1,459 research outputs found

    Wide to multiband elliptical monopole reconfigurable antenna for multimode systems applications

    Get PDF
    Wideband-multiband reconfigurable elliptical monopole antenna is investigated in this paper. By having conventional elliptical monopole antenna, wideband operating frequency is obtained. With the combination of dual pairs of slotted arms and a band-pass filter on the ground plane of the elliptical monopole, multiband is achieved. Dual-band operating frequencies at 1.6 GHz and 2.6 GHz while wideband operates from 3.35 GHz to 9 GHz. Therefore, wide range of wireless communication systems is obtained from the proposed antenna to support the multiband mode (i.e. GPS and LTE) and UWB systems. Frequency reconfigurable is achieved by controlling the switches integrated on the antenna structure. Simulated results of reflection coefficient, radiation patterns and gain performance are presented. The proposed antenna design is suitable candidate for different wireless communication applications

    Design and characterization of frequency reconfigurable honey bee antenna for cognitive radio application

    Get PDF
    In this article, a frequency reconfigurable honey-bee compact microstrip monopole antenna is proposed which is fed by a microstrip line (50 Ω) having the capability of providing dual-band as well as triple-band operation in eight distinct modes. By embedding three PIN diodes overs the honey bee arms, the effective current distribution is controlled hence resonant frequency is also changed in eight distinct modes in real-time. This is the reason the proposed antenna is portrayed as a frequency reconfigurable antenna in this paper which is suitable for cognitive radio application. This proposed antenna can be used for various wireless application such as Bluetooth, Wi-Fi, worldwide interoperability for microwave access (WiMAX), wireless local area network (WLAN), C-band, and X-band applications. The proposed antenna possesses a planner geometry of 39×34×0.87 mm3 which is printed on a substrate as flexible FR-4 (lossy) (εr=4.4 and tanδ=0.019). The proposed antenna exhibits voltage standing wave ratio (VSWR)<2 for all 19 resonant frequencies of interest and perceptible radiation pattern over entire frequency bands with a positive gain. CST microwave studio is used to find out all simulated results of antenna parameters

    A Frequency-Reconfigurable Monopole Antenna with Switchable Stubbed Ground Structure

    Get PDF
    A frequency-reconfigurable coplanar-waveguide (CPW) fed monopole antenna using switchable stubbed ground structure is presented. Four PIN diodes are employed in the stubs stretching from the ground to make the antenna reconfigurable in three operating modes: a single-band mode (2.4-2.9 GHz), a dual-band mode (2.4-2.9 GHz/5.09-5.47 GHz) and a triple-band mode (3.7-4.26 GHz/5.3-6.3 GHz/8.0-8.8 GHz). The monopole antenna is resonating at 2.4 GHz, while the stubs produce other operating frequency bands covering a number of wireless communication systems, including WLAN, WiMAX, C-band, and ITU. Furthermore, an optimized biasing network has been integrated into this antenna, which has little influence on the performance of the antenna. This paper presents, compares and discusses the simulated and measured results

    Compact printed multiband antenna with independent setting suitable for fixed and reconfigurable wireless communication systems

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.This paper presents the design of a low-profile compact printed antenna for fixed frequency and reconfigurable frequency bands. The antenna consists of a main patch, four sub-patches, and a ground plane to generate five frequency bands, at 0.92, 1.73, 1.98, 2.4, and 2.9 GHz, for different wireless systems. For the fixed-frequency design, the five individual frequency bands can be adjusted and set independently over the wide ranges of 18.78%, 22.75%, 4.51%, 11%, and 8.21%, respectively, using just one parameter of the antenna. By putting a varactor (diode) at each of the sub-patch inputs, four of the frequency bands can be controlled independently over wide ranges and the antenna has a reconfigurable design. The tunability ranges for the four bands of 0.92, 1.73, 1.98, and 2.9 GHz are 23.5%, 10.30%, 13.5%, and 3%, respectively. The fixed and reconfigurable designs are studied using computer simulation. For verification of simulation results, the two designs are fabricated and the prototypes are measured. The results show a good agreement between simulated and measured results

    Octa-band reconfigurable monopole antenna frequency diversity 5G wireless

    Get PDF
    An octa-band frequency-reconfigurable antenna (28×14×1.5 mm3) with a broad tuning range is shown. Antenna mode1 (4.31 GHz) works in one single-band mode and two dual-band in modes 2 and 3 (i.e., 3.91 and 5.9 GHz) as well as one tri-band in mode 4 (i.e., 3.09, 5.65, and 7.92 GHz) based on the switching situation of the antenna. Changing capacitance for frequency reconfigurability is accomplished with the use of lumped components. The antenna’s observed tuning spans from 3.09 GHz to 7.92 GHz. for all the resonant bands, the suggested antenna has a voltage standing waves ratio (VSWR)<1.45 except for one band with a VSWR<1.85. From 70.57% to 97.93%, the suggested structure’s radiation efficiency may be calculated. For a better understanding proposed antenna’s far field and scattering characteristics, we used CST Microwave Studio 2021. We may conclude that our suggested antenna is suitable for today’s wireless applications, which need multiband and multimode small antennas. Using a small stainless-steel wire as a switch, a prototype of the antenna design is built and tested to verify the simulation findings. The suggested reconfigurable antenna’s strong concordance between simulated and measured findings

    Parasitic Element Based Frequency Reconfigurable Antenna with Dual Wideband Characteristics for Wireless Applications

    Get PDF
    A Microstrip Frequency Reconfigurable circular patch slot antenna for switchable Bluetooth, WiMAX, WLAN, and satellite communication applications is analyzed and presented in this work. The optimized overall size of 47 mm x40 mmx1.6 mm is utilized in the design, and which can cover wide range of frequencies below 10 GHz. In the initial phase, different monopole antennas are designed with various shapes of same size and later parasitic patch elements has been added to those monopole antennas. The circular monopole driven element and parasitic element are connected with a PIN diode, and which reinforced in achieving frequency reconfigurability. The proposed antenna is resonating at various frequencies of 2.4 GHz, 4 GHz, and 8.4 GHz when the diode in ON condition and resonating at 3 GHz, 5.4 GHz, and 8.4 GHz when the diode is in OFF condition. The performance of the designed antenna prototype is scaled and differentiated with the results of simulation and found good matching with respect to performance characteristics

    2009 Index IEEE Antennas and Wireless Propagation Letters Vol. 8

    Get PDF
    This index covers all technical items - papers, correspondence, reviews, etc. - that appeared in this periodical during the year, and items from previous years that were commented upon or corrected in this year. Departments and other items may also be covered if they have been judged to have archival value. The Author Index contains the primary entry for each item, listed under the first author\u27s name. The primary entry includes the coauthors\u27 names, the title of the paper or other item, and its location, specified by the publication abbreviation, year, month, and inclusive pagination. The Subject Index contains entries describing the item under all appropriate subject headings, plus the first author\u27s name, the publication abbreviation, month, and year, and inclusive pages. Note that the item title is found only under the primary entry in the Author Index

    Frequency reconfigurable monopole antenna with harmonic suppression for IoT applications

    Get PDF
    This work proposes a new reconfigurable printed monopole antenna for IoT devices working with the promising wireless technology Wi-Fi 6. Based on effective resonant length value, the antenna has the ability to reconfigure its operating band between 2.4 GHz and 5 GHz ISM bands. Therefore, the designed antenna works as an RF band-pass filter which reduces receiver complexity and supports network scalability. One PIN diode with complete biasing circuit is integrated to the antenna radiator to obtain re-configurability. Furthermore, two stubs are added to the antenna structure in order to suppress harmonic component which appears near to the higher band (5 GHz) when antenna forced to work at the lower band (2.4 GHz). The design built over commercially available FR-4 substrate with a compact size of (33.5x16x1.6) mm3. CST software is used to simulate antenna performance in terms of flection coefficient, radiation pattern, efficiency, and gain

    Band Notch Characteristics Reconfigurable UWB Leaf Shape Monopole Antenna

    Get PDF
    In this paper a band notch characteristics reconfigurable UWB leaf shape monopole antenna is reported. The proposed antenna size is 42×32×1.6 mm3 and simulated S11  -10dB impedance bandwidth is from 2.1 to 13.0 GHz. The notch bands are embodied into the designed antenna to suppress Bluetooth and WiFi bands from  2.3-2.7 GHz and 4.6-5.3 GHz. The PIN Diode is loaded to slot on the DGS to achieve  notch bands. It has 4.48dB and 1.7dB gain achieved when diode ON and OFF condition. Further, it encompasses a bio-inspired leaf shape patch having high feasibility for deployment in secret and  military purposes
    • …
    corecore