192 research outputs found

    Development of a compact, IoT-enabled electronic nose for breath analysis

    Get PDF
    In this paper, we report on an in-house developed electronic nose (E-nose) for use with breath analysis. The unit consists of an array of 10 micro-electro-mechanical systems (MEMS) metal oxide (MOX) gas sensors produced by seven manufacturers. Breath sampling of end-tidal breath is achieved using a heated sample tube, capable of monitoring sampling-related parameters, such as carbon dioxide (CO2), humidity, and temperature. A simple mobile app was developed to receive real-time data from the device, using Wi-Fi communication. The system has been tested using chemical standards and exhaled breath samples from healthy volunteers, before and after taking a peppermint capsule. Results from chemical testing indicate that we can separate chemical standards (acetone, isopropanol and 1-propanol) and different concentrations of isobutylene. The analysis of exhaled breath samples demonstrate that we can distinguish between pre- and post-consumption of peppermint capsules; area under the curve (AUC): 0.81, sensitivity: 0.83 (0.59–0.96), specificity: 0.72 (0.47–0.90), p-value: <0.001. The functionality of the developed device has been demonstrated with the testing of chemical standards and a simplified breath study using peppermint capsules. It is our intention to deploy this system in a UK hospital in an upcoming breath research study

    Improving diagnosis of pneumococcal disease by multiparameter testing and micro/nanotechnologies

    Get PDF
    The diagnosis and management of pneumococcal disease remains challenging, in particular in children who often are asymptomatic carriers, and in low-income countries with a high morbidity and mortality from febrile illnesses where the broad range of bacterial, viral and parasitic cases are in contrast to limited, diagnostic resources. Integration of multiple markers into a single, rapid test is desirable in such situations. Likewise, the development of multiparameter tests for relevant arrays of pathogens is important to avoid overtreatment of febrile syndromes with antibiotics. Miniaturization of tests through use of micro- and nanotechnologies combines several advantages: miniaturization reduces sample requirements, reduces the use of consumables and reagents leading to a reduction in costs, facilitates parallelization, enables point-of-care use of diagnostic equipment and even reduces the amount of potentially infectious disposables, characteristics that are highly desirable in most healthcare settings. This critical review emphasizes our vision on the importance of multiparametric testing for diagnosing pneumococcal infections in patients with fever and examines recent relevant developments in micro/nanotechnologies to achieve this goal

    Recent Advances in Health Biotechnology During Pandemic

    Get PDF
    The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which emerged in 2019, cut the epoch that will make profound fluctuates in the history of the world in social, economic, and scientific fields. Urgent needs in public health have brought with them innovative approaches, including diagnosis, prevention, and treatment. To exceed the coronavirus disease 2019 (COVID-19) pandemic, various scientific authorities in the world have procreated advances in real time polymerase chain reaction (RT-PCR) based diagnostic tests, rapid diagnostic kits, the development of vaccines for immunization, and the purposing pharmaceuticals for treatment. Diagnosis, treatment, and immunization approaches put for- ward by scientific communities are cross-fed from the accrued knowledge of multidisciplinary sciences in health biotechnology. So much so that the pandemic, urgently prioritized in the world, is not only viral infections but also has been the pulsion in the development of novel approaches in many fields such as diagnosis, treatment, translational medicine, virology, mi- crobiology, immunology, functional nano- and bio-materials, bioinformatics, molecular biol- ogy, genetics, tissue engineering, biomedical devices, and artificial intelligence technologies. In this review, the effects of the COVID-19 pandemic on the development of various scientific areas of health biotechnology are discussed

    Matriz de sensores: fundamento de la nariz electrónica

    Get PDF
    En este artículo se presenta el concepto y funcionamiento de una nariz electrónica basada en una fusión de sensores químicos, que permiten detectar y clasificar olores. Las narices electrónicas se destacan por sus diversas aplicaciones, las cuales van desde aplicaciones en la agroindustria hasta aplicaciones en la medicina. Aquí se presentan algunas de las pruebas realizadas y los resultados que se obtuvieron. Finalmente, la nariz electrónica diseñada es viable para la detección y clasificación de olores

    A biomarker-based exclusion of ventilator-associated pneumonia : towards improved antibiotic stewardship

    Get PDF
    PhD ThesisVentilator-associated pneumonia (VAP) is a common complicating condition amongst patients mechanically ventilated in the Intensive Care Unit (ICU). It is a common reason for antibiotics to be administered. The diagnosis of VAP is challenging and amongst patients in whom VAP is suspected, approximately a third will have infection confirmed. Therefore many patients receive antibiotics for VAP despite the condition not being present. Antimicrobial resistance (AMR) is a growing global concern and the overuse of antibiotics is an important factor in increasing AMR. The ICU is an environment with high antibiotic use and improving antibiotic stewardship is a priority. Rapid biomarker-based diagnostics could achieve this by expediting the diagnostic process. In this thesis I present the findings of a multi-centre validation study of a novel bronchoalveolar lavage-based biomarker test. The diagnostic value of the measured biomarkers is discussed and the optimum biomarker-based diagnostic test for use in VAP is presented. I subsequently present a multi-centre randomised controlled trial in which the biomarker-based test is assessed in the clinical environment to determine whether it does indeed result in improved antibiotic stewardship. Trial outcomes are reported and implications are discussed

    Electronic Noses for Biomedical Applications and Environmental Monitoring

    Get PDF
    This book, titled “Electronic Noses for Biomedical Applications and Environmental Monitoring”, includes original research works and reviews concerning the use of electronic nose technology in two of the more useful and interesting fields related to chemical compounds detection of gases. Authors have explained their latest research work, including different gas sensors and materials based on nanotechnology and novel applications of electronic noses for the detection of diverse diseases. Some reviews related to disease detection through breath analysis, odor monitoring systems standardization, and seawater quality monitoring are also included

    Advancement in biomarker based effective diagnosis of neonatal sepsis

    Get PDF
    Neonatal sepsis is considered as alarming medical emergency and becomes the common global reason of neonatal mortality. Non-specific symptoms and limitations of conventional diagnostic methods for neonatal sepsis mandate fast and reliable method to diagnose disease for point of care application. Recently, disease specific biomarkers have gained interest for rapid diagnosis that led to the development of electrochemical biosensor with enhanced specificity, sensitivity, cost-effectiveness and user-friendliness. Other than conventional biomarker C-reactive protein to diagnose neonatal sepsis, several potential biomarkers including Procalcitonin (PCT), Serum amyloid A (SAA) and other candidates are extensively investigated. The present review provides insights on advancements and diagnostic abilities of protein and nucleotide based biomarkers with their incorporation in developing electrochemical biosensors by employing novel fabrication strategies. This review provides an overview of most promising biomarker and its capability for neonatal sepsis diagnosis to fulfil future demand to develop electrochemical biosensor for point-of-care applications.</p

    Biotechnology to Combat COVID-19

    Get PDF
    This book provides an inclusive and comprehensive discussion of the transmission, science, biology, genome sequencing, diagnostics, and therapeutics of COVID-19. It also discusses public and government health measures and the roles of media as well as the impact of society on the ongoing efforts to combat the global pandemic. It addresses almost every topic that has been studied so far in the research on SARS-CoV-2 to gain insights into the fundamentals of the disease and mitigation strategies. This volume is a useful resource for virologists, epidemiologists, biologists, medical professionals, public health and government professionals, and all global citizens who have endured and battled against the pandemic

    Recent Advances in Volatile Organic Compound Analysis as Diagnostic Biomarkers

    Get PDF
    Volatile organic compounds (VOCs) are a diverse group of carbon-based molecules that are volatile at ambient temperatures and are emitted by an organism as a result of metabolic processes of cells and associated microbiome. The qualitative and quantitative profile of VOCs in biological fluids can vary depending on the physiological changes. Therefore, the pattern of volatile metabolites may reflect the presence of several diseases. This has been intensively investigated in the last few decades, resulting in an increasing number of studies focused on new volatile biomarker discovery.This reprint aimed to summarize the recent findings related to VOCs detected in various biological fluids such as breath, urine and feces for biomedical applications. The content covers various topics, including but not limited to biomedical/medical application of VOC analysis, biomarker discovery, and novel approaches for sampling and analyzing VOCs
    corecore