109,444 research outputs found

    ITR/IM: Enabling the Creation and Use of GeoGrids for Next Generation Geospatial Information

    Get PDF
    The objective of this project is to advance science in information management, focusing in particular on geospatial information. It addresses the development of concepts, algorithms, and system architectures to enable users on a grid to query, analyze, and contribute to multivariate, quality-aware geospatial information. The approach consists of three complementary research areas: (1) establishing a statistical framework for assessing geospatial data quality; (2) developing uncertainty-based query processing capabilities; and (3) supporting the development of space- and accuracy-aware adaptive systems for geospatial datasets. The results of this project will support the extension of the concept of the computational grid to facilitate ubiquitous access, interaction, and contributions of quality-aware next generation geospatial information. By developing novel query processes as well as quality and similarity metrics the project aims to enable the integration and use of large collections of disperse information of varying quality and accuracy. This supports the evolution of a novel geocomputational paradigm, moving away from current standards-driven approaches to an inclusive, adaptive system, with example potential applications in mobile computing, bioinformatics, and geographic information systems. This experimental research is linked to educational activities in three different academic programs among the three participating sites. The outreach activities of this project include collaboration with U.S. federal agencies involved in geospatial data collection, an international partner (Brazil\u27s National Institute for Space Research), and the organization of a 2-day workshop with the participation of U.S. and international experts

    A network-aware framework for energy-efficient data acquisition in wireless sensor networks

    Get PDF
    Wireless sensor networks enable users to monitor the physical world at an extremely high fidelity. In order to collect the data generated by these tiny-scale devices, the data management community has proposed the utilization of declarative data-acquisition frameworks. While these frameworks have facilitated the energy-efficient retrieval of data from the physical environment, they were agnostic of the underlying network topology and also did not support advanced query processing semantics. In this paper we present KSpot+, a distributed network-aware framework that optimizes network efficiency by combining three components: (i) the tree balancing module, which balances the workload of each sensor node by constructing efficient network topologies; (ii) the workload balancing module, which minimizes data reception inefficiencies by synchronizing the sensor network activity intervals; and (iii) the query processing module, which supports advanced query processing semantics. In order to validate the efficiency of our approach, we have developed a prototype implementation of KSpot+ in nesC and JAVA. In our experimental evaluation, we thoroughly assess the performance of KSpot+ using real datasets and show that KSpot+ provides significant energy reductions under a variety of conditions, thus significantly prolonging the longevity of a WSN

    Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications

    Get PDF
    Wireless sensor networks monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in wireless sensor networks (WSNs). The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.Comment: Accepted for publication in IEEE Communications Surveys and Tutorial

    Asynchronous Graph Pattern Matching on Multiprocessor Systems

    Full text link
    Pattern matching on large graphs is the foundation for a variety of application domains. Strict latency requirements and continuously increasing graph sizes demand the usage of highly parallel in-memory graph processing engines that need to consider non-uniform memory access (NUMA) and concurrency issues to scale up on modern multiprocessor systems. To tackle these aspects, graph partitioning becomes increasingly important. Hence, we present a technique to process graph pattern matching on NUMA systems in this paper. As a scalable pattern matching processing infrastructure, we leverage a data-oriented architecture that preserves data locality and minimizes concurrency-related bottlenecks on NUMA systems. We show in detail, how graph pattern matching can be asynchronously processed on a multiprocessor system.Comment: 14 Pages, Extended version for ADBIS 201

    A framework for utility data integration in the UK

    Get PDF
    In this paper we investigate various factors which prevent utility knowledge from being fully exploited and suggest that integration techniques can be applied to improve the quality of utility records. The paper suggests a framework which supports knowledge and data integration. The framework supports utility integration at two levels: the schema and data level. Schema level integration ensures that a single, integrated geospatial data set is available for utility enquiries. Data level integration improves utility data quality by reducing inconsistency, duplication and conflicts. Moreover, the framework is designed to preserve autonomy and distribution of utility data. The ultimate aim of the research is to produce an integrated representation of underground utility infrastructure in order to gain more accurate knowledge of the buried services. It is hoped that this approach will enable us to understand various problems associated with utility data, and to suggest some potential techniques for resolving them

    An Axiomatic Analysis of Diversity Evaluation Metrics: Introducing the Rank-Biased Utility Metric

    Full text link
    Many evaluation metrics have been defined to evaluate the effectiveness ad-hoc retrieval and search result diversification systems. However, it is often unclear which evaluation metric should be used to analyze the performance of retrieval systems given a specific task. Axiomatic analysis is an informative mechanism to understand the fundamentals of metrics and their suitability for particular scenarios. In this paper, we define a constraint-based axiomatic framework to study the suitability of existing metrics in search result diversification scenarios. The analysis informed the definition of Rank-Biased Utility (RBU) -- an adaptation of the well-known Rank-Biased Precision metric -- that takes into account redundancy and the user effort associated to the inspection of documents in the ranking. Our experiments over standard diversity evaluation campaigns show that the proposed metric captures quality criteria reflected by different metrics, being suitable in the absence of knowledge about particular features of the scenario under study.Comment: Original version: 10 pages. Preprint of full paper to appear at SIGIR'18: The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, July 8-12, 2018, Ann Arbor, MI, USA. ACM, New York, NY, US
    corecore