-chips, the overall performance can benefit from
a priori knowledge or a posteriori profiles. The design of PRRT also allows to quantize
the achievable paces during evaluation runs and use these static measures in production
environments. The feasibility of both of these approaches is out of scope for this thesis,
which solely focusses on in vivo.

Pace Measurement API

The source code of the communication transport stacks is instrumented using four meth-
ods for pace quantification: start(P (i)), end(P (i)), pause(P (i)) and resume(P (i)).
Paces of each step have variation by nature, e.g. system noise and fluctuations of net-
work performance, making it necessary to filter them appropriately. Figure 6.2 shows
the general process to measure the different components of a step’s pace. The code
section associated with a step is surrounded by calls to start(P (i)) and end(P (i)). All
steps depend on their pre- or succeeding step, i.e. their pace can contain a portion of
dependent time that must be treated separately, e.g. when interacting with a different
step as could happen when a packet is awaited in recv(). These code sections are
surrounded with a pair of pause(P (i)) and resume(P (i)).

Components of a Pace

Thereby, we are able to quantify three different components of the pace P (i) directly (1-3)
and compute two additional paces (4+5):

1. Internal (P (i)
int ) is the time taken between start(P (i)) and end(P (i))

2. Dependent (P (i)
dep) is the sum of times taken between pause(P (i)) and resume(P (i))

blocks since the last call to start(P (i))
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Code Pint Pdep Pext Peff Ptot

start()

pause()

resume()

end()

start()

Figure 6.2: General process of measuring the different components of a step’s pace.

3. External (P (i)
ext) is the time taken between end(P (i)) and the next start(P (i))

4. Total P
(i)
tot = P

(i)
int + P

(i)
ext

5. Effective P
(i)
eff = P

(i)
tot − P

(i)
dep

The external pace is used to distinguish between the call periodicity (P i
int +P i

ext) and
the actual work carried out by the step (P i

int). For instance, the total pace for application
sending can be high despite the step running fast if the application does computation
in-between sending. The subtraction of the dependent pace from the total pace ensures
that fluctuations in the effective pace only capture fluctuations in the processing step
itself. Otherwise, the system would not converge to a stable bottleneck pace.

6.4.2 Communicating Paces
Using the measured paces, it is imperative to synchronize them throughout the system,
starting from the bottleneck S(btl) (cf. Figure 6.3).

Backward propagation Communicate to S(btl−1) that data cannot be processed as
fast as it could be provided. S(btl−1) MUST run at a slower pace to complete tasks and
forward this information further backwards.
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Figure 6.3: Pacing across a chain of processing steps by propagation a pace backward
and forward.

Forward propagation Communicate to S(btl+1) that data cannot be provided as fast
as it could be processed. S(btl+1) MAY run at a slower pace. Tasks may decide to keep
their pace, because finishing “fast” has benefits, e.g. low resources footprint or minimal
E2E delivery time. This is line with [LSH11], where it is stated that the relation between
energy-efficient processing and processing speed is non-trivial. In any case, the new
effective pace P

(btl+1)
eff ∈ [0 : P

(btl)
eff ] may be forwarded to the succeeding steps to be acted

upon. This allows these steps to optimize their behaviour with respect to, for instance,
energy demand.

6.4.3 Adapting to Paces
The measured and communicated paces can be acted upon—with a strategy that de-
pends on whether the pace is tractable or intractable. An intractable pace (e.g. medium
access) depends on the environment and is not under control of the communication and
computation stack. If a step with an intractable pace must be slowed down, the only
way is to find the next preceding step with a tractable pace and reduce this one so that
the total pace of the intractable pace changes—it keeps executing fast but is executing
less often. Depending on the actual step under consideration, a tractable pace can be
changed in several ways:

• A step can keep on executing as fast as possible, but uses a buffer towards the next
step with one unit of work and only proceeds if the buffer is empty. Thereby, the
step is mostly idle but the succeeding step always has a unit of work to process.
This can be compared to a pull-based processing model, which is also propagated
by lean manufacturing.

• A step can implement just-in-time task completion, which means that the step
waits until only Peff is left before the completion of the succeeding step, at which
the step starts to process its current unit of work, i.e. the unit of work is processed
and immediately passed on. Thereby, a piece of work is never stored.

• Any other effective pace between as-fast-as-possible and the bottleneck pace is
possible, i.e. the processing step can pick whatever is best—optimizing for energy
usage, buffer allocation time or other metrics.
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Figure 6.4: Cross-layer pacing in PRRT communicates and adapts to paces across the
complete chain.

More concretely, a pace can be changed by the following means: adding artificial
processing delays, setting different configuration parameters in the transport stack (e.g.
processor speed) or changing a network configuration (e.g. static WLAN data rates).

6.5 Cross-layer Pacing in PRRT
With the general architecture of cross-layer pacing in mind, this section presents the
design of X-Pace, a concrete implementation inside PRRT (cf. Chapter 4).

6.5.1 Measuring Paces in PRRT
PRRT tracks the paces of different layers (cf. Figure 6.4) of the communication stack.
For a given application, the packet size L is assumed to be fixed, while the pace P in
which a step is executed is variable. As most most control application use payloads
of fixed size and lower message rates are preferred over significantly larger end-to-end
delays caused by queuing, it is appropriate to vary only P .

Pace Filter

The measurements for paces are put into statistical filters and three instances of a pace
filter are kept for the internal, external and dependent portions of the pace.

The current implementation of the filter represents a windowed maximum filter (cf.
Listing 6.1) and follows the design of the filters used in [CCG+16]. For performance rea-
sons, the filter does not use an array to store samples, but instead a last-update times-
tamp and a current maximum value. When the configurable window size (in seconds)
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typedef struct prrtPaceFilter {
prrtTimedelta_t window_us;
bool valid;
prrtTimestamp_t updated;
prrtTimedelta_t value;

} PrrtPaceFilter;

void invalidate(PrrtPaceFilter* filter) {
filter->valid = false;
filter->updated = PrrtClock_get_current_time_us();

}

PrrtPaceFilter* PrrtPaceFilter_create(prrtTimedelta_t window_us) {
PrrtPaceFilter* filter = (PrrtPaceFilter*) calloc(1, sizeof(PrrtPaceFilter));

filter->updated = PrrtClock_get_current_time_us();
filter->valid = false;
filter->value = 0;
filter->window_us = window_us;

return filter;
}
// ----8<--------------
prrtTimedelta_t PrrtPaceFilter_get(PrrtPaceFilter* filter) {

prrtTimestamp_t now = PrrtClock_get_current_time_us();
if (filter->updated + filter->window_us < now) {

invalidate(filter);
}
return filter->value;

}

void PrrtPaceFilter_update(PrrtPaceFilter* filter, prrtTimedelta_t value) {
prrtTimestamp_t now = PrrtClock_get_current_time_us();
if (filter->valid == false) {

filter->value = value;
filter->valid = true;
filter->updated = now;

} else {
if (value > filter->value) {

filter->value = value;
filter->updated = now;

} else {
// ignore sample

}
}

if (filter->updated + filter->window_us < now) {
invalidate(filter);

}
}

Listing 6.1: Code excerpt of the Pace Filter (cf. https://git.nt.uni-saarland.de/LARN/
PRRT/blob/prrt-0.4.1/prrt/proto/stores/paceFilter.c).

https://git.nt.uni-saarland.de/LARN/PRRT/blob/prrt-0.4.1/prrt/proto/stores/paceFilter.c
https://git.nt.uni-saarland.de/LARN/PRRT/blob/prrt-0.4.1/prrt/proto/stores/paceFilter.c
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has passed since the last update, the filter is invalidated. When invalid, it continues to
return the most recent maximum. In this state, the filter accepts any new sample as the
new maximum, updates the last-update timestamp, and validates the filter again.

While this represents a valid first implementation of the pace filter for all involved
steps, future implementations should consider more sophisticated designs that are ad-
justed to the dynamics of the step-under-measurement and allow to compute a repre-
sentative current pace.

Sender Application Pace

Abstractly, applications are processes that send messages with an average size of L ([L] =
B) and a frequency of fsend ([fsend] = Hz), i.e. a pace of P (send) = 1/fsend. These mea-
sures can be taken by tracking the send() calls on the PRRT socket (cf. [CCAP10]). The
current time is stored on each call to later compute the application sending frequency.
The application data rate is therefore Rsend = L · fsend ([Rsend] = bit/s).

Receiver Application Pace

A receiving application can be abstracted as a process that consumes new messages
with a frequency of fdeliver. The time between calls to recv() in the PRRT socket is
tracked, but as this call is blocking, it is dependent on the paces before. The receiver
application pace would always be considered as the bottleneck pace of the overall system
as it cannot receive faster than data is delivered by the preceding chain. Therefore, the
effective time between deliveries of the packet (the moment shortly before an application
layer recv() returns) is tracked and the time spent waiting for the previous layer, the
dependent pace, is subtracted.

Transport Protocol Paces

Both sending and receiving transport stacks spend time processing data before it is
available to the next step. At the sender, this is the time between accepting a packet
from the application and sending it to the network. At the receiver, this is the time
between receiving a packet from the network and storing it for delivery to the application.
These code sections are used to execute all the encoding, error correction and additional
functions. This happens in a sequential manner that allows to track the time these
functions take to be executed on the current system. This yields the two paces P (transmit)

and P (receive).

Network Pace

The network pace depends on the bottleneck data rate Rbtl ([Rbtl] = bit/s) of a network
path and the size of the transmitted packets L. The packet size is known from the
application pace measurements, and the bottleneck data rate is measured by PRRT (cf.
Section 4.4). The network pace is P (nw) = L

Rbtl
, the transmission delay per packet.
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6.5.2 Controlling Paces in PRRT
For each step, the maximum of the step’s pace and the pace received from the succeeding
step is computed and propagated backwards. The same happens for the pace received
from the preceding step: The maximum with the step’s pace is computed and propagated
forward. The pace is controlled at two locations: The link-layer transmission step within
the protocol and through the sending application’s API.

Automatic Pacing

Currently, the PRRT stack has a single location where the pace is enforced, namely in the
sending of packets to the UDP socket. If the network or the receiver are the bottleneck,
this slows down the transmission by inserting additional delay between packets.

Cross-layer Interface

The application can participate in the cross-layer pacing using different approaches,
either directly or by means of the operating system:

• Pacing-aware Applications: The described system provides an interface for the
application to query the current bottleneck data rate (btl_dr_fwd). Using this
information, a pacing-aware application can fine-tune its parameters (e.g. sampling
rate, sensor resolution) to adjust to the bottleneck. Such an application can use
the send_async() function, where the control flow returns as soon as the packet
is submitted to PRRT, but is potentially not sent on the network yet. In this
scenario, it is the responsibility of the application to regularly query the current
bottleneck pace and adapt to it appropriately.

• Reactive Measures: The system detects when the application is too fast and reacts
by delaying the execution of these calls to enforce the correct timing of send and
receive operations. This approach is transparent to the application in functional
terms—existing legacy applications need no modifications.

• Proactive Measures: The network monitors the application behaviour and predicts
the next send or receive operation. The operating system utilizes this estimation
to schedule application processes at the right moment in time. This approach
is semi-transparent to the application—it makes specific assumptions, in particu-
lar periodic behaviour. Such an application behaviour is generally detectable by
monitoring the timing of function calls [CCAP10]. Thus, the send_sync() en-
sures that the application is able to immediately send the next packet when the
call returns. As some applications require work to be done before the next call
to send_sync(), this time is measured and the call returns earlier. Consequently,
one complete cycle of application processing and send takes exactly as long as the
bottleneck pace of the system.
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6.6 Evaluation
In the evaluation (cf. [SRGP+19]), cross-layer pacing in PRRT is analysed in comparison
to other transport layer protocols. The goal is to show that the bottleneck-awareness
of PRRT and its ability to pace are beneficial for applications that demand predictably
low latency. The following scenarios compare PRRT with several variants of TCP and
evaluate their performance with different bottleneck locations. In the figures, time series
of measured latencies during an experiment are shown, together with cumulative density
functions (CDFs) to shed light on the distributions of these latencies. 99th percentiles
are presented to show that tail latencies can be reduced and inter-percentile ranges
between 1st and 99th percentile are used to show that the latency predictability is also
improved by reducing the variation or jitter.

6.6.1 Methodology
Pacing is evaluated by comparing the inter-packet time (IPT ) and the E2E application
layer delivery time (DT ) of individual packets sent using different transport protocols.
The different scenarios put the bottleneck into different locations of the system. Based
on this, theoretical optimal values can be derived for DT , IPT and experiment dura-
tion (EXP).

DT opt = Dprop + P (nw) (6.1)
IPT opt = max{P (send),P (nw),P (deliver)} (6.2)
EXPopt = IPT opt · rounds (6.3)

The diagrams in the following include these values (as dashed black lines) and give
a baseline to compare PRRT as well as different TCP variants against it.

Testbed Setup

The evaluation uses the OpenNetworking Testbed as described in Section 2.4. The ex-
periment topology is comprised of two physical hosts at Saarland University that run
OpenvSwitch and execute the test application as a Docker container. Hosts are con-
nected via a direct 1Gbit/s Ethernet link. In most experiments, netem traffic shapers
are used on the interfaces at both ends of the link to control its delay characteristics
and make it the bottleneck, if intended. The Precision Time Protocol (PTPv2)6 is
used to make sure the system clocks are synchronized and the samples of time are reli-
able. Interference between the congestion-induced queues and the time synchronization
is avoided by running the time synchronization out-of-band. This control path is also
used to trigger the evaluations using SSH. Hosts run Ubuntu 16.04 and Linux kernel
4.15, which incorporates a recent version of the BBR congestion control algorithm for
TCP by default.

6https://www.eecis.udel.edu/~mills/ptp.html (accessed April 25, 2019)

https://www.eecis.udel.edu/~mills/ptp.html
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Measurement Application

The evaluation employs a minimalistic time-measuring application to capture the inter-
packet time (IPT ) in the sender application as well as the E2E delivery time (DT ) a
packet takes from the sender to the receiver application. For all transport layer imple-
mentations, the application layer is identical and sends fixed size messages containing
the timestamp and the round number. This resembles a sensor application in distributed
CPS that reports its value to the controller. The sending application captures the cur-
rent time, composes a message, and calls send()/send_sync(), which can block for
both TCP and PRRT. Thereby, the cross-layer interface mentioned in Section 6.5.2 is
implemented. At the receiving application, the packet is taken out of the socket and the
current time is used to calculate the DT between a message being put into the socket
and it being received on the other side. On the sender side, the time differences between
calls to send() yield the IPT.

6.6.2 Parameter & Protocol Tuning
Several TCP socket parameters and kernel options are fine-tuned to make a fair com-
parison between TCP and PRRT.

The sending queue size of PRRT is exactly one packet, while the TCP socket option
SO_SNDBUF is set to different values depending on the scenario. SNDBUF in TCP limits
the total amount of unacked data in-flight. The PRRT queue works differently and is
only used to decouple application send() and link layer transmit().

PRRT uses a receive buffer between the receiving part of the stack and the application
that is not limited in terms of bytes. Instead, PRRT drops packets that are not delivered
to the application in time. For all experiments, this limit is set to 100ms. The receiver
buffer SO_RCVBUF for TCP is varied for the different scenarios to enable or disable flow-
control—a method to implement pacing through backpressure.

The TCP sender has TCP_NODELAY and TCP_QUICKACK activated to avoid any end-
host aggregation of data or ACKs. Additionally, TCP timestamps and SACK are dis-
abled and the low_latency option is enabled. Data is passed to the TCP socket using
write() to set the PSH flag, telling the end-host to deliver it immediately.

The pace filter in PRRT (cf. Section 6.5.1) is configured to have a window size of 2 s
in our evaluations, as observed system load and network dynamics in our testbed were
relatively stable during periods of this length.

Evaluating Optimized TCP

Figure 6.5a shows the effect the different options have on the ability of TCP to pace
packets. Sending and receiving application run as fast as possible, and the network is
configured to be the bottleneck. The ideal IPT is 5ms, the network pace in this scenario
where 1000B packets are sent over a 1.60Mbit/s link. The one-way propagation delay
is 15ms, relating to a BDP of 6000B. For the optimized TCP variants, SNDBUF and
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Figure 6.5: Measurements of inter-packet and delivery times for PRRT, as well as opti-
mized and unoptimized (-U) variants of TCP.

RCVBUF both are set to 3 × BDP, allowing congestion control to work but also limiting
the amount of data in the queues for TCP.

Buffer-size and kernel-level optimizations lead to nearly bimodal distributions for
all TCP variants, with CUBIC [HRX08] and BBR performing only slightly differently.
PRRT narrows the distribution significantly with 4.40ms and 12.79ms as 1st and 99th
percentiles. The distribution for PRRT is skewed towards slower paces caused by a
conservative approach to avoid filled buffers as much as possible.

Figure 6.5b shows the E2E delivery time, where the ideal line is at 20ms, consisting
of 15ms one-trip propagation delay and 5ms network pace (aka transmission delay).
PRRT can approach this bound, but periodically deviates from it (cf. Figure 6.5c). The
reason for this are probing periods for a higher share of the data rate by increasing the
pacing rate and thereby filling buffers. This oscillation can be avoided in scenarios with
static links and no contention, but if the data-rate probing function of congestion control
should be part of the protocol, this cannot be avoided. The TCP series also display the
differences in the congestion control algorithms—depending on their parameters. Unop-
timized variants fill the buffers significantly, leading to seconds instead of milliseconds
of E2E delay. The optimized versions, in contrast, constantly perform at around 45ms.
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Figure 6.6: Inter-packet times for different bottlenecks.
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Figure 6.7: E2E Delivery Times for different bottlenecks.

6.6.3 Receiving Application as Bottleneck
This scenario is an end-to-end test as the bottleneck pace must be propagated through
the complete communication pipeline. Therefore, the receiving application is turned into
the bottleneck by adding an artificial delay of 5ms (with 20% jitter) between calls to
recv(), resulting in P (btl) = P (receive) ≈ 5ms. Packets are sent with a size of 1000B at
a network rate of 16Mbit/s (i.e. P (nw) = 0.50ms). The configured one-way propagation
delay is 15ms, which results in BDP of 60kB. The SNDBUF of TCP is set to this value
so that this buffer is not a constraint. The RCVBUF is instead set to the “BDP” of the
receiving application (6kB), based on the receiver pace of 5ms and RTT of 30ms.

Using this approach, TCP’s flow control can cause backpressure, implementing a
variant of pacing compatible with standard TCP. The pace of the sending application
can be arbitrarily fast, as it is only bounded by the processing speed of the sender. Nev-
ertheless, it is going to be throttled down by cross-layer pacing during the experiment.

Figure 6.6a shows the IPTs of the different protocols during the evaluation—displaying
the first 2000 packets of an experiment run. PRRT meets the optimal pace of 5ms after
a short startup of about 200ms. For PRRT, the overall time until experiment comple-
tion (11.85 s) is close to the optimum (EXPopt = 10.00s), but far away for TCP CUBIC
(22.61 s) and TCP BBR (22.53 s). Both TCP variants have IPTs that are either signif-
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Figure 6.8: CDFs for E2E Delivery Times for different bottlenecks.

icantly higher (30ms) or lower (0.10ms) than the optimum of 5ms, which causes these
inflated completion times. PRRT needs a startup phase until the optimal DT of 15ms
is achieved and sustained for the rest of the experiment (cf. Figure 6.7a).

Hence, PRRT is avoiding queues as much as possible, in contrast to TCP, which fills
buffers that lead to a constant delay of around 60ms. The cumulative density function
in Figure 6.8a further shows this near perfect pacing of PRRT except for a short period
caused by the startup.

6.6.4 Network as Bottleneck
This scenario puts the bottleneck at the network level, hence the sender must be in-
structed to slow down the sending rate. The one-way propagation delay is 15ms and
there is no artificial delay at application layer, but a limit in the data rate of the network
of 1.60Mbit/s. This yields a BDP of 1.60Mbit/s · 30ms = 48000bit = 6000B and a
network pace of 5ms for packets of 1000B size. Both SNDBUF and RCVBUF are set to
3×BDP so that congestion control can work and potentially cause buffers to fill if more
than one BDP is in-flight. The first 2000 packets of a communication are shown, while
the remaining evaluation follows the same pattern.

Figure 6.6b shows that PRRT is able to perform close to the optimum. The IPTs
in this scenario oscillate, in contrast to the previous evaluation with the receiver side
bottleneck. This oscillation is caused by PRRT’s BBR implementation probing for a
large share of the bottleneck data rate using a faster pace. A similar oscillation, this
time with respect to the DTs, can be seen in Figure 6.7b. The faster probing pace
causes queuing at the bottleneck so that the delivery time for these packets is increased.
However, PRRT is still able to achieve significantly lower DTs because it only causes
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traceroute to 79.199.28.123 (79.199.28.123), 30 hops max, 60 byte packets
1 vlan-herfet-neu.nt.uni-saarland.de (134.96.86.1) 0.400 ms 0.358 ms 0.420 ms
2 c65eb36-win.net.uni-saarland.de (134.96.6.54) 0.328 ms 0.314 ms 0.384 ms
3 cr-dui1-te0-5-0-2-4.x-win.dfn.de (188.1.241.185) 8.687 ms 8.688 ms 8.680 ms
4 cr-fra2-be16.x-win.dfn.de (188.1.144.178) 9.618 ms 9.732 ms 9.727 ms
5 ffm-b12-link.telia.net (213.248.97.40) 9.226 ms 9.563 ms 9.191 ms
6 ffm-bb3-link.telia.net (62.115.142.46) 10.069 ms 9.761 ms 9.704 ms
7 ffm-b4-link.telia.net (62.115.120.6) 9.802 ms 9.792 ms 10.024 ms
8 dtag-ic-319284-ffm-b4.c.telia.net (213.248.93.187) 10.374 ms 10.175 ms 10.171

ms↪→
9 91.23.246.213 (91.23.246.213) 13.230 ms 13.252 ms 13.234 ms

10 * * *
...
30 * * *

Listing 6.2: Traceroute from Saarbrücken to Homburg (a 20km straight-line distance),
with intermediate stops in Dui(sburg) and Fra(nkfurt).

probing queues and no queues due to inadequate buffer management as is the case for
TCP. This is also visible in Figure 6.8b, where TCP operates between 40 and 50ms,
while PRRT is way closer to the optimum.

6.6.5 Sending Application as Bottleneck
This evaluation aims to investigate if both PRRT and TCP perform optimally in case
that cross-layer pacing is not required as the system is inherently paced. The setup is
again as in the receiver bottleneck scenario (Section 6.6.3), except that an artificial delay
of 5ms (again with 20% jitter) is added to the sender application instead of the receiver.
Sending and receiving buffers are configured to be the BDP relating to the 16Mbit/s
data rate and 15ms one-way propagation delay. Figure 6.8c shows that both TCP
variants as well as PRRT are now able to achieve a near-optimum DTs. Consequently,
the TCP optimization by setting specific kernel options leads to “as-fast-as-possible”
forwarding, without buffering or increased latencies.

6.6.6 Internet as a Network Bottleneck
To show the performance of cross-layer pacing on the Internet, this evaluations trans-

mit across a straight-line distance of 20km, using a residential access as one side and the
testbed as the other. A traceroute (cf. Listing 6.2) reveals that the actual covered dis-
tance is much higher and includes multiple hops at Internet Exchange Points. Regarding
the channel parameters, the one-way ping delay is 15ms and iperf3 yielded a sustainable
data rate of 10Mbit/s. Hence P (nw) = 0.80ms and BDP = 10Mbit/s·30ms = 37.50kB
and again 3 × BDP for the TCP buffers is used on both sides.
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Figure 6.7c and Figure 6.8d show TCP BBR achieving lower latencies than TCP
CUBIC, being inline with the intentions of the BBR authors [CCG+16]. PRRT does
not approach the optimum as close as in previous experiments. The reason for this gap
could be the precision of the NTP-based time-synchronization between the end-systems.
This unavoidable imprecision affects all evaluated protocol variants and could cause a
constant systematic error on the absolute timescale. However, the shape of the CDF
for PRRT suggests that latency is more predictable and stable as for the TCP variants
that have a heavy tail. In consequence, PRRT reduces the 99th percentile by up to
54% (PRRT: 19.61ms, TCP-CUBIC: 42.74ms) as well as the range between the 1st
and 99th percentile by up to 91% (PRRT: 1.92ms, TCP-CUBIC: 22.02ms). This
effect is smaller than in the testbed evaluations, but shows that PRRT outperforms
TCP under conditions faced on Internet links.

6.6.7 Wireless LAN as a Network Bottleneck
The final evaluation tests the approach in an 802.11ac wireless LAN, composed of an
access point and two nodes. Figure 6.8e shows the results of this evaluation in terms of
E2E delivery times. Curves are closer to each other, with PRRT using X-Pace is able
to achieve a smaller distribution (range between 1st and 99th percentile is 10.70ms for
PRRT and 304.54ms for TCP-BBR).

6.7 Conclusion
Despite the controversy around pacing, it is evident that the pace at which packets
are sent to the network is essential for low-latency applications. Using pacing allows
to gain major benefits, e.g. near-zero queueing delay as well as just-in-time processing.
With cross-layer pacing, this approach is extended to the system layer, allowing all
processing steps between two applications to know about their paces and to synchronize
them. X-Pace provides an implementation of cross-layer pacing in PPRT that is shown
to significantly reduce latencies and increase latency-predictability over TCP variants
optimized for low latency—even over the public Internet.





“My motives, as ever, are entirely transparent.”
Hughnon reflected that ‘entirely transparent’
meant either that you could see right through
them or that you couldn’t see them at all.

Terry Pratchett, The TruthChapter 7

Transparent Transmission
Segmentation

While Chapter 5 and Chapter 6 have mainly focused on solutions for latency-awareness
and predictability using changes at the end-hosts, this chapter investigates a complemen-
tary solution that shows how these properties can be improved by altering components
inside the network. Having such solutions in the network can support both CPS and
other applications that require reliable timing and are facing heterogeneous multi-hop
communication paths.

7.1 The Vices and Virtues of the End-to-End
Principle

In the 1980s, when the Internet was established together with the nowadays predominant
Transmission Control Protocol (TCP) [Pos81], many components in packet-switched
networks were unreliable. In order to compensate for this, TCP implements reliable
transport in adherence to the end-to-end (E2E) principle as stated by Saltzer et al.
[SRC84]. The authors of this classic work claim that E2E is the only way to provide
reliability along a (network and system) transmission path that is composed of unreliable
components. Another central design principle of the Internet is to have a dumb core and
a smart edge, allowing the core to stay the same while applications evolve.

Today, many of the motivations behind the work of Saltzer et al. are no longer true.
Memory is increasingly reliable and wired communication channels have extremely low
error rates—thanks to improved physical facilities and the change of typical network
topologies to more reliable ones, e.g. in the context of data centers [GHJ+09]. End-to-
end paths are nowadays composed of a vast range of link types with different latencies,
data rates and loss characteristics. In addition, a significant number of middleboxes
have been developed over the years, effectively making the network core not as dumb
as initially planned (consider e.g. WAN accelerators or various NAT incarnations). In
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Figure 7.1: A typical streaming scenario where a lossy last WLAN link causes increased
delays through end-to-end retransmission—though retransmission would only be neces-
sary for the last hop.

consequence, adhering to the E2E paradigm has performance drawbacks and deviating
from it can reduce, for instance, transmission latencies (cf. [SRC84, Moo02]).

End-hosts do not “see” differences in link parameters as only one virtual link with
accumulated parameters is observable. An example of a situation where this is problem-
atic can be seen in Figure 7.1, where a typical streaming scenario is shown1. End-users
operating a wireless device (e.g. a smartphone) are attached to an edge node (e.g. an
access point) via a link that has a relatively short delay but a comparably low reliability.
In contrast, the link from the edge node to the cloud providing the content is longer
in terms of delay but more reliable as it uses wired, guided media. Operating error
control in the end-to-end mode is bound to cause retransmissions over the complete
path, though the loss is more likely to have happened on the last (and short) link. If we
use protocols with proactive error control using forward error coding, an E2E scheme
has to pick a code rate that is suitable for the composed link; consequently over- or
under-estimating the redundancy information required for both links individually.

These heterogeneities in link parameters cannot be exploited using an E2E mode
of operation, so it is necessary to split the connection—an approach that is going to
be intensively discussed in the remainder of this chapter. While this approach is well-
known through traditional works, e.g. on Split-TCP [KKFT02], it is only by the advent of
network softwarization and an increased interest in edge-computing and latency-critical
CPS applications that this scheme can achieve wide deployment and serve a great number
of users in different network scenarios.

7.2 Transparent Transmission Segmentation
Knowing about the deficiency of the end-to-end principle with respect to run-time per-
formance and the impact on different transport layer functions, this section proposes
the transparent transmission segmentation (TTS) approach that aims to overcome these
inefficiencies without disrupting network architectures that have been build with the
E2E principle in mind.

1Control applications face similar timing problems, as they share the demand for low communication
latency and low age-of-information.
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7.2.1 Requirements
For the TTS approach to be deployed widely and to sustainably improve network per-
formance, a set of requirements must be fulfilled, also briefly covered in [SH16b]. These
include transparency towards different network components, ease of deployability, as
well as providing sufficient utility improvements.

Transparency In order to allow straightforward deployability on the Internet, two
things are mandatory when segmenting a transmission: (a) end-hosts should not be
required to change, e.g. by modifications of userspace or kernel code, and (b) the wire
format that end-hosts use should still be in line with the protocol specifications, i.e.
the RFCs. Complying with this increases the acceptance of the approach and enables
gradual upgrades of network core systems to use this approach. Thereby, it is transparent
to the end-host whether the connection is segmented or not, apart from a change in the
observed quality-of-service (QoS), i.e. achievable data rate, reliability, and latency. Such
an approach is a transport-layer Performance-Enhancing Proxy (PEP), as described in
RFC3135 [BKG+01]. While not strictly being a transport protocol, many applications
run on-top-of HTTP, which is effectively terminated at HTTP proxies—a widely used
application-layer PEP component on the Internet [LL15].

Feasibility While the requirement towards transparency implies that no implemen-
tation effort at the end-host should be necessary, it is also advisable that a TTS im-
plementation poses minimal effort in the network core. This effort comes in various
forms, e.g. additional software running on switches, increased number or complexity of
protocols, or additional devices to be deployed. In consequence, a feasible solution keeps
the network mostly untouched and incorporates only minimal changes.

Utility By design, TTS adds overhead as the segmentation is more complex than the
pure forwarding of data. Furthermore, not all network functions profit from TTS in a
certain scenario and a certain TTS configuration (i.e. position of segmentation points and
used intermediate buffer sizes). If there is one function that does not profit from TTS, it
does not in general mean that applying TTS is detrimental to the overall performance.
This is because other functions might perform better or that negative effects can be
avoided or compensated for. Thereto, it should be possible to decide on a per-link
basis to use TTS or not. This drives the need for heuristics to predict the benefits and
drawbacks induced by TTS and to guide the process of placing segmentation points and
parametrizing them (e.g. buffer sizes or transmission parameters).

Fairness Considering that the TTS approach is targeted at networks that are (a) used
by multiple parties or (b) might be transit networks of ISPs, it is desirable that the ap-
proach retains suitable forms of fairness. In the congestion control community, new
algorithms are evaluated by comparing their behaviour to generic models of TCP trans-
ports. For TTS, these aspects have to be considered and the goals of the operators must
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Figure 7.2: Contention is a transitive relation, i.e. even though Flow 1 and Flow 3 have
no shared link, they contend through the intermediate Flow 2.

be taken into account—especially because we know, not just from [ZMSS19], that not
all properties can be maximized with a single congestion control algorithm.

Security TTS is similar to a man-in-the-middle, as it reroutes traffic through an addi-
tional component. There are three reasons why—despite of this similarity—TTS should
not be considered harmful to security: First, the manipulation happens on transport
layer information units (TCP segments or UDP datagrams) and it is not much different
from what load balancers, NATs, or other devices that change routing and forwarding
do. Second, the fact that TTS works on the transport layer means that services such
as transport layer security (TLS) work on-top of the TTS approach. Third, the parties
that apply TTS are assumed to be in charge of operating the current (sub-)path of the
communication so they are privileged to do this kind of manipulation. In consequence,
it needs to be ensured that the software implementation required for TTS is secure and
has no vulnerabilities, but the approach itself does not impede security.

7.2.2 Dimensions
Single virtual segments—as visible to the transport layer—do not expose the hetero-
geneities of link parameters but resemble a non-decomposable aggregation. TTS allows
to split these segments in a way that one or more homogeneous links can form a segment
to which the transport layer functions are tuned. Whether two links are homogeneous
or not is decided based on a number of parameters, now called dimensions.

Latency There are multiple components that contribute to the overall end-to-end
latency (cf. Chapter 3). On a link level, we have differences in terms of propagation
latency as well as the transmission latency. Being aware of the distributions of the
different latencies on a link allows splitting the end-to-end path into segments. This split
enables RTT-dependent network functions, in particular congestion and error control,
to operate on the segment-local RTT.

Contention In circuit-switched or deterministic packet-switched networks, the prob-
lem of multiple access and contention is solved at design or admission time. In the
networks we target, i.e. predictable statistically multiplexed packet-switched networks,
connections and their flows compete for medium access time and data rate. As we focus
on the transport layer, we are primarily concerned with the congestion window and in
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turn the sending rate that is constantly adapted due to congestion control. These dis-
tributed algorithms aim to converge to a fair share of the available channel—a process
that takes some time and might take even longer than the actual flow needs to complete.

Contention itself happens on any link on the end-to-end path, making flows that share
at least one link directly contending. Apart from link congestion, there is also flow-state
congestion at in-network nodes, which is further discussed in [TS12]. Contention is a
transitive relation, as can e.g. be seen in Figure 7.2, and even with segmentation, this
transitivity cannot be completely removed. Nevertheless, the segmentation reduces the
strength of the influence between flows that are not sharing a common link.

Resilience The fundamental resilience of a link is determined by the physical proper-
ties and medium access technologies used to implement it. A further source of unrelia-
bility is loss caused by congestion events. Treating resilience on an end-to-end level for
heterogeneous links leads to either over- or underestimations of the required redundancy
information to achieve reliable transport. With segmentation, it is possible to adjust to
individual links with stronger or weaker error coding. In consequence, both congestion
and error control are affected by the (visible) resilience of an individual link.

Buffers Considering the end-to-end path, many links and intermediate processing
steps have buffers to compensate for bursty workloads or traffic. By segmenting, we
(a) enable the targeted treatment of individual buffers and (b) can introduce additional
buffers in case that performance improvements that require larger buffers are desired.
TTS is concerned with the fill-level of buffers as well as their total capacity, which have
influence on congestion control and flow control.

Data Rates Maximum data rates differ at different links due to their technology and
demand patterns. Regarding the end-to-end path, there is exactly one link with the bot-
tleneck data rate at any time—defining the maximum achievable long-term throughput
when using this link. Naturally, as data rates fluctuate, the bottleneck link can change,
too. Buffers, as mentioned before, cannot increase this capacity, but allow to compen-
sate for bursts and get closer to the bottleneck rate—but at the expense of increased
latency or age of information (cf. Chapter 6). The effective data rate also depends on
the previously mentioned resilience of a channel, in combination with the used FEC
blocklength [PPV09].

7.2.3 Impact on Transport Layer Functions
Considering the aforementioned dimensions, we take a look at individual transport layer
network functions (introduced in Section 3.3) and how they are affected by segmentation
on a theoretical level. Later, we are going to evaluate these effects in Section 7.5.
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Error Control The choice of error control parameters, e.g. retransmission timeout for
ARQ and code rate as well as blocklength for FEC, heavily depends on the link param-
eters (cf. Section 4.5). As TTS localizes the error control, one can choose parameters
that are suitable for the segment at hand, allowing to, e.g., fine-tune the redundancy
information by choosing an appropriate FEC code rate. End-to-end error control based
on ARQ incurs retransmission over the complete path again, even though segments have
been successfully traversed before. In consequence, it is advised to let error control work
on local segments instead of one E2E segment (cf. [KH14]) as evaluated in Section 7.5.2.

Congestion Control Many traditional congestion control algorithms increase the
congestion window upon reception of a new ACK (e.g. TCP Tahoe, Reno), a process
that happens in a frequency that is relative to the RTT between both end-systems.
With TTS, this RTT is reduced and the ACKs arrive faster, allowing more frequent and
timely advancements of the congestion window.

Algorithms such as CUBIC [HRX08] derive the current congestion window from the
current time and not the frequency of ACKs, making it less RTT-dependent. The latter
is because the feedback frequency and retransmission timeouts still rely on the RTT.
While the RTT-independence of a CCA does not allow TTS to achieve the same gains
as with other CCAs, the CCA can still benefit from TTS.

Furthermore, loss events happen on the local segment, which means that the conges-
tion window is only reduced on this segment and not over the whole path. Preceding
and succeeding segments can therefore keep their window and continue sending at the
same rate. Nevertheless, a reduction of throughput in a intermediate segment might
lead to a succeeding segment starving due to a lack of data; or a preceding segment
ceasing to send due to flow control, when the buffer prior to the congested segment runs
full. But as the preceding segment is only limited by the receive window value, it can
quickly resume sending at the last congestion window value as soon as the congested
segment has recovered and can read from its buffer.

Flow Control While congestion control tries to avoid dropped packets inside the
network due to full queues, flow control avoids that packets at the receiver must be
dropped due to a full buffer. In TCP, this means that the size of the receiver buffer is
limiting the bytes of data that can be in transit, which effectively limits the throughput
of the application. How to go beyond this limit using TTS is to be shown in Section 7.3.2.
The reduced RTT also shortens the interval in which the fill level of the receiving buffer
is communicated, which means that the sending side can react quicker. This results in
more bytes in flight on the first as well as the second link.

Rate Control Apart from controlling the amount of data in-flight through flow and
congestion control, a separate control parameter is the short-term sending rate at the
sender side. When e.g. the first link has a higher maximum throughput as other links or
processing steps, it is possible that the sender causes bursts of data that can be harmful
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E2E 1492 8 1492 8 1492 8

TTS 1492 1492 1492 24

Figure 7.3: A switch that connects links with MTU 1500B and 1492B leads to IP layer
fragmentation (in this example, three 1500B packets are sent). For E2E, this creates
small packets (two outgoing packets per incoming one), while TTS can accumulate data
and attempt to fill a full MTU.

for the rest of the processing and communication pipeline. With TTS, it is possible
to do rate control via pacing (see also Chapter 6) within the network, as pointed out
by Aggarwal et al. [ASA00]. While this can help to spread out bursts of data to avoid
losses due to buffer overflow, it adds latency for aggregation and pacing—something that
might be deterrent if striving for low latency.

Ordered Delivery TCP, for instance, ensures that bytes leave the receiver socket in
the exact same order they entered the sender socket. Thereto, the receiving end-system
buffers out-of-order packets and only forwards them when the gap is filled. With TTS,
this form of reordering can already be achieved inside the network. For certain scenarios,
this can be beneficial but especially for low-latency applications this can be detrimental,
as additional time is spent on aggregation for reordering.

Fragmentation Due to flow and congestion control, as well as implementation details
on when to flush a buffer, TCP fragments the messages of an application to fit into
multiple packets. TTS changes these boundaries as the stream of data is reassembled
at the segmentation point and newly fragmented afterwards. Furthermore, TTS also
has an impact on the IP fragmentation as new packets are created. On the IP layer,
it is possible that one switch creates lots of fragments (cf. Figure 7.3), e.g. because it
is connecting a link with an MTU of 1500 with one with MTU 14922. Each incoming
packet results in exactly two outgoing packets with a highly skewed packet length and
a high header overhead for the second packet. Using TTS, the fragmentation can create
fewer packets and is able to reduce the reassembly effort at the receiver.

7.3 A Formal Approach to TTS
Before we have a close look at the implementation of TTS in softwarized networks, we
formalize the segmentation process and shed light on theoretical derivations that can be
made from this.

2Typical values for Ethernet and DSL in Europe.
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Figure 7.4: On an abstract level, the E2E path can be decomposed into k hops connecting
k + 1 systems with various link and system parameters.

7.3.1 Formalization
In order to quantify the impact of TTS on a theoretical basis, we first model the links,
nodes, and paths in the network (cf. Figure 7.4). While there are more parameters that
affect transmissions, only those that are observable for a network layer are considered.

Paths and Transmissions When arguing about transmissions, paths composed of
multiple observable links are considered. The transmission traverses k hops or links,
which in turn connect k + 1 nodes by a path. Nodes are denoted Ni with i ∈ [0,k] and
links are denoted Li with i ∈ [1,k]. N0 is the source of a transmission, while Nk is the
sink. Such a path is split at segmentations S ⊂ {Ni : i ∈ [1,k − 1]}. A segmentation s is
implemented using a PEP.

Link Measures Each observable link—either purely physical or a logical composition
of many—has a number of properties that can be measured. Regarding timing, the
round-trip time RTT ([RTT ] = s) and its variation as jitter J ([J ] = s) are captured.
Furthermore, the link’s resilience in terms of packet loss rate L ([L] = %) and loss
correlation ρ ([ρ] ∈ [−1,1]) is given. In our cases, a simplified Gilbert-Elliot [Gil60, Ell63]
model SGE(α,β) is used to model the correlation ρ(SGE(α,β)), which has been fitted
to erasure sequences [Gor12]. More details and a derivation of multi-hop SGE are
in Appendix A. Finally, transmission capabilities in terms of data rate R ([R] = B/s)
and its utilization U (U = Ractual

Rmax
, [U ] = 1) can be measured.

For the virtual single link that is visible to the application, the following holds:

RTTE2E =
k∑

i=1
RTTi (7.1)

LE2E = 1 −
k∏

i=1
(1 − Li) (7.2)



7.3. A FORMAL APPROACH TO TTS 99

E2E Client Node Server

TCP RCV Buffer

TTS Client Node with
Relay Server

TCP RCV BufferRelay TCP RCV Buffer

Buffer
Capacity

Unused
Link

Capacity

Used
Link

Capacity

Legend

Figure 7.5: Small TCP receiver buffers limit the amount of data in-flight per RTT
(Brecv = 4 in this case). TTS can increase utilization and hence throughput by (a) ter-
minating the connection at the PEP leading to a shorter RTT and (b) providing buffer
at the intermediate node that is larger than the one at the destination (Brelay = 6). For
this example, this increases the overall utilization from 4/20 to 10/20.

RE2E = min
∀i∈[1,2,...,k]

Ri (7.3)

ρE2E = ρ(SGE(αE2E ,βE2E)) (7.4)

Node- & Connection-based Measures When communicating, data travels across
many nodes and is put into many different buffers, whose size is denoted by B in Byte.
While there are buffers on all layers of the network stack, the application layer buffers
(BA) as well as transport layer buffers, such as send (BT,S) and receive (BT,R) buffers
for TCP, are of particular interest for TTS. These buffers reside on a node, but they are
connection-based, i.e. a system would allocate individual send and receive buffers per
TCP connection.

7.3.2 Theoretical Results on Flow Control
Flow control (cf. Section 3.3) is an essential network function in TCP, in particular when
dealing with constrained devices [BEK14] that have small buffers, e.g. embedded IoT
devices. Having little memory, the size of the receive buffer Brecv can be so small that
it has an impact on the achievable throughput—in case the application consumes faster
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than Brecv
RT T and regularly idles due to an empty buffer. We consider a two-hop scenario3

as depicted in Figure 7.5, where the number of packets in flight is limited by the size of
the TCP receive buffer at the receiver (Brecv). The following section derives the effective
data rate that can be used considering this buffer.

Preliminary note on Practical Relevance In sense-and-act scenarios, which are
common in IoT, is in unlikely that the constrained IoT device is the sink of large-scale
flows. An exception to this are software updates, which might be large in size and need to
be downloaded to the device in a reasonable time. So while most of the in-field operation
time might not need TTS, system upgrades can still benefit from it.

Effective Data Rate in E2E Flow Control Scenarios

A TCP connection’s throughput is limited by the maximum amount of in-flight data on
the links, hence the maximum rate Rmax is the one of the bottleneck link:

Rmax = min(R1,R2) (7.5)
The actual rate at which TCP is operating depends on two of its functions, namely

congestion and flow control. Congestion control aims to avoid overflow at in-network
buffers, by measuring and approaching the channel’s data rate (Rchannel) as close as
possible, so that we can define the congestion control rate RCC as:

RCC BRchannel − ε , RCC ≫ ε > 0 (7.6)
The flow control rate RF C depends on the size of the receiver buffer and derived

from the BDP (R = data rate, RTT = round-trip time, N = number of bytes in flight):

RF C · RTT︸           ︷︷           ︸
BDP

= N ⇔ RF C B
N

RTT
(7.7)

As flow control ensures that there is no buffer overflow (N ≤ Brecv), we know:

RF C ≤ Brecv
RTT

(7.8)

In order to control congestion and flow at the same time, TCP chooses the window
size to be the minimum of the two, which in turn limits the data rate:

Reff = min(RCC ,RF C). (7.9)
For now, we assume that the links have sufficient available data rate so that conges-

tion control is not the limiting factor. This means that the flow control throughput is
always smaller (RCC > RF C), hence Reff = RF C . The round-trip time RTT is composed
of the individual RTTs on the two links, so we get:

Reff ,E2E = Brecv
RTT1 + RTT2

(7.10)
3In general, any segmentation can be considered as a two-hop scenario, where the hops before and

after the segmentation are treated as an aggregated single link.
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Effective Data Rate with TTS

For TTS, we effectively get two rates depending on the receiver buffer and relay buffer
Brelay . Again, the bottleneck data rate is determining the overall throughput:

Reff ,T T S = min(
Brelay
RTT1

,
Brecv
RTT2

) (∗)= Brecv
RTT2

(7.11)

The last equality (∗) can be ensured by design: The receiver buffer is fixed and small,
e.g. because it is an embedded device, and the RTTs are fixed. Consequently, the design
parameter is Brelay , which should be dimensioned such that the bottleneck link is the
second and not the first link:

Brelay
RTT1

≥ Brecv
RTT2

⇔ Brelay ≥ RTT1
RTT2

· Brecv (7.12)

When we consider the case of equality, we have found an ideal size for the relay
buffer, namely:

Brelay = RTT1
RTT2

· Brecv (7.13)

Comparing the rates, we get the following improvement factor Λ4:

Λ =
Reff ,T T S

Reff ,E2E
=

Brecv
RT T2
Brecv

RT T1+RT T2

(7.14)

= RTT1 + RTT2
RTT2

= RTT1
RTT2

+ 1

Considering limits, we can deduce that for RTT1 ≫ RTT2, the improvement is sig-
nificant, while for RTT1 ≪ RTT2 there is no difference from the E2E case. If both
RTTs are equal, the utilization of TTS would be doubled compared to E2E. We can
deduce that in situations where flow control is the limiting factor—when congestion
control alone could approach maximum data rate—a segmentation is always beneficial.
In order to achieve this, the relay buffer must be sufficiently large, but given the receiver
buffer size and delays, its size can be chosen appropriately, according to Equation (7.13).
TTS mitigates the performance bottleneck caused by insufficient buffers and makes the
network data rate the bottleneck again.

7.4 Relaying
Knowing about the requirements for successful TTS as well as having theoretical incen-
tives to implement it, this section focusses on the practical aspects and design decisions
of deploying TTS to actual networks. Regarding terminology, segmentation is the effect
we want to produce and we do so by relaying traffic at relay components.

4(Λ > 1: TTS better, Λ < 1: E2E better)
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Client Node Server

End-To-End (E2E)

Relay
Split (TTS)Split (TTS)

Figure 7.6: Applying TTS turns a E2E connection into two separate (but to the end-
hosts invisible) segments.

7.4.1 Performance-enhancing Proxies (PEP)
RFC3135 [BKG+01] describes the concept of a PEP (our relay) and sketches possible
implementations on various layers. In comparison to the transport layer PEPs, appli-
cation layer PEPs have better opportunities to take the payloads and communication
patterns into account, but the interoperability and generality of the resulting approach
is limited. Network or link layer PEPs, in contrast, implement only basic functions (for-
warding, routing, and medium access) and segmentation requires many changes as, for
instance, the medium access must operate differently (cf. [Dom17]). In summary, we
found that with respect to improving latency-awareness and predictability, the transport
layer provides the broadest applicability and an appropriate set of network functions to
be manipulated for improving performance.

7.4.2 General Relaying
In general, an end-to-end connection between two sockets can be split at an interme-
diate node—the relay. This process can (and should) be applied repeatedly wherever
appropriate, but for the rest of this section, we consider a single split leading to two
segments, as shown in Figure 7.6. Conceptually, segmenting a connection means trans-
parently splitting it at an intermediate node by connecting its “ends” to the respective
ends of the intermediate node. Thereby, both sides are segments that are to some extend
independent of each other, and network functions work locally (cf. Section 7.2.3).

The “ends” are system-level sockets, which come with associated data buffers and
connection metadata. The relay is incorporated into the communication via software-
defined networking and can be deployed as a physical or virtual network function.

The aforementioned process describes the split mode, where the connection is fully
terminated at intermediate sockets. An alternative to this is the non-split mode where
the relay directly interacts with the packets in a manner that must not follow the rules
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Figure 7.7: The relay forwards data between sockets facing the two original “ends” of
the communication.

governed by the protocol in question (e.g. delaying or aggregating TCP packets without
sending ACKs).

7.4.3 TCP Relaying
For TCP relaying, the socket file descriptors in the Linux kernel are used, which come
with dedicated send and receive buffers—later we show how crucial their dimensions
are for performance. Figure 7.7 depicts the architecture of such a relay. Both sides of
a relayed communication (i.e. client and server) are implemented using a socket that
connects to the original ends of the connection. The relaying itself works as follows: Per
direction (i.e. client-server, server-client), a thread reads as much data as possible from
the incoming socket, sending it to the outgoing socket as fast as possible. In-between,
we have an application-level buffer BA used to store incoming data before it can be sent
to the outgoing socket.

This architecture leads to ACKs being sent upon reception at an intermediate node,
“violating” the E2E reception guarantee that only data received at the other transport
end is ACKed. This is in contrast to Split-TCP [KKFT02] where this is handled via
distinct Local-ACKs. We must commit this violation to allow transport layer functions
to work at the segment level, and to be transparent to the end-systems at the same time.

At first, this violation looks harmful, but a closer look at the practical relevance
reveals that it is not: The semantics of TCP ACKs should not be mistaken for application
layer acknowledgements that all data has been received and (will be) acted upon. As
the relay makes crashes transparent (if either side is detected to be abruptly closed, it
closes the opposite side abruptly), a host cannot distinguish a relay crash from a server
crash when receiving a RST packet. At the same time, if a host is not sending data, it
can also not detect if the peer is gone, independently of whether the peer is the original
end-host or the relay. In consequence, we do not consider this to be a hard violation of
the E2E principle.
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7.4.4 RTP Relaying
Due to certain shortcomings of TCP for multimedia streaming and in particular real-
time transmission, the RTP protocol has been designed [SCFJ03]. Though there are
profiles that define ARQ and FEC for error control, our studies have yielded that they
are rarely used in well-established open source projects (e.g. VLC media player5 or
Mozilla’s WebRTC6).

Thereto, we have designed application-independent relays that add error control to
a connection without it. These relays are placed after the first hop (at the first node)
and before the last hop (at the last node before the receiver) [Bir17]. Thereby, the
intermediate links can make use of RTP’s error control profiles and we can add both
FEC and ARQ—while being transparent to the end-systems. Additional relays can be
added along the path, i.e. a specific error control configuration can be chosen for every
pair of relays. Such a configuration defines whether retransmissions are enabled (ARQ)
and how many data and redundancy packets are used per block (FEC).

7.4.5 PRRT Relaying
The PRRT protocol (cf. Chapter 4) is another candidate for applying relaying. The
process itself can work identical to the TCP relaying, i.e. the relay uses sockets to ter-
minate and re-open the connection in both directions. What is different from TCP is
the number of parameters that are available to be set at the relay. For TCP, the major
design parameters are the send and receive buffers. For PRRT, it is crucial to set param-
eters such as the tolerable latency and error coding. The tolerable latency must be split
between segments as it still needs to resemble the actual application constraints. This
split also has an impact on the choice of the error coding as it determines, for instance,
the number of possible retransmissions. A detailed treatment of this dimensioning issue
and the splitting of the latency budgets has been given by [Kar15].

7.4.6 SDN and NFV as Enablers for Relaying
In traditional packet-switched networks, core devices are simple and the complexity is
in the end-hosts. With the increasing number of middleboxes over the last decades, this
is no longer true and this shift in paradigm is also supported by the trends towards
softwarized networking. This is also following the concepts of fog computing [BMZA12],
where intelligence is moved inside the network. While circuit-switching led to significant
resource reservation and therefore inefficiencies (i.e. small utilization), packet-switching
faces inefficiencies due to the fact that each packet can potentially be treated differently.
Therefore, we recently see a trend towards flow-switched networks that treat a single
flow in a coherent manner. The concept of a flow is abstract by design, to allow for

5https://www.videolan.org/vlc/ (accessed August 29, 2019)
6https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API (accessed August 29, 2019)

https://www.videolan.org/vlc/
https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API
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Figure 7.8: The softswitch architecture resembles a straightforward logical network view
despite connecting several physical and virtual systems together.

different interpretations and mapping to other network parameters, e.g. TCP header
information and IPs for a TCP connection.

In the context of TTS, softwarized networking (i.e. software-defined networking (SDN)
and network function virtualization (NFV)) is suitable for several reasons: First, SDN
provides flow-based routing, an abstraction that is particularly useful for relaying indi-
vidual connections. Second, SDN implementations provide a broad view on the network
topology and its link parameters—information that is essential when deciding on deploy-
ment of relays. Finally, relaying represents a network function that can be physically
deployed, but will most likely be deployed as a virtual network function (VNF) as it is
of small footprint and beneficial for many services.

Softswitches and Containers

In SDNs, it is common to use so-called softswitches, where a single physical device is
turned into a network node with virtual end-systems directly attached to it (cf. Fig-
ure 7.8). By using general purpose operating systems, such as Linux, a large range of
hardware platforms are supported and different functions can be implemented. This
makes it possible to build compact solutions that only contain the software that is
necessary for switching and to implement VNFs. Our evaluations are using Ubuntu
18.047, which ships with Open vSwitch8 (OVS), offering support for extended switching
capabilities and OpenFlow [MAB+08].

In addition, Docker9 containers in Linux are used in a way that they look like phys-
7http://releases.ubuntu.com/18.04/ (accessed May 16, 2019)
8https://www.openvswitch.org/ (accessed May 16, 2019)
9https://www.docker.com/ (accessed May 16, 2019)

http://releases.ubuntu.com/18.04/
https://www.openvswitch.org/
https://www.docker.com/
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ical devices topology-wise. Docker gained traction in data center and cloud operations,
as it is a lightweight alternative to virtual machines (VM). NFV was initially done using
virtual machines, but emulating full systems made it inefficient. Furthermore, some
functions require fast startup that could not be achieved with VMs, as they boot a
complete OS. In contrast, Docker only virtualizes what is required by the specific appli-
cations, e.g. application frameworks or libraries, and reuses what is common between the
applications, namely the kernel. This makes Docker a lightweight virtualization solution
to keep the footprint, startup times as well as the communication latencies of VNFs
small. Therefore, the naive relay we present in this section can be deployed as a Docker
container on the node to enable a straightforward and lightweight usage of TTS.

Relaying Process using SDN

Incorporating relay components into network operations can be achieved using different
approaches, e.g. using an SDN controller. First, a controller has to be aware of relaying
rules, i.e. where and how to insert relays and reroute traffic so that TTS can be imple-
mented. This includes match rules on host and port names to specify which services
should be relayed. Our evaluations use a modified version of the SDN controller Flood-
light10, extended by RESTful interfaces that accept relaying rules. In the following,
we assume that relays are placed in prior to a client establishing a connection, though
other—more reactive—solutions are also possible. The choice of this proactive approach
is to limit the latency penalty of TTS, which is already non-negligible due to the relay
establishment process and the traffic redirection.

Connection Establishment When everything is set up, clients are able to establish
a (segmented) connection to servers using a process as depicted in Figure 7.9. This
process incurs additional latency during connection setup, but as we assume reactive
SDN routing, this is a common approach. When going for low latency, it must be
ensured that the flow rules are present before the client starts to connect to the server.

The first step in this process happens when the client sends a SYN-packet to the
first switch. As the switch has no flow rule for it, a PACKET_IN event is raised at the
controller, which looks up the relaying rule for this flow. If a rule is found, the controller
programs the flow tables of the nodes along the path (installing R2 and R3 of Table 7.1)
and configures the relay to act upon this new relayed connection.

In this process, the transport layer ports and buffer sizes are configured and the relay
is instructed to connect to the server. While this connection is being opened, packets are
already rewritten by the relay and appear to originate from the client. When the connec-
tion between the relay and the server is established, additional flows are programmed (R1
and R4) and the initial SYN packet is forwarded to the relay (and rewritten on the way).
As soon as the relay answers, the client can complete the handshake.

10http://www.projectfloodlight.org/floodlight/ (accessed April 26, 2019)

http://www.projectfloodlight.org/floodlight/
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R Src. IP Src. TCP Port Dst. IP Dst. TCP Port Action

1 IPC TPortC IPS TPortS

SetDstIP(IPR)
SetDstTPort(TPortR,I)
Output(PhyPortR)

2 IPR TPortR,O IPS TPortS

SetSrcIP(IPC)
SetSrcTPort(TPortC)
Output(PhyPortS)

3 IPS TPortS IPC TPortC

SetDstIP(IPR)
SetDstTPort(TPortR,O)
Output(PhyPortR)

4 IPR TPortR,I IPC TPortC

SetSrcIP(IPS)
SetSrcTPort(PortS)
Output(PhyPortC)

Table 7.1: Flow entries that are installed at the node in Figure 7.10 to rewrite and
redirect the packets to allow TTS.

Eventually, both “ends” of the original connection have transparently established
connections to the ends of the relay—but believe that they are connected to each other
directly (the last part of the diagram shows no ACKs for clarity reasons). Finally, when
either side closes the connection, this is propagated through the relay, allowing a proper
tear-down of the connection (not shown in Figure 7.9).

Rewriting After the flow rules are established, the packets are transmitted with nor-
mal rate, except the additional latency that occurs for the round-trip from the node to
the relay. As this happens using direct connections from OVS to the Docker container,
this is a relatively small overhead. In order to keep up the transparency and integrate
the relay into the connection, the network node must rewrite packets11. In Figure 7.10,
we see the rewriting of IP and transport layer addresses a single packet faces when
traversing the TTS path. The node redirects the packet to the relay and redirects the
answer towards the server. It should be noted that the packets on the connection from
relay to node look as if the relay would be communicating directly with the other ends
of the connection. Table 7.1 shows the flow entries that are programmed into the node
using OpenFlow.

7.4.7 TCP Relay Implementations
While investigating the effects of TTS, two distinct implementations of TCP relaying
have evolved that differ in performance, but also in requirements towards the system
they are deployed to.

11This is another reason why SDN is a straightforward choice for TTS—even though rewriting is
also possible without it.
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Figure 7.10: Packets from client to server (and vice versa) are rewritten at the node to
traverse the relay and thereby allow the application of TTS.
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Figure 7.11: The relay manages multiple relayed connections, which are configured using
the CTRL socket that is connected to the SDN controller.

Naive TCP Relay

The naive TCP relay implementation follows the design in Figure 7.11 and is a pure soft-
ware solution. The implementation uses the glibc, interacts with the POSIX TCP sock-
ets, and uses pthreads for multi-threading. The latter ensures proper operation as most
calls on sockets are blocking. Furthermore, the relay’s performance can be enhanced in
high throughput scenarios, because both directions can be served simultaneously by two
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Figure 7.12: Comparing CDFs of forward-trip latency of the FPP-based relay, the naive
relay without FPP and lower-layer iptables forwarding [Vog19].

threads running at the same time on separate cores. This makes it flexible in terms of
deployment, e.g. as a Docker container within a softswitch as described in Section 7.4.6.

The relay’s architecture in Figure 7.11 depicts its interfaces as well as intermediate
buffers. The relay has a socket on either side of a relayed connection, which is named
after the host it points to. An additional control socket serves as an interface to the
SDN controller to install relaying rules. During operation, the relay tracks open ports
and reuses ports of closed connections.

The relay uses multiple threads (potentially on multiple cores) to separate its func-
tionality. The main thread waits for incoming controller messages to update the internal
list of relaying rules. For each relayed connection, there are two threads—one for each
direction of the TCP connection. This architecture leads to six additional buffers for a
relayed connection, i.e. one TCP send buffer, one TCP receive buffer, and an application-
layer buffer per direction. In order to avoid bufferbloat and provide low latency, these
buffer sizes are important configuration parameters.

A major drawback of the naive relay is that an intermediate application layer buffer
is needed to forward the data between two sockets, which incurs additional copy in-
structions. Furthermore, plain POSIX sockets are used, which do not provide the most
efficient API to use TCP. For this reason, we developed the FPP relay that is cov-
ered in the next section. The naive implementation has been used for several publica-
tions [SH16b, SH17b] and is available as open source12.

Kernel-bypass & Fast Packet Processing TCP Relay

After the development on the naive relay, it was investigated what the overhead per relay
is (in terms of transmission and processing) and how to reduce it. As part of [Vog19], a

12https://git.nt.uni-saarland.de/ON/Applications/Relay (accessed May 15, 2019)

https://git.nt.uni-saarland.de/ON/Applications/Relay
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Figure 7.13: Comparing the FPP and the naive relay is done on a two-host setup with
appropriate ports to allow measuring the forward-trip time [Vog19]

relay based on kernel-bypass networking and fast-packet-processing (FPP) technologies
has been developed13. The FPP relay uses the same approach for configuring relayed
connections as the naive relay, so it is a direct replacement. Internally, the solution uses
mTCP14 [JWJ+14] which in turn leverages DPDK. As DPDK uses direct access to cores
and NICs, the relay cannot be easily set up as a Docker container but is started on the
system itself—limiting its range of possible deployments.

We compare the performance of the FPP relay to the naive relay using a setup as
in Figure 7.13. In Figure 7.12 we see the CDFs of forward-trip latencies over a series
of 1 million short packets sent from the sending application to the receiver. This shows
how the distribution of latencies can be significantly improved (i.e. lower and steeper
CDF) when using FPP. The iptables series acts as a reference, showing kernel-based
forwarding, which is slower than the FPP version that also includes TCP forwarding.

7.5 Evaluation

Now that we know how to build relays and how to place them while maintaining trans-
parency, the question remains whether our intuitive ideas about the benefits of TTS can
be proven empirically.

13https://git.nt.uni-saarland.de/ON/Applications/fpprelay (accessed May 29, 2019)
14https://github.com/mtcp-stack/mtcp (accessed May 15, 2019)

https://git.nt.uni-saarland.de/ON/Applications/fpprelay
https://github.com/mtcp-stack/mtcp
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Figure 7.14: The evaluation is executed using three connected OpenvSwitch nodes on
which Docker containers running the relay and the measurement app are deployed.

7.5.1 Methodology
Evaluation Metric and Measurement Applications

Even though TTS can have positive effects on many network parameters, our major
figure of merit in the following is the flow completion time15 FCT, [FCT ] = s for a
flow of size S, [S] = B. Thereto, we can shed light on how well the TTS paradigm is
able to narrow the latency distribution of TCP-based communication and how it can
reduce the latency on an absolute scale. Thereby, latency-awareness is increased and
the predictability of latency can be improved at the same time. For the measurement,
we are using a simple TCP application, written in Go16. We specify the size of the flow
and the application measures how long it needs to send all the data and finally get an
application-layer acknowledgement by the peer. The optimal FCT is based on link rate
R, [R] = B/s and is computed as:

FCTopt = RTT + S

R
(7.15)

For simplicity, we omit the processing latency here, as it is in the order of µs, while the
others sizes are in ms. The analysis uses cumulative density functions showing the FCT
values over a set of identical experiments with flow size S.

Network Topology and Systems

The experiments use a topology as depicted in Figure 7.14, with nodes that have 8 cores
and 8GB of RAM (except for an Internet evaluation, where the residential node has
4 cores and 2GB RAM) and all run Ubuntu 18.0417 with the Linux 4.15 kernel. The
application as well as the relay run as Docker containers on the nodes. For this reason,
the naive relay is used throughout the evaluation, as the FPP relay cannot run inside a

15Consider [DM06] for further motivation on the usage of the FCT metric.
16https://golang.org/ (accessed May 17, 2019)
17http://releases.ubuntu.com/18.04/ (accessed June 5, 2019)

https://golang.org/
http://releases.ubuntu.com/18.04/
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Docker container. Network link parameters are set using the netem18 tool available in
Linux. Finally, the default congestion control algorithm used is CUBIC [HRX08] unless
stated otherwise.

7.5.2 Investigations
The evaluation is going to investigate the following hypotheses on TTS:

H1: TTS is beneficial for lossy last miles. For video streaming scenarios, where
the receiver is e.g. in a home network with a wireless link, TTS is able to compen-
sate for highly biased loss and latency parameters, as motivated by Figure 7.1.

H2: TTS is beneficial in flow-control-limited scenarios. In IoT scenarios, the speed
of downloading software updates might be constrained by the small end-host
buffers and not by the wireless link they are using to connect. We expect that in
such scenarios, TTS is able to reduce the FCT thanks to an intermediate relay
with a sufficiently large buffer (cf. Section 7.3.2).

H3: TTS is beneficial in scenarios with high jitter. Thoughts around the impact
of TTS on the ordered delivery network function might lead to the conclusion that
the aggregation in TTS is harmful for the FCT. In contrast, high jitter leads to
a larger number of retransmits—a scenario that is detrimental for achieving low
FCTs. We are investigating which aspect dominates and under which circum-
stances TTS outperforms E2E.

H4: TTS has different impacts on different congestion control algorithms. TCP
performance is significantly determined by the congestion control algorithm used,
mainly because it controls the amount of data in-flight and defines the loss han-
dling. Therefore, we expect different behaviours and turn-over points where E2E
is better than TTS and vice-versa.

Validating H1

In order to validate the suitability of TTS for video streaming scenarios with a lossy
last mile, we look at the FCTs for a flow of 5MB. The first link—the residential Internet
access—has a one-way delay of 20ms and the home WLAN has a one-way delay of 1ms.
Both links have a maximum data rate of 16Mbit/s and the buffers are sized such that
the complete flow can fit in. The residential link is error free, but the WLAN link has
the following loss rates: 1.50 , 1.00 , 0.50 , 0.10 , 0.01 , and 0.001%. We run 100 trials
per loss rate and give the CDF of the FCTs in Figure 7.15.

As can be seen, TTS is able to compensate high loss rates and can achieve lower
and more predictable latencies. For instance in the scenario with 1.00% loss, the 95th
percentile FCT is reduced from 12.84 s to 5.51 s and the inter-quartile range (75th to

18http://man7.org/linux/man-pages/man8/tc-netem.8.html (accessed May 17, 2019)

http://man7.org/linux/man-pages/man8/tc-netem.8.html
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Figure 7.15: TTS can significantly reduce FCTs for scenarios with a lossy last mile and
a skewed delay. The higher the loss, the greater the benefit of using TTS (note the
varying x-axis).

25th) from 2.17 s to 0.05 s. For the congestion control algorithm used here (CUBIC),
there is a turn-over point between 0.50% and 0.01%, where the overhead caused by
TTS starts getting larger than the gain by local retransmissions. This validates our
hypothesis, showing that TTS is beneficial for local losses and we can deduce that the
gain through TTS is proportional to the loss rate.

Validating H2

In Section 7.3.2, it has been pointed out that small receiver buffers can—through flow
control—be the bottleneck of a communication path. Again we assume a two-hop sce-
nario and have effective maximum rates that are determined by Brecv

RT T and not limited by
the link transmission rate itself. TTS is able to increase the effective rates on the two
links by (a) the relay buffer acting as a larger buffer for the first link and (b) reducing
the RTT of the second link that is determining the effective rate on the link. To provide
a clearly visible effect, we picked the one-way latencies to be 20ms for the first and 5ms
for the second link—allowing up to a 20

5 = 4-fold increase in transmission rate in theory.
The receiver buffer always has 4kB, we are transmitting a payload of 1MB, and set the
relay buffer size to 4, 8, 16, and 32kB.

Based on the theory in Section 7.3.2, the 16kB buffer should be optimal, as it is
four times the size of the receiver buffer. In Figure 7.16, we see that the distance of
the FCT CDFs increases with the buffer size. Notably, an increase beyond the optimal
buffer (e.g. the 32kB) does not further improve the FCTs19, which validates our model
from Section 7.3.2.

19Apart from a tiny margin that is most likely due to the fact that theory and practice are—in
practice—not the same.
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Figure 7.16: When receiver buffers are small and flow control is a limiting factor, TTS can
install an additional buffer. The size of this buffer has a direct impact on the potential
speed-up and the optimal buffer size can be determined which maximizes utilization (in
this scenario it is 16kB).
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Figure 7.17: In scenarios with even small amounts of jitter, TTS can improve the flow-
completion times.

Validating H3

As mentioned in Section 7.2.3, relays reorder packets leading to additional delays due
to out-of-order packets being stored and only forwarded later. Therefore, the conclusion
might be natural that TTS increases the latencies in scenarios with high jitter. We
evaluate in the same two-hop scenario as before using two links with 16Mbit/s rate and
a constant delay of 20ms for the first and 2ms for the second link. The flow size in this
scenario is 512kB. In addition to this constant latency, we add jitter to both links at a
magnitude that is relative to the constant latency.



116 CHAPTER 7. TRANSPARENT TRANSMISSION SEGMENTATION

0 50 100 150 200 250 300
Time [s] (99th FCT: E2E=288.519, TTS=139.95)

0

50

100

150
cw

nd

E2E
TTS

0 50 100 150 200 250 300
Time [s] (99th FCT: E2E=288.519, TTS=139.95)

0

20000

40000

60000

rto

Figure 7.18: The improved FCTs are due to lower retransmission timeouts (rto) and
higher cwnd due to shortened RTTs. Depicted are ss samples for two evaluations which
caused the 99th percentile FCT when applying 0.10% jitter for both links.

Figure 7.17 shows the resulting FCT CDFs for jitter between 5% and 0.10%. The
curves show that jitter is in fact less harmful for TTS than for the E2E scenario—
countering the initial assumption that reordering might be a reason for TTS performing
worse. Apart from TTS achieving better tail latencies, it is also evident that the range of
possible FCTs is smaller; which indicates that TTS increases the latency-predictability.

In addition, we have measured TCP runtime parameters using the Linux ss tool and
sampled every 10ms. Figure 7.18 shows cwnd and rto time series for the two evaluations
that caused the 99th percentile FCT when applying 0.10% jitter on both links. The
diagrams shows clearly that with TTS the cwnd can achieve higher values and that the
rto is kept smaller in comparison to the E2E case.

Validating H4

Recently, the area of congestion control has seen an increased interest with several
new implementations being published. For the sake of this evaluation, we have fo-
cused on the algorithms available in the Linux kernel as this is sufficient to prove our
point. We are aware that more recent algorithms exists (and regularly compete in
the Pantheon [YMH+18]) and that they provide different characteristics. This evalua-
tion aims to show how not only different CCAs achieve different performance, but also
how TTS has a different impact on them. Thereto, BBR [CCG+16], CUBIC [HRX08],
NewReno [HFGN12], Veno [FL03], and Westwood [MCG+01] are evaluated using a sce-
nario similar to the first one with the lossy last mile, i.e. 16Mbit/s data rate on both
links, 20ms and 1ms one-way delay on the first and second link. To show the effects of
loss, we have chosen to do two evaluations per CCA with the second link having 0.10%
and 0.50% respectively, while the first link is error-free.

The results depicted in Figure 7.19 show differences in the performance of various
CCAs depending on the loss rate. Due to TTS, the sender can keep a high cwnd when fac-
ing loss and retransmissions are reduced—depending on the CCA implementation. We
decided not to evaluate cross-traffic scenarios and fairness metrics, in particular because
achieving fairness is still work-in-progress for the most recent CCAs (e.g. [ZMRP19]).
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Figure 7.19: The gains achieved by TTS depend on the congestion control algorithm
used, which has a direct impact on whether TTS operation is better than E2E and how
narrow the distribution of latency can be (note the varying x-axis).

7.6 Related Work
We have presented a summary of theoretical segmentation models, together with prac-
tical implementations that use SDN approaches, leave the E2E semantics intact and
achieve performance gains—effects that others have also discovered and achieved using
different implementations that have limitations our approach does not have.

7.6.1 Origins of Transmission Segmentation and Splitting
As mentioned before, the splitting approach—which we call TTS—is not particularly
new and has historically received interest in the context of wireless communications since
the 1990s. The IETF defines this approach as Performance Enhancing Proxies (PEP),
which have been first proposed in RFC 3135 [BKG+01]. The first mentioning of splitting
TCP connections is by Balakrishnan et al. [BSAK95], who present the Snoop approach.
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Snoop detects duplicate ACKs at the proxy, interprets them as loss, and retransmits
packets it stored locally. Bakre et al. [BB95] have developed I-TCP, an approach that
splits TCP to cope with mobility and unreliability, allowing to, for instance, have differ-
ent congestion control algorithms for the wired than for the wireless links. With Mobile-
TCP (M-TCP), Brown et al. [BS97] show a solution that also splits the connection but
can (in contrast to I-TCP) maintain E2E semantics and handle longer disconnects. One
central feature of M-TCP is that if it senses congestion will happen soon, it instructs
the sender to stop sending by setting the receive window to 0.

A solution that breaks the E2E semantics is Split-TCP by Kopparty et al. [KKFT02],
which led to a thorough mathematical analysis by Baccelli et al. [BCF08]. Split-TCP
modifies the TCP protocol to allow for an integration of TCP proxies within the network.
Several challenges with special network scenarios, e.g. links with large bandwidth-delay
product, have been tackled by this. Split-TCP poses deployability issues with commodity
systems and lacks transparency towards end-systems as well as transit systems that are
unaware of the segmentation. Pathak et al. [PWH10] propose to use Split-TCP for
data-center to data-center communication to reduce service time for end-users, with the
result that it can effectively reduce the time web searches take.

While the previous approaches are targeted at cellular networks, Augmented Split-
TCP (AS-TCP) by Jung et al. [JCS+06] deals with optimizations for 802.11 wireless
LAN and presents an extension of I-TCP. In particular, AS-TCP leverages MAC-layer
ACKs to create fake local ACKs to instruct the transport layer that data has successfully
passed the first, wireless hop.

Our work on segmentation is grounded on [KGH10], which identified that segmen-
tation is in principle beneficial, but the choice of segmentation points and their number
is non-trivial—in particular when using approaches underlying PRRT. In [KH11], it is
identified that clustering links into homogeneous groups can make segmentation more
efficient, as relays are only put at the borders between these clusters.

7.6.2 Recent Investigations on Segmentation and Relaying
In the last decade, several approaches have been proposed which consider the general
proxy/relay scheme, but have various benefits and drawbacks, or come with different
deployment approaches.

Ladiwala et al. [LRW09] propose an approach similar to ours, but change the
router implementation, which is against our minimal effort requirement defined in the
beginning—not to mention that it makes wide deployment extremely unlikely.

Ren et al. [RL10] consider shortcomings of TCP in cellular networks, an issue that
is also tackled by the publications mentioned later. In 3G networks, bandwidth oscil-
lations occur frequently and cause TCP to back off due to supposed congestion. The
authors model the TCP performance under these circumstances and propose a window-
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adaptation proxy using a robust sliding mode variable structure control law [Itk76] to
improve the performance. This approach is used to control the sending window at the
proxy, which allows to resist bandwidth oscillations and improve utilization on cellular
links. The proxy is located at the wireless base station, hence the measures are applied
to the last link, which is also the major contributor to performance degradation if no
care is taken. Their proxy is therefore a cross-layer solution and the window-adaptation
mechanisms could be added to our approach in case the relay is deployed at a cellular
base station.

Liu et al. [LL15] propose a mobile accelerator, specifically aiming to improve TCP
throughput and utilization over wireless links. This approach, similar to ours, comes
without any modifications or reconfigurations to the end-systems and only changes the
behaviour of TCP at the accelerator relay. The authors propose an opportunistic trans-
mission scheme for the accelerator-to-sink-segment that partly disables flow-control.
This scheme is able to cope with the receive window being a limiting factor despite
the application being able to read fast enough—which is often the case with mobile
phones in recent cellular network technologies. In practice, this means that this scheme
risks packets being discarded as out-of-the-window, but often succeeds in sending more
packets per round-trip than the receiver window would allow.

With respect to rate control, the scheme ignores loss events to determine the sending
rate and does not use the congestion window. The accelerator leverages cross-layer
design by using the known available rate at the cellular base station to set the initial
rate in the startup phase—achieving high utilization right from the start. Afterwards,
the algorithm enters the adaptive phase, where the current delivery rate is measured and
averaged over a sliding window. Their goal is to occupy the link buffer enough so that
it never runs empty (wasting utilization), but also to keep the buffer fill level low (to
avoid losses).

By modifying the behaviour of intermediate components, it is necessary to reimple-
ment parts of TCP, something our solution does not require. Finally, their approach
does not leverage SDN technology, which makes it harder to deploy and integrate.

Haq et al. [HD15] describe a relay that focusses on reliable wide-area communication.
They use the cloud in a very distinct way by deploying their relays at various data-centers
and use inter-datacenter links for their communication. Depending on the vendor, these
connections do not cross multiple ASes and are different from the public Internet. The
reliable transport they build uses FEC (to make a single stream reliable) as well as
network coding (to let multiple streams make each other reliable). Our solution is more
general, but could in fact benefit from a cloud-based deployment and inter-DC links.
Another cloud-based approach is taken by Siracusano et al. [SBK+16], who use a a Xen-
based lightweight implementation of a TCP proxy. Their major contribution is achieving
short boot-times that allow to enable relaying on-the-fly.
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Dombrowski [Dom17] proposes a relaying scheme for the physical and link layer in
order to achieve predictably low latency and high resilience for wireless communication,
e.g. in industrial applications. The relays he proposes can implement different coopera-
tion methods, a concept that is similar to the different network functions that are affected
by our transport layer TTS approach. These methods are (a) amplify and forward, which
works purely on the analog level, (b) decode and forward that removes noise and does
error decoding before transmitting again, or (c) coded cooperation/compress and for-
ward, where more complex functions are applied to the signal, e.g. to achieve reliability
by path diversity. Though this approach operates on the physical layer, a combination
of this approach with TTS can improve matters as transport layers govern—to some
extent—how many frames are sent on the link layer.

Polese et al. [PMZ+17] Wireless standards such as mmWave (e.g. in New Radio
[DPS18]) pose problems with respect to TCP, because TCP cannot e.g. anticipate link
changes and has “slow reactiveness”, which is addressed by milliProxy20. The main goal
of milliProxy is to use cross-layer information (e.g. buffer occupancy, estimated PHY
layer data rate) to control the flow and congestion windows as well as the MSS. This
information comes from the next generation node base (gNB). Similar to our approach,
it does not require remote-side modifications and achieves full end-host transparency.

Kim et al. [KKK17] highlight the trend towards mmWave communication and de-
scribe why the use of TCP is problematic for links that employ this technology. This
is was also investigated by Zhang et al. [ZPM+19], who consider different congestion
control algorithms, buffer sizes, and AQM methods in mmWave scenarios. In particular,
mmWave links face high variance in terms of RTT and throughput due to the significant
difference between line-of-sight (LOS) and non-line-of-sight (NLOS) paths. Kim et al.
propose the mmPEP to overcome this weakness and harness the benefits of mmWave,
namely the vast amount of capacity a LOS link provides.

These PEPs are deployed at base stations and implement two functions: First, the
proxy manages ACKs, by sending own ACKs to the origin of the transmission (e.g. the
cloud server) to advance its window and allow filling the base station buffer, despite the
downlink to the mobile node being temporarily in NLOS state. As soon as the path be-
comes LOS again, the high capacity allows to quickly increase the transmission rate and
consume the buffer at the relay. Second, the proxy is able to do batch retransmissions,
i.e. it does not only send the lost packet and waits for recovery, but also retransmits
subsequent packets at the same time, assuming that a batch of packets got lost.

While the ACK management is the same as in our approach, the batch retransmis-
sions are not possible with our implementation, as we keep the TCP implementation
unchanged and hence rely on the loss recovery strategy of the congestion control used
for the cellular link. Nevertheless, TTS could leverage any approach as long as it is
implemented as a congestion control algorithm that can be used for the downlink.

20Despite the names, there is no ancestor- or sibling-relationship between miniProxy and milliProxy.
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Pennekamp et al. [PGH+19] propose that in-network processing is an essential
enabler for the Internet-of-Production. In this context, our approach could be considered
as an additional means to not just have processing for control tasks inside the network
elements [RGW+18], but also adapt the transport layer to the specific needs of the
application that consumes in-network-processing services.

7.7 Conclusion
The demands of CPS towards latency-awareness and -predictability require more than
only changes at the end-hosts, as communication flows in CPS will traverse paths with
various heterogeneous link parameters. Typically, these heterogeneities are invisible to
the transport layer, which operates in E2E mode. The TTS approach presented in this
chapter addresses the needs of CPS in providing predictable latencies by making the
transport layer aware of individual links along an E2E path. This is done by segmenting
the connection into small groups of links and putting relay components at their ends
to terminate and reopen the connection. The formalization of this process provided in
this chapter allowed to chose relay configurations, e.g. buffer sizes, that are appropriate
for certain scenarios. These positive effects on network performance have been showed
using a complete SDN/NFV implementation that makes the TTS approach deployable.
In consequence, the requirements (Section 7.2.1) can be fulfilled and enable CPS to be
aware of and benefit from predictable latencies.





Thus we may have knowledge of the past but
cannot control it; we may control the future but
have no knowledge of it.

Claude Elwood Shannon

Chapter 8

Conclusion

As of today, it is foreseeable that merging digital computation and communication with
physical processes is going to have significant impact on many application domains—
allowing to achieve higher efficiency, but also to enable new ways of operation, e.g. in
medical services. Hence, it is imperative that the domains of engineering and computer
science investigate cyber-physical systems in more detail. Especially the cooperation of
computation, communication, and control has to attract further attention. Central to
this is the treatment of time and latencies, as control of the physical world can only be
achieved with predictable timing in the cyber world.

8.1 Summary
While there are many ways to achieve predictable timing and certainly many sub-systems
to be addressed, the major focus of this thesis is on latency-awareness and -predictability
at the transport layer of distributed CPS. The design, implementation, and evaluations
of bringing this feature to protocols for CPS has led to three essential conclusions:

• In order to achieve latency-awareness and predictably low latency in cyber-physical
systems, the latency must be holistically analysed throughout and across the var-
ious sub-systems in a cross-layer fashion.

• By knowing about the different latency distributions at runtime, it is possible
to identify and react to the bottleneck of the CPS and make all non-bottleneck
components adapt to it—saving latency and preventing waste of resources.

• Distributed CPS integrate time-critical systems into large network infrastructures
that consist of highly heterogeneous links—so that segmentation and decoupling
of transport layer network functions is essential to achieve predictably low latency.
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This analysis has yielded several software artefacts:

X-Lap is a toolchain that allows for minimally invasive, cross-layer analysis of trans-
port stacks for cyber-physical systems. By using it, system designers can validate timing,
discover correlations of processing steps with the overall end-to-end latency, and com-
pare code versions as well as system configurations with respect to induced latencies.
The source code is openly available1.

X-Pace holistically measures and synchronizes the paces of processing and communi-
cation steps in CPS applications. Thereby, the age-of-information can be reduced and
made more predictable, which caters to control and live-multimedia applications. The
evaluations of X-Pace2 as well as its implementation in PRRT3 are openly available.

TTS Relays allow transport layer functions to work on segments instead of the whole
end-to-end path. Thereby, latencies can be reduced and made more predictable, e.g.
through localizing loss-recovery or congestion control. The evaluation code for TTS4

and the relay implementation5 are openly available.

8.2 Outlook
While this thesis provides several contributions in order to bring latency-awareness and
latency-predictability to communication in cyber-physical systems, there are further
directions that must be investigated to enable reliable, highly distributed CPS.

Energy-aware Transport So far, this thesis has primarily focused on providing
transport layer implementations that are latency-aware and latency-predictable (cf.
Chapter 3), while also considering the relation to reliability (cf. Chapter 4). When
we consider CPS that are mobile (i.e. they use intermittent or highly constrained en-
ergy sources) and if we take the goal for decarbonization of digital technology seriously,
sustainable CPS should also incorporate and optimize for energy aspects. Again, a first
step is to establish the awareness, i.e. correlating the different operations and decisions a
CPS can make with appropriate estimations of energy demand. In the next step, system
designers can leverage this information to make a CPS adhere to certain restrictions on
energy demand and allow a CPS to adapt its function to this—while keeping the latency
and resilience demands of the application in mind. In this spirit, one can imagine the
network triad depicted in Section 3.1 to be extended by energy as an additional do-
main. The impossibility of joint maximization of the different dimensions persists and

1http://xlap.larn.systems (accessed September 2, 2019)
2http://xpace.larn.systems (accessed September 2, 2019)
3http://prrt.larn.systems (accessed September 2, 2019)
4http://tts.larn.systems (accessed September 2, 2019)
5https://git.nt.uni-saarland.de/ON/Applications/Relay (accessed September 2, 2019)

http://xlap.larn.systems
http://xpace.larn.systems
http://prrt.larn.systems
http://tts.larn.systems
https://git.nt.uni-saarland.de/ON/Applications/Relay
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while energy adds another dimension and increases the design space, it puts significant
constraints on the practically achievable solutions.

Statistically Shapeable Transport Using cross-layer pacing and the X-Pace im-
plementation (Chapter 6), the latency of processing and communication chains can be
controlled to match the bottleneck pace. When applying this to several, parallel flows (of
several concurrent control applications) that share a common bottleneck, a perfect syn-
chronization can lead to detrimental effects. A good example for this from network
control is [FJ94], which talks about the detrimental effects of synchronized bursts of
routing traffic and their origins.

Therefore, control engineers are demanding communication services with latencies
that can be shaped to fit their needs, i.e. to match a certain distribution with specific
parameters, e.g. a normal distribution with a certain mean and standard deviation.
Based on the capabilities of X-Pace to control the latency deviation to be close to 0,
advanced techniques must be developed that transform this into the distributions that
controllers wish for. This statistical shaping is not only relevant for the dimension of
latency, but is also essential with respect to reliability: A certain control design can be
considered to be stable given a certain loss distribution over sensor and actor messages.
For that reason, PRRT and its error control component can be extended to provide
these loss distributions over channels that expose less reliable behaviour.

Multicast-enabled Transport and Segmentation Distributed cyber-physical sys-
tems often feature multiple controllers and plants that are simultaneously interested in
receiving sensor or actor messages. Therefore, multicast-enabled transport protocols can
provide a means to achieve higher efficiency in contrast to multiple concurrent unicast
connections. With respect to the design of PRRT, it has to be investigated how its ad-
vanced features (e.g. latency-measurement and pacing) can be multicast-enabled. This
is particularly challenging, as multicast scenarios tend to expose feedback implosions
that hinder scaling. Typically, this is solved by suppressing feedback [NB99] and using
negative acknowledgements [PTK94] to be sent only when data has not been received.

Implementing these features reduces the feedback that the senders uses to infer net-
work and system parameters, so it is likely to degrade its estimation and adaptation
capabilities. It is therefore advised to carefully investigate how negative ACK feedback
schemes can be implemented to sustain an adequate level of estimation quality. In
combination with the transmission segmentation presented in Chapter 7, a plethora of
challenges arises that must be investigated.

Heuristics for Transparent Transmission Segmentation The TTS approach pre-
sented in Chapter 7 highlights how such an approach can be implemented in a manner
that is transparent to the end-hosts and uses in-network components with low over-
head. While this chapter clearly states theoretical and practical benefits of using such
an approach, the question whether to relay or not is highly dependent on the individual
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scenario and requires a thorough understanding of the interconnections between channel
parameters, network functions, and the configuration of the segmentation. Therefore, it is
essential that heuristics are developed that allow to dimension a segmentation in a spatial
and quantitative way. This is non-trivial as (a) channel parameters change, (b) concur-
rent flows compete, and (c) models of network functions usually lack fidelity. Under
these circumstances, it is worth investigating whether data-driven, machine-learning-
based approaches to decide on number and placement of relays can be beneficial for
network operations. One could imagine that an agent is trained using reinforcement
learning [SB+98] to achieve better network performance by deploying relays in the net-
work and conditionally enabling them for certain connections.

Applied Machine Learning for Real-time Self-adapting Transport Stacks Fi-
nally, using energy-awareness, statistical application requirements, and multicast-enabled
transport the domains to be considered and the adaptation-decisions to be made become
intractable for a human designer. Therefore, it must be investigated how this complex
real-time optimization problem can be formulated and how machine learning models can
be trained that are able to balance all these aspects to achieve good performance.



Appendix A

Gilbert-Elliot Models for
Correlation of Erasures

In order to model loss in packet-based networks, Gilbert-Elliot (GE) models [Gil60, Ell63]
are an adequate means [YMKT99, TG04, YMT05, HH08, BLZ09]. In the following, we
give a definition of a general GE, simplify them to SGEs, and provide formulas to merge
two SGEs into a single SGE that behaves as the cascade of the two SGEs.

A.1 Gilbert-Elliot Models
In general, a 2-state Markov model as depicted in Figure A.1 is considered as a Gilbert-
Elliot (GE) model. We follow the notation of a good (G) and a bad (B) state, which
generate errors with a rate of δG in good and δB in bad. The transition matrix is:

A =
(

β 1 − β
1 − α α

)
(A.1)

G
δG

B
δB

1 − β

β

1 − α

α

Figure A.1: General Gilbert-Elliot Model as described in [HH08].

[Gor12] analyses sequences to fit a simplified GE (SGE) with the following constraints:

δG = 0, δB = 1 (A.2)
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Thereby, it leaves the parameters α and β free. We arrive at:

µ = pG · 0 + pB · 1 = pB ∈ [0,1] (A.3)
ρ = α + β − 1 (A.4)

The probabilities to be in the states are:

pG = 1 − α

2 − α − β
(A.5)

pB = 1 − β

2 − α − β
(A.6)

The error probability becomes:

E{X} = µ = pG · δG + pB · δB
SGE= pB (A.7)

A.2 Multi-Hop Simplified GEs
In order to calculate the correlation in multi-hop scenarios (cf. Chapter 7), we first look
at how a two-link scenario can be mapped to a four-state simplified GE:

As erasures happen whenever a packet is lost on either hop, the states B1G2, G1B2,
and B1B2 (all of which have δ = 1) can be merged into a single bad state. The resulting
SGEE2E has the following parameters:

βE2E = β1 · β2 (A.8)
αE2E = 1 − [β1 · (1 − α2) + (1 − α1) · β2 + (1 − α1) · (1 − α2)] (A.9)

Note that we derived αE2E by summing the transitions in Figure A.2 which lead
from bad states to the good state, i.e. which contribute to 1 − αE2E . The correlation of
the composed SGE is again ρ = αE2E + βE2E − 1.

If we want to compute α and β across more than two hops (e.g. n), a recursive
approach is suitable:

SGE(αE2E ,βE2E) = CombinedSGE(SGE(α1,...,n−1,β1,...,n−1),SGE(αn,βn)) (A.10)

Starting with the first two SGEs that correlate to their links, we combine them into
a single one and continue by merging it with the SGE that correlates with the next link.
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Figure A.2: Composition of two cascading simplified GEs leads to four different states.
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