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Poland

Ben de Lacy Costello

Institute of Biosensor

Technology

University of the West of

England

Bristol

United Kingdom

Editorial Office

MDPI

St. Alban-Anlage 66

4052 Basel, Switzerland

This is a reprint of articles from the Special Issue published online in the open access journal

Molecules (ISSN 1420-3049) (available at: www.mdpi.com/journal/molecules/special issues/

Volatile Organic Compound Analysis).

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Volume Number,

Page Range.

ISBN 978-3-0365-5350-4 (Hbk)

ISBN 978-3-0365-5349-8 (PDF)

© 2022 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license, which allows users to download, copy and build upon

published articles, as long as the author and publisher are properly credited, which ensures maximum

dissemination and a wider impact of our publications.

The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons

license CC BY-NC-ND.

www.mdpi.com/journal/molecules/special_issues/Volatile_Organic_Compound_Analysis
www.mdpi.com/journal/molecules/special_issues/Volatile_Organic_Compound_Analysis


Contents

About the Editors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Carsten Jaeschke, Marta Padilla, Johannes Glöckler, Inese Polaka, Martins Leja and Viktors
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Abstract: Exhaled breath analysis for early disease detection may provide a convenient method
for painless and non-invasive diagnosis. In this work, a novel, compact and easy-to-use breath
analyzer platform with a modular sensing chamber and direct breath sampling unit is presented.
The developed analyzer system comprises a compact, low volume, temperature-controlled sensing
chamber in three modules that can host any type of resistive gas sensor arrays. Furthermore, in this
study three modular breath analyzers are explicitly tested for reproducibility in a real-life breath
analysis experiment with several calibration transfer (CT) techniques using transfer samples from
the experiment. The experiment consists of classifying breath samples from 15 subjects before
and after eating a specific meal using three instruments. We investigate the possibility to transfer
calibration models across instruments using transfer samples from the experiment under study, since
representative samples of human breath at some conditions are difficult to simulate in a laboratory.
For example, exhaled breath from subjects suffering from a disease for which the biomarkers are
mostly unknown. Results show that many transfer samples of all the classes under study (in our case
meal/no meal) are needed, although some CT methods present reasonably good results with only
one class.

Keywords: breath analysis; MOX sensors; low sensing chamber volume; calibration transfer; stan-
dard samples; piecewise direct standardization; correlation alignment; breath sampling; eNose;
pattern recognition

1. Introduction

The importance of exhaled breath gas analysis is increasing in medical diagnostics
for early disease detection and therapy progress monitoring over the last decades [1–4].
Exhaled human breath is composed of nitrogen, oxygen, carbon dioxide, water vapor, inert
gases and trace amounts of volatile organic compounds (VOCs) [5]. The ancient physician—
Hippocrates (460–370 BC)—noticed that the exhaled breath of an ill patient differs from a
healthy one and described fetor oris and fetor hepaticus in his essay on breath aroma and
disease. In 1971 modern breath analysis started with the experiments of Pauling et al. [6], he
showed that human breath contains several hundred different VOCs in low concentrations.
Pauling’s observation was confirmed by subsequent studies from other research groups.
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Phillips et al. approved Pauling’s statement and confirmed that exhaled human breath
contains more than a thousand different VOCs in low concentrations [7,8]. Furthermore,
they observed, by gas chromatography coupled with mass spectrometry, 3481 different
VOCs in the breath of 50 healthy humans. On average each human has approximately
204 VOCs in their breath. Moreover, it was observed that only 27 VOCs were equal in
the breath of the 50 healthy humans examined. This makes breath analysis a difficult
task because there is only a small common core of VOCs in all humans. These VOCs are
probably produced by metabolic pathways common to most humans [8]. Moreover, these
VOCs can be from exogenous and endogenous origin [9]. Exogenous VOCs are inhaled
or absorbed as contaminants via breath, skin or ingestion [10] while endogenous VOCs
are produced in the body via the metabolism [3]. The identification of these VOCs is very
important and forms the focus of research, as they act or can act as important “markers”
for the early detection of a disease [11]. The identification of breath markers should be
qualitative and quantitative to distinguish between a diseased group and a healthy one.
The differences in the VOCs content between these two groups must be large enough to
reach clinical relevance. In the last 30 years, many of these molecules have been identified
and correlated to different diseases. The basis of the emission of VOCs is cell biology.
Tumor growth causes metabolic changes which are linked to the production of specific
volatile compounds [12–15]. Cancer-related blood chemistry changes lead to changes in
breath by exchange through the lung [16]. Therefore, some VOCs can be used as cancer
markers in exhaled breath [3].

Currently, the gold standard for detecting VOCs in exhaled air is gas chromatogra-
phy coupled to mass spectrometry (GC-MS) [1,17–26]. Beside GC-MS, other analytical
instrumentations are used like proton-transfer reaction-mass spectrometry (PTR-MS) and
ion mobility spectrometry (IMS). These techniques enable separation, identification and
quantification of the different VOCs in the exhaled breath gas. The main disadvantages
of the analytical instrumentation are the need of high skilled operating personnel, being
time-consuming (except for IMS) and the high costs.

To reduce costs, chemical sensors integrated into electronic noses (eNoses) for breath
analysis in medical point-of-care diagnosis have become an emerging field. Many research
groups are pushing forward the frontier of non-invasive, rapid, portable and potentially
low cost medical diagnosis tests for different diseases [3,27]. Electronic noses in breath
gas analysis are still a noticeably young research field. Different research laboratories use
different internal standardized methods for the breath sample collection, but there is no
globally accepted standard procedure. The common procedures are total or alveolar breath
gas sampling. In total breath sampling, the complete breath is collected including dead
space air, and in the alveolar breath gas sampling only the end-tidal, alveolar part of breath
is collected [1,28,29]. The method of total breath gas sampling is simple but has a big
disadvantage because of the dilution with the dead space air [1]. In comparison, alveolar
sampling reduces the concentration of contaminants [1,29].

Advantages and limitations of eNose sensor techniques are associated with different
parameters like specificity, response and recovery time, detection range, sensitivity, operat-
ing temperature, temperature as well as humidity effect on sensing technique, portability,
cost and complexity of measuring circuitry.

In the review by Röck et al., a list of commercially available eNoses is published [30].
Several preliminary studies were conducted with those commercially available eNose
systems like Cyranose 320 [31–36], LibraNose [37] and DiagNose [38] using offline sam-
pling with Tedlar or Mylar bags. Other studies with chemical sensors, surface acoustic
wave (SAW) sensors [39], metal oxide semiconductor (MOX) sensors [40], colorimetric
sensors [41], quartz microbalance (QMB) sensors [42,43], MOX-SAW sensors [44] and
trichloro-(phenethyl)silane-silicon nanowire-field effect transistor (TPS-SiNW FET) sen-
sors [45] were carried out. Furthermore, studies were conducted in which an eNose and
additionally gas chromatography coupled to mass spectroscopy were used. Those studies
showed that different organic functionalized gold nanoparticle (GNP) sensors are suitable
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to different diseases [46–51]. Amal et al. investigated the detection of gastric cancer uti-
lizing GNP sensors with offline sampling and demonstrated that the sensor technology
determines that the breath of cancer patients is different from healthy ones. [49,50].

Over recent years, the field of breath analysis with MOX-based eNose systems is
continuously progressing. Different studies of cancer detection via breath gas analysis with
eNoses based on MOX sensors have been conducted by Yu et al. [40], Wang, D. et al. [44]
and Wang, X.R. et al. [52] and some of those studies also involved other sensor technologies
in combination with a MOX sensor array. De Vries et al. integrated an eNose sensing array
into an existing diagnostic spirometer. This system is based on five identical commercially
available MOX sensor arrays out of four MOX sensors [53].

Special attention shall be given to the experiment design, most of the published
studies on breath analysis by an eNose were conducted with one device. For larger scale
studies, given the difficulties of obtaining breath measurements from patients with specific
conditions, it would be desirable to extend the study to more devices and more places
(like different hospitals or recruitment centers). However, sensor to sensor variability, time
degradation (drift), cross-sensitivities to background and environmental conditions, etc.,
causes data models (calibration models) built for one instrument at a given time and place
to not be valid for measurements collected by another instrument, or the same instrument
in another place or later in time. In other words, the data calibration models degrade when
taking measurements under conditions other than those under which the calibration model
was created. The effort in building a calibration model is costly and time consuming, and
therefore limits the use of eNoses in many applications such as breath analysis.

To reduce the impact of these limitations, data processing techniques exist that help
in reducing the effort of full calibrations by transferring information from the main cali-
bration model (built in a so-called master instrument) to be applied to new measurements
obtained under different conditions (from so-called slave instruments). These techniques
are called calibration transfer (CT) or instrument standardization in chemometrics, and
transfer learning tools in machine learning. CT methods have been largely applied in NIR
spectrometry and also in eNoses [54–57]. The objective of a calibration transfer method is
to perform its task using as few transfer samples (samples to link instruments) as possible.
In this way, the costs of calibration of individual (slave) instruments are reduced to a few
measurements of transfer samples, instead of a whole large set for proper calibration.

Calibration transfer methods can be grouped according to different criteria. For ex-
ample, the following approach [58]: (i) no standardization (feature selection, calibration
model extension (CME) by including samples from multiples instruments, special pre-
treatments like orthogonal signal correction (OSC) [59]); (ii) adjusting the output of the
calibration model to be used by other instruments, such as the simple univariate slope and
bias correction (SBC) [60]; (iii) transforming measurements from slave instruments so that
they resemble measurements from the master instrument using direct standardization (DS)
and piecewise direct standardization (PDS) [61,62] and (iv) removing differences between
instruments that are orthogonal to the calibration model [63]. Indeed, PDS has shown good
results and is considered by many to be a reference for novel techniques [64–69].

Other classification of calibration transfer techniques can be made with regard to the
domain of the transfer and the transfer samples. For the first one, we can have (a) transfer to
the master space or the slave space, such as DS and PDS, (b) transfer to a common subspace
such as OSC. Additionally, for the latter, CT methods regarding transfer samples; (a) meth-
ods that need transfer samples such as DS, PDS, OSC [70], Shenk’s algorithm [71], spectral
space transformation (SST) [72] and canonical correlation analysis (CCA) [73] (b) and
methods that do not need transfer samples, such as methods from the IR spectra field:
multiplicative signal correction (MSC) [66], finite impulse response (FIR) [68,69], stacked
partial least-squares (SPLS) [67] and from the machine learning field, like transfer compo-
nent analysis (TCA) [74] and transfer sample-based coupled task learning (TCTL) [54] and
others that have been applied to eNoses [75]. Reviews and discussions can be found in
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literature about the use of standard samples [76], about the techniques based on orthogonal
projections [77,78] and reviews of different techniques [58,65,79].

An important matter in calibration techniques that need transfer samples is the se-
lection of these transfer samples. Such samples must be representative of the samples
under study and the respective instruments, keeping other variables such that they can be
linked between the instruments. The required transfer samples would be those measured
at the same conditions by different instruments, for example, by having the instruments
measuring the same sample at the same time; we call them standard samples. When stan-
dard samples are not available, we can use reference (or nonstandard) samples, which are
measurements made under exact or similar conditions in all master and slave instruments.

In addition, the fact that transfer samples must be representative of the samples under
study may be a limitation in out-of-lab applications, such as breath analysis, because repre-
sentative samples of given cases might be difficult to obtain. In an ideal situation, samples
representative of the cases under study can be artificially made, such that measurements
of these samples can be made in a laboratory under controlled conditions and thus be
used as transfer samples. This way, all instruments would be referred to the same general
samples under specified conditions. However, it is difficult to create synthetic samples
representative of complex samples such as human breath samples, especially for patients
suffering diseases for which the exhaled VOCs pattern is poorly known or even unknown
and which is affected by numerous variables. Therefore, the use of on-site measured
samples as transfer samples may be helpful, or alternatively hard-to-obtain sample classes
could be excluded from the transfer sample set. In summary, for practical reasons we
wonder whether on-site measured sample measurements can be used as transfer samples
and whether the quality of the calibration transfer would decrease much if one sample
class (necessary for the calibration model) is excluded from the transfer sample set. We can
find an example in the literature where breath samples from electronic noses were used,
although case breath samples were artificially made by mixing control breath samples with
chemicals [57].

In this work, we explore the performance of several CT techniques in a real-life breath
analysis study using our recently published [80,81] sensing array and three instruments.
The experiment consists of the discrimination of breath samples from people before and
after eating a specified meal. The performance of the CT methods is evaluated in regard to
the number and type of transfer samples (standard or nonstandard) and class membership
(transfer samples belonging to one class or both classes meal/no meal), to explore the
possibility of using transfer samples from the on-site experiment in the CT methods.

This study is mainly motivated by the difficulty of calibration of eNoses for breath
analysis applications, the differences between instruments, the frequent recalibrations
needed due to aging and drift and the environmental and other different conditions present
in different hospitals which prevents obtaining a unified dataset for deep statistical studies.
Another goal in this work, is to present our modular breath analyzer (MBA) platform
(shown in Figure 1), a new updated version of our modular eNose [80–82] specifically
designed for breath analysis. The previous version of the modular eNose concept was
recently presented [80–82]. It consisted of a new eNose platform based on a novel modular
sensing chamber, where different kinds of chemoresistive sensors can be combined [80–82].
In one of these works, we combined analog and digital commercial surface mount devices
(SMD) MOX gas sensors and checked its potential in an experiment aiming to detect VOCs
under a high humidity background in a future application [82]. The other experiment
consisted of testing the instrument for on-line monitoring under dry and moderate humid
conditions with six concentrations of two VOCs of interest [80]. The MBA is based on the
previously presented innovative iLovEnose concept of a modular eNose system [80,81]
and incorporates a direct alveolar breath sampling system, which is explicitly used in the
breath analysis experiment.
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Figure 1. Modular breath analyzer (MBA) platform based on chemoresistive sensors for laboratory
and clinical use; external view with cap opened to exchange the glass sampling tube.

The manuscript is organized as follows. Section 2 describes our updated MBA in-
strument and details both experiments: the breath analysis study. Section 3 explains the
analysis methods and followed methodology. Section 4 shows and discusses the results
and finally Section 5 derives some conclusions.

2. Material

2.1. Device Description

The presented novel modular breath analyzer (MBA) platform is developed for lab-
oratory and clinical use. The internal components of the MBA platform are shown in
Supplementary Materials, Figure S1, while its basic arrangement and the connection of
the individual units is shown with a schematic drawing of the MBA platform in Figure 2.
It contains a direct breath sampling unit and three modules able to host different types
of sensors and technologies. The MBA platform contains three main units: (i) a sampling
unit with an internal exhalation monitoring unit (EMU), (ii) a temperature control unit and
(iii) a modular sensing chamber unit. The sampling unit is especially designed for breath
analysis, based on the buffered-end-tidal (BET) sampling process [83]. Our presented
system weights about 2.1 kg and has the dimensions 280 mm × 118 mm × 75 mm.

 

Figure 2. Schematic drawing of the modular breath analyzer platform for laboratory and clinical use
showing the linkage of the individual units. Fluidic units are drawn in blue (sampling and exhalation
monitoring unit) and dark gray (modular sensing chamber).
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The two fluidic units—sampling unit as well as sensing unit—which are described
below are integrated into a temperature-controlled aluminum body to ensure that all fluidic
paths within the MBA platform are kept above body temperature to avoid temperature
effects on the sensors to avoid influences towards the composition of the exhaled breath
gas. Without thermostatic control the temperature within the fluidic paths will drop below
body temperature and thus vapor will condense and trap water soluble volatile organic
compounds (VOCs). For this reason, the temperature inside the sensing chamber of the
presented modular breath analyzer platform is 45 ◦C ± 1 ◦C.

2.1.1. Buffered-End-Tidal (BET) Sampling and Exhalation Monitoring Unit (EMU)

During an exhalation into the device the volume of the sampling tube is exchanged
several times. After the exhalation process has finished, the last 38 mL of the exhaled
breath are buffered within the tube and remain there until the sample is transferred into
the sensing chamber by a controlled pumping process. The buffered volume of approx.
30 mL allows the system to transfer several times the volume inside the sensor chamber,
which can be set by the software. The internal exhalation monitoring unit is coupled to the
sampling tube to operate the pump directly when the exhalation stops to draw selected
parts of the alveolar air inside the sensor chamber. Sensors within the EMU allow real-time
monitoring of the full exhalation process. EMU parameters (like pressure, temperature,
humidity) are recorded during the exhalation process of the volunteer or patient to ensure
proper repeatable sampling and enable capturing relevant parts of the exhaled breath,
which are different portions of the pulmonary volume.

For a reliable breath analyzer platform, it is crucial that the EMU is not only recogniz-
ing the end of the exhalation, it is also important to ensure that the volume of the exhaled
breath and the profile is within a certain variance. Direct feedback to the patient and the
study nurses may help to improve the sampling process. This enables capturing relevant
parts of the exhaled breath and allows a more accurate transfer of sample to sensors as
well as selective sampling of different portions of the pulmonary volume. To avoid cross-
infection between the patients the glass sampling tube can be exchanged and cleaned by
sterilization. The disposable mouthpiece is exchanged for every volunteer or patient.

2.1.2. Modular Sensing Chamber Unit

To utilize the buffered end-tidal breath sampling method, we designed a specific
valve-controlled inlet for our recently published sensing chamber [80–82] to be able to plug
the exchangeable glass sampling tube to the sensing chamber of our eNose system. The
current sensing array setup consists of three compartments: one with 8 analog and two
with 10 digital sensors each. The low volume of the sensing unit (less than 3 mL) ensures
that the volume of the sensor chamber could be flushed several times with the BET air from
the sampling tube. The sensing unit consists of a modular sensor array that contains three
exchangeable sensor modules with a valve-controlled inlet connected to the sampling tube
and one outlet (can be seen in Figure 3). The exchangeable modular design of the sensor
unit allows the MBA to host three modules containing sensors of different types, but those
three modules can also contain the same type of sensors, which is useful in the study of
sensor chip variability.

The current setup contains many of the most relevant analog and digital surface
mount devices (SMD) sensors on the market. A list of all integrated sensors, number of
obtained signals from each sensor and used heater/supply voltages are summarized in
Tables S1 and S2, see Supplementary Materials. The concept of the sensing unit follows a
modular structure to allow an easy and simple exchange of the sensors [80].

The cleaning of the sensor chambers is done by a two-step process. First, the pump
and the valve shown in Figures 2 and 3 are used to generate a low vacuum for a few
seconds to remove the breath gas out of the sensing chamber, and then ambient air is
driven through the sensing chamber. The cleaning cycle is programmed in the firmware of
the MBA, and it is started after a successful and a cancelled measurement.
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Figure 3. Sensing chamber with three individual compartments, shown here as a combination of analog and two digital
metal oxide semiconductor (MOX) sensor compartments and the connection of the sampling tube to the valve-controlled
sensing array inlet.

2.2. Experiment–Pilot Study Description

A group of 15 generally healthy 17–18 year old individuals were recruited for an
experimental study using three modular breath analyzer prototypes, the first breath sam-
ple was obtained following a 12 h fasting period with all three MBA devices; then the
participants were given a standardized meal and invited for a follow-up (second) breath
sample 4 h thereafter. The test-meal was a hamburger with 0.5 L water. To avoid potential
contaminants, on the day of testing the recruited study participants did not use mouthwash,
chewing gum, furthermore they did not perform excessive physical activity, did not smoke
or consume alcohol for 24 h before the breath test. The same restrictions were applied to
the 4-h pause between two measurements. This experimental routine was repeated three
times, each measurement day was one week apart from the previous one. The general
scheme of the breath sample collection (measurement day) of the pilot study can be seen
in Figure 4. Signed consent was obtained from all recruited study participants. For study
participants under 18 years of age the parents or legal guardians signed this consent.

Figure 4. General scheme of collecting the breath samples for the pilot study.

In this study, the firmware of the used MBA devices was set to 10 s for baseline
acquisition and 20 s for breath acquisition.

3. Methods

3.1. Calibration Transfer Algorithms

In this work, we compare three methods for calibration transfer based on different
principles: Correlation alignment (CORAL) [84], partial least squares-based calibration
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transfer (PLSCT) [85], direct standardization (DS) and piecewise direct standardization
(PDS) [61,86] and a partial least squares discriminant analysis-based method (PLSDA) [81].

DS, PDS and PLSCT are based on adjusting the slave features to the master by using
a set of labeled transfer samples measured in both the master and the slave instruments.
These samples can be standard samples, i.e., samples related to both instruments, such as
same samples measured at the same time, samples measured at the exact same conditions,
etc., or non-standard samples if they are labeled but not related as the standard samples. In
turn, CORAL is a simple method that transforms data from the master to the slave space
using their covariance structure without the need of labelled samples. Finally, PLSDA finds
a common master-slave space by removing components using unlabeled transfer samples,
only the information about their membership to the master or the slave instrument is used.

Direct standardization (DS) and piecewise direct standardization (PDS) methods—DS
and PDS [61,86,87] methods were created in the field of NIR spectrometry to correct the
slave spectra by computing a transfer matrix. This transfer matrix is obtained by relating
the master spectra to the slave’s spectra by using a small number of labeled transfer samples.
The PDS method is in fact an extension of DS by which each wavelength (variable) at the
master spectra is related to a sliding window of fixed size in the slave spectra. PDS can
deal with having a larger number of variables than samples [64].

DS and PDS are widely used methods which have provided good results in laboratory
experiments using a relatively small number of samples [56,79] and are typically employed
as a reference for other novel techniques [64].

DS assumes a linear relationship between master and slave instruments such that:

Xm
ct = Xs

ct B (1)

where B is the transformation matrix and Xm
ct and Xs

ct are the data measured from the
transfer samples at the master and slave instrument, respectively. Therefore, B can be
estimated by

B = (Xs
ct)+ Xm

ct (2)

where (Xs
ct)+ is the pseudo inverse of Xs

ct. The new samples from the slave instrument Xs

can be projected onto the master instrument Xm:

Xm = Xs B (3)

In turn, PDS creates local PLS models relating the master instrument j-th variable to a
sliding window of size w centered at the j-th variable in the slave instrument. The resulting
transformation matrix BPDS has a diagonal structure:

BPDS = diag(b1T, b2T, . . . ,) (4)

where k is the number of variables on both instruments. Finally, Xs can be projected on the
master instrument by:

XmT = XsT BPDS (5)

Partial least squares discriminant analysis-based calibration transfer (PLSDA)—the
PLSDA-based method builds a PLSDA model relating transfer unlabeled samples from
both master and slave instruments with a dummy vector containing their membership
(master or slave) label. Furthermore, the predicted data from this model is removed from
the original data set.

If W and P are notations for the resulting PLSDA weight and latent variable matrices,
respectively, Xm and Xs denote the original data from the master and the slave instrument,
respectively, and Xm’ and Xs’ denote the transformed data from the master and the slave
instrument, respectively:

Xm’ = Xom − Xom W ((P)T W)−1 P (6)
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Xs’ = Xos − Xos W ((P)T W)−1 P (7)

The number of components or latent variables (LVs) to be removed must be selected.
Finally, a classification/regression method can be built on the Xm’ and be used to predict Xs’.

Partial least squares-based calibration transfer (PLSCT)—In PLSCT [85], a PLS model
is built in the master instrument and a subset of samples are used to relate master and slave
instruments. This operation is made in the PLS low dimensional space between projected
spectra from transfer samples in both master and slave instrument.

If Xm and Ym are the calibration set data and label matrices in the master instrument,
respectively, Wm, Pm and βm are the weight, latent variable and regression coefficient
matrices of the PLS model for Xm and Ym in the master instrument (with selected number
of latent variables (LVs)), the projection of the master’s transfer samples Xm

ct in the PLS
model Tm

ts and the projection of the slave’s transfer samples Xs
ct in the PLS model Ts

ts are
given by:

Tm
ts = Xm

ct Wm ((Pm)T Wm)−1 (8)

T’sts = Xs
ct Wm ((Pm)T Wm)−1 (9)

Assuming a linear relationship between the projection matrices:

Ts
ts = T’sts M = Tm

ts (10)

where M can be obtained by the ordinary least squares method:

M = ((T’sts)T T’sts)−1 (T’sts)T Tmts (11)

when M is obtained, a classification/regression method can be applied on the projected
matrices T or from the PLS model already built in the master instrument:

Ys = Xs βm (12)

Since in this work we use PLSDA for a classification problem, we will call this method
PLSDA-CT instead of PLSCT.

Correlation alignment (CORAL)—CORAL [84] is an unsupervised domain adaptation
method coming from the machine learning field that attempts to minimize the differences
in the data distributions between two domains (master and slave instruments in our case)
by transferring the data structure of the target domain (slave).

Notating Xm and Xs subsets of unlabeled data from master and slave, respectively,
having Nm and Ns number of features each (X matrix columns), the proposed transforma-
tion is:

Cm = (Xm)T Xm + λ INm × Nm (13)

Cs = (Xs)T Xs + λ INs × Ns (14)

Xm = Xm Cm
−1/2 Cs

1/2 (15)

where Cm and Cs are the master’s and slave’s data covariance matrices, respectively,
adapted with a small regularization parameter λ that allows it to be full rank and thus
the square root to be computed. Therefore, CORAL uses two steps to align both data
distributions: whitening the master data and re-coloring it with the slave covariance.

3.2. Data Analysis Methodology

In this work, we study the performance of several CT algorithms to transfer calibration
models between pairs of 3 instruments in an experiment consisting of an on-site real breath
analysis study for discrimination of breath samples from subjects before and after eating a
specific meal. Thus, data is classified into classes “meal” and “no-meal”. We use device 1
as the master device, thus devices 2 and 3 are considered the slave devices. Denoting the
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master instrument as M and the slave instrument as S, two instrument pairs considered
are: M1–S2 and M1–S3.

To illustrate the effect of the different CT algorithms, we followed a procedure con-
sisting of three steps. In the first step, dimensionality reduction and a classifier using data
from M is built and evaluated with selection of their optimal parameters for each of the
3 devices. In the second step, a small number of samples (transfer samples) from both M
and S are selected and the CT is performed. Finally, in the third step, the CT algorithm is
evaluated using the classifier from the first step on S data. The result of the M classifier
applied on the M data is considered the reference to be achieved, while the result of the M
classifier applied on each S data is considered the threshold to be overcome.

Since only two classes are involved in the classification task, the classification results
are given in area under the receiver operating characteristic curve (AUC) and standard
errors (SE). Results for each S device are compared before and after the application of
the CT algorithms; if the results of the corrected S data (after CT) are similar to the M’s
reference classification result we consider a successful CT, if the S’s result is higher than the
one before the CT (threshold) we consider good CT.

Classifier—First, the basic pre-processing step here is given by the ratio of the sensor’s
conductance (1/R) with the baseline, which gives R0/R, where R0 is the sensor output
resistance to room air (baseline) and R is the sensor’s response resistance to the breath
exposure. The considered R is one value that summarizes the sensor’s response to the
whole analyte exposure. It corresponds to the mean of the latest measurements before the
cleaning step, in this case the last 5 s, when the sensor responses are most stable (steady
state). Therefore, the resulting data sets from measurements with our 18 sensors have
18 columns, one per sensor.

As specified above, the results of the classifier built in M and applied on each S is
considered the reference for the evaluation of the CTs. The considered classifier is linear
discriminant analysis (LDA) with a previous dimensionality reduction task using principal
component analysis (PCA). Therefore, the number of PCA components (nPCs) for the
PCA + LDA classifier is the parameter to be selected. For this, cross-validation is made
on two random subsets of the M’s data: a training set containing 48 samples with equally
represented classes (24 + 24), and a validation set with the remaining samples (~39). The
procedure is repeated 20 times for each parameter value to obtain the optimal nPC.

Transfer samples—Once the optimal nPCs for the classifier in M are selected, the
CT task is carried out as follows. For every pair M–S, a sample subset (M-training set)
is selected from M with both classes equally represented. The M’s transfer samples are
selected from this subset. Then, the S’s transfer samples are selected according to the CT
algorithm as described below, and the CT is performed.

The CT algorithms need a number of samples (transfer samples), labeled or not,
from both M and S. To select the transfer samples from M, we use first the Kennard–
Stone algorithm (KS) [88], and then for CT methods that use labeled transfer samples,
the transfer samples from S are selected according to standard samples or nonstandard
samples. Instead, for CT methods that use unlabeled transfer samples, KS is also used to
select the S’s transfer samples. The standard samples correspond to the M’s equivalent
samples in S, this is, the samples that were taken close in time (the subjects exhaled on
each instrument right one after the other) from the same patients by the 3 instruments.
In turn, the non-standard transfer samples are an alternative to the standard samples
and correspond to the very likely case where standard samples as defined above are not
available. Non-standard transfer samples are selected as follows: once M’s transfer set is
selected with KS, from a subset of 20 known (labeled) S samples, each selected S transfer
sample is the closest to each M’s transfer sample.

In addition, for cases with labeled samples the selection of M and S transfer samples
is made according to 2 class membership conditions: samples belonging to (a) both classes
in the experiment (meal/no-meal) or (b) only one class corresponding to no-meal. As for
the healthy class in a disease-control breath analysis experiment, subjects belonging to
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no-meal are easier to collect and thus, a CT method based on only such sample class would
be more practical.

CT evaluation—To assess the CT algorithms’ performance, the selected M classifier
is built using the M’s training samples and the S’s transfer samples if they are labeled.
The classifier is then applied on the corrected S’s samples excluding its transfer samples
(Figure 5).

Figure 5. Visual scheme of training set for the calibration transfer evaluation.

An additional reference can be considered for the CT algorithms that need known
labeled transfer samples from S; the calibration extension method (CEM) which consists of
the LDA classifier built with M’s training samples plus original (non-corrected by CT) S’s
labeled transfer samples, this is S’s samples without CT. Then, the CT can be considered
good if its AUC overcomes the CEM’s AUC. The procedure is repeated 20 times and the
AUC and SE are computed.

The number of considered transfer samples is 10, 20, 30 and 40. If the transfer samples
are labeled, as for DS, PDS and PLSDA-CT, the classes are equally represented within them.

4. Results and Discussion

4.1. The Dataset

After removing few outliers using PCA, the data set composition of the breath analysis
experiment is shown in Table 1.

Table 1. Data set composition.

Device Meal No-Meal

1 41 45
2 43 45
3 42 45

Figures 6 and 7 show the PCA scores plots of the complete data set according to the
devices and the meal status (classes), respectively. Measurements from the three devices
depend strongly on the device, since the breath samples come from the same individuals
and the sampling is made on each device one right after the other (Figure 6). On the other
hand, a certain degree of overlap between the data classes meal/no-meal can be seen in
Figure 7. This happens in every device, as it is shown by the sample symbols shown in
Figure 6.
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Figure 6. Principal component analysis (PCA) scores plot of the data according to the devices.

 

Figure 7. PCA scores plot of the data according to the classes: meal/no-meal.

4.2. Classification

The references to compare the performance of the CTs are the results of the classifi-
cation of every device’s data using a PCA + LDA model built with M’s training set data
(48 samples) before the CT. Table 2 shows the classification results for the PCA + LDA
models giving the best AUC according to device master-slave pairs, which indicates: device
to build model-device to test model. For example, for pairs with the same device as M1–M1,
it indicates that a training set (~48 samples) from M1 was used to build the model and a
test set (~39 samples) from the same device was used to evaluate it. When the pairs are
formed by different devices, the number of samples in the training set is ~48 samples but
for the test set is ~80 samples.
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Table 2. Classification results before calibration transfer (CT).

Pair Train-Test Device AUC (%) Accuracy (%) Sensitivity (%) Specificity (%) PCA nPCs

M1–M1 89.26 ± 0.87 80.01 ± 0.14 84.11 ± 0.20 75.75 ± 0.22 13

S2–S2 93.34 ± 0.65 86.41 ± 0.10 85.53 ± 0.17 87.25 ± 0.16 -

S3–S3 91.03 ± 0.12 81.56 ± 0.17 80.63 ± 0.30 82.50 ± 0.21 15
M1–S2 73.15 ± 1.15 64.83 ± 0.09 49.65 ± 0.26 79.66 ± 0.20 13
M1–S3 75.72 ± 2.40 66.88 ± 0.18 79.00 ± 0.38 54.75 ± 0.61 13

We can see in Table 2 that results for pairs of the same devices show good results
for discriminating human breath before and after the meal for the individual devices.
However, there is a significant performance decrease when the classifier is built with the
master device, which is a clear indicator of the fact that the devices differ.

The selected reduced dimension obtained after cross-validation (13 PCs) corresponds
to the model with optimal results in M1 (89.26 ± 0.87). The same model applied to devices
2 and 3 gave 73.15 ± 1.15 and 75.72 ± 2.40, respectively. These values are the lower value
reference for the evaluation of the methods (shadowed in Table 2).

4.3. Calibration Transfer Using Two-Class Transfer Samples

Figures 8 and 9 show the results of CT methods CORAL and PLSDA for both slave
devices. These are methods that do not need labeled samples from S. However, since
results for CORAL depend on λ and PLSDA depend on nLV, some known samples in the
slave device must be known in order to find an optimal value. Results for CORAL depend
on the device but good results are obtained for both devices at high λ with low dependency
on the number of transfer samples. AUC results for the low λ increase with the number of
transfer samples. The lowest λ give the best results for device 3, while it is the contrary for
device 2. In turn, for PLSDA the optimal number of PLSDA components to be removed
depends on the slave device and the number of transfer samples. Best results are obtained
with the maximum number of transfer samples. Figures 10 and 11 show the results of CT
methods DS, PDS and PLSDA-CT for both slave devices, when using standard samples.
CEM is a reference which shows whether it is worth applying any of these CT methods
or simply building the CEM classifier with labeled samples from each pair of M and S
devices together.

Figure 8. Classification results for correlation alignment (CORAL) using two-class standard trans-
fer samples.
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Figure 9. Classification results for partial least squares discriminant analysis (PLSDA) using two-class
standard transfer samples.

Figure 10. Classification results for CEM, DS and PDS using two-class standard transfer samples.

Figure 11. Classification results for using two-class standard transfer samples.

Figure 10 shows that when using standard transfer samples, PDS can give good results
in on-field experiments, although with many more transfer samples than those reported
for lab experiments. The optimal parameters for PDS or DS depend on the slave device
and number of transfer samples. For device 3, it is better to use CEM than the PDS as
CT. For both slave devices, PDS at the maximum window size (13) and a high number of
transfer samples gives the best results. In turn, when using PLSDA-CT (Figure 11) we can
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see that the best results are obtained with few components and medium number of transfer
samples. However, good and more stable results with respect to the nLVs are obtained
with many transfer samples.

Figures 12 and 13 show that there is a considerable decrease in the general performance
of PDS, DS and PLSDA-CT methods when using non-standard transfer samples. CEM
results, which are similar to the case of standard transfer samples above, are still the best
for device 3 (as in Figure 10). However, for device 2 it becomes comparable to PDS with
window size 1, while DS and PDS for window size 13 drop below the threshold. Window
size equal to 1 for PDS does not give good results but it keeps the values mostly above
the threshold level for both devices at the two cases of transfer samples used. Given the
general behavior of DS in Figures 9 and 10, for a study with more data for which more
transfer samples were available (thus bigger training set size) much better rates could be
achieved. The general worsening of the results can also be seen for PLSDA-CT. However,
AUC is still good for the smallest number of LVs.

Figure 12. Classification results for CEM, DS and PDS using two-class non-standard transfer samples.

λ
λ

λ

Figure 13. Classification results for PLSDA-CT using two-class non-standard transfer samples.

4.4. Calibration Transfer Using One-Class Transfer Samples

The following figures show results for the case of using transfer samples of only one
class, “no-meal” in our case. Figure 14 shows results for CORAL, which behaves similarly
although slightly worse than for the previous case (Figure 8). The high λ values give
close results which are stable with respect to the number of transfer samples, while small
λ values give increasingly better results with increasing number of transfer samples. In
fact, best results for device 3 are given by the smallest λ but it is the contrary for device 2.
Unfortunately, in this case none of the results given by PLSDA overcomes the threshold,
therefore we do not show them here.
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λ
λ

λ

Figure 14. Classification results for CORAL using one-class transfer samples from class “no-meal”.

Results for DS and PDS are not good when using one-class standard transfer samples,
only PDS with window size equal to 1 gives AUC slightly over the threshold (Figure 15).
However, PLSDA-CT still shows good results for small numbers of LVs but only for high
number of transfer samples (Figure 16).

Figure 15. Classification results for DS and PDS using one-class standard transfer samples from class
“no-meal”.

Figure 16. Classification results for PLSDA-CT using one-class standard transfer samples from class
“no-meal”.
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Finally, the use of one-class non-standard transfer samples results in Figure 17, which
shows a worsening in the performance of DS and PDS and a similar behavior of PLSDA-CT.
In addition, PLSDA-CT shows a change in the trend for the smallest number of one-class
transfer samples (Figures 16 and 18) of the performance, which increases with the LVs,
with respect to two-class transfer samples (Figures 11 and 13) for which the performance
decreases with the LVs.

Figure 17. Classification results for DS and PDS using one-class non-standard transfer samples from
class “no-meal”.

Figure 18. Classification results for PLSDA-CT using one-class non-standard transfer samples from
class “no-meal”.

In summary, we have shown the performance of several CT methods using labeled
transfer samples (DS, PDS, PLSDA-CT) with samples from one or two classes, and using
unlabeled transfer samples (CORAL, PLSDA) knowing that they contain one or two classes.
Since CORAL is based on covariance and in our data set the covariance of both classes
are not dramatically different (so we can use LDA as classifier), its performance using
a transfer sample set with one class is not much worse than using two classes. On the
contrary, PLSDA needs both classes in the transfer sample set to find a component on a
suitable direction to be removed. In turn, due to their nature, DS and PDS are very sensitive
not only to the classes present in the transfer set but also to the type of samples. Therefore,
standard samples of both classes are necessary for correct performance. Finally, results for
PLSDA-CT are more robust and stable for standard samples of both classes, but for a small
number of components and a high number of transfer samples, PLSDA-CT is giving good
results for all cases.
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5. Conclusions

In this work, we have presented a novel, compact and easy-to-use breath analyzer
platform with a modular sensing chamber and direct breath sampling unit. Furthermore,
we have tested the performance of four calibration transfer methods in a breath analysis
experiment using real human breath measurements to classify breath samples of subjects
before and after eating a specific meal. In our study the breath measurement is taken about
4 h after the food intake; this leads to the conclusion that the sensors are affected by every
food intake. This can be viewed as a potential disorder in studies with healthy and sick
people and should be considered when designing an appropriate sampling protocol.

The measurements were made using three instruments. One of them (device 1) was
selected as the master instrument, so that its measurements were used to build classification
models along with transfer samples whenever their classes were known. The other two
instruments were the slave instruments.

The four CT methods tested follow very different approaches, especially with regard to
the transfer samples they use. The test of these CT methods is in fact focused on the transfer
samples they need for an acceptable performance as a response for a practical problem
that arrives in on-field experiments, in our case in experiments using real human breath
measurements with gas sensor-based instruments. In such experiments, measurements of
samples at different locations and with different instruments are usual. The problem arrives
when transferring the calibration from the master to the remaining slave instruments,
because labeled samples from the slaves are needed and sometimes, they are difficult to
obtain. We wondered firstly if real sample measurements (instead of lab-samples) could be
used as transfer samples, and if so, how many and whether or not they must contain all
classes under study in the classification problem.

In the figures above, we have shown that real human breath measurements can be
used as transfer samples, although in large numbers, much larger than in lab experiments,
and with results that depend on the device. However, we could derive some general
conclusions. First, in all cases that need labeled transfer samples, the best performance of
all methods was obtained for two-class standard samples, and a decrease could be seen
when the two-class samples were not standard. Methods like PLSDA, DS and PDS need
transfer samples containing all the classes involved in the classification problem, although
for PLSDA these samples do not need to be specifically known. However, PLSDA-CT
gives good results for small LVs and large transfer samples which in our experiment
could contain only one class. CORAL also shows good results for both one and two-
class unlabeled transfer samples, although it depends on the device and a parameter.
Therefore, calibration transfer methods such as CORAL and PLSDA-CT could be used
in on-field experiments using transfer samples from the samples under study, without
the need of laboratory samples specifically measured for calibration transfer tasks or for
recalibration purposes.

Supplementary Materials: The following are available online, Figure S1: Internal view with de-
scription of the three main units of the Modular Breath Analyzer (MBA) platform for laboratory
and clinical use, Table S1: List of integrated analog sensors, number of obtained signals from each
sensor and used heater voltages (adapted with permission from Jaeschke et al., Copyright 2018 by the
authors), Table S2: List of integrated digital sensors, number of obtained signals from each sensor and
used heater voltages (adapted with permission from Jaeschke et al., Copyright 2018 by the authors).
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Abstract: The current understanding of deviations of human microbiota caused by antibiotic treat-
ment is poor. In an attempt to improve it, a proof-of-principle spectroscopic study of the breath of one
volunteer affected by a course of antibiotics for Helicobacter pylori eradication was performed. Fourier
transform spectroscopy enabled searching for the absorption spectral structures sensitive to the
treatment in the entire mid-infrared region. Two spectral ranges were found where the corresponding
structures strongly correlated with the beginning and end of the treatment. The structures were
identified as methyl ester of butyric acid and ethyl ester of pyruvic acid. Both acids generated by
bacteria in the gut are involved in fundamental processes of human metabolism. Being confirmed
by other studies, measurement of the methyl butyrate deviation could be a promising way for
monitoring acute gastritis and anti-Helicobacter pylori antibiotic treatment.

Keywords: breath; metabolites; volatile organic compound; acute gastritis; antibiotic treatment;
treatment dynamics: microbiota; mid-infrared spectroscopy; short-chain fatty acid; alpha-keto acid;
Helicobacter pylori

1. Introduction

A number of bacteria-related diseases increases as our understanding of the role of
microbiota deepens (for detail, see Section 1 of the Supplementary Materials (SM)). One of
the bacterium in stomach called Helicobacter pylori (Hp) attracts much attention [1] since
its discovery in 1983 because, under some unknown circumstances it can lead to gastric
problems including peptic ulcer disease [2]. It is agreed that should Hp be present in
stomach and not eradicated in cases of related gastric problems, it can lead to gastric
cancer. A common way of eradication includes a certain combination of antibiotics of broad
spectra, called a quadruple course (QAC, detail in Methods). In 2011, QAC demonstrated
95% eradication success [3]. It has to be noted that the success rate of the course degrades
with time because of Hp adaptation to the antibiotics [1,3]. The only reliable method to
determine whether the bacterium is susceptible or resistant to a particular antimicrobial is
to perform in vitro antimicrobial susceptibility testing [4].

Revealing the Hp presence via 13C urease or gastroscopy tests represents two estab-
lished techniques for practical monitoring. Measurements with the first technique can
be done either by means of mass-spectrometry or optical spectroscopy, showing similar
accuracy [5–7]. The second technique is invasive, with clinician-dependent outcome. In
both cases of Hp-positive tests, a clinician usually prescribes QAC. The treatment does not
imply an extra step to verify the remaining Hp in stomach. The duration of QAC should
be optimal for a given case: being too short, it does not eradicate Hp but makes bacteria
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more resistant to the antibiotics, whereas being too long, it brings negative side effects due
to general harm of antibiotics on microbiota. Therefore, monitoring the progress of QAC
aimed at its optimal duration would be beneficial in each individual case. In regard to
the antibiotic anti-Hp treatment, an important question should be posed: how does QAC
affect other than Hp bacteria? The urease test cannot answer this question because of its
specificity to Hp. It was reported that about 30% of bacterial species were influenced by the
treatment with ciprofloxacin [8]. Although most bacterial groups and subgroups (called
strains; diversity within the bacterial gene) recovered after treatment, several of them did
not, even after six months. Controlling their recovering is an important practical task not
solved so far, to the best of our knowledge [8,9]. For cases not related to Hp, the recovery
process was recently modeled [10].

There are three more powerful techniques for detecting bacteria that are not (yet)
of practical use for Hp: serum antibody test, quantitative polymerase chain reaction
(qPCR) [11] and 16S rRNA sequencing [12]. The restricted practical application of the
latter technique is caused by its high price and the fact that 16S rRNA sequencing has
some limitations [12] including the accuracy [13] and the necessity to use one pipeline
for an accurate comparison of the data. The sequencing applied to Hp in feces [14] and
other bio-samples [15] already revealed detailed information about the Hp strains and
migration in the stomach for a steady state in the body. We are not aware of any study
with this technique focused on the dynamics of anti-Hp treatment. Variations of bacterial
concentrations caused by an antibiotic treatment have already been analyzed [8] in feces,
resulting in highly diverse effects for three volunteers. The authors found a substantial, but
not full, return to the pretreatment feces composition within 4 weeks after the treatment.

Another, technically more practical, way of monitoring the state of microbiota could
be to measure the products of its metabolism. Among them, volatile products extracted
from headspace of urine, blood (including breath), or feces [16] have attracted much
attention. The corresponding measuring techniques such as e-nose [17] and laser-induced
breakdown spectroscopy [18] were recently tested. One study based on mass spectrometry
gas chromatography was focused on analysis of breath variations caused by anti-Hp
treatment [19]. The study revealed certain (but not significant) differences in the volatile
organic compound (VOC) content prior to anti-Hp treatment and after. The authors
concluded that their observation could be explained either by the action of antibiotics on
the gut microbiome, or by the effect of the probiotics rather than the presence or absence
of Hp.

Bearing the current situation in mind, we suggest that measurements prior, during,
and after the antibiotic treatment should be beneficial. Being combined with the steady-
state data of the individual [20], such a study could unambiguously reveal the effect of
the treatment.

There is growing understanding that the response of a subject to antibiotic treatment
is unique [8,10]. The response is the result of at least two major factors: the gut microbiome
content in general and the history of previous antibiotic treatments. The first factor defines
a list of bacteria present in the gut together with their strains. It is important to note that
strains of the bacterium have different sensitivity to antibiotics [21]. So far, the second
factor was demonstrated experimentally only for mice. The main conclusion was that
antibiotics reduce or eliminate most products of bacterial metabolism including short-chain
fatty acids (SCFA) [22].

In comparison to analysis of feces mentioned above, breath could have several advan-
tages: (a) it allows to make more frequent monitoring of the metabolic state of bacteria and
(b) it carries direct information about the gut microbiome state. To note, bacteria in feces
become already modified in comparison to the gut state and, strictly speaking, should be
considered as being measured in vitro [13].

The aim of this one-case study was to verify whether breath carries significant infor-
mation about acute gastritis and the dynamic response of the body to anti-Hp treatment.
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2. Working Hypotheses, Results, and Discussion

The results presented below are aimed at verifying four working hypotheses related
to QAC. They can be formulated as follows: (1) a conventional anti-Hp course based on
antibiotics of broad spectrum kills Hp as well as other bacteria in the entire gastro-intestinal
system (inspired by [8]); (2) different types of bacteria have different resistivity and reaction
to antibiotics, depending in the same time on the individual. The bacterial resistivity can
be so high that the treatment cannot affect them; (3) bacterial groups affected by antibiotics
of QAC but present in a parallel probiotic course, should show fast recovering; (4) in order
to see the treatment dynamics, monitoring must be provided not only before and after
the course but also during it. The expected corresponding outcomes of these hypotheses
are the following (referring to the hypothesis numbering): (1) and (2) monotonic decay
of the concentration of different types of bacteria on different time scales; (3) significantly
different time scales of the microbiota recovering. For volatile products related to bacteria
strains present in the Omni-biotic 10 probiotic course [23], one can expect their recovering
on the time scale of the course. For volatile products of the bacteria out of the Omni-biotic
10 course, one can expect slower recovering on a long time scale of months [24,25] or even
years [8,10]. The hypotheses define the time scale of the study we aimed for. Specifically, a
period of several months before and after the treatment should be used to collect the data
regarding the steady state of the body. The absence of the steady state would mean that the
hypotheses we formulated cannot be verified. Deviations of VOCs originated from bacteria
sensitive to QAC, must be synchronized with the beginning and the end of the treatment.

Figure 1 demonstrates variations of the absorption signals from breath samples before,
during and after QAC. To note, the signals are proportional to concentrations of the
corresponding VOCs. First, we see that in both plots corresponding to different spectral
ranges, the steady state (i.e., the same absorbance level before and after QAC) does exist.
A correlation of both signals with the beginning and the end of the treatment allowed us to
surmise that they originate from bacteria. Figure 2 represents an extended illustration of the
steady state found in [20], related here to the signal at 2972 cm−1 (the left plot in Figure 1).
Analysis of the identified metabolites corresponding to the both plots also revealed their
bacterial origin (Section 3.4).

Figure 1. Absorbance variation (proportional to the concentration variation) of three spectral structures centered at
2972 cm−1, 1170 cm−1 (left), and 1130 cmß1 (right) caused by QAC. The lines connecting the data points are used for better
visibility. Vertical dash lines show the start of the QAC course (left line), the end of the antibiotic course (middle line) and
the end of the probiotic course. The corresponding bars indicate the same: orange horizontal bar shows the antibiotic
treatment in frame of QAC whereas blue bar—Omnibiotic 10 course taken in parallel to QAC. Absorbances at −62 and
58 days at the plots correspond to the steady state level of the corresponding VOC. Data points corresponding to dates
earlier than −60 and longer than 60 days were collected and used only for analysis; they are not presented here in order to
improve the visibility of the plots.
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Figure 2. Variation of the absorbance centered at 2972 cm−1 during a period of 3.5 years, with the peak related to accute
gastritis and QAC. Inset: the recovering dynamics via QAC.

Second, in both plots of Figure 1 we see a ten-fold variation of the absorbance caused
by acute gastritis and QAC, significantly exceeding natural variations of the steady state.
One can also see that the characteristic time scales of the detected signals vary from few
days (the right plot) to approximately 20 days (the left plot). The result correlates with the
available literature data [8,9]. Different time constants identified from the two plots, call
for considering two classes of bacteria affected by QAC, namely semi-resistant (the left
plot) and susceptible (the right plot).

2.1. Signals at 2972 cm−1 and 1170 cm−1

Two signals on the left plot of Figure 1 demonstrate qualitatively similar variations
from the steady state level, with well-synchronized onsets of their decays. The steady
state level of the subject was defined by the data used in Figure 2. Time series data
became possible in frame of another study [20] and here we used the extracted values
corresponding to the period out of QAC. Significant elevation of the signal just before
QAC started (day “−2”) was attributed to acute gastritis. That day, because of extra pain
in stomach, the subject visited a doctor who recommended immediate QAC. Because of
their slow reaction to QAC, the signals were linked to the product (-s) of semi-resistant
bacteria. Their decaying part was attributed to the main eradication effect of QAC. We
do not attribute the elevated point on day “−2” to Hp because of two reasons: based
on the anamnesis, the corresponding infection occurred many decades ago. The second
reason is discussed in Section 2.6. The findings shown in Figure 1 support the first two
working hypotheses.

2.2. Signal at 1130 cm−1

The signal starts recovering to its steady-state level right at the end of the antibiotic
part of QAC and finishes at the end of the probiotic part. It indicates that it is related to
the bacteria present in the QAC probiotic part [23] described in the Methods. The abruptly
decaying signal in the beginning of the treatment (day “0” to day “10”) indicates that
the effect of antibiotics on the corresponding bacteria is significantly stronger than the
effect of probiotics. Potential candidates for such bacteria are discussed in Section 3 of
Supplementary Materials.

2.3. Other Signals

We also analyzed the structures centered at 1189 and 1203 cm−1. They found to
be insensitive to QAC. The first one was attributed to the mixture of ethyl and propyl
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propionates in our previous study [20]. Propionic acid is the product of bacteria responsible
for food fermentation (Section 3 of Supplementary Materials) and represents one of the
main SCFA in the body. The second structure was attributed to ethyl vinyl ketone, an
oxygenated hydrocarbon lipid molecule. The two types of molecules support the second
working hypothesis.

2.4. Identification of the Molecules Responsible for the Spectral Signals

Figure 3 represents the structures of the absorption spectra that were used for the
temporal analysis in Figure 1. It turned out that the three spectra correspond to two VOCs,
namely methyl butyrate (1170 cm−1 and 2972 cm−1) and ethyl pyruvate (1130 cm−1). In
plot (a), one can see that the fitting quality, in spite of weak absorbance and high noise,
allowed to consider methyl butyrate and ethyl pyruvate responsible for the detected
structures. Structures at 1130 cm−1 and 1170 cm−1 were revealed by digital removal of the
above-lying structures that belong to carbon dioxide and aldehydes [26]. They were then
identified using the two-step procedure described in Methods (without step 3). Fitting the
structures with the spectra taken from the NIST database [27] led to the agreement within
3 cm−1 (0.3% inaccuracy). Plot (b) represents the difference between the inflammation
(acute gastritis) and the healthy state. The subtraction procedure removed the structures
with sharp spikes that belong to methane. We used the fact that methane concentration
was constant during the entire period shown in Figure 2. Plot (c) presents the spectral
structure centered around 3000 cm−1 that we revealed in the following way: the subtracting
procedure was applied to the data taken in different days of QAC. In this step, we took
the spectrum measured 30 days after the start of QAC as a reference, subtracting it from
the spectra measured during the QAC period. A similar result was obtained when the
spectra measured 60 and 192 days prior QAC were taken as the reference. Subtraction of
one reference data from another gave a flat line supporting our suggestion that only the
body reaction to QAC should be revealed via such a procedure. In general, identification
of spectral structures around 3000 cm−1 is difficult: hundreds of VOCs have fundamental
absorption bands there caused by C-H bonds. A synchronous variation of the entire
structure between 2940 cm−1 and 3016 cm−1 for different days along QAC (Figure 3)
supports a suggestion that in our case it mainly represents one VOC. By applying a three-
step identification procedure (see the Methods section), we concluded with high probability
that the structure belongs to methyl butyrate.

Figure 3. (a) Breath absorption spectra at 1130 cm−1 together with the ethyl pyruvate spectrum (red) taken from [27] as
the best fitting candidate, and at 1170 cm−1 together with the methyl butyrate [27] (grey). The spectra correspond to day
“−2” (the first elevated points on the left plot of Figure 1). Noisy signals are caused by the presence of residual water.
(b) The difference (red) between the inflammation (day “0”, turquoise blue) and normal state (day “10 Feburary 2018”,
gray). Sharp spikes in the turquoise blue and gray curves belong to methane. (c) Differential (see text) breath absorption
spectrum taken during the antibiotic treatment together with the measured methyl butyrate absorption spectrum as the best
fitting candidate (red).

27



Molecules 2021, 26, 3474

Methyl butyrate—The detailed analysis of the spectral structures shown in Figure 3
provides four reasons to trust the identification: it (a) fits narrow, far-separated peaks at
1170 cm−1 and 2972 cm−1 with the accuracy of better than 6 cm−1 (i.e., relative inaccuracy
0.2%), (b) perfectly matches the main broad peak 2946–2992 cm−1, (c) perfectly fits the
total spectral structure of approximately 200 cm−1 width between 2840 and 3040 cm−1,
(d) demonstrates similar asymmetry of the absorption peak (the low-wavenumber tail).
Nevertheless, we do not exclude contributions of other molecules to the experimental peak
in the range 2850–2940 cm−1. Methyl butyrate was reported in the compendium for breath
and feces [16], whereas according to HMBD [28], it was previously found only in feces.
It is a product of bacterial metabolism in the gut (detail in Section 3 of Supplementary
Materials).

Ethyl pyruvate—The metabolite represents a derivative of another class of acids,
namely alpha-keto acids. It has been identified in [28] but is absent in the compendium [16].
The latter could relate to the fact that pyruvic acid is not an end product but rather
a source for other metabolites like SCFAs, carbohydrates, etc. (detail in Section 3 of
Supplementary Materials).

2.5. Type of Vibrations Attributed to the Characteristic Spectral Structures of Ethyl Pyruvate

Observed at 1130 cm−1 and Methyl Butyrate at 1170 cm−1

Whereas the vibration around 3000 cm−1 is mainly defined by the C-H bond resulting
in a difficulty of the molecular identification, the vibrations of ethyl pyruvate at 1130 cm−1

and methyl butyrate observed at 1170 cm−1 turned out to be very specific to these molecules.
Numerical simulation (Section 3.4 of the Methods) allowed us to identify the corresponding
vibration modes. In both cases, they were identified as a combination of C-O stretching
and C-H bending modes involving the movement of the entire molecular skeleton. For
methyl butyrate, the vibration was identified as a combination of a very strong backbone
C-O stretching mode and the C-H bending mode in the methyl group attached to the C-O
bond. These two modes affect the movement of the other part of the molecule, and all
the C-H bonds undergo some kind of bending motion. The backbone of the molecule also
shows bending motion restricted to the plane of the backbone.

For illustration, the retrieved absorption spectrum of methyl butyrate is shown in
Figure 4, together with the measured spectrum. Their good qualitative agreement in
the entire fingerprint region can be considered as another confirmation of validity of
the identification. Shifts in positioning for the peaks centered at 1170 and 3000 cm−1,
observable for the calculated and measured spectra, represent a general problem for any
quantum chemical calculation. We consider the agreement as another evidence of the
power of gas phase spectroscopy in terms of accuracy of molecular identification. The
identified complex vibration, unlike low-specific single C-H, C-O, or C=O modes used in
analyses of biofluids in liquid phase, characterizes the molecule in a unique way because
all the molecular skeleton is involved (see the arrows in the inset).

2.6. A Hypothesized Transportation Scheme and Parent Bacteria

A possible origin and transportation of ethyl pyruvate and methyl butyrate in the
body until their extraction in the lung alveoli are discussed and illustrated in Section 4 of
Supplementary Materials. Their parent bacteria are discussed in Section 3 of Supplementary
Materials. Butyric and propionic acids and their derivatives, in our case methyl butyrate
and ethyl/propyl propionate, are absent in the list of main metabolomic pathways of Hp
(see figure 2 in [29]). As ethyl pyruvate demonstrates variations only during QAC but not
after (the right plot of Figure 1), we also do not attribute this metabolite to the product of
Hp. It allowed us to consider the identified metabolites as suitable for monitoring bacteria
other than Hp, being affected by anti-Hp antibiotic treatment.
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Figure 4. Orange curve: measured absorption spectrum of methyl butyrate; blue curve: result of numerical calculation (see
Section 3.4). Inset: 3D structure of methyl butyrate. Green arrows show the movement of atoms in the complex vibration
linked to the peak at 1170 cm−1. Red balls: oxygen, large grey balls: carbon, small grey pins: hydrogen.

3. Materials and Methods

3.1. The Instrument

We used Bruker FTIR spectrometer Vertex 70 based on thermal source, operating in
the mid-infrared spectral range of our interest 500–4000 cm−1 (2.5–20 µm). The spectral
resolution 0.5 cm−1 was kept for all the measurements. Gas samples were collected in single-
use Tedlar bags (Sigma Aldrich) and measured then by using a system that significantly
suppresses the amount of water vapor [30]. The minimum detectable concentration (the
detection noise) reached 50 ppb (part-per-billion, Section 2 in SM). This value corresponds
to 1 × 10−4 of the absorbance at 1100 cm−1 in Figure 3a. The absorbance units were used
throughout the text because they represent physical values measured in the experiment.
Their transformation into concentrations can be done only if the corresponding spectral
structure is identified as a certain VOC.

3.2. Subject of the Study and a Description of the Treatment Antibiotics Course

The breath content of a 64-year old men participating in this study was monitored
for more than three and a half years, including several snapshots during and after the
antibiotics course. The reason for the QAC course was acute gastritis. Gastritis started
in his childhood, with different periods of pain intensity. His visit to gastroenterologist
revealed a distinct epithelial area affected by inflammation corresponding to the Hp activity.
The following QAC assisted by the probiotic course was monitored by five measurements
shown in Figures 1 and 2. The QAC included: a 10-day course of pump inhibitor (PPI,
esomeprazol), tetracycline, metronidazole, bismuth citrate accompanied by a 20 day of
the probiotic yeast course (Omni-biotic 10). PPI decreases the acid production in stomach
and possibly, adhesion of Hp to stomach epithelium. Omni-biotic 10 contains 10 human
bacterial strains [23]: Lactobacillus acidophilus W55, Lactobacillus salivarius W24, Lactobacillus
acidophilus W37, Lactobacillus plantarum W62, Lactobacillus paracasei W72, Bididobacterium
bifidium W23, Lactobacillus rhamnosus W71, Bifidobacterium lactic W18, Enterococcus faecium
W54, Bifidobacterium longum W51. No post-treatment healthy check was performed.

29



Molecules 2021, 26, 3474

3.3. Identification Procedures of the Spectral Structures

Identification of molecules was done according to the three-step procedure developed
in [26,31], with the help of theoretical hints developed in [32]. The hints make a link
between a 3D molecular structure and the shape of the corresponding absorption spectral
structure. It has to be noted that the identification is a high probability guess, bearing
in mind a large number of molecules with the absorption bands in the range of our
interest, especially around 3000 cm−1. The range is defined by C-H vibrations common
for all organic molecules. In short, the identification steps included comparison of the
absorption spectra of VOCs from the compendium [16] with the experiment by using
NIST database [27] (step 1). Candidates chosen in such a way were then measured with
the spectrometer under identical technical parameters as breath samples (step 2). The
final proof consisted in comparison of the remaining candidates with HMBD [28] (step 3).
The accuracy of the identification of molecules achieved in our spectroscopic experiment
approached 99.8% in terms of the peak position and characteristic width.

3.4. Numerical Simulation

Numerical simulation of the equilibrium structure of the identified gaseous metabo-
lites has been performed based on the density functional theory with the Perdew–Burke–
Ernzerho functional using Gaussian 09 computational chemistry software [33–36].

4. Conclusions and Future Work

To the best of our knowledge, we demonstrate the first signatures of breath-related
dynamics of acute gastritis affected by the quadruple antibiotics course. The carriers of
the dynamics were identified as volatile derivatives of SCFA and alpha-keto acid. They
represent the products of bacterial metabolism in the gut. As SCFAs play an important role
in the regulating energy metabolism and energy supply, maintaining the homeostasis of
the intestinal environment [37–39], their variations found in this study reflect fundamental
changes of the body state caused by acute gastritis and antibiotic treatment. A direct link
between SCFA, alpha-keto acid, and acute gastritis has to be clarified in further studies.

In our opinion, at this promising stage it makes sense to continue work on (1) iden-
tifying new spectral ranges sensitive to QAC; and (2) verifying the observation reported
here, with conventional techniques where possible. An example for the latter could be a
biochemical analysis of feces, even it is not instant in comparison to breath. Collecting the
statistical data of the reaction of patients treated with QAC, with its further analysis should
be considered with a precaution: a reaction of a human body to the same medication
is specific, especially for non-targeted bacteria (i.e., excluding Hp in our case). Diverse
effects in reactions of individuals to the same antibiotic treatment observed in [8,10] may be
considered as an illustration of this concern. It has to be noted that, for the targeted bacteria
(Hp in our case), the observed diversity of human reactions is low. Instead of statistical
analysis, we are in favor of implementing bio-passports introduced previously [20]. They
should contain individual information about the state of microbiota together with all previ-
ous reactions (in the sense of this study) to any antibiotic treatment. In our opinion, such a
strategy should replace the statistical approach in both cases of analysis and treatment by
introducing a personalized approach, with higher expected outcome.

As the metabolism of each bacterium is complex depending on its strains, there is no
direct link between the production of a certain SCFA or alpha-keto acid, and the bacterium.
Nevertheless, if the ratio of concentrations of acetate, propionate and butyrate deviates
significantly from the norm 60:20:20 in the gut [37,38], it may be considered as a sign of
abnormality. In our case, the reconstructed propionate/butyrate ratio of concentrations
before and after QAC was found to be equal to 1, supporting the evidence of norm [37,38].
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Supplementary Materials: Figure S1: Left: measured 1/noise vs square root of number of scans.
Right: measured 1/noise vs spectral resolution in cm−1, Figure S2: Working hypothesis of trans-
portation of methyl butyrate and ethyl pyruvate in the body, with their release via exhaled air in
lungs. References [40–60] are cited in the Supplementary Materials.
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Abstract: Exhaled aliphatic aldehydes were proposed as non-invasive biomarkers to detect increased
lipid peroxidation in various diseases. As a prelude to clinical application of the multicapillary
column–ion mobility spectrometry for the evaluation of aldehyde exhalation, we, therefore: (1) iden-
tified the most abundant volatile aliphatic aldehydes originating from in vitro oxidation of various
polyunsaturated fatty acids; (2) evaluated emittance of aldehydes from plastic parts of the breathing
circuit; (3) conducted a pilot study for in vivo quantification of exhaled aldehydes in mechanically
ventilated patients. Pentanal, hexanal, heptanal, and nonanal were quantifiable in the headspace of
oxidizing polyunsaturated fatty acids, with pentanal and hexanal predominating. Plastic parts of
the breathing circuit emitted hexanal, octanal, nonanal, and decanal, whereby nonanal and decanal
were ubiquitous and pentanal or heptanal not being detected. Only pentanal was quantifiable in
breath of mechanically ventilated surgical patients with a mean exhaled concentration of 13 ± 5 ppb.
An explorative analysis suggested that pentanal exhalation is associated with mechanical power—a
measure for the invasiveness of mechanical ventilation. In conclusion, exhaled pentanal is a promis-
ing non-invasive biomarker for lipid peroxidation inducing pathologies, and should be evaluated in
future clinical studies, particularly for detection of lung injury.

Keywords: anesthesia; breath analysis; mechanical ventilation; lipid peroxidation; biomarker; volatile
aldehydes; pentanal; MCC–IMS; ventilator-induced lung injury; volatile organic compounds

1. Introduction

Lipid peroxidation products are established markers of oxidative stress [1], and are
potential non-invasive biomarkers for detection of various diseases. For example, increased
aldehyde exhalation has been reported in patients suffering from pulmonary diseases
such as lung cancer [2–5], chronic obstructive pulmonary disease [6], and COVID-19 [7,8].
Additionally, volatile aldehydes considerably increase in the blood of patients suffering
from acute respiratory distress syndrome [9,10]. Recent animal experiments suggest that
the volatile aldehyde pentanal may be a biomarker for ventilator-induced lung injury [11].
There is thus increasing evidence that monitoring of aldehyde exhalation may help detect
diseases and acute injuries of the lung.

Analyses of liquid aliphatic aldehydes indicate that they originate from lipid peroxi-
dation [12,13]. However, gaseous concentrations also depend on vapor pressure, which
progressively decreases with longer aldehyde chain lengths. Most previous investigations
that measured gaseous concentrations of volatile aliphatic aldehydes focused on single
aldehydes to quantify lipid peroxidation in vitro [14,15]. To our knowledge, only a single
study performed comparative measurements of various volatile aldehydes deriving from
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oxidizing synthetic lipid membranes [16]. Consequently, the relative contributions of vari-
ous isolated polyunsaturated fatty acids to gaseous aldehyde generation remains unclear.

Monitoring aldehyde exhalation is particularly interesting in ventilated patients, as
they often have baseline pulmonary diseases and are susceptible to ventilator-induced lung
injury, which might be identified by aldehyde exhalation [11]. A potential complication,
though, is that most materials in breathing circuits of modern anesthesia machines and air-
way devices are made from plastic which can emit volatile aldehydes [17], thus potentially
interfering with breath analysis in ventilated patients.

Multicapillary column–ion mobility spectrometry (MCC–IMS) has been used to exam-
ine exhaled volatile organic compounds [18–20] and monitor exhaled propofol [21–23] in
ventilated patients. However, volatile aldehydes are typically exhaled at concentrations
of a few parts per billion [24,25], which raises the question of whether the MCC–IMS
technique with our corresponding sampling setup is sensitive enough to quantify exhaled
aldehydes. Moreover, cross-contaminations from ambient air or the ventilator may even
exclude in vivo quantification. A pilot study is therefore needed to assess the clinical
suitability of the MCC–IMS technique to monitor aldehyde exhalation.

Our primary aim was to assess clinical use of MCC–IMS for bedside online measure-
ments of exhaled aliphatic aldehydes as a measure of lipid peroxidation. Secondarily, we
aimed to identify the most promising aliphatic aldehydes for monitoring lipid peroxidation
in mechanically ventilated patients under in vitro and in vivo conditions. We therefore:
(1) identified the predominant volatile aliphatic aldehydes originating from in vitro peroxi-
dation of various polyunsaturated fatty acids; (2) evaluated emittance of volatile aldehydes
from parts of the breathing circuit; (3) conducted a pilot study using MCC–IMS for in vivo
quantification of exhaled aldehydes in mechanically ventilated patients.

2. Results

2.1. Calibration

All calibrations showed a good linear fit (R2: 0.97 to 0.99; Supplementary Materials,
File 1, Figure S2). Limits of detection and quantification were 0.008 and 0.011 Volt.

2.2. Volatile Aldehydes Originating from In Vitro Lipid Peroxidation

Pentanal, hexanal, heptanal, and nonanal were detected in the headspace of an animal-
sourced mixture of oxidizing polyunsaturated fatty acids (PUFA-Mix, Figure 1). Pentanal
and hexanal emerged from all polyunsaturated fatty acids, with pentanal and hexanal
predominating. Nonanal emerged from the mixture of polyunsaturated fatty acids and
heptanal from arachidonic acid (Figure 1). Unquantifiable traces of octanal were identified
in all probes. Decanal was not detected.

2.3. Volatile Aldehydes Emitted By Plastic Parts of the Breathing Circuit

Parts of the breathing circuit emitted hexanal, octanal, nonanal, and decanal with
nonanal and decanal originating from all assessed parts (Table 1). Pentanal and heptanal
were not detected.
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Figure 1. Volatile aldehydes produced by oxidation of polyunsaturated fatty acids. A total of 30 µL of isolated or mixed
polyunsaturated fatty acids were injected into a perfluoroalkoxy alkane flask and oxidized under a constant flow of
100 mL/min synthetic air (21% O2). Headspace samples were analyzed by means of MCC–IMS. Measurement series were
performed once; therefore, raw data are presented. PUFA-Mix is the animal-sourced mixture of polyunsaturated fatty acids.

Table 1. Evaporation of volatile aldehydes by parts of the breathing circuit.

Material Detected Aldehydes Concentration (ppb)

Endotracheal tube
Octanal 7.0 ± 1.4
Nonanal 12.5 ± 0.7
Decanal 2.5 ± 0.4

Humidity and moisture
exchanging filter

Nonanal 0.1 ± 0.4
Decanal 1.7 ± 0.1

Breathing bag
Hexanal 0.5 ± 0.1
Nonanal 2.0 ± 0.3
Decanal 0.7 ± 0.1

Breathing tubes
Hexanal 0.2 ± 0.1
Nonanal 1.4 ± 0.2
Decanal 0.6 ± 0.2

Test lung Nonanal unquantifiable traces
Decanal 0.8 ± 0.2

Data are presented as means ± SD.

2.4. Volatile Aldehydes in the Breath of Ventilated Patients

All patients screened for eligibility underwent pancreaticoduodenectomies, as this op-
eration is scheduled to last at least 4 h at our medical center. Twelve surgical adult patients
undergoing elective pancreaticoduodenectomy were assessed. No patient was excluded.
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Two third of the patients had a malignant tumor and/or arterial hypertension, and
half of the patients suffered from diabetes mellitus. Patients were ventilated on average for
about six hours (Table 2).

Table 2. Patient characteristics and ventilation parameters.

Patient Characteristics

Patients included/screened for eligibility 12/12
Age (years) 67 ± 11

Sex (male/female) 8 (67)/4 (33)
Height (cm) 170 ± 8
Weight (kg) 69 ± 13

ASA physical status (I/II/III) 0/6 (50)/6 (50)
Malignant tumor 8 (67)

Arterial hypertension 8 (67)
Diabetes mellitus 6 (50)

Mechanical ventilation time (min) 344 ± 102

Ventilation Parameters

Tidal volume (mL) 452 ± 82
Respiratory rate (breaths·min−1) 12 ± 1

Minute volume (L·min−1) 5.4 ± 1.1
Inspiratory pressure (mbar) 15.3 ± 2.1

Positive end expiratory pressure (mbar) 5.1 ± 0.5
Mechanical power (J·min−1) 8.3 ± 2.6

Data are presented either as means ± SD, or as frequencies (%). Ventilation parameters repeatedly measured over
time were summarized with single means.

Only exhaled pentanal was quantifiable in breath. Unquantifiable traces of nonanal
were detected and other aldehydes were not detected at all. Ventilators were contaminated
with a mean pentanal concentration of 1.2 ± 1.1 ppb. Exhaled pentanal concentrations over
time are presented in Figure 2. In three patients, the exhaled pentanal concentration did not
substantially exceed ventilator contaminations who were therefore excluded from further
statistical analyses. None of the patients with limited pentanal exhalation had malignant
tumors. In contrast, all but one of the remaining nine patients had malignancy. Excluding
the three patients with limited pentanal exhalation, the overall mean exhaled pentanal
concentration was 13 ± 5 ppb.

≥
Figure 2. Pentanal in the breath of surgical patients during mechanical ventilation. Twelve surgical
patients undergoing prolonged mechanical ventilation (≥4 h) were assessed. In three patients, the
exhaled pentanal concentration did not substantially exceed ventilator contaminations who were
therefore excluded from graphical presentation. The presented concentrations are corrected for
baseline ventilator contaminations.
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An exploratory analysis revealed a significant association of exhaled pentanal with
tidal volume, minute volume, and mechanical power, but not with inspiratory pressure
(Figure 3, Table 3).

≥

 
Figure 3. Exhaled pentanal versus mechanical power. A linear generalized estimating equations regression model and the
marginal R2 were calculated to assess the relationship of exhaled pentanal with mechanical power. Subjects included/total:
n = 9/12, data pairs: n = 547. Data from three patients with limited pentanal exhalation were excluded.

Table 3. Association of exhaled pentanal with ventilation parameters.

Parameter
Regression
Coefficient

95% Confidence
Interval

R2 p

Tidal volume (mL) 0.01 0.003–0.018 0.02 0.004
Minute volume (L·min−1) 2.0 0.6–3.3 0.05 0.004

Inspiratory pressure (mbar) 0.2 −0.3–0.6 0.04 0.463
Mechanical power (J·min−1) 0.7 0.3–1.1 0.11 0.001

Univariable linear generalized estimating equations regression models were calculated to assess the association of
exhaled pentanal (dependent variable) with ventilation parameters and mechanical power (independent variable).
Subjects: n = 9, data pairs: n = 547. Data from 3 patients with limited pentanal exhalation were excluded.

3. Discussion

This study presents the preparatory analytical work and a clinical pilot study for
online monitoring of aldehyde exhalation to quantify lipid peroxidation in ventilated
surgical patients by means of MCC–IMS. As an overall finding, pentanal represents the
most promising exhaled volatile aliphatic aldehyde. Pentanal is predominantly a product
of lipid peroxidation rather than evaporating from parts of the breathing circuit and was
the only quantifiable volatile aldehyde in the breath of ventilated surgical patients with
our measurement setup.

Oxidation of mixed polyunsaturated fatty acids confirmed that the aliphatic aldehydes
pentanal, hexanal, heptanal, and nonanal are gaseous products of lipid peroxidation. Only
traces of octanal were detected and no decanal was detected, probably because they were
generated in limited quantities and their vapor pressures are low [26]. In contrast, pentanal
and hexanal were ubiquitous. Pentanal dominated early phases of in vitro lipid peroxi-
dation, whereas hexanal increased over time and approached or even exceeded pentanal
concentrations. Our findings are consistent with a previous study that assessed volatile
aldehydes emerging from oxidizing phospholipid membranes and similarly showed that
pentanal dominated early in the process of lipid peroxidation, whereas hexanal dominated

39



Molecules 2021, 26, 3089

later [16]. Results from an analysis of fluid aliphatic aldehydes, originating from several
polyunsaturated fatty acids oxidized by air, confirm that pentanal and hexanal are the
predominant products of lipid peroxidation, with hexanal concentrations being twice those
of pentanal after 48 h of peroxidation [12].

Pentanal thus dominates early and hexanal dominates later phases of lipid peroxida-
tion, which can be explained by their chemical properties. Specifically, pentanal has twice
the vapor pressure than hexanal (pentanal: 26 mmHg at 20 ◦C and hexanal: 11.3 mmHg at
25 ◦C), and therefore evaporates more quickly [27,28]. However, pentanal is more reactive
then hexanal. Consequently, autoxidation of pentanal may, over time, exceed its generation
rate. Hexanal may therefore be the primary and more stable product of lipid peroxidation,
but pentanal may be a better biomarker by virtue of responding quickly to oxidative stress.

Plastic components of the breathing circuit emitted hexanal, octanal, nonanal, and de-
canal, which is consistent with previous analyses showing that all are emitted by polypropy-
lene and polyethylene [17,29]—the two most commonly used materials for plastic com-
ponents. The largest source of volatile aldehydes was the endotracheal tube, which is
made from polyvinylchloride. In addition to octanal and decanal, the endotracheal tube
emitted considerable amounts of nonanal, which is consistent with a previous analysis of
volatile organic compound profiles emitted by polyvinylchloride materials [30]. Under the
influence of heat and moisture from the body and breathing gases, release of these volatile
organic compounds from plastic components may be unpredictable. Thus, even when
corrected for baseline contamination, measurements of hexanal, octanal, nonanal, and
decanal in the breath of ventilated patients might be compromised by non-organic sources.
In contrast, pentanal and heptanal were not emitted by plastic breathing circuit components
and are thus presumably better biomarkers for lipid peroxidation in ventilated patients.

We finally evaluated aldehyde exhalation in twelve surgical patients during prolonged
mechanical ventilation. Aside from traces of nonanal, pentanal was the only volatile
aldehyde we detected. Ventilators were contaminated with low amounts of pentanal,
possibly representing residuals from previously ventilated patients since the breathing
circuit was apparently not the source. The overall exhaled pentanal concentrations in
ventilated patients were in the low parts-per-billion range, consistent with previous reports
from spontaneously breathing healthy volunteers [24,25]. However, we measured slightly
higher exhaled pentanal concentrations in ventilated patients, possibly consequent to
intubation, which increases the sampled proportion of alveolar air. Another reason could
be that mechanical ventilation induces pulmonary lipid peroxidation and therefore increase
pentanal exhalation, as previously shown in animals [11,31].

In three patients, the exhaled pentanal concentrations were roughly at the concentra-
tion of ventilator contamination, whereas exhaled concentrations in the others averaged
13 ppb. Interestingly, none of the patients with low concentrations had cancer, whereas
eight of the nine others did. While possibly spurious, the results are consistent with
previous reports that cancer promotes exhalation of pentanal [2–4,32,33].

Although we did not actively vary ventilation parameters, our explorative analysis
revealed a significant linear relationship between exhaled pentanal and mechanical power—
a clinical measure for the invasiveness of mechanical ventilation [34,35]. The higher the
mechanical power dissipated to the lungs, the higher was the exhaled pentanal concentra-
tion, which is consistent with our previous findings in 150 ventilated rats [11]. We therefore
previously proposed that exhaled pentanal results from stretched lung tissue, which ex-
poses lipids in cell membranes to oxidation. Intuitively, higher minute volumes may
dilute exhaled pentanal. Instead, higher minute volumes were associated with increased
pentanal exhalation, further supporting the hypothesis that mechanical ventilation induces
pulmonary lipid peroxidation measurable by exhaled pentanal—a potential biomarker
for ventilator-induced lung injury. More experimental and clinical studies are needed
to identify various causes of pentanal exhalation, which is critical to its potential use as
a biomarker.
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A limitation of our study is that a mixture of exhaled and inspired gases can lead to
cross-contaminations or diluted concentrations. An integration of carbon dioxide or flow
triggered sampling could help sample isolated exhaled gas and thus increase the proportion
of alveolar gas in breath samples [36]. Furthermore, activated charcoal filters, originally
designed to eliminate residual volatile anesthetics emitted from anesthesia workstations,
are now available [37]. Using an activated charcoal filter between the anesthesia machine
and the inspiratory limb of the rebreathing circuit would presumably eliminate contami-
nation from within the machine. We also note that our study population is small. While
sufficient to confirm applicability of our measurement setup to patients, larger studies will
be necessary to confirm the association of pentanal exhalation and mechanical power.

In summary, pentanal and hexanal are the predominant volatile aldehydes deriving
from lipid peroxidation under in vitro conditions, and therefore represent promising breath
biomarkers for oxidative stress. Emission of volatile aldehydes from plastic parts of the
breathing circuit may bias breath analysis for hexanal, octanal, nonanal, and decanal
but not for pentanal. Future studies should quantify exhaled pentanal in mechanically
ventilated patients with various pathologies and assess its potential as a biomarker for
ventilator-induced lung injury.

4. Materials and Methods

4.1. Calibration

The detailed experimental setup and procedure of the calibration is presented in
the supplement (Supplementary Materials, File 1). In short, hexane-diluted aldehyde
standards were pipetted into a closed flask made from inert perfluoroalkoxy alkane. Evap-
oration was accelerated by an electrically driven fan inside the flask and the resulting
gaseous mixture was sampled by the MCC–IMS (B&S Analytik, Dortmund, Germany). The
composition of the liquid hexane-diluted aldehyde standards needed to generate specific
gaseous concentrations inside the flask were calculated according to the ideal gas law
(Supplementary Materials, File 2).

4.2. Volatile Aldehydes Originating from In Vitro Lipid Peroxidation

We used the same technical setup as for calibration (Supplementary Materials, File 1).
A total of 30 µL of an animal-sourced mixture of polyunsaturated fatty acids and three
isolated polyunsaturated fatty acids—linoleic, linolenic, and arachidonic acid (analyt-
ical standard, Merck, Darmstadt, Germany)—were oxidized in a cleaned flask under
100 mL/min flow of highly purified synthetic air (oxygen content: 21%; Alphagaz 1, Air
Liquide, Paris, France) and constant fanning. Headspace gas was sampled at 10-min inter-
vals by the MCC–IMS. Signal intensities between the limit of detection and quantification
were considered as unquantifiable traces.

4.3. Volatile Aldehydes Emitted by Plastic Parts of the Breathing Circuit

An endotracheal tube (Ruesch®, Teleflex, Kernen, Germany) and a humidity and
moisture exchanging filter (Gibeck Humid-Vent®; Teleflex, Kernen, Germany) were placed
in the cleaned flask used for calibration and lipid peroxidation. The flask was sealed
and flushed with purified nitrogen for 5 min and subsequently with highly purified
synthetic air for 1 min. Breathing tubes and bag (Anesthesia set VentStar®, disposable,
basic, 2 L, 1.8 m/1.5 m, latex-free, Draeger, Lübeck, Germany) and a test lung (Draeger
SelfTestLungTM) were flushed from the inside using a similar procedure. Headspace gas
was sampled from materials placed in the flask and from the inside of the breathing tube,
breathing bag, and test lung by the MCC–IMS at 5-min intervals for at least 20 min. All
measurements were performed in a room maintained at 20 ◦C with an air purification
system (CamCleaner City M, Camfil, Reinfeld, Germany).
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4.4. Volatile Aldehydes in the Breath of Ventilated Patients

4.4.1. Ethics

Clinical investigations were approved by the local ethics commission (No. 81/19,
Ärztekammer des Saarlandes, Saarbücken, Germany), and written informed consent
was obtained.

4.4.2. Inclusion and Exclusion Criteria

We included patients aged >18 years, American Society of Anesthesiologists (ASA)
physical status <4, body mass index (BMI) ≤35 kg/m2 and scheduled for general surgery
expected to last about 4 h. Patients with mental disorders, drug abuse, human immunodefi-
ciency virus or hepatitis infection, isolation requirement, pregnancy, or any contraindication
for total intravenous anesthesia were excluded.

4.4.3. Measurements

Twelve patients were anesthetized with propofol and remifentanil, and pressure-
controlled ventilation was maintained at lung protective settings (tidal volume: 6–8 mL/kg,
maximum inspiratory pressure: 30 mbar, ventilator: Primus, Draeger, Luebeck, Germany).
The ventilator’s fresh gas flow was set to 1 L/min throughout the case. The choice of
the inspiratory oxygen concentration was left to the attending anesthetist. A new set of
breathing tubes and bag was used for each case.

The MCC–IMS was connected to a t-piece at the tracheal tube by 1.8-m-long per-
fluoroalkoxy alkane tubing. Exhaled gas was sampled at 5-min intervals. Ventilator
contamination was assessed during ventilation of a test lung prior to patient assessment.
The mean of the three final concentrations was defined as baseline contamination, which
was subtracted from measured concentrations for the relevant patient. Ventilation variables
were electronically captured from the ventilators by specific software programmed by
Bertram Bödecker.

Mechanical power was calculated with the following formula: mechanical power
(J·min−1) = 0.098 × respiratory rate (breaths·min−1) × tidal volume (mL) × (positive
end-expiratory pressure (cmH2O) + driving pressure (cmH2O)) [38].

4.5. Statistics

VoCan 3.7 (B&S Analytik, Dortmund, Germany) was used for MCC–IMS device
control and Visual Now 3.7 for spectrum analysis (B&S Analytik). Statistical analyses
were carried out with R 4.0.2 (R Core Team, 2020) using the packages geepack (Højsgaard,
Halekoh, and Yan, 2006) and broom (v0.7.5; Robinson, Hayes, and Couch, 2021). Figures
were created with SPSS 26 (IBM, Armonk, NY, USA). Total intensities for a compound in
volts were calculated by summing the intensity of the monomer and twice the intensity of
the dimer. Calibration formulas were estimated by linear regression. If the relative standard
deviation of measurements of any standard exceeded 20%, Dixon’s test was used to exclude
outliers [39]. Limits of detection (LOD) and quantification (LOQ) were calculated from
background noise intensities as follows: LOD = mean + 3 × SD; LOQ = mean + 10 × SD.

Normality of data distribution was confirmed by visual assessment of histograms and
quantile–quantile plots. Aldehyde generation by oxidizing polyunsaturated fatty acids was
assessed once; therefore, raw data is presented. Repeatedly measured volatile aldehyde
concentrations evaporated by parts of the breathing circuit are presented as means ± SD.
Exhaled pentanal concentrations are presented graphically as means ± SD and additionally
as a mean across all patients and time with the corresponding standard deviation. The
relationship of exhaled pentanal with ventilation parameters and mechanical power was
assessed by linear generalized estimating equations regression. The marginal R2 was
calculated according to Zheng’s method [40]. Due to the explorative character of the
clinical investigations, there was no a priori sample size estimation.
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Supplementary Materials: The following are available online, Supplementary File 1: Calibration
(including Figure S1: Calibration setup and Figure S2: Calibration curves), Supplementary File 2:
Calibration calculation spreadsheet, and Supplementary File 3: Exhaled pentanal.
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Abstract: High inspired oxygen during mechanical ventilation may influence the exhalation of the
previously proposed breath biomarkers pentanal and hexanal, and additionally induce systemic
inflammation. We therefore investigated the effect of various concentrations of inspired oxygen on
pentanal and hexanal exhalation and serum interleukin concentrations in 30 Sprague Dawley rats
mechanically ventilated with 30, 60, or 93% inspired oxygen for 12 h. Pentanal exhalation did not
differ as a function of inspired oxygen but increased by an average of 0.4 (95%CI: 0.3; 0.5) ppb per hour,
with concentrations doubling from 3.8 (IQR: 2.8; 5.1) ppb at baseline to 7.3 (IQR: 5.0; 10.8) ppb after
12 h. Hexanal exhalation was slightly higher at 93% of inspired oxygen with an average difference
of 0.09 (95%CI: 0.002; 0.172) ppb compared to 30%. Serum IL-6 did not differ by inspired oxygen,
whereas IL-10 at 60% and 93% of inspired oxygen was greater than with 30%. Both interleukins
increased over 12 h of mechanical ventilation at all oxygen concentrations. Mechanical ventilation at
high inspired oxygen promotes pulmonary lipid peroxidation and systemic inflammation. However,
the response of pentanal and hexanal exhalation varies, with pentanal increasing by mechanical
ventilation, whereas hexanal increases by high inspired oxygen concentrations.

Keywords: mechanical ventilation; anesthesia; supplemental oxygen; oxygen toxicity; lipid peroxi-
dation; volatile aldehydes; pentanal; hexanal; volatile organic compounds

1. Introduction

High inspired oxygen concentrations may cause toxicities, including oxidative stress,
hyperoxic vasoconstriction, and resorption atelectasis [1,2]. Furthermore, reactive oxygen
species promoted by high oxygen concentrations attack cell components, including lipids,
proteins, and DNA—all of which provoke local and systemic inflammation [3]. While
prolonged hyperoxia undoubtedly causes lung damage, the extent of hyperoxia-induced
injury during short-term mechanical ventilation, such as might occur during surgery, is
controversial [2].

The lowest inspired oxygen concentration used for intraoperative mechanical ventila-
tion is about 30%, usually resulting in only slight hyperoxemia because mechanical ventila-
tion causes a degree of shunt and dead-space ventilation. Nevertheless, higher inspired
oxygen concentrations are frequently used, either out of necessity to maintain a suitable
arterial oxygen saturation, or simply to provide pulmonary oxygen reserve in the case of
an airway problem. To assess the clinical tradeoff between additional safety and potential
hyperoxia-induced lung injury, the effects of different inspired oxygen concentrations on
pulmonary oxidative stress and systemic inflammation are thus of considerable interest.
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Lipid peroxidation is a major mechanism by which oxygen causes toxicity [4]. The pro-
cess releases volatile products, including the two aldehydes, pentanal and hexanal [5], both
of which have been proposed as possible breath biomarkers for pulmonary pathologies,
such as lung cancer [6,7] and ventilator-induced lung injury [8]. Hyperoxia produces reac-
tive oxygen species in lung tissue with a consequent increase in lipid peroxidation [9,10].
Other volatile lipid peroxidation products, especially ethane and pentane, consistently
increase in the breath of hyperoxic animals and humans [11–14]. However, the influence of
inspired oxygen on pentanal and hexanal exhalation in mechanically ventilated subjects
remains to be determined for a valid interpretation of these newly proposed biomarkers.

We, therefore, evaluated pentanal and hexanal exhalation in rats mechanically venti-
lated for 12 h with various inspired oxygen concentrations. We simultaneously determined
interleukin serum concentrations as a measure of systemic inflammation. Specifically, we
tested the primary hypothesis that high- and medium-inspired oxygen concentrations
provoke more pentanal and hexanal exhalation than lower concentrations in rats. Secon-
darily, we tested the hypothesis that high inspired oxygen concentrations increase serum
cytokine concentrations.

2. Results

2.1. Experimental Conditions

All animals survived the study period and were included. The median weight of the
rats was 343 (IQR: 336; 351) g, and all survived the 12 h observation period. Heart rate and
mean arterial pressure decreased over the observation period, but similarly at each inspired
oxygen concentration (Supplementary File 1; Figure S1). Blood gas values, hemoglobin,
electrolytes, glucose, and lactate remained within physiological ranges (Supplementary
File 1, Table S1). Median minute ventilation was 180 (IQR: 174; 184) ml/min, median peak
pressure was 10.9 (IQR: 10.6; 11.1) cmH2O, and median tidal volume was 2.8 (IQR: 2.7; 2.8)
ml over all groups. Median arterial partial pressures of oxygen differed markedly among
the groups, as expected (Figure 1).

Figure 1. Arterial oxygen partial pressure. Data presented as medians and interquartile ranges.
FiO2 = fraction of inspired oxygen.

2.2. Breath Analysis

Exhaled pentanal did not differ as a function of inspired oxygen but increased over
all groups by an average of 0.4 (95%CI: 0.3; 0.5) ppb per hour of mechanical ventilation.
The median exhaled pentanal concentration therefore almost doubled from 3.8 (IQR: 2.8;
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5.1) ppb at baseline to 7.3 (IQR: 5.0; 10.8) ppb after 12 h of mechanical ventilation (Table 1,
Figure 2).

Table 1. Influence of inspired oxygen and mechanical ventilation on pentanal and hexanal exhalation.

Pentanal

Parameter Regression Coefficient 95% Confidence Interval p

FiO2 = 93% 0.03 −1.4–1.4 0.967
FiO2 = 60% 0.67 −1.1–2.4 0.454
FiO2 = 30% 0 - -

Ventilation time [h] 0.4 0.3–0.5 <0.001

Hexanal

Parameter Regression Coefficient 95% Confidence Interval p

FiO2 = 93% 0.09 0.002–0.172 0.046
FiO2 = 60% 0.03 −0.06–0.116 0.506
FiO2 = 30% 0 - -

Ventilation time [h] −0.01 −0.016–(−0.007) <0.001

Linear generalized estimating equations (GEE)—regression was performed. The regression coefficient of ventilation time refers to one hour
of mechanical ventilation. FiO2 = fraction of inspired oxygen.

−
−

−

− − −

Figure 2. Pentanal and hexanal exhalation over 12 h of mechanical ventilation. Data presented as medians and interquartile
ranges. FiO2 = fraction of inspired oxygen. Exhaled concentrations were measured at 15-minute intervals, with every third
value displayed and error bars omitted for 60% to enhance clarity.

Exhaled hexanal was slightly higher in rats exposed to 93% inspired oxygen, with
average concentrations being 0.09 (95%CI: 0.002; 0.172) ppb higher than in rats ventilated
with 30% inspired oxygen. Exhaled hexanal initially increased in all groups, reached a
maximum after around 2 h, and stabilized at a lower plateau after approximately 6 to 12 h;
concentrations did not increase over time (Table 1, Figure 2).

2.3. Systemic Inflammation

IL-6 concentrations did not significantly differ as a function of inspired oxygen fraction
(p = 0.888), whereas IL-10 concentrations averaged 2.5 (95%CI: 0.2; 4.8) pg/mL higher at
60% and 7.2 (95%CI: 2.8; 11.5) pg/mL higher at 93% than with 30% inspired oxygen
(p = 0.035, p = 0.001; Figure 3). Interleukin serum concentrations across all groups increased
significantly between 1 and 12 h of mechanical ventilation (IL-6: p = 0.002, IL-10: p = 0.035,
Figure 3).
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Figure 3. Cytokine serum concentrations. Data presented as medians and interquartile ranges. IL-6 at 1 h was 0 for all
animals. IL-6 concentrations did not significantly differ by inspired oxygen (p = 0.888), whereas IL-10 concentrations were
significantly greater at 60% and 93% compared to 30% inspired oxygen (30% vs. 60%: p = 0.035; 30 vs. 93%: p = 0.001).
Interleukin serum concentrations across all groups increased significantly between 1 and 12 h of mechanical ventilation
(* IL-6: p = 0.002, * IL-10: p = 0.035).

3. Discussion

We expected the exhalation of both pentanal and hexanal to increase at high inspired
oxygen concentrations. Instead, responses differed, with hexanal exhalation increasing
by high inspired oxygen concentrations, whereas pentanal exhalation gradually increased
over 12 h of mechanical ventilation, but unrelated to inspired oxygen.

Hyperoxia produces reactive oxygen species in lung tissue with a consequent increase
in lipid peroxidation [9,10]. Hexanal exhalation was consistently greater at high inspired
oxygen concentrations. Likewise, previous studies reported increased exhalation of ethane
and pentane in hyperoxic individuals [11–14]. Thus, available data suggest that high-
inspired oxygen concentrations induce pulmonary lipid peroxidation. Breath analysis may,
therefore, facilitate the early detection of hyperoxic lung injury, and may be especially
helpful for investigating specific treatments that potentially reduce hyperoxic lung injury.

Mechanical ventilation increased pentanal exhalation over time, with concentrations
almost doubling over just 12 h. As lung distension promotes injury [15,16], we used
tidal volumes of 8 mL/kg, which falls within the broadly accepted range of 6–9 mL/kg
commonly used in humans [17] and rodents [18,19]. However, even with moderate tidal
volumes, mechanical ventilation damages the cell membrane and activates cellular repair
mechanisms [20], which include transferring lipids to the cell membrane to enlarge the
cell surface and help maintain its integrity [21]. Sufficiently high tidal volumes can over-
come cellular repair mechanisms, leading to membrane defects, followed by apoptosis or
necrosis [20]. Cell death seems unlikely with the ventilator settings we used, but sublethal
cellular membrane damage may expose polyunsaturated fatty acids to oxidative processes,
and thus increase pentanal exhalation. This theory is consistent with in vitro studies,
showing that pentanal is the predominant volatile aldehyde generated by oxidizing lipid
membranes exposed to mechanical stress through sonication [22] and by oxidizing isolated
polyunsaturated fatty acids [23].

The observed gradual increase in pentanal exhalation over 12 h of mechanical venti-
lation is consistent with our previous finding that exhaled pentanal is highly sensitive to
volutrauma [8]. Based on the biological background presented above, we previously postu-
lated that stretch-induced cell membrane damage exposes membrane lipids to oxidative
processes, thereby increasing the exhalation of pentanal. In contrast, hexanal concentrations
did not increase over 12 h, although hexanal and pentanal are likely generated by similar
mechanisms [5]. The relatively low vapor pressure of hexanal may have contributed [24,25],
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but it is non-obvious why hexanal did not increase. Future studies may clarify reasons for
the differential response of pentanal and hexanal to mechanical ventilation.

Inspired oxygen concentrations greater than 30% did not increase exhaled pentanal,
probably because even that amount of oxygen is sufficient to oxidize all available membrane
lipids from which pentanal arises. Our lowest inspired oxygen concentration was 30% since
lower concentrations are rarely used for mechanical ventilation. Our results, therefore,
well characterize the effects of supplemental oxygen during mechanical ventilation. The
current study consistently showed that pentanal increases due to mechanical ventilation
and adds the important finding that exhaled pentanal is a potential breath biomarker that
can be interpreted independently from inspired oxygen.

Pentanal and hexanal are potential biomarkers of lung, breast, and gastrointestinal
cancers in humans [6,7,26,27]. Cancer causes cell death, for example, by tumor growth,
exceeding supply with nutrients, attacks by immune cells, or by the inflammation and
destruction of surrounding tissues. Cell death is accompanied by cell membrane break-
down, exposing lipids to oxidation, and may thus prompt the exhalation of aldehydes. As
might, therefore, be expected, lung cancer increases pentanal and hexanal exhalation [6,7].
Furthermore, acute respiratory distress syndrome increases both pentanal and hexanal
concentrations in blood [28]. Taken together, pentanal and hexanal seem to be general
markers of cell membrane damage, and our findings suggest that exhaled pentanal also
increases when lung tissue is mechanically stressed.

Interleukin serum concentrations increased over 12 h of mechanical ventilation, with
only IL-10 being greater at higher inspired oxygen concentrations. Helmerhorst et al.
reported that IL-6 serum concentrations remain similar at various inspired oxygen con-
centrations over 12 h of mechanical ventilation in mice, but IL-10 concentrations in bron-
choalveolar fluid substantially increase [16]. However, others reported no influence of
oxygen on the mRNA expression of IL-10 in mouse lungs [29,30]. Consistent with inflamma-
tion accruing over time, lung tissue IL-6 mRNA increases after 48 h of hyperoxia [31]. High
inspired oxygen concentrations induce cytokine gene expression in alveolar macrophages
of surgical patients, reflecting local pulmonary inflammation [32]. However, IL-6 was
less affected by hyperoxia than other cytokines, and IL-10 was not measured [32]. Taken
together, the available data suggest that high-inspired oxygen induces a slight systemic
inflammatory response during up to 12 h of mechanical ventilation.

The most obvious limitation of our study is that lipid peroxidation, cell membrane
components, and antioxidative capacities presumably differ among species. However,
lipid peroxidation is fundamental to oxidative stress. It is, therefore, likely that results in
humans are qualitatively similar, although presumably quantitatively different. We did
not conduct a formal sample-size estimate because the treatment effect was non-obvious.
We also note that anesthetic drugs could have influenced our results, as propofol has
antioxidative properties and may inhibit lipid peroxidation processes [33–35]. We did not
include a control group ventilated with 21% oxygen because, in previous studies, this
concentration resulted in hypoxemia and even death. Finally, our results are specific to
mechanical ventilation; results likely differ with spontaneous ventilation.

In summary, mechanical ventilation and high inspired oxygen promote pulmonary
lipid peroxidation and systemic inflammation. However, the response of pentanal and
hexanal exhalation varies, with pentanal increasing in response to mechanical ventilation
and hexanal increasing in response to high concentrations of inspired oxygen. Our results
suggest that exhaled pentanal, a potential biomarker for lung injury, can be interpreted
independent of the inspired oxygen concentration during mechanical ventilation.

4. Materials and Methods

4.1. Animals

Experiments were conducted in accordance with the German Animal Welfare Act
and with approval from the responsible Institutional Animal Care and Use Committee
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(Landesamt für Soziales, Saarland, Saarbrücken, Germany, No. 28/2018, date of approval:
01.08.2018).

Thirty male Sprague Dawley rats (280–380 g body weight, age 8–10 weeks) were
obtained from Charles River Laboratory International (Sulzfeld, Germany) and kept in our
institutional animal facility under controlled conditions (temperature 20 ± 2 ◦C and 50 ± 5%
relative humidity). The rats had free access to water and standard pellet food. Monitoring
and preparation were performed, as previously described [36]. No specific inclusion
or exclusion criteria were applied. Animals were included as long as the experimental
protocol was adequately followed and in the absence of poor welfare signs (e.g., wounds,
secretion of harderian gland, signs of dehydration, diarrhea, isolation from others, itching).

4.2. Anesthesia

Anesthesia was induced with sevoflurane (Baxter, Unterschleißheim, Germany) and
maintained with intravenous propofol (Fresenius Kabi, Bad Homburg, Germany) starting
at 25 mg/kg/h with hourly reductions of 0.5 mg/h until a minimal rate of 15 mg/kg/h
was reached. Ketamine (Rotexmedica, Trittau, Germany) was added with 25 mg/kg/h
throughout the experiment for analgesia. Neuromuscular blockade was induced by a bolus
of 10 mg/kg rocuronium (Grünenthal, Stolberg, Germany) and maintained by a continuous
infusion of 25 mg/kg/h rocuronium. Animals were observed for 12 h and then killed by
exsanguination.

4.3. Ventilation

Oxygen was produced by a concentrator (Compact 525, Devilbiss, NY, USA) with
a maximum output of 93 ± 3%, mixed with generated nitrogen (Genius, Peak Scientific,
Inchinnan, Scotland, UK) and purified by activated charcoal filtration. Inspired oxygen
was constantly monitored and adapted to maintain concentrations at 30% or 60% within a
range of ± 1% (sensor: GGA 370, device: GMH 3695, Greisinger, Regenstauf, Germany).
For the highest oxygen group, the maximum output of the oxygen concentrator was used,
resulting in a concentration of 93 ± 3%. Ten rats each were randomly assigned to three
different fractions of inspired oxygen: 30%, 60%, and 93%.

Animals were randomized 1:1:1 based on a computer-generated list. Investigators
were not blinded during the experiments, but allocation was concealed during post-
experimental analysis. Animals were ventilated with a tidal volume of 8 mL/kg, a respi-
ratory rate of 63 breaths/min, and a PEEP of 2 cmH2O (VentStar small animal ventilator,
RWD Life Sciences, Shenzhen, China). The respiratory rate was reduced by 10% when the
partial pressure of carbon dioxide was less than 28 mmHg. Similarly, the respiratory rate
was increased by 10% when partial pressure exceeded 45 mmHg.

4.4. Breath and Blood Samples

Blood for gas analyses was sampled after 1, 3, 6, and 12 h to monitor ventilation
(Radiometer ABL 800 Basic, Willich, Germany). Ten milliliters of exhaled air were sampled
and analyzed with two multi capillary columns—ion mobility spectrometers (MCC-IMS by
B&S Analytik, Dortmund, Germany) in 15-minute intervals, as previously described [36].
The MCC-IMS was calibrated by pentanal and hexanal standards ranging from 0.1 to
50 ppb (analytical standard, Merck, Darmstadt, Germany), as previously described [23].
Arterial blood samples of 600 µL were collected after 1 and 12 h. Plasma was stored at
−75 ◦C. Interleukin 6 and 10 serum concentrations were measured by enzyme-linked
immunosorbent assay (ELISA). Positive controls of each cytokine were measured routinely
with each assay (ELISA Antibodies BD OptEIA; BD Biosciences Pharmingen, San Diego,
CA, USA).

4.5. Statistics

Statistical analyses were carried out with R 4.0.2 (R Core Team, 2020) using the pack-
ages geepack (Højsgaard, Halekoh, and Yan, 2006) and broom (v0.7.5; Robinson, Hayes and
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Couch, 2021). Figures were created with SigmaPlot 12.5 (Systat Software GmbH, Erkrath,
Germany). Normality was assessed by visual inspection of histograms and quantile-
quantile plots. Most data were not normally distributed. Therefore, all results are presented
as medians and interquartile ranges. Influences of inspired oxygen and mechanical ventila-
tion time on aldehyde exhalation were assessed by linear generalized estimating equations
regression to account for within-subject correlations. The influence of inspired oxygen
on interleukin concentrations was assessed by linear generalized estimating equations
regression combined with a Wald statistic. Interleukin concentrations after 1 and 12 h
were compared over all groups by a Wilcoxon signed-rank test. A two-sided p < 0.05
was considered statistically significant. There was no a priori sample size estimate since
the expected effect sizes and the clinical significance of increases in aldehyde exhalation
through supplemental inspired oxygen are essentially unknown.

Supplementary Materials: The following are available online, Supplementary File 1 (including
Figure S1: Vital parameters and Table S1: Results of blood gas analysis); Supplementary File 2:
Pentanal and hexanal exhalation; Supplementary File 3: Interleukin serum concentrations.
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Abstract: E-noses are innovative tools used for exhaled volatile organic compound (VOC) analysis,
which have shown their potential in several diseases. Before obtaining a full validation of these
instruments in clinical settings, a number of methodological issues still have to be established.
We aimed to assess whether variations in breathing rhythm during wash-in with VOC-filtered air
before exhaled air collection reflect changes in the exhaled VOC profile when analyzed by an e-nose
(Cyranose 320). We enrolled 20 normal subjects and randomly collected their exhaled breath at three
different breathing rhythms during wash-in: (a) normal rhythm (respiratory rate (RR) between 12
and 18/min), (b) fast rhythm (RR > 25/min) and (c) slow rhythm (RR < 10/min). Exhaled breath was
collected by a previously validated method (Dragonieri et al., J. Bras. Pneumol. 2016) and analyzed by
the e-nose. Using principal component analysis (PCA), no significant variations in the exhaled VOC
profile were shown among the three breathing rhythms. Subsequent linear discriminant analysis
(LDA) confirmed the above findings, with a cross-validated accuracy of 45% (p = ns). We concluded
that the exhaled VOC profile, analyzed by an e-nose, is not influenced by variations in breathing
rhythm during wash-in.

Keywords: volatile organic compounds; e-nose; electronic nose; breath analysis; breathing rhythm

1. Introduction

The recent evolutions in sensor manufacturing and software advances have gener-
ated new promising devices for detecting and quantifying the numerous volatile organic
compounds (VOCs) which originate from our metabolism [1]. Among these instruments,
electronic noses (e-noses) imitate mammalian olfaction in order to obtain reproducible
measurements of VOC profiles in human mediums such as urine, blood, or breath [2].
In addition, exhaled breath analysis by e-nose can be used as a noninvasive biomarker of
various metabolic pathways occurring in health and illness. Interestingly, an increasing
number of studies have revealed the potential for the application of VOC profiling in
numerous respiratory and systemic diseases [3].

Recently, a European Respiratory Society (ERS) task force document established guide-
lines in order to standardize all the methodological concerns for breath sampling and
analysis by e-noses [4]. In these guidelines, it is unmistakably indicated that, when investi-
gating exhaled VOCs, non-disease, patient-related factors, such as breathing manoeuvers,
airway caliber, food and beverages intake, physical exercise and pregnancy, should always
be considered [4].

Among these, intra-/inter-individual subjects’ own respiratory physiology-associated
variations may represent important confounders in exhaled VOC profiling [5,6]. In par-
ticular, the conditioning of inspiratory air and the expiratory breathing maneuvers may
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both influence the VOC pattern [7]. Indeed, the control of breathing is mainly automatic,
and its regulation is driven by the autonomic nervous regulation of the respiratory cen-
ter in the human brain [8]. Therefore, modifications of ventilatory patterns may result
in exhaled alveolar concentrations of VOCs, the exhalations of which are dependent on
minute ventilation and/or on CO2 exhalation. Moreover, ventilatory variations are known
to modify arterial CO2 pressure levels, cardiac output and pulse pressure in humans [8,9].
Although a 5 min steady-state washing-in with VOC-filtered air is suggested, based on
recommendations for helium washing during lung volume measurements, it is not clear
whether it needs to be modified in certain types of patients.

For the above reason, the aim of the current study was to assess whether variations in
breathing rhythms during the wash-in phase reflect changes in the exhaled VOC profile
when analyzed by an e-nose.

2. Results

The characteristics of the study population are described in Table 1.

Table 1. Clinical characteristics of the study population.

Parameter Value

Subjects (n.) 20
M\F (n.) 11\9
Age (y.) 37.1 ± 10.2

FEV1%pred. 103.6 ± 10.7
BMI 25.52 ± 2.4

(ex)-smokers (n.) 0
comorbidities(n.) 0

Values are intended as mean ± SD.

The two-dimensional principal component analysis plot showed that the exhaled
VOC profiles obtained for the three breathing rhythms could not be discriminated from
each other (Figure 1). The CDA of the data showed a CVA of 45.1%, indicating that the
difference was not significant (p = ns). Similarly, ANOVA of the main four principal
components showed no significant differences among the three groups (p = ns for all, see
Table 2). Therefore, the Cyranose 320′s 32-sensor outputs from the sensor array were not
significantly different among the three breathing rhythms.

Figure 1. Two-dimensional principal component analysis plot, showing that exhaled VOC profiles
among normal ventilation (blue circles), hyperventilation (green squares) and hypoventilation (red
triangles) during wash-in are indistinguishable from each other. Cross validated accuracy was 45.1%
(p = ns). X axis = Principal component 1; Y axis = Principal component 2.

58



Molecules 2021, 26, 2695

Table 2. ANOVA of the main four principal components among the three breathing rhythms.

Normal Rhythm Fast Rhythm Slow Rhythm p

PC1 −0.131 ± 1.045 0.050 ± 0.955 0.081 ± 1.035 0.773
PC2 0.374 ± 1.113 −0.054 ± 0.983 −0.320 ± 0.801 0.084
PC3 0.577 ± 1.178 0.091 ± 0.667 0.485 ± 0.814 0.182
PC4 −0.003 ± 1.162 0.008 ± 1.031 −0.005 ± 0.831 0.999

3. Discussion

According to our results, it appears that the exhaled VOC profile measured by our
e-nose is stable during variations in wash-in breathing rhythm.

To the best of our knowledge, this is the first study which specifically investigates
e-nose analyzed exhaled breath VOC composition in relation to variation in breathing
rhythm in a population of well-characterized, healthy subjects.

Research into the effects of ventilatory variations on exhaled breath composition
is essential for a better comprehension of the physiological and metabolic phenotype
of healthy subjects, and for implementing exhaled VOC profiling in routine pulmonary
medicine.

It is known that a number of VOCs are exhalation flow-dependent, such as acetone,
ethanol, pentane and isoprene [10–12]. In addition, alterations in exhaled flow, breath hold
and dead space significantly modify e-nose assessed exhaled breath patterns with e-nose,
thus influencing their ability to discriminate breathprints [13].

Very recently, Sukul et al. analyzed 25 healthy subjects and detected changes in a
selection of the most abundant, endogenous and bloodborne VOCs when respiratory
rhythms were switched between spontaneous and/or paced breathing [14]. Such changes
were closely related to minute ventilation and end-tidal CO2 exhalation [14].

A number of limitations must be taken into account. Firstly, there were a relatively
small number of enrolled subjects. However, our sample size with 20 individuals in our
proof-of-concept study appeared to be suitable to merit further investigations including
larger cohorts and a validation group.

Secondly, although we carefully monitored respiratory rates during sampling, we
arbitrarily chose breathing rhythm intervals for each group, and therefore we may have
missed some important information.

Thirdly, e-nose analysis does not quantify levels of single VOCs. Incontrovertibly,
future studies should incorporate chemical analytical techniques, such as gas chromatogra-
phy coupled to mass spectrometry (GC-MS) to identify specific discriminant compounds.

How can we explain our results? Human-exhaled breath contains over 3000 VOCs
deriving from physiologic and pathophysiological mechanisms, operating via metabolic
pathways [15]. In accordance with the findings of previous studies, our results suggest
that, although breathing rhythm modifies the individual components of exhaled breath,
the overall VOC profile, as measured by an e-nose, does not differ among groups with
different breathing rhythms.

What are the implications of our findings? It appears that Cyranose 320 signature
patterns output from the 32-sensor array were similar among the three breathing rhythms.
Our data indicate that careful breathing rate monitoring during breath collection might
not be necessary in future studies using a Cyranose 320. Hence, future research (possibly
including patients with functional airways obstruction and restriction) should apply these
models into larger clinical trials in order to confirm our findings and to investigate other
possible confounding factors. Moreover, these studies must include several types of e-noses,
using different technology, in order to assess the interchangeability of devices.

4. Materials and Methods

4.1. Patients

We enrolled 20 healthy, non-smoking subjects (11 males, 9 females), with a negative
anamnesis of chest symptoms and systemic diseases and who were not taking any medica-
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tions. The age range was 28–55. Lung function was normal for all participants. None of the
subjects experienced upper or lower respiratory tract infections in the four weeks before
testing, nor during the day of sampling. Subject characteristics are shown in Table 1.

A series of 3 exhaled breath measurements were performed on all subjects, and
their exhaled breath was collected at three different breathing rhythms during wash-in
phase: (a) normal rhythm (Respiratory Rate (RR) between 12 and 18/min), (b) fast rhythm
(RR > 25/min) and (c) slow rhythm (RR < 10/min).

All participants were volunteers and were enrolled from hospital members.
The current study was previously approved by the local ethics committee (protocol

number 46403/15) and all participants signed an informed consent before taking part in
the study.

4.2. Study Design

We performed a longitudinal study. All measurements were obtained during two visits.
During the first visit, subjects were carefully checked for inclusion/exclusion criteria and a
flow-volume spirometry was performed (MasterscreenPneumo, Jaeger, Wurzburg, Germany).

During the second visit, exhaled breath was collected as described above and imme-
diately analyzed by the e-nose. All participants were randomized to perform a different
order of breathing rhythms during the wash-in phase: a-b-c, a-c-b, c-b-a, c-a-b, b-a-c, b-c-a.
Intervals between each measurement were at least 2 h. Subjects were asked to refrain from
eating and drinking, as well as from engaging in vigorous physical exercise, for at least 3 h
before visit two. Breath was collected as follows: first a wash-in phase of 5 min through
a 3-way non-rebreathing valve connected to an inspiratory VOC filter (A2; North Safety,
Middelburg, The Netherlands) to reduce the effect of environmental VOCs, then subjects
exhaled a single vital capacity volume into a Tedlar bag connected to the e-nose.

4.3. Electronic Nose

A commercially available e-nose was used (Cyranose 320, Sensigent, Irwindale, CA,
USA). It consists of a nano-composite array of 32 organic polymer sensors. The polymers
swell when exposed to VOC combinations, which changes their electrical resistance. Raw
data are captured as changes in resistance of each of the 32 sensors in an onboard database,
producing a distribution (breathprint) that describes the VOC mixture and that can be used
for pattern-recognition algorithms. The operating parameters were as follows: Baseline
purge: 30 s (pump speed: low); sampling time: 60 s (pump speed: medium), purging
time: 200 s (pump speed: high), total run time: 300 s, temperature 42 ◦C. Post-run purges
between samples: 5 min. In addition, pre-conditioning for the sensor array prior to running
samples consisted of a 5 min exposure to the room air to assure stability of sensor outputs,
followed by a “blank measurement”, as indicated in the operating instructions manual.

4.4. Statistical Analysis

The sample size was estimated based on data deriving from previous studies [16].
The raw data of breath samples were analyzed by SPSS software, version 18.0. The same
program was used for the random assignment of breathing sequences. Principal compo-
nent analysis (PCA) and successive linear canonical discriminant analysis (CDA) were
calculated, thus providing the cross-validated accuracy percentage (CVA%), which esti-
mates how accurately a predictive model will perform in practice. Furthermore, ANOVA
of the main four principal components (which captured 96.3% of the total variance) was
performed among the three breathing rhythms. A p-value of <0.05 was considered to be
statistically significant.
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Abstract: Exhaled breath is a potential noninvasive matrix to give new information about metabolic
effects of diets. In this pilot study, non-targeted analysis of exhaled breath volatile organic compounds
(VOCs) was made by comprehensive two-dimensional gas chromatography–mass spectrometry
(GCxGC-MS) to explore compounds relating to whole grain (WG) diets. Nine healthy subjects
participated in the dietary intervention with parallel crossover design, consisting of two high-fiber
diets containing whole grain rye bread (WGR) or whole grain wheat bread (WGW) and 1-week control
diets with refined wheat bread (WW) before both diet periods. Large interindividual differences
were detected in the VOC composition. About 260 VOCs were detected from exhaled breath samples,
in which 40 of the compounds were present in more than half of the samples. Various derivatives of
benzoic acid and phenolic compounds, as well as some furanones existed in exhaled breath samples
only after the WG diets, making them interesting compounds to study further.

Keywords: exhaled breath; whole grain; rye; comprehensive two-dimensional gas chromatography–
mass spectrometry; dietary fiber

1. Introduction

Whole grain (WG) cereals are an important source of dietary fiber (DF) and micronu-
trients and are therefore acknowledged as part of the healthy diet in dietary recommen-
dations [1,2]. Epidemiological studies and their meta-analyses have consistently shown
high intake of WG to lower risk of chronic diseases and mortality [3–5], and associate
negatively with obesity [6,7], type 2 diabetes [8–10], cardiovascular disease [11–13], and
certain cancers [14,15]. However, the underlying physiological mechanisms are complex
and unclear. Phenolic compounds in the fiber matrix of bran [16] are one proposed element
for the protective effects of WG. Alkylresorcinols are present in the outer layers of wheat
and rye grains and are known to be absorbed by humans. They have been detected in
plasma and urine, and hence have been studied as a promising biomarker for WG wheat
and rye in the diet [17].

People have variable metabolic responses to diets because of individual physiology
and gut microflora [18]. Therefore, there has been an increasing interest in nutrigenomics,
proteomics, and metabolomics to monitor metabolism from a wider perspective. Volatomic
analysis of exhaled breath, used mainly for searching noninvasive biomarkers for dis-
eases [19–21], could be used to characterize volatile organic compounds (VOCs) relating
to various diets or specific foods, such as WG cereals. This research could lead to new
information on the metabolic effects of WG foods and their association with health effects.
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Exhaled breath is a potential noninvasive matrix to monitor metabolic changes induced
by dietary modifications [22,23]. Foods contain numerous molecules which after digestion
or metabolism by gut microflora are absorbed to the circulation. If they have a suitable
boiling point, vapor pressure, and solubility, they can be excreted to exhaled breath.
Currently, more than 3400 compounds have been identified in exhaled breath [24,25],
with an average exhaled breath sample containing about 200 detected compounds [26].
However, there is wide interindividual variation since typically only a few dozen of the
compounds are detected in every exhaled breath sample.

Although diet is known to cause variation in exhaled compounds [27], so far only a few
pilot studies have been conducted to monitor the effects of diets on exhaled breath VOCs.
Pioneering research in developing methods for exhaled breath analysis was done by Smith
and Španěl who explored the effects of a meal [28] and glucose ingestion [29] to exhaled
breath VOCs, as well as the effects of ketogenic diet on breath acetone levels [30]. Galassetti,
Blake and colleagues studied exhaled breath compounds relating to diabetes [31,32] and
monitored the effects of high-fat meals on exhaled breath VOCs [33]. They also studied
exhaled breath VOC profiles relating to blood glucose [34–36] and lipid levels [37]. van
Schooten et al. applied the breath analysis to monitor gastrointestinal diseases [38–40] and
demonstrated a distinctive exhaled breath VOC profile after a gluten-free diet [41].

We have earlier demonstrated changes in exhaled breath VOC profiles by aspiration
ion mobility spectrometry (AIMS) in diets differing in DF content (low-fiber diet vs. high-
fiber) and type of bread (white wheat bread vs. sourdough fermented whole grain rye
bread vs. white wheat bread enriched with modified rye fiber) [42,43]. However, the AIMS
technology, regarded as a type of electronic nose, cannot identify the compounds respon-
sible for the changes. Gas chromatography–mass spectrometry (GC-MS) is a standard
technology for identifying VOCs [24,44] and multidimensional chromatography techniques,
such as comprehensive two-dimensional GC-MS (GCxGC-MS), are utilized especially for
characterization of compounds in metabolomic research, due to their increased separation
capability [45]. However, they are not yet utilized for monitoring exhaled breath VOCs
regarding to diets.

In this study, our aim was to pilot exhaled breath analysis with GCxGC-MS to explore
VOCs relating to WG diets.

2. Results

About 260 VOCs were detected in 32 exhaled breath samples from 9 persons; of these
VOCs, 40 were common, being present in more than half of the breath samples (Table 1).
Carbon dioxide, isoprene, acetone, ethanol, 1-butanol, 2-propanol, benzene, benzaldehyde,
methyl vinyl ketone, 2-butanone, phenol, hexanoic acid, and acetonitrile were found in all
samples, but large individual differences existed in the other compounds. Additionally,
86 VOCs were tentatively identified by their MS spectra (Table S1), whereas about 170
detected compounds remained unidentified.

Some derivatives of benzoic acid and phenolic compounds were detected in exhaled
breath samples only after the WG diets (Table 2). Phthalic acid or phthalic anhydride
(similarity index, SI 93 for both compounds) was found in 57% of the exhaled breath
samples during the whole grain rye bread diet (WGR), in 11% of breath samples during the
whole grain wheat bread diet (WGW), and in 6% of the background room air (BG) samples,
but in none of the samples collected after the control diets containing refined wheat bread
(WW). Benzoic acid was detected in 29% of breath samples during the WGR diet and in
11% of breath samples during the WGW diet, but in none of the exhaled breath samples
during the WW diets and in 6% of BG samples. Furthermore, diphenyl ethanedione and
benzamide were detected only after the WG diets, diphenyl ethanedione in 29% of breath
samples during the WGR and benzamide in one participant during the WGR and the
WGW.
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Table 1. Common 1 volatile compounds in the exhaled breath samples collected from the study
participants after the diet periods and their presence in the background room air samples.

Detected in % of Samples in

Compounds WGR WGW WW BG

Carbon dioxide 100 100 100 100
Ethanol 100 100 100 100

Hexanoic acid 100 100 100 100
Acetophenone 100 100 100 100

1-Butanol 100 100 100 97
Benzene 100 100 100 97

Benzaldehyde 100 100 100 97
Methyl vinyl ketone 100 100 100 97

2-Butanone 100 100 100 97
Acetone 100 100 100 94
Phenol 100 100 100 94

2-Propanol 100 100 100 90
Acetonitrile 100 100 100 87

Isoprene 100 100 100 42
2,3-Butanedione 100 89 100 68

Toluene 100 33 81 74
3-Pentanol/2-Propanol, 2-methyl 86 100 100 97

Butanal 86 100 100 87
Hexanal 86 100 88 87
Heptanal 86 100 81 74
Octanal 86 89 94 23

Benzaldehyde, 2/4-methyl 86 89 75 90
Pentanal 86 89 69 68
n-Hexane 86 67 88 58
Nonanal 71 78 100 94

Acetaldehyde 71 56 81 77
3,4-Dimethyl heptane 71 33 75 35

D-Limonene 71 33 69 10
1,3-Pentadiene 71 33 69 0

Benzene, 1,4-dimethyl- 71 22 56 26
Dimethyl sulfide 57 78 81 0

Decanal 57 67 56 84
Methyl cyclopentane 57 56 63 42

6-Methyl-5-hepten-2-one 57 56 88 68
1-Propanol 57 44 81 39

Octane 57 44 56 17
Ethyl acetate 57 33 75 71

Styrene 57 33 69 29
p-Cymene 57 33 69 3
Heptane 43 56 75 71

1 present in >50% of the analyzed exhaled breath samples, WGR = whole grain rye bread diet (n = 7),
WGW = whole grain wheat bread diet (n = 9), WW = refined wheat bread diet (n = 16), BG = background
room air (n = 31).

Some furanones (G-lactones) were also identified in the exhaled breath only dur-
ing the WG diets: 5-dodecyldihydro-(3H)-furanone (in two participants after WGR),
dihydro-4-hydroxy-2(3H)-furanone (in one participant after WGR and WGW) and dihydro-
5-tetradecyl-2(3H)-furanone (in one participant after WGR and WGW).

We also detected several unidentified compounds having mass spectrum fragments
105, 77 and 51, which are typical for benzoic acid derivatives, and 107, 121, 135, and 149,
typical for alkylphenols (potential degradation products of alkylresorcinols). However,
none of the unidentified compounds were detected only in a particular diet period.
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Table 2. Volatile organic compounds detected only in the exhaled breath samples after WG diets.

Detected in % of Samples in
Compounds RT SI WGR WGW WW BG

Phthalic acid/Phthalic anhydride 40–69 93 57 11 0 6
Benzoic acid 30–69 94 29 11 0 6

Diphenyl ethanedione 61.7 92 29 0 0 0
5-Dodecyldihydro-(3H)-furanone 63.7 92 29 0 0 0

Benzamide 65.5 94 14 11 0 0
Dihydro-4-hydroxy-2(3H)-furanone 57.5 85 14 11 0 0

Dihydro-5-tetradecyl-2(3H)-furanone 67.7 89 14 11 0 0
RT = retention time (min), SI = similarity index, WGR = whole grain rye bread diet (n = 7), WGW = whole grain
wheat bread diet (n = 9), WW = white wheat bread diet (n = 16), BG = background room air (n = 31).

3. Discussion

We piloted exhaled breath analysis with GCxGC-MS to detect VOCs relating to WG
diets. With this technology and the chosen method, about 260 compounds were detected
from exhaled breath samples, and of these, 40 VOCs were present in more than half of the
exhaled breath samples. Some benzoic acid and phenol derivatives, as well as furanone
compounds, were detected more frequently after the whole grain diets.

GCxGC-MS-technology has better sensitivity and separation of compounds as com-
pared to the traditional GC-MS, which make it suitable for non-targeted analysis of exhaled
breath compounds. We have earlier analyzed exhaled breath VOCs by traditional GC-MS
having the same column and same kind of sampling protocol [46], and about 40 VOCs
were detected in the exhaled breath samples collected from healthy men. In the current
GCxGC-MS protocol, the total number of detected compounds was approximately seven
times more (about 260 compounds). The comprehensive GCxGC-MS technology is based
on cryogenic modulator: effluent from the first column is trapped in the modulator for a
given period (for 8 s in our method) before being released into the second column. This
increases the sensitivity of the method remarkably as compared to traditional GC-MS.

GCxGC-MS technology also improved the separation of compounds as compared to
traditional GC-MS. For example, we found two compounds giving almost identical mass
spectra with isoprene, having only slightly different retention times. These are probably
cis-1,3-pentadiene and trans-1,3-pentadiene which have been detected earlier in exhaled
breath samples [47,48], or 1,4-pentadiene, which has been associated with smoking [49,50].
However, our participants were non-smokers. It is noteworthy that these compounds
can be erroneously identified as isoprene, and therefore interfere the quantification of
isoprene if they are not separated in the analysis. Exhaled breath isoprene has been
studied extensively as a potential biomarker compound for cholesterol synthesis, though
with controversial results [51,52]. It is possible that these compounds have interfered the
quantification of isoprene in some studies.

Although the GCxGC-MS has advantages in sensitivity and selectivity, it also has
drawbacks. Because of its sensitivity, the signal is easily overloaded when both the quan-
tification and identification are challenged. This technology is suitable mainly for detecting
compounds from challenging matrixes (having a multitude of compounds to be separated),
but it is not very convenient for their quantification. The quantitative method should be
optimized for each compound of interest separately, including calibration with breath
mimicking conditions. Therefore, in this study we did not quantify the detected com-
pounds. Exhaled breath VOCs might have multiple sources, and therefore it would be
more relevant to monitor the changes in their levels rather than searching for specific
biomarker compounds. However, nontargeted volatomic analysis can be used to select the
relevant target compounds to monitor.

In total, 86 VOCs were tentatively identified from exhaled breath samples while about
150 VOCs remained unidentified, as their MS spectra were not found in the MS libraries.
This indicates that there might still exist numerous unidentified molecules in the exhaled
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breath because GC-MS is a standard technology for identifying volatile compounds, and
identification is mainly based on the MS libraries.

There is no analytical method available to monitor all the compounds in exhaled breath.
For example, breath sampling method and thermal desorption (TD) adsorbents select
the compounds, and GC column determine which compounds are chromatographically
separated and can be detected. In this study, we chose the polar Nukol column for the first
separative column because we have found it suitable for detecting endogenous gut-related
exhaled breath VOCs [46], and non-polar Zebron ZB-35HT Inferno column for the second
column due to its chemically different stationary phase compared to Nukol. By choosing
other columns or TD adsorbent, different compounds could have been detected. It is
noteworthy that most GC-MS analyses for exhaled breath VOCs are made by using general
purpose nonpolar methylpolysiloxane columns containing 5% phenyl. With our protocol,
we detected some common exhaled breath compounds such as isoprene, acetone, and
ethanol, but we were unable to detect, for example, ammonia and methane (too small to
detect with MS SCAN 35–300 m/z), or short-chain fatty acids (not enough sensitivity with
MS SCAN mode [46]), although these compounds would be interesting in the perspective
of nutrition and gut health [53–55]. We detected some compounds (Table 1; 3,4-dimethyl
heptane, 3-pentanol, and methyl cyclopentane), which have not been reported in exhaled
breath before. However, it should be pointed out that in our study, the identification was
done only by the spectral library match, and was not confirmed with standard molecules
(i.e., tentative identification) or retention indices. Mass spectra can be almost identical for
some compounds, for example, for structural isomers (e.g., 2-methylbutane and n-pentane)
or compounds with same structure with different length of alkyl chain (e.g., undecanal and
tetradecanal). Therefore, the identification of VOCs in this study must be considered with
caution.

Some benzoic acid and phenolic derivatives, as well as furanones, were detected from
exhaled breath samples only after whole grain diets. It is possible that these VOCs are
degradation products of phenolic compounds such as phenolic acids, alkylresorcinols and
lignans from the DF complex in the bran. Phenolic compounds can be metabolized to
various compounds by colonic fermentation and metabolism [56]; for example, benzoic
acid can be formed from rye phenolics [57]. The compounds were detected mostly in the
same exhaled breath samples, which indicate the same origin for these compounds.

Benzoic acid is known to be related to various foods but considered to have relatively
low levels in the alveolar exhaled breath in the fasting state, since it is metabolized by liver
and kidneys to hippurate within a few hours after oral dosing [58]. However, benzoic acid
is formed also from whole grains in gut fermentation, which may explain the elevated
levels in the fasting state in some individuals during WG diets. The exhaled breath samples
were taken in the fasting state, but the fermentation rate may have been varied based on
individual orocecal transit time and timing of eating WG. Estimation of the fermentation
rate by breath hydrogen measurements [59] would be relevant when studying fermentation-
related exhaled breath VOCs.

It´s noteworthy that the GC parameters used were not optimal for benzoic acid and
phthalic acid/anhydride. Both compounds had wide tailing chromatograph peaks. This
did not interfere with the identification of compounds, but may have affected sensitivity in
their detection, and partly explains why these compounds were seen only in a minority of
exhaled breath samples. Other GC parameters or technology should be used for analyzing
these compounds more accurately.

Furanones are known to be formed in chemical reactions during charbroiling and seed
oil cooking, and in Maillard reaction between sugars and amino acids [60,61]. They can
also be metabolized from grain lignans such as matairesinol or 7-hydroxymatairesinol, or
from enterolactone, a mammalian lignan, which is formed in the large intestine from plant
lignans [62]. All these lignans have dihydro-2(3H)-furanone in their molecule structure.
Enterolactone is considered a biomarker for high lignan intake in the diet [63], but high in-
terindividual variation has been found in its absorption and metabolism [64]. To our knowl-
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edge, 5-dodecyldihydro-(3H)-furanone (CAS 730-46-1, also known as γ-palmitolactone),
dihydro-4-hydroxy-2(3H)-furanone (CAS 5469-16-9, 3-hydroxy-γ-butyrolactone) or dihydro-
5-tetradecyl-2(3H)-furanone (CAS 502-26-1, γ-stearolactone) have not been detected from
exhaled breath before, unlike some other furanones [25,41]. Dihydro-5-tetradecyl-2(3H)-
furanone has been detected from skin [25]. It would be interesting to monitor exhaled
breath phenolic and furanone compounds and their levels in relation to different dietary
sources, for example rye, using optimized analysis methodology for those compounds.

In this study, the randomized crossover protocol was used because the inter-individual
variation of breath VOCs is known to be high [26]. In a crossover protocol, it is more
likely that detected differences in breath VOCs are due to dietary changes because the
other lifestyle factors are rather constant. Furthermore, most of the study participants
were students or staff members of the Faculty of Health Sciences in the University of
Eastern Finland and therefore likely to pay more attention to their eating than the average
population in Finland. The participants consumed plenty of fruits and vegetables and
received plenty of DF, and probably also phenolic compounds, also from sources other
than the study breads. Therefore, the supply of DF remained higher than expected during
the WW diets, being in the level of dietary recommendations. However, the total amount
of consumed fruits and vegetables remained stable during the study, and there was a
significant difference in the DF levels between WG and WW diets, as intended.

In conclusion, the GCxGC-MS technology, being sensitive and selective, offered some
advantage for detecting exhaled breath VOCs. Benzoic acid derivatives, phenolic com-
pounds, and furanones are potential compounds in monitoring metabolic effects of whole
grains in exhaled breath. However, based on earlier reports by us [42,43] and others [22],
it seems that it would be more relevant to monitor changes in the levels of multiple com-
pounds or in VOC profiles rather than individual compounds when monitoring diet-related
changes in exhaled breath VOCs.

4. Materials and Methods

4.1. Protocol

A randomized crossover manner dietary intervention was performed with 9 partici-
pants. They followed high-fiber diets containing either whole grain rye bread (WGR) or
whole grain wheat bread (WGW) for 1 week in randomized order, and there were 1-week
periods with refined (white) wheat bread (WW) before both test periods (Figure 1). At the
end of the diet periods, exhaled breath samples in fasting state and parallel background
air samples (room air samples, BG) were analyzed with GCxGC-MS technology. The
RYEBREATH study was approved by the Ethics Committee of the Hospital District of
Northern Savo (University of Eastern Finland, Hannu Mykkänen, 40/2015).

 
Figure 1. Study design of a randomized crossover manner dietary intervention with 9 partici-
pants. WW = control diet containing refined wheat bread; WGR = whole grain rye bread diet;
WGW = whole grain wheat bread diet. Exhaled breath and parallel background room air samples
were taken at the end of the diet periods.
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4.2. Study Participants

The participants were recruited into the RYEBREATH study with the campus adver-
tisements in the University of Eastern Finland. They were healthy non-smoking Finnish
men (2) and women (7) aged 21 to 59 years (average 31 years) and with BMI (body mass
index) between 18.7 and 29 kg/m2 (average 23 kg/m2). The participants were advised to
maintain their body weight and habitual lifestyle throughout the study, except the devised
dietary modification for cereal content. All the participants provided written informed
consent prior to participating in the study.

4.3. Diets

Participants followed three diets differing in consumed grain products. They were
advised to consume 5–7 slices of white wheat bread per day during WW periods, 5–7 slices
of whole grain rye bread during WGR period and 7–8 slices of whole grain wheat bread
during WGW period. The commercial breads used in each period were: white toasts Vaasan
Iso Paahto (DF 0.9 g/slice) and Oululainen Reilu Vehnä (DF 1.2 g/slice) during the WW
periods, whole grain rye breads Fazer Real Ruis (DF 4.2 g/slice) and Porokylän leipomo
PikkuKartano (DF 1.6 g/slice) during the WGR period, and wholegrain wheat breads
Fazer Täysjyvä Paahto (DF 1.5 g/slice) and Vaasan Täysjyvä Isopaahto (DF 2.5 g/slice)
during the WGW period. The study subjects were advised to avoid whole grain products
during the WW periods and not to consume any rye except during the WGR period. Food
items which typically increase gut fermentation and fermentative gases in the intestines,
such as beans, cabbages, and xylitol products, were avoided throughout the intervention.
A master´s student in clinical nutrition advised the participants weekly on the practical
management of the diets. The participants filled in 4-day food records during each diet
period and recorded the eaten amount of the test breads in a daily questionnaire. The food
records were analyzed for nutrient intakes using the Diet32 software (version 1.4.6.3, Aivo
Finland Oy, Turku, Finland).

The intakes of energy, protein, fat, and carbohydrates during the test diet periods
were maintained at the same level during the intervention (Table 3). Only intake of DF
was significantly different between the WW and WG periods. The participants consumed
breads on average 159 g/day during the WW periods, 208 g/day during WGR, and
200 g/day during WGW, which covered 18% of energy intake in WW1, 19% in WW2, 24%
in WGR, and 23% in WGW.

Table 3. Mean daily intakes 1 of energy and nutrients during the 1-week diet periods (n = 9).

WW1 WW2 WGR WGW p-Value 2

Energy, MJ 9.0 ± 1.7 9.3 ± 1.6 9.0 ± 1.8 9.0 ± 1.5 0.865
Carbohydrates, E% 42 ± 2 41 ± 4 42 ± 3 41 ± 4 0.706

Protein, E% 20 ± 3 20 ± 3 19 ± 2 20 ± 3 0.254
Fat, E% 35 ± 4 36 ± 5 35 ± 4 35 ± 7 0.954

Dietary fiber, g 24 ± 8 25 ± 8 36 ± 6 * 34 ± 1 * <0.001
1 Values are means ± SD; 2 Statistical significance of the difference among the diet periods analyzed with
Friedman’s test; * Different from WW periods, Wilcoxon´s test, p = 0.008; WW = diet with white wheat bread;
WGR = whole grain rye bread diet; WGW = whole grain wheat bread diet; E% = percentage of total energy intake.

4.4. Exhaled Breath Analysis

End-tidal exhaled breath samples were taken with Bio-VOC® samplers (Markes In-
ternational Ltd., UK), which are made for capturing the last part of exhaled breath from
the alveoli concentrated with VOCs excreted from the circulation (Figure 2a). Participants
were trained to give an adequate sample. Before the sampling, participants brushed their
teeth with toothpaste and rinsed the mouth effectively with water to stabilize the microbial
fermentation in the mouth. They were sitting still without talking and breathing normally
for a few minutes before sampling to standardize the ventilation. Then they gave a con-
stant deep blow through the sampler. Exhaled breath samples were injected immediately
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after sampling into TD liners (fritted glass liner packed with Tenax GR, mesh 80–100, GL
Sciences, Eindhoven, The Netherlands) using the Bio-VOC® sampler as a gas syringe
and adapter (self-made by sculpting from PTFE rod) to connect the sampler and the liner
tightly (Figure 2b). The TD liner was closed with a storage cap (Brass Liner Blanking Cap,
GL Sciences, Eindhoven, the Netherlands) and analyzed within 2–5 h (Figure 2c). The
internal standard (1 µL 0.22 µg/µL acetone-d6 (Euriso-top, Saint-Aubin, France) in Milli-Q
ultrapure water (Millipore, Bedford, MA, USA)) was injected to the TD liners 30–60 min
before sampling by using gas tight syringe and the Bio-VOC® sampler. The background
room air samples were taken before breath samples by injecting the room air with the
Bio-VOC® sampler to the TD liners. The room air samples were otherwise handled in the
same way as breath samples.

Analysis was performed with a GCxGC-MS device consisting of GCMS-QP2010 Ultra
and AOC-5000 Plus injection system (Shimadzu Scientific Instruments, Columbia, MD,
USA), Optic-4 multi-mode inlet (GL Science, Eindhoven, The Netherlands) and ZX-1
thermal modulator (Zoex Corporation, Houston, TX, USA) (Figure 2d). The injection
was done with automated injection of AOC-5000 Plus to the inlet of Optic injector. The
temperature of the inlet was at the beginning 35 ◦C for 2 min and then rose to the 200 ◦C
at the rate of 18 ◦C/min. The injection was done in high-pressure mode with split 5
allowing the pressure of the inlet decrease temporarily during the injection. The injected
sample was preconcentrated to the cryotrap after the injector at −100 ◦C for 7 min and
released rapidly at 200 ◦C (temperature rise 60 ◦C/s) to the GC. VOCs were separated
on two serial capillary columns; polar Nukol (0.25 µm thick phase, 0.25 mm internal
diameter, 30 m long, Supelco, Bellefonte, PA, USA) and non-polar Zebron ZB-35HT Inferno
(0.8 µm/0.18 mm/1 m, Phenomenex Torrance, CA, USA), separated by a cryogenic Zoex-
modulator. The modulation was done with 8 s modulation time and 10–30% filling of the
5 L dewar of the liquid nitrogen. Carrier gas was Helium 4.6 (AGA, Espoo, Finland) with
column pressure 150 kPa, column flow 2.14 mL/min, and linear velocity 45.5. The GC oven
was programmed to be 35 ◦C for 10 min, then raised by 3 ◦C/min to 200 ◦C. The duration
of the GC program was 70 min. The detection was done with MS SCAN 35–300 m/z, event
time 0.02 s, and scan speed 20,000 unit/s. Temperature of the ion source was 200 ◦C and
for MS interface 220 ◦C.

The data were analyzed using ChromSquare 2.2 data analysis software (Chromaleont,
Messina, Italy). All the visible blobs in two-dimensional chromatograph were manually
selected for identification. The tentative identification was performed by comparing their
mass spectra with data from NIST 11 Mass Spectral library (The National Institute of
Standards and Technology, Gaithersburg, MD, USA), Wiley Registry 10th Edition (John
Wiley & Sons, Hoboken, NJ, USA), and Flavour & Fragrance Natural & Synthetic Com-
pounds GCMS library FFNSC 2 (Shimadzu Corp., Kyoto, Japan). The identification was
checked precisely for each blob by the researcher, but it was not confirmed with analytical
standards or retention indices. Tentatively identified VOCs were reported only if they
were found in more than a single exhaled breath sample. Four exhaled breath samples
and five background room air samples were excluded because of technical problems in
the GC-MS analysis. Siloxanes and polyethylene glycol compounds were excluded from
analysis because they likely originate from column phases.
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Figure 2. Exhaled breath analysis. End-tidal exhaled breath was sampled with the Bio-VOC®

sampler (a), injected into a glass liner containing Tenax GR absorbent (b), removed to laboratory in
a sealed liner (c), and analyzed with comprehensive two-dimensional gas chromatography–mass
spectrometry (d).

5. Conclusions

Exhaled breath VOCs reflect metabolism and lifestyle, thus having large interindivid-
ual variation and a lot of so far unidentified molecules. Since diet affects exhaled breath
VOCs, they could be utilized in studying the metabolic effects of diets. The GCxGC-MS
technology offers some advantage in making the detection of human VOCs sensitive and
selective. Exhaled breath benzoic acid derivatives, phenolic compounds, and furanones
are interesting compounds to study further when exploring the metabolic effects of whole
grains.

Supplementary Materials: The following are available online, Table S1: The detected VOCs (86)
with tentative identification 1 from exhaled breath samples (n = 32) of nine study participants.
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Abstract: The aim of the present study was to compare the efficiency of targeted and untargeted
breath analysis in the discrimination of lung cancer (Ca+) patients from healthy people (HC) and pa-
tients with benign pulmonary diseases (Ca−). Exhaled breath samples from 49 Ca+ patients, 36 Ca−
patients and 52 healthy controls (HC) were analyzed by an SPME–GC–MS method. Untargeted
treatment of the acquired data was performed with the use of the web-based platform XCMS Online
combined with manual reprocessing of raw chromatographic data. Machine learning methods were
applied to estimate the efficiency of breath analysis in the classification of the participants. Results:
Untargeted analysis revealed 29 informative VOCs, from which 17 were identified by mass spectra
and retention time/retention index evaluation. The untargeted analysis yielded slightly better results
in discriminating Ca+ patients from HC (accuracy: 91.0%, AUC: 0.96 and accuracy 89.1%, AUC:
0.97 for untargeted and targeted analysis, respectively) but significantly improved the efficiency of
discrimination between Ca+ and Ca− patients, increasing the accuracy of the classification from
52.9 to 75.3% and the AUC from 0.55 to 0.82. Conclusions: The untargeted breath analysis through
the inclusion and utilization of newly identified compounds that were not considered in targeted
analysis allowed the discrimination of the Ca+ from Ca− patients, which was not achieved by the
targeted approach.

Keywords: lung cancer; exhaled breath; volatile organic compounds; untargeted analysis; breath
analysis; cancer biomarkers; volatolomics

1. Introduction

Human breath contains volatile organic compounds (VOCs) either originating from
endogenous biochemical processes and thus distinguished as endogenous VOCs or envi-
ronmental exposures (inhalation, ingestion, dermal absorption) and therefore pertaining to
exogeneous VOCs. In case of disease, the biochemical pathways can be dysregulated or
altered [1], and this will change the composition of exhaled breath in endogenous VOCs.
Moreover, disease can also affect the absorption, distribution metabolism and excretion
of the exogenous compounds. These alterations can be detected and used for disease
detection and diagnosis. The analysis of exhaled breath is currently an area of intensive
research aiming at the development of new non-invasive tests for preliminary screening
and diagnosis of various pathological conditions. Particular attention is given to cancer,
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where early diagnosis is critical for successful disease treatment and which today is of-
ten diagnosed at late stages, and diagnosis procedures are invasive, time consuming or
costly. Mass spectrometry (MS)-based breath analysis for disease diagnosis research is
currently the mainstream choice that can be accomplished using two strategies, which are
classified as targeted or non-targeted (also referred to as untargeted). The former is based
on quantification of an a priori defined set of VOCs known or hypothesized as disease
biomarkers and is thus a hypothesis-driven approach. In contrast, the non-targeted strategy
is a (qualitative) hypothesis-generating approach that investigates the whole VOC profile
in a breath sample without any a priori information about the chemical composition of the
sample and aims to identify a maximum number of VOCs. By non-targeted breath analysis,
novel biomarkers and disturbed metabolic pathways can be discovered or characteristic
breath VOC profile of the disease can be defined and further used for disease detection
and diagnosis. However, the non-targeted approach yields a huge amount of complex
data and its application would be impossible without the development of bioinformatics
software designed for the treatment and statistical analysis of raw chromatography–mass
spectrometry data, and identification of detected unknown compounds. This has been
done mostly in the last decade and currently there is a variety of commercial or open
source software for the treatment and analysis of chromatography–mass spectrometry data
and extraction of the relative biological information [2]. That has given great impetus for
the development of non-targeted analysis in metabolomics in general [3] and opens new
perspectives in breath research in particular [4]. One of the most widely used metabolomic
software is XCMS Online, which is freely available [5].

However, the non-targeted approach has long-standing reproducibility issues [6,7] and
is never truly unbiased since the acquired data are significantly affected by experimental
design and instrumental parameters. In contrast to the targeted strategy, the lack of
absolute quantification makes it difficult to assess variations in metabolite levels between
groups, to normalize the acquired data and even to make interlaboratory comparisons of
the results [7,8]. These weaknesses of the non-targeted approach are, at the same time, the
strengths of the targeted approach and, recently, hybrid approaches bridging them have
been developed [8,9]. In this study, we make a retrospective non-targeted analysis of full
scan data previously acquired [10] in targeted analysis of the breath samples from lung
cancer (Ca+) and benign pulmonary disease (Ca−) patients and healthy controls (HC). The
targeted analysis was based on the quantitation of 19 pre-determined VOCs [10]. While
Ca+ patients were satisfactorily discriminated from healthy controls, the analysis failed to
discriminate Ca+ patients from Ca− patients (without LC but with pathological computed
tomography findings). The aim of the present study is to compare the efficiency of the
targeted and untargeted approaches in lung cancer discrimination with healthy people
and patients with other pulmonary diseases and record the strengths and limitations of
each approach on the same raw GC–MS data pool. Additionally, by merging (combining)
targeted and untargeted approaches, we sought to improve the discrimination ability of
the breath analysis.

2. Results

2.1. Characteristics of Study Participants

From the 85 patients with pathological computed tomography (CT) findings who un-
derwent bronchoscopy, lung cancer was diagnosed in 49 patients (43 males/6 females). The
mean age of Ca+ patients was 71.1 years (SD: 8.2). The majority of LC patients (n = 40) were
diagnosed with non-small cell lung carcinoma, while 8 were diagnosed with small cell lung
carcinoma (for one patient, the type was not available). Thirty-six patients (30 males/6 fe-
males, mean age 66.8 (SD: 10.8)) were not diagnosed with LC by histological/cytological
examination. The possible pathological origins for this group include sarcoidosis, hypersen-
sitivity pneumonitis, interstitial lung diseases or pulmonary infections such as tuberculosis.
The control group consisted of 52 persons (35 males/17 females) with a mean age of 66.8
(SD: 10.8).
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In regard to smoking habit, most of the LC patients (81.6%) were former smokers
with a mean time from cessation of 9.4 years, while 12.2% were active smokers and 6.1%
reported that they had never smoked. Patients that were not diagnosed with LC had
slightly different frequencies of smoking habit, with 55.6% being former smokers (mean
time from cessation: 10.6 years), 27.7% being active smokers and 16.7% never smokers. In
the HC group, the percentage of active smokers was significantly higher (38.4%), as was
the percentage of individuals that had never smoked (28.9%). The percentage of former
smokers was 32.7%, with mean time from cessation of 20.1 years. Mean pack/years were
69.43 (SD: 48.47) for the Ca+ group, 48.70 (SD: 35.41) for the Ca− group and 32.74 (SD:
33.39) for the HC group.

Concerning self-reported co-morbidities derived from personal interviews with the
use of questionnaires, the most common were hypertension (Ca+ group: 44.9%, Ca−
group 47.22%, HC group: 42.31%), diabetes (Ca+ group: 24.49%, Ca− group 27.78%, HC
group: 22.45%) and hypercholesterolemia (Ca+ group: 38.78%, Ca− group 30.56%, HC
group: 26.53%).

2.2. Data Pre-Processing, Selection and Identification of Candidate Features

The processing of raw files with the use of the XCMS Online platform identified
358 informative features (ions) meeting the criteria defined in the Materials and Methods
(Section 4.3) after peak identification, alignment, retention time correction and preliminary
online statistical analysis. Figure 1 presents the metabolomic cloud plots obtained from
XCMS Online, concerning the pairwise analysis of Ca+ vs. HC and Ca+ vs. Ca− groups.
Features identified as differentiated between subgroups by XCMS Online were automati-
cally grouped into 110 corresponding chromatographic peaks. These peaks were manually
evaluated and verified in the acquired chromatograms. This process resulted in the exclu-
sion of 28 peaks from further analysis due to unacceptable chromatographic characteristics
such as low signal to noise ratio and co-elution with other substances. The mass spectra
corresponding to the 82 remaining peaks were compared with those stored in the NIST
library after subtracting mass spectra corresponding to noise. These procedures lead to the
exclusion of additional peaks with spectra indicating silanes and silicon compounds that
were considered interferences from SPME fiber, the chromatography column or septum
materials. In addition, peaks with mass spectra corresponding to known contaminants
from Tedlar® bag materials (phenol, N,N-dimethylacetamide) were also excluded [11]. In
total, 53 compounds were not considered for further analysis. Thus, the remaining 29 peaks
were considered for further investigation. For these, comparisons of mass spectra with
those contained in the NIST library identified 12 compounds with a probability higher than
75%. Four monoaromatic compounds (benzene, styrene, ethylbenzene and toluene) were
also verified with analytical standards. In addition, seven compounds were verified by
retention time (RT) by comparing actual RTs with simulated RTs determined with the use
of the Pro EZGC Chromatogram Modeler (Restek Corporation, Bellefonte, PA, USA). For
5 peaks, the NIST probability was 50–75%, indicating a considerable degree of uncertainty
in compound identification, while 12 compounds (probability < 50%) were designated as
unknowns. Moreover, experimentally determined retention indices (RIs) were compared
with those stored in the NIST library. Small deviations were observed (<10%) for most
compounds, while the RI values were in agreement with the order of elution of identified
VOCs, with the exceptions of propionic acid and methylacetamide. Figure 2 presents the
flow chart of the process applied for selecting and identifying informative compounds.
In Table 1, the compounds are presented along with NIST probability and spectra match
scores, actual and simulated retention times, experimentally determined RIs and RIs de-
rived from the NIST workbook. The 17 identified compounds were further investigated by
searching for their presence in the KEGG pathway database [12] and in the scientific litera-
ture to determine their putative origins and the involved metabolic pathways. For twelve
compounds, no evidence of endogenous origin was found. These include monoaromatic
hydrocarbons and furans, which are carcinogens contained in tobacco smoke, and pro-
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duced by industrial sources and commercial uses, sulfur-containing compounds (methyl
propyl sulfide, 1-methylthio-(E)-1-propene) used as flavor agents and contained in garlic
and onion and eucalyptol, which is used as an asthma/COPD drug. Eight substances could
be of both endogenous and exogenous origin. Most of the identified metabolic pathways
concerned the degradation/metabolism of xenobiotic substances such as ethylbenzene,
benzene and dimethyacetamide. Propionic acid is involved in multiple pathways of lipid
biosynthesis, propanoate metabolism and vitamin K metabolism. P-benzoquinone can be
formed from benzene metabolism [13], but also participates in other pathways, and acetic
acid is involved in the formation of glycogen, cholesterol synthesis, fatty acid degradation
and acetylation of amines [14].

Table 1. Identification of compounds based on spectra comparison with NIST library and retention time criteria.

Candidate
Compound

Probability
(NIST), %

Match
Score

(NIST)

Retention
Time, min

Retention
Time

Simulated 1,
min

Deviations in
Retention
Time, %

Experimentally
Determined

Retention
Index

NIST
Retention

Index 2

Deviations
in Retention

Index, %

3-methyl-furane 86 892 5.03 NA 615 602 2.16
acetaldoxime 53 753 5.38 NA 625 606 3.14

Benzene * 72 923 7.17 7.73 −7.81 677 647 4.64
acetic acid 59 912 7.86 NA 698 650 7.38

1-methoxy-2-propanol 69 891 8.27 7.83 5.32 711 658 8.05
dimethyl furane 78 852 8.33 8.66 −3.96 714 694 2.88

methyl propyl sulfide 89 840 8.79 NA 729 714 2.10
1-methylthio-(E)-

1-propene ** 90 877 9.57 NA 756 722 4.71

Toluene * 34 868 10.31 10.95 −6.21 782 750 4.27
propionic acid 78 702 10.59 NA 792 712 11.24

p- xylene ** 81 845 12.00 12.1 −0.83 859 833 3.12
ethyl benzene * 61 877 12.10 12.38 −2.31 890 858 3.73

Styrene * 37 869 12.3 12.79 −3.98 906 876 3.42
methylacetamide 78 831 12.79 NA 959 825 16.24
p-benzoquinone 90 817 13.00 NA 982 888 10.59
N-2-Aminoethyl

acetamide 62 800 13.2 NA 1005 NA

eucalyptol 52 848 13.51 NA 1060 1017 4.23

* Verified by analytical standard. ** NIST probability is given for all isomer compounds. Mass spectra were very similar for isomers of these
compounds, compounds were identified based on RI similarities. 1 Retention time was simulated with Pro EZGC Chromatogram Modeler,
Restek Corporation. 2 Retention indices were derived from NIST database related to a fully non-polar column (100% polydimethylsiloxane).
NA: not available with equivalent column.

  

(a) (b) 

– – −
– –

Figure 1. Cloud plots with results of pairwise XCMS analysis between (a) Ca+ vs. HC. Detection settings: p-value < 0.01, fold
change > 2, m/z range: 0–140, retention range: 0–14 min, max intensity > 10,000 and (b) Ca+ vs. Ca− characteristics (ion).
Detection settings: p-value < 0.05, fold change > 1.1, m/z range: 0–140, retention range: 0–14 min, max intensity > 10,000.
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Figure 2. Flow chart of the process applied for selecting, identifying and processing informative compounds.

2.3. Reprocessing of Raw Chromatographs and Statistical Analysis of Identified/Verified
Associations

Following the identification of the compounds, all raw files were reprocessed with
Thermo Xcalibur™ software to obtain more valid data. This procedure allowed manual
retention time correction, more accurate integration of chromatographic peaks and exclu-
sion of false (noise) peaks. The areas of the chromatographic peaks were determined for
each compound in exhaled breath samples but also in ambient air samples. Chromato-
graphic peak areas were normalized with the use of an external standard mixture (see
Section 4.4). Regarding ambient air levels, for six out of 29 compounds, the relative levels
of ambient air were considered insignificant, for 5 compounds low, for 14 compounds
moderate and for 4 compounds high (Table 2). Comparative statistical analysis confirmed
the significant difference in breath levels between Ca+ patients and healthy controls for
18 out 29 compounds, while two were found to differ between Ca+ and Ca− patients.
Lung cancer patients had significantly elevated levels of ethylbenzene, styrene, toluene,
xylene, eucalyptol and four unknown compounds compared to healthy controls. Lower
levels were observed for acetaldoxime, methyl propyl sulfide, 1-methylthio-(E)-1-propene,
propionic acid, methylacetamide and three unknown compounds. Results concerning
the comparative analysis of areas of chromatographic peaks between patient groups are
summarized in Table 2.
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Table 2. Comparative analysis of the areas of the 29 chromatographic peaks between patient groups and relative presence
in ambient air.

Compound Relative Presence
in Ambient Air 1

Ca+/HC Ca+/Ca−

Trend in LC
Patients

Significance *
Trend in LC

Patients
Significance *

unknown insignificant ↑ 0.052 ↑ 0.311
unknown moderate ↓ 0.071 ↓ 0.056

3-methyl-furan * low ↓ 0.514 ↓ 0.482
acetaldoxime high ↓↓↓ <0.001 ↓ 0.341

unknown moderate ↓↓↓ <0.001 ↓ 0.689
unknown low ↑↑ 0.01 ↓↓ 0.013
benzene moderate ↓↓↓ <0.001 ↓ 0.089

unknown moderate ↓↓↓ <0.001 ↓ 0.756
acetic acid low ↓↓↓ <0.001 ↓ 0.979

1-methoxy-2-propanol high ↓↓↓ <0.001 ↓ 0.272
dimethyl furan low ↓ 0.125 ↓ 0.286

unknown moderate ↑↑↑ 0.002 ↓ 0.396
unknown moderate ↓ 0.902 ↓ 0.082

methyl propyl sulfide insignificant ↓↓↓ <0.001 ↓↓ 0.035
1-methylthio-(E)-1-propene insignificant ↓↓↓ <0.001 ↓ 0.239

unknown insignificant ↓↓↓ <0.001 ↓ 0.185
toluene moderate ↑↑↑ 0.001 ↑ 0.986

propionic acid insignificant ↓↓↓ <0.001 ↑ 0.384
unknown high ↑ 0.053 ↑ 0.752
unknown moderate ↓ 0.124 ↓ 0.175

ethylbenzene moderate ↑↑↑ <0.001 ↑ 0.618
xylene(p,o,m) moderate ↑↑↑ <0.001 ↑ 0.434

styrene moderate ↑↑↑ <0.001 ↑ 0.423
methylacetamide high ↓ 0.178 ↑ 0.539
p-benzoquinone insignificant ↓ 0.076 ↓ 0.388

N-2-Aminoethyl acetamide moderate ↓↓↓ <0.001 ↓ 0.824
unknown moderate ↓↓↓ <0.001 ↓ 0.104
eucalyptol low ↑ 0.066 ↑ 0.511
unknown moderate ↑ 0.092 ↑ 0.463

1 Determined from mean breath/mean air ratio. Insignificant: >20, low: 5–20, moderate: 0.5–5, high: <0.5. * Significance determined by
Mann–Whitney test. ↑, ↓: p > 0.05, ↑↑, ↓↓: p = 0.01–0.05, ↓↓↓, ↑↑↑: p < 0.01.

2.4. Application of Machine Learning Methods to Estimate the Diagnostic Efficiency of the Breath
Analysis

In our previous work, based on 19 selected VOCs, we identified subsets of features
(VOCs) that were capable of efficiently discriminating healthy individuals from cancer
patients, but not Ca+ from Ca− patients. In this section, we present the results of machine
learning methods based on combinations of the 29 features, identified as differentiated
between population subgroups by the untargeted approach. When all 29 features were
included, correct classification of Ca+ and HC was 86% (AUC: 0.94) (Table 3, Analysis
no. 9). After the two steps of feature selection, using a subset of eight features, the correct
classification improved to 91% (AUC: 0.96) (Table 3, Analysis no. 10), which was higher
than that of targeted analysis. Similarly, discrimination between Ca− patients and HC
was also very efficient. The correct classification of datapoints ranged from 90% (AUC:
0.94), when using all 29 features (Table 3, Analysis no. 11), to 94% (AUC: 0.97) after the two
steps of feature selection, using a subset of seven compounds (Table 3, Analysis no. 12).
Not surprisingly, discrimination between pooled cancer-positive and non-cancer patients
(Ca+ and Ca−) and HC was again very efficient. Overall, machine learning models based
on compounds identified as differentiated by the untargeted approach achieved a very
comparable if not marginally better accuracy than the targeted approach, when trying to
discriminate healthy individuals from any of the three types of patients (cancer, non-cancer,
pooled).
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Table 3. Results of machine learning methods (random forest) to estimate the discrimination efficiency of the breath analysis.

Analysis no. Approach Variable
Comparison

Groups
Smoking

Habit
Features Used Accuracy AUC

1 targeted Br Ca+ vs. HC All t1–t19 85.14 0.95
2 targeted Br Ca+ vs. HC All t4, t5, t7–t11,t13–t15,t18 89.10 0.97
3 targeted Br Ca− vs. HC All t1–t19 86.36 0.91
4 targeted Br Ca− vs. HC All t4,t5, t7–t17 88.63 0.94
5 targeted Br Ca+ & Ca− vs. HC All t1–t19 86.70 0.96
6 targeted Br Ca+ & Ca− vs. HC All t1, t4,t5,t7–t15,t17 90.50 0.96
7 targeted Br Ca+ vs. Ca− All t1–t19 43.50 0.39
8 targeted Br Ca+ vs. Ca− All t4,t9, t17 52.90 0.55
9 untargeted Br Ca+ vs. HC All u1–u29 86.14 0.94

10 untargeted Br Ca+ vs. HC All u4,u8,u12,u14,u16,u19,u28,u29 91.08 0.96
11 untargeted Br Ca− vs. HC All u1–u29 89.77 0.94
12 untargeted Br Ca− vs. HC All u4,u6, u8, u12,u26,u27,u29 94.3 0.97
13 untargeted Br Ca+ & Ca− vs. HC All u1–u29 86.9 0.95
14 untargeted Br Ca+ & Ca− vs. HC All u4, u8, u11,u12,u19,u22,u26,u27, u29 92 0.97
15 untargeted Br Ca+ vs. Ca− All u1–u29 52.9 0.54
16 untargeted Br Ca+ vs. Ca− All u4, u20,u26 75.3 0.82
17 untargeted Sbtr Ca+ vs. Ca− All t1–t19, u1–u29 57.6 0.54
18 untargeted Sbtr Ca+ vs. Ca− All u2, u4,u6, u11,u14, u25, u28,u29 71.76 0.78
19 merged Br Ca+ vs. Ca− All u1–u29, t1–t19 44.7 0.44
20 merged Br Ca+ vs. Ca− All t9, u4, u26 72.9 0.72
21 untargeted Br Ca+ vs. Ca− Non-smokers u1–u29 59.4 0.57
22 untargeted Br Ca+ vs. Ca− Non-smokers u4, u20,u 26 72.5 0.68
23 untargeted Br Ca+ vs. Ca− Non-smokers u4, u11, u13,u20,u26 76.8 0.85

Br: corresponds to breath compound levels, Sbtr: corresponds to breath subtract levels, Ca+: patients diagnosed with lung cancer, Ca−:
patients with pathological CT findings not diagnosed with lung cancer by histological/cytological examination, HC: healthy controls.
Features from targeted analysis: t1: isoprene, t2: acetone, t3: 2-propanol, t4: hexane, t5: 1-propanol, t6: 2-butanone, t7: cyclohexane,
t8: benzene, t9: thiophene, t10: 1-butanol, t11: toluene, t12: octane, t13: ethyl butyrate, t14: hexanal, t15: ethyl benzene, t16: styrene,
t17: cyclohexanone, t18: octanal, t19: nonanal. Features from untargeted analysis: u1: unknown, u2: unknown, u3: 3-methyl-furan, u4:
acetaldoxime, u5: unknown, u6: unknown, u7: benzene, u8: unknown, u9: acetic acid, u10: 1-methoxy-2-propanol, u11: dimethyl furan,
u12: unknown, u13: unknown, u14: 1-methylthio-(E)-1-propene, u15: allyl methyl sulfide, u16: unknown, u17: toluene, u18: propionic
acid, u19: unknown, u20: unknown, u21: ethylbenzene, u22: p-xylene, u23: styrene, u24: methylacetamide, u25: p-benzoquinone, u26:
N-2-aminoacetyl acetamide, u27: unknown, u28: eucalyptol, u29: unknown.

Subsequently, we tested the potential for discrimination between Ca+ and Ca− pa-
tients, with the three machine learning algorithms, by using normalized peak areas of
compounds from breath. The set of 29 VOCs was not capable of efficiently discriminating
between cancer and non-cancer patients, irrespective of the machine learning algorithm
applied. The best-performing algorithm (random forest) correctly predicted only 53%
of datapoints (AUC: 0.54) (Table 3, Analysis no. 15) when using all 29 VOCs. However,
when two successive steps of feature selection were implemented, the random forest’s
accuracy significantly increased to 75% (AUC: 0.82), by using a set of only three metabolites
(Table 3, Analysis no. 16). We repeated the analysis to discriminate Ca+ from Ca− patients,
by incorporating normalized levels after subtracting ambient air levels, in the hope that
removal of any noise from the air would increase the discriminatory power of the random
forests. However, the performance did not increase as much as it did when we used only
normalized concentrations of breath. More specifically, by using all 29 VOCs, random
forests achieved an accuracy of 58% (AUC: 0.54) (Table 3, Analysis no. 17), whereas, after
two steps of feature selection, the performance was increased to an accuracy of 72% (AUC:
0.78) by using eight features (Table 3, Analysis no. 18).

We also examined whether the combination of the 19 VOCs measured by the targeted
approach together with the 29 VOCs identified as differentiated by the untargeted approach
would increase the discriminatory power of the machine learning models in Ca+ vs. Ca−
patients. In this set, the concentrations of 19 VOCs in breath were used together with
29 VOCs selected as informative by the untargeted approach. By using all 48 variables,
random forests achieved an accuracy of 45% (AUC: 0.44) (Table 3, Analysis no. 19), whereas,
after two steps of feature selection, the performance was increased to an accuracy of 73%
(AUC: 0.72) (Table 3, Analysis no. 20), using three features (thiophene from the targeted
approach and acetaldoxime and N-methyl acetamide from the untargeted approach). Thus,
the inclusion of the 19 targeted metabolites did not increase the discriminatory performance
of random forests that were based only on targeted metabolites.
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Finally, we tested if smoking was a confounding factor for the discrimination (with
random forests) of cancer vs. non-cancer patients, using normalized breath measurements
of VOCs selected as informative by the untargeted approach. In these analyses, we retained
43 cancer patients and 26 non-cancer patients that never smoked or had quit smoking.
The best-performing algorithm (random forest) correctly predicted only 59% of datapoints
(AUC: 0.57) when using all 29 untargeted VOCs (Table 3, Analysis no. 21). When we used
the three untargeted VOCs that had yielded the best performance in the previous cancer vs.
non-cancer patients analysis, random forests of the non-smokers achieved an accuracy of
72.5%, but with a significantly lower AUC of 0.68 (Table 3, Analysis no. 22). Thus, we also
performed two rounds of feature selection specifically for the non-smokers and, this time,
random forests achieved an accuracy of 77%, with an AUC of 0.85, by using five VOCs
(Table 3, Analysis no. 23).

In summary, based on all the above analyses, we conclude that the best-performing
algorithm is again random forests, whereas the normalized breath data from the untargeted
approach are sufficient to help the algorithm achieve a very high performance, in all
comparisons. Furthermore, the two successive rounds of feature selection significantly
improved the performance of the random forests, especially in the case of Ca + vs. Ca−
patients. This was not possible in a previous study that had used a limited set of 19 selected
VOCs. Furthermore, smoking was not a confounding factor for the untargeted analysis, an
observation that is in agreement with the results of targeted analysis. It is very clear that the
given untargeted approach, in combination with machine learning algorithms and feature
selection, identified sets of compounds with sufficient discriminatory power (accuracy
of 91–94%) to help us understand if a sample comes from a healthy person or from a
person with a pulmonary disease. This was achievable with only seven to nine metabolites.
Furthermore, it is also possible to discriminate, with satisfactory accuracy (75–77%), cancer
from non-cancer patients, by using only three to five untargeted metabolites.

3. Discussion

In this study, we performed analyses based on non-targeted screening of the raw
chromatographic data obtained from breath analysis, for three population groups (Ca+,
Ca− and HC) and compared the discriminatory power of this approach to that achieved
by targeted analysis. In the targeted analysis, 19 pre-selected compounds were measured,
which were selected based on literature indicating that they might be potential biomarkers
of lung cancer. Seven of these pre-selected compounds were found to differ significantly
between Ca+ and HC, and between pooled patient (Ca+ and Ca−) and HC groups, and
none differed significantly between Ca+ and Ca− groups [10].

The non-targeted analysis was performed with the use of the XCMS Online data
processing platform combined with manual processing of the raw chromatograms to select
the informative compounds and develop a dataset containing the areas of chromatographic
peaks of differentiated compounds. Processing of the raw files with XCMS Online was
conducted to determine the subset of chromatographic peaks and corresponding ions (m/z)
to focus on, and narrow the investigated peaks to those only identified as significantly
differentiated between population subgroups (Figure 2: Step 1). Next, we manually cross-
checked (Figure 2: Step 2) and reprocessed (Figure 2: Step 5) the identified peaks in the
raw data, by integrating extracted ion chromatograms (EICs). This task was performed
to confirm and, when necessary, correct the results obtained from automated online data
processing, and increase the reliability of the developed dataset, before proceeding to
statistical analyses and the application of machine learning methods. We considered this
stage necessary since peak misalignment or identification of “false peaks” by preprocessing
software has been reported as a potential limitation of this approach due to the variance
and complexity of raw chromatograms [15–17]. Indeed, a number of peaks identified by
XCMS as informative could not be satisfactorily processed in the raw chromatograms and
had to be excluded from the analysis, due to noise interferences or co-elution issues. It was
interesting that two compounds (1-propanol and 2-propanol) identified as differentiated
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between population groups by the targeted approach were filtered out by the selection
criteria applied in the untargeted workflow. By searching for 2-propanol and 1-propanol in
the XCMS results, we observed that the corresponding peaks were correctly identified and
their levels were found to differ between Ca+ and HC, while fold changes in LC patients
were in agreement with those observed when concentrations determined by calibration
curves (targeted analysis) were compared. However, the level of statistical significance of
non-normalized values (determined by a t-test) was 0.0185 for 2-propanol and 0.0198 for
1 propanol, which was marginally higher than the selection criterion (p < 0.01) set for Ca+
vs. Ca− pairwise (online automated) analysis. It should also be mentioned that the t-test is
not the appropriate significance criterion for non-normally distributed data.

It is also noteworthy that 53 compounds identified as informative by the analysis
with XCMS Online were at a later stage excluded as they corresponded to silicon-based
compounds and presumably derived from the SPME fiber and chromatographic column
bleed (Figure 2: Step 3). The vast majority of these compounds were selected based
on the Ca+ vs. HC pairwise analysis and the associations can be attributed to different
experimental conditions during the time periods of the collection and analysis of the
population subgroups. It is therefore assumed that these compounds were selected due
to systematic variations in experimental conditions. This effect is often corrected through
normalization processes where signal intensity is adjusted by the total intensity, the highest
value or by an external or internal standard [18]. In untargeted metabolomics, the use
of pooled samples as external standards is often applied [19] but this practice would be
extremely complicated in exhaled air samples. In the present study, external standard
normalization was conducted by incorporating spiked standard mixtures with known
concentrations that were used in targeted analysis (Figure 2: Step 6). Moreover, after
manual processing of the detected peaks and external standard normalization, a few
associations that were determined as significant from XCMS Online analysis were not
confirmed by offline statistical analysis of reprocessed data.

Some of the identified compounds have been reported previously to differ in the
breath of LC patients and other pulmonary diseases. In particular, monoaromatics are
reported by numerous publications. A very recent review by Ratiu identified 21 aromatic
hydrocarbons differentiated in lung cancer [20]. Furans, such as 3-methylfuran and 2,5-
dimethylfuran, have also been identified by previous studies but these compounds are
considered biomarkers of both active and passive exposure to tobacco smoke [21]. Al-
lyl methyl sulfide and methyl propyl sulfide (an isomer of 1-methylthio-(E)-1-propene),
which were found in lower levels in LC patients, are known to suppress the proliferation
of human lung tumor cells and possess anti-carcinogenic properties [22,23]. Moreover,
similar structures, such as dimethyl sulfide and methionol, are involved in the metabolism
of methionine [24]. Differences in the exhaled breath levels of acetic acid and propionic
acid have also been reported by previous studies, albeit less frequently [25,26]. Exhaled
p-benzoquinone has been proposed as a marker of malignant pleural mesothelioma [27].
For other identified substances (N-2-Aminoethyl acetamide, 1 methoxy propanol, methylac-
etamide, acetaldoxime, eucalyptol), we did not find any references in the scientific literature
concerning the potential association of the exhaled breath concentrations with lung cancer.
It should be noted that for some compounds (e.g., propionic acid, acetic acid), we report
lower levels in the exhaled breath of LC patients, a finding which apparently contradicts
existing evidence. The lack of reproducibility between independent research groups is a
known obstacle in breath research. It should also be mentioned that for a few compounds,
the identification is questionable. This statement is based on the observation that deviations
in RTs and RIs (Figure 2: Step 4) for these compounds do not follow the trend established
by known compounds. These include propionic acid, methylacetamide, acetaldoxime
and 1-methxy-propanol. The utilization of retention indices in compound identification
confirmation through the comparison with available retention data can be of great im-
portance, especially when mass spectral matches are derived from multiple candidate
compounds with similar spectra (e.g., isomer compounds) [28]. In our investigation, the
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use of RIs assisted in the confirmation of mass spectra matches and in distinguishing which
isomer compound corresponds to the chromatographic peak (1-methylthio-(E)-1-propene,
p-xylene). The small deviations between calculated and library-derived RIs were expected
since RIs were experimentally determined with a DB-624 column (6% cyanopropyl/phenyl,
94% polydimethylsiloxane (PDMS)) and retrieved RIs were related to a 100% PDMS col-
umn. Naturally, the RI is dependent on the kind of stationary phase and different stationary
phases give rise to different RIs of the same compound. However, the same trend in the
abovementioned deviation was observed in the vast majority of the identified compounds.
The combination of mass spectra and RI data has been proposed in both targeted and
untargeted GC–MS data processing protocols [29].

By searching for the identified compounds in metabolic pathway databases and in
the scientific literature, we found no direct evidence linking these VOCs to biochemical
alterations that occur in cancer and therefore the biochemical interpretation of the results is
not straightforward. While instrumental techniques, sampling methods and informatics
approaches for studying diseases through the analysis of exhaled breath are constantly
evolving [30–32], it is critical for future research to advance the knowledge concerning the
understanding of underlying mechanisms that result in alteration of VOC breath composi-
tion. Current scientific knowledge provides some evidence and hypotheses concerning
the biochemical background of endogenous VOCs [33], but the origin of the majority of
these compounds is largely uncertain. Further research on endogenous products is of great
importance not only for diagnostic purposes but also for targeting treatment [34].

It is evident that most of the compounds identified as differentiated in population
groups in the present study are of exogenous origin or are produced endogenously during
the metabolism of exogenous compounds. This observation enhances the findings of our
previous publication, where it was hypothesized that alterations in pulmonary function
and in the metabolism and excretion of exogenous compounds in disease can have an
effect on the concentrations measured in exhaled breath. This hypothesis is also supported
by several clinical tests and recent research that use exogenous VOCs (EVOCs) as probes
to “measure the activity of metabolic enzymes in vivo, as well as the function of organs,
through breath analysis” [35]. Future research should further elucidate the potential of the
administration of harmless exogenous compounds as probes to study diseases.

In accordance with acquired data, the discrimination of LC patients from patients
with abnormal CT findings was substantially increased by the untargeted approach and
subsequent feature selection/machine learning in comparison to a previously conducted
targeted approach. The correct classification was 75–77% for Ca+ vs. Ca− in the untar-
geted analysis compared to approximately 50% in the targeted analysis. Additionally, we
report 91% accuracy for the discrimination of LC patients from healthy controls based on
the investigation of 29 VOCs selected as informative by a non-targeted approach. The
discriminatory power was slightly increased compared to the targeted analysis focusing
on the quantification of a set 19 pre-determined VOCs. Although the targeted approach
has the advantage of the absolute determination of VOC levels and is less prone to bi-
ases, untargeted screening allowed us to detect new distinctive features and incorporate a
larger compound set into the classification analysis, thus resulting in better discrimination.
Previous studies investigating VOC profiles by gas chromatography–mass spectrometry
also reported high discriminatory power in distinguishing LC patients from healthy con-
trols [36–47]. However, the major concerns are the limited reproducibility regarding the
compounds identified by different research groups and the uncertainties regarding the
origins of VOCs that differentiate lung cancer. The lower discriminant power between
Ca+ and Ca− patients underlines the importance of evaluating the interference of other
pulmonary diseases in the identification of LC biomarkers [46,47]. The combination of
the datasets developed by the targeted and untargeted approaches did not significantly
improve the discrimination, an observation that underlines that the information provided
by targeted analysis is contained to a large extent in the data obtained by the untargeted ap-
proach. Untargeted VOC screening detected four (toluene, benzene, styrene, ethylbenzene)
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out of seven compounds that were found to differ significantly in targeted analysis, and
exploited numerous features that could not be identified by the targeted approach. In agree-
ment with targeted analysis, incorporating breath subtracts (ambient air was subtracted
from breath measurements) slightly decreased the discriminatory power of the analysis.
This can be explained by the fact that for some VOCs with high concentrations in ambient
air, the information contained in breath measurements was not exploited. Including breath
substrate (also referred to as alveolar gradient) in the analysis is a double-edged decision.
On the one hand, not considering the ambient air chemical composition may introduce
environmental interferences, while, in parallel, subtracting air levels from breath may result
in the exclusion of valuable information.

Some further issues should be considered when interpreting the results of the present
study. Although SPME has many advantages as a solvent-free and versatile pre-concentration
method, it is not without limitations. During SPME, VOCs compete for the active sites of
the fiber, and molecules with higher molecular weight may displace smaller ones. Thus,
varying the composition of samples may influence the amounts of VOC extracted [48].
Moreover, different fiber coatings are suitable for different classes of analytes [49]. The
fiber used in this study (CAR/PDMS) is suitable for VOCs with low molecular weight
and a Kovats index of less than 980 [50]. According to a study conducted to evaluate
the performance of different fiber coatings in the isolation of VOCs from feces, the par-
ticular fiber used isolated 60% of the total examined VOCs [51]. Concerning sampling,
pre-concentration and instrumental procedures, we adopted a mixed expiratory breath
sampling/SPME/GC–MS approach, but a variety of alternative methods are available. In
brief, sampling can also focus on later or end-tidal expiratory breath, pre-concentration
can be achieved with thermal desorption (TD) and needle trap devices (NTDs) [52] and
instrumental analysis can also be performed with proton transfer reaction MS (PTR-MS)
and selective ion flow tube MS (SIFT-MS) [18]. Cross-reactive sensors have also been
developed and tested by numerous research groups [53].

Another limitation of this study is that the participants who formed the HC group did
not undergo clinical examination or diagnostic tests to exclude the possibility of having
undiagnosed cancer or serious pulmonary diseases, instead they were recruited based on
personal interviews. Thus, the possibility that a few individuals were falsely classified as
controls cannot be entirely excluded.

In summary, untargeted VOC profiling captured, to a large extent, the information
provided by targeted analysis and performed more efficiently in discriminating lung cancer
patients from patients with benign pulmonary diseases, through the utilization of new
compounds that were not previously considered. However, uncertainties in compound
identification and automated processing of raw data should be carefully addressed. Subse-
quence steps for the verification and manual correction of automatically identified peaks in
the raw chromatographic files can increase the reliability of the acquired datasets.

4. Materials and Methods

4.1. Participant Recruitment and Breath Sampling

A detailed description concerning the procedures followed for participant recruitment
and sampling of exhaled breath can be found in a previous publication [10]. In brief, the
study population consisted of 85 patients from the General University Hospital of Larissa
(Greece) who underwent bronchoscopy due to abnormal CT findings and a control group
of 52 individuals of similar age were recruited from local health centers. Samples were
collected from October 2018 to October 2019. After bronchoscopy, patients were catego-
rized according to the presence of LC, according to results of the cytological/histological
examination. The control group (referred to in the text as healthy controls (HC)) was
selected on the basis of the absence of self-reported pulmonary diseases and cancer. The
absence of these diseases was determined by self-report during the personal interviews
conducted on the day of sampling.
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Breath samples were collected in Tedlar® bags (Sigma-Aldrich, St. Louis, MO, USA).
Participants were asked to inhale deeply and hold their breath for 30 s, then exhale through
a disposable mouthpiece into the 1 L Tedlar® bag until filled. Two breath samples were
collected with approximately two-minute intervals in between. Ambient air samples were
also collected with the use of a portable Laboport® UN 86 KTP (KNF Neuberger GmbH,
Freiburg, Germany) pump.

4.2. Materials, Solid Phase Microextraction and GC–MS Analysis

A detailed description of the materials and methods used in the present study can
be found in our previous publication [10]. In brief, extraction and pre-concentration of
the analytes from breath samples was achieved by solid phase microextraction (SPME)
using a 75 µm carboxen-polydimethylsiloxane (CAR/PDMS)-coated fused silica fiber as-
sembly (Sigma-Aldrich, St. Louis, MO, USA), and desorption of analytes from the fiber
was performed for 5 min at 270 ◦C. Instrumental analysis was performed with a Finnigan
Trace GC Ultra/Polaris Ion Trap GC/MSn system equipped with a DB-624 GC capillary
column (inner diameter: 0.25 mm, length: 30 m, film: 1.4 µm, 6% cyanopropylphenyl/94%
dimethylpolysiloxan, Agilent, Santa Clara, CA, USA). GC–MS chromatograms were ac-
quired in total ion current (TIC) mode of the mass analyzer, and then extracted at one
or two specific m/z values for analyte quantification. Data acquisition and processing
were carried out using Xcalibur™ 3.0 software (ThermoFisher Scientific, San Francisco,
CA, USA). Furthermore, for the determination of RIs, SAK-100-1 and SMA-200-1 (Agilent,
Santa Clara, CA, USA) analytical standards containing C5 to C12 alkanes were used. Gas
samples were prepared, spiked with methanolic solution of C5-C12 alkanes and retention
times of each alkane were determined.

4.3. Data Pre-Processing and Analysis

After GC/MS analysis, all raw data were converted to mzml files using ProteoWizard,
and subsequently the converted files were imported into XCMS Online software (XCMS
Online version 3.7.1) (https://xcmsonline.scripps.edu) for feature detection, alignment
and retention time correction. The raw data processing was carried out using the following
parameters: general: Rt, format: minutes, polarity: positive, feature detection: centWave,
ppm: 900, minimum peak width: 5, maximum peak width: 30, mzdiff: 0.1, signal/noise
threshold: 3, integration method: 1, prefilter peaks: 3, prefilter intensity: 100, noise filter: 0,
Rt. correction: obiwarp, profStep: 1, alignment: bw 1, minfrac: 0.2, mzwid: 0.25, minsamp:
1, max: 500, statistics: statistical test: t-test. All chromatograms were simultaneously
analyzed with identical settings. Selection of the most informative variables (m/z) was
based on statistical criteria (p-value < 0.01, fold change > 2, m/z < 140, Rt < 14.00 min for
Ca+ vs. HC; p-value < 0.05, fold change > 1.1, m/z < 140, Rt < 14.00 min for Ca+ vs. Ca−)
of differentiated peak intensity between patients and controls.

4.4. Identification of Candidate Features and Raw Data Reprocessing

All features identified as differentiated between population groups with the XCMS
analysis were searched for in the raw chromatograms and the corresponding peaks were
identified. The mass spectrum of the identified peaks was studied in comparison with
the National Institute of Standards and Technology (NIST) spectrometric library. Peaks of
compounds corresponding to technical interferences (siloxanes, Tedlar® bag compounds)
were excluded from further analysis. Extracted ion chromatograms were obtained for the
ions identified as significantly differentiated between population subgroups by XCMS anal-
ysis, and were reprocessed by calculation of the areas of the chromatographic peaks in SIM
mode using Thermo Xcalibur™ software. The most discriminatory features were assigned
based on mass spectral similarities to the NIST 2011 mass spectral library. Compounds
were categorized as “probable” (probability > 75%), “possible” (probability 50–75%) and
unknown (probability < 50%). To further confirm the identification of compounds, re-
tention characteristics were examined. Retention times were simulated by using the Pro
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EZGC Chromatogram Modeler (Restek Corporation, Bellefonte, PA, USA), introducing an
equivalent chromatographic column and an identical temperature program. Simulated
RTs were compared to actual RTs for substances contained in the Restek database. Reten-
tion indices of these compounds were retrieved from the NIST webbook and related to
a fully non-polar column (100% polydimethylsiloxane). Moreover, retention indices for
each compound were experimentally determined. SAK-100-1 and SMA-200-1 (Agilent)
analytical standards with C5 to C12 alkanes were used to calculate the retention indices
from the unknown compounds. Experimental retention indices of these compounds were
calculated according to the following formula:

I = 100 [n + (ti − tn)/(tn+1 − tn)]

I: retention index
n: number of carbons of heading n-alkane peak i
ti: retention time of specific compound i (minutes)
tn, tn+1: retention times of heading and trailing n-alkanes

Normalization of chromatographic peak areas was performed with an external stan-
dard, by dividing instrument response by the geometric mean peak areas of three monoaro-
matic compounds (benzene, toluene and ethyl benzene) of a standard mixture (≈20 ng/L
air each) analyzed on the same day.

4.5. Machine Learning Methods

The machine learning analyses were performed with Waikato Environment for Knowl-
edge Analysis (Weka). For each comparison, group 1 vs. group 2 or cases vs. controls were
analyzed using naive Bayes, logistic regression and random forest methods, with 10-fold
cross-validation. However, random forests consistently outperformed the other algorithms,
therefore, all results are shown for this specific type of algorithm. Feature selection within
the appropriate Weka module was also performed, in order to detect subsets of informative
metabolites that could more efficiently separate the groups from each other. In particular,
feature selection was performed in two steps with a wrapper that evaluates various subsets
of the features (WrapperSubsetEval), using the Best_First method in order to maximize the
performance of the random forest, based on the metric of the area under the curve (AUC).
In the first step, the wrapper functions in a feature selection mode that performs 10-fold
cross-validation. The output of this first feature selection step assesses how many times a
feature has been selected in the 10-fold cross-validations. The features that are selected in at
least 50% of the cross-validations form another subset that is fed into the second step. Thus,
we repeat (in the second step) the feature selection, by starting with the abovementioned
informative subset, and this time the wrapper runs in a feature selection mode that uses
the full training set and selects only a certain final subset of features.
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Abstract: Volatile organic compounds (VOCs) have been assessed in breath samples as possible
indicators of diseases. The present study aimed to quantify 29 VOCs (previously reported as potential
biomarkers of lung diseases) in breath samples collected from controls and individuals with lung
cancer, chronic obstructive pulmonary disease and asthma. Besides that, global VOC profiles were
investigated. A needle trap device (NTD) was used as pre-concentration technique, associated to gas
chromatography-mass spectrometry (GC-MS) analysis. Univariate and multivariate approaches were
applied to assess VOC distributions according to the studied diseases. Limits of quantitation ranged
from 0.003 to 6.21 ppbv and calculated relative standard deviations did not exceed 10%. At least 15 of
the quantified targets presented themselves as discriminating features. A random forest (RF) method
was performed in order to classify enrolled conditions according to VOCs’ latent patterns, considering
VOCs responses in global profiles. The developed model was based on 12 discriminating features
and provided overall balanced accuracy of 85.7%. Ultimately, multinomial logistic regression (MLR)
analysis was conducted using the concentration of the nine most discriminative targets (2-propanol,
3-methylpentane, (E)-ocimene, limonene, m-cymene, benzonitrile, undecane, terpineol, phenol) as
input and provided an average overall accuracy of 95.5% for multiclass prediction.

Keywords: VOCs; NTD-GC-MS; breath; lung cancer; COPD; asthma; biomarkers

1. Introduction

Respiratory diseases are conditions which affect the airways and other structures of
the lungs and they are represented by lung cancer, asthma, tuberculosis, chronic obstructive
pulmonary disease (COPD) and pneumonia, being the leading causes of mortality and
morbidity globally. Smoking or exposure to secondhand smoke is the main risk factor
associated to most of respiratory diseases, with current smokers 11 times more likely to
develop lung cancer compared to non-smokers [1]. Globally, respiratory diseases affect
1 billion people and account for 7% of all deaths worldwide. Nevertheless, even considering
that lung cancer is one of the leading causes of death worldwide, COPD and asthma are
predominant lung diseases that represent a burden on society in terms of health care
costs [2]. The diagnosis of asthma or COPD is usually made by non-invasive techniques
based on spirometry, however lung cancer is often diagnosed in late stages, due to the lack
of noticeable clinical manifestations, or because these can be easily associated with other
symptoms. This fact may reduce the chance of applying a timely and effective treatment.
Currently used diagnostic methods for respiratory diseases includes physical examination
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followed by a set of chemical, imaging, endoscopic and immunological procedures [3].
Because different lung diseases are characterized by inflammation and other correspondent
symptoms, direct assessment of airways may be applied, by using invasive procedures
such as: computer tomography, bronchoscopy, bronchoalveolar lavage or biopsy. These are
costly, time consuming and/or invasive procedures [2]. Consequently, a simple, reliable,
low-cost and non-invasive test, able to achieve the diagnosis in real time (minutes up to
hours), using a mere sample of exhaled breath in highly desired.

Therefore, fast detection and characterization of volatile organic compounds (VOCs)
emitted from different biological matrices (breath, sweat, saliva, plasma, tissues, exudates,
urine, etc.) as a tool for diagnosis was approached [4–11]. Breath tests are minimally inva-
sive procedures, which are more easily accepted by the patients. An exhaled breath sample
consists of VOCs and the breath aerosol [12]. Breath consists of almost 3000 compounds
which are present in different combinations and quantities. Consequently, not only specific
biomarkers, but the global VOC profile can be potentially associated to a characteristic
fingerprint for each disease [2]. Exhaled breath is largely composed of nitrogen, oxygen,
carbon dioxide, water, and inert gases. Trace components—volatile substances that are
generated in the body or absorbed from the environment—present in the nmol/L–pmol/L
(ppb volume—ppt volume) range make up the rest of the breath. The endogenous VOCs
are generated by the cellular biochemical processes of the body, hence VOCs existent
in human breath can reflect endogenous metabolic processes which occur in the tissues.
VOCs-patterns in exhaled breath have been associated with various respiratory diseases
such as cancer, asthma, COPD, cystic fibrosis, tuberculosis, etc. [13,14]. Breath samples are
probably the most adequate to reach the rapid diagnosis of respiratory conditions, once
substances from surrounding blood vessels and tissue can be exchanged in the alveoli and
be available in the exhaled air. A large number of VOCs has been reported in scientific
literature as markers of various diseases, as well as bacterial infections. These compounds
can be divided into different chemical groups [15–17]: saturated hydrocarbons (stable
end products of lipid peroxidation) and unsaturated hydrocarbons (e.g., from mevalonic
pathway of cholesterol synthesis) [6,16], alcohols (which can be addressed as oxidized prod-
ucts of hydrocarbons and their precursors) [16], aldehydes (associated with inflammatory
processes, resulting from lipid peroxidation) [5,18], ketones (products of fatty acid decar-
boxylation processes in the liver, associated to a diet rich in proteins and fat) [16], aromatic
VOC–typically related to exogenous sources such as tobacco smoke and pollution [19],
sulfur-containing compounds generated by incomplete metabolism of methionine in the
transamination pathway and also associated with bacterial activity [20,21]), and nitrogen-
containing compounds (such as ammonia, dimethylamine and trimethylamine, derived
e.g., when conversion to urea is limited due to an impairment of liver function) [17].

Nowadays, gas chromatography–mass spectrometry (GC-MS) is considered a gold
standard for VOC analysis [22]. Solid phase microextraction (SPME) or sorption tubes
followed by thermal desorption are the most frequently used pre-concentration techniques
in breath analyses. A prominent sampling tool is the needle trap device (NTD), which
consists of a sorbent material packed inside a needle, working as an extraction trap [23].
This solventless technique provides exhaustive extraction and has potential for laboratory
automation [24,25]. In the present work, NTD was used as extraction technique, followed
by GC-MS analysis. VOCs were analyzed in breath samples belonging to healthy controls
and patients with lung cancer, asthma and COPD, in an attempt to develop a classifi-
cation model able to discriminate between these lung diseases, which have in common
inflammatory processes in the lungs. In this sense, besides the assessment of global VOC
profiles, 29 target compounds previously reported as potential biomarkers of the referred
respiratory diseases were also investigated and quantified in breath samples.

The present study describes the non-invasive assessment of asthma, COPD and lung
cancer, based on breath analysis of VOCs. Once all of these are lung diseases involving
inflammatory mechanisms, the applied design of data analysis intended to find specific
VOC patterns able to provide discrimination between these illnesses. The comparison
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between self-annotated discriminating features and compounds reported by literature as
indicators of lung diseases represents an original approach for the validation of candidate
biomarkers. The outline of the work presents the application of NTD for the determination
of VOCs in breath. The found results aim to support the implementation of breath analysis
to the clinical practice, as an accurate and reliable diagnostic tool.

2. Results and Discussion

2.1. Calibration Method and Quantitation of Analytes

Table S1 presents information regarding calibration method, while Table 1 displays
data concerning the quantitation of analytes in breath samples. Obtained limits of quan-
titation (LOQs) ranged from 0.003 (3-methylpentane, 2-butanone, toluene, isododecane,
1,2,4-trimethylbenzene, (E)-ocimene, limonene, m-cymene and benzonitrile) to 6.21 ppbv
(tridecane). Higher limits were obtained for heavier and more polar analytes, which also
displayed wider linearity ranges. Lower limits were associated to compounds with higher
volatility, a factor that seemed to contribute for their more efficient recovery, besides their
expected greater stability in samples. Relative standard deviation (RSD%) did not exceed
10%, demonstrating that the proposed method provided adequate reproducibility. In gen-
eral, suitability of NTD for preconcentration of analytes in gas mixtures could be inferred.
Among the targets, isoprene and 1-propanol were found in each breath sample. Styrene, de-
cane and phenol were observed in lowest frequency of appearance. Ethanol, isoprene and
acetoin were the targets which occurred in higher concentrations in all sample’s cohorts.
Carry-over effect was not observed, indicating that there is no influence of previously
analyzed samples on the current ones.

Table 1. Data regarding quantitation of the targets in breath samples (H = healthy, CA = lung cancer, COPD = chronic
obstructive pulmonary disease, AS = asthma, SD = standard deviation, nd = not detected, (−) = SD not calculated because
analyte was quantified just in a single sample, nd = not detected).

Analyte
Average Concentration (ppbv) Frequency in Samples (%)

H (SD) CA (SD) COPD (SD) AS (SD) Total H CA COPD AS

2-Methylbutane 1.52 (1.32) 3.73 (6.15) 1.63 (0.50) 1.72 (1.85) 37.5 25.0 50.0 33.3 50.0
Pentane 1.66 (0.67) 2.21 (1.09) 1.87 (0.53) 2.11 (2.26) 51.8 45.0 62.5 41.7 50.0
Ethanol 70.60 (95.14) 179.08 (132.87) 218.64 (216.1) 100.89 (108.96) 98.2 95.0 93.8 100.0 100.0
Isoprene 32.85 (34.01) 34.19 (30.08) 34.61 (20.9) 48.70 (16.95) 100.0 95.0 100.0 100.0 100.0

2-Propanol 10.55 (9.30) 230.66 (190.62) 258.37 (255.01) 123.42 (67.37) 85.7 55.0 100.0 100.0 100.0
2-Methylpentane 1.24 (0.30) 3.44 (2.41) 2.61 (2.07) 4.59 (5.57) 55.4 25.0 75.0 75.0 50.0
3-Methylpentane 0.24 (0.12) 0.93 (0.72) 1.27 (0.49) 1.07 (1.25) 35.7 10.0 68.8 33.3 25.0

1-Propanol 14.59 (14.63) 34.10 (37.73) 28.15 (38.54) 9.94 (5.77) 100.0 95.0 100.0 100.0 100.0
Methylcyclopentane 1.80 (0.53) 2.49 (1.11) 2.20 (0.47) 2.20 (0.27) 87.5 75.0 93.8 83.3 100.0

2-Butanone 1.74 (1.15) 1.93 (1.30) 1.45 (1.00) 1.26 (0.80) 80.4 55.0 100.0 83.3 87.5
Benzene 1.13 (0.83) 0.29 (−) 0.57 (−) 0.60 (0.09) 16.1 25.0 6.3 8.3 25.0
Acetoin 44.02 (19.8) 60.39 (51.63) 55.22 (28.95) 41.72 (17.93) 53.6 45.0 56.3 50.0 75.0
Toluene 6.23 (8.38) 0.98 (1.40) 0.63 (0.42) 0.89 (0.60) 55.4 40.0 75.0 58.3 50.0

Ethylbenzene 0.650 (0.65) 2.73 (2.50) 0.34 (0.36) 1.41 (−) 17.9 5.0 25.0 33.3 12.5
p-Xylene 1.15 (0.92) 1.62 (1.86) 1.40 (1.11) 1.97 (0.95) 41.1 25.0 50.0 58.3 37.5
Styrene 0.27 (0.26) 3.78 (6.26) 1.61 (1.30) 0.73 (0.59) 53.6 5.0 81.3 75.0 87.5
Decane nd (−) nd (−) 0.23 (−) nd (−) 1.8 0.0 0.0 8.3 0.0

6-Methyl-2-heptanone 1.65 (−) 4.42 (2.85) 1.72 (−) 6.46 (−) 12.5 5.0 25.0 8.3 12.5
Isododecane 0.69 (0.49) 1.59 (1.57) 0.98 (0.48) 0.52 (0.35) 76.8 45.0 93.8 83.3 100.0

1,2,4-Trimethylbenzene 0.83 (0.61) 2.55 (1.94) 2.60 (2.46) 1.42 (0.76) 82.1 50.0 93.8 100.0 100.0
(E)-Ocimene 1.16 (0.80) 4.64 (4.03) 2.95 (1.99) 2.98 (1.54) 82.1 50.0 100.0 91.7 100.0

Limonene 1.57 (1.20) 1.87 (1.80) 1.71 (1.75) 5.05 (2.15) 89.3 75.0 93.8 91.7 100.0
m-Cymene 0.61 (0.21) 0.41 (0.35) 0.38 (0.23) 0.32 (0.21) 46.4 10.0 62.5 50.0 87.5

Benzonitrile 1.44 (1.23) 3.57 (3.95) 4.57 (2.64) 2.12 (1.67) 78.6 50.0 93.8 91.7 87.5
Phenol nd (−) 52.78 (47.13) 75.02 (72.16) nd (−) 16.1 0.0 37.5 25.0 0.0

Undecane 0.80 (0.11) 3.83 (3.09) 2.44 (1.38) 1.78 (0.30) 41.1 20.0 75.0 41.7 25.0
Dodecane 5.18 (0.72) 10.58 (8.66) 9.51 (7.18) 6.27 (3.19) 73.2 45.0 87.5 91.7 87.5
Terpineol 3.57 (0.30) 17.36 (21.72) 26.53 (36.34) 6.87 (6.38) 71.4 15.0 100.0 100.0 100.0
Tridecane 3.43 (1.69) 42.16 (38.89) 28.36 (21.59) 8.59 (7.87) 51.8 10.0 75.0 75.0 75.0
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2.2. VOCs Detected in Breath

Regarding the obtained VOC global profiles, a total number of 112 different VOCs
were detected. The VOCs most frequently observed in the samples were hydrocarbons,
alcohols, aldehydes and ketones. A graph displaying the distribution of VOCs according to
the functional groups in profiles belonging to the different studied groups is presented in
Figure 1a. In general, the number of compounds belonging to each of the chemical classes
seems to be proportional when evaluating the different studied conditions, however, some
particularities of the qualitative composition of each group of profiles can be evidenced.
Lung cancer and COPD profiles appear to be associated to a greater variety of compounds
(103 and 95 detected VOCs, respectively), while asthma profiles are composed by smaller
number of compounds (84 detected VOCs). An increased number of hydrocarbons is
observed in the VOC composition in breath of lung cancer patients. Moreover, samples
from patients with lung cancer and COPD appear related to a greater variety of aldehydes
(12 and 11, respectively, against 9 found in healthy). This observation can be due to the
fact that hydrocarbons and aldehydes are frequently reported as the most characteristic
products of oxidative stress induced by inflammatory process [26–28].

A matrix displaying number and percentage of overlapping VOCs in the acquired
profiles is presented in Figure 1b. By the content of coincident compounds, the level of
similarity regarding the qualitative composition of breath samples can be inferred. In this
sense, lung cancer and COPD profiles, display the greater similarity between each other,
followed by the VOC profile of lung cancer and healthy individuals, while asthma breath
samples present to be the most distinct in terms of composition.

Figure 1. (a) VOCs distribution according to main chemical classes, in profiles belonging to the
different studied groups, the contoured box displays the total number of compounds found in
each group; (b) Similarity matrix displaying number and percentage of overlapping VOCs in the
acquired profiles.
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2.3. Differential Distribution of VOCs

Principal component analysis (PCA) was performed intending to identify relationships
and existing patterns within datasets. Peak area data regarding the global VOC profiles
was used as input for generation of the score plot depicted in Figure 2a, in which 78.04%
of variance was represented by the two first principal components. When using as input
the calculated concentration values of the 29 preselected analytes in samples, the plot
presented in Figure 2b is produced. In this case, 79.72% of total variance was described
by the components 1 and 2. In both cases, around 80% of the total variance can be
assigned to the observed distribution. Although both score plots indicate a discrimination
between control cases and remaining samples, a clearer grouping can be observed when
considering the global profile, once in Figure 1b control samples appear confined to an
isolated cluster. Still, in both situations, the lack of a distinct grouping according to each
of the investigated conditions demonstrates that other factors play a relevant role in the
observed pattern of distribution of VOCs. This can be mainly related to the variability
in the nature and extension of the involved pathophysiological mechanisms, inherent to
the different lung diseases. Therefore, the usage of supervised approaches is essential to
achieve the classification of samples in agreement with the related diagnosis.

Figure 2. PCA plots using as input (a) VOCs’ responses in global profile analysis, (b) responses of
the targets quantified in the samples (triangles = control samples; squares = positive samples).
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A volcano plot was built in order to present found discriminating features when
considering obtained global VOCs profiles. In Figure 3a the overall trend of the detected
VOCs (variables) is graphically represented. The variables located above the dashed line
refer to the compounds which displayed greater statistically relevant changes in their
responses when compared to the control group. The variables located along the y-axis
correspond to VOCs absent in the healthy group and detected solely in positive samples. In
the left part of the plot are displayed compounds with decreased responses in the positive
samples, while in the right side of the plot are displayed VOCs presenting an increased
response in samples of diseased. The VOCs located towards the top of the graph expressed
the greatest statistical significance. The names of the most discriminative components are
exhibited in the plot.

Figure 3b presents a bar graph showing the distribution of all compounds classified
as discriminant features, considering as criteria p ≤ 0.05. Most of the compounds which
displayed significant alteration in their responses when compared to those presented in the
healthy group belong to the class of hydrocarbons, followed by alcohols and aldehydes. In
lung cancer profiles, a greater number of discriminating VOCs was verified (41 compounds).
For asthma and COPD samples, 26 and 24 altered VOCs were indicated, respectively. As
presented in Figure 1b, around 92, 88 and 74% of the compounds observed in lung cancer,
COPD and asthma samples, respectively, were shown to be conserved in the healthy group
profiles. This indicates that the differential abundance of VOCs in samples is determinant to
discriminate between samples’ group, once the similarity between the qualitative profiles
belonging to the four studied groups is not so divergent. Such observation highlights
the importance of validated quantitative assays’ application regarding breath samples for
diagnosis purposes.

Few compounds presented a more expressive incidence within the group of ac-
tive smokers’ individuals, thus possibly being ascribed as products of cigarette smoke.
1,3-Cyclopentadiene was identified solely in this group, in 40% of the samples; 2,5-
Dimethylfuran was detected in 80% of samples from active smokers, which represented
around 73% of its total incidence across samples. Other substances commonly related to
tobacco smoke composition, such as benzene and toluene [29], did not present a specific
distribution within samples of smokers, probably because these can be originated from
other various sources.

With respect to the VOCs found altered, acetonitrile is typically present in cigarette
smoke, although also present in automobile exhaust and other anthropogenic emissions [30].
Considering that most of the enrolled subjects were not smokers, differentiated levels of this
substance would not be expected. However, together with the decreasing trend observed
for p-xylene, the reduction in the abundances of such compounds in positive group can be
an indicative of diminished ability of elimination of exogenous through exhaled air, or a
consequence of the augmented activity of cytochrome P450 isoforms documented in lung
cancer [31], which could be responsible for the rapid metabolization of inhaled compounds
in the lungs.

The two main lung cancer types are small-cell lung carcinoma (SCLC) and non-small-
cell lung carcinoma (NSCLC). Two hypothesis involve SCLC histogenesis: the first assumes
that SCLC derives from cells of the diffuse endocrine system, i.e., the amine precursor
uptake decarboxylation (APUD)-system, the second suggests this type of lung cancer
originates from the endodermbronchial lining [32,33]. Adenocarcinoma (NSCLC subtype)
arises from glandular cells of bronchial mucosa, whereas squamous lung cancer origins
from the modified bronchial epithelial cells and adenosquamous carcinoma contains two
types of cells: squamous cells (thin, flat cells that line certain organs) and gland-like
cells. Finally, large cell (undifferentiated) carcinoma originates from epithelial cells of the
lung [32]. The origin and nature of the malignant cells is crucial for different treatment
strategies. Tumor tissue releases different protein biomarkers according to subtype of
cancer. The same concerns different types or amounts of certain VOCs secreted by various
malignant part of cell. The oxidation of fatty acids present in the cell membranes is pointed
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out as the source of VOCs associated to oxidative stress condition. The mentioned process
is initiated by the reactive oxygen species (ROS) which are found in increased levels in
inflamed tissues [17,28].

≤

Figure 3. (a) Volcano plot displaying the most discriminating features, in terms of fold change (x-axis) and statistical
relevance (y-axis), in which the dashed line represents the point of y-axis in which p = 0.01; (b) Graph of distribution of
number of all compounds assigned as discriminating features, according to disease and chemical class (significance criteria:
p ≤ 0.05).
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Due to the ROS activity, mechanism chain reactions occur, with radicals tending to be
stabilized through alpha and beta scissions [34], leading to the formation of a variety of
shorter chain fatty acids, alkanes, alkenes, alcohols and aldehydes. In addition, formed
compounds can be subjected to other reactions, aiming their transformation into smaller
and more polar molecules [35]. Cancer cells are characterized by their enhanced metabolism
and altered functions in several biochemical pathways [36]. Therefore, metabolite profile
consisting of a greater variety of compounds may be expected. Hexane can be possibly
formed during the oxidation of oleic acid [34], while can be addressed as an exogenous
substance as well. Hexane showed decreased abundance in cancer and COPD samples.
This fact can be explained by three hypotheses: impaired excretion through exhalation [37],
enhanced conversion of the specie into oxidized forms [38] and favoring of alternative
mechanism, which gives rise to different products, during lipid oxidation associated to
oxidative stress particular to the referred conditions.

1-Pentanol can be interpreted as a pentane oxidation product, caused by cytochrome
P450, and recognized as a metabolite of reactive oxygen species reactions with omega-6 fatty
acids [26]. Methyl ketones such as 2-dodecanone can be formed by the decarboxylation
of β-keto acids during the metabolism of fatty acids [39]. Nonanal can be also formed by
different mechanisms during ROS attack on oleic acid from cell membranes [34]. Medium-
chain branched alkanes, such as 2-methyldecane and 4-methyloctane, were pointed out by
previous works as oxidative stress indicators [40,41]. However, their generation by human
organism due to the oxidation of lipids is questionable, as cell membranes contain only
linear chain lipids [26].

Branched alkanes can be originated from microbial lipids, mostly produced in the fatty
acid pathway of bacteria, by using amino acids as precursor molecules which are submitted
to elongation in this biochemical path [42,43]. Considering this, the occurrence of methy-
lated branched alkanes in breath could be connected with bacterial activity. Alternatively,
these could be products of transformation/degradation of prenyl molecules in organism, a
mechanism that also remains undescribed. Aromatic species, such as p-xylene (decreased
in COPD) and 1,2,4-trimethylbenzene (increased in COPD), are frequently addressed as
pollutants, although also possibly formed by bacterial shikimate and related pathways [44].

Regarding the 29 compounds belonging the set of selected targets, 15 of them pre-
sented themselves as discriminating features (p < 0.05) when assessing solely controls
against positive samples, all of them displaying increased concentration in the positive
group. They were 2-propanol, 2-methylpentane, 3-methylpentane, 1-propanol, 2-butanone,
styrene, isododecane, 1,2,4-trimethylbenzene, (E)-ocimene, m-cymene, phenol, undecane,
dodecane, terpineol and tridecane. However, as demonstrated in the next section, com-
pounds other than these displayed usefulness in the characterization of studied groups,
presenting themselves as discriminating variables related to disease type. A combination
of mechanisms involved in carcinogenesis, inflammatory processes and microbiota activity–
which develop important role in pathogenesis of several diseases, may play a part in the
alterations observed for certain compounds in breath samples.

The propionic acid formed during microbial fermentation and the propionyl-CoA gen-
erated during amino acids degradation enters in the propanoate metabolism, which takes
place in the mitochondria and comprehend a series of reactions coupled with other path-
ways related to cell energetics. In microorganisms, 1-propanol is a product of propanoyl-
CoA transformation [45], while 2-propanol can be formed by the reduction of acetone
produced during the synthesis of ketone bodies [46]. 2-Butanone is a secondary ketone,
therefore its origin can be associated to the β-oxidation of fatty acids. The acetyl-CoA
units generated in this process fuel the citric acid cycle, supplying energy generation [47].
Terpenoids are very diverse natural products synthetized by plants, but also by bacteria.
These metabolites are associated to the mevalonate and deoxyxylulose phosphate path-
ways [48,49]. Although their biosynthesis in human so far remain unknown, studies have
reported terpenoid derivatives as potential cancer indicators. Considering this, increased
concentration of compounds such as (E)-ocimene, m-cymene and terpineol can either be
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a consequence of deficient metabolic function impairing proper elimination of these sub-
stances coming from diet [50], an indicative of specific bacterial activity, or even a product
of transformation of isoprenoids derivatives due to the dysregulated mevalonate pathway
in human during carcinogenesis [51].

Isododecane is known as a synthetic chemical with several applications in the indus-
try [52], without any identified biosynthetic pathway so far. Styrene is a constituent of
polymers, nevertheless, there is evidence that some microorganisms can produce styrene
using phenylalanine as precursor molecule [53]. On the other hand, phenol is often reported
as product of bacterial catabolism of aromatic amino acid species previously documented
as elevated in gastroesophageal neoplasms [54].

Their formation of the n-alkanes undecane, dodecane and tridecane can be related to
the oxidation of lipids, more precisely, a formed alkoxyl radical undergoes scission, gener-
ating an alkyl radical which abstracts a hydrogen atom, turning into a stable alkane [17,26].
2-Methylpentane and 3-methylpentane are other branched species possibly derive from
the oxidation of branched chain fatty acids generated by bacteria.

2.4. Diagnosis Prediction–Global Profiles

Most of the studies comprising the detection of diseases based on VOC analysis in
biological samples compare paired data from healthy and diseased groups. Many of the
compounds addressed as candidate biomarkers by literature are explained as produced
by oxidative stress–a process promoted by typical inflammatory immune responses and
thus non-specific. In this sense, illnesses sharing common etiological and pathological
processes may play a part as confounding factors when a specific diagnosis is intended.
For this reason, the present and following sections of the manuscript were dedicated to the
development of statistical models able to identify and discriminate specific VOC patterns,
allowing simultaneous differentiation of the studied lung diseases.

A random forest (RF) analysis was conducted on global profiles data, aiming to classify
obtained VOC fingerprints into the four investigated categories. Variance importance
was assessed based on the mean decrease Gini when one of the questioned variables is
removed from a preliminary RF model. Gini impurity can be interpreted as the chance
of a case sampled randomly to be incorrectly classified in relation to a given class, thus
being related to the purity of cases within a tree node [55]. Therefore, greater decreases
in this measurement indicate greater importance of a given variable. The resulting plot
is presented in Figure 4a, the compounds are ranked from the most essential to those
less relevant for the obtaining of homogenous classes. The 12 most important variables
were assigned to compose the RF final model, the selected compounds appear depicted
as the gray diamonds, in the upper part of the graph. The intention was to obtain the
greater model overall accuracy as possible, including a minimum number of features.
Predict probabilities of a case of the validation set to belong to a class were provided by RF
modeling. The receiver operating characteristic (ROC) curves presenting the ability of the
model to predict a certain condition are showed in Figure 4b, information on parameters
regarding classification performance are presented in Table 2. It can be observed that class
recognition was performed with at least 93% of sensitivity and 87.5% of specificity for lung
cancer, asthma and healthy groups. Regarding the later mentioned groups, prediction with
accuracy above 87% was achieved. The lower prediction capability obtained in case of
COPD (67%). An exemplary decision tree, from the 1000 generated during modeling, is
presented in Figure 4c.
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Figure 4. (a) Variable importance plot in terms of mean decrease Gini (node purity), obtained in the
first training of RF model. Diamonds refer to VOCs selected for generation of the final classificatory
model; (b) ROC curves based on RF’s final model output regarding the test set, using a panel of
12 VOCs; (c) Example decision tree produced by RF analysis, in which obtained accuracy was 81%
(AS = asthma, CA = lung cancer, COPD = chronic obstructive pulmonary disease, H = healthy).

Table 2. RF model performance (AUC = area under the curve, CI = confidence interval).

Statistics by Class Sensitivity Specificity AUC Balanced Accuracy

Asthma 75.0% 100% 0.872 87.5%
Lung cancer 93.8% 87.5% 0.956 90.6%

COPD 67.0% 97.7% 0.935 82.2%
Healthy 95.0% 94.5% 0.994 94.7%

RF overall accuracy
(95% CI) 85.7% (73.7–93.6)

2.5. Diagnosis Prediction–Target Analysis

In this section, in accordance with the criteria described in the Material and Meth-
ods section and empiric observations drawn from multinomial logistic regression (MLR)
performance using different set of variables, 2-propanol, 3-methylpentane, (E)-ocimene,
limonene, m-cymene, benzonitrile, undecane, terpineol, phenol were the compounds se-
lected to build the MLR final model. A clearer depiction of variables distribution according
to their importance can be observed in Figure 5. Table 3 presents information regarding the
developed model, which, when applied to the train and test datasets provided 100% and
90.5% of accuracy, respectively (average overall accuracy = 95.3%).
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Figure 5. Plot of −(log 10) of p values when applying Mann-Whitney test for specific classes: (a) lung
cancer, (b) COPD or (c) asthma, against all other conditions. Dashed line represents where p ≤ 0.05.
Variables represented by triangle shape icon were those included in MLR final model.

Table 3. Description of MLR model (AS = asthma, CA = lung cancer, COPD = chronic obstructive pulmonary disease,
SE = standard error).

Condition

Coefficients

Intercept 2-Propanol
3-Methyl-
pentane

(E)-
Ocimene

Limonene m-Cymene Benzonitrile Undecane Terpineol Phenol

AS −557.79 0.56 17.03 50.39 100.40 212.50 −22.69 −88.94 32.33 −12.95
(SE) (42.62) (0.37) (2.55) (2.48) (10.34) (11.52) (1.32) (3.64) (1.31) (5.31)
CA −127.12 0.61 −129.32 32.92 32.33 31.11 −96.07 26.50 32.81 −1.89
(SE) (29.25) (0.38) (17.43) (8.11) (9.90) (6.47) (16.91) (11.17) (8.40) (0.86)

COPD −23.49 0.49 −269.07 −64.27 11.09 −72.04 −7.72 −111.52 37.91 1.73
(SE) (3.35) (0.83) (6.92) (8.57) (3.39) (0.66) (1.29) (4.22) (8.18) (0.65)

In MLR, coefficients can be multiplied by the quantitative inputs for the calculation of
probabilities of a case to belong to a specific condition. Equation (1) presents the model
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regression equation, where ln[P/(1 − P)] represents the log-odds pertinent to a specific
disease, β0 is the intercept and β1 . . . k are the coefficients provided by the MLR model,
referring to the variables X (in the case, the concentration of the selected targets). A case
for which the calculated probabilities are greater than 50%, can be assigned as belonging to
that class.

ln[P/(1 − P)] = β 0 + β 1 · X 1 + . . . + β k · X k (1)

The numerical coefficients provided by MLR can be interpreted as weights, or the
contribution of these variables to the designated classes. Positive coefficients are related to
compounds with increased response when comparing to the reference class (“Healthy”),
while negative coefficients are associated to targets which were present in lower concentra-
tions in positive samples. In a closer interpretation, the coefficients express multinomial
log-odds. For example, assuming that all other variables remain constant, an increase of
one unit in the concentration of 2-propanol multiplies the odds of a sample belonging
to the asthma group instead of healthy group by 0.56. On the other hand, an increase
in one unit of (E)-ocimene concentration in breath implies the log-odds of COPD to de-
crease by 64.27, in an assumption that the remaining variables are kept constant. Con-
sidering this, increased levels of limonene and m-cymene are characteristic from samples
of asthma patients, while increased level of undecane and decreased concentrations of
benzonitrile are observed for breath of individual with lung cancer; Moreover, greater
concentrations of phenol and lower concentrations of m-cymene are particularly observed
in samples from COPD patients. Values fitted for the train set and predictions performed
by MLR method solely for the validation set were used as input to build ROC curves
(Figures 6a–d and 6e, respectively). Values of area under the curve (AUC) presented in
Figure 6a–d represent the probability of samples belonging to a given group to be classified
as the state condition. For each class specified in the model, AUC was 1.0, meaning that
100% of sensitivity and specificity was obtained. On the other hand, cases not assigned
as the state variable provided AUC ≤ 0.5 (curves below random guessing line). When
considering the performance of the model on the test data, an overall accuracy of 91%
was obtained, resulting in an average accuracy of 95.5% when both evaluated sets are
considered. Detailed information regarding MLR performance is presented in Table 4.

Figure 6. ROC curves generated from fitted values (train set) created by MLR model, labelling (a)
healthy, (b) lung cancer, (c) COPD and (d) asthma as the state variables; (e) ROC curves generated
from predictions computed by the MLR model for the test set. Colored numerals refer to values of
AUC obtained for each depicted curve.
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Table 4. MLR model performance (AUC = area under the curve, CI = confidence interval).

Statistics by Class Sensitivity Specificity AUC Balanced Accuracy

Asthma 68.0% 100% 0.700 83.4%
Lung cancer 83.4% 93.4% 0.950 88.4%

COPD 100% 94.1% 0.971 97.1%
Healthy 100% 100% 1.000 100%

MLR overall accuracy
(95% CI) 91.0% (70.0–99.0)

3. Materials and Methods

3.1. Apparatus and Standards

The analyses were conducted on a model 6890 A gas chromatograph coupled with
a 5975 Inert XL MSD (Agilent Technologies, Waldbronn, Germany). Inlet temperature
was kept at 260 ◦C and carrier gas (helium 6.0) flow was set at 2.2 mL min−1. A DB-624
capillary column (Agilent) 60 m × 0.32 mm × 1.8 µm was used. The oven temperature
program was as follows: initial temperature was 35 ◦C (held for 3 min), ramped to 50 ◦C,
then 75 ◦C, 200 ◦C and finally 240 ◦C, at rates of 3 ◦C min−1, 5 ◦C min−1, 15 ◦C min−1 and
10 ◦C min−1, respectively. The last temperature was kept for 15 min, resulting in a run time
of 41.33 min. Full scan spectra were acquired within a range of 30–300 m/z, at electron
ionization (EI) of 70 eV. The ion source and transfer line were set to 250 ◦C. Chromatographic
data acquisition was performed using MSD ChemStation E.02.00.493 software (Agilent).
Compounds identification was performed using NIST05 mass spectra library. Each peak
was searched manually, including baseline subtraction and averaging over a peak. Forward
match quality of at least 750/1000 was applied as the lower match threshold.

Needle trap device 700-60d-PXC (PDMS + Carbopack X + Carboxen 1000) was pur-
chased from PAS Technology (Magdala, Germany). The air pump flow was conducted by a
sampling case model SC-B (PAS Technology), designed for controlled air sampling. Prior
first use, NTDs were conditioned in a heated conditioner (PAS Technology) at 300 ◦C under
helium flow (1 bar), for 30 min, in order to remove VOC’s contaminations from sorbent.
One liter-Tedlar bags were obtained from SKC (Eighty Four, PA, USA).

Chemicals used as standards (2-methylbutane, pentane, ethanol, isoprene, 2-propanol,
2-methylpentane, 3-methylpentane, 1-propanol, methylcyclopentane, 2-butanone, ben-
zene, acetoin, toluene, ethylbenzene, p-xylene, styrene, decane, 6-methyl-2-heptanone,
isododecane, 1,2,4-trimethylbenzene, ocimene, D-limonene, m-cymene, benzonitrile, phe-
nol, undecane, dodecane, terpineol and tridecane) were purchased from Sigma-Aldrich
(St. Louis, MO, USA), all with purity > 98%.

3.2. Breath Collection

The study was approved by the local Ethics Committee of Collegium Medicum in
Bydgoszcz (No. KB 621/2016–25.10.2016). Individuals aged over 18, with positive clinical
diagnosis for lung cancer (non-small cell lung cancer, subtype: adenocarcinoma) (n = 16),
chronic obstructive pulmonary disease (n = 12) and asthma (n = 8) were recruited at the
Department of Lung Diseases of the Provincial Polyclinic Hospital in Toruń. Samples
from enrolled cancer patients were obtained before any medical intervention (such as
neoadjuvant therapies or surgery).

Individuals were refrained to eat, drink or smoke 2 h prior sample collection. No
special dietary regimes were applied. All individuals gave informed consent to participa-
tion in the study. The patients completed a questionnaire describing their age, gender and
current smoking status (active smokers, non-smokers). Samples of mixed alveolar breath
gas (alveolar and dead space gas) were collected in Tedlar bags with parallel collection
of ambient air at the same room. Breath samples were obtained after approximately after
10 min rest in the same ambient. Each subject provided breath samples using a disposable
plastic straw connected to the Tedlar bag.
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Control samples (n = 20) were collected from healthy individuals aged over 18 years,
without any history of positive diagnosis for cancer or respiratory diseases, who were not
suffering from any other inflammatory disease. All samples were analyzed within 2–3 h
after collection–this timeframe was considered adequate to avoid the interference of gas
composition losses [56]. In the total, 56 breath samples were collected. Information regard-
ing enrolled volunteers is summarized in Table 5 (details regarding presented significance
probabilities are described in the section “Data analysis and chemometrics approaches”).

Tedlar bags involved in sample collection and calibration experiments were daily
treated with several cycles of cleaning, each consisting of consecutively filling and evacuat-
ing argon 5.0 from the bag. Afterwards, the bags filled with argon were kept in an oven at
65 ◦C. The content bag was tested before breath sampling, by means of GC-MS, in order to
verify the effectiveness of cleaning procedure.

Table 5. Main information regarding volunteers (SD = standard deviation, CA = lung cancer,
COPD = chronic obstructive pulmonary disease, AS = asthma).

Group
Control Positive

p
n % n %

Total 20 36 0.367

Gender
Male 13 65.0% 27 75.0% 0.325

Female 7 35.0% 9 25.0% 0.437

Age (SD) 41.2 (10.1) 66.8 (8.22) 0.078

Smoking status
Active smoker 2 10.0% 5 (2 COPD, 3 CA) 13.9% 0.287

Ex-smoker 2 10.0% 22 (12 CA, 10 COPD) 61.1% 0.083
Non-smoker 16 80.0% 9 (1 CA, 8 AS) 25.0% 0.640

Condition

Lung cancer − 16 44.4%
COPD − 12 33.3% −

Asthma − 8 22.2%

3.3. Selection of Targets

The compounds selected as targets were VOCs previously reported as potential breath
biomarkers of lung cancer, COPD and asthma, in accordance with previous studies on
this theme. A literature search was performed in the electronic database Web of Science
Core Collection (from Clarivate Analytics; Philadelphia, PA, USA), as well as Google
Scholar. The searched terms were: “volatile organic compounds”, “gas chromatography”,
“biomarker”, “lung cancer”, “COPD” and “asthma”, considering a time span from 1999 to
2016. The indexed literature is presented in the Supplementary Material (Table S2) [57–80].

3.4. Calibration Procedure

Gas mixtures of the analytes were prepared by injection of 1 µL of liquid standards
into 1 L glass bulb (Supelco, Bellefonte, PA, USA) previously evacuated. Methanol HPLC
was used for the preparation of 50:50 (v/v) dilution of acetoin, phenol and terpineol,
which are solids at room temperature. After the complete vaporization of the liquids,
the interior of the bulb was equilibrated with nitrogen, generating a gas mixture of the
compounds of interest. Using a gas-tight syringe, different volumes of the stock gas
solution were transferred to Tedlar bags filled with 1 L of nitrogen, in order to obtain the
desired concentrations.

The concentrations were calculated in terms of part per billion per volume of analyte
(ppbv), taking in consideration their molar volume. Six calibration levels were used in
the construction of calibration curves, all analyzed in triplicates. The limit of detection
(LOD) was defined as the lowest detectable concentration of analyte, considering a signal-
to-noise (S/N) ratio of at least 3. LOQ was considered as the lowest concentration of
analyte with imprecision of at least 15%, considering a minimum S/N value equal to 10.
Calibration was conducted by linear regression analysis, using the obtained experimental
data. Linearity was evaluated by the method of least squares and reported as the coefficient
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of determination (R2). Linearity was confirmed for values of R2 above 0.99. Inter-assay
imprecision was assessed from the evaluation of assays in triplicate, these were expressed
in terms of relative standard deviation (RSD%). Reported RSD% values are the average of
imprecision calculated for lower (LOQs), medium (5.17–17.25 ppbv) and high calibration
levels (9.52–3452.0 ppbv)—which concentrations varied depending on the linearity range
displayed by the analyte.

3.5. Sample Extraction

Prior to sample extraction process, NTDs were conditioned for 10 min, at 300 ◦C,
under helium 6.0 flow (Air Products, Warsaw, Poland). Samples in Tedlar bags were drawn
through the air pump, at a flow rate of 30 mL min−1. The fixed volume of 50 mL was
sampled from each bag. Once extraction was complete, the loaded NTD was desorbed into
GC inlet port for 2 min.

3.6. Data Analysis and Chemometrics Approaches

For the building of main dataset, area of peaks belonging to ambient air samples
were subtracted from respective samples obtained from patients. Evaluation of normality
of distributions was conducted using Kolmogorov-Smirnov test. Differences between
volunteers’ ages was assessed by t-test. Principal component analysis was performed in
order to evaluate data patterns regarding sample’s group. Mann-Whitney test was used
to indicate VOCs which presented statistically relevant differences in their responses in
the studied groups, p ≤ 0.05 was considered as the relevance criteria. For the above cited
tests, IBM SPSS Statistics v. 24 software (IBM Corp., Armonk, NY, USA) was used. The
following approaches were executed in R environment, using RStudio console v. 1.1.463
(RStudio, PBC, Boston, MA, USA). Significant differences between the proportions of
volunteers assigned to a certain group were assessed by the test of equal or given propor-
tions, employing the R function “prop.test”. For chemometrics approaches, the packages
“gplots”, “RandomForest”, “caret”, “ROCR” were employed. Random forest is a machine
learning method based on recognition of latent patterns within global VOC profiles. RF
was conducted in order to develop a multiclass model, able to distinguish between studied
conditions. RF input consisted of peak table data converted into binary entries–once this
algorithm was dedicated to non-quantified data, this format of dataset was considered as
more appropriate than to express RF outcome in terms of peak area. Variable importance
plots were assessed for selection of variables to be included in the model. Half of the data
was randomly selected to compose the training set (bootstrap sampling method) and the
remaining data was applied in the validation process. Receiver operating characteristic
curves were built based on calculated probabilities output from RF modeling. Ultimately,
the development of a classificatory model based solely on target compounds was aimed, for
that, variables (targets) were selected according to their discriminative potential between all
four investigated conditions. The criteria comprised most unique targets which presented
higher discriminative relevance when considering a given condition against all others.
MLR was performed using the package “nnet”, employing the data regarding quantitation
of the selected targets in analyzed samples. This multiclass categorical method performs a
linear combination of features, allowing prediction through the calculated probabilities of
an input (set of features’ values) to belong to each class specified in the model. Sixty percent
of the data regarding quantitation of targets in the samples was randomly addressed as
the training set, while the remaining data was addressed to a testing set. “Healthy” group
was defined as the reference class. ROC curves were prepared based on the predictions
computed by developed MLR model for fitted values and test data.

4. Conclusions

The developed NTD-GC-MS method was demonstrated to be suitable for the determi-
nation of target VOCs in breath samples, providing considerably low limits of detection
and quantitation, as well as appropriate reproducibility. From the 29 targets selected from
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literature, more than half of them presented significant differentiated responses among con-
trol and positive groups – found discriminating features were 2-propanol, 2-methylpentane,
3-methylpentane, 1-propanol, 2-butanone, styrene, isododecane, 1,2,4-trimethylbenzene,
(E)-ocimene, m-cymene, phenol, undecane, dodecane, terpineol and tridecane, limonene
and benzonitrile (which proved to serve for further differentiation between diseases). Built
statistical models (using both self-annotated discriminating variables and quantified tar-
gets) aimed to simultaneously classify VOC profiles into lung cancer, COPD or asthma
cases. Both classification models (RF and MLR), provided an overall accuracy above 80%.
The distinction between VOC profiles related to clinical conditions involving concomitant
molecular mechanisms is extremely relevant in order to assess cofounding aspects of breath
analysis diagnosis. In this sense, machine learning tools and other mathematical models can
be useful to identify disease-specific latent patterns. Cross-validated studies, comparing
candidate biomarkers found by different research groups by means of different techniques,
are essential for a future implementation of breath screening tests in a clinical setting.
Such an approach can also enable a focused investigation of the pathways involved in the
modulation of these potential biomarkers, as well as it can contribute to the establishment
of optimized analysis protocols.

Supplementary Materials: The following are available online, Table S1: Data regarding calibration
method of gas mixtures (LOD = limit of detection, LOQ = limit of quantitation, ppbv = part per
billion per volume, R2 = determination coefficient, RSD = relative standard deviation). Table S2:
References which reported the targets selected in the present study as potential biomarker of lung
diseases in breath samples, where: LC–lung cancer; COPD–chronic obstructive pulmonary disease.
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Abstract: The aim of this study was to analyze the exhaled volatile organic compounds (VOCs)
profile, airway microbiome, lung function and exercise performance in congenital diaphragmatic
hernia (CDH) patients compared to healthy age and sex-matched controls. A total of nine patients
(median age 9 years, range 6–13 years) treated for CDH were included. Exhaled VOCs were measured
by GC–MS. Airway microbiome was determined from deep induced sputum by 16S rRNA gene
sequencing. Patients underwent conventional spirometry and exhausting bicycle spiroergometry.
The exhaled VOC profile showed significantly higher levels of cyclohexane and significantly lower
levels of acetone and 2-methylbutane in CDH patients. Microbiome analysis revealed no significant
differences for alpha-diversity, beta-diversity and LefSe analysis. CDH patients had significantly
lower relative abundances of Pasteurellales and Pasteurellaceae. CDH patients exhibited a significantly
reduced Tiffeneau Index. Spiroergometry showed no significant differences. This is the first study to
report the VOCs profile and airway microbiome in patients with CDH. Elevations of cyclohexane
observed in the CDH group have also been reported in cases of lung cancer and pneumonia. CDH
patients had no signs of impaired physical performance capacity, fueling controversial reports in
the literature.

Keywords: CDH; microbiome; VOCs; spiroergometry; outcome

1. Introduction

Congenital diaphragmatic hernia (CDH) is a rare disease occurring with an incidence
of 1:2000–1:5000 live births [1]. CDH is caused by disturbances in the formation of the
diaphragm in the eighth week of gestation, leaving a defect with persistent communication
between the abdominal and thoracic cavity [2]. Typically, this defect is located in the dorsal
aspect of the diaphragm (Bochdalek hernia, 95% of cases, mostly located on the left side).
Ventral hernias (Morgagni hernia) are rarer and typically located on the right side [3].

In fetuses with CDH, abdominal organs herniate into the thorax, subsequently re-
stricting pulmonary development on the affected but also on the contralateral side. Conse-
quently, patients with CDH suffer from pulmonary hypoplasia and vascular malformation
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with thickened muscle layers causing pulmonary hypertension with right ventricular dys-
function and left ventricular hypoplasia, reduced mobility of the diaphragm and impaired
alveolar growth [4,5].

Even after surgical repair, 30–50% of CDH patients show—amongst others—persistent
respiratory morbidity with impaired lung function [6–8] and/or recurrent respiratory
infections [9]. While reduced lung function may be attributed to the congenital defect
with lung hypoplasia and alveolar growth disturbances, the underlying reason for the
recurrent infections may only partly be explained by impaired lung function. However,
alterations of bacterial colonization can be speculated. Over recent decades, scientists
have postulated sterility of the respiratory tract. However, with the advent of DNA based
sequencing methods, microbial colonization of the healthy respiratory tract has been
demonstrated in the last years [10]. This has led to the term “pulmonary microbiome”
describing the collective genome of bacteria, archaea, fungi and viruses inhabiting the
respiratory tract. Overall, there are still very limited data focusing on the pulmonary
microbiome in pediatrics. While there is some evidence of alterations of the pulmonary
microbiome in cases of asthma and cystic fibrosis [11,12], there are currently no data
published concerning CDH patients.

While some studies describe reduced exercise tolerance in addition to impaired lung
function in patients after CDH repair [5,13,14], others report normal values compared
to healthy peers [7,15]. All of these studies rely on exercise performance testing, but do
not look in the depth of the patients’ metabolism. The emerging field of volatile organic
compounds (VOCs) analysis in patients may offer novel insights. Additionally to oxygen,
nitrogen and carbon dioxide, human breath contains several hundred different VOCs [16].
Among others, the VOC profile contains carbohydrates, ketones, aldehydes, cyclic compo-
nents and sulphur- or nitrogen containing compounds [16]. Some of these substances have
been attributed to the metabolic and inflammatory processes of the host [17], others may
also be related to the (pulmonary) microbiome.

Although the analysis of body odors, for instance the fruity smell of ketones in the
breath of diabetic patients, goes back many thousand years in medical history, only re-
cent technical developments have allowed a detailed VOC analysis. For instance, the
concentration of exhaled VOC profiles differs between type I diabetes patients and healthy
children [18], and metabolic adaptation through postprandial hyperglycemia and related
oxidative stress is immediately reflected in exhaled breath VOC concentrations [19]. Breath
VOC profiles may help to understand basic mechanisms and metabolic adaptation accom-
panying progression of chronic kidney disease in pediatric patients at an early stage [20].
Investigations of children with cystic fibrosis have revealed increased levels of pentane
correlating to nutritional status and lung function [21]. While the pulmonary long-term
sequelae of CDH have been described in several reports, examinations of exhaled VOC
profiles of patients after surgical repair of CDH as potential noninvasive disease markers
have not yet been published. Thus, it was the aim of this study to analyze the breath VOC
profile, airway microbiome, lung function and exercise performance of patients after CDH
repair compared to healthy age and sex-matched controls in order to gain more detailed
information about the pathophysiology of this disease.

2. Results

Nine patients following surgical repair of a CDH were recruited for long-term follow-
up examinations consisting of assessment of the exhaled VOC profile, airway microbiome,
lung function and exercise performance. As a control group, nine age and sex-matched
controls were enrolled. The median age at the examination was 9 years (IQR 5). Within
each group, six patients were male and three were female. The median gestational age
of the CDH patients was 39 weeks (IQR 3.8), median birth weight was 3.4 kg (IQR 0.7).
CDH occurred on the left side in five, the right side in three and bilaterally in one patient.
The liver was partially herniated into the thoracic cavity in two patients. CDH patients
were ventilated conventionally for a median of 7.5 days (IQR 17). One patient required
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high frequency oscillation. Three patients were on inhalative nitric oxide because of
pulmonary hypertension.

Surgical repair was performed on median day of life four (IQR 6). Eight patients
underwent direct closure and one underwent a patch repair. There was no recurrence.
In the post-operative medical history two of the nine CDH patients reported recurrent
respiratory infections. Eight of the nine patients with CDH and all nine control patients
reported feeling fit in daily life.

Not all of the patients were eligible for all examinations. Table 1 gives an overview of
the data available for matched pair analysis.

Table 1. Overview of CDH patients and their age and sex-matched healthy controls.

CDH Control Age Gender Muscle Mass Body Fat VOCs
Pulmonary
Microbiome

Spirometry
Before Ex.

Spiroergometry
Spirometry

After Ex.

CDH-1 CDHK-7 12 m X X X X X X X
CDH-2 CDHK-8 9 m X X X X X 01 01
CDH-3 CDHK-6 8 m X X X 01 X 01 01
CDH-4 CDHK-9 13 m X X X X X X X
CDH-5 CDHK-2 9 f X X X X X X X
CDH-6 CDHK-4 12 f X X X X X X X
CDH-7 CDHK-3 6 m 01 X X X X 01 01
CDH-8 CDHK-1 13 m X X X X X X X
CDH-9 CDHK-5 7 f 02 02 X 02 02 02 02

X: Examination performed and valid; 0: Examination of one or both of the matched pairs missing; Ex: Exercise; Underlined: Patients have
been subjected to passive smoke in their familial surroundings; 1: Patient physically unable to perform test/donate sample; 2: Patient
refused to perform test/donate sample. CDH: congenital diaphragmatic hernia; VOC: volatile organic compound.

2.1. Clinical Examination

There were no significant differences for height, body weight, BMI, muscle mass or
body fat between the groups (Table 2).

Table 2. Anthropometric data of the patients in the CDH and control group. Data presented as
medians (IQRs) and the Mann–Whitney U test was performed for group comparison.

Parameter Control Group CDH Group p-Value

Height (cm) 137.0 (39.5) 142.5 (36.5) 0.673
Body weight (kg) 30.0 (28.4) 36.4 (30.5) 0.673

BMI (kg/m2) 16.0 (5.0) 18.0 (4.7) 0.888
Appendicular muscle mass (kg/m2) 5.6 (3.6) 5.3 (2.8) 0.805

Body fat (%) 5.3 (2.8) 6.0 (15.0) 0.442
BMI: Body Mass Index.

2.2. Breath VOC Profile

In the breath samples a total of 67 different VOCs could be identified. Levels of
35 VOCs were not consistently above the limit of quantification (LOQ) and therefore had
to be excluded for further quantitative analysis.

The remaining 32 substances were further processed and used for group comparison.
Heatmap and dendrogram analysis showed different unspecific clusters. Alterations in the
following 20 substances were significantly affected by room air contamination (levels in
room air >20% of exhaled concentration): 1-methylbenzene, 1-propanol, 2,3-butandione,
2-butanone, 2-phenoxyethanol, 3-methyl-2-butanone, α-pinene, benzene, ethanol, ethylben-
zene, hexanal, n-hexane, isopropylalcohol, nonanal, nonanone, octane, pentan, pentanal,
p-xylene and toluene and were thus excluded as potential biomarkers (Supplementary
Figure S1).

Out of the remaining 12 substances, nine substances did not show significant differ-
ences between the groups (Supplementary Figure S2). Significant differences occurred for
2-methylbutane, acetone and cyclohexane. The VOCs 2-methylbutane (p = 0.038) and ace-
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tone (p = 0.002) were significantly decreased and cyclohexane was significantly increased
(p = 0.004) in CDH patients compared to the healthy group (Figure 1).
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Figure 1. Concentrations of selected VOCs in breath samples of control patients and CDH patients (A).
Concentrations of 2-methylbutane (B), acetone (C) and cyclohexane (D) were significantly different
between the two groups; ARA: ambient room air.

2.3. 16S Based Airway Microbiome

The airway microbiome was measured with 16S based analysis of deep induced
sputum samples. Alpha-diversity of the deep induced sputum samples did not differ
significantly between CDH patients and controls (Shannon Index CDH median 6.94 ± IQR
0.577 vs. controls median 6.86 ± IQR 0.414; p = 0.655). Likewise, LefSe analysis over all
hierarchical levels between the two groups did not result in significant different taxa. Beta-
diversity analysis was not significantly different between the two groups (weighted unifrac
p = 0.97, Bray–Curtis p = 0.88) (Figure 2). Analysis of the relative abundances revealed
no statistically significant differences at the phylum, class and genus level between the
two groups studied. On the order and family level, however, the relative abundances
of Pasteurellales (controls median 0.022 ± IQR 0.01 vs. CDH median 0.016 ± IQR 0.01;
p = 0.038) and Pasteurellaceae (controls median 0.022 ± IQR 0.01 vs. CDH median 0.016 ±
IQR 0.01; p = 0.038) were significantly lower in CDH patients.
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Figure 2. Principial coordinate analysis (PCoA) with weighted UniFrac comparison (A) and Bray–
Curtis dissimilarity (B) tests; 95% confidence ellipses are indicated. The results revealed no obvious
clustering of the14 deep induced sputum samples (CDH patients red dots, controls blue dots).
PERMANOVA revealed no significant differences in both tests. Relative abundances of CDH patients
and age and sex-matched controls at the phylum level (C) and genus level (D). Note that only bacteria
with relative abundances of more than 1% are depicted.

2.4. Spirometry

Conventional spirometry was performed before and after exercise testing. CDH pa-
tients showed no differences in their forced vital capacity (FVC) before and after exercise in
comparison to their healthy peers (Figure 3). The Tiffeneau index was significantly lower
in CDH patients before (p = 0.028), but not after exercise (p = 0.063).
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Figure 3. Forced vital capacity (FVC) (A), Tiffeneau Index (B) and forced expiratory volume in
1 s (FEV1) (C) before and after exercise of control patients and CDH patients; ns: not significant;
* p < 0.05.

2.5. Spiroergometry

Bicycle spiroergometry was performed with a sex and body weight dependent proto-
col. There was no statistically significant difference between patients with CDH and their
healthy peers (Table 3).

Table 3. Results of exercise performance testing (exhausting bicycle spiroergometry). Data displayed
as medians (IQRs).

Parameter Control Group CDH Group p-Value

Relative Performance Capacity (%) 118.0 (27.0) 108.0 (33.0) 0.095
VO2max/kg (mL/kg/min) 46.7 (12.3) 42.3 (9.6) 0.222

Pmax/kg (W/kg) 3.4 (1.0) 3.3 (0.8) 0.310
O2 Pulse (mL) 12.1 (7.3) 10.2 (7.6) 1.0

RER 1.2 (0.2) 1.2 (0.1) 0.841
VO2max/kg: Maximum oxygen uptake per kilogram body weight; Pmax/kg: Maximum performance per
kilogram body weight; RER: Respiratory exchange ratio.

3. Discussion

Our study gives a first insight into both the airway microbiome and volatile organic
compounds in breath samples of patients 6 to 13 years following surgical CDH repair
compared to healthy age and sex-matched peers. As a major result, it revealed no significant
differences in the bacterial airway colonization but differences in the VOC profile.

We were not able to find statistically significant differences regarding anthropometric
parameters such as height, body weight, BMI, body fat and muscle mass between the two
groups. This is concordant with the literature describing no evidence for long-term growth
impairment in patients following CDH repair [15].

Regarding the VOC profiles of exhaled breath samples, CDH patients exhibited
significantly decreased levels of acetone and 2-methylbutane, in addition to significantly
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increased levels of cyclohexane. Acetone is formed by decarboxylation of acetoacetate
generated by beta-oxidation of fatty acids and is thus linked to fat metabolism [22]. Under
exercise, acetone levels have been shown to increase to the lactate threshold at about 45%
of maximum exercise followed by a steady decrease. In this regard the acetone peak marks
the switch between fat and carbohydrate metabolism [22]. Type I diabetes and fasting
are medical conditions with increased ketone concentrations in breath and urine. Both
are associated with predominant lipid metabolism. In type I diabetes, a lack of insulin
prevents dextrose from entering the cells leading to impaired carbohydrate metabolism. In
this condition, the body shifts to lipid oxidation as the energy source, resulting in increased
ketone levels. Similarly, lipid oxidation is activated in response to a lack of carbohydrates
under fasting conditions. In our collective, no patient was known to be diabetic. All patients
fasted for 2 h prior to VOC sampling. Therefore, the conditions were similar in both studied
groups. Since no metabolic parameters were determined in this study, possible unknown
co-morbidities cannot be ruled out as reasons for the different acetone levels, especially
as there are no known influences of CDH on carbohydrate or fat metabolism. There is
currently no scientific information about the role of 2-methylbutane in in vivo experiments.
The exact role of this VOC has to be elucidated in future studies. Cyclohexane is an organic
solvent and part of raw oil. None of our participants reported increased exposure to organic
solvents or gasoline vapors. The distribution of patients exposed to passive smoke did
not differ between the groups (compare Table 1). There are no reports focusing on its
origin in humans at present. However, cyclohexane has been mentioned in two studies
in association with pulmonary diseases. First, Oguma et al. described increased levels
of cyclohexane (and xylene) in patients with lung cancer compared to healthy controls
(after ruling out possible confounders such as age, smoking status, gender and pulmonary
function) [23]. Furthermore, the authors described an increase in cyclohexane (and xylene)
levels in breath samples with progressing disease and a decrease in the healing process [23].
A second study revealed increased cyclohexane levels (among other VOCs) in cell cultures
of human lung tissues infected with E. coli, P. aeruginosa and S. aureus [24]. Similarly, the
authors could demonstrate increased cyclohexane levels in rabbits with pneumonia due
to infection with the same pathogens [24]. While xylene showed no significant alterations
in our study, cyclohexane was significantly increased as a possible sign for pulmonary
impairment in CDH patients.

The airway microbiome analysis showed no significant differences of both α- and β-
diversity between CDH and control patients. Regarding patient history, only two of the nine
CDH patients reported recurrent respiratory infections. This low number makes a statistical
comparison unfeasible. Additionally, the infections occurred before enrollment in this trial
and it was therefore impossible to assess the nature of these infections (viral/bacterial).
Taken together, the role of the airway microbiome and its role in a possible pre-disposition
for respiratory infections remains unclear at present. Currently, there are no other reports
in the literature, making comparisons to other patient groups impossible.

Spirometry revealed no significant differences in FVC between CDH and control
patients. Similarly, Turchetta and coworkers reported no significant differences in lung
function testing in CDH patients [25]. In contrast, however, Zaccara et al. and Marven et al.
both have described a significant FVC reduction in CDH patients compared to healthy
controls [15,26]. Regarding airway obstruction, our data confirm the findings of other
authors who also reported a reduced FEV1 or FEV1/FVC in CDH patients [5,13,26].

While some authors have shown that CDH patients feel less fit than their healthy
peers [15,25], the majority of our patients felt physically fit. The bicycle spiroergometry
results underline this subjective impression showing no significant differences between
CDH and control patients. While Marven and colleagues reported no significant impair-
ment of exercise performance in CDH patients similar to our data [15], other authors have
revealed evidence for reduced exercise performance (lower VO2max, lower O2-pulse or
endurance time) in their CDH groups [5,13,14,26]. A possible reason for the discrepancies
in this regard may be differences in the training status of the patients. Several studies
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could prove that CDH patients who exercised had a better performance in spiroergometry
compared to those who did not [5,25]. Therefore, a different training status between the
CDH and control group may explain some of the differences found in exercise performance
testing. While we did not assess the training habits in our study, our collective showed no
differences in BMI, muscle or fat mass as possible anthropometric signs influencing the
exercise performance between the groups.

Study limitations include that, despite a high effort with repeated attempts to contact
patients, the number of recruited patients is relatively low. This can be explained by the low
prevalence of CDH of 2.6 out of 10,000 total births and a mortality rate of 37.7% [27] and the
single-center setting of this investigation. A further fact decreasing the number of potential
participants is the fact that we only recruited children between 6 and 16 years of age in
order to assess changes of the examined parameters in children and adolescents. Including
older patients might increase the number of confounders (smoking, exhaust, comorbidities,
etc.) for the values investigated. Younger children, on the other side, would not have been
able to sufficiently participate in controlled breath VOCs sampling. In case of low effect
size, relevant group differences which would have been detected in a larger sample size
might have been overlooked due to the low number of participants in this study. Therefore,
our study can be interpreted as an observational pilot study. Nevertheless, we give a
first thorough overview of the airway microbiome and VOC analysis of CDH patients.
Moreover, all but one patient underwent direct closure of the diaphragmatic defect. As
a potential consequence our patient group may present with better exercise performance
and other parameters compared to patients with larger defects and possibly associated
higher grad of pulmonary hypoplasia. Therefore, future multi-center trials including a
larger group of patients will be required to expand this first data set. Another limitation is
that when sampling deep induced sputum, the sample from the deep airways also passes
the main bronchi, trachea, pharynx and mouth resulting in a possible contamination of
the sample at these levels, probably masking potential biological differences in the deep
airways. Therefore, the microbiome sample obtained can only be referred to as an airway
microbiome. Harvesting the pulmonary microbiome is only possible by bronchoscopy
with a broncho-alveolar lavage, which is ethically impossible in our setting. Further,
analyzing the fungal airway microbiome might remain of potential interest. Regarding
VOC measurements, effects of inhaled room air could be addressed by sampling room
air at each measurement. We consistently excluded potential marker candidates with
high room air concentrations in this study. However, there are many factors with possible
influences on the breath VOC profile [28,29]. Despite a careful study design and patient
questioning, influences of other factors (unknown co-morbidities, influences of diet, etc.)
cannot be ruled out completely. In particular, acetone is known to be influenced by patient
metabolism. As we did not expect differences in acetone levels, metabolic markers (urine
ketone levels, blood dextrose levels or HbA1c) were not determined. Therefore, the reason
for the different acetone levels remains unclear at present. Future studies in the CDH
collective will have to include metabolic markers to assess the influence of CDH per se on
this parameter.

4. Materials and Methods

After ethical approval (EK 28-528 ex 15/16) all patients who had undergone surgi-
cal CDH repair at our institution were contacted by letter and telephone and invited to
participate in this investigation. For all patients, age and sex- matched healthy controls
were recruited from families of the medical staff. In all cases written informed consent was
obtained from patients and/or legal guardians. We excluded patients younger than 6 years
due to potential difficulties with controlled breath gas sampling and exercise and lung func-
tion testing. Moreover, patients older than 16 years and children with acute (within 4 weeks
before the examination) and chronic gastro-intestinal disease, acute urinary tract infection,
antibiotic or probiotic treatment within 4 weeks before the examination were excluded.
After inclusion, patients were invited to participate in the following examinations:
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4.1. Clinical Examination

The clinical examination included investigation of the following anthropometric data:
height, body weight (BW) and body mass index (BMI). The body fat in % was determined by
the caliper method, as previously described [30]. Appendicular muscle mass was assessed
by segmental multi-frequency impedance analysis as published before [31].

4.2. Breath VOC Sampling

Patients fasted 2 h before sampling. Alveolar breath gas sampling was performed
by combining mainstream capnometry and needle trap microextraction (NTME) with an
automated sampling device (PAS Technology Deutschland GmbH, Magdala, Germany), as
previously reported [19]. Needle trap devices (NTDs) were pre-conditioned in a heating
device (PAS Technology Deutschland GmbH, Magdala, Germany) at 200 ◦C for 30 min
under permanent N2-flow before each measurement. This device ensured alveolar sam-
pling at a flow rate of 30 mL/min by means of a CO2-triggered, fast responding valve
with a CO2 threshold of 25–30 mmHg. Sampling was repeated twice for every patient.
Additionally, ambient room air was harvested after each patient measurement by auto-
mated NTME sampling. After sampling, NTDs were sealed by a Teflon cap (Shinawa LTD.
Japan/PAS Technology Deutschland GmbH, Magdala, Germany) immediately. Specimens
were measured within 48 h after sampling.

4.3. Breath VOC Analysis

An Agilent 7890A gas chromatograph connected to an Agilent 5975 inert XL mass
selective detector (MSD) was used for GC-MS measurements, as previously described [19].
A total of 67 substances were identified by means of a mass spectral library (NIST 2005,
Gatesburg, PA, USA). The total responses for each substance were recorded. A total of
32 potential marker candidate compounds were verified by pure reference substances.
For that purpose, a mixture of gaseous standards (Gas-MIX, Ionicon Analytik GmbH,
Innsbruck, Austria) and aqueous solutions of pure reference substances (Sigma Aldrich,
Darmstadt, Germany) were evaporated by means of a liquid calibration unit (LCU, Ionicon
Analytik GmbH, Innsbruck, Austria). Concentration levels of the gas standards were
prepared from 1 ppb to 500 ppb by diluting the standards with nitrogen and water with a
matrix adapted humidity of 25 g/m3 as previously described [32,33]. Evaporated standard
gas was pre-concentrated onto NTDs and analyzed by GC-MS.

For the calibration and determination of limit of detection (LOD, signal-to-noise ratio
3:1) and limit of quantification (LOQ, signal-to-noise ratio 10:1), different concentration lev-
els of the reference substances were measured as previously described [34] (Supplementary
Table S1). The signals of selected ions from the reference substances at different concen-
tration levels were used to calculate a calibration curve for each substance. These curves
allowed to derive the concentrations of marker substances in parts per billion per volume
(ppbV). The median VOC concentrations for patients´ and room air derived substances
were compared. If the room air concentration of a candidate substance exceeded 20%
of the patients´ median the observed changes were considered as biased by room air
contamination and therefore excluded as potential marker compounds.

4.4. 16S Based Airway Microbiome

Deep induced sputum samples were harvested as previously described in the lit-
erature [35]. Samples were stored at −80 ◦C until further measurement. Briefly, spu-
tum samples were treated with 100 µg/mL DTT (Sigma), incubated at 37 ◦C for 20 min
and centrifuged at 4000× g for 30 min. Supernatant was removed and the pellet was
resuspended in 500 µL PBS (Roth). A total of 250 µL of the suspension were mixed
with 250 µL bacterial lysis buffer (Roche, Mannheim, Germany) and total DNA was iso-
lated according to manufacturer’s instructions and as published [36] in a MagNA Pure
LC 2.0 (Roche, Mannheim, Germany) with the MagNA Pure LC DNA Isolation Kit III
(Bacteria, Fungi) (Roche, Mannheim, Germany). A total of 5 µL of total DNA was used
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in a 25 µL PCR reaction in triplicates using a Fast Start High Fidelity PCR system (Roche,
Mannheim, Germany) according to Klymiuk et al. [36], with the target specific primers F27-
AGAGTTTGATCCTGGCTCAG and R357-CTGCTGCCTYCCGTA [37]. The 6 pM library
was sequenced on an Illumina MiSeq desktop sequencer (Eindhoven, The Netherlands)
with 20% PhiX control DNA (Illumina, Eindhoven, The Netherlands) and v3 chemistry
for 600 cycles in paired end mode according to manufacturer’s instructions and FastQ
raw reads were used for data analysis. A total of 2,711,449 (per sample minimum 94,894,
maximum 235,181, mean 193,674) raw sequence reads were used for data analysis in an
established Galaxy based workflow (Medical University of Graz, funded by the Austrian
Federal Ministry of Education, Science and Research, Hochschulraum-Strukturmittel 2016
grant as part of BioTechMed Graz). Briefly, raw reads were quality-filtered, de-noised,
de-replicated, merged and checked for chimeras using DADA2 pipeline [38] with standard
settings in QIIME2.0 [39]. For taxonomic assignment SILVA rRNA database Release 132 at
97% identity was used.

4.5. Spirometry

Spirometry was performed before and after exercise testing (Oxycon Pro®, Carl Reiner
GmbH, Vienna, Austria). Forced vital capacity (FVC) was assessed as the maximum
amount of air exhaled after maximum inhalation and expressed as percent predicted
values. Forced expiratory volume in 1 s (FEV1) was determined and used to calculate the
Tiffeneau index (FEV1/FVC).

4.6. Spiroergometry

Bicycle spiroergometry (Excalibur Sport®, Lode B.V., Groningen, The Netherlands
and spirometer Oxycon Pro®, Carl Reiner GmbH, Vienna, Austria) was performed with
a sex and body weight dependent protocol [30]. The spiroergometry was continued to
exhaustion followed by a 3-min recovery phase. The respiratory parameters included
tidal volume, respiratory rate, minute volume (MV) and inspiratory (FiO2) and expiratory
(FeO2) fraction of oxygen. The accuracy for FiO2 and FeO2 is given with ±0.01 vol% by
the manufacturer. Using these values and the minute volume the oxygen uptake was
calculated. For each patient we recorded the maximum performance per kilogram body
weight, the maximum oxygen uptake per kilogram body weight, the relative performance
capacity, the respiratory exchange ratio and the oxygen pulse.

4.7. Statistics

All data were managed with Microsoft Excel 2016® (Microsoft Corporation, Redmond,
WA, USA). For statistical analysis, data were transferred to SPSS 25.0® (IBM Austria,
Vienna, Austria). Metric data are displayed as median (interquartile range, IQR). A Mann–
Whitney U-Test was performed for group comparison. p-values <0.05 were regarded as
statistically significant. Box plots were drawn with Prism 8.3.0® (GraphPad, San Diego,
CA, USA) and heatmaps with R Studio 1.2.1335® (RStudio Inc., Boston, MA, USA) using
the heatmap.2 library.

5. Conclusions

In conclusion, this is the first study to report on the airway microbiome and VOC
profile in CDH. The alterations of the microbiome were minor and the clinical consequence
of reduced Pasteurellaceae remains unclear at present. The elevations in cyclohexane levels
that were observed in the CDH group have also been reported in cases of lung cancer
and pneumonia. CDH patients showed signs of an obstructive pulmonary disease. CDH
patients had no signs of impaired physical performance capacity mirroring controversial
reports in the literature in this regard. Future larger scale multi-center studies will be
required to confirm these first results.
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Supplementary Materials: The following are available online, Figure S1: Exhaled and ambient
room air concentrations (ARA) of VOC candidate substances regarded as affected by room air;
Figure S2: Exhaled and ambient room air concentrations (ARA) of VOC candidate substance without
significant differences between CDH patients and controls; Table S1: Limit of detection (LOD) and
limit of quantification (LOQ) of 32 candidate VOCs detected in breath samples by needle trap micro-
extraction (NTME).
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Abstract: Breath analysis using eNose technology can be used to discriminate between asthma and
COPD patients, but it remains unclear whether results are influenced by smoking status. We aim
to study whether eNose can discriminate between ever- vs. never-smokers and smoking <24 vs.
>24 h before the exhaled breath, and if smoking can be considered a confounder that influences
eNose results. We performed a cross-sectional analysis in adults with asthma or chronic obstructive
pulmonary disease (COPD), and healthy controls. Ever-smokers were defined as patients with
current or past smoking habits. eNose measurements were performed by using the SpiroNose. The
principal component (PC) described the eNose signals, and linear discriminant analysis determined
if PCs classified ever-smokers vs. never-smokers and smoking <24 vs. >24 h. The area under the
receiver–operator characteristic curve (AUC) assessed the accuracy of the models. We selected
593 ever-smokers (167 smoked <24 h before measurement) and 303 never-smokers and measured
the exhaled breath profiles of discriminated ever- and never-smokers (AUC: 0.74; 95% CI: 0.66–0.81),
and no cigarette consumption <24h (AUC 0.54, 95% CI: 0.43–0.65). In healthy controls, the eNose did
not discriminate between ever or never-smokers (AUC 0.54; 95% CI: 0.49–0.60) and recent cigarette
consumption (AUC 0.60; 95% CI: 0.50–0.69). The eNose could distinguish between ever and never-
smokers in asthma and COPD patients, but not recent smokers. Recent smoking is not a confounding
factor of eNose breath profiles.

Keywords: exhaled breath; eNose; smoking; asthma; COPD

1. Introduction

Asthma and chronic obstructive pulmonary disease (COPD) are complex and heteroge-
neous chronic airway diseases that include several phenotypes, characterized by different
inflammatory pathways [1,2]. The complexity and the heterogeneity of these diseases is
due to variability of clinical characteristics, environmental influences, and pathophysiology
aspects that are different for each patient [3]. Therefore, there is still a clinical need for new
biomarkers to characterize the underlying processes [4].

The study of exhaled breath composition (“breathomics”), could facilitate a pheno-
typing approach of chronic airway diseases [5]. Exhaled breath is partially composed of
volatile organic compounds (VOCs), including exogenous VOCs (e.g., drinks, food, drugs,
environment) and endogenous VOCs (e.g., microbiome and body (patho) physiological
metabolic processes), which can directly originate from the metabolism of bacteria residing
in alveoli, immune cells, etc., and can also diffuse into the bloodstream where they diffuse

125



Molecules 2021, 26, 1357

passively across the capillary/alveolar interface and are subsequently emanated in the
exhaled breath with different configurations according to their origin [6–8]. The eNose, a
non-invasive and rapid technique that is able to detect exhaled VOC patterns, has shown
some promise in characterizing asthma and COPD based on inflammatory characteristics
and discriminating between patients with asthma, COPD, and lung cancer [9,10].

Exhaled breath measurements are considered a promising diagnostic technique, being
easy to perform and potentially giving additional information that may help phenotyp-
ing patients, there are still some limitations related to the fact that there are many factors
(e.g., diet, smoking, co-morbidities, physical activities, age, gender, pregnancy, and medica-
tion use) which could influence the level of individual compounds present in the exhaled
breath [11]. Since VOCs are the result of metabolic and inflammatory processes related
to (patho) physiological changes that take place in the respiratory tract [12], and smoking
contributes to altering these processes in asthma and COPD [13], it is critical to assess the
sensitivity of the eNose for the smoking status of patients with chronic respiratory dis-
eases. Therefore, we aimed to investigate whether the eNose is suitable as a non-invasive
technique to identify how patients with different smoking habits may respond to smoke
exposure and whether smoking has an influence on disease classification. To assess this, in
this exploratory analysis, we hypothesized that the eNose is able to distinguish between
ever- and never-smokers.

Among patients with asthma and COPD and healthy volunteers, we assessed whether
the eNose can accurately discriminate between (1) ever- vs. never-smokers, and (2) smoking
less than vs. greater than 24 h before the exhaled breath measurement.

2. Results

2.1. Baseline Characteristics and Study Design

The study subjects selected for the analysis were enrolled from December 2015 through
May 2017 across six different sites. Of the included asthma and COPD patients (n = 896)
593 (60.4%) were ever-smokers (237 asthma and 356 COPD) and 303 (33.8%) were never-
smokers (295 asthma and 8 COPD). Among the ever-smokers, 167 (28.2%) smoked their
last cigarette <24 h before measurement. The healthy control group was composed of
199 ever-smokers (out of which 107 subjects smoked in the last 24 h) and 366 never smokers.
Tables 1–3 display the baseline clinical (age, body mass index (BMI), gender, medications)
and functional (FEV1, FVC, FEV1/FVC) characteristics of the overall population (Table 1),
ever-smokers (Table 2), and the healthy controls (Table 3). Ever-smokers had more ad-
vanced age and worse lung function (FEV1/ FEV1/FVC). In the asthma and COPD training
set, 469 patients were ever-smokers and 247 were never-smokers. In the validation set,
124 patients were ever-smokers and 56 were never-smokers. A flowchart of the study de-
sign is presented in Figure 1a. Among the healthy controls, 452 patients were in the training
set (160 ever-smokers and 292 never-smokers), and 113 subjects were in the validation set
(39 ever-smokers and 74 never-smokers) (Figure 1b).
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Figure 1. Flowchart of the study design of the asthma and COPD group (a), and healthy controls (b).

Table 1. Demographics of asthma and chronic obstructive pulmonary disease (COPD) patients
stratified by smoking status. Data are expressed in number of patients, mean ± standard deviation
or median and range for non-normal distributions.

Asthma and COPD Patients Ever Smokers (n = 593) Never Smokers (n = 303) p-Value

Age (mean (SD)) 60.99 (13.38) 48.46 (18.04) <0.001

BMI (mean (SD)) 27.78 (5.82) 26.95 (6.69) 0.055

Gender = M/F (%) 48.6/51.4 37.3/62.7 0.002

Allergy = Yes/No (%) 42.0/58.0 69.6/30.4 <0.001

FEV (mean (SD)) (l) 2.04 (0.89) 2.62 (0.93) <0.001

FVC (mean (SD)) (l) 3.41 (1.07) 3.66 (1.13) 0.002

FEV1/FVC (mean (SD)) (%) 56 (16) 70 (14) <0.001

FEV1 pred (mean (SD)) (%) 70.93 (23.81) 86.14 (21.74) <0.001

ACQ (median [IQR]) 1.60 [0.86, 2.50] 1.43 [0.71, 2.29] 0.208

CCQ (median [IQR]) 1.00 [0.00, 2.30] 0.00 [0.00, 0.00] <0.001

Current use of ICS = No/Yes (%) 27.8/72.2 15.5/84.5 <0.001

Oral corticosteroids (%) 0.780

Current use 2.4 1.7

Previous use 10.3 10.6

No 87.4 87.8
BMI: body mass index; ACQ: asthma control questionnaire; CCQ: clinical COPD questionnaire; ICS: inhaled
corticosteroids.
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Table 2. Clinical characteristics of patients with recent cigarette consumption. Data are expressed in
number of patients, mean ± standard deviation or median and range for non-normal distributions.

Ever Smokers (n = 593) <24 h (n = 167) >24 h (n = 426) p-Value

Age (mean (SD)) 56.98 (14.97) 60.83 (13.57) <0.001

BMI (mean (SD)) 26.63 (5.76) 27.75 (5.80) 0.114

Gender = M/F (%) 47.9/52.1 27.7/72.3 0.001

FEV1 (mean (SD)) (l) 2.03 (0.87) 2.05 (0.90) <0.001

FVC (mean (SD)) (l) 3.37 (1.05) 3.41 (1.08) <0.001

FEV1/FVC (mean (SD)) (%) 56 (16) 56 (16) <0.001

FEV1 pred (mean (SD)) (%) 68.82 (21.79) 70.99 (23.83) <0.001

Pack/year (median [IQR]) 30.00 [17.00, 48.00] 25.00 [10.95, 41.25] <0.001

ACQ (median [IQR]) 1.86 [1.14, 2.86] 1.60 [0.88, 2.50] 0.010

CCQ (median [IQR]) 1.40 [0.00, 2.55] 1.00 [0.00, 2.30] <0.001

BMI: body mass index; ACQ: asthma control questionnaire; CCQ: clinical COPD questionnaire.

Table 3. Demographics of healthy subjects stratified by smoking status. Data are expressed in number
of patients, mean ± standard deviation.

Ever Smokers (n = 199) Never Smokers (n = 366) p-Value

Age (mean (SD)) 46.95 (15.29) 35.67 (14.05) <0.001

BMI (mean (SD)) 26.02 (4.86) 23.72 (3.65) <0.001

Gender = M/F (%) 72/127 (36.2/63.8) 127/239 (34.7/ 65.3) 0.795

FEV1(%) (mean (SD)) 89.17(12.43) 92.08 (15.39) <0.001

FEV1/VC (%) (mean (SD)) 91.96 (12.26) 94.88(14.53) <0.001

Last cigarette (%) <0.001

<24 h 107 (53.7) 0

>24 h 92 (46.2) 0

Pack/years (mean (SD)) 15.77 (19.20) 0 <0.001

2.2. The Ability of the eNose to Discriminate a History of Smoking in Asthma and COPD Patients

Out of 13 sensors, three principal components (PCs) were selected that captured
64% of the variance within the dataset of asthma and COPD patients (PC1 37%, PC2
16%, PC3 9%). There was no significant correlation between relevant PCs and ever- or
never-smoker patients with asthma or COPD (see Supplementary Material, Figure S1).
The ability to classify a history of smoking in patients with asthma or COPD showed
reasonable accuracy in the training set (area under the receiver–operator characteristic
curve (ROC–AUC) = 0.74, 95% CI = 0.70–0.77), and this accuracy was further confirmed
in the validation set (ROC–AUC = 0.75, 95% CI = 0.68–0.82), with 67% of cross-validated
grouped cases correctly classified after Leave One Out Cross-Validation (LOO-CV) in
both groups (Figure 2a). This was confirmed with a higher accuracy using the number
of pack-years among ever-smoker patients in both the training and validation sets (see
Supplementary Material, Figure S2a).
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Figure 2. ROC analyses showing the accuracy of the linear discriminant model based on principal
component (PC) reduction in the training set and the independent validation set for the asthma and
COPD group. (a) Ever-smokers with asthma and COPD: training set (n = 469) 95% CI: 0.70–0.77
area under curve (AUC): 0.74; validation set (n = 124) 95% CI: 0.68–0.82 AUC: 0.75. (b) Time of
last cigarette assumption in asthma and COPD patients (control: more than 24 h; case: less than
24 h): training set case = 127; control = 583; 95% CI: 0.54–0.65; AUC: 0.60; validation set case = 40;
control = 84; 95% CI: 0.44–0.67; AUC: 0.55.

2.3. The Ability of the eNose to Discriminate Recent Cigarette Consumption in Asthma and
COPD Patients

The eNose could less accurately identify patients with recent last cigarette consump-
tion (<24 h) compared to smoking patients with a cigarette consumption >24 h in both the
training and validation sets (ROC–AUC = 0.60; 95% CI = 0.54–0.65; ROC–AUC= 0.55; 95%
CI = 0.44–0.67 respectively). eNose was not able to discriminate who smoked their last
cigarette before and after 24 h before the visit (Figure 2b) with an accuracy of 51% after
LOO-CV in both sets.

2.4. Does Smoking Influence eNose Results?

The same analysis was repeated with the healthy control group. Three PCs (out of
13 sensors) were selected that captured 61% of the variance within the dataset (PC1 34%,
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PC2 14%, PC3 13%). The eNose was not able to distinguish among ever- and never-smokers
in either the training (ROC–AUC: 0.54; 95% CI: 0.49–0.60) or the validation sets (ROC–AUC:
0.56; 95% CI: 0.50–0.69) with an accuracy of 53% after LOO-CV in both groups (Figure 3a).
This was confirmed according to the number of pack/years among ever-smokers (see
Supplementary Material, Figure S2b). Moreover, the eNose was not able to discriminate
between subjects who smoked their last cigarette shorter or longer than 24 h prior to the
exhaled breath measurement in both the training and the validation sets (training: area
under curve (AUC): 0.60; 95% CI: 0.50–0.69; validation: AUC: 0.60; 95% CI: 0.47–0.70)
(Figure 3b).

Figure 3. ROC analyses showing the accuracy of the linear discriminant model based on principal component reduction
in the training set and the independent validation set for the healthy control group. (a) Ever-smokers in healthy subjects:
training set (n = 452) AUC: 0.54 (95% CI: 0.49–0.60); validation set (n = 113) AUC: 0.60 (95% CI: 0.50–0.69). (b) Time of last
cigarette consumption in healthy subjects (control: more than 24h; case: less than 24h) training set (n = 160) AUC: 0.60
(95% CI: 0.50–0.69); validation set (n = 39) AUC: 0.60 (95% CI: 0.42–0.70). (c) Ex- (n = 139) and never-smokers (n = 366):
training set (ex-smokers = 116; never-smokers = 292), AUC: 0.52 (95% CI: 0.46–0.58); validation set (ex-smokers = 23;
never-smokers = 74) AUC: 0.56 (95% CI: 0.46–0.60). (d) Active (n = 60) and never smokers (n = 366): training set (active
smokers = 44; never-smokers = 292) AUC: 0.62 (95% CI: 0.51–0.67); validation set (active smokers = 16; never smokers = 74)
AUC: 0.65 (95% CI: 0.53–0.71).
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These results were further confirmed when repeating the analysis sub setting among
ever-smoker healthy subjects, current smokers, and ex-smokers. The eNose was not
accurate enough to distinguish between ex- (n = 139) and never-smokers (n = 366) in the
training or the validation sets (training set AUC: 0.52; 95% CI: 0.46–0.58; validation set
AUC: 0.56; 95% CI: 0.46–0.60) (Figure 3c). The eNose did not distinguish between ever-,
current- (n = 60), and never-smokers (n = 366) in the training set (AUC: 0.62; 95% CI:
0.51–0.67) or the validation set (AUC: 0.65; 95% CI: 0.53–0.71) (Figure 3d).

Interestingly, the eNose was not able to distinguish between ever- and never-smokers
in the asthma group (see Supplementary Material, Figure S3), but it could discriminate
the diagnosis of asthma and COPD patients among the ever-smoker population (see
Supplementary Material, Figure S4).

3. Discussion

In this study, we demonstrated that the use of the eNose to analyze exhaled breath
can discriminate patients with a chronic respiratory disease (asthma or COPD) with and
without a smoking history, but we could not make a distinction between smokers that did
or did not smoke a cigarette in the last 24 h. We also demonstrated that the eNose is not
influenced by smoking history in healthy volunteers; therefore, we can assume smoking
may not be considered as a confounder that interferes with eNose measurements. These
results were internally validated and were confirmed in an independent validation set.

Exhaled breath measurement by an eNose device has been used as a non-invasive tool
for detecting several diseases with screening and diagnostic implications [10,14–16]. To our
knowledge, this is the first study that evaluates the ability of the eNose to discriminate pa-
tients with chronic airway diseases according to their smoking status and the possible
detection of the influence of smoking in both pathologies.

We can assume that the association of exhaled breath and eNose signals most likely
reflects pathophysiological modifications related to the underlying chronic airway disease
and combined airway alterations due to chronic smoking exposure. These results are
in line with other studies. In a dual-center study [17] that recruited 222 smokers and
non-smokers, with or without COPD, the eNose was able to classify COPD never- and ex-
smokers and COPD active-smokers. Interestingly, a proportion of current smokers (9.3%)
was misclassified non-smokers according to the analysis of their CO levels, which seems to
confirm that, in line with our results, the eNose can distinguish among patients with chronic
smoking habits, whereas it is not able to detect smoking in patients depending on the time
of last cigarette consumption. Also, Papaefstathiou et al. [18] recently demonstrated that
exhaled breath can be used to discriminate between smokers, non-smokers, and e-cigarette
users in a population of healthy subjects and, in particular, that relevant VOCs can be
identified among these three groups. Moreover, the diagnostic accuracy of exhaled breath
analysis, linked to routine spirometry for chronic airway diseases, was previously assessed
by De Vries et al. [10]. eNose patterns were found to be predictive for the differential
diagnosis of asthma and COPD (AUC 0.88) and, in line with our results, eNose breath
profiles did not show any ability to discriminate between current and ex-smokers (AUC
0.52) among patients with COPD, even though ROC analyses showed high accuracy in
detecting exacerbations with the population stratified for pack-years [19]. Compared to
our results, we are able to moderately distinguish between ever- and never-smokers (AUC
0.74), and we conclude that smoking could play a role in the VOCs contributing to the
ability of the eNose to distinguish between asthma and COPD patients, but the eNose
likely also detects other pathological factors that may be characteristic for these chronic
respiratory diseases.

Furthermore, VOCs have been previously used to discriminate different inflammatory
patterns in several chronic respiratory diseases, enabling researchers to obtain subgroups
based on molecular characteristics [20–22]. Recently, Caruso et al. [23] used metabolomic
analysis of VOCs in exhaled breath to identify a “severe asthma smoking phenotype,”
showing that, in line with our results, the analysis of VOCs identified differences among
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severe asthmatic smokers and ex-smokers, compared to never smokers. However, the
severe asthmatics with smoking history were almost all ex-smokers, meaning that the
differences may not have been related to active smoking, but potentially to the eNose
results reflecting damage in the airways caused by smoking in the past [24].

We also considered whether smoking is a confounder of eNose results with respect to
chronic respiratory disease phenotypes. We therefore also included data on the healthy
controls. Smoking could influence the levels of individual compounds present in the
exhaled breath and could therefore hamper the implementation of exhaled breath analysis
as a diagnostic tool [25]. To our knowledge, this is the first study that demonstrates that
recent or past smoking does not influence breath patterns in healthy subjects, in line
with the hypothesis that breath patterns most likely reflect airway alterations caused by
past smoking.

The strengths of our study are the relatively large sample size, the BreathCloud cohort,
which recruited patients from different centers, obtaining a mixed population resembling
the general COPD and asthma population, and the use of standardized methods for the
analysis, including the internal and external validations that were performed to support the
obtained results. The limitations of our study were that there was no information collected
related to passive smoking that may have indirectly influenced never smokers and we had
no information related to urinary nicotine concentration, which could be a more accurate
measure, but more burdensome for patients [26]. A further limitation of our study is that
the eNose can identify patterns of VOC mixture rather than the individual compounds
that are driving the signal, even though this characteristic makes eNose breath profiles as
suitable as composite multidimensional biomarkers in providing numerical probabilities
for the presence or absence of a particular clinical condition [27,28]. On the other hand, the
advantages are that this technology is noninvasive, easy to use, and results can be promptly
available and interpretable for clinicians.

4. Materials and Methods

4.1. Study Design

We conducted a cross-sectional analysis using exhaled breath and clinical information
obtained from the multicenter BreathCloud [9] database. BreathCloud enrolled patients
with asthma, COPD, lung cancer, cystic fibrosis, and healthy volunteers from ten different
centers in the Netherlands during routine outpatient visits. The following data from medi-
cal records collected general characteristics (age, BMI, gender, allergy history) symptoms
assessment (asthma control questionnaire (ACQ), clinical COPD questionnaire (CCQ), oral
corticosteroid assumption), functional tests (e.g., spirometry pre- and post- bronchodilator)
and, among the ever-smokers, whether they smoked before and after 24 h. The exhaled
breath measurements were collected in routine clinical practice and were subsequently
handled in compliance with the Dutch Personal Data Protection Act (WPB).

4.2. Subject Selection

Patients and healthy controls were enrolled by six centers of primary, secondary
and tertiary care in the Netherlands. Patients were included in this analysis if they were
≥18 years old, had a physician-reported diagnosis of asthma or COPD, and had answered
the questions about smoking history. Healthy subjects were those who did not report any
history of asthma or COPD, and who did not use any respiratory medications. Patients
were stratified according to their smoking habits. Patients with a recent history of acute
upper or lower respiratory tract infections were excluded because a history of upper [29–31]
or lower [32–34] respiratory infections may influence the quality of breath samplings, and
we did not know how much this could interfere with the resulting breath pattern profiles
in patients with a diagnosis of asthma and COPD. The purpose of adding the SpiroNose to
routine diagnostics was explained to the patients, who all gave their oral consent before
enrollment. Due to the non-invasive nature of the BreathCloud study, the Amsterdam
UMC medical ethical review board provided a waiver for ethical approval of the protocol
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(reference: W14_112#14.17.0147). All six sites made use of the same sampling protocol,
which was part of the AMC MRB approval no: 14.17.0147.

4.3. Smoking Definitions

Patient-reported smoking history was chosen as an outcome, according to previous
studies [35,36] that demonstrated that self-reported smoking is accurate. Smoking status
was further divided into ever- and never-smokers; ever-smokers were considered active
smokers who currently smoke cigarettes (number of pack/year) and former smokers who
had smoked at least 100 cigarettes in their lifetime, but have quit smoking. Never-smokers
were patients without any history of smoking habits, or who had smoked fewer than
100 cigarettes in their lifetime. The number of pack-years was calculated as (number of
cigarettes smoked per day/20) × number of years smoked.

The second smoking definition was patient-reported recent cigarette smoking, which
was defined as having smoked a cigarette in the 24 h prior to the exhaled breath measurement.

4.4. Exhaled Breath Measurements

Exhaled breath samples were collected using the SpiroNose [10]; an eNose composed
of seven separate cross-reactive metal oxide semiconductor (MOS) sensors used to detect
exhaled breath VOCs while monitoring for ambient VOCs. The SpiroNose comprises
7 different MOS sensors, each present in duplicate in both the reference and the exhaled
breath sensor arrays. The MOS sensors (Figaro Engineering Inc., Osaka, Japan) were
chosen based on their good stability and long-term performance [37]. MOS sensors operate
with temperatures ranging between −40 ◦C and +70 ◦C. Using thick film techniques,
the sensor material was printed onto electrodes on an alumina substrate. Tin dioxide
(SnO2) was the main sensing material of the sensor element [38]. From each sensor signal,
two variables were derived. The SpiroNose provided a spectrum of signals representing
13 data points originated by 6 sensor peaks normalized to sensor 2, the most stable sensor,
and 7 peak/breath hold ratios. Each SpiroNose sensor signal had a high sensitivity to
different mixtures of volatile organic compounds (VOCs)/gases in the exhaled breath and
the reference (ambient air) sensor arrays [39].

Before breath measurement, patients had to rinse their mouth thoroughly with water
three times, and then perform five tidal breaths, after which they maximally inhaled and
held their breath for 5 s before slowly exhaling. The measurement was performed two
times, with an interval of two minutes between maneuvers. Data were sent in real-time
and stored on the online BreathCloud server.

4.5. Statistical Analysis

A descriptive analysis was performed to generate tables with the general character-
istics of the population (Tables 1–3, Tables S1 and S2). A chi-squared test was used for
categorical variables and a one-way ANOVA test was used for continuous variables. A
principal component (PC) analysis was performed to summarize the eNose breath signals.
According to the Kaiser criterion [40], all PCs with an eigenvalue >1 were considered for
the analysis. PCs were constructed for the overall number of subjects (including both
the training and validation sets). Furthermore, a linear discriminant analysis (LDA) was
used to determine whether PCs could accurately classify patient-reported smoking history
(ever-smokers vs. never-smokers) and, among ever-smokers, recent cigarette consumption
(<24 h vs. >24 h). Internal validation was performed with leave-one-out cross-validation
and by a split analysis in which the LDA model constructed with the training set was ap-
plied to the validation set. The area under the receiver–operator characteristic curve (ROC)
was used to assess the accuracy of the models and it was obtained from the prediction
made by the LDA model. The dataset was randomly divided into a training set containing
80% of the data (total asthma and COPD group = 716; asthma = 426; COPD = 288; healthy
controls = 452) and a validation set including 20% of the data (total asthma and COPD
group = 180; asthma = 106; COPD = 74; healthy controls = 113). The model acquired with
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the training set was used to retrieve similar variables in the validation set. A sensitivity
analysis was also performed, using the number of pack-years of the ever-smokers (see
Supplementary Materials, Figure S2a,b). Supplementary analyses concerning only the
asthma group are reported in the Supplementary Materials (Figure S3); an additional
analysis assessing the accuracy of the eNose in distinguishing asthma and COPD among a
population of ever-smokers is also reported in Supplementary Materials (Figure S4). Data
selected had no missing sensor values in BreathCloud.

The analysis was performed using R studio version 1.1.463 (R Studio Inc., Boston,
MA, USA) and using R version 3.5.1 (The R Foundation for Statistical Computing, Vienna,
Austria), with packages; dplyr, caret, pROC, and MASS [41,42].

5. Conclusions

We demonstrated that a smoking history might influence eNose breath profiles in pa-
tients with chronic airway diseases, while we cannot distinguish patients and healthy
subjects according to recent cigarette consumption. This means that we can measure the
influence of smoking on airways, but not the cigarette smoke itself. The present findings
are in support of the usage of eNose technology as a quick and feasible technique for the
diagnosis and phenotyping of chronic airway diseases in a clinical setting.

Supplementary Materials: The following are available online at https://www.mdpi.com/1420-304
9/26/5/1357/s1, Figure S1: scatter plot matrices displaying the correlation between each principal
component (PC) in a population of ever- or non-smokers in the overall dataset (n = 896): dot plots
represent never-smokers and triangles represent ever-smokers. Figure S2a and S2b: ROC analyses
showing the accuracy of the linear discriminant model based on principal component reduction
in the training set and the independent validation set according to pack-years (less than 5 pack-
years, more than 5 pack-years) for (a) the asthma and COPD group (control: <5 pack/years; case:
>5 pack/years). Training set: case = 397; control = 297; 95% CI: 0.72–0.78; AUC: 0.76. Validation set:
case = 105; control = 72; 95% CI: 0.71–0.84; AUC: 0.76, and (b) for the healthy control group (control:
<5 pack/years; case: >5 pack/years). Training set: AUC: 0.56 (95% CI: 0.50–0.61); validation set: AUC:
0.55 (95% CI: 0.58–0.74). Figure S3: A ROC curve showing the accuracy of the linear discriminant
model based on principal component reduction in the asthmatic population (training and validation
set), to distinguish ever- (n = 237) and never-smokers (n = 295). Training set case = 184; control = 241;
AUC: 0.55; 95% CI: 0.49–0.60; validation set case = 53; control = 54; AUC 0.66; 95% CI: 0.56–0.77.
Figure S4: ROC curve showing the accuracy of the linear discriminant model based on principal
component reduction in the ever-smoker population (training and validation sets), to distinguish
between asthma (n = 237) and COPD (n = 356) patients. Training set case = 182; control = 292; AUC:
0.88; 95% CI: 0.85–0.91; validation set case = 55; control = 64: AUC: 0.85; 95% CI: 0.78–0.92. Table S1:
demographics of asthma patients stratified by smoking status. Data are expressed in number of
patients, mean ± standard deviation or median and range for non-normal distributions. Table S2:
demographics of COPD patients stratified by smoking status. Data are expressed in number of
patients, mean ± standard deviation or median and range for non-normal distributions.
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6. Buszewski, B.; Kęsy, M.; Ligor, T.; Amann, A. Human exhaled air analytics: Biomarkers of diseases. Biomed. Chromatogr. 2007,

21, 553–566. [CrossRef]
7. Van de Kant, K.D.G.; van der Sande, L.J.T.M.; Jöbsis, Q.; van Schayck, O.C.P.; Dompeling, E. Clinical Use of Exhaled Volatile

Organic Compounds in Pulmonary Diseases: A Systematic Review. Respir. Res. 2012, 13, 1–23. [CrossRef]
8. Miekisch, W.; Schubert, J.K.; Noeldge-Schomburg, G.F. Diagnostic potential of breath analysis—focus on volatile organic

compounds. Clin. Chim. Acta 2004, 347, 25–39. [CrossRef] [PubMed]
9. De Vries, R.; Dagelet, Y.W.; Spoor, P.; Snoey, E.; Jak, P.M.; Brinkman, P.; Dijkers, E.; Bootsma, S.K.; Elskamp, F.; De Jongh, F.H.;

et al. Clinical and inflammatory phenotyping by breathomics in chronic airway diseases irrespective of the diagnostic label.
Eur. Respir. J. 2018, 51, 1701817. [CrossRef]

10. De Vries, R.; Brinkman, P.; Van Der Schee, M.P.; Fens, N.; Dijkers, E.; Bootsma, S.; De Jongh, F.H.C.; Sterk, P.J. Integration
of electronic nose technology with spirometry: Validation of a new approach for exhaled breath analysis. J. Breath Res. 2015,
9, 046001. [CrossRef]

11. Brinkman, P.; Der Zee, A.-H.M.-V.; Wagener, A.H. Breathomics and treatable traits for chronic airway diseases. Curr. Opin. Pulm.

Med. 2019, 25, 94–100. [CrossRef] [PubMed]
12. Zarogoulidis, P.; Freitag, L.; Besa, V.; Teschler, H.; Kurth, I.; Khan, A.M.; Sommerwerck, U.; Baumbach, J.I.; Darwiche, K. Exhaled

volatile organic compounds discriminate patients with chronic obstructive pulmonary disease from healthy subjects. Int. J.

Chronic Obstr. Pulm. Dis. 2015, 10, 399–406. [CrossRef]
13. Tamimi, A.; Serdarevic, D.; Hanania, N.A. The effects of cigarette smoke on airway inflammation in asthma and COPD:

Therapeutic implications. Respir. Med. 2012, 106, 319–328. [CrossRef]
14. Meerbeeck, J.V.; Lamote, K. Screening Tools for a High Risk Population-Can We Screen for Early Mesothelioma? J. Thorac. Oncol.

2013, 8, S107–S108.
15. Fens, N.; Gaarthuis, Y.; Bos, A.C.; Schlosser, N.J.J.; Sterk, P.J. Exclusion of Asthma for Screening Purposes Using Exhaled Air

Molecular Profiling by Electronic Nose. Eur. Respir. J. 2011, 38, 4168.

135



Molecules 2021, 26, 1357

16. Hubers, A.J.; Brinkman, P.; Boksem, R.J.; Rhodius, R.J.; Witte, B.I.; Zwinderman, A.H.; Heideman, D.A.M.; Duin, S.; Koning, R.;
Steenbergen, R.D.M.; et al. Combined sputum hypermethylation and eNose analysis for lung cancer diagnosis. J. Clin. Pathol.

2014, 67, 707–711. [CrossRef] [PubMed]
17. Gaida, A.; Holz, O.; Nell, C.; Schuchardt, S.; Lavae-Mokhtari, B.; Kruse, L.; Boas, U.; Langejuergen, J.; Allers, M.; Zimmermann,

S.; et al. A dual center study to compare breath volatile organic compounds from smokers and non-smokers with and without
COPD. J. Breath Res. 2016, 10, 026006. [CrossRef] [PubMed]

18. Papaefstathiou, E.; Stylianou, M.; Andreou, C.; Agapiou, A. Breath analysis of smokers, non-smokers, and e-cigarette users.
J. Chromatogr. B 2020, 122349. [CrossRef]

19. Van Bragt, J.J.; Brinkman, P.; De Vries, R.; Vijverberg, S.J.; Weersink, E.J.; Haarman, E.G.; De Jongh, F.H.; Kester, S.; Lucas, A.; in’t
Veen, J.C.C.M.; et al. Identification of recent exacerbations in COPD patients by electronic nose. ERJ Open Res. 2020, 6. [CrossRef]

20. Brinkman, P.; Wagener, A.H.; Bansal, A.T.; Knobel, H.H.; Vink, T.J.; Rattray, N.; Santonico, M.; Pennazza, G.; Montuschi, P.; Fowler,
S.J.; et al. Electronic Noses Capture Severe Asthma Phenotypes by Unbiased Cluster Analysis. Am. J. Respir. Crit. Care Med. 2014,
189, A2171.

21. De Groot, J.C.; Amelink, M.; Storm, H.; Reitsma, B.H.; Bel, E.; Ten Brinke, A. Identification of Three Subtypes of Non-Atopic
Asthma Using Exhaled Breath Analysis by Electronic Nose. Am. Thorac. Soc. 2014, 189, A2170.

22. Fens, N.; De Nijs, S.B.; Peters, S.; Dekker, T.; Knobel, H.H.; Vink, T.J.; Willard, N.P.; Zwinderman, A.H.; Krouwels, F.H.; Janssen,
H.-G.; et al. Exhaled air molecular profiling in relation to inflammatory subtype and activity in COPD. Eur. Respir. J. 2011,
38, 1301–1309. [CrossRef] [PubMed]

23. Caruso, M.; Emma, R.; Brinkman, P.; Sterk, P.J.; Bansal, A.T.; De Meulder, B.; Lefaudeux, D.; Auffray, C.; Fowler, S.J.; Rattray, N.;
et al. Volatile Organic Compounds Breathprinting of U-BIOPRED Severe Asthma smokers/ex-smokers cohort. Airw. Cell Biol.

Immunopathol. 2017, 50, PA2018. [CrossRef]
24. Thomson, N.C. Asthma and smoking-induced airway disease without spirometric COPD. Eur. Respir. J. 2017, 49, 1602061.

[CrossRef] [PubMed]
25. Bosch, S.; Lemmen, J.P.M.; Menezes, R.; Van Der Hulst, R.; Kuijvenhoven, J.; Stokkers, P.C.F.; De Meij, T.G.J.; De Boer, N.K. The

influence of lifestyle factors on fecal volatile organic compound composition as measured by an electronic nose. J. Breath Res.

2019, 13, 046001. [CrossRef] [PubMed]
26. Pinheiro, G.P.; De Souza-Machado, C.; Fernandes, A.G.O.; Mota, R.C.L.; Lima, L.L.; Vasconcellos, D.D.S.; Júnior, I.P.D.L.; Silva,

Y.R.D.S.; Lima, V.B.; De Oliva, S.T.; et al. Self-reported smoking status and urinary cotinine levels in patients with asthma.
J. Bras. Pneumol. 2018, 44, 477–485. [CrossRef] [PubMed]

27. Farraia, M.V.; Rufo, J.C.; Paciência, I.; Mendes, F.; Delgado, L.; Moreira, A. The electronic nose technology in clinical diagnosis: A
systematic review. Porto Biomed. J. 2019, 4, e42. [CrossRef] [PubMed]

28. De Vries, R.; Sterk, P.J. ENose Breathprints as Composite Biomarker for Real-Time Phenotyping of Complex Respiratory Diseases.
J. Allergy Clin. Immunol. 2020, 146, 995–996. [CrossRef]

29. Preti, G.; Thaler, E.; Hanson, C.W.; Troy, M.; Eades, J.; Gelperin, A. Volatile compounds characteristic of sinus-related bacteria and
infected sinus mucus: Analysis by solid-phase microextraction and gas chromatography–mass spectrometry. J. Chromatogr. B

2009, 877, 2011–2018. [CrossRef]
30. Thaler, E.R.; Hanson, C.W. Use of an Electronic Nose to Diagnose Bacterial Sinusitis. Am. J. Rhinol. 2006, 20, 170–172. [CrossRef]

[PubMed]
31. Dutta, R.; Dutta, R. Intelligent Bayes Classifier (IBC) for ENT infection classification in hospital environment. Biomed. Eng. Online

2006, 5, 65. [CrossRef]
32. Hanson, C.W.; Thaler, E.R. Electronic Nose Prediction of a Clinical Pneumonia Score: Biosensors and Microbes. Anesthesiologists

2005, 102, 63–68. [CrossRef]
33. Hockstein, N.G.; Thaler, E.R.; Lin, Y.; Lee, D.D.; Hanson, C.W. Correlation of Pneumonia Score with Electronic Nose Signature: A

Prospective Study. Ann. Otol. Rhinol. Laryngol. 2005, 114, 504–508. [CrossRef] [PubMed]
34. Hockstein, N.G.; Thaler, E.R.; Torigian, D.; Miller, W.T.; Deffenderfer, O.; Hanson, C.W. Diagnosis of Pneumonia With an Electronic

Nose: Correlation of Vapor Signature With Chest Computed Tomography Scan Findings. Laryngoscope 2004, 114, 1701–1705.
[CrossRef] [PubMed]

35. Hilberink, S.R.; E Jacobs, J.; Van Opstal, S.; Van Der Weijden, T.; Keegstra, J.; Kempers, P.L.; Muris, J.W.; Grol, R.P.; De Vries, H.
Validation of smoking cessation self-reported by patients with chronic obstructive pulmonary disease. Int. J. Gen. Med. 2011,
4, 85–90. [CrossRef]

36. Hirvonen, E.; Stepanov, M.; Kilpeläinen, M.; Lindqvist, A.; Laitinen, T.; Stepanov, M. Consistency and reliability of smoking-
related variables: Longitudinal study design in asthma and COPD. Eur. Clin. Respir. J. 2019, 6, 1591842. [CrossRef] [PubMed]

37. Romain, A.; Nicolas, J. Long term stability of metal oxide-based gas sensors for e-nose environmental applications: An overview.
Sensors Actuators B: Chem. 2010, 146, 502–506. [CrossRef]

38. Ibrahim, M.I.A.; Brinkman, P.; Vijverberg, S.J.H.; Neerincx, A.H.; Hashimoto, S.; De Vries, R.; Dagelet, Y.W.; Knipping, K.; Sterk,
P.J.; Kraneveld, A.D.; et al. eNose breathprints as surrogate biomarkers for classifying asthma patients by atopy. Allergy Immunol.

2019, 54.
39. Kaiser, H.F. The Application of Electronic Computers to Factor Analysis. Educ. Psychol. Meas. 1960, 20, 141–151. [CrossRef]

136



Molecules 2021, 26, 1357

40. Robin, X.A.; Turck, N.; Hainard, A.; Tiberti, N.; Lisacek, F.; Sanchez, J.-C.; Muller, M.J. pROC: An open-source package for R and
S+ to analyze and compare ROC curves. BMC Bioinform. 2011, 12, 77. [CrossRef] [PubMed]

41. Kuhn, M. Building Predictive Models inRUsing thecaretPackage. J. Stat. Softw. 2008, 28, 1–26. [CrossRef]
42. Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S, 4 ed.; Springer: New York, NY, USA, 2002.

137





molecules

Article

Detection of Paratuberculosis in Dairy Herds by Analyzing the
Scent of Feces, Alveolar Gas, and Stable Air

Michael Weber 1, Peter Gierschner 2,3 , Anne Klassen 1,4, Elisa Kasbohm 5, Jochen K. Schubert 2,

Wolfram Miekisch 2 , Petra Reinhold 1 and Heike Köhler 1,6,*

Citation: Weber, M.; Gierschner, P.;

Klassen, A.; Kasbohm, E.; Schubert,

J.K.; Miekisch, W.; Reinhold, P.;

Köhler, H. Detection of

Paratuberculosis in Dairy Herds by

Analyzing the Scent of Feces,

Alveolar Gas, and Stable Air.

Molecules 2021, 26, 2854. https://

doi.org/10.3390/molecules26102854

Academic Editors: Ben de Lacy

Costello and Natalia Drabińska
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Abstract: Paratuberculosis is an important disease of ruminants caused by Mycobacterium avium

ssp. paratuberculosis (MAP). Early detection is crucial for successful infection control, but available
diagnostic tests are still dissatisfying. Methods allowing a rapid, economic, and reliable identification
of animals or herds affected by MAP are urgently required. This explorative study evaluated the
potential of volatile organic compounds (VOCs) to discriminate between cattle with and without
MAP infections. Headspaces above fecal samples and alveolar fractions of exhaled breath of 77 cows
from eight farms with defined MAP status were analyzed in addition to stable air samples. VOCs
were identified by GC–MS and quantified against reference substances. To discriminate MAP-positive
from MAP-negative samples, VOC feature selection and random forest classification were performed.
Classification models, generated for each biological specimen, were evaluated using repeated cross-
validation. The robustness of the results was tested by predicting samples of two different sampling
days. For MAP classification, the different biological matrices emitted diagnostically relevant VOCs
of a unique but partly overlapping pattern (fecal headspace: 19, alveolar gas: 11, stable air: 4–5).
Chemically, relevant compounds belonged to hydrocarbons, ketones, alcohols, furans, and aldehydes.
Comparing the different biological specimens, VOC analysis in fecal headspace proved to be most
reproducible, discriminatory, and highly predictive.

Keywords: classification models; dairy cows; exhaled breath; fecal headspace; Mycobacterium avium

ssp. paratuberculosis (MAP); paratuberculosis; random forest; stable air; volatile organic compound
(VOC)

1. Introduction

Paratuberculosis (paraTb) is one of the four economically most important infectious
diseases of dairy cattle [1] in developed countries. Caused by Mycobacterium avium subsp.
paratuberculosis (MAP), it is a chronic progressive granulomatous enteritis resulting in
malnutrition, reduction in milk yield, weight loss, and eventually, death. Infection with
MAP occurs in young animals and may remain clinically nonapparent for several years
until clinical signs are observed [2]. Identification of affected herds is crucial for successful
control of the disease; however, the existing diagnostic methods have limitations, either
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regarding their sensitivity (antibody detection) or due to high expenditure of time and
labor (bacterial culture, molecular biological detection via PCR).

During recent years, the development of diagnostic tests that allow a rapid, economic,
and reliable identification of animals or herds affected by infectious diseases on the spot,
so-called pen-side tests, received growing attention. Chromatography-based lateral flow
tests, for example, were developed for the detection of viruses [3–5] or antigen-specific
antibodies [6,7] in serum samples. However, the application of these tests demands invasive
blood sampling. Analysis of volatile organic compounds (VOCs) present in exhaled breath
and headspace air of fecal samples was suggested as a novel, alternative, noninvasive
approach to the diagnosis of infectious diseases, in particular Mycobacteria infections [8–11].
The relevant VOCs originate from different sources within the host-pathogen interaction,
such as the bacterial metabolism and the inflammatory and immunological host response to
the pathogen [12]. They belong to all classes of organic substances and appear in very low
concentrations (ppbV to pptV). Due to their physicochemical properties, they transform
into a gaseous state already at low temperatures [13]. Discrimination between infected and
noninfected animals is not based on individual compounds, but on relative concentration
changes of different informative VOCs, thus demanding multivariate data analysis [14].

The contribution of VOCs of variable origin to indoor air quality and their impact
on human health has been studied extensively [15]. However, the diagnostic potential of
VOC analysis in stable air, the equivalent to indoor air in animal husbandry, has not been
assessed so far. This would be another option for pen-side diagnosis.

This proof-of-principle study performed in eight dairy herds of different farms was
based on the hypothesis that it should be possible to discriminate between cattle with
and without MAP infections by using VOCs as biomarkers of infection. Which biological
specimen turns out as the most suitable one to detect MAP infection under farming
conditions remained to be elucidated. Thus, (i) headspaces above fecal samples, (ii) the
alveolar fractions of exhaled breath, and (iii) stable air samples were analyzed in parallel
and were compared with respect to their diagnostically relevant VOC patterns.

2. Results

2.1. Visualization of VOC Datasets from Feces, Alveolar Gas, and Stable Air

The first step of the data analysis involved the explorative visualization of the three
multidimensional datasets: fecal headspace data (F), alveolar gas data (A), and stable
air data (S). Each is represented by a matrix, composed of a number of measured VOCs
(columns) and samples (rows), which are either cattle associated (A,F) or stable associated
(S). Additionally, stable-associated samples were subgrouped into S1, S2, S3, and S4,
according to the location of sampling within the stable (see Methods). We aimed to
visualize these VOC concentration matrices in a compact and illustrative way by using
annotated heatmaps, which are shown in Figure 1. Each heatmap displays the VOC
concentration levels in combination with annotation columns, which provide information
about the MAP status and the corresponding farm of the sample.

In comparison, the heatmap plots reveal differences in the distribution of VOC concen-
tration levels in the three datasets. Alveolar gas and stable air data have a large proportion
of columns with values at the lowest level of the plotted color range (blue), while the
majority of VOCs appeared to be present in fecal data. In total, 76 VOCs were found at
detectable levels in feces, compared to 30 in alveolar gas. In stable air, there were 24 VOCs
detectable in S1 and S2 samples (both collected at head-level of the animals), compared
to 25 VOCs for S3 (collected close to the floor) and 23 VOCs for S4 (collected distant from
animals). The varying number of detectable VOCs for each dataset resulted in a distinct
number of potential features for the subsequent classification approach. Additionally, the
farm annotation column does not indicate a distinct clustering of samples according to
their farm but rather an overall mixed grouping of samples.
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Figure 1. Heatmaps and two-dimensional scatterplots for each VOC dataset: fecal headspace (a,b), alveolar gas (c,d), and
stable air (e,f). Heatmaps are composed of samples (rows), VOCs (columns), and two annotation columns. Heat colors
indicate the log2-transformed substance concentration, which is explained by the colored range legend. Annotation columns
indicate the associated farm and MAP status. Scatterplots display multidimensionally scaled (MDS) data points, each
representing a VOC sample colored according to MAP status (red: MAP-positive, black: MAP-negative).

We also examined the clustering of the samples in each dataset in a two-dimensional
scatter plot by using multidimensional scaling (MDS). These plots enable the analysis of
relative dissimilarities between the VOC samples and the inspection of the presence of
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cluster structures. Fecal headspace samples partially form a cluster (Figure 1b), while
the remaining samples are distributed in multiple different directions. MAP-positive and
MAP-negative samples cannot be assigned to separate locations in the plot. Similarly,
most alveolar gas samples group within a large cluster (Figure 1d), however, the outer
samples are mainly assigned to MAP-positive animals. In the stable air plot (Figure 1f),
there is generally less variability compared to the former two plots. Here, we observed a
subset of MAP-positive samples, which is scattered along the x-axis. In summary, the MDS
plots revealed some trends and suggested that a simple unsupervised separation of MAP
samples is not feasible. Therefore, we decided to apply a multivariate machine learning
approach to generate a classification model that is based on the combination of multiple
VOC profiles. We analyzed each dataset individually to evaluate its performance in the
classification of MAP.

2.2. Identification and Reproducibility of Significant VOCs Present in Fecal Headspaces and
Alveolar Gas

Prior to the classification of the samples into MAP-positive and MAP-negative classes,
we performed feature selection to identify VOCs that exhibit discriminatory and robust
concentration levels. Therefore, we aimed to select VOCs that were measured across
all farms and turned out as robust against the influence of the sampling time point. To
investigate and quantify the latter temporal dependency, we performed the feature selection
method Boruta on the two datasets representing headspace above fecal (F) and alveolar gas
(A) samples. To compare the resulting importance scores, we generated dot charts, which
are shown in Figure 2.

Figure 2. Variable importance plots displaying the importance values for all VOCs, which were
selected with the Boruta method for each sampling day. The two panels show the resulting variables
of the fecal headspace dataset and the alveolar gas dataset. The x-axis indicates the importance value,
which is scaled to the maximum importance. Dot colors highlight the two sampling days.

From the 76 detectable VOCs above fecal samples, 19 fulfilled the inclusion criteria,
i.e., succeeded in the Boruta feature selection. In contrast, 11 out of 30 VOCs, were
selected in the alveolar gas dataset. Generally, the selected subset of features from the first
sampling day was confirmed by significant importance scores from the second sampling
day. However, particularly in the fecal headspace dataset, some VOCs showed high
variance in their importance rank, e.g., 2-methylbutanal and 2-methyl-1-pentene. This
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provided evidence that day-dependent deviations in the VOC levels exist, which needed to
be taken into account by the classification approach. Therefore, the following classification
model validation included separate model testing for both sampling days.

2.3. Classification of MAP Status from VOCs Present above Feces or in Alveolar Gas

Using the VOC concentration data from the subset of previously selected VOCs, we
aimed to build one classification model for each dataset, which correctly predicts the
MAP disease status of the samples. We employed random forest models to perform the
classification as described in Methods. To estimate the accuracy of the resulting models, we
generated receiver operating characteristic (ROC) curves, which are displayed in Figure 3.

Figure 3. Receiver operating characteristic (ROC) curves for random forest classification models from
subsets of fecal headspace data (model F, 19 variables) and alveolar gas data (model A, 11 variables).
Each curve represents the outcome of repeated model cross-validation on unseen test data from either
day 1 or day 2. Area under the curves (AUC) values for model F are 0.94 (day 1) and 0.96 (day 2) and
for model A are 0.95 (day 1) and 0.82 (day 2).

Each curve represents the predictions of repeated 10-fold cross-validation for the re-
spective dataset. To evaluate the model performance for both sampling days, we generated
an individual ROC curve using the test predictions for each day. The area under the curves
(AUC)–ROC values were calculated for all the curves.

The F-model (from fecal headspace samples) achieved comparably high levels (AUC–
ROC day 1 = 0.94, AUC–ROC day 2 = 0.96), which indicated less model dependence on
the sampling day and good reproducibility of the prediction accuracies. In contrast, the
A-model (from samples of alveolar gas) showed promising results (AUC–ROC = 0.95) on
day 1 but performed slightly worse on the second day (AUC–ROC = 0.82). Although the
model was trained on data from both sampling days, it tended to predict day 1 samples
more accurately, which in turn indicated that the VOC levels showed higher discriminatory
power on the first day.

2.4. Identification of Significant VOCs Classifying for Paratuberculosis in Stable Air

In the next step, we analyzed the VOC composition in the stable air samples (collected
at different locations) in order to investigate the variability and spatial dependencies of the
VOC profiles. Hereby, we distinguished between four types of samples (S1, S2, S3, S4) as
described in Methods. Initially, we analyzed if the presence of a face mask influenced the
VOC profiles measured in front of the cow’s head. Therefore, we statistically compared the
mean concentration between S1 and S2 for each VOC using Wilcoxon-Mann–Whitney tests.
Since no significant differences were found (p > 0.05), we merged groups S1 and S2 and
treated them as a single head-level group (S1S2).

Next, we conducted a feature importance analysis as in Section 2.1 for the three groups
of stable air (S1S2, S3, S4). As a result, 5 out of 25 detectable VOCs were selected from the
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S1S2 dataset, compared to 4 out of 25 from the S3 group (close to the floor). The resulting
VOCs are shown in Figure 4.

Figure 4. Variable importance plots displaying the importance values for all VOCs, which were
selected with the Boruta method. The two panels show the resulting variables of the merged dataset
of stable air collected at head level (S1S2), and the dataset of stable air collected close to the floor (S3).
The x-axis indicates the importance value, which is scaled to the maximum importance.

Interestingly, no feature was confirmed relevant in the S4 group (stable air sampled
distant from animals). Thus, two stable air groups remained (S1S2, S3), which represented
VOC levels at head level and close to the floor, respectively. Both datasets were used to
train a predictive classification model in the next step.

2.5. Classification of MAP Status from VOCs Present in Stable Air

In the second classification run, we aimed to build classification models from samples
of two groups of stable air (S1S2, S3). Compared to the fecal headspace and alveolar gas
datasets, the stable air dataset contains fewer samples (S1S2: n = 29, S3: n = 15); thus,
we decided to perform cross-validation on all samples without creating separate datasets
for each sampling day. Again, to evaluate the prediction performance of the model in
cross-validation, we generated ROC curves for both models and calculated the associated
AUC values. Stable air S1S2 achieved an averaged AUC value of 0.87, compared to an
AUC value of 0.91 for S3 (Figure 5).

Figure 5. Receiver operating characteristic (ROC) curves for random forest classification models
from subsets of stable air head-level data S1S2 (five variables) and stable air close to floor data S3
(four variables). Each curve represents the outcome of repeated model cross-validation. The area
under the curve (AUC) for model S1S2 is 0.87 and for model S3 is 0.91.
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2.6. Comparison of Resulting VOC Sets

In total, we identified 28 VOCs that were found to be relevant for the classification
of MAP samples across all investigated resources (Supplementary Materials, Table S1).
Two compounds, i.e., acetone and 2-butanone, were detected under all four investigated
conditions. Ethanol and propanol were detected in the groups of A, S1S2, and S3. Isoprene
was present in fecal headspaces and alveolar gas samples. However, the largest number of
VOCs was only present in a single set: 16 VOCs in fecal headspaces, 6 VOCs in alveolar
gas, and 1 VOC in stable air collected close to the animals (S1S2). Since the Venn diagram
(Figure 6) is based on the presence or absence of VOC compounds, we also evaluated
the regulation of the VOCs and found that 26 VOCs were upregulated in MAP-positive
samples, compared to MAP-negative samples under the tested conditions. Interestingly, 2-
butanone was upregulated in groups A, S1S2, and S3 but downregulated in F. Additionally,
4-octene was downregulated in group F (Supplementary Materials, Table S1).

Figure 6. Venn diagram of four sets of selected VOCs (fecal headspace (F) n = 19, stable air close
to floor (S3) n = 4, stable air head level (S1S2) n = 5, alveolar gas (A) n = 11), which represents the
comparison of the selected VOCs. Values indicate the number of common VOCs among the sets of
overlapping areas. The core area indicates the number of common VOCs, which are shared by all
four sets (n = 2).

3. Discussion

Confirming the hypothesis that MAP infections in animals or herds, respectively, are
detectable by means of volatile biomarkers, this study presents the first consideration
of tracing VOC profiles as potential diagnostic markers even under field conditions of
livestock farming. With respect to the suitability of different matrices, headspace above
feces, the alveolar fractions of exhaled breath, and stable air samples revealed diagnostically
relevant VOCs of unique but partly overlapping patterns. Biological and methodological
aspects need to be taken into account when interpreting the results of this study.

3.1. Biological Aspects

MAP infection is characterized by a chronic local inflammation that mainly affects the
gut-associated lymphoid tissue of the small intestine and proximal colon, the intestinal
mucosa of jejunum and ileum, and the mesenteric and ileocolic lymph nodes. A wide
variation of severity and distribution of lesions (focal to multifocal to diffuse), inflammatory
cell infiltrates (lymphocytes, multinucleated giant cells, epitheloid macrophages), and
mycobacteria within lesions (paucibacillary, multibacillary) of animals can be observed [16].
MAP is transferred into the intestinal content and is eventually shed within feces in
varying concentrations [17]. Intestinal inflammation is accompanied by malabsorption and
cachexia [18].

Based on these disease characteristics, we anticipated MAP-related VOCs predomi-
nantly in samples originating from feces acknowledging that (i) the pathogen itself and (ii)
markers of intestinal inflammation and/or local immune response might contribute to the
pattern of volatile compounds. Furthermore, the smell of feces will always be influenced
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by emissions related to the intestinal content, i.e., more or less digested feed components,
cell debris of the mucosal epithelium, and constituents of the gut microbiota. Feed com-
position may vary between herds, but paraTb may also alter the intestinal interior due to
inflammatory processes in the intestinal wall.

Exploiting the alveolar fraction of exhaled breath is based on the rationale that there is
a huge contact surface between lung and blood allowing the transfer of blood-borne VOCs
into the lung. Thus, alveolar gas is most likely representative of blood-borne volatiles. If
all fractions of exhaled breath would be collected, a mixture between gas columns in the
larger airways (airway dead space gas, composition roughly equivalent to ambient air) and
alveolar gas would be analyzed. Compared to the human lung, the proportion of airway
dead space volume per breath is much greater in large animals due to the anatomy of extra-
thoracic airways [12]. Related to paraTb, blood-born VOCs may origin from (i) catabolic
processes that are a consequence of malabsorption and inflammation and (ii) from systemic
markers of inflammation and host response. In addition, processes localized in the gut or in
draining lymph nodes as well as bacterial metabolism within the lesions might contribute
to blood markers due to large blood–intestinal exchange areas within the body.

Both, VOC emissions from feces and from exhaled breath contribute to the VOC
composition of stable air. However, the composition of stable air will be significantly
dependent on the collection site within the stable.

3.1.1. Sources of Variability in VOC Profiles

From the 76 detectable VOCs above fecal samples, 19 fulfilled the inclusion criteria,
and 11 out of 30 VOCs were selected in the alveolar gas dataset. VOCs selected for the
first sampling day were confirmed for the second day, although a certain degree of varia-
tion was observed. Based on these sets of VOCs, we were able to classify MAP-negative
and MAP-positive samples with high accuracy. This confirms the findings of previous
experimental studies suggesting that discrimination between MAP-negative and MAP-
positive animals is possible by the analysis of the VOC profiles in the headspace of fecal
samples and in exhaled breath, i.e., alveolar gas, of goats [8,14]. Despite standardized
feeding, housing, and management conditions, physiological variability of discriminatory
VOC profiles was noted [14]. The patterns of the most prominent substances changed
in the course of infection; however, differences between inoculated and noninoculated
animals remained detectable at any time in fecal samples and breath [8]. The results of two
consecutive experimental studies in goats revealed that certain VOCs contributed repro-
ducibly to the discriminatory VOC profile, although the effect size of the most important
substances varied [14]. In contrast to standardized conditions in animal experiments, there
are additional sources of variability of VOC emissions in the field, such as other diseases,
differences in feed composition, bedding material, floor conditions, air exchange rates
in the stable, numbers of animals per square meter. Such factors can influence the VOC
measurements and therefore require the application of suitable statistical methods. Despite
all these potential confounding factors, we successfully extracted VOC sets indicative of
MAP infection from different sources.

3.1.2. VOCs Indicative of MAP Infection

VOCs indicative of MAP infection differed between the three matrices explored in this
study. Our results indicated that the number of VOCs contributing to discrimination was
higher in fecal headspace (19 VOCs), compared to alveolar gas (11 VOCs), which is in line
with previous reports from goat experiments [8,14]. The lowest number of discriminatory
VOCs was observed in stable air (4–5 VOCs). Interestingly, some of the VOCs with
high effect sizes in the goat experiments [14] were also considered important for the
identification of MAP infection in cattle under field conditions, such as 2-butanone, acetone,
and propanol in alveolar gas, and isoprene, 2-butanone, 3-octanone, heptane, 2-pentylfuran,
2-methylfuran, 3-methylfuran and acetone in fecal headspace. It seems that, in both animal
species, these VOCs originate from similar metabolic and pathophysiologic processes.
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There was only a partial overlap of indicative VOCs between the three matrices. Only
two substances, acetone and 2-butanone, were generally considered important. Ethanol
and propanol were discriminatory in alveolar gas and stable air, and isoprene in samples
of alveolar gas and fecal headspace. As already discussed previously, VOCs indicative of
MAP infection in fecal headspace and alveolar gas originate from different sources, which
may explain these observations. Relevant VOCs in fecal headspace seemed predominantly
related to MAP metabolism, in particular fatty acid turnover and carbon metabolism.
This is supported by the fact that eight compounds, namely, heptane, 3-methylbutanol,
acetone, 2-butanone, 3-pentanone, 3-octanone, 3-methylfuran, and 2-pentylfuran, belonged
to the recently published VOC core profile of cultivated MAP strains [19]. Furthermore,
five compounds, namely 2-methylpropanol, 3-methylbutanol, 3-pentanone, isoprene, and
2-methylfuran, were indicative for MAP growth during cultural isolation from clinical
samples of cattle and goats [20].

In alveolar gas, however, compounds originating from inflammatory processes seemed
to predominate. VOCs indicative of inflammatory bowel disease (IBD), such as 1-propanol,
ethanol, and pentane [21], were also indicative of MAP infection. The local inflamma-
tory processes in the intestine share features in both diseases. Inflammation may lead
to oxidative stress and increased production of reactive oxygen species (ROS). ROS oxi-
dize biologically important molecules and cause lipid peroxidation of polyunsaturated
fatty acids, generating alkanes and methylated alkanes [22], such as pentane, hexane, 2-
and 3-methylpentane, and methylcyclopentane, which belonged to the most important
discriminatory substances in alveolar gas of MAP-infected cows in our study.

Some of the indicative VOCs, in particular acetone and isoprene, are likely to originate
from both, mycobacterial metabolism and host response. Mycobacteria are able to produce
methyl ketones, such as acetone [23], but acetone has also been linked to fat catabolism in
cattle and humans [24,25]. One major source of isoprene is the bacterial metyl-erythritol
phosphate pathway [26,27]; on the other hand, isoprene formation in humans was shown
to correlate with cholesterol biosynthesis [28] and, more importantly, with IBD [29].

Stable air samples only turned out meaningful when the collection was performed
close to the animals, i.e., either in front of the animal’s head (breathing area) or near to the
stable’s floor (coated with feces or manure). Despite these different sites of collection, the
interesting VOCs were nearly identical (Figure 4). However, compared to fecal headspaces
or alveolar gas samples, the number of indicative VOCs found in relevant stable air samples
was significantly lower. Multiple sources contribute to the VOC composition of stable
air, such as emissions from feces, urine, and skin of the animals, gases eructated from
the forestomaches of ruminants, components of breath, feedstuffs, bedding material, fuel,
building materials, and VOCs contained in outdoor air. This may impair the identification
of relevant VOCs. In addition, stable air is continuously exchanged by fresh outdoor air,
which may result in a decrease of VOC concentrations below the limit of detection even in
the vicinity of the animals.

3.2. Methodological Aspects

Sampling was conducted by preconcentration of VOCs either directly in the stable
(alveolar gas and stable air) or from fecal headspace after filling feces into sealed headspace
vials. Volatiles were identified later offline by GC–MS. This enabled the detection of VOCs
in very low concentrations in the range of ppbV to pptV. Utilization of VOC analysis for
practical pen-side diagnosis would demand a different approach. VOC emission has to be
measured directly on the spot. Analytical platforms that allow an online analysis of VOC
emissions, such as ion mobility spectrometry (IMS), ion flow tube–mass spectrometry (SIFT–
MS), or proton transfer reaction–mass spectrometry (PTR–MS), respectively, are available
and could be adapted for this purpose. Finally, the discriminatory performance of the
adapted analysis systems compared to established diagnostic methods has to be evaluated.

Demands on test quality largely depend on the final purpose of testing, either iden-
tification of MAP-positive herds or individual MAP-positive animals. Analysis of fecal
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headspace or alveolar gas would enable identification of both, positive individuals as well
as positive herds. Analysis of stable air would only allow identification of positive herds.

From the diagnostic perspective, test accuracy and validity of the classification model
are of particular importance. Here, we applied an adapted multivariate classification
analysis based on the random forest method, which has been used in various cases in
the field of metabolomics [20,30,31]. In this context, some considerations were taken into
account. First, overfitting of the predictive models, i.e., the loss of general prediction
validity can occur if the model fitted too tightly to the training data. Random forests
employ several techniques to avoid or minimize overfitting, for instance, the random
selection of variables at each node, the error estimation on the unseen out-of-bag data,
and the large number of trees, each of which is only based on a subset of the input data.
Additionally, we applied repeated cross-validation to improve the error estimation of the
model, due to the varying composition of the training dataset. This subsetting approach
is essential to account for the variability of different animals, farms, and sampling days
on the classification results. In this context, we also evaluated the reproducibility between
consecutive measurement days. For validation, we generated model test sets for both days
separately in order to evaluate one model on test data from two time points. Nevertheless,
the validation of the model on an independently sampled population remains to be shown.

With AUC values of 0.94 (day 1) and 0.96 (day 2), VOC analysis in fecal headspace
proved to be more reproducible and discriminatory than alveolar gas analysis for the
identification of MAP-positive animals. Furthermore, analysis of fecal headspace was
highly predictive, because the ROC curves closely approach the upper left corner of
optimal prediction. VOC analysis in alveolar gas was less reproducible, because of marked
differences in the AUC values between the two analysis days (0.95 on day 1 vs. 0.82 on
day 2), and less predictive, too.

The AUC values calculated for VOC analysis in fecal headspace of individual cattle
indicate that this approach has higher discriminatory power than established indirect
antibody ELISAs for the identification of MAP-infected animals, where AUC values of
0.55–0.57 [32] or 0.77–0.91 [33] were calculated, depending on the reference method used.
It is also superior to recently published novel biomarker-based diagnostic tests for paratu-
berculosis (ABCA13-based ELISA, SPARC ELISA, MMP8 ELISA) with AUC values of
0.79–0.85 [34]. However, these are only preliminary data, which have to be confirmed in
future field studies covering larger numbers of animals and herds. Likewise, the number
of MAP-positive and MAP-nonsuspect herds included in this study is too low to evaluate
the diagnostic performance of the approach on the herd level.

This limitation also applies to VOC analysis in stable air. However, our preliminary
data indicate that, despite relatively high AUC values (0.87 and 0.91), VOC analysis in
stable air is not predictive enough for the identification of MAP-positive herds. This is
mainly due to the fact that sensitivity is increased only to the cost of specificity, and a high
rate of false-positive results has to be anticipated.

4. Animals, Materials, and Methods

4.1. Legislation and Ethical Approval

This study was carried out in strict accordance with European and National Law for
the Care and Use of Animals. The protocol was approved by the Animal Health and Welfare
Unit of the Thüringer Landesamt für Verbraucherschutz (Permit Number: 04-102/16; date
of permission: 20.04.2016). The experiments were conducted under the supervision of the
authorized institutional Animal Protection Officer. Every effort was made to minimize
discomfort and suffering throughout the duration of the study. No sedation or anesthesia
was applied to the animals.

4.2. Characteristics of Herds and Animals Used for Sample Collection

In total, 8 dairy herds and 77 individual dairy cows were included in this explorative
study. All herds were enrolled in the voluntary paratuberculosis control program of the
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German federal state of Thuringia. The paratuberculosis status of the herds was defined
depending on the results of annual whole herd tests for the presence of MAP in individual
fecal samples by bacterial culture (fecal culture). Accordingly, four herds were classified as
MAP-positive herds, because MAP was detected in the fecal samples of animals from these
herds, and four herds were classified as MAP-nonsuspect herds, because MAP was not
identified in any fecal sample of animals from these herds during at least three preceding
annual whole herd tests.

The individual dairy cows included in this study were selected based on their fecal
culture results during whole herd testing. Animals from MAP-nonsuspect herds were
classified as MAP negative. Cows from MAP-positive herds with at least one positive
test result of fecal culture were classified as MAP positive. During the study period,
30 MAP-positive cows were available, and 47 MAP-nonsuspect cows could be recruited.
The animals were examined for fecal shedding of MAP at the time of VOC sampling by
fecal culture [35]; and for the presence of antibodies against MAP in blood serum by a
commercially available enzyme-linked immunosorbent assay (IDEXX Paratuberculosis
Screening ELISA, IDEXX, Montpellier, France).

4.3. Sampling and Preconcentration of Headspace above Feces, Alveolar Gas, and Stable Air

Each animal and each herd were sampled twice in a one-week interval. The numbers
of samples included in this study are given in Tables 1 and 2.

Table 1. Numbers of alveolar gas and fecal samples obtained from dairy herds and included in
VOC analyses.

Biological Specimen
Herd Status: MAP-Negative

Herds/Animals/Samples
Herd Status: MAP-Positive

Herds/Animals/Samples

alveolar gas 4/46/85 4/30/49
headspace above feces 4/47/93 4/30/58

Table 2. Numbers of stable air samples obtained from dairy herds and included in VOC analyses.

Locations of Stable Air Sampling

Herd Status:
MAP-Negative
Herds/Samples

Herd Status:
MAP-Positive

Herds/Samples

S1: head level, without face mask 4/8 4/7
S2: head level, through face mask 4/8 4/6

S3: close to floor contaminated with manure or feces 4/8 4/8
S4: distant from animals, slurry, or wastes, partially floated by fresh air 4/8 4/7

Fecal samples (F) were collected on an individual basis directly in a clean sampling
container, either through rectal manipulation or during spontaneous defecation. From
this, smaller portions of about 3 g of fresh feces per cow and time point were filled into a
20 mL headspace vial sealed with Teflon-coated rubber septa in combination with magnetic
crimp caps, as described elsewhere [36]. The vials were stored at 4 ◦C and processed
within 24–36 h after sampling. For preconcentration with needle trap microextraction
(NTME), the vials were heated up to 37 ◦C. A needle trap device (NTD, packed with 1 cm
divinylbenzene, Carbopack X and Carboxen) was connected to a 1 mL syringe and inserted
through the Teflon-coated rubber. One mL of headspace gas was manually moved through
the NTD into the syringe and back through the NTD into the headspace volume 20 times.

Collecting alveolar gas (A) was based on CO2-controlled sampling of exhaled breath
using a tightly fitting face mask and combining mainstream capnometry with needle-
trap microextraction (NTME). The technical setup designed particularly for large animals
has been described in detail elsewhere [12,36,37]. Shortly, a fast responding capnometer
ensured continuous measurement of CO2 in exhaled breath. Above a defined threshold
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(about 25–30 mm Hg or 3.3–4.0 kPa, respectively) a CO2-triggered valve opened and
predominantly alveolar gas was directed through an NTD for collection of VOCs.

Stable air (S) was also collected using the NTME sampling device while 60 mL of
stable air was enriched per sample without CO2-controlled opening of the valve. Stable air
samples resulted from different locations:

• S1: at the level of the cow’s head, without the presence of any facemask;
• S2: in front of the cow’s head while wearing the facemask (used for exhaled breath

sampling);
• S3: in the area close to the floor of the stable, i.e., close to emissions from feces, manure,

or slurry;
• S4: in the area above the animals, far away from slurry or wastes, and partially floated

naturally by fresh air.

4.4. Analysis and Biochemical Identification of VOCs

VOC analyses were performed using gas chromatography–mass spectrometry (GC–
MS) at least 60 h after sampling. After thermodesorption of the NTDs, VOCs were separated
with a GC (Agilent 7890A, Agilent Technologies, Boeblingen, Germany) using helium as
carrier gas and detected by a mass spectrometer (Agilent 5975C inert XL MSD). The
NIST Database (NIST 2005 Gatesburg, PA, USA) was used to identify the VOCs via the
resulting mass spectra. Pure reference substances were measured to verify the identified
VOCs by retention time and respective mass spectra. Quantification of all these VOCs
was performed using a liquid calibration unit (LCU, Ionicon Analytik GmbH, Innsbruck,
Austria). Humid standard gas mixtures were created in different concentrations from pure
reference substances for calibration. Limit of detection and quantification was calculated
by measuring the baseline of 10 blank samples. Concentrations below LOQ (limit of
quantification) were set to zero.

4.5. Data Preprocessing

All resulting data files were loaded as tables into the R statistical environment
(v3.6.1) [38] for further processing and analyses. For each dataset (feces, alveolar gas,
stable air), a matrix of concentration values, along with annotation data, was processed.
Annotation of each sample included identifiers for animal, farm, and day of measurement.
We compared the distribution of the VOC measurements across the different samples to
examine the presence of outliers. To visualize the multivariate concentration data (rows:
samples, columns: VOCs), we generated hierarchically clustered heatmaps using the R
package pheatmap (v1.0.8) [39]. This package allows for combined plotting of measure-
ments and annotation columns, which indicate farm and MAP status in our plots. To
account for the large numerical range of the data, we applied a log2 transformation (of
x + 1) to obtain values in a suitable color scale. Furthermore, multidimensional scaling
(MDS) was conducted with the help of the cmdscale function in R. This method returns a
two-dimensional approximation of the pairwise sample distances. These transformed data
points can be visualized in a scatter plot to examine the cluster structure of the data.

4.6. Feature Selection

Feature selection was performed to select a subset of suitable VOCs for the construction
of a MAP classification model. Therefore, all measured compounds were tested using
the method Boruta (v 6.0) [40]. This algorithm implements a permutation scheme to rank
the variables with regard to their importance. Feature selection was performed for each
dataset (fecal headspace, alveolar gas, stable air) and each measurement day separately.
Importance values were scaled to the maximum value in order to obtain percentages.
Features with confirmed importance of >25% were selected. Those features were used in
the following classification approach.

In the analysis of alveolar gas data, butanoic-acid-Pr.E and propanoic-acid-2OH-
EE were selected. Due to the well-known fact that short-chain fatty acids (i.e., mainly
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acetate, lactate, propionate, and butyrate) are the main products of fermentation processes
in the forestomach system of ruminants, and that forestomach gases may alter exhaled
breath composition significantly [12,41], these two VOCs were considered as “confounding
compounds,” and were excluded from further statistical analyses.

4.7. Classification Model Building

To discriminate MAP-positive from MAP-negative samples, we used the supervised-
learning approach random forest [42]. Here, we applied the R package randomForest
(v4.6_14) in combination with the package caret (v6.0_83), which provides standardized
procedures to perform training and cross-validation [43]. The combination of decision
trees in a random forest is a well-established and robust approach to the classification of
multivariate samples. Each tree is trained on a different resampled subset of the data and
a different subset of variables. This random and highly independent learning phase is
followed by the prediction of unseen samples (out-of-bag samples), which is implemented
by a class vote of all trees. For each sample, the resulting predicted class is typically the
one with the highest number of votes.

The caret package provides helpful functions to perform cross-validation and pa-
rameter optimization of the randomForest model [43]. Here, we applied repeated cross-
validation (10-fold, 5 repeats) to obtain an averaged accuracy estimation of the final model.
The parameter ntree (number of trees) was set to its default value (ntree = 500), while
mtry (number of candidate variables in each split node) was separately optimized in each
classification run. To evaluate the robustness of the resulting model, we modified the
caret cross-validation procedure to perform model testing on data from both sampling
days separately. Due to the limited number of samples, all available data were used in the
cross-validation procedure without retaining samples for an external validation set.

The performance of the model predictions was evaluated in a receiver operating
characteristic (ROC) analysis. Areas under the ROC curve (AUC–ROC) values were
computed to compare the relationship between true positive rate and false positive rate
(pROC package). Receiver operating characteristic (ROC) curves are used most commonly
as a means of evaluating diagnostic tests. These curves are generated by plotting the
sensitivity (true-positive rate) on the y-axis and 1-specificity (false-positive rate) on the x-
axis. Curves that approach closest to the coordinate (x = 0, y = 1) are more highly predictive,
whereas ROC curves that lie close to the line of equality indicate that the result is not better
than obtained by chance. The area under the curve (AUC) is used to quantify the overall
ability of a test to discriminate between two outcomes [44].

5. Conclusions

This explorative study revealed, for the first time, that VOC profiles can be used as
potential diagnostic markers even under field conditions of livestock farming. Sets of
VOCs indicative of MAP infection in dairy herds were successfully extracted from different
biological matrices, i.e., above feces, in alveolar gas, and even in stable air. Discrimination
between MAP-infected and -noninfected cattle was based on multivariate analysis of
different VOCs with sufficient variable importance. The number of relevant VOCs was
higher in fecal headspace (19 VOCs), compared to alveolar gas (11 VOCs) or stable air
(4–5 VOCs). Due to different sources of origin, the relevant VOCs vary between different
biological matrices, and further research is needed to correlate features of the disease
(for example status of the infection, bacterial load, degree of local inflammation, systemic
pathophysiological consequences, host response, etc.) with corresponding VOC pattern.

Among these three biological matrices, the headspace above feces turned out as
most reproducible, discriminatory, and highly predictive. The diagnostic performance of
fecal headspace analysis seemed to be similar or even superior to established and novel
diagnostic tests for MAP infection. Despite these encouraging results, more field studies
are necessary (covering larger numbers of animals and herds, and other animal species
susceptible for MAP) to confirm the suitability of VOC analysis as a potential diagnostic

151



Molecules 2021, 26, 2854

test. Introducing VOC analysis as a practical pen-side diagnostic test would ideally require
online analysis of VOC emissions. The performance of such analytic systems, compared to
established diagnostic methods, has yet to be evaluated.

Supplementary Materials: The following are available online, Table S1: List of important VOCs.
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Abstract: Hepatocellular carcinoma (HCC) biomarkers are lacking in clinical practice. We therefore
explored the pattern and composition of urinary volatile organic compounds (VOCs) in HCC patients.
This was done in order to assess the feasibility of a potential non-invasive test for HCC, and to
enhance our understanding of the disease. This pilot study recruited 58 participants, of whom 20
were HCC cases and 38 were non-HCC cases. The non-HCC cases included healthy individuals
and patients with various stages of non-alcoholic fatty liver disease (NAFLD), including those with
and without fibrosis. Urine was analysed using gas chromatography–ion mobility spectrometry
(GC–IMS) and gas chromatography–time-of-flight mass spectrometry (GC–TOF-MS). GC–IMS was
able to separate HCC from fibrotic cases with an area under the curve (AUC) of 0.97 (0.91–1.00),
and from non-fibrotic cases with an AUC of 0.62 (0.48–0.76). For GC-TOF-MS, a subset of samples
was analysed in which seven chemicals were identified and tentatively linked with HCC. These
include 4-methyl-2,4-bis(p-hydroxyphenyl)pent-1-ene (2TMS derivative), 2-butanone, 2-hexanone,
benzene, 1-ethyl-2-methyl-, 3-butene-1,2-diol, 1-(2-furanyl)-, bicyclo(4.1.0)heptane, 3,7,7-trimethyl-,
[1S-(1a,3β,6a)]-, and sulpiride. Urinary VOC analysis using both GC–IMS and GC-TOF-MS proved
to be a feasible method of identifying HCC cases, and was also able to enhance our understanding of
HCC pathogenesis.

Keywords: urinary biomarkers; hepatocellular carcinoma; diagnosis; volatile organic compounds;
headspace analysis

1. Introduction

Hepatocellular carcinoma (HCC) is the third most common cause of cancer-related
death worldwide [1]. In most cases, HCC is considered a consequence of liver fibro-
sis/cirrhosis, with chronic viral hepatitis, alcoholic liver disease, and non-alcoholic fatty
liver disease (NAFLD) being the most common underlying causes [2]. Early detection
of HCC is usually reliant on ultrasound scan (USS) surveillance of cirrhotic patients. In
these patients, the USS detection of HCC lesions varies according to the experience of the
USS operator. Detection sensitivity can range from 40% to 80%. Another test that can
be used for cirrhotic patients is the serum marker alpha-fetoprotein (AFP). AFP has poor
sensitivity and relies on the cut-off being applied. Due to this, the clinical guidelines in
2018 recommended that AFP should no longer be used in routine clinical practice [3,4].

HCC diagnosis relies on advanced contrast-enhanced scans, which are either com-
puted tomography (CT) or magnetic resonance (MR). HCC tissue biopsy is reserved for the
confirmation of inconclusive HCC lesions found on a scan, or for determining the choice
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of palliative chemotherapy in case there is need to differentiate between HCC and other
hepatobiliary malignancies [3–5]. HCC is often diagnosed late due to inaccessibility to CT
and/or MR scans, especially in low-resource settings. Another factor involved in delayed
diagnosis is the absence of symptoms until late in the disease. In addition, HCC has no
approved screening programme for the general population—unlike colorectal, breast, or
cervical cancers [1–5].

Given these factors there is still a need for ways to diagnose and understand the
pathogenesis of HCC. One of the described mechanisms in HCC pathogenesis involves the
impairment of hepatic metabolic pathways. The literature suggests that HCC development
could be related to the malfunction of the cytochrome polysubstrate 450 (CYP450). These
are heme-containing monooxygenases located in the endoplasmic reticula of the hepatic
cells. The main function of cytochromes is to detoxify chemicals that could be harmful
to tissues. However, this detoxification may produce harmful metabolites that could
disrupt the hepatic cellular DNA division mechanisms required to maintain hepatic cellular
proliferation, with subsequent cancer formation [6–11]. Because HCC is a vascularized
tumour, we hypothesized that the byproducts of CYP450, including different volatile
organic compounds (VOCs), would be found in the urine following the homeostatic HCC
cells’ secretion of these compounds into systemic circulation, and subsequent kidney
filtration. We therefore designed a pilot study with the aim of assessing this hypothesis.

2. Results

Figure 1a,b shows the outputs from GC-IMS and GC-TOF-MS, respectively. For the
GC–IMS output, the background is defined in blue, with the red peaks showing areas of
high intensity. The long red line is the output of the instrument to the carrier gas (in this
case, nitrogen). The results show that we were able to separate different chemicals within
the urine sample without saturating the machine and without chemical overlap. For the
GC-TOF-MS output, we see a broad range of chemical peaks throughout the spectra, with
good separation. On average, the total number of peaks detected using GC-TOF-MS, after
analysing HCC and fibrosis samples, was 112, and the total number of peaks detected
among HCC and non-fibrosis samples was 74. Similarly, for fibrosis and non-fibrosis
samples, 79 peaks were detected on average.

 

 

(a) (b) 

Figure 1. Example outputs of the instruments to a urine sample: (a) gas chromatography-ion mobility spectrometry
(GC-IMS); (b) gas chromatography-time-of-flight mass spectrometry (GC–TOF-MS).
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2.1. Results from GC-IMS

Table 1 shows the results of the separation of those with HCC from non-HCC patients
with liver fibrosis. The area under the curve (AUC), sensitivity, and specificity were 0.97,
0.43, and 0.95, respectively. Conversely, the separation of those with HCC compared to non-
HCC patients without liver fibrosis shows modest separation, with an AUC, sensitivity, and
specificity of 0.62, 0.60, and 0.74, respectively. Comparison of both fibrosis and non-fibrosis
patients revealed an AUC, sensitivity, and specificity of 0.63, 0.29, and 0.90, respectively.
The receiver operating characteristic (ROC) curves for the different liver groups, using
GC-IMS, are presented in Figure 2. The optimal threshold values were applied for the
comparison of HCC and fibrosis samples, HCC and non-fibrosis samples, and fibrosis and
non-fibrosis samples, and were 0.39, 0.35, and 0.52, respectively.

Table 1. Statistical results from the GC–IMS analysis (95% confidence intervals are in brackets). Positive predictive value
(PPV); negative predictive value (NPV).

Comparison Classifier AUC Sensitivity Specificity PPV NPV

HCC vs.
Fibrosis Random Forest 0.97

(0.91–1.00)
0.43

(0.13–0.75)
0.95

(0.86–1.00)
0.75

(0.33–1.00)
0.83

(0.68–0.95)
HCC vs.

Non-Fibrosis Random Forest 0.62
(0.48–0.76)

0.60
(0.41–0.78)

0.74
(0.61–0.87)

0.60
(0.42–0.78)

0.74
(0.61–0.88)

Fibrosis vs.
Non-Fibrosis

Linear
Regression

0.63
(0.36–0.89)

0.29
(0.00–0.60)

0.90
(0.81–0.97)

0.40
(0.00–0.83)

0.85
(0.74–0.94)

 

 

 

(a) (b) 

 
(c) 

Figure 2. Receiver operating characteristic (ROC) curves for the GC–IMS analysis: (a) HCC vs. fibrosis; (b) HCC vs.
non-fibrosis; (c) fibrosis vs. non-fibrosis.

157



Molecules 2021, 26, 2447

The results showed that the diagnostic tests gave four false positives for comparison
between HCC and fibrosis samples, eight false positive tests for HCC and non-fibrosis
samples, and only three false positive tests for fibrosis and non-fibrosis samples. Moreover,
the number of false negative tests for HCC and fibrosis samples was only 1, whereas the
number of false negative tests for HCC and non-fibrosis samples, and for fibrosis and
non-fibrosis samples, was 12 and 5, respectively.

2.2. Results from GC-TOF-MS Chemical Identification

Test accuracy for HCC and non-HCC cases using GC–TOF-MS is provided in Supple-
mentary Materials Table S2 and Figure S1. This includes ROC curves for the different liver
disease groups. From the total list of more than 200 chemicals identified using the National
Institute of Standards and Technology (NIST) software, 5 were found to be statistically
significant between the groups, with p-values of <0.05. Further analysis was undertaken
comparing HCC with fibrosis and with non-fibrosis, and an additional two chemicals
were identified from HCC versus fibrosis in the same way. No additional chemicals were
identified when comparing HCC with non-fibrosis. These chemicals are listed in Table 2,
with numbers 1–5 for HCC vs. non-HCC, and the remaining two associated with HCC
vs. fibrosis. This table also includes the chemical retention time, the p-value between the
groups, and whether the abundance of a chemical increased or decreased with HCC. We
have not attempted to quantify these changes here due to the small sample size.

Table 2. List of the relevant chemicals identified using GC-TOF-MS for HCC vs. non-HCC.

No.
Retention

Time (min)
Chemical p-value

Abundance
Change

1 15.25 4-Methyl-2,4-bis(p-hydroxyphenyl)pent-1-ene, 2TMS derivative <0.01 Lower for HCC
2 2.5998 2-Butanone 0.03637 Higher for HCC
3 4.5684 2-Hexanone 0.04309 Lower for HCC
4 6.3215 Benzene, 1-ethyl-2-methyl- 0.04183 Lower for HCC
5 12.1318 3-Butene-1,2-diol, 1-(2-furanyl)- 0.03247 Lower for HCC
6 8.2054 Bicyclo[4.1.0]heptane, 3,7,7-trimethyl-, [1S-(1a,3ß,6a)]- 0.03553 Lower for HCC
7 13.861 Sulpiride 0.04369 Lower for HCC

In addition, fibrosis and non-fibrosis samples were analysed in the same way. Table S3
in the Supplementary Materials provides a list of the relevant chemicals found in this
analysis.

3. Discussion

In this study we investigated the use of VOCs as a means of providing biomarkers for
the diagnosis of HCC. Here, VOCs were analysed using GC-IMS and GC-TOF-MS, which
we have previously used in other clinical studies [12–14]. Importantly, this study further
consolidates existing published studies utilizing urinary VOCs for cancer detection. The
non-HCC group included both those with and without liver fibrosis, to reflect clinical HCC
screening scenarios. The high specificity of 0.95 (0.86–1.00) in separating HCC from those
with liver fibrosis offers important insights into the role of urinary VOCs as a screening
modality. The hypothesis that the hepatic CYP450 byproducts (VOCs) related to HCC
could be detected in different biological samples has been previously described. Two
studies have shown that VOCs can be detected in the headspace of incubated in vitro HCC
cells, supporting the use of VOC analysis for the assessment of hepatic enzyme function,
as well as for the prediction of HCC progression and metastasis [15,16]. Qin et al. [17]
utilized VOCs in the breath to identify HCC, independent of AFP levels or the disease’s
clinical stage. A recent study by Miller-Atkins et al. [18] showed that the use of 22 VOCs
in the breath could detect HCC with 0.73 sensitivity, compared with 0.53 for AFP in the
same cohort.
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Urine is a stable sample medium, and easier to collect for VOC analysis [19]. We
have previously reported that urinary VOC analysis using solid-phase microextraction
(SPME) was able to differentiate HCC and non-liver disease cases. The SPME AUC for
HCC with negative alpha fetoprotein (AFP) was 0.68, and it rose to 0.83 when combined
with raised AFP [20]. This was comparable to current findings reported here, where the
HCC AUC was 0.62 using GC-IMS, and 0.79 using GC-TOF-MS. The study reported here
also demonstrated the feasibility of urinary VOCs for differentiating between non-fibrotic,
fibrotic, and HCC cases, as demonstrated in Table 1 and Supplementary Tables S1 and S2.

Using GC-TOF-MS, we tentatively identified seven VOCs related to HCC, as shown
in Table 2. Though we did not perform verification and quantification of these chemicals,
we did undertake a search of these VOCs in relation to the development of HCC as per
the current literature. We found out that the most described VOC in HCC was 2-butanone.
In experimental models, exposure to 2-butanone led to hepatotoxicity by potentiating
dihydronicotinamide adenine dinucleotide phosphate (NADPH) cytochrome c reductase
activity, along with the concentration of cytochrome P450 enzymes. In addition, 2-butanone
exposure in these models, concomitantly with the known hepatocarcinogenic agent carbon
tetrachloride (CCI4), accelerated the formation of hepatotoxic metabolites and HCC. 2-
Butanone was also found to inhibit the activity of membrane-bound monoamine oxidase.
This is important because monoamine oxidase was found to suppress HCC metastasis
and progression by inhibiting the adrenergic system and its transactivation of epidermal
growth factor receptor (EGFR) signalling [21–30]. In human studies, 2-butanone was
found in the breath of HCC patients, and was found to have the best diagnostic value
among other organic compounds [17]. In NAFLD paediatric patients, 2-butanone appeared
at significantly higher levels in the faeces and was related to faecal Lachnospiraceae—a
family of anaerobic, spore-forming bacteria. Additionally, the study found that Oscillospirae
decrease relative to 2-butanone upregulation [31]. 2-Butanone was found to be elevated
in cirrhotic patients who underwent liver transplantation [32]. 2-Butanone levels in the
blood were found to be significantly discriminant in liver cancer patients, in comparison
to healthy individuals [33]. In breath studies looking into cirrhotic and non-cirrhotic liver
patients, serum bilirubin showed a positive correlation with 2-butanone. The 2-butanone
in the breath also distinguished different classes of liver cirrhosis, demonstrated by Child-
Turcotte-Pugh (CTP) scores of A, B and C [34,35].

We also tentatively identified 4-methyl-2,4-bis(p-hydroxyphenyl)pent-1-ene (MBP),
which is a derivative of bisphenol A (BPA), a major pollutant. In the liver, MBP metabolic
activation from BPA occurs via the cytochrome P450 system [36]. MBP can induce the
function of oestrogen in experimental models via activation of the oestrogen receptor
(ER) [37]. In patients with HCC, ERs are present and functional in around 50% of cases, but
their role in promoting carcinogenesis is still not fully clear [38]. The presence of urinary
MBP in HCC patients in this study suggests that MBP plays a role in HCC, perhaps via the
activation of ERs, but this requires further research.

Another VOC possibly found in this study related to HCC is 2-hexanone, which was
found to have a potentiating effect on the hepatotoxic agent chloroform, and subsequent
liver injury, in experimental animal models [39,40]. The mechanism for this was found to
be due to the induction of the CYP450 system [41–43]. Chronic inhalation of an isomer of
2-hexanone (methyl isobutyl ketone, MIBK) was found to cause hepatocellular adenomas
and HCC in mice [44–46]. This was shown to be in part due to the activation of the
pregnane X and constitutive androstane nuclear receptors; these receptors are responsible
for the regulation of CYP450 activity [44].

Benzene, 1-ethyl-2-methyl- has been identified as a blood biomarker of HCC in a
study using SPME-GC-MS [47]. Sulpiride is another chemical found in our study that is
closely related to many chronic liver diseases. In particular, sulpiride was found to be
related to biliary liver cirrhosis [48], NAFLD [49], and cholestatic hepatitis [50]. Though
it has not been identified as a biomarker for HCC, the presence of sulpiride indicates
that it may be a significant chemical for HCC. A study has suggested 3-butene-1,2-diol,
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1-(2-furanyl)- as an important VOC for lung cancer [51], but it has not been verified as an
HCC biomarker. Similarly, bicyclo[4.1.0]heptane, 3,7,7-trimethyl-, [1S-(1a,3β,6a)]-, found
in our study, has not been identified as a biomarker. Further investigation is needed to
confirm these chemicals in a larger cohort.

Our study was limited in not accounting for other factors that can be involved in the
production of VOCs, such as occupational environmental factors, diet, smoking, and drug
use. Another limitation was the small number of study participants. Nevertheless, this
study has answered the question of whether VOCs related to the function of CYP450 in HCC
can be detected in the urine. In particular, as discussed earlier, the tentative identification of
urinary VOCs in this study has been seen previously in various experimental and clinical
studies. The strong literature around 2-butanone encourages further study to identify the
exact biochemical pathways of this compound during HCC pathogenesis. However, we
did not validate these chemicals, nor did we quantify them; this effort will be undertaken
in a larger study. In addition, the data from the GC-IMS system were analysed using a
pattern recognition approach, and we did not attempt to identify chemical components.
Again, we propose to look further into this in the next study.

4. Materials and Methods

This pilot study was approved by the Coventry and Warwickshire and Northeast
Yorkshire NHS Ethics Committees (Ref 18717 and Ref 260179). The study conformed to
the ethical principles of the Declaration of Helsinki. Study participants were recruited
from University Hospital Coventry and the Warwickshire NHS Trust, UK. All participants
provided written informed consent. Five-millilitre urine samples were collected into
universal bottles from each study participant. These samples were then immediately frozen
at −80 ◦C within 1 to 2 h. The samples were then stored until further sample analysis at
the end of the recruitment process. We have previously tested the stability of urine samples
in storage, and all methods were in line with these findings [52,53].

4.1. Study Characteristics

There were a total of 58 participants. These included 20 HCC cases and 38 non-HCC
cases. The non-HCC cases were recruited from two sources in order to decrease bias: The
first source consisted of healthy individuals without liver disease. The second source
consisted of patients with different stages of NAFLD. The advantage here is that these
patients represent those at risk of becoming HCC cases in the future. The non-HCC cases
were then further divided into 31 non-fibrotic and 7 fibrotic/cirrhotic cases. The exclusion
criteria were pregnancy and age <18 years. All of the participants were recruited prior to
any anticancer treatment.

HCC diagnosis was made according to the current international guidelines, with
all inconclusive cases being confirmed by a liver biopsy. Liver fibrosis/cirrhosis was
confirmed by clinical examination and different radiological tests. In case of ambiguity
about the clinical diagnosis, a liver biopsy was performed so as to ascertain the cause of
the liver disease, and to look for the presence or absence of liver fibrosis/cirrhosis. We
further collected other clinical covariates of interest, including gender, age at the time of
urine sampling, history of absence or presence of diabetes, and the extent of HCC spread.
We also collected liver function tests at the time of urine sampling, including AFP, alanine
aminotransferase (ALT), alkaline phosphatase (ALP), albumin, and bilirubin. The study
participants’ characteristics are further detailed in Table 3.
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Table 3. Clinical and biochemical characteristics of the recruited study participants at the time of
obtaining their urine samples.

Covariate HCC Cases Non-HCC Cases

No. of Patients 20 38
Age: Mean (Range) 73 (53–84) 58.08 (29–89)

Gender: Female/Male 2/18 11/27

Cause of Liver Disease

3 Alcohol
1 HBV
1 HCV

13 NASH
2 Primary/Idiopathic

1 HBV Cirrhosis
9 NAFLD
10 NASH

6 NASH Cirrhosis
12 without Liver Disease

Histological/Radiological
Features of Liver Cirrhosis:

Present/Absent
16/4 7/31

Diabetes:
Present/Absent 11/9 7/31

AFP: Mean (Range), KU/L 1380.60 (1–9400) -
ALT: Mean (Range), U/L 44.60 (13–149) 50.74 (5–304)
ALP: Mean (Range), U/L 150.90 (83–326) 89.76 (53–279)

Albumin: Mean (Range), g/L 39 (24–44) 43.87 (28–50)
Bilirubin: Mean (Range),

µmol/L 24.30 (5–84) 7.97 (5–21)

Stage of the HCC:
Hepatic/Extra-Hepatic 13/7 -

Characteristics of the HCC and non-HCC groups. HCC diagnosis was made in line with international guidelines.
Liver disease was established using a combination of radiological scans, FibroScan, laboratory markers, and
histology. All covariates were collected at the time of urine collection. Abbreviations: AFP, alpha-fetoprotein; ALT,
alanine aminotransferase; ALP, alkaline phosphatase; HBV, hepatitis B virus; HCV, hepatitis C virus; NAFLD,
non-alcoholic fatty liver disease; NASH, non-alcoholic steatohepatitis.

4.2. GC-IMS Methodology

Samples were shipped from University Hospital Coventry and from Warwickshire
in universal sample containers, on dry ice, to the School of Engineering, University of
Warwick, where they were stored at −20 ◦C until use. Prior to testing, the samples were
thawed overnight in a laboratory fridge at 4 ◦C. Once thawed, 5 mL of each urine sample
was aliquoted into 20 mL glass vials (Thames Restek, UK), and sealed with a PTFE crimp
cap (Thames Restek, UK). Samples were then analysed using a FlavourSpec GC-IMS
(G.A.S, Dortmund, Germany). The FlavourSpec was fitted with a CombiPAL autosampler,
allowing for high-throughput automatic analysis of the samples. The samples were loaded
into a cooled autosampler tray, keeping the samples at 4 ◦C. Each sample was heated to
40 ◦C and then agitated for 10 min prior to analysis. A 0.5 mL sample of the headspace
was then taken using the autosampler syringe and injected directly into the GC-IMS for
sampling. The GC–IMS settings were as follows: drift gas flow of 150 mL/m, and a carrier
gas flow rate of 20 mL/min. The drift gas used was 99.99% nitrogen. The IMS was heated
to 45 ◦C (T1), the GC to 40 ◦C (T2), the injector to 80 ◦C (T3), the T4 transfer line to 80 ◦C,
and the T5 transfer line to 45 ◦C. Sample analysis took 10 min. Once completed, the data
acquired were viewed using LAV software (G.A.S, Dortmund, Germany) and then exported
for further analysis. This method has been developed over several urinary VOC studies,
and is designed to maximize information content and chemical separation [12,54]. This
includes the volume of urine, agitation period, and temperature. For quality control, blank
samples were added at the beginning and end of each run, with the instrument having
regular calibration checks run. Furthermore, the information content of each sample was
checked, which included a visual inspection of each sample file.

4.3. GC-TOF-MS Methodology

A subset of samples was also analysed using GC-TOF-MS (Markes International, UK),
with a UNITY-xr thermal desorber and ULTRA-xr autosampler (Markes International, UK).
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Urine samples for GC-TOF-MS were aliquoted as outlined, with about 5 mL of each sample
in a 20 mL vial, which was sealed with a crimp camp. The headspace of each urine sample
was then adsorbed onto a Markes bio-monitoring tube (C2-AAXX-5149). The septum of the
vial was pierced, and the sorbent tube pushed through into the headspace in the vial. The
samples were then heated to 40 ◦C for 20 min, before a pump was attached to the sorbent
tube and the sample was pulled through onto the sorbent bed of the tube for 20 min whilst
still being heated to 40 ◦C. Once complete, the tube was removed from the vial and placed
into the Markes ULTRA-xr autosampler. The ULTRA-xr autosampler was set to run with
a standby split of 150 ◦C, and a GC temperature ramp of 20 ◦C per minute, heating from
40 ◦C to 280 ◦C with a GC run time of 25 min. The samples were each pre-purged for
1 min, following which the sorbent tube was desorbed onto the trap for 10 min at 250 ◦C.
Once complete, the trap was purged for a further minute and then cooled to 30 ◦C, before
being heated to 300 ◦C for 3 min. Post-analysis, a dynamic baseline correction (DBS) was
applied using the native TOF-DS software, and the chromatogram was integrated and
deconvoluted with the following settings: global height reject of 10,000, global width reject
of 0.01, baseline threshold of 3, and global area reject of 10,000. The peaks identified were
then compared with the NIST list, with a match (forward and reverse) factor of 450, to
identify the compounds present. As with GC–IMS, this method has been used in a number
of VOC studies, including those associated with cancer, and has been previously reported
on [52].

4.4. Statistical Analysis

The analysis of the data was undertaken using our previously reported data analysis
pipeline for GC-IMS and GC-TOF-MS data, using “R” (version 3.6.3) [12–14]. In brief, for
GC–IMS data, we applied a two-stage pre-processing step. This was undertaken because
the dataset has high dimensionality (typically 11 million data points), but low chemical
information. The first step was to crop the central section of the output data, where all of
the chemical information is located. This was followed by the application of a threshold,
below which all values were given a value of zero. This was undertaken to remove the
background, leaving just the chemical information. The crop parameters were manually
selected, and the same values were applied to all of the data. The threshold was defined
by the value of the background noise. The data were then processed using a 10-fold
cross validation. Here, the data were split into a 90% training set and a 10% test set.
Within each fold, a Wilcoxon rank sum test was undertaken, and the 100 features with the
lowest p-value were extracted. Classification models were constructed using two classifiers
(eXtreme Gradient Boosting (XGBoost), and logistic regression). This process was repeated
until all of the samples had been in the test group. The results were then collated, and
from the resultant probabilities, statistical parameters, including sensitivity and specificity,
were calculated.

For GC-TOF-MS, a similar process was undertaken. However, in this case, we used
chemical identification to create features and, due to the much lower dimensionality, these
were used directly by the classifier with no additional feature reduction. A further step
used here was to undertake the statistical analysis of each chemical. A non-parametric t-test
was undertaken in order to calculate the p-value of each chemical, comparing the samples
in the two groups. Those chemicals found to have a p-value of <0.05 were considered
statistically important.

5. Conclusions

Urinary VOCs can identify HCC cases non-invasively. The putative VOCs are likely
related to CYP450 function in HCC. Our study further highlights how urine can provide a
good medium for the investigation of metabolic function in HCC for further work on the
cellular level.

Supplementary Materials: The following are available online: Table S1 compares HCC with non-
HCC cases using GC–IMS analysis, providing AUC, sensitivity, specificity, thresholds, negative
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predictive value, and positive predictive value. Table S2 compares HCC with non-HCC cases using
GC–TOF-MS analysis, providing AUC, sensitivity, specificity, thresholds, negative predictive value,
and positive predictive value. Table S3 shows the identified chemicals for Fibrosis vs Non-Fibrosis
that were statistically relevant using GC-TOF-MS. Figure S1 provides ROCs for HCC and Fibrosis
samples, HCC and Non-Fibrosis and Fibrosis and Non-Fibrosis using GC-TOF-MS.
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Strączyński, G.; González Paredes,

R.M.; Wenda-Piesik, A.; Ratiu, I.A.;

Muszytowski, M. Searching for

Potential Markers of Glomerulopathy

in Urine by HS-SPME-GC×GC

TOFMS. Molecules 2021, 26, 1817.

https://doi.org/10.3390/molecules

26071817

Academic Editors: Natalia Drabińska
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Abstract: Volatile organic compounds (VOCs) exiting in urine are potential biomarkers of chronic
kidney diseases. Headspace solid phase microextraction (HS-SPME) was applied for extraction
VOCs over the urine samples. Volatile metabolites were separated and identified by means of
two-dimensional gas chromatography and time of flight mass spectrometry (GC × GC TOF MS).
Patients with glomerular diseases (n = 27) and healthy controls (n = 20) were recruited in the study.
Different VOCs profiles were obtained from patients and control. Developed methodology offers
the opportunity to examine the metabolic profile associated with glomerulopathy. Four compounds
found in elevated amounts in the patients group, i.e., methyl hexadecanoate; 9-hexadecen-1-ol; 6,10-
dimethyl-5,9-undecadien-2-one and 2-pentanone were proposed as markers of glomerular diseases.

Keywords: volatile organic compounds; urine analysis; comprehensive two-dimensional gas chro-
matography; kidney diseases

1. Introduction

Urine contains a multitude of organic substances, mainly products of metabolism, the
majority including nitrogenous compounds. Thus, urine is also a rich source of volatile
organic metabolites. For centuries organoleptic analysis of urine facilitated diagnosing
illnesses, the most characteristic examples being the specific odor of urine present in
diabetes and urinary tract infections. At that time, however, there were no methods that
made it possible to ascertain what was responsible for the particular smell of the diseases.
Shirasu et al. reviewed odoriferous compounds which are identified in urine, breath, sweat
and other human secretions of ill patients and they observed to which diseases they were
related [1]. A detailed study on characterization of odor active compounds in urine was
conducted by Wagenstaller and coworkers. They evaluated urine samples by means of two-
dimensional gas chromatographic system combined with mass spectrometry and sniffing
technique [2]. At present, urine analysis constitutes an important element of medical
diagnosis. However, currently used diagnostic tests do not provide information on volatile
organic compounds (VOCs) present in urine, except for ketone bodies. Developments in
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gas chromatography and mass spectrometry as well as in sample preparation techniques
naturally led to growing interest in determining VOCs in urine. The importance of VOCs
for clinical diagnosis was reviewed as early as in 1981 [3]. One of the earliest applications
of GC-MS in urine analysis was detection and quantitation of trimethylamine in urine of
patients with fish odor syndrome [4]. Mills et al. used GC-MS and SPME for profiling
VOCs in urine collected from patients with ketoacidosis, homocystinuria, hepatitis as well
as from healthy persons [5]. Smith et al. identified the total of 92 substances in samples
coming from 24 healthy males [6]. More recently, de Lacy Costello et al. reviewed and
classified 1840 VOCs secreted from a healthy human body. They reported 279 volatiles
which are identified in human urine [7]. Silva et al. used GC MS and SPME to study volatile
metabolites in urine which are potentially important as cancer biomarkers. Samples were
collected from a group of 33 cancer patients and 21 healthy individuals. The authors found
82 different VOCs in the group of cancer patients and in the control group [8]. Santos
and coworkers analyzed ketones in urine samples to discriminate between lung cancer
patients and healthy controls [9,10]. Comprehensive two-dimensional gas chromatography-
time of flight mass spectrometry (GC × GC TOFMS) is a powerful tool which has been
successfully used in metabolomics and biomarker discovery. This technique offers high
resolution, ordered structure of chromatograms and high peak capacity and is efficient in
urine analysis. GC × GC quadrupole MS or TOFMS has been used to determine anabolic
steroids and their metabolites in human urine samples [11–13], to quantify salvinorin A in
urine [14] and to detect acidic compounds in children’s urine [15]. Among the most detailed
studies were those conducted by Rocha et al. exploring human urine metabolomics. They
applied GC × GC-TOFMS and SPME to study VOCs in the urine headspace of healthy
persons and detected ca. 700 compounds in each sample of which 294 were tentatively
identified [16].

A variety of renal injuries may lead to chronic kidney diseases (CKD) [17], which
is a group of pathologies, where renal excretion is chronically compromised. Most of-
ten, CKD is irreversible and progressive. Patients with end-stage kidney diseases need
renal replacement therapy (RRT) such as kidney transplant or dialysis. Worldwide, about
2 million people are receiving RRT [18,19]. Numerous inflammatory and non-inflammatory
diseases affect the renal glomerulus and lead to glomerular kidney diseases [20,21]. How-
ever, searching for specific VOCs in urine can be promising way to find biomarkers of
glomerular diseases. The aim of the study was method development based on SPME
extraction and GC × GC TOFMS analysis of VOCs from human urine. Consequently,
our research work focused on identification of VOCs in urine of patients with glomerular
diseases and healthy controls. We developed SPME and GC × GC TOF MS method for
extraction and analysis of volatiles. An automatic method of chromatographic data pro-
cessing was applied. The ability of the developed method to differentiate between the two
investigated groups of subjects was proved and with it the usefulness of GC × GC TOFMS
in search for glomerulopathy-specific substances in urine was demonstrated as well.

2. Results

2.1. Fiber Selection

Three SPME fibers with different coatings-PDMS, CAR/PDMS and PDMS/DVB-
were evaluated in terms of number of peaks obtained and identified as compounds, peak
area and reproducibility. All fibers were exposed to the sample headspace for 30 min
of incubation and 30 min of extraction, while temperature was 45 ◦C. As presented in
Figure 1A, the PDMS/DVB fiber provided the highest extraction efficiency, since the total
peak area was at the level of 4.2 × 106 and RSD 10.1% was obtained with this coating.
CAR/PDMS provided total peak area at the level of 3.0 × 106 and RSD 12.2%. The lowest
extraction efficiency was observed with the PDMS coating, with total peak area 1.4 × 106

and RSD 8.4%. Thus, the PDMS/DVB fiber was selected as the SPME fiber for the analysis
of the volatile compounds of urine. In terms of number of the peaks extracted, PDMS/DVB
extracted more peaks (324 ± 11) than the other 2 fibers (288 ± 7 in case of CAR/PDMS and
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173 ± 6 in case of PDMS), as presented in Figure 1A1. Figure 1 was created using IBM SPSS
Statistics 21. The center lines of the boxes represent the mean; boxes represent mean ± SD,
while whiskers represent min–max values.
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Figure 1. Optimization of extraction parameters, including comparison of PDMS/DVB, Carboxen/PDMS and PDMS
coatings for extraction of VOC (part (A,A1)), different extraction temperatures (part (B,B1)) and extraction time (part (C,C1)).
The boxplots in the upper were drawn according with total peak area of extracted VOCs (subfigures A–C), while the bottom
box plots represent the number of extracted VOCs (subfigures A1–C1). Optimization of extraction parameters, including
comparison of Polydimethylsiloxane/Divinylbenzene (PDMS/DVB), Carboxen/PDMS (CAR/PDMS), Polydimethylsilox-
ane (PDMS) for extraction of VOC (part A), different extraction temperatures (part B) and extraction time (part C). The
boxplots in the upper were drawn according with total peak area of extracted VOCs (subfigures A–C), while the bottom box
plots represent the number of extracted VOCs (subfigures A1–C1).

2.2. Extraction Temperature

With the use of the PDMS/DVB fiber, 30 min of incubation time, 30 min of extraction
time and with 10 mL aliquots of the same urine from a healthy volunteer, the effect of the
extraction temperature was studied at 27, 37, 45 and 50 ◦C (Figure 1B). It was observed that
both signal areas and detected number of the peaks increased gradually with increasing
the temperature from 27 ◦C up to 45 ◦C. At 50 ◦C, the signal areas of most of the peaks
decreased, while the number of the peaks remained constant with the number detected at
45 ◦C (Figure 1B1). According to these results and with the aim of preventing degradation
of the sample at high temperature, 45 ◦C was chosen as the optimum value of extraction
temperature. Our results regarding temperature optimization are in agreement with the
results obtained by other authors. For example, Monteiro et al. applied SPME and GC-
MS to the analysis of renal carcinoma patients’ urine. The authors carried out a detailed
optimization of the SPME extraction process, considering SPME sorbents, urine sample pH,
extraction time and temperature, etc. It was temperature that had the greatest influence on
the obtained results, followed by extraction time and salt addition [10].
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2.3. Extraction Time

The influence of the extraction time was studied as the last step of optimization.
Incubation time was 30 min, followed by PDMS/DVB fiber exposure to the urine headspace
at 45 ◦C for 15, 30, 45 and 60 min. We observed an increasing trend in the signal areas
and peaks number that occurred from minute 15 to 45 (Figure 1C). In case of signal area,
the very noticeable increasing trend was from 15 min to 30 min, while in case of peaks
number the highest increase was from 30 min (325 peaks) to 45 min (390 peaks). After
60 min of extraction the increasing trend was insignificant in case of both signal areas
and peaks number. These results showed that 45 min of the extraction time was not
enough to reach the equilibrium. However, the extension of the extraction time to 60 min
caused an increase in the extraction efficiency by only 5%. Similar situation was observed
in case of the number of the peaks. Thus, 45 min was selected as an adequate value of
extraction time.

Random variability of these signals was evaluated as well. For the whole experiment
the extractions of VOCs from human urine samples were performed in triplicate, except
three cases when patients did not provide a sufficient amount of samples. Repeatability
was satisfactory, with RSD values lower than 7.1% for each urine sample. For variability
investigation, 6 urine samples were kept in the freezer. The samples were defrosted and
analyzed 45 days after sample taking at hospital sampling. Samples were analyzed by
means of SPME and GC × GC TOF MS. The RSD of the measurements (n = 18) performed
after 45 days of sample storage was in the range 6.1−9.2%.

2.4. Identification

The identification of volatile metabolites was performed on the basis of similarity
of measured mass spectra to MS libraries (match factor > 900) and signal-to-noise (S/N)
ratio (>10). For this purpose, the mass spectrum of each compound was automatically
matched to those in MS libraries Wiley 9-th Ed./NIST 2011.The unique mass for each
peak was chosen by the software algorithm and was used for peak area calculations. The
automatically identified substances were manually verified in order to remove artefacts
(mainly contaminants, silicones, column bleed, plasticizers, etc.) and compared with litera-
ture data describing the substances detected in urine headspace. For urine normalization,
we selected patients and healthy persons for experiments, if the specific gravity of urine
ranged from 1010 to 1030.

2.5. Statistical Analyses

The peak areas of identified substances were used to build the data matrix for chemo-
metric analyses. The dataset representing distributions of 282 investigated compounds
in urine was used to build the network analysis model (Figure 2). These were all the
components that appear in more than 5 samples for a given group. Consequently, based on
the obtained profiles and using the incidence of the peaks, a network analysis was created
in order to obtain a preliminary exploration of the data. R studio with console (version
3.6.3, Boston, MA, USA) was used for network analyses. The applied model successfully
separated the two investigated groups, by leading into the formation of two cluster groups
(group of diseased patients including subjects P1 to P27, clustered into the left part and
group of healthy controls, represented by numbers H1 to H20, in the right down part), as
presented in Figure 2. In addition, VOCs detected just in diseased patients have been dis-
persed around the patients group, common components were located mostly between the
two groups, while VOCs detected just in healthy subjects were scattered into the right-up
part (green diamonds). Regarding the number of VOCs used in network analysis, 11 were
specific for healthy group, 90 for diseased group, while 181 VOCs were common between
the groups. We assume that most of compounds presented in Figure 2 are endogenous
generated by the organism, as a normal process of metabolism or as a response to the
pathology. However, parts of VOCs are exogenous absorbed by the organism from the
environment and eliminated through urine. High variability in detected VOCs coming
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from different subjects was found. Such phenomenon is related to several factors, among
which diet, living style, personal habits, etc.
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Figure 2. Network analyses presenting separation between the two investigated groups based on
the VOCs specific for patients with glomerular diseases (brown diamonds), VOCs common between
groups (yellow diamonds) and VOCs characteristic for healthy group (green diamonds), where H 1
to 20 represents the number of healthy control and P 1 to 27 the number of patients.

In the next step VOCs areas were used and hierarchical clusters analyses (nearest
neighbor method) based on Squared Euclidean distance were created. The heat map color
code, grey-red-yellow-green, is according with increasing value of peaks area, from absence
(o value, highlighted in grey) to the highest area (green). Cluster segregation according
with patients and control groups was obtained, as presented in Figure 3. Nevertheless,
healthy group clustered in two groups that uncompressed between the diseases group. The
patients P 26 and 27, expressed different characteristics and fused together in one cluster
with similar distance level at the end of the dendrogram.

The peak areas of identified substances were finally used to build the data matrix
for chemometric analyses, in attempt to obtain data set reduction. The aim was to search
for some VOCs with discriminative features, able to be used as biomarkers of glomerular
diseases. From the whole dataset representing distributions of the 146 VOCs found in urine
that could be analyzed by ANOVA, thirteen compounds varied quantitatively between
subjects with glomerular diseases and healthy controls (p < 0.05) and two at the level
0.05 < p < 0.1 that can be also acceptable for screening study in life science. Based on the
grouping of volatile compounds using the k-mean method, all subjects with glomerular
diseases had elevated level of 40 compounds (Table 1).
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Generally, the significant effect was obtained for a number of 15 compounds, namely:
cyclohexanone; 3-ethylcyclopentanone; 3-hexanone; 3-heptanone; methyl hexadecanoate; 9-
hexadecen-1-ol; 3-methyl-2-pentanone; 6,10-dimethyl-5,9-undecadien-2-one; 2-pentanone;
acetophenone; 2-methoxy-4-vinylphenol; 1-decanol; N-acetylpyrrole; 6-methylhept-5-en-2-
one; dimethyl sulfone, presented in Table 1.

They play opposite role then biomarkers, while the compounds: 1, 4, 5, 6, 7, 8, 9, 10, 14,
16, 19, 21, 22, 24, 26, 27, 30, 31, 34, 35, 36, 37, 38 and 39 represent the moderate, (in ANOVA
p-value is below 0.05). However, all classified compounds are presented in Table 1 with the
information resulting on the F statistic.

Principal component analyses (PCA) were used to display total variation in the
meaning of two main components results presented in Tables 1 and 2. Contribution of
individual compounds to the C1 explained 30.5% of variance. As can be observed the
VOCs that loaded most positive strength on 1st components are: 5, 6, 8, 9 and they had the
significant status as biomarkers, displaying higher and significant concentration in urine
coming from diseased persons (they are marked in the circle). The compounds 31, 32, 33
and 35 clustered positively in C2 gathering 13.6% of total variance (Figure 4) and are both
speared by the others with higher concentration in the healthy than in diseased group.
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Table 1. ANOVA grouping results of VOC in k-mean analysis (disease group vs. control). where: SS Group–squared sum,
df-degree of freedom, SS Error-error sum of square, F-F test, p-probability value.

ID Compound SSGroup df SSError df F p

1 Cyclohexanone 160.14 1 99.80 39 54.56 0.000
2 3-Ethylcyclopentanone 60.33 1 121.36 39 16.90 0.000
3 3-Hexanone 87.83 1 166.31 39 17.96 0.000
4 3-Heptanone 102.78 1 145.92 39 23.95 0.000
5 Methyl hexadecanoate 68.88 1 134.76 39 17.38 0.000
6 9-Hexadecen-1-ol 75.72 1 142.22 39 18.10 0.000
7 3-Methyl-2-pentanone 73.83 1 209.25 39 12.00 0.001

8 6,10-Dimethyl-5,9-
undecadien-2-one 49.61 1 117.49 39 14.36 0.001

9 2-Pentanone 44.38 1 144.91 39 10.41 0.003
10 Acetophenone 25.60 1 117.55 39 7.40 0.010
11 2-Methoxy-4-vinylphenol 19.72 1 119.53 39 5.61 0.024
12 1-Decanol 28.56 1 184.65 39 5.26 0.028
13 N-Acetylpyrrole 28.44 1 204.56 39 4.73 0.037
14 6-Methylhept-5-en-2-one 22.96 1 198.97 39 3.92 0.056
15 Dimethyl sulfone 3.24 1 37.79 39 2.91 0.097
16 1-Tetradecanol 14.96 1 190.06 39 2.68 0.111
17 4-Heptanone 9.43 1 128.86 39 2.49 0.124
18 Benzaldehyde 1.66 1 23.90 39 2.36 0.134
19 2-Nonanone 14.35 1 213.06 39 2.29 0.139
20 5-Methyl-3-hexanone 13.07 1 210.41 39 2.11 0.155
21 Dimethyl trisulfide 10.23 1 190.57 39 1.83 0.186
22 2-Aminobenzaldehyde 9.40 1 222.11 39 1.44 0.239
23 3-Methylcyclopentanone 8.12 1 230.47 39 1.20 0.281
24 Hexanal 3.85 1 217.07 39 0.60 0.443
25 1-Octanol 3.59 1 245.37 39 0.50 0.485
26 Benzeneacetaldehyde 3.43 1 234.68 39 0.50 0.486
27 2,5-Dimethylpyrazine 2.85 1 198.49 39 0.49 0.490
28 Nonanal 1.50 1 155.73 39 0.33 0.571
29 9-Octadecen-1-ol 1.47 1 183.26 39 0.27 0.605
30 Indole 0.35 1 49.34 39 0.24 0.626
31 Theaspirane 1.37 1 218.11 39 0.21 0.647
32 Benzonitrile 0.52 1 185.47 39 0.09 0.760
33 2-Heptanone 0.27 1 157.55 39 0.06 0.811
34 4-Methylphenol 0.27 1 170.99 39 0.05 0.818
35 Phenol 0.24 1 166.54 39 0.05 0.828
36 Decanal 0.09 1 73.76 39 0.04 0.837

37 1-Methyl-4-(1-
methylethenyl)-benzene 0.08 1 192.35 39 0.01 0.905

38 N-Phenylformamide 0.00 1 227.31 39 0.00 0.979
39 Ethyl acetate 0.00 1 328.20 39 0.00 0.986
40 Octanal 0.00 1 199.51 39 0.00 0.986
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Table 2. Descriptive statistics of the VOCs defined in higher concentration in urine by patients suffering from glomerular
diseases, where: min–minimum, max–maximum.

Diseased Group Healthy Group

ID Compound Mean Min Max Mean Min Max

1 Cyclohexanone 3.28 × 105 1.33 × 104 9.43 × 105 3.54 × 104 2.23 × 104 4.64 × 104

2 3-Ethylcyclopentanone 1.10 × 105 5.14 × 103 4.53 × 105 3.41 × 104 9.57 × 103 6.58 × 104

3 3-Hexanone 9.41 × 105 1.65 × 104 1.35 × 106 3.44 × 104 2.92 × 104 1.06 × 106

4 3-Heptanone 2.84 × 106 6.06 × 104 2.57 × 107 1.75 × 105 7.46 × 104 3.90 × 106

5 Methyl hexadecanoate 7.63 × 104 7.64 × 103 3.64 × 105 2.19 × 104 6.99 × 103 8.38 × 104

6 9-Hexadecen-1-ol 7.39 × 104 5.28 × 103 4.34 × 105 9.39 × 103 2.78 × 103 1.93 × 105

7 3-Methyl-2-pentanone 2.69 × 106 2.90 × 104 2.81 × 107 1.81 × 105 8.95 × 103 1.19 × 107

8 6,10-Dimethyl-5,9-
undecadien-2-one 1.41 × 105 2.47 × 104 3.91 × 105 7.41 × 104 1.93 × 104 1.73 × 105

9 2-Pentanone 1.94 × 107 6.39 × 104 7.62 × 107 3.18 × 106 1.46 × 106 1.05 × 108

10 Acetophenone 1.08 × 105 4.37 × 104 1.40 × 105 1.23 × 104 8.19 × 104 1.79 × 105

11 2-Methoxy-4-vinylphenol 1.95 × 105 1.76 × 104 9.97 × 105 1.07 × 105 1.19 × 104 4.58 × 105

12 1-Decanol 1.62 × 105 2.46 × 104 5.20 × 105 2.82 × 105 1.99 × 104 7.00 × 105

13 N-Acetylpyrrole 3.12 × 105 1.11 × 104 1.06 × 106 6.87 × 104 3.17 × 104 7.43 × 105

14 6-Methylhept-5-en-2-one 1.84 × 105 9.19 × 103 9.31 × 105 2.00 × 105 2.30 × 104 7.26 × 105

15 Dimethyl sulfone 3.24 × 104 1.10 × 104 1.97 × 105 2.97 × 104 4.16 × 103 9.29 × 104

16 1-Tetradecanol 2.93 × 105 1.33 × 104 1.23 × 106 2.11 × 105 3.10 × 104 4.69 × 105

17 4-Heptanone 6.50 × 106 2.24 × 104 3.82 × 107 5.73 × 106 1.77 × 104 2.25 × 107

18 Benzaldehyde 6.23 × 104 6.18 × 103 1.89 × 105 1.01 × 105 1.26 × 104 3.58 × 105

19 2-Nonanone 1.56 × 105 1.31 × 104 7.72 × 105 1.54 × 105 1.07 × 104 5.24 × 105

20 5-Methyl-3-hexanone 1.89 × 106 5.78 × 104 1.48 × 107 3.22 × 106 1.92 × 104 1.90 × 107

21 Dimethyl trisulfide 6.17 × 104 5.14 × 103 1.88 × 105 4.51 × 104 5.76 × 103 7.46 × 104

22 2-Aminobenzaldehyde 1.93 × 105 6.12 × 103 6.80 × 105 2.65 × 105 8.50 × 104 5.20 × 105

23 3-Methylcyclopentanone 2.76 × 105 4.29 × 104 8.61 × 105 2.05 × 105 3.19 × 104 7.21 × 105

24 Hexanal 1.80 × 106 1.16 × 105 6.48 × 106 9.01 × 105 8.86 × 104 1.86 × 106

25 1-Octanol 5.13 × 105 1.01 × 104 3.61 × 106 6.37 × 105 7.98 × 104 3.42 × 106

26 Benzeneacetaldehyde 1.43 × 105 2.67 × 104 1.25 × 106 1.47 × 105 5.34 × 104 5.60 × 105

27 2,5-Dimethylpyrazine 1.19 × 105 1.06 × 104 5.67 × 105 7.50 × 104 1.82 × 104 2.36 × 105

28 Nonanal 2.26 × 105 2.04 × 104 1.09 × 106 1.28 × 105 7.82 × 104 1.77 × 105

29 9-Octadecen-1-ol 4.98 × 105 3.25 × 104 1.79 × 106 4.60 × 105 3.20 × 104 9.43 × 105

30 Indole 1.20 × 105 2.19 × 104 3.47 × 105 9.08 × 104 1.45 × 104 2.00 × 105

31 Theaspirane 1.09 × 105 7.87 × 103 2.62 × 105 1.29 × 105 4.64× 104 3.72 × 105

32 Benzonitrile 4.53 × 104 6.57 × 103 6.30 × 104 1.67 × 104 8.76 × 103 3.10 × 104

33 2-Heptanone 1.92 × 105 1.13 × 104 1.41 × 106 1.75 × 105 7.46 × 104 5.69 × 105

34 4-Methylphenol 1.22 × 105 1.71 × 104 5.13 × 105 1.71 × 105 2.71 × 104 1.18 × 106

35 Phenol 3.52 × 104 9.95 × 103 4.67 × 105 2.90 × 104 2.08 × 104 1.11 × 105

36 Decanal 1.39 × 105 1.62 × 104 7.38 × 105 1.56 × 104 2.06 × 104 2.06 × 104

37 1-Methyl-4-(1-
methylethenyl)-benzene 1.13 × 105 1.12 × 104 1.41 × 105 1.41 × 105 1.90 × 104 6.09 × 105

38 N-Phenylformamide 1.17 × 105 1.59 × 104 3.32 × 105 1.54 × 105 3.02 × 104 3.35 × 105

39 Ethyl acetate 1.56 × 107 2.02 × 105 7.11 × 107 1.41 × 107 1.21 × 101 6.41 × 1057

40 Octanal 2.17 × 105 5.62 × 104 6.97 × 105 1.62 × 105 1.49 × 105 4.34 × 105
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Figure 4. Principal component analyses (PCA) used to display variation between statistically sig-
nificant determined VOCs, where: 1. cyclohexanone; 2. 3-ethylcyclopentanone; 3. 3-hexanone;
4. 3-heptanone; 5. methyl hexadecanoate; 6. 9-hexadecen-1-ol; 7. 3-methyl-2-pentanone; 8. 6,10-
dimethyl-5,9-undecadien-2-one; 9. 2-pentanone; 10. acetophenone; 11. 2-methoxy-4-vinylphenol;
12. 1-decanol; 13. N-acetylpyrrole; 14. 6-methylhept-5-en-2-one; 15. dimethyl sulfone; 15. dimethyl
sulfone; 16. 1-tetradecanol, 17. 4-heptanone; 18. benzaldehyde; 19. 2-nonanone; 20. 5-methyl-
3-hexanone; 21. dimethyl trisulfide; 22. 2-aminobenzaldehyde; 23. 3-methylcyclopentanone; 24.
hexanal; 25. 1-octanol; 26. benzeneacetaldehyde; 27. 2,5-dimethylpyrazine; 28. nonanal; 29. 9-
octadecen-1-ol; 30. indole; 31. theaspirane; 32. benzonitrile; 33. 2-heptanone; 34. 4-methylphenol; 35.
phenol; 36. decanal; 37. 1-methyl-4-(1-methylethenyl)-benzene; 38. N-phenylformamide, 39. ethyl
acetate; 40. octanal.

In Table 2, the VOCs are listed in the order from the highest to the lowest level of
significance at which they were present in urine samples. They were obtained by the
standardization of the total matrix, in order to divide the VOCs into significantly distinct
groups. All the components in Table 2 were classified based on the grouping of volatile
compounds using the k-mean method. The method shows that all persons with glomerular
diseases had elevated level of all 40 compounds presented in Table 2.

Additionally, the compounds that present a decreasing trend can be treated as sec-
ondary chemo indicators of this category of diseases. Discrepancies between the results of
statistical analyses in this respect (ANOVA and grouping of k-means) result from the fact
that the tested group was a statistically small sample.

3. Discussion

On urine sample chromatograms, varying numbers of particular chromatographic
signals were observed from 100 to 250 peaks coming from different substances present
in the samples. Moreover, we observed variations in the number of samples in which
certain compounds were detected. This phenomenon occurred regardless of which group
the samples were collected, from the patients or healthy control. Such a large number
of varied compounds posed a significant difficulty in classifying the substances and se-
lecting potential biomarkers. This may result from a large number of factors influencing
biosynthesis of volatile metabolites (metabolic pathways, genetic differences, consumed
food, age, sex, physiological state, addictions, etc.). Substances present in urine can be
divided into characteristic chemical groups such as ketones, aldehydes, hydrocarbons,
volatile sulfur compounds, heterocycles, alcohols, phenols and terpenes. The substances
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most numerously represented were ketones. They amounted to almost 46% of all volatile
substances identified in the samples from healthy volunteers and 49% of those found
in samples from ill persons. Ketones are the products of metabolism and result from
oxidation of secondary alcohols and fatty acids. Part of ketones can be also of dietary
origin [6]. The most frequently observed ketones included acetone, acetophenone, 3-
ethylcyclopentanone, 5-methylohexan-3-one, benzophenone, 2-pentanone, 2-heptanone,
2-butanone, 3-hexanone, 4-heptanone, 3-methylcyclopentanone, cyclohexanone and 1-
octen-3-one. The next groups were aldehydes and alcohols, ca. 10 and 12% of all the
chemical compounds respectively. We observed the presence of a series of aliphatic aldehy-
des from acetaldehyde to decanal, including also unsaturated and methylated compounds
(i.e., 2-methylbutanal, 2-methyl-2-butenal). This is similar to the observations of Smith
and Ratclife [6,7]. Nonanal was identified in the majority of samples. We also found
aldehydes containing a benzene ring, i.e., benzaldehyde, 2,4-dimethylbenzaldehyde, 2-
hydroxybenzaldehyde, 4-methylbenzaldehyde, 4-(1-methylethyl)-benzaldehyde and alpha-
methylbenzeneacetaldehyde. As for the presence of alcohols in the samples, the most
frequently observed were 1-dodecanol, 1-octanol, 1-tetradecanol, benzyl alcohol, 1-hexanol,
1-nonanol, 1-octen-3-ol and 1-butanol. Many terpenes were identified among the detected
substances. The substances most frequently present in the samples included limonene,
pinene, menthadienes, mentol, mentone, valencene, geraniol, linalool, thujene, myrcene,
sabinene hydrate, β-caryophyllene, linalool oxides, etc. Considering that terpenes are
produced by plant organisms and not the human body, we assumed that the source of
terpenes and their metabolites in urine is food. This assumption is supported also by the
works of other [6,7]. Due to this fact, we excluded this group of substances from the set of
potential disease markers.

Another exogenous group were plasticizers, most frequently diethyl phthalate and
antioxidants (BHA, BHT), which we excluded from the analysis as they constitute an
addition to polymers. Similarly, we removed silicones and oximes as these substances
mostly come from polymers in urine containers, plastic tips, septa for HS vials etc. This
is supported by blank analyses done according to the same procedure as urine sample
analysis but containing only distilled water and NaCl. Phenol and cresols were found
in urine samples, as well as dimethylphenols, guaiacol, 2-methoxy-4-vinylphenol and
eugenol. Phenol and cresols are typical metabolites present in urine, identified by many
authors. There is a correlation between the content of phenols in urine and the amount of
consumed proteins [7].

A numerous group of substances were also N-, O-, S-heterocycles. The most frequently
identified of them was indole and less common were 3-methylindole (skatole) as well as
substituted pyridines, pyrroles, pyrazines, furans and benzothiazoles. The source of indole
and skatole may be bacterial metabolism of aromatic amino acids (tyrosine, phenylala-
nine and tryptophan) occurring in the intestines. These substances may subsequently
be absorbed into the blood and excreted with urine. We also observed series of gamma
and delta lactones, i.e., nonalactone, decalactone and undecalactone as well as coumarin.
However, the origin of such substances in urine has not been explained. Another group
of chemicals are benzene and its alkyl derivatives (toluene, dimethyl benzenes, ethyl ben-
zene, propylbenzene, styrene, etc.). On the one hand, these substances are known to be
typical environmental pollutants; on the other, many studies consider them to be probable
disease markers. We decided that we can overlook benzene, toluene and xylene isomers as
exogenous substances. Nevertheless, isomers of trimetylbenzenes, ethylmethylbenzenes,
naphtalene and its derivatives are included in our statistical analysis. Figure S1 shows
structure ordered GC×GC chromatogram of urine (Supplementary Material).

Little is known, at present, whether the substances identified in the urine samples
from ill and healthy people are created as a result of metabolism in the cells of a human
organism, whether they originate from the diet or from metabolic changes occurring under
the influence of an illness in the body. We observed elevated levels of benzeneacetaldehyde;
1-octanol; 1-decanol, 6-methylhept-5-en-2-one in urine of patients. Regarding the origin,
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phenol is very common metabolite existing in urine. Increased level of phenol can be
explained by extensive metabolism of proteins or increasing of bacterial activity in the
colon. 9-Octadecene-1-ol may be oxidation products of certain hydrocarbons conducted by
cytochrome P450 or there are products of oxidative stress. 6,10-Dimethyl-5,9-undecadiene-
2-one can be formed by the decarboxylation of keto acids generated during fatty acids
metabolism. Their origin can be associated to oxidation of fatty acids. Moreover, inflamma-
tion processes are important factor in glomerular diseases. In this case a key role is played
by cellular and humoral responses involving creating immuno complexes (circulating and
in situ-formed) and complement pathways [21]. Oxidative stress and inflammation are
initiated by the reactive oxygen species (ROS). Hence, ROS induce formation of several
by products such as fatty acids, hydrocarbons, aldehydes and alcohols. The origin of the
proposed markers can be connected mainly with oxidative stress. The knowledge regarding
the biosynthesis of VOCs in the organism is very limited and covers only a small number
of volatiles identified in bodily fluids and tissue. Parts of the substances present in urine
are exogenous substances which enter the organism as food or flavors (terpenes), as well
as environmental pollutants (aromatic hydrocarbons). Another group are exogenous sub-
stances that are transdermally absorbed into the organism, where they can be metabolized
or not and then excreted with urine. At the moment there are studies to define new specific
biomarkers of kidney damage, detected in both serum and urine. These include cystatin C,
neutrophil gelatinase-associated lipocalin, kidney injury molecule-1 and interleukin 18 [21].
Nevertheless, our study proved the discrimination between two investigated groups (the
group with glomerular diseases and the control group) was possible based on the VOCs
released from urine samples. Moreover, 4 VOCs that presented statistically significant
differences between the groups can be assumed as markers of glomerular diseases. These
are significantly increased peaks area in the patients group and they can be assumed as
direct chemo indicators for glomerular diseases, while the other four were significantly
lower and they may be considered as secondary chemo indicators. However, our research
should be treated as a preliminary study, as the number of persons participating in the
study was too small to draw more unequivocal conclusions, but using the developed
methodology and involving higher number of patients, more deep investigations will be
realized, with respect of non-proliferative or proliferative types. This will make the object
of another study.

4. Materials and Methods

4.1. Materials

SPME device as well as Carboxene/PDMS, PDMS/Divinylbenzene and PDMS coated
fibers were purchased from Supelco (Bellefonte, PA, USA). The screw top headspace glass
vials with silicon/PTFE septa and caps were supplied by Supelco. Sodium chloride was
purchased from Sigma-Aldrich (Steinheim, Germany) and Sil Tite micro union from Trajan
(Trajan, Rigwood Victoria, Australia) Ultrahigh purity helium BIP 5.5 was purchased from
Air Liquide, Poland.

4.2. Apparatus

The analysis was carried out using a Leco Pegasus 4D GCGC TOF-MS instrument
(Leco Corp., St. Joseph, NH, USA) equipped with a dual stage jet cryogenic modulator.
The mass spectrometer was hyphenated with an Agilent 6890 gas chromatograph (Agilent
Technologies, Waldbronn, Germany). The gas chromatograph was equipped with a PTV
injector (Gerstel, Mulhheim, Germany) with 0.75 mm ID liner and MPS-2 autosampler,
(Gerstel, Mulhheim, Germany) for automatic SPME extraction and fiber desorption. The
first-dimension column was RTX-Wax capillary (30 m × 0.25 mm × 0.20 µm) integrated
with deactivated guard column (5 m × 0.25 mm) and the second-dimension column was
a 1.5 m Rtx–1 capillary (1.5 m × 0.18 mm × 0.20 µm), both supplied by Restek (Restek,
Bellefonte, PA, USA). The first column was connected to the second analytical column
with an SGE micro union. The injector temperature was kept at 230 ◦C. SPME desorptions
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were made in the splitless mode within 1 min. Helium was used as the carrier gas in
constant flow mode at 1 mL/min. The mass spectrometer was operating as follows both
ion source temperature and transfer line 225 ◦C; ionization energy 70 eV (electron impact
ionization); acquisition range 35–350 amu; acquisition range 180 Hz. The first-dimension
column temperature was programmed as follows: the initial temperature of 40 ◦C was held
for 3 min and then the temperature was increased by 10 ◦C/min to 235 ◦C and maintained
for 5 min at this value. The second-dimension column temperature was maintained 5 ◦C
higher than the corresponding first dimension column. The modulator temperature was
maintained 15 ◦C higher than the corresponding one of the second-dimension column and
the modulation period was 3 s, hot 0.9 s and cold 0.6 s. The programming rate and hold
times were the same for the two columns and modulator.

4.3. Data Processing

Data processing parameters were as follow tune check on, baseline offset 1, peak
width 2 s. for 2-nd dimension, match spectra require to combine was 700, minimum S/N
11 subpeak to be retained, maximum number of unknown peaks to find 10,000, automatic
peak finding S/N = 5, library search mode-forward, library identify-normal, maximum
mass 350, library mass threshold 5, minimum similarity match 900, peak mass to use for
area calculation-unique mass. For mass spectrometry QC method, the instrument was
adjusted to optimization mass 219 m/z, with minimum intensity 20,000 and maximum
intensity 100,000. Chromatof (Leco) software version 4.50.8.0 was used for data acquisition
and processing.

4.4. Sample Pre-Processing and Extraction

Obtained urine samples were immediately frozen and stored at −20 ◦C. In this study,
frozen samples were not stored longer than 5 days before analysis. Prior to analyses, the
samples were defrosted and then immediately pre-processed and analyzed as follows.
NaCl (3.6 g) was weighed in a 20 mL HS glass vial and 10.0 mL of urine sample was added.
Then, the vial was capped with a PTFE septum and a screw cap. The sample vial was
incubated for 30 min at 45 ◦C. The fiber was exposed to the headspace at 45 ◦C for 45 min.
After sampling, the SPME fiber was withdrawn into the needle, removed from the vial and
inserted into the GC injector port for 1 min in the splitless mode, wherein the metabolites
were thermally desorbed and transferred directly into the column.

4.5. Human Subjects

The patients were recruited among the patients of Nephrology, Diabetology and
Internal Medicine Department (Collegium Medicum, Nicolaus Copernicus University,
Rydygier Hospital, Torun, Poland). We selected a population of 27 adult patients (14 female,
13 male) with confirmed glomerular diseases and enrolled healthy control volunteers
(20 persons). The mean age was 48.0 years. One male patient was a smoker and 3 patients
(15%) had kidney biopsy in the past. The patients and the controls were not restricted to any
particular diet. Serum creatinine concentration ranged from 0.5 to 3.87 mg/dl (mean 1.26).
Estimated glomerular filtration rate (eGFR) ranged from 15 to 126 mL/min/1.73 m2. Serum
urea concentration ranged from 24 to 236 mg/dl (mean 58). C-reactive protein average
was 9.1 mg/L (range 0.1–79). Early morning mid-stream urine samples were collected in
100 mL sterile plastic containers at hospital. Afterwards, samples were immediately frozen
and stored at −20 ◦C. Prior to analyses, the samples were defrosted.

All subjects gave their informed consent for inclusion before they participated in the
study. The study was conducted in accordance with the Declaration of Helsinki and the
protocol was approved by the Ethics Committee of Collegium Medicum in Bydgoszcz (No.
KB 621/2016-25.10.2016).
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5. Conclusions

Our work focused on the development a methodology able to differentiate patients
with glomerular diseases from healthy persons. Our study highlighted that volatile pro-
files coming from the two groups, diseased and controls can be easily discriminated by
network analysis. Cluster analysis (based on Squared Euclidean distance) also segregated
the two investigated groups. Dataset reduction highlighted that all persons with glomeru-
lar diseases had elevated level of several dozens of compounds with different origins;
however, four compounds (methyl hexadecanoate; 9-hexadecen-1-ol; 6,10-dimethyl-5,9-
undecadien-2-one, 2-pentanone were finally, proposed as markers of glomerular diseases.
Identified compounds may be promising biomarker candidates for discrimination of pa-
tients with glomerular diseases and healthy volunteers. Moreover, deeper investigations of
the biochemical pathways of the particular compounds as well selection of larger group of
participants, with respect of non-proliferative or proliferative types, are essential. In the
future perspective, investigations focused on person’s diet will be particularly interesting.

Supplementary Materials: The following are available online at https://www.mdpi.com/1420
-3049/26/7/1817/s1, Figure S1: structure ordered GCxGC chromatogram of urine sample from
patient. Peak groups: 1—Ketones (2-pentanone, 3-methyl-2-pentanone, 3-hexanone, 3-heptanone,
5-methyl-3-hexanone, acetophenone), 2—Aldehydes (hexanal, heptanal, octanal, nonanal, decanal,
benzaldehyde, benzeneacetaldehyde), 3—Alcohols (1-hexanol, 1-octanol, 1-nonanol, menthadienol,
1-decanol, verbenol, 1-dodecanol, 1-tetradecanol, 9-hexadecen-1-ol, 9-octadecen-1-ol), 4—Phenols
(phenol, 4-methylphenol).
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Natalia Drabińska 1,2,* , Piotr Młynarz 3 , Ben de Lacy Costello 2,*, Peter Jones 4,

Karolina Mielko 3, Justyna Mielnik 3, Raj Persad 5 and Norman Mark Ratcliffe 2

1 Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, 10 Tuwima Str.,
10-748 Olsztyn, Poland

2 Institute of Biosensor Technology, University of the West of England, Coldharbour Lane, Frenchay,
Bristol BS16 1QY, UK; Norman.Ratcliffe@uwe.ac.uk

3 Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry,
Wroclaw University of Science and Technology, 27 Wybrzeże Stanisława Wyspianskiego, 50-370 Wroclaw,
Poland; piotr.mlynarz@pwr.edu.pl (P.M.); karolina.mielko@pwr.edu.pl (K.M.);
justyna.mielnik@pwr.edu.pl (J.M.)

4 Indigo Science Ltd., Bristol BS7 9JS, UK; peter.jones@indigoscience.com
5 Bristol Urological Institute, Southmead Hospital, Bristol BS10 5BN, UK; rajpersad@bristolurology.com
* Correspondence: n.drabinska@pan.olsztyn.pl (N.D.); Ben.DeLacyCostello@uwe.ac.uk (B.d.L.C.);

Tel.: +48-89-52-34-641 (N.D.); +44-117-328-2461 (B.d.L.C.)

Academic Editors: Bartolo Gabriele and Alessandra Gentili
Received: 12 June 2020; Accepted: 10 August 2020; Published: 11 August 2020

Abstract: Urinary volatile compounds (VCs) have been recently assessed for disease diagnoses.
They belong to very diverse chemical classes, and they are characterized by different volatilities,
polarities and concentrations, complicating their analysis via a single analytical procedure.
There remains a need for better, lower-cost methods for VC biomarker discovery. Thus, there is a
strong need for alternative methods, enabling the detection of a broader range of VCs. Therefore,
the main aim of this study was to optimize a simple and reliable liquid–liquid extraction (LLE)
procedure for the analysis of VCs in urine using gas chromatography-mass spectrometry (GC-MS),
in order to obtain the maximum number of responses. Extraction parameters such as pH, type of
solvent and ionic strength were optimized. Moreover, the same extracts were analyzed using Proton
Nuclear Magnetic Resonance Spectroscopy (1H-NMR), to evaluate the applicability of a single urine
extraction for multiplatform purposes. After the evaluation of experimental conditions, an LLE
protocol using 2 mL of urine in the presence of 2 mL of 1 M sulfuric acid and sodium sulphate
extracted with dichloromethane was found to be optimal. The optimized method was validated
with the external standards and was found to be precise and linear, and allowed for detection of
>400 peaks in a single run present in at least 50% of six samples—considerably more than the number
of peaks detected by solid-phase microextracton fiber pre-concentration-GC-MS (328 ± 6 vs. 234 ± 4).
1H-NMR spectroscopy of the polar and non-polar extracts extended the range to >40 more (mainly
low volatility compounds) metabolites (non-destructively), the majority of which were different from
GC-MS. The more peaks detectable, the greater the opportunity of assessing a fingerprint of several
compounds to aid biomarker discovery. In summary, we have successfully demonstrated the potential
of LLE as a cheap and simple alternative for the analysis of VCs in urine, and for the first time the
applicability of a single urine solvent extraction procedure for detecting a wide range of analytes
using both GC-MS and 1H-NMR analysis to enhance putative biomarker detection. The proposed
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method will simplify the transport between laboratories and storage of samples, as compared to
intact urine samples.

Keywords: liquid–liquid extraction; volatile compounds; urine; method optimization;
GC-MS; 1H-NMR

1. Introduction

Modern metabolomics is now a high-throughput approach for the monitoring of metabolites
in biological tissue or fluid in a defined time point. The profile of metabolites may vary during
pathological states, hormonal changes, exposure to environmental pollutants, diet, etc., and the changes
can be determined in different biological specimens, such as urine, saliva, blood, skin, feces, breath and
sweat [1,2]. Urine, because of the non-invasive methods of collection and the richness of metabolites,
is a commonly used fluid in metabolite profiling [3,4], potentially giving a large amount of information
about the metabolic state of the body. Urine is frequently analyzed using Liquid Chromatography-Mass
Spectrometry (LC-MS), Gas Chromatography-Mass Spectrometry (GC-MS) and Nuclear Magnetic
Resonance Spectroscopy (NMR) [5–7]. A specific class of metabolomics focused on the profile of
volatile compounds (VCs) is termed volatolomics, the applications of which for diagnostic purposes
is growing [8–15]. VCs are secreted by cells of the human body, as a result of their metabolism.
The changes in the profile of VCs in biological fluids, dependent on the metabolic changes, may reflect
the presence of disease. Many studies have suggested that the profile of VCs in urine change in
cancer [8–10], nephrological conditions [15], oxidative stress [11], gastrointestinal diseases [12–14] and
other disease states.

VCs in urine belong to very diverse chemical classes, such as aldehydes, ketones, organic short
chain acids, alcohols, sulfur compounds, etc. They are characterized by different volatilities, polarities
and concentrations. These facts complicate the optimization of conditions for VC profiling in a single
analytical procedure. To date, many analytical approaches have been used for the analysis of urinary
VCs, such as sensor systems [16], Field Asymmetric Ion Mobility Spectrometry (FAIMS) [12], as well
as hyphenated techniques based on mass spectrometry, such as High-Pressure Photon Ionization
Time-of-Flight-Mass Spectrometry (HPPI-ToF-MS) [17], Proton Transfer Reaction-Mass Spectrometry
(PTR-MS) [18], Selected Ion Flow Tube Mass Spectrometry (SIFT-MS) [19], and finally the most
ubiquitous technique, GC-MS [10]. The latter is still considered the gold standard in VC analysis.

Direct headspace methods of urine sampling suffer from low sensitivity, which hinders their
diagnostic potential for disease diagnoses. An analysis of VCs with GC-MS typically requires a sample
preparation step, particularly pre-concentration of analytes. These sample preparation methods for VC
analysis in urine are comprised mostly of adsorption techniques, such as solid-phase microextraction
(SPME) [8,10,20–22] and thermal desorption with sorbent tubes [23]. These are selective techniques,
which are also adversely affected by high water concentrations, limiting the number of compounds
detected and reducing their usefulness for non-targeted profiling. Therefore, there is a strong need for
alternative methods that enable the detection of a broader range of compounds.

VCs can be extracted from the matrix using more conventional approaches. For example,
liquid–liquid extraction (LLE) is a traditional and favored extraction technique in analytical chemistry,
because of its simplicity and lack of complicated equipment. LLE is used in a wide range of applications
and for the extraction of varied classes of compounds in food chemistry [24,25], environmental
analysis [26], drug analysis [27], etc. Even though LLE is so commonly used in analytical chemistry
and industry, its application for the extraction of VCs from biological fluids is not as frequent as would
have been expected [28]. The extraction of individual VCs has been proposed by Seyler et al. [29],
who optimized the method for quantification of six nirosamines in urine. LLE potentially permits
relatively high concentrations of a diverse range of VCs to be attained, providing a low-cost simple
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alternative to more expensive complex extraction technologies, while extracting VC and semi-VCs
with a range of polarities.

From the metabolomic viewpoint, it is also important to obtain extracts suitable for analysis
utilizing a more diverse range of approaches. The application of different analytical techniques
combining GC-MS and 1H-NMR gives the possibility of determining a broader set of metabolites,
with varying volatility, from VCs to semi-VCs, including non-polar compounds. The main aim of this
study was to optimize a simple and reliable LLE procedure for VCs and semi-VCs analysis in urine using
GC-MS. To do so, extraction parameters, such as pH, type of solvent and ionic strength, were optimized
by considering the maximum number of deconvoluted peaks detected. Next, the optimized method
was validated in term of precision, linearity and sensitivity. Moreover, the same extracts were analysed
using 1H-NMR, to evaluate for the first time the applicability of a single urine extract for multiplatform
purposes, which should increase the prospects for linking urine metabolites to a particular disease.
The particular purpose of the study is to show the enhanced number of (uncharacterized) compounds
found using LLE, relative to other methods.

2. Results and Discussion

2.1. Optimization of the Extraction Parameters

In the present study, the type of solvent, acid molarity and ionic strength were selected and
evaluated to achieve the optimal condition of LLE, based on the maximum number of GC-MS peaks
detected (Table 1). The solvents, acidic pH and amount of salt were preselected based on data from the
literature [28–30].

Table 1. Comparison of the factors affecting the extraction efficiency of urine VCs using GC-MS
analyses. Values in bold were selected as the most efficient and were used for the optimization of the
next parameters.

Factor Analyzed Number of Peaks Detected Constant Conditions

Type of solvent (4 mL added)
DCM * 205.0 ± 46.1 a,**

1 M acid, salt additionChloroform 121.0 ± 47.6 b

Diethyl ether 20.7 ± 4.0 c

Acid molarity (2 mL added)
0.01 M 137.0 ± 2.7 b

solvent: DCM, salt addition0.1 M 120.0 ± 21.1 b

1 M 205.0 ± 46.1 a

Ionic strength
Salt addition (0.2 g) 205.0 ± 46.1 a

solvent: DCM, 1 M acidNo salt 156.0 ± 44.7 a

(*) DCM—dichloromethane; (**) Values are a mean number of peaks of three replicates ± SD. Different letters
(a, b, c) in a column for each parameter represents significantly different (p < 0.05) values (Fisher’s Least Significant
Difference (LSD), ANOVA) for solvent type and acid molarity and Student t-test for ionic strength.

Dichloromethane (DCM) was found to be the most efficient solvent for VC extraction from urine
samples, followed by chloroform (Table 1 and Supplementary Figure S1). DCM is immiscible with
water and can dissolve a wide range of organic compounds, hence its extensive use for LLE [31,32].
Diethyl ether is a commonly used solvent for extracting organic compounds from aqueous solutions,
however in this study on urine, it was found to be the least effective solvent for LLE, resulting in the
detection of only circa 20 peaks. In contrast, Zlatkis et al. [28] noted the presence of 300 compounds
in ether extracts (comparison to the efficiency of other solvents was not analyzed), out of which 40
have been identified. However, in their study, a very large amount of urine, 450 mL, was used for
extraction with 80 mL of diethyl ether, as compared to 2 mL of urine used in our study. Use of 450 mL
urine creates storage issues, and many patients could not produce such an amount. The use of 80 mL
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of ether for extraction requires more processing time, i.e., more drying agent, evaporation times,
and it is undesirable from the health and safety perspective and impractical for certain processing
steps such as centrifugation. 2 mL is a realistic volume of urine from a patient sample, which can be
collected clinically, therefore the present study was optimized using that volume. In comparison to our
methodology, the literature describes VC extraction using absorbents, and smaller numbers (75 and
147 peaks identified, respectively) of VCs were reported, even with larger amounts of urine (using
single quadrupole GC-MS) [22,30].

In the present study, the highest molarity of acid (1 M) with pH value near 0 was found to be
significantly more efficient for LLE (Table 1). There was no significant difference between 0.1 M
(pH value: ~1.5) and 0.01 M (pH value: ~2.5) acid addition. Acidic conditions were previously reported
to be more suitable for VC analysis as compared to basic and neutral pH when using SPME [4,14,30].
This is related to the chemical properties of the compounds present in urine. Acidic pH increases the
number of compounds in the non-conjugated form [4]. In our study, many of the VCs detected in urine
samples contained the carboxylic acid group, therefore the acidic pH facilitates their extraction [21].

Another parameter important to achieving a good extraction is the presence of salt. The results of
the experiments carried out with and without salt present are presented in Table 1. The presence of
salt changes the nature of the molecular interactions between compounds, causing more ionic activity,
and consequently affecting the activity coefficient of metabolites. It was found to have great importance
in the SPME method’s development, where the presence of salt facilitates the transfer of VCs from the
matrix to the headspace [33]. For LLE, salt addition may alter the solubility of certain compounds
in the matrix, making them more likely to transfer to the solvent. In the present study, as in LLE,
the transfer of VCs to the headspace is not needed, and we did not observe a statistically significant
difference in the number of peaks between the presence and absence of salt. However, taking into
consideration the slightly increased number of peaks detected (even though not significant) and their
size (a summarized peak area of 5.49 × 105 vs. 1.09 × 106 for no salt and salt addition, respectively),
we decided to carry out the experiments with the presence of sodium sulphate. It is worth underlining
that the urine contains salt, the concentration of which may vary from sample to sample, affecting
the results. Therefore, it is important to standardize the urine somehow, e.g., by the analysis of the
osmolality of urine samples before metabolomics analyses. In our method, the saturation of urine with
salt was achieved, minimizing the differences between samples.

After the evaluation of experimental conditions, the best conditions for the LLE extraction of VCs
from urine samples were as follows: 2 mL of 1 M sulfuric acid and 2 mL of urine was added to a 10 mL
glass vial containing 0.2 g of sodium sulphate. The vial was vortexed till complete salt dissolution.
Then, 4 mL of DCM was added and mixed again for 1 min. After that, the vial was centrifuged for
1 min at 3500 rpm for emulsion separation, and the DCM layer was collected and dried with anhydrous
sodium sulphate. 3 mL of the dried DCM extract was quantitatively transferred to a new 5 mL glass
vial for evaporation. The last approximately 100 µL of extract was then transferred to a GC vial, and the
previously used 5 mL vial was rinsed three times with approximately 100 µL of fresh DCM. After the
evaporation to dryness in the heating dry block at 40 ◦C, the residue was reconstituted in 10 µL of
DCM, and 2 µL of the extract was injected into the GC injector port. An example of the chromatogram
obtained using the optimized method is presented in Figure 1 (red chromatogram).
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Figure 1. The comparison of total ion mass chromatograms of volatile compounds (VCs) extracted
from urine sample using solid-phase microextraction (green chromatogram) and the optimized
method (red chromatogram). The tentatively identified compounds: (1) Allyl isothiocyanate;
(2) Tetradecane; (3) Acetic acid; (4) 2-Butyl-1-octanol; (5) Diethyl sulfoxide; (6) hexadecane;
(7) tetrahydro-6-methyl-2H-Pyran-2-one; (8) 2-Methoxy-phenol; (9) Dimethyl sulfone; (10) Heptanoic
acid; (11) 2-Methyl-octanoic acid; (12) p-Cresol; (13) Erucin; (14) Nonanoic acid; (15) Octenoic acid;
(16) 2-Methoxy-4-vinylphenol; (17) n-Decanoic acid; (18) Divinyl sulphide; (19) 1-Hexadecanol;
(20) Benzoic acid; (21) 7-Methylindole (22) Benzeneacetic acid; (23) Apocynin; (24) Benzamide;
(25) n-Hexadecanoic acid; (26) Octadecanoic acid; (27) Caffeine; (28) 4-heptanone; (29) p-Cymene;
(30) 4-Ethenyl-1,2-dimethylbenzene.

2.2. Analytical Performance

The demonstration that the method is of high quality is a crucial step in method development [34].
The validation of the method for non-targeted metabolomics comprises in most cases solely the analysis
of precision [2]. Therefore, to check the reliability of the methodology, an external standard method was
applied. Seven commercial standards, representing acids and aldehydes with different chain lengths,
were selected, and the standard mixture was used for precision, sensitivity and linearity evaluation.
The results are presented in Table 2.

Table 2. Validation parameters calculated for a mixture of commercial standards. Compounds are
ordered with respect to their increasing retention times.

Retention
Time

Compound
Intraday Precision

[RSD*%]
Interday Precision

[RSD%]
Linear Range

[µmol/L]
R2 LOD **

[µmol/L]
LOQ ***

[µmol/L]

9.78 heptanal 9 9 8.857–70.853 0.984 4.4 14.8
13.11 octanal 9 19 8.004–64.035 0.986 4.0 13.3
16.15 nonanal 13 17 7.268–58.142 0.976 3.6 12.1
19.84 decanal 6 16 6.642–53.137 0.983 3.3 11.1
29.70 hexanoic acid 15 15 9.997–79.977 0.985 10.0 33.3
32.51 heptanoic acid 13 26 8.814–70.515 0.988 8.8 29.4
35.05 octanoic acid 11 15 3.944–63.102 0.990 3.9 13.1

(*) Relative standard deviation; (**) LOD - Limit of detection; (***) LOQ - Limit of quantification.

The intraday and interday precision ranged from 6.1% to 14.9%, and from 9.1% to 26.4%,
respectively. Naz et al. [34] recommended that the Relative Standard Deviation (RSD) values should
not exceed 30% in metabolomics studies, therefore the results obtained in our study can be considered
satisfactory, especially for the manual injection applied in our study. The correlation coefficients (R2)
of the calibration curves for all selected standards ranged between 0.98 and 0.99, indicating that the
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method has a highly linear response for the concentration ranges presented in Table 2. The limit of
detection (LOD) and limit of quantification (LOQ) values were found to be less than 10 and less than
33.3 µmol/L, respectively, for all the analyzed standards. However, the sensitivity of the method was
not the priority of this study.

2.3. Method Application—GC-MS

The applicability of the optimized method was evaluated based on the analysis of six urine
samples collected from healthy individuals. The comparison of the samples was not the aim of this
study, therefore the urine samples were not normalized. However, for the application of the method in
metabolomics studies in the future, the normalization will be necessary [35]. The analysis of urine
with more analytical techniques can increase the number of metabolites of different physicochemical
properties, and consequently may provide more information about the metabolic state of the body [36].
Therefore, in the present study, we decided to conduct the analysis of the samples using both GC-MS
and 1H-NMR spectroscopy, with the aim of detecting greater numbers of peaks corresponding to
individual compounds from a single extract.

The GC-MS analysis resulted in a total number of 400 individual deconvoluted peaks representing
different compounds, detected in chromatographs, present in at least 50% of samples. The number of
VCs detected in each sample is presented in Table 3. A comparison between the optimized method
and SPME method is presented in Figure 1. The extraction of VCs from another individual run
using both LLE and SPME of a headspace above the urine from the same individual showed a
greater number of deconvoluted peaks detected using our optimized method (328 ± 5.66 vs. 234 ± 4.24,
for LLE and SPME, respectively). As can be seen in Figure 1, the optimized LLE method results
in more peaks at longer retention times, corresponding to heavier molecules, when compared
to the SPME method, which is more efficient for small mass VCs. A comparison of the number
of peaks detected by our method and those in the literature using SPME fiber pre-concentration
technology with urine shows there is a significant improvement using LLE. The extraction using SPME
with Divinylbenzene/Carboxen/Polydimethylsiloxane (DVB/CAR/PDMS) fiber and acidic conditions
resulted in the detection of 75 VCs in urine in a single run [30]. In another study, a total number of
147 VCs was detected in urine using SPME with CAR/PDMS fiber; however, this number represents a
sum of VCs obtained in acidic, basified and neutral pH samples [22]. On the other hand, in the study of
Rocha et al. [37], GCxGC-TOFMS analysis allowed for the detection of approximately 700 compounds,
of which 294 were tentatively identified, however it resulted from using a very high-cost and complex
chromatographic system. Previous attempts at the application of LLE with diethyl ether using 450 mL of
urine for VCs analysis resulted in the detection of 300 VCs, 40 of which were identified [28]. The results
obtained proved that the optimized method is applicable for the GC-MS profiling of VCs in the urine.

Table 3. The number of deconvoluted peaks detected in urine samples from six apparently healthy
individuals by GC-MS method.

Urine Sample Number of Compounds Detected Using GC-MS

1 336
2 326
3 330
4 337
5 338
6 272

2.4. Method Application—1H-NMR

1H-NMR analysis was performed in both extract parts, because the information obtained is not only
complementary but also supportive to some of the metabolites from GC-MS. The 1H-NMR spectra of
the polar phase revealed approximately 60 proton signals originating from organic compounds within
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the urine. The signals are mostly located in the three areas of chemical shifts (δ): (a) 0.77–1.94 ppm
characteristic for CH3 and CH2 groups; (b) 1.95–4.33 ppm for the aliphatic proton signal of different
CH and CH2 groups, and (c) 6.8–8.07 ppm, distinctly visible peaks which in principle can exhibit
protons originating from aromatic compounds. However, as is seen in the spectra (Figure 2),
the signals from higher mass molecules are not filtered off completely by the CPMG pulse sequence.
The signals in the polar fractions were assigned to the Chenomx references, where over 100 signals
were detected, and among them 42 metabolites were found to be present in the urine aqueous phase
(Supplementary Data Table S1). Interestingly, there were significant differences between the compounds
tentatively identified by both GCMS and 1H-NMR, which proves that simultaneous analysis of the
same extracts with these two methods is complementary.

 

 

Figure 2. 1H-NMR 600 MHz Carr–Purcell–Meiboom–Gill (CPMG) spectra of urine obtained from
non-polar phase sample (CDCl3, T = 300 K); 1—Cholesterol ester, 2—Terminal -CH3, 3—Acyl chain
C4-C7, 4—-(CH2)n-, 5—2-hydroxyisobutyric acid, 6—Saturated C3 acyl chain, 7—-CO-CH2-CH2,
8—Glycocholic acid, 9—Acetamide, 10—Allylic methylene -C=C-CH2, 11—O-Acetylcarnitine,
12—3-hydrixyisovaleric acid, 13—Pyruvic acid, 14—Acyl chain C2, 15—Succinylacetone,
16—Theophylline, 17—3,4 Dihydroxybenzeneacetate, 18—Phenylacetate, 19—Glycine, 20—Glycerol,
21—Glycolic acid, 22—Sn1+Sn3 -CH2-O-CO-R, 23—1,3 dihydroxyacetone, 24—Fumaric acid,
25—Xanthurenic acid, 26—Phenol derivative, 27—Benzoic acid.

The DCM (LLE) can extract metabolites with a range of polarities (particularly relatively non polar
compounds), however it would not be expected to be that efficient in extracting polar compounds,
such as ionic compounds [38]. The literature data related to non-polar compound analysis from
biological fluids and tissues is very limited, usually including on the 1H NMR spectra a general
description of the groups of compounds [39]. In another report, the urine extracts were dissolved in
different deuterated solvents (MeOD, DMSO, DMF, MeCN, Acetone, CDCl3 and DCM), with subsequent
monitoring of the levels of five metabolites: hippurate, creatinine, lactate, histidine and alanine [38].
Metabolites showed signal variation in the ppm scale depending on the solvent used. However,
among the selected metabolites, only hippurate was found to be resolvable in CDCl3.

The study did not avoid some limitations. First, the method was optimized only for GC-MS,
not both GC-MS and 1H-NMR. However, the main aim of the study was the optimization of LLE
extraction for VC analysis, and the 1H-NMR part was the additional attempt, performed to check
if the same extract can be used on multiple platforms. A second limitation is the small number of
samples used for applicability testing. It is related to the character of the study, which is method
development. The real urine sample analyses were included only to prove that the method is suitable
for real sample analysis. Finally, the study does not contain the identification of all the compounds
(however the main chemical groups were tentatively identified and mentioned). However, the authors
decided not to undertake this exhaustive analysis because the main goal of this study was to detect the
highest number of peaks corresponding to individual compounds that could be potential biomarkers.
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The identification would be scientifically interesting when defined peaks are identified as biomarkers
linked to specific diseases. This will be the target for future studies using the developed LLE method.

3. Materials and Methods

3.1. Chemicals and Preparation of Calibration Solutions

The following analytical standard grade commercial chemicals were used: heptanal, octanal,
hexanoic acid from Aldrich Chemicals (Milwaukee, WI, USA), and nonanal, decanal, heptanoic acid
and octanoic acid from Acros Organics (Geel, Belgium). Sodium sulphate, DCM, chloroform and
diethyl ether were purchased from Fisher Scientific (Hampton, NH, USA) and sulfuric acid was
purchased from Aldrich Chemicals (Milwaukee, WI, USA),

The stock solution incorporating standards was prepared by dissolving 1 µL of each standard in
MilliQ water (Millipore, Bedford, MA, USA) in a 100 mL measuring flask. The working solutions were
prepared by diluting the standard stock solution, in the range 3 to 80 µmol/L.

3.2. Urine Samples

For method development, approx. 50 mL of morning urine sample was collected from one
apparently healthy female volunteer, who had an ad hoc omnivore diet. The sample was immediately
divided into 2 mL aliquots and stored in the fridge at 4 ◦C until the analysis which was conducted the
same day.

For comparison of the LLE to the SPME method, a urine sample from one apparently healthy
male volunteer was collected. The sample was treated as described above.

For method application, urine samples from six healthy individuals have been used. Samples
were obtained from Liverpool Bio-Innovation Hub (LBIH) Biobank. The LBIH Biobank has Research
Tissue Bank status and is licensed by the Human Tissue Authority (HTA). The collection and storage of
biosamples has been ethically approved by the North West 5 Research Ethics Committee. Samples were
stored in 2 mL aliquots at −80 ◦C after collection, and defrosted in the fridge at 4 ◦C before analysis.

All procedures involving human participants were performed in accordance with the 1964 Helsinki
Declaration and its later amendments or comparable ethical standards.

3.3. Extraction Optimization

The highest number of individually defined and chromatographically resolved peaks
corresponding to VCs across the entire GC chromatogram was used as a measure of the best extraction
performance conditions during method development. The deconvoluted peaks, subtracted from the
blank samples, were counted.

Type of solvent (DCM, chloroform, diethyl ether), ionic strength (0 or 0.4 g of anhydrous sodium
sulphate) and the molarity of sulfuric acid (0.01, 0.1 and 1 M) were investigated for their effect on
extraction efficiency as presented in Figure 3. The extractions were performed by adding 2 mL of acid
solution to 2 mL of urine and 0.2 g of anhydrous sodium sulphate, followed by vortexing until the salt
dissolved. Next, 4 mL of organic solvent was added and vortexed for 1 min. The layers were separated
by centrifugation for 1 min at 3500 rpm using a Beckman Coulter Aliegra X-22R Centrifuge (Brea, CA,
USA). The solvent layer was dried with anhydrous sodium sulphate, collected and evaporated to
dryness in a dry heating block at 40 ◦C for approximately 30 min. The dry residue was stored in a
freezer at −20 ◦C until analysis and then dissolved in 10 µL of organic solvent used for the extraction.
A 2 µL aliquot of the extract was immediately injected manually into the inlet of a gas chromatograph.
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Figure 3. Flow diagram of the one-factor-at-a-time design of extraction optimization. The orange chart
refers to conditions which were compared at a time.

3.4. Analytical Performance

The optimized LLE procedure was validated in terms of precision, linearity and sensitivity
based on the peak areas of heptanal, octanal, nonanal, decanal, hexanoic acid, heptanoic acid and
octanoic acid used as external standards. The standard solutions were extracted using the optimized
method. Precision was calculated and expressed as the RSD of six replicates of an aqueous stock
standard solution with a concentration of 0.01 µL/mL (interday precision), followed by repeating the
interday precision the next day (intraday precision). The linearity was determined by evaluation of the
regression curves of the standard peak areas versus the concentration and expressed as the squared
determination coefficient R2. The linear ranges were obtained by creating the calibration curves using
six sequential dilutions of the working standard solutions. Sensitivity expressed as LOD and LOQ was
calculated based on the signal-to-noise ratio (S/N). LOD was defined as the lowest concentration with
a S/N ratio of 3, whereas the LOQ used a S/N ratio of 10.

3.5. SPME

The SPME method was performed according to the method described by Silva et al. [40] with slight
modifications. Briefly, 2 mL of urine, 0.2 g of sodium sulphate and 2 mL of 1 M sulfuric acid were added
to 20 mL headspace vial. The extraction was conducted manually by inserting the CAR/PDMS fiber
into the sample vial and exposing it for 60 min at 50 ◦C. After the extractions, the fiber was introduced
into the GC inlet and the VOCs were thermally desorbed for 10 min at 245 ◦C in a splitless mode.

3.6. Gas Chromatography-Mass Spectrometry

The analysis of urinary VCs was performed using a Hewlett Packard HP5890 series II GC coupled
to an HP5971, single quadrupole Mass Selective Detector (MSD) with an HP Chemstation (Hewlett
Packard, Bracknell, UK). Chromatographic separation was performed on a Stablewax DA capillary
column, 30 m × 0.25 mm × 0.25 µm (Restek, Benner Circle, Bellefonte, PA, USA). The carrier gas was
99.9995% pure helium (AirProducts, Crewe, UK) with a constant flow rate of 1.2 mL/min. The GC
was operated under the following conditions: temperature program, 40 ◦C with 2 min of hold time,
ramping at 4 ◦C/min to the final temperature of 245 ◦C and then held at 245 ◦C for 6 min, giving a
total run time of 59.25 min. The injection port was operated in splitless mode (purge off 0.7 min) at
245 ◦C. After a solvent delay of 4.6 min, mass spectra were acquired in full scan mode with a scan
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range of m/z 35–450 used for data acquisition. The operating conditions for the MS system were as
follows: electron ionization mode at an energy of 70 eV; transfer line and ion source temperatures
were 280 ◦C and 180 ◦C, respectively. Total ion chromatograms (TIC) were analyzed and peaks were
integrated automatically using the Turbomass software (PerkinElmer, Inc., Waltham, MA, USA) with
an initial detection threshold of 10.0. The analyst reviewed the automated integration and made
adjustments and manually integrated the peaks, if it was necessary, keeping the proper judgement.
Moreover, the chromatograms were analyzed using the free Automated Mass Spectral Deconvolution
and Identification System (AMDIS) software by the National Institute of Standards and Technology
(NIST, Gaithersburg, MD, USA). The deconvoluted peaks were tentatively identified, where possible,
by comparison of the mass spectra with the NIST/EPA/NIH Mass Spectral Library (version 2.2, 2014,
Gaithersburg, MD, USA). For identification, only the components with a match factor >80% were listed.

3.7. 1H-NMR

The urine extracts (organic and polar phases) were dissolved in 0.55 mL deuterochloroform (with an
internal standard, TMS) and 1H-NMR spectra of the urine samples were recorded using an Avance II
spectrometer (Brucker, Billerica, MA, USA) that was operating at a proton frequency of 600.58 MHz.
The 1H-NMR spectra were collected using standard one-dimensional Carr–Purcell–Meiboom–Gill
(CPMG) pulse sequence with water presaturation, at 300 K temperature. For each sample, 128–512
consecutive scans (NS) with a 400 µs spin-echo delay were collected; there were 80 loops for the T2
filter, with a 3.5 s relaxation delay and a 2.73 s acquisition time, a time-domain of 64k, and a spectral
width of 20.02 ppm. The spectra were processed with a line broadening of 0.3 Hz and were manually
phased and baseline corrected using Topspin 1.3 software (Brucker, Billerica, MA, USA). The water
spectrum region was removed from the analysis.

3.8. Statistical Analyses

All the analyses were performed in triplicate. Data are presented as a mean ± standard deviation
(SD). The data were compared with the one-way analysis of variance (ANOVA) test or Student t-test,
as appropriate using the Statistica 10.0 software (StatSoft, Tulsa, OK, USA). Fisher’s Least Significant
Difference (LSD) test was applied to assess significant differences (p < 0.05) between variables.

4. Conclusions

In conclusion, a simple, LLE-based sample preparation protocol for the metabolic profiling
of urine samples was optimized and validated. The method was reliable and does not require
specific instrumentation for sample preparation. We successfully demonstrated for the first time the
applicability of single urine solvent extracts for both GC-MS as well as 1H-NMR analysis, for volatile
and semi-volatile compound analysis. The possibility of obtaining a wider range of the metabolites
can give more information about the health of the individuals, and may facilitate the identification of
biomarkers linked to different diseases. The possibility of using both GC-MS and 1H-NMR platforms
allowed the detection of metabolites with different volatilities from a single sample. This may be useful
when carrying out future studies aimed at identifying metabolites linked to disease. Often, previous
studies have had limited scope and concentrate on a limited range of methods. Using these methods,
the detection capability could be increased many-fold by simply increasing the extraction volumes
used; for instance, 40 mL DCM and 20 mL urine. The benefit of the proposed method is the possibility
of storage of extracts in smaller vials, as compared to intact urine samples, and the possibility of
transport to different labs for analysis in a dry way, without the special freezing conditions.

Future work will involve the application of the optimized method to look for diagnostic markers of
urological cancers. In summary, LLE has been shown to be superior to the SPME fiber pre-concentration
methodology for urine analyses, permitting semi-volatiles to be detected and providing a promising
alternative methodology to the use of very costly absorptive technologies.
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Supplementary Materials: The following are available online, Supplementary Table S1. Tentative assignment
of metabolites found to be presented in urine aqueous phase (1H-NMR analyses). Supplementary
Figure S1. The comparison of the extraction using dichloromethane (DCM), chloroform and diethyl
ether. Supplementary Figure S2 1H-NMR 600MHz CPMG spectra of urine obtained from polar
phase sample (D2O, T=300K). 1—2-hydroxyisovaleric acid, 2—3-methyl-2-oxovaleric acid, 3—sovaleric
acid, 4—Valine, 5—3-hydroxyisobutyric acid, 6—Methylsuccinic acid, 7—Fucose, 8—3-hydroxyisovaleric
acid, 9—2-hydroxyisobutyric acid, 10—2-Phenylpropionic acid, 11—Alanine, 12—2-aminoadipic acid,
13—Acetate, 14—Acetamide, 15—Acetone, 16—Acetoacetic acid, 17—Succinic acid, 18—Citrate, 19—Saccrosine,
20—Dimethylamine, 21—Trimethylamine, 22—N,N-dimethylgycine, 23—N-methylhydantoin, 24—Creatine,
25—Creatinine, 26—Choline, 27—Methanol, 28—Glycine, 29—Glycolate, 30—π-methylhistidine, 31—Trigoneline,
32—Fumaric acid, 33—trans-Aconitic acid, 34—Xanthuretic acid, 35—Carnosine, 36—3-Indoxylsulfate,
37—Imidazole, 38—Hippurate, 39—Oxypurinol, 40—Adenine, 41—Formic acid, 42—1-methylnicotinamide.

Author Contributions: N.D., P.J. and N.M.R. conceived and designed the research; B.d.L.C. secured funding;
N.D., P.M., J.M. and K.M. conducted analytical experiments; N.D. analyzed GC-MS data; P.M., J.M. and K.M.
analysed 1H NMR data; N.D., N.M.R. and P.M. interpreted results; N.D. wrote the draft of the manuscript; P.M.,
B.d.L.C., P.J., R.P. and N.M.R. contributed in the further writing of the manuscript. All authors read and approved
the final version of the manuscript.

Funding: The study was supported by Project No. GA2543 from the Above and Beyond Charity in Bristol.
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Abstract: The fecal metabolome in early life has seldom been studied. We investigated its evolution
in pre-term babies during their first weeks of life. Multiple (n = 152) stool samples were studied from
51 babies, all <32 weeks gestation. Volatile organic compounds (VOCs) were analyzed by headspace
solid phase microextraction gas chromatography mass spectrometry. Data were interpreted using
Automated Mass Spectral Deconvolution System (AMDIS) with the National Institute of Standards
and Technology (NIST) reference library. Statistical analysis was based on linear mixed modelling, the
number of VOCs increased over time; a rise was mainly observed between day 5 and day 10. The shift
at day 5 was associated with products of branched-chain fatty acids. Prior to this, the metabolome
was dominated by aldehydes and acetic acid. Caesarean delivery showed a modest association with
molecules of fungal origin. This study shows how the metabolome changes in early life in pre-term
babies. The shift in the metabolome 5 days after delivery coincides with the establishment of enteral
feeding and the transition from meconium to feces. Great diversity of metabolites was associated
with being fed greater volumes of milk.

Keywords: metabolome; feces; neonates; fermentation; protein; carbohydrate; short chain fatty acid

1. Introduction

The intestinal metabolome is shaped by the interactions between the microbiota and
diet. Before birth, mammals ingest amniotic fluid which contains amino acids (notably
taurine), some proteins (including growth factors and hormones), phospholipids [1], and,
potentially, bacteria [2] and volatile organic compounds, from the mother [3]. Soon after
birth, bacteria and other microbes that will eventually form the microbiota begin to colonize
the intestine. During the neonatal period, there is a huge switch in the enteral intake from
amniotic fluid, to colostrum and then milk, in the majority of babies. Colostrum and milk
also contain microbes which may seed to the baby [4,5]. Babies that are born significantly
pre-term are cared for in Neonatal Intensive Care Units (NICUs) where they receive
expressed colostrum and breast milk, if possible.

It has been proposed that the study of feces from neonates may be useful in the
early identification of necrotizing enterocolitis (NEC) [6–8] and late onset sepsis (LOS),
to which preterm babies are at risk. There is a paucity of research on the metabolome in
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early life and we hypothesize that disease signals may be obscured as the metabolome is
rapidly changing.

Here, we have analyzed the metabolome of a new cohort of preterm babies, who did
not develop NEC or late onset sepsis, and explore factors that might have an impact on the
metabolome. The paper describes the ‘normal metabolome of the preterm neonate’ as a
reference document for others interested in the health of the newborn.

2. Results

2.1. Patients Demographics

Fifty-one healthy infants (not affected by NEC or LOS), all <32 weeks gestation at birth
and participating in both the Enteral LactoFerrin In Neonates (ELFIN) and mechanisms
affecting the gut of preterm infants in enteral feeding trials (MAGPIE) [9] studies, were
used in this sub-study. A total of 152 samples were analysed (distribution of age and
samples shown in Table 1). Of the 51 infants, 46 were twins and 7 were singletons; their
key neonatal features are summarised below.

Table 1. Summary of basic demographic features and sampling from 51 preterm babies.

Median Range

Gestational age (weeks) 29 23–31 + 6 d
Birthweight (g) 1095 585–1820

Samples per donor 3 2–6
d: days.

2.2. Metabolomic Profile of Stool Samples from Pre-Term Babies

There were 36 volatile organic compounds (VOCs) present in at least 25% of samples
(Table 2, Appendix A Table A1). The three short chain fatty acids, acetic acid, propionic acid
and butanoic acid, were present in 91%, 53% and 42% of samples, respectively. Aldehydes
and alcohols were the largest groups with 6 compounds in each group.

Table 2. Summary of 36 volatile organic compounds (VOCs) found in at least 25% of samples.

Short Chain Fatty Acids Branched Chain Fatty Acids Methylated Aldehydes Esters

Acetic acid 2-methylbutanoic acid Isovaleraldehyde Ethyl acetate
Propionic acid Isovaleric acid 2-methylbutyraldehyde Propyl acetate
Butanoic acid Isobutyraldehyde Ethyl propionate

Propyl propionate

Aldehydes Alcohols Ketones/Diketones Others

Hexanal Ethanol 2-heptanone 2-ethylfuran
Heptanal Propanol 4-heptanone 2-pentylfuran
Octanal 1-pentanol 6-methyl-5-hepten-2-one D-limonene
Nonanal 1-hexanol Acetoin Methoxy-phenyl-oxime

Benzaldehyde 1-octen-3-ol 2,3-butanedione 1,4-xylene
Phenylacetaldehyde 2-ethylhexanol Ethylbenzene

We then investigated the impact of the infants’ postnatal age (all samples were in-
cluded, n = 152). A mixed effect regression model of VOC number per patient and postnatal
age (days) showed a significant (p-value < 0.0001) increase in VOCs during time of 1.0126
compound per day (95% Wald confidence interval 1.009, 1.016). Subsequentially, samples
were grouped by age (Table 3). The number of VOCs was limited in the first 5 days of
life (Table 3) (Figure 1). Anova analysis (f-ratio = 16.55624, p < 0.00001, post hoc HSD)
showed that the number of VOCs was significantly different among the groups: R1 < R2**,
R3****, R4**** and R2 < R3*, R4***. R3 and R4 not significantly different. (* 0.05, ** < 0.01,
*** < 0.001, **** < 0.0001).
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Table 3. Samples collected in each age group.

Age Range
(d)

Number Samples
Median Number of VOCs

(Range)

Samples from R1 0–5 18 13 (6–22)
Samples from R2 6–10 44 17 (8–31)
Samples from R3 11–20 56 22.5 (8–30)
Samples from R4 21–70 34 24 (13–31)

VOCs: volatile organic compounds, d: days.
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Figure 1. Scatterplot and boxplots to show the number of volatile organic compounds (VOCs) in each of the age groups.
Each dot represents a sample (all samples were included, n = 152). (R1 = up to 5 (n = 18), R2 = 6–10 (n = 44), R3 = 11–20
(n = 56), R4 = 21–70 days (n = 34).

Scrutiny of the data showed that some VOCs were present in the majority of babies in
each age group. Others started to appear in the second or third groups. Nine VOCs were
present in >66% of samples in first group (1–5 days): 4 were aldehydes—hexanal (100%),
heptanal (67%), octanal (78%) and nonanal (67%); 2 others were methylated aldehydes,
2-methylbutyraldehyde (67%) and isovaleraldehyde (89%); the remainder were acetic acid
(89%), 2-pentylfuran (72%), and 1-octen-3-ol (67%). These 9 VOCs remained common in the
later samples. The second group (6-10 days) had 4 further VOCs that were found on >60%
of samples: these were 2-methylbutanoic acid (61%), isovaleric acid (70%), 2,3-butanedione
(64%) and 6-methyl-5-hepten-2-one (59%). While acetic acid was common in all 4 groups,
propionic acid (range 38–64%) and butanoic acid (11–62%) were not.

In Figure 2, we focus on a selection of compounds, showing that some of these,
specifically, aldehydes and acetic acid, were present since birth and others (acids, esters,
ketones and alcohol), increased after day 5.
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Figure 2. Boxplots for a selection of compounds (abundance/age group). Each boxplot represents a compound, and these
are grouped according to the type of molecule (i.e., aldehydes, methyl aldehydes, acids, alcohol, esters, and ketone). All
samples were included, n = 152.

Linear mixed-effects (LME) analysis was used to identify compounds that changed
over time, results are in Table 4. All of these increased over times (positive slope value).
Three other factors were considered in the analysis: batch, gestational age (weeks) and
delivery mode. Patient ID was a random effect in the LME analysis. Esters were slightly
increased over time in babies with a higher gestational age, meanwhile an alcohol and a
ketone show a weak increase in babies born earlier during the pregnancy. Interestingly,
the alcohol, 1-octen-3-ol (Table 4 and Figure 3), can be related to fungal metabolism [10,11].
This metabolite and 2-pentylfuran, another compound related to fungal metabolism [12],
were also slightly increased in babies born by caesarean section (Table 4 and Figure 3). Most
of the compounds that showed significant association with delivery mode were increased
in babies born by caesarean section, except for ethyl acetate that was increased in babies
born by vaginal delivery.
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Table 4. List of volatile organic compounds (VOCs) that were influenced by relevant variables obtained with linear
mixed-effects (LME) analysis.

Compound Postnatal Age (Days) Gestational Age (Weeks) Delivery Mode

Slope p-Value Parameter p-Value Parameter p-Value

Short chain fatty acids
Butanoic acid 0.28 *** − − − −

Acetic acid 0.08 * − − − −
Propionic acid 0.15 * − − − −

Branched chain fatty acids
Isovaleric acid 0.2 ** − − − −

2-methylbutanoic acid 0.24 *** − − − −

Esters
Ethyl acetate 0.19 ** 0.87 * −4.07 *

Propyl acetate 0.36 *** 1.15 * − −
Ethyl propionate 0.27 *** 0.88 * − −

Propyl propionate 0.36 *** 1.02 * − −

Aldehydes
Heptanal 0.11 * − − − −
Octanal 0.13 * − − 3.17 *
Nonanal 0.14 ** − − − −

Benzaldehyde 0.15 ** − − − −
Phenylacetaldehyde 0.2 *** − − − −

Alcohols
Propanol 0.38 *** − − − −

1-octen-3-ol − − −0.76 * 3.45 **

Ketones/diketones
2-heptanone − − − − 3.95 **
4-heptanone − − −1.38 *** − −

6-methyl-5-hepten-2-one 0.18 *** − − − −
Acetoin 0.18 ** − − − −

2,3-butanedione 0.27 *** − − − −

Others
2-ethylfuran − − − − 2.66 *

2-pentylfuran − − − − 4.11 **
Methoxy-phenyl-oxime 0.15 ** − − − −

A positive slope for infant age (days) indicates an increase in the compound over time; a positive value for gestational age indicates that
babies born later had more of that compound; a positive value for delivery mode means that babies born through a caesarean section had
more of that compound, opposite to a negative slope that refers to a compound being more prevalent in babies born by vaginal delivery.
Values that were not significant are not shown (−). Significance codes: − p not significant, * p < 0.05, ** p <0.01, *** p < 0.001. All samples
were included, n = 152.
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Figure 3. Boxplots for a selection of compounds (abundance/gestational age and delivery mode). Each boxplot represents a
compound, and these are grouped according to the variable of interest (gestational age and delivery mode). All samples
were included, n = 152.

199



Molecules 2021, 26, 3341

3. Discussion

This is the largest study of the fecal metabolome in the neonatal period. Samples
from the first few days after birth are characterized by the limited range of VOCs and the
predominance of acetic acid and aldehydes. We found that acetic acid was found in the
majority of these samples, but propionic acid and butanoic acid were not. Studies on the
fermentation of taurine have shown that acetic acid is the most common short-chain fatty
acid (SCFA) derived from this amino acid [13]: it is plausible that the taurine-rich amniotic
fluid is responsible for this pattern of SCFA in the meconium.

The presence of aldehydes was striking. There were four medium-chain aldehydes
(C6–C9) and two further branched aldehydes. Aldehydes are a consequence of lipid perox-
idation [14,15]. Branched-chain aldehydes arise from amino acids (for example, leucine
and isoleucine [16,17]) and are metabolites of lactic acid bacteria, which are abundant in
the vagina and are likely to seed to the neonate during delivery.

There was a steady increase in the range (median 13 to 24, ANOVA p < 0.00001) of
VOCs in faecal samples during the first few weeks of life. The lack of esters was striking.
Esters are common in adult faeces and may arise from foods (as flavours in fruit [18]) but
may occur by the condensation of fatty acids and alcohols [19].

The previous study of VOCs in preterm new-borns [6] reported 36 samples were ob-
tained from seven babies over 14 days. The same analytical laboratory methods were used
although the present study had more consistent stool weights (80.6 mg (range 32.5–100 mg,
SD 12.3 mg) than the earlier one (890 mg, range 300–2400 mg, SD 460 mg). The main
difference between these two studies was the temporal sampling employed here: the earlier
report did not consider the influence of the age of the babies. As a result, no conclusions
could be drawn about the evolution of the metabolome. Costello noted that 7 of the
15 most abundant compounds were aldehydes. Acetone and ethanol were also prevalent.
2-ethylhexanol was also common (97%), but it was considered to be a contaminant arising
from plasticware: it was found in 61% of samples in the present study, even though samples
were collected into glass vials. The three short chain fatty acids are common in the stool of
adults (>95%) [19], each had a low prevalence (<10%) in the Costello study.

The paper reports the evolution of the faecal metabolome in the first weeks of life in
preterm babies. There is a marked change that occurs in association with the introduction of
first milk feeds. The lack of SCFA in the first week of life suggests they are not a requirement
for the intestine in utero or early after birth; their appearance when milk is introduced
suggests that the faecal microbiota contains bacteria able to ferment carbohydrates and
amino acids to synthesize SCFA.

Gestational age and delivery mode were included in our LME model as these factors
are known to influence the gut microbiota of infants. A weak increase in fungal metabolites
was observed in babies born earlier during the pregnancy and delivered by caesarean
section. In full-term infants, mode of delivery is known to influence the microbiota and
it has been shown that babies born by caesarean delivery are more susceptible to being
colonized by opportunistic pathogen acquired from the hospital environment rather than
commensal bacteria that are transmitted by the mother during vaginal delivery [20]. This
effect may increase in babies spending a long time in NICU and may explain the increase
in signal of fungal volatile (1-octen-3-ol and 2-pentylfuran), as yeasts may colonize the
gut in an opportunistic fashion and NICU are a source of yeasts [21]. Similarly, earlier
preterm babies showed a weak increase in fungal metabolites. A recent study on interking-
dom relationships (bacteria, fungi and archaea) on preterm infants [22] found a defined
succession of bacteria genera, however the evolution of the fungal community was less
predictable. They found a negative correlation between fungal and bacterial load, and that
Candida colonization was inhibited by Staphylococcus, a pioneer in the establishment of gut
microbiota in early life [23].
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4. Materials and Methods

4.1. Patients

Patients in this sub-study were part of a large cohort recruited to the MAGPIE study.
This study focuses on the children without necrotising enterocolitis or late onset sepsis,
who gave a least two stool samples during the first 70 days of life. The overarching study
was the ELFIN study. Preterm infants at one of 12 participating NHS hospital trusts
(13 separate NICUs) were eligible if they met enrolment criteria for ELFIN which included
preterm infants < 32 weeks gestation and <72 h postnatal age. Potential infants meeting
the eligibility criteria for MAGPIE were identified and recruited by the local healthcare
team. Parents were approached for written informed consent after they had received a
verbal and written explanation of MAGPIE. The study protocol was approved by East
Midlands—Nottingham 2 Research Ethics Committee 16/EM/0042.

4.2. Extraction of VOCs

Faecal samples collected in glass vials and stored at −80 ◦C in Newcastle for up to
12 months, before shipping to the Liverpool laboratory, on dry ice, and being stored at
−20 ◦C again. Prior to analysis, samples were weighed, and aliquots transferred to 10
mL glass headspace vials with magnetic septum caps (Sigma-Aldrich, Dorset, UK) in a
hood: a mean of 80.6 mg stool (SD 12.3 mg) was used for the analysis. During aliquoting
an empty vial remained unsealed in the hood to collect circulating air, later this was then
re-sealed in the hood and was stored with the prepared samples. These air samples were
analysed alongside the samples to determine whether there were contaminants in the air
when the samples were aliquoted.

Volatile organic compound analysis was performed using gas-chromatography mass-
spectrometry on a PerkinElmer Clarus 500 GC-MS quadrupole benchtop system (Bea-
consfield, UK) and Combi PAL auto-sampler (CTC Analytics, Zwingen, Switzerland).
VOCs were extracted using solid phase micro-extraction with a divinylbenzene-carboxen-
polydimethylsiloxane (DVB-CAR-PDMS) (Sigma-Aldrich, Dorset, UK) coated fibre, oth-
erwise the protocol and GC-MS conditions were the same as published by Reade et al.
(2014) [24]. Samples were heated to 60 ◦C for 30 min at prior to fibre exposure, the fibre
was exposed to the headspace gases at 60 ◦C for 20 min, then thermally desorbed for 5 min
at 220 ◦C.

The GC column used was a 60 m Zebron ZB-624 (inner diameter 0.25 mm, length
60 m, film thickness 1.4 µm (Phenomenex, Macclesfield, UK). The carrier gas used was
99.996% pure helium (BOC, Sheffield, UK) which was passed through a helium purification
system, Excelasorb™ (Supelco, Bellefonte, PA, USA) at 1 mL/min. The initial temperature
of the GC oven was set at 40◦C and held for 2 min before increasing to 220 ◦C at a rate
of 5 ◦C/min and held for 4 min with a total run time of 41 min. The MS was operated in
electron impact ionization EI + mode, scanning from 10 to 300 m/z with an interscan delay
of 0.1 s and a resolution of 1000 at FWHM (Full Width at Half Maximum). Samples were
run in two batches, the first batch had 36 samples and the second 116.

4.3. Downstream Data Processing and Analysis

The GC-MS data were processed as CDF files using the Automated Mass Spectral De-
convolution and Identification System software (AMDIS, version 2.73, 2017, Gaithersburg,
MD, USA), the NIST mass spectral library ((version 2.0, 2011 purchased from PerkinElmer,
Beaconsfield, UK) and the R package Metab [25]. AMDIS and NIST software were used
to build a compound library; VOCs were added based on a match criterion of greater
than 700, then a probability of a true match (greater than 70%) and finally inspection of
fragment patterns. This compound library is then used, with AMDIS, and was applied to
deconvolute chromatograms and identifying metabolites. VOCs were named as common
names, moreover, the International Union of Pure and Applied Chemistry (IUPAC) [26]
names along with PubChem CID number are provided in Appendix A Table A2.
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VOCs data were analyzed with R (version 3.6.3, Vienna, Austria) [27] in RStudio
(version 1.2.5033, Boston, MA, USA) [28,29]. Firstly, the VOCs table was adjusted as
follows: only compounds observed in at least 25% of samples were kept, natural log
transformation was performed using the log() function and missing values were imputed
to 0. Generalized linear mixed-effects, glmer() function of the lme4 package [30], was
used to perform a mixed effect regression model to assess whether there was correlation
between the number of VOCs and postnatal baby age (days). Finally, LME model analysis
was performed with the lmer() function of the lme4 package [30]. Patients ID was used as
a random factor, while baby age (days), GC-MS run batch, gestational age and delivery
mode were the fixed factors. ggplot2 [31] package was used to produce the charts.

5. Conclusions

This study shows the evolution of the metabolome in early life in pre-term babies. We
observed a clear shift in the metabolome after 5 days from birth that coincides with the
establishment of enteral feeding and the transition from meconium to faeces.
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Appendix A

Table A1. The prevalence of the 36 most abundant volatile in the four age groups.

Prevalence in Each Age Group (%)
Mean

Prevalence (%)

G1 G2 G3 G4

Acetic acid 88.9 86.4 92.9 94.1 90.8
Hexanal 100.0 86.4 91.1 82.4 88.8
Nonanal 66.7 68.2 87.5 94.1 80.9

Isovaleraldehyde 88.9 77.3 78.6 76.5 78.9
Heptanal 66.7 63.6 82.1 85.3 75.7

2,3-butanedione 11.1 63.6 85.7 94.1 72.4
Octanal 77.8 54.5 71.4 91.2 71.7

2-methylbutyraldehyde 66.7 63.6 73.2 70.6 69.1
4-heptanone 55.6 70.5 69.6 73.5 69.1

2-pentylfuran 72.2 61.4 69.6 73.5 68.4
Isovaleric acid 16.7 70.5 69.6 70.6 63.8

1-octen-3-ol 66.7 56.8 60.7 76.5 63.8
6-methyl-5-hepten-2-one 33.3 59.1 66.1 82.4 63.8

202



Molecules 2021, 26, 3341

Table A1. Cont.

Prevalence in Each Age Group (%)
Mean

Prevalence (%)

2-ethylhexanol 50.0 59.1 60.7 70.6 61.2
2-heptanone 66.7 59.1 62.5 52.9 59.9

Propanol 0.0 38.6 78.6 88.2 59.9
1-pentanol 61.1 54.5 51.8 64.7 56.6

2-methylbutanoic acid 16.7 61.4 50.0 73.5 54.6
Propionic acid 38.9 40.9 64.3 58.8 53.3

Acetoin 5.6 54.5 60.7 61.8 52.6
Benzaldehyde 38.9 45.5 42.9 76.5 50.7

Phenylacetaldehyde 11.1 38.6 55.4 70.6 48.7
Acetone 16.7 54.5 48.2 41.2 44.7

Butanoic acid 11.1 31.8 48.2 61.8 42.1
Propyl propionate 0.0 11.4 57.1 67.6 39.5

Methoxy-phenyl-oxime 44.4 27.3 37.5 52.9 38.8
Ethyl acetate 0.0 27.3 48.2 55.9 38.2

Propyl acetate 0.0 13.6 53.6 64.7 38.2
Ethanol 0.0 43.2 48.2 35.3 38.2

Isobutyraldehyde 16.7 36.4 37.5 47.1 36.8
Ethyl propionate 5.6 13.6 44.6 58.8 34.2

1,4-xylene 11.1 43.2 41.1 20.6 33.6
1-hexanol 27.8 38.6 33.9 29.4 33.6

D-limonene 0.0 22.7 39.3 47.1 31.6
Ethylbenzene 27.8 29.5 28.6 38.2 30.9
2-ethylfuran 33.3 25.0 25.0 26.5 26.3

Table A2. Names of compounds described as common names, IUPAC names and PubChem
CID number.

Common Name IUPAC Name CID Number

Acetic acid Acetic acid 176
Propionic acid Propanoic acid 1032
Butanoic acid Butanoic acid 264

2-methylbutanoic acid 2-methylbutanoic acid 8314
Isovaleric acid 3-methylbutanoic acid 10,430

Isovaleraldehyde 3-methylbutanal 11,552
2-methylbutyraldehyde 2-methylbutanal 7284

Isobutyraldehyde 2-methylpropanal 6561
Ethyl acetate Ethyl acetate 8857

Propyl acetate Propyl acetate 7997
Ethyl propionate Ethyl propanoate 7749

Propyl propionate Propyl propanoate 7803
Hexanal Hexanal 6184
Heptanal Heptanal 8130
Octanal Octanal 454
Nonanal Nonanal 31,289

Benzaldehyde Benzaldehyde 240
Phenylacetaldehyde 2-phenylacetaldehyde 998

Ethanol Ethanol 702
Propanol Propan-1-ol 1031

1-pentanol Pentan-1-ol 6276
1-hexanol Hexan-1-ol 8103

1-octen-3-ol Oct-1-en-3-ol 18,827
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Table A2. Cont.

Common Name IUPAC Name CID Number

2-ethylhexanol 2-ethylhexan-1-ol 7720
Acetone Propan-2-one 180

2-heptanone Heptan-2-one 8051
4-heptanone Heptan-4-one 31,246

6-methyl-5-hepten-2-one 6-methylhept-5-en-2-one 9862
Acetoin 3-hydroxybutan-2-one 179

2,3-butanedione Butane-2,3-dione 650
2-ethylfuran 2-ethylfuran 18,554

2-pentylfuran 2-pentylfuran 19,602
D-limonene (4R)-1-methyl-4-prop-1-en-2-ylcyclohexene 440,917

Methoxy-phenyl-oxime methyl (Z)-N-hydroxybenzenecarboximidate 9,602,988
1,4-xylene 1,4-xylene 7809

Ethylbenzene Ethylbenzene 7500
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Abstract: Patients with iron deficiency anaemia are treated with oral iron supplementation, which is
known to cause gastrointestinal side effects by likely interacting with the gut microbiome. To better
study this impact on the microbiome, we investigated oral iron-driven changes in volatile organic
compounds (VOCs) in the faecal metabolome. Stool samples from patients with iron deficiency
anaemia were collected pre- and post-treatment (n = 45 and 32, respectively). Faecal headspace
gas analysis was performed by gas chromatography–mass spectrometry and the changes in VOCs
determined. We found that the abundance of short-chain fatty acids and esters fell, while aldehydes
increased, after treatment. These changes in pre- vs. post-iron VOCs resemble those reported when
the gut is inflamed. Our study shows that iron changes the intestinal metabolome, we suggest by
altering the structure of the gut microbial community.

Keywords: iron deficiency anaemia; iron supplementation; volatile organic compounds (VOCs);
intestinal metabolome; gut microbiome

1. Introduction

Iron is an essential element for numerous metabolic processes, including oxygen transport by
haemoglobin and myoglobin [1]. Iron deficiency anaemia (IDA) may arise from inadequate dietary
iron intake, malabsorption or blood loss, especially from the gastrointestinal tract [2].

Enteral iron absorption is tightly regulated. Its uptake is dependent on Divalent Metal-Transporter-1,
which allows the uptake of iron via the enterocytes in the enteral lumen [1,3]. Other key points are
the regulation of transferrin, which binds iron in the circulation; ferrireductases, which facilitate
absorption by converting iron from the insoluble ferric (Fe3+) form into the soluble ferrous (Fe2+)
state [1,3]; and hepcidin, an antimicrobial peptide that controls entry of iron into the plasma by binding
to and degrading ferroportin, an iron-exporting protein that is very highly expressed on the basolateral
membrane of enterocytes [1–3]. Under physiological conditions, these series of proteins ensure that
enough iron is absorbed, without leading to overload.

Oral iron supplements often exceed the absorptive capacity of the small intestine and the surplus
enters the colon where it can lead to gastrointestinal side effects [1,2,4,5] by the generation of free
radicals, which damage the epithelium [1,2], and by enhancing the growth of some, but not all,
enteric bacteria, leading to dysbiosis [6,7]. These adverse effects can be severe and contribute to the poor
compliance with iron therapy.
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Volatile organic compounds (VOCs) are carbon-based compounds with a high vapour pressure
(and low boiling point) that, consequently, readily enter the gaseous phase. They may contribute to
the odours that are associated with faeces and other bodily fluids. Faeces represent the end product
of enteric metabolism and digestion, and so changes in faecal VOCs can be used to study changes
in the intestinal metabolome and, by extension, the microbiome. Our aim was to explore oral iron-driven
changes in the enteral metabolome by comparing the VOC profiles of anaemic patients before and after
they had received oral iron supplementation.

2. Results

The samples were received as two groups (Table 1).

Table 1. Summary of age and sex of donors in the two groups.

Unpaired Samples, Group 1 Paired Samples, Group 2

Pre Post
Total

Samples
Pre Post

Total
Samples

Male:Female 21:14 8:14 57 4:6 4:6 20
Mean age (y) 71.4 71.1 69.5 NA

The median number of VOCs from Group 1 was 73.5 and 77 in the pre- and post-treatment
samples, respectively; for Group 2, the values were 68 and 71.5, respectively. Comparison of pre-
and post-treatment results in Group 1 found four VOCs that changed significantly in abundance:
two aldehydes increased (Table 2). Table 3 summarises the fold change in Group 1, in response to
the supplement.

Table 2. Volatiles that changed significantly after iron treatment in Group 1.

p False Discovery Rate Trend

Octanal 5.2 × 10−4 0.004 Increase
Heptanal 9.8 × 10−4 0.019 Increase

Ethyl hexanoate 4 × 10−4 0.015 Decrease
2,4-dimethylpentan-3-ol 9.5 × 10−4 0.019 Decrease

Table 3. Summary of fold change data in Group 1.

VOC That Decreased Fold Change VOC That Increased Fold Change

2,3,5-trimethylpyrazine 15.4 Octanal 7.3
Ethyl 2-phenylacetate 14.9 Heptanal 4.2

Ethyl hexanoate 13.3 2-pentylfuran 4.1
Methyldisulfanylmethane 12.0 Pentanal 3.1

Heptanoic acid 10.7 2-methyltetrazol-5-amine 2.8
4-methylpentanoic acid 8.4 Heptan-2-one 2.7

Methyl pentanoate 8.3 Oct-1-en-3-ol 2.6
Butyl butanoate 7.6
Ethyl pentanoate 5.9
Ethyl butanoate 5.6

Methyl butanoate 4.3
2,4-dimethylpentan-3-ol 2.9

Ethenylbenzene 2.7
1,3-di-tert-butylbenzene 2.6

Hexanoic acid 2.5
2-methylbutanoic acid 2.5

Tetradecane 2.5
2-methylpropanoic acid 2.4
5-methyloxolan-2-one 2.4

2-methylpropanal 2.3
Ethenyl acetate 2.1

6,6-dimethyl-2-methylenebicyclo3.1.1heptane 2.1
Acetic acid 2.1

1-methyl-3-propan-2-ylbenzene 2.1
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Analysis of the 10 pairs of samples in Group 2 found no compounds that changed to a degree that
was statistically significant: this is likely to be a Type 1 error. We looked at the trend in fold change
in this cohort (Table 4). There were 27 VOCs that had a greater than two-fold difference between
the first and second sample: 6 compounds appeared more and 21 were less abundant; those that
increased included pentanal and 2-pentylfuran.

Table 4. Summary of fold change data in Group 2.

VOC That Decreased Fold Change VOC That Increased Fold Change

(1R,5S,6R,7S,10R)
4,10-dimethyl-7-propan-2-yltricyclo(4.4.0.0,5)dec-3-ene 20.1 2-pentylfuran 3.5

3-isopropenyl-1-isopropyl-4-methyl-4-vinylcyclohexene 14.0 methyldisulfanylmethane 3.4

ethyl butanoate 6.4 cyclohexanecarboxylic
acid 2.9

butan-1-ol 6.4 hexanal 2.4
4-hydroxy-4-methylpentan-2-one 5.0 pentanal 2.3

4Z-4,11,11-trimethyl-8-methylidenebicyclo(7.2.0)undec-4-ene 4.6 pentane-2,3-dione 2.2
1-methyl-4-propan-2-ylcyclohexa-1,4-diene 4.5

1-methyl-3-propan-2-ylbenzene 4.4
(5s)- 2-methyl-5-propan-2-ylcyclohexa-1,3-diene 4.3

5Z-2,6,10-trimethyl-1,5,9-undecatriene 4.1
4-methyl-1-propan-2-ylbicyclo(3.1.0)hex-3-ene 4.0

7-methyl-3-methylideneocta-1,6-diene 4.0
6,6-dimethyl-2-methylenebicyclo(3.1.1)heptane 3.5

4,7,7-trimethylbicyclo(4.1.0)hept-4-ene 3.4
5-methylheptan-2-one 3.3

4,6,6-trimethylbicyclo(3.1.1)hept-3-ene 3.1
2-phenylethanol 2.9
ethenylbenzene 2.7

ethylbenzene 2.3
ethanol 2.2

1,2-xylene 2.2

Heatmaps (Figure 1) were generated to illustrate the change in VOCs with treatment, for the two
groups. In the first, there is a clear cluster of nine VOCs that increased in abundance with treatment,
including four aldehydes (C5–C8), two secondary ketones (C4 and C7), 2-pentylfuran and octen-3-ol.
In the second, the six VOCs that increased included two aldehydes (C5 and C7), two secondary ketones
(C6 and C7) and 2-pentylfuran.

–

(a) 

 

(b) 

Figure 1. Heatmaps to show the increase in volatile organic compounds (VOCs) with iron therapy
in Group 1 (a) and Group 2 (b).
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Box and whisker plots were made to show the change in 2-pentylfuran and pentanal, as these
compounds were found to be significantly more abundant in Group 1 and to have greater than two-fold
change in abundance in both sets of data in response to treatment (Figure 2). The reduction in esters
in Group 1 was of interest as they suggested a change in the metabolism of this class of molecules
(Figure 3); however, this was not observed in Group 2.

  

(a) 

  

(b) 

2-pentylfuran Pentanal 

Figure 2. Box and whisker plots showing the change in 2-pentylfuran and pentanal in Group 1 (a)
and Group 2 (b).

 

Ethyl hexanoate Methyl pentanoate Butyl butanoate Ethyl 2-phenylacetate 

Figure 3. Box and whisker plots show the change in esters in Group 1.

3. Discussion

We investigated the impact of oral iron replacement on the faecal metabolome in two groups of
patients. Patients in Group 1 provided unpaired samples of stool, which were taken before and after
iron therapy. Patients in Group 2 gave samples twice, enabling a paired analysis. The two groups
showed similar results with an increase in faecal aldehydes two months after starting treatment,
and there was a reduction in esters.

These changes were more evident, and statistically significant, in Group 1. However, there were
similar fold changes in both sets of data (Tables 3 and 4). Several VOCs, most notably aldehydes, had a
greater than two-fold increase in response to iron therapy in the follow-up samples (Tables 3 and 4).
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Aldehydes may be generated by lipid peroxidation in response to oxidative stress [8,9]. Inflammation
may also cause a change in this class [8]. This finding suggests that non-absorbed iron is damaging to
the epithelium; however, changes in the microbiome may be responsible for the increase.

Several ketones derived from secondary alcohols were also increased: such ketones may represent
oxidative stress but can be generated by the microbiome. The increase in heptan-2-one in the follow-up
samples is consistent with previously reported increases of 2-piperidone and 6-methylheptan-2-one
in patients with inflammatory bowel disease [8]. Heptan-2-one may play a part in inhibiting enteric
Escherichia coli [10].

There was an increase in oct-1-en-3-ol, which is strongly associated with fungi. Oct-1-en-3-ol was
found be in increased in patients with active Crohn’s disease [8]. 2-Pentylfuran is also synthesised by
fungi [11,12]. It is plausible that there is a change in the mycobiome in response to iron.

Heptanoic acid was markedly reduced in Group 1, following iron therapy. Recent in vitro models
have shown that medium chain fatty acids (MCFAs) are able to bind and form ligands with the gamma
class of peroxisome proliferator activated receptors (PPAR-γ). MCFAs are produced by intestinal
bacteria and may suppress colitis by activating PPAR-γ in macrophages [13].

The abundance of several short-chain fatty (SCFA) and other carboxylic acids was modestly reduced
in the follow-up samples. SCFAs are synthesised by bacterial fermentation of dietary fibre [14]. They are
important for intestinal health [14–16]. The reduction in SCFAs suggests that oral iron causes a reduction
in SCFA-producing bacteria. Lee et al. showed that oral iron may suppress Faecalibacterium prausnitzii

and Ruminococcus bromii [17]. Mahalhal et al. reported that iron supplements may suppress Firmicutes,
which are a major source of SCFAs [18].

Several fatty/carboxylic esters, including methyl pentanoate, ethyl hexanoate, butyl butanoate
and ethyl 2-phenylacetate (Figure 3), were decreased in post-iron samples. A decrease in esters was
previously reported in inflammatory bowel disease patients [8]. Faecal esters are likely to be derived
from the condensation of fatty acids and have been shown to aid the interactions between fatty acids
and gut epithelial cells [19]. A decline in both fatty acids and their esters may be a concomitant
process driven by the suppression of intestinal bacteria that produce fatty acids. This contrasts with
the increased enteric conversion of fatty acids into their esters, which would have been marked by
an increase in faecal esters and a decrease in fatty acids. It should be noted that this change was not
observed in the paired samples and it may be an artefact of the unpaired samples (Group 1) or a Type 1
error because Group 2 was smaller.

Esters may have an independent anti-inflammatory role in the gut. For example, oral treatment
with branched palmitic acid esters of hydroxy stearic acids has demonstrated a reduction in in vivo
colonic T cell activation and in expression of proinflammatory cytokines in mice, along with an in vitro
reduction in activation of dendritic cells and in the accompanying proliferation of T cells [20].

The patients who took part in the study all had differing underlying causes of IDA, although they
were referred to the clinic with suspected gastrointestinal cancer. Future studies in which the analysis
of patients is separated according to different IDA pathologies should be considered. Any ongoing
gastrointestinal blood lost would have increased liminal iron and reduced the changes observed in this
study. Future studies should look at patients taking iron for other indications (post-operatively or
in gynaecological clinics).

4. Materials and Methods

4.1. Patient and Stool Sample Selection

Patients with iron deficiency anaemia were recruited from a gastroenterology clinic before the cause
of the anaemia was diagnosed. Potential recruited patients gave written informed consent before study
procedures took place. Patients were treated with standard ferrous sulphate supplementation, up to
200 mg three times/day. Each participant provided two stool samples: the first before commencing iron
therapy and the second two months later. Ethical approval for the study was granted by the UK NHS
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Health Research Authority’s Research Ethics Service (RES) Committee South West—Central Bristol
(REC reference 14/SW/1162).

4.2. Extraction of VOCs

In order to perform metabolomic analysis, patients’ samples were sent to the University of
Liverpool, where they were stored in freezers at either −20 ◦C or −80 ◦C before being processed and run
through GC-MS (Perkin Elmer Clarus 500, Beaconsfield, UK) apparatus.

With extensive expert technical assistance in the laboratory, all faecal samples were analysed
by way of a quadruple GC-MS benchtop system that was used in conjunction with a CombiPAL
autosampler (CTC Analytics, Zwingen, Switzerland). The carrier gas used was helium at a very high
purity (BOC, Sheffield, UK).

A local laboratory protocol was followed, which was based on the standardised recommendations
of GC-MS method optimisation that were proposed by Reade et al. [21]. Every effort was taken
to aliquot at least 500 mg of each faecal sample into a vial that had a magnetic cap and a volume
of 10 mL. Although this was not possible for every sample, as some samples had limited faecal
quantity, all aliquots had a minimum range of 50–100 mg, which was deemed to be sufficient for
GC-MS analysis [21]. Thereafter, the samples were incubated at 60 ◦C for 30 min. Extraction of VOCs
from the vial headspace was itself achieved by utilising solvent-free solid phase micro-extraction
(SPME) fibres of the CAR-PDMS 85 µm variety (Sigma-Aldrich, Dorset, UK), which were appropriately
pre-conditioned prior to use.

4.3. Downstream Data Processing and Analysis

After thorough evaluation of each chromatogram produced by the GC-MS, additional data
inspection and processing were carried out using the Automated Mass Spectral Deconvolution
and Identification System (AMDIS version 2.70, https://amdis.software.informer.com/2.7/) software.
This was used in tandem with the US National Institute of Standards and Technology’s (NIST) Mass
Spectral Library (version 2.71, (https://www.perkinelmer.com/uk/product/nist-2011-mass-spectral-
library-and-software-n6520220)). By manually analysing chromatograms and mass spectra on AMDIS
of over 40 of the first samples that were run on the GC-MS, a project-specific library of compounds was
created using the NIST database. In addition to taking into account the highest percentage compound
match with NIST spectra, VOCs were only included in the library if they had been identified with a
minimum match factor of 800.

At this stage, because these samples were blinded, the library was built by incorporating the VOCs
found in both pre-iron and post-iron patients. This library eventually comprised over 300 VOCs,
which were all named as per the nomenclature standards set by the International Union of Pure
and Applied Chemistry (IUPAC) [22]. Once the library was saturated, the iron status (i.e., pre- or post-)
of each sample was categorised, and all the samples were collectively analysed together using AMDIS’s
batch report function. These data were then further processed and corrected for downstream analysis
by using the Metab script package [23], which was utilised within the R (version 3.5, 2018) program.

Subsequently, all statistical analyses were carried out using MetaboAnalyst, a widely used
online tool devoted to metabolomic analysis [24]. The principal settings that were utilised included
the removal of over 70% of missing metabolite values, though data filtering was not applied. Data
were, however, normalised by the median and log-transformed, in addition to being auto-scaled;
i.e., mean-centring and then division by the standard deviation of each variable took place. In terms of
univariate analysis, fold change analysis and t-tests were carried out, with statistical significance being
set at a p-value less than 0.05. Multivariate analysis centred on principal component analysis (PCA)
and partial least squares–discriminant analysis (PLS-DA).

Crucially, in terms of the experimental procedure, VOC extraction was carried out in two batches.
Group 1 comprised 35 pre- and 22 post-iron samples that were all from different patients, whereas
Group 2 had 10 pre- and 10 post-iron samples each that were all from the same patients (i.e., they were
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paired samples). Thus, 57 samples were analysed in the first run and a total of 20 samples in the second
validation run.

5. Conclusions

This study has shown that oral iron replacement is associated with changes in the faecal
metabolome. There is an increase in aldehydes, which may be a result of oxidative stress, and a
reduction in esters that may reflect an alteration in the microbiome.
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