1,279 research outputs found

    Soft-connected Rigid Body Localization: State-of-the-Art and Research Directions for 6G

    Full text link
    This white paper describes a proposed article that will aim to provide a thorough study of the evolution of the typical paradigm of wireless localization (WL), which is based on a single point model of each target, towards wireless rigid body localization (W-RBL). We also look beyond the concept of RBL itself, whereby each target is modeled as an independent multi-point three-dimensional (3D), with shape enforced via a set of conformation constraints, as a step towards a more general approach we refer to as soft-connected RBL, whereby an ensemble of several objects embedded in a given environment, is modeled as a set of soft-connected 3D objects, with rigid and soft conformation constraints enforced within each object and among them, respectively. A first intended contribution of the full version of this article is a compact but comprehensive survey on mechanisms to evolve WL algorithms in W-RBL schemes, considering their peculiarities in terms of the type of information, mathematical approach, and features the build on or offer. A subsequent contribution is a discussion of mechanisms to extend W-RBL techniques to soft-connected rigid body localization (SCW-RBL) algorithms

    Robust Power Allocation for Energy-Efficient Location-Aware Networks

    Get PDF
    In wireless location-aware networks, mobile nodes (agents) typically obtain their positions using the range measurements to the nodes with known positions. Transmit power allocation not only affects network lifetime and throughput, but also determines localization accuracy. In this paper, we present an optimization framework for robust power allocation in network localization with imperfect knowledge of network parameters. In particular, we formulate power allocation problems to minimize localization errors for a given power budget and show that such formulations can be solved via conic programming. Moreover, we design a distributed power allocation algorithm that allows parallel computation among agents. The simulation results show that the proposed schemes significantly outperform uniform power allocation, and the robust schemes outperform their non-robust counterparts when the network parameters are subject to uncertainty.National Natural Science Foundation (China) (Project 61201261)National Basic Research Program of China (973 Program) (61101131)University Grants Committee (Hong Kong, China) (GRF Grant Project 419509)National Science Foundation (U.S.) (Grant ECCS-0901034)United States. Office of Naval Research (Grant N00014-11-1-0397)Massachusetts Institute of Technology. Institute for Soldier Nanotechnologie

    Robust Localization for Mixed LOS/NLOS Environments With Anchor Uncertainties

    Get PDF
    Localization is particularly challenging when the environment has mixed line-of-sight (LOS) and non-LOS paths and even more challenging if the anchors’ positions are also uncertain. In the situations in which the parameters of the LOS-NLOS propagation error model and the channel states are unknown and uncertainties for the anchors exist, the likelihood function of a localizing node is computationally intractable. In this paper, assuming the knowledge of the prior distributions of the error model parameters and that of the channel states, we formulate the localization problem as the maximization problem of the posterior distribution of the localizing node. Then we apply variational distributions and importance sampling to approximate the true posterior distributions and estimate the target’s location using an asymptotic minimum mean-square-error (MMSE) estimator. Furthermore, we analyze the convergence and complexity of the proposed variational Bayesian localization (VBL) algorithm. Computer simulation results demonstrate that the proposed algorithm can approach the performance of the Bayesian Cramer-Rao bound (BCRB) and outperforms conventional algorithm

    Neuromorphic object localization using resistive memories and ultrasonic transducers

    Full text link
    Real-world sensory-processing applications require compact, low-latency, and low-power computing systems. Enabled by their in-memory event-driven computing abilities, hybrid memristive-Complementary Metal-Oxide Semiconductor neuromorphic architectures provide an ideal hardware substrate for such tasks. To demonstrate the full potential of such systems, we propose and experimentally demonstrate an end-to-end sensory processing solution for a real-world object localization application. Drawing inspiration from the barn owl’s neuroanatomy, we developed a bio-inspired, event-driven object localization system that couples state-of-the-art piezoelectric micromachined ultrasound transducer sensors to a neuromorphic resistive memories-based computational map. We present measurement results from the fabricated system comprising resistive memories-based coincidence detectors, delay line circuits, and a full-custom ultrasound sensor. We use these experimental results to calibrate our system-level simulations. These simulations are then used to estimate the angular resolution and energy efficiency of the object localization model. The results reveal the potential of our approach, evaluated in orders of magnitude greater energy efficiency than a microcontroller performing the same task

    Federated Learning with a Drone Orchestrator:Path Planning for Minimized Staleness

    Get PDF

    Privacy-Preserving Decentralized Optimization and Event Localization

    Get PDF
    This dissertation considers decentralized optimization and its applications. On the one hand, we address privacy preservation for decentralized optimization, where N agents cooperatively minimize the sum of N convex functions private to these individual agents. In most existing decentralized optimization approaches, participating agents exchange and disclose states explicitly, which may not be desirable when the states contain sensitive information of individual agents. The problem is more acute when adversaries exist which try to steal information from other participating agents. To address this issue, we first propose two privacy-preserving decentralized optimization approaches based on ADMM (alternating direction method of multipliers) and subgradient method, respectively, by leveraging partially homomorphic cryptography. To our knowledge, this is the first time that cryptographic techniques are incorporated in a fully decentralized setting to enable privacy preservation in decentralized optimization in the absence of any third party or aggregator. To facilitate the incorporation of encryption in a fully decentralized manner, we also introduce a new ADMM which allows time-varying penalty matrices and rigorously prove that it has a convergence rate of O(1/t). However, given that encryption-based algorithms unavoidably bring about extra computational and communication overhead in real-time optimization [61], we then propose another novel privacy solution for decentralized optimization based on function decomposition and ADMM which enables privacy without incurring large communication/computational overhead. On the other hand, we address the application of decentralized optimization to the event localization problem, which plays a fundamental role in many wireless sensor network applications such as environmental monitoring, homeland security, medical treatment, and health care. The event localization problem is essentially a non-convex and non-smooth problem. We address such a problem in two ways. First, a completely decentralized solution based on augmented Lagrangian methods and ADMM is proposed to solve the non-smooth and non-convex problem directly, rather than using conventional convex relaxation techniques. However, this algorithm requires the target event to be within the convex hull of the deployed sensors. To address this issue, we propose another two scalable distributed algorithms based on ADMM and convex relaxation, which do not require the target event to be within the convex hull of the deployed sensors. Simulation results confirm effectiveness of the proposed algorithms

    Generic Distribution Support for Programming Systems

    Get PDF
    This dissertation provides constructive proof, through the implementation of a middleware, that distribution transparency is practical, generic, and extensible. Fault tolerant distributed services can be developed by using the failure detection abilities of the middleware. By generic we mean that the middleware can be used for many different programming languages and paradigms. Distribution for each kind of language entity is done in terms of consistency protocols, which guarantee that the semantics of the entities are preserved in a distributed setting. The middleware allows new consistency protocols to be added easily. The efficiency of the middleware and the ease of integration are shown by coupling the middleware to a programming system, which encompasses the object oriented, the functional, and the concurrent-declarative programming paradigms. Our measurements show that the distribution middleware is competitive with the most popular distributed programming systems (JavaRMI, .NET, IBM CORBA)
    • …
    corecore