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ABSTRACT In this paper, we investigate the problem of scheduling transmissions for spatially scattered
nodes that contribute to a collaborative federated learning (FL) algorithm via wireless links provided
by a drone. In the considered system, the drone acts as an orchestrator, coordinating the transmissions
and the learning schedule within a predefined deadline. The actual schedule is reflected in a planned
path: as the drone traverses it, it controls the distance and thereby the data rate to each node. Hence,
the model is structured such that the drone orchestrator uses the path (trajectory) as its only tool to
achieve fairness in terms of learning staleness, which reflects the learning time discrepancy among the
nodes. Using the number of learning epochs performed at each learner as a performance indicator, we
combine the average number of epochs computed and staleness into a balanced optimization criterion
that is agnostic to the underlying FL implementation. We consider two methods for solving the complex
trajectory planning optimization problem for static nodes: (1) successive convex programming (SCP) and
(2) deep reinforcement learning (RL). Considering the proposed criterion, both methods are compared
in three specific scenarios with few nodes. The results show that drone-orchestrated FL outperforms an
immobile deployment by providing improvements in the range of 57% to 87.7%. Additionally, RL-guided
trajectories are generally superior to SCP provided ones for complex node arrangements.

INDEX TERMS Drone trajectory optimization, wireless communications, federated learning, drone small
cells, staleness minimization, reinforcement learning, convex approximation, unmanned aerial vehicles,
edge computing.

I. INTRODUCTION

INITIALLY meant for military uses, then followed by
a boom in commercial entertainment usage, the flying

drones or unmanned aerial vehicles (UAVs) have a grow-
ing importance in the world of communications. The use
of drones for wireless communication purposes has also
received a surge of attention [1], [2] due to their excel-
lent coverage to outdoor users. In particular, due to their
flexibility, low altitude platform (LAP) drones are useful
to act as on-demand drone small cells (DSCs) for wireless

communication support. DSCs have the potential to contin-
uously relocate while providing service to spatially scattered
nodes that are unable to establish a high bandwidth ground-
to-ground communication. Adhering to the surge of interest
in enabling connected intelligence [3], [4], one can envi-
sion the use of such aerial platforms as an effective means
to implement collaborative federated learning (FL), where
few geographically scattered nodes collaborate to improve
a common machine learning (ML) model. Such an FL use
case requires periodic and high bandwidth communications
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FIGURE 1. Toy illustration showcasing ML mode passing to the learners (red arrows) in the downloading (DL) phase, that then return the updated models in the uploading (UL)
phase to achieve FL schedule as in Fig. 2. The drone performs this only by adjusting its trajectory, that in this example starts and finishes at the center of the CA.

to take place according to a given schedule. The planning of
this schedule is directly dependent on the DSC’s position,
and it imposes various challenges. Moreover, assuming that
all learners in an FL contain non-IID data that is useful to the
overall model causes asynchrony between the learning input
(epochs computed) of each node. Therefore, we consider the
drone in the role of an orchestrator, whose trajectory is the
available degree of freedom that can be adjusted to mini-
mize the maximum staleness (difference between most ML
epochs and the least ML epochs computed at a learner in
the FL).

A. STATE OF THE ART
The effects of dynamic DSCs that move in favor of users’
locations has been investigated in [5]–[7], where the focus
is on the superior spectral efficiency and latency achieved
by DSCs in various scenarios. In our previous work [8],
we demonstrated the impact of accounting for the dynamic
movements of standalone DSC, equipped with a tilting
directional antenna. Moreover, the work in [9] focused
on the energy efficiency for DSC deployment, while the
authors in [10] and [11] studied the problem of placement
optimization of a single cell and interference-limited multi
DSC deployments, respectively.
However, the consideration of dynamic drones calls for

efficient trajectory planning. The work in [12] focused on
finding the drone trajectory that achieves minimal UAV energy
expenditure while serving multiple nodes with a rotary-wing
UAV. In [13], the authors investigated energy efficiency by
scheduling the sleep timers of ground wireless nodes as
well as the UAV’s trajectory. Purpose-first three-dimensional
trajectory design can be achieved as done in [14], whose
goal was to maximize the minimum average data collection
rate from all nodes for a stochastic channel model. Finally,

considering the complexity of the issue, there is a strong
incentive of solving trajectory optimization problems with
the use of reinforcement learning (RL), as done in [15]–[17].
Drone cloudlet implementations receive a growing atten-

tion for edge computation purposes and offering portable
processing services. In this setting, the works in [18] and [19]
investigated the design of a drone trajectory, along with
the problem of communications and computational resource
allocation in favor of lowering the energy consumption of
an Internet of Things (IoT) network. Combining this with
the recent works on efficient offloading of the learning for
RL, [20], sparked a new demand for drone-aided intensive
edge computations. In a common centralized ML implemen-
tation, the drone would act as a sink for all the collected
data which is then processed, as in the cloudlet design [18].
Additionally, FL implementations in drones have been a topic
of significant interest in the literature. These prior works
mostly consider the drones as learners [21]–[24]. However,
even with current advances in energy efficient FL [25] and
low power computation systems,1 we consider the concept
of drone-mounted ML-computation hardware as heavy and
energy inefficient, thus reducing the flight time of the UAV.

B. DRONE ORCHESTRATOR FOR REDUCING
STALENESS
The progress of robot implementations for laborious tasks
in remote locations motivates investigating a setting of con-
nected intelligence. In example, logging robots [26] that
proceed with their main task of woodcutting can enhance
their detection performance of critical flora and fauna
through a collaborative learning process. In Fig. 1, we show
two distant ground robot-nodes L and R that are not energy

1. https://www.dji.com/dk/manifold-2
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Timeslot 1
Time-
slot 2

Robot - L DL Phase Learning 
Phase UL Phase UL Phase

Robot - R DL Phase DL Phase Learning 
Phase UL Phase

Timeslot 1 Timeslot 2 Timeslot 3 Timeslot 4

FIGURE 2. FL learners perform one iteration of learning thanks to balanced DL and
UL phases.

restricted and are equipped with powerful ML computation
equipment, and due to their spatial arrangement, require the
communications support of a mobile drone. In this setting,
both the learning and the sensing are distributed to the robot
nodes that perform iterative improvements on a common
ML model [27] with non-IID data [28] collected from their
own sensors. As such, the drone assumes the role of an FL
orchestrator that receives the model updates and aggregates
them. This is a computational task that does not require pow-
erful processors [27]. Such a setup sees potential practical
implementations such as orchestrating automated agriculture,
forestry, personalized healthcare [26], and border control [29]
operations. Finally, this architecture can apply to a plethora
of ML implementations, such as multi-perspective computer
vision, multi-agent utility optimization, or semi-supervised
parameter estimation. If needed, these implementations can
also exploit the ability of FL to conceal sensitive information
collected by the nodes.
In Fig. 1 and Fig. 2 we illustrate how each robot-node

goes trough three phases: downloading (DL) model (red),
learning, and uploading (UL) model improvements (blue).
Transmission times to (DL) and from (UL) each node occupy
useful time periods that would be preferably allocated for
the learning phase at each robot. In addition, the learn-
ing at each node is impacted by its processing capability;
higher processing capability at a node, with regards to other
learners in the network, makes the data collected by its sen-
sors more dominant when constructing the common model.
Hence, the objective is to control the channel to each node
through the drone-orchestrator’s trajectory with the goal to
aid the slow learning nodes (low processing capability) by
modifying the DL and UL transmission times in order to min-
imize the work/learning discrepancies between nodes, called
staleness.
Staleness is a cardinal metric for our setup since all nodes

are assumed to possess useful data and, therefore, strag-
glers cannot be dropped. This creates asynchrony between
the amount of learning each robot does. We model this
asynchrony by the largest difference of epochs computed
among the learners, which has been shown to be key for
the performance of the next generation of asynchronous
FL [30]–[32] The maximum staleness comes as a conse-
quence of the asynchrony of such an FL implementation
which is an issue that we want to tackle by implementing

path planning in the duration of a single FL round. Solving
the issue of staleness by only controlling the drone’s tra-
jectory requires new approaches as the transmissions occur
with variable duration and only at the head and the tail of a
pre-planned trajectory. This is in contrast to most works
that are concerned with trajectory optimization problems
whose goal is to maximize/minimize metrics that are often
a direct representation of the aggregate rate instead of the
fairness.

C. MAIN CONTRIBUTIONS AND ORGANIZATION
The main contribution of this paper is to develop, to the
best of our knowledge, the first framework that designs
a drone trajectory for serving FL networks with the pur-
pose of customizing per node metrics across longer time
periods, thus addressing the problem of staleness for deploy-
ments of scattered nodes. Addressing staleness gives a unique
optimization criterion for the trajectory problem since it
tackles shortening the transmission periods while equaliz-
ing work across many learners. Such a challenge makes
our problem significantly different from prior works on
trajectory optimization because of the combination of non-
linear resource (channel quality across a trajectory) for
solving a combinatorial optimization problem. It is appar-
ent that minimizing staleness is not only limited for FL
uses, but it also applies to drone trajectory design for lower-
ing working-time discrepancies for IoT fields, data freshness
for drones data-sink, and various edge computation sce-
narios where imbalanced work may harm the outlook of
the implementation and the efficiency of the underlying
service.
Section II describes the considered system, introduces

the wireless communications traffic model of the FL
implementation, and proposes a novel metric that contributes
towards a balance between the total amount of epochs com-
puted and staleness. We further compare the performance of
two trajectory optimization approaches, successive convex
programming and reinforcement learning, both detailed in
Sections III and IV, respectively. The SCP requires that we
approximate several metrics in order to get to a solvable form
in a computationally efficient manner. The RL approach [33]
makes no such demands and has the potential for future use
in a stochastic and unpredictable environment. Moreover, a
key novelty here is the fact that we created a more dis-
tance efficient hexagonal trajectory map and introduced a
secondary RL experience buffer with only good memories
that balances convergence and exploration. In Section V we
compare and analyze both approaches. Finally, conclusions
are drawn in Section VI.

II. SYSTEM MODEL
We consider a geographical coverage area (CA) defined
by a circular range with radius Dmax, containing a set
of K spatially distributed static nodes with each scattered
node labeled by k ∈ K = {1, 2, . . . ,K}. A single drone-
orchestrator travels across this CA and has to complete its
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route within a predefined deadline T referred to as global
cycle clock. The global cycle clock is defined by the FL
implementation and it is crucial to the correct operation
of an underlying task. Note that in both FL algorithms
FedAvg [27] and FedProx [28] it is critical that not too
much local work (very long T) takes place as it impairs the
aggregate learning. On the other hand, too little local work
(short T) means the transmission overhead will become dom-
inant [27]. We further define N discrete timeslot intervals
i ∈ N = {1, 2, . . . ,N} each with a duration of � seconds
as T = N�. The size of � is determined based on the
drone speed and CA radius as discussed in Section IV and
Section V. The drone trajectory Pd = {pdi } ∈ R

N×2, where
each pdi represents a way-point for each timeslot i as the
i-th row of Pd is decribed by the horizontal coordinates
pdi = (xdi , y

d
i ), while its altitude is always H. The drone can

fly horizontally, limited by a maximum speed of vmax, and
it is equipped with a directional antenna that tilts to ensure
coverage over the CA as in [34], so that basic control sig-
naling is always supported. This does not imply satisfactory
FL model transfer rate for distant users, making it necessary
to move the drone closer to ensure faster model exchange.
The K nodes are found on the ground (zero height) at posi-
tions pk = (xk, yk) ∀k ∈ K, resulting in a drone-to-node k
horizontal distance of:

di,k
(
pdi

)
=

√(
xdi − xk

)2 + (
ydi − yk

)2
(1)

where k ∈ K. As such, the value of di,k is subject to the
anticipated movement of the drone at time i, which further
impacts the data rate Ri,k(pdi ) for each node. We do not adjust
drone’s height during the trajectory, as it is incompatible with
the use of a directional antenna in a sense that it would affect
the size of the CA (e.g., see [1], [2], and [8]). Moreover,
adjusting the height can raise potential liability concerns
with respect to collisions, as well as drastically increase
the optimization complexity. We also consider localization
precision defined by a radius of r meters around the allocated
drone position pdi .

A. FEDERATED LEARNING TRAFFIC MODEL
At the start of the FL cycle, each node starts with the DL
phase that lasts Nk,DL(Pd) timeslots, implicitly given as:

Nk,DL
(
Pd

)
∑
i=0

Ri,k
(
pdi

)
·� = B ∀k ∈ K (2)

where Ri,k(pdi ) is the instantaneous data rate for timeslot i
of node k. Each node concludes the FL cycle with the UL
phase of duration Nk,UL(Pd) implicitly given by:

N∑

i=N−Nk,UL(Pd)
Ri,k

(
pdi

)
·� = B ∀k ∈ K. (3)

The leftover time in between both transmission phases
is where the learning occurs for each learner. Since all

FIGURE 3. An example of the FL process with two learners; k = 1 blue-dashed line
and k = 2 red-solid line. Here N1,L = N2,L = 3, and if f1 = f2, the system has zero
staleness since both nodes have an equal amount of epochs.

phases need to be completed within N timeslots, the dis-
crete learning period Nk,L(Pd) during the drone’s trajectory
lasts:

Nk,L
(
Pd

)
= N − Nk,DL

(
Pd

)
− Nk,UL

(
Pd

)
∀k ∈ K. (4)

Fig. 3 illustrates the phases for K = 2 where the ML pro-
cess is based on a model of size B Mb which, for simplicity,
is assumed to be identical for both UL and DL. The illustra-
tion portrays a two-dimensional system that has a width of B
Mbs and height of the number of discrete timeslots N. Each
one of the dashed-blue (k = 1) and solid-red (k = 2) lines
represent the FL stage. Meanwhile, the slope of the lines
capture Ri,k(pdi ) that changes across all timeslots because
the drone moves horizontally and impacts the wireless
channel.
However, ML is an iterative process where each learning

pass of the sensed data is called an epoch Tk. Back in Fig. 3,
the allocated processing time for each node is three slots,
and even though we mitigate the asynchrony introduced by
the spatial arrangement, the computed epochs Tk depend on
the processing capabilities of node k. To account for such
learners, referred to as stragglers in the FL community, we
scale the computational capability with a scalar value fk.
The value fk represents the amount of epochs processed per
second and is a collective measure of the processor cores
and speed, ML accelerator (such as repurposed rasterisation
cores) and/or the environment sampling rate. The number
of epochs spent by device k is therefore a function of the
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flown trajectory Pd and is calculated as:

Tk
(
Pd

)
= Nk,L

(
Pd

)
·� · fk. (5)

In classical ML, the more epochs computed and the more
data is provided, the higher the expected model accuracy.
FL is a cyclic process whereby at the end of the cycle there
are K models with different weights wk that are received
by the drone orchestrator and are aggregated to the com-
mon model [27], [28]. The orchestrator then initiates a new
learning cycle and returns the aggregated model weights wd
to all participating learners/nodes.

B. STALENESS IN A NO-DROP FEDERATED LEARNING
Since in an FL the data is non-IID distributed among learn-
ers, we model the performance of the FL as a no-drop FL
where learning occurs in an asynchronous fashion and all
participants are trustworthy. Like this, discrepancies in Tk
between the different learners, i.e., |Tk(Pd)−Tl(Pd)|; ∀k �=
l; k, l ∈ K, are referred to as staleness [31]. This cre-
ates an asynchronous FL where staleness undermines the
total learning done

∑K
k=1 Tk and therefore slows down FL

convergence and lowers overall system accuracy in the
training phase [30]–[32]. Moreover, both [28] that tackles
learning without dropping straggles, and the asynchronous
optimization [31] work, show that even when the local opti-
mizer is designed for some asynchronous amount of work
the maximum staleness impacts the performance of the FL.
Hence, we aim to improve learning performance when aggre-
gating the collective model by minimizing the largest epoch
number difference between any two learners:

s
(
Pd

)
= max

(∣∣∣Tk
(
Pd

)
− Tl

(
Pd

)∣∣∣
)
; ∀k �= l; k, l ∈ K,

(6)

where Tk is relaxed to Tk ∈ R
+, for the purpose of general-

izing the analysis. To avoid fully neglecting good learners,
we introduce the mean of the total number of epochs per-
formed as a stabilizing factor. We can now define the
primary optimization criterion for our drone trajectory as
an average-anchored staleness (AAS):

max
Pd

1

K

K∑
k=1

Tk
(
Pd

)
− s

(
Pd

)
, (7)

where the system constraints of speed, initial location, and
deadline are described in Section III for the SCP approach
and Section IV for the RL approac. As mentioned, different
local FL optimizers can tolerate some asynchronous amount
of work. Such tolerance stol can be accounted for in (7)
by converting the second term s(Pd) to max(s(Pd), stol).
Although the implementation in [32] would moderately tol-
erate maximum staleness of 4, we proceed the work by
tackling the most challenging scenario where the trajectory
would need to be optimized if no tolerance was allowed
stol = 0.

A more simplified look at (7) is that if node positioning is
stochastic as in a point process, the goal of our optimization
problem would map to reducing the maximum deviation in
learning performed. This gives a good general overview that
is data-agnostic [35], without the need to assume the impact
of data at some particular learner and solely on spatial and
computational performance. Therefore, AAS provides tra-
jectories that serve an equally balanced amount of learning
and staleness, which can be further enhanced with addi-
tional resource allocation techniques [36] combined with
FL incentive calculations [37]. Finally, with (7) we bring
asynchronous FL as close as reasonable by the disposable
resources to a classical synchronous FL (where all learners
compute the same amount of epochs in a cycle), without
dropping any stragglers.

C. PROPAGATION ENVIRONMENT
A node can belong to one of two propagation groups, nodes
that have direct line-of-sight (LoS) or no-LoS (NLoS). As
such, the path loss experienced for node k at time i is �i,k and
becomes a sum of the free space path loss (FSPL) and the
additional large-scale shadowing coefficient for each one of
the propagation groups. We note that since we are concerned
with lengthy transmission timescales of several seconds we
use the mean fading coefficients for each propagation group,
namely ηLoS and ηNLoS. This provides a well-generalized
approach opposed to working with random variables for the
fading calculations of the normally distributed excessive path
loss, that is introduced due to the large features of the topol-
ogy [38]. Taking into account a directional antenna with
directivity defined by Gt, the path loss experienced for each
propagation group becomes:

�i,k,LoS

(
pdi

)
= −10 log(Gt)+ 20 log

(√
d2
i,k

(
pdi

) + H2

)

+ C + ηLoS, (8)

and,

�i,k,NLoS

(
pdi

)
= −10 log(Gt)+ 20 log

(√
d2
i,k

(
pdi

) + H2

)

+ C + ηNLoS, (9)

where log is a shortened version of the common logarithm
log10 and the term C is a substitute for the carrier frequency
fc constant in FSPL C = 20 log ( fc4πc ). Hence, a node’s
probability to belong to either group is directly dependent on
the probability for a LoS to happen, PLoS(pdi ). To represent
the probability we use the s-curve model defined by [39]:

PLoS
(
pdi

)
= 1

1 + a exp
(−b(θuser(pdi )− a

)) , (10)

where a and b are constants dependent on the topologi-
cal setting, and the elevation angle at user side θuser(pdi ),
expressed in degrees 0 ≤ θuser(pdi ) ≤ 90, is a function of the
drone’s horizontal position since the height H is fixed and
θuser(pdi ) = arctan( H

di,k(pdi )
), as illustrated in Fig. 4.
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FIGURE 4. Reference LAP placement (solid blue) and a drone orchestrator in
trajectory (dashed red) [8].

Given the existence of only two propagation groups, the
probability PNLoS(pdi ) = 1−PLoS(pdi ) which finally allows us
to calculate the final path loss expectation Li,k(pdi ) for node
k as derived from (8), (9), and (10) and given in linear terms
as a function of the drone’s position through �i,k,LoS(pdi ) and
�i,k,NLoS(pdi ):

10 log
[
Li,k

(
pdi

)]
= �i,kLoS

(
pdi

)
· PLoS

(
pdi

)
(11)

+ �i,kNLoS

(
pdi

)
· PNLoS

(
pdi

)
(12)

= PLoS
(
pdi

)
(ηLoS − ηNLoS)+ �NLoS

(
pdi

)
.

(13)

D. DATA RATE
We consider a tilting antenna that keeps the whole CA in a
communications coverage range and can provide a non-zero
rate at any time. Such a setup reduces interference to users
outside the CA [8] as well. The gain of the antenna Gt is
given by its effectiveness Er to fit an ideal conical beamwidth
Gt = Er10 log(GI), where the ideal conical antenna has gain:

GI = 2

1 − sin
(
θedge

π
180

) , (14)

where θedge = arctan( H
Dmax

) is the elevation angle at the cell
edge, when the drone is positioned in the middle of the CA
and applies no antenna tilt, as shown on Fig. 4. With this we
define the final expected path loss expression, as a function
of the location of the drone, and fully expanded [8]:

10 log
(
Li,k

(
pdi

))
= ηLoS − ηNLoS

1 + a exp

{
−b

[
arctan

(
H

di,k
(
pdi

)
)

− a

]}

+ 20 log

(√
d2
i,k(p

d
i )+ H2

)

− Er10 log

[
2

1 − sin
(
θedge

π
180

)
]

+ C + ηNLoS. (15)

We consider an orthogonal multiple access scheme (e.g.,
using frequency division multiple access (FDMA)), thus,

we consider a noise-limited system with no interference for
both DL and UL phases. Moreover, to emphasize the impor-
tance of the drone position in its trajectory we preallocate a
frequency spectrum W that remains constant for each node.
Therefore, at each timeslot the achievable rate becomes:

Ri,k
(
pdi

)
= W log2

[
1 + Pt

WN0Li,k(pdi )

]
, (16)

where Pt is the transmission power that is assumed to be
identical at both node and drone side, while N0 is the noise
spectral density linearly scaling the noise with the channel
bandwidth W.

III. PROBLEM ANALYSIS AND CONVEX APPROXIMATION
FOR TRAJECTORY OPTIMIZATION
In this section, we determine the optimal trajectory of the
drone orchestrator in a way to minimize the discrepancy
between the Tk values while maximizing each individual
Tk value for a given mission completion time using the
SCP technique. We use this method with the overarching
goal of devising an algorithm that will provide a solution in
deterministic polynomial time for any scenario with arbitrary
arrangement of nodes. Due to the several non-convex param-
eters involved, this is non-trivial and requires a combination
of several analytical techniques.
As defined in Section II, the value of the length of a times-

lot � = T
N is selected such that any position reachable within

that timeslot does not impose significant changes in the rate
performance; i.e., can be considered to be approximately
unchanged. Hence by first order Taylor approximation, at
some time instant t, the discrete position of the drone at the
time slot t +� can be approximated as:

pdi+1 = pdi + vdi�+ 1

2
adi�

2 ∀i ∈ N . (17)

Similarly, the velocity vector for the time slot t+� can be
approximated as:

vdi+1 = vdi + adi� ∀i ∈ N . (18)

The use of time discretization reduces the number of
variables to 2 · N, resulting in the following staleness
minimization problem:

(P1) : maximize
Pd

1

K

K∑
k=1

Tk
(
Pd

)
− s

(
Pd

)
, (19)

s.t.
∣∣∣Tk

(
Pd

)
− Tl

(
Pd

)∣∣∣ ≤ s
(
Pd

)
, k, l ∈ K, (20)

2BT

�
∑N

i=1 Ri,k
(
pdi

) + Tk
(
Pd

)

fk
≤ T ∀k ∈ K, (21)

∥∥∥pdi+1 − pdi

∥∥∥ ≤ min{2r,�vmax}, (22)

Tk
(
Pd

)
≥ 1 ∀k ∈ K, (23)

pd1 = pI, (24)
vd1 = vI, (25)
vdN = vF, (26)∥∥∥vdi

∥∥∥ ≥ vmin ∀i, (27)
(17), (18). (28)
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Maximizing the objective function (19) is equivalent to
minimizing the maximum difference between the Tk values
of the nodes in the CA. Equation (21) is the mission com-
pletion time constraint, where the first term accounts for the
time required for transmitting both uplink and downlink the
B bits of data. In the aforementioned term, we approximate
the data rate during the UL and DL phases as the average rate
through the full time T . This avoids having to convert the
problem into a mixed-integer one. Constraint (22) represents
the localization precision limitation by which the maximum
distance between consecutive positions of the drone is lim-
ited to 2 · r as given back in Section II; (24) is the initial
drone position constraint; while (23) guarantees at least one
iteration of the local ML model with the given data subset
for every node.
It is evident that the average rate of (21) depends on

pdi through Li,k(pdi ) and therefore the LoS probability. The
complex expression of PLoS(pdi ) as reported in (10) makes
solving (P1) using convex methods outside our computa-
tional capabilities. To circumvent the impact of the Lo
probability on function convexity, we use a homogeneous
approximation for the LoS probability [12]. Indeed, since
PLoS(pdi ) is an increasing function of the elevation angle,
we consider the LoS probability of all the nodes equal
to the LoS probability of the edge user device [11], i.e.,
PLoS(pdi ) ≈ PLoS(pdedge) ∀i, k : di,k ≤ Dmax. Hence the cor-
responding rate value is the lower bound of Ri,k(pdi ); which
in a LoS dominated region is equal to the actual Ri,k(pdi )
value. Therefore the lower bound of the average achievable
rate of node k when the drone is at time i becomes:

Ri,k
(
pdi

)
= Wlog2

⎡
⎣1 + γo(

H2 + d2
i,k

)
L

⎤
⎦, (29)

where L = 10{[PLoS(pdedge)(ηLoS − ηNLoS) + ηNLoS]/10}
and γo = Ptc2GErI

WNo(4π f )2
are obtained by substituting (9)

in (11). This rate-equivalent approximation is useful in pro-
viding solutions to the convex approximation approach but
is not necessary in Section IV where we approach the same
problem using reinforcement learning.
The objective function and the con-

straints (20), (22)-(26), (17), (18) are convex functions of
the position and the velocity variable. However, the mission
completion time constraint (21) is non-convex because of
the data rate expression in (29) and the minimum velocity
constraint is also a non-convex function of the velocity
variable. Hence (19) cannot be solved directly by using a
convex optimization technique. We will thus address this
challenge by using the sequential convex programming
technique.

A. SEQUENTIAL CONVEX PROGRAMMING FOR
TRAJECTORY OPTIMIZATION
The SCP approach allows us to represent a non-convex
optimization problem as a sequence of convex optimization

Algorithm 1: SCP for Trajectory Optimization

1 Input: l = 0; {pd,li }, {vd,li } ∀i ∈ N
2 repeat
3 Solve (P1.1) using available convex optimization tool

box to obtain the optimal solution: {pdo,i}, {vdo,i}
4 l = l+ 1;
5 pd,li = pdo,i; vd,li = vdo,i ∀i ∈ N
6 until The fractional increase in the objective function

of (P1.1) is less than a threshold δ
7 Output: Optimal drone positions: {pd,li }

problems, and, then, solve them iteratively until the solu-
tion converges [40]. The candidate solution obtained through
the SCP is guaranteed to satisfy the Karush-Kuhn-Tucker
(KKT) conditions of the actual non-convex problem. Hence
the solution obtained through the SCP technique cannot
be considered as the global optimum of the problem, but,
instead, it is a local optimum. However, the rate of conver-
gence of the SCP algorithm is linear in complexity thereby
making it suitable for solving real-time drone positioning
problems [40].
To solve (19) using the SCP technique, we introduce

an auxiliary variable λi,k(pdi ) to tackle the non-convex
constraint (21); where λi,k(pdi ) is the first order Taylor
approximation of Ri,k(pdi ) expressed as:

λi,k

(
pdi

)
≤ log2

⎛
⎜⎝1 + γ

H2 +
∥∥∥pd,li − pk

∥∥∥
2

⎞
⎟⎠

− α
d,l
k,i

(∥∥pdi − pk
∥∥2 −

∥∥∥pd,li − pk
∥∥∥

2
)
, (30)

where αd,lk,i = γ log2e

(H2 + γ +
∥∥∥pd,li − pk

∥∥∥
2
)(H2 +

∥∥∥pd,li − pk
∥∥∥

2
)

;

{pd,li } is the set of drone positions obtained from the lth

iteration; γ = γo/L. The right-hand side of (30) is a concave
function of pdi ; hence (30) is a convex constraint of the
variables pdi and λi,k(p

d
i ). Similarly the non-convex minimum

velocity constraint can be equivalently represented as;

β ≥ vmin, (31)

∥∥∥vd,li
∥∥∥

2 + 2
(
vdi − vd,li

)(
vd,li

)T ≥ β2, (32)

with (30), (31), and (32), the optimization problem (19), can
be equivalently written as;

(P1.1) : maximize
Pd

1

K

K∑
k=1

Tk
(
Pd

)
− s

(
Pd

)
, (33)

s.t.
2BT

�
∑N

i=1 λi,k
(
Pd

) + Tk
(
Pd

)

fk
≤ T, k ∈ K, (34)

(17), (18), (20), (22)−(26), (31), (32). (35)
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FIGURE 5. A cropped illustration of the odd-r hexagonal lattice (blue) fitting the
CA’s border (black solid line), with few examples of the precision circles with inner
radius r (yellow). The drone has flown a trajectory (dashed orange line) and is faced
with deciding among the 7 actions (solid red arrows).

Finally, the objective function and the constraints of (33)
are convex and the problem can be iteratively solved as
reported in Algorithm 1. In our case, every iteration makes
use of available convex optimization tool box by MATLAB
called CVX [41]. Finally, we note that the resulting trajectory
may be a local maximum that is influenced by the initializa-
tion of the approximated trajectory positions. Nonetheless,
this is sufficient given that SCP should provide reliably
similar performances across different testing scenarios and
executes in polynomial time.

IV. REINFORCEMENT LEARNING FOR TRAJECTORY
OPTIMIZATION
In Section III, we analyzed (7) by converting it to a con-
vex form and solving it iteratively as in SCP. Due to the
shortcomings of SCP, we are interested in evaluating the
performance and suitability of RL [33] particularly without
making approximations on the original scenario proposed
in Section II. In addition, RL has a potential to work with
more difficult and realistic models that include stochastic
rates, node positions, and variations in the drone speed, all
of which can be suitable for future real-world variations of
the problem. Given this motivation, we will now investigate
how to design an RL that solves the trajectory problem as per
the defined model in Section II. In general, RL is a learning
approach that is used for finding the optimal way of exe-
cuting a task by letting an entity, named agent, take actions
that affect its state within the acting environment [33]. The
agent improves over time by incorporating the rewards it
had received for its appropriate performance in all episodes
within that same environment.

A. ENVIRONMENT REMODELLING
We discretize the continuous environment by splitting the
horizontal space into an odd-r horizontal layout hexagonal
lattice, such as illustrated in Fig. 5. Beyond reducing the
continuous space, the grid becomes a truthful representation
of the trajectory limitations due to drone positioning. Setting
r as the inner radius of each hexagon, shown with yellow

at Fig. 5, does not harm the precision of the planned tra-
jectory and offers superior packing. This also requires the
position of each static node k defined by the center of the
hexagon it is in. Using the nearest neighbouring center dis-
tance 2 · r division of CA’s diameter 2 · Dmax, results in a
two dimensional M ×M lattice of size:

M = Dmax

r
. (36)

We define as a single episode the completion of the deadline
T during which all nodes need to have their updates sent
back to the drone and is discretized by � = T/N for all
N timeslots. The drone starts at point pd0 and finishes at
point pdN by travelling from point i to point i + 1 with a

maximum speed limitation of
pdi+1−pdi
�

≤ vdmax. Since the
drone speed is limited, we allow for full trajectory resolution
of the hexagonal lattice by setting:

� = 2 · r
vdmax

, (37)

resulting in a total number of timeslots as:

N = T · vdmax

2 · r . (38)

In this way, at every time-step, the drone has the choice
to move to each of the six neighbouring hexagons or not
move at all, illustrated with red at Fig. 5, totalling to an
action space of 7. Since the trajectory is expressed by all
previous drone movements the problem of trajectory plan-
ning becomes a Markov Decision Process (MDP) that under
special conditions has a size of an N-tuple with base 7
totalling to 7N states.

B. DRONE TRAJECTORY AS AN MDP
To make the trajectory problem solvable by RL, the main
purpose of the reformulation until now was to make it rep-
resentable by an MDP. To this end, we use a standard MDP
representation as a 4-tuple (S,A,P,R) with sets: state
space S, action space A, probability of transition P , and
a state-action reward map S × A− > R.

• S - Each state in the set is defined by the drone’s (x, y)
coordinates in the drone trajectory taken, depicted with
orange back in Fig. 5, the leftover timeslots that lack coor-
dinates are padded totalling to 2·N states.We additionally
specify each state with the number of leftover timeslots
N − i, and (xk, yk), fk, and Ri,k for each node k. Thus
we have a state described by F = 1 + (2 · N)+ (4 · K)
features. Since the state space for the MDP scales with
the number of timeslots N, the complexity of trajectory
optimization becomes more challenging to the RL agent
from two additional perspectives. A larger N directly
increases the size of input features of the network F
while it also extends the time for which the agent needs
to finish a whole episode, providing less experience for
the same time spent learning.
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• A - The action space is defined by all possible
movement directions on the sides of the hexagon plus
the action of remaining in the same place formatted
into a 7-tuple.

• P - Since the defined MDP is deterministic, no random-
ness is included in the set and all transitions follow the
agent’s decisions. Therefore, the next state is a direct
consequence of the action that the agent takes, which
is the maximal value among the seven outputs in the
tuple.

• R - Since the performance of the drone can only be
known once it completes the trajectory, defining con-
tinuous rewards for the agent will lead to a suboptimal
performance due to the imbalance between the progres-
sive rewards and the optimization criterion. Therefore,
the reward set R is 0 except for the end of the episode
where the one-time reward is as calculated from (7).
Through this single reward the RL agent needs to learn
to utilize its movements for, distributing the rates during
DL, moving during the learning period, and distributing
the rates during UL.

C. DEEP Q-LEARNING
Due to the size of MDP, we create an RL agent as a
feed-forward neural network (NN), with F input neurons,
Y hidden states each with the same number of neurons Z,
all using rectified linear (ReLU) activation functions, and an
output neuron count of 7. Compared to other state of the art
Q-function approximators, our selected NNs provide reason-
able accuracy with lower convergence time when compared
to, e.g., recurrent NNs (RNNs). When receiving the current
state, described with F features as input, the NN agent out-
puts its evaluation for all seven actions that can be taken.
However, the use of NNs in RL tasks may fail to converge
especially in problems with complex optimal policy in great
state space [42], such as ours. Therefore, we rely on deep
RL, using double Q-learning and experience replay methods
derived from [43] to bring the problem as close as possible
to traditional supervised learning.
Experience replay requires that we store past episodes

in a replay buffer. An experience e is defined as a tuple
of five elements that occurred during action step t as in
et = (st, at, rt, st+1, dt) where: st was the starting state of
the agent, at is the action that the agent took, rt is the
reward that the agent received, st+1 the state at which it
arrived, and dt = {0, 1} is an indicator for a terminating
action that has 1 if the action finishes the episode or 0 if it
leads to another state. This allows the use of mini batches
of size β from the stored experiences. However, consider-
ing the vast amount of possible trajectories that the drone
can try there is still a need to reduce the many unpro-
ductive trajectories while exploring the state space. Hence,
we also include a secondary experience buffer that only
stores the ten best performing episodes. Both buffers are
used for training each episode as it was observed that such

TABLE 1. Training parameters for RL trajectory optimization.

approach accelerates the convergence while maintaining the
exploration.
Finally, for the double-Q-learning RL algorithm, we need

to keep two separate agents with the same properties but with
different weight values wP and wT. As such they will out-
put a different Q-action function when given the same state.
One is used to choose the actions, called a primary model
QP(st, at), while the other model evaluates the action dur-
ing the training, called a target model QT(st, at). Therefore
training occurs when taking a batch of experiences et from
the buffer that is used to update the model as:

Qnew
P = (1 − α)QP + α

[
rt + (1 − dt)γ maxQT(st+1, a)

]
,

(39)

where maxQT(st+1, a) is the action chosen as per the agent,
α is the learning rate which was an input to the Adam
optimizer [44], and γ is a discount factor that reduces
the impact of long term rewards. We implement this with
soft updates where instead of waiting several episodes to
replace the target model with the primary. The target model
receives continuous updates discounted by value τ as in
wT = wT · (1 − τ)+ wP · τ . Finally, to input new instances
in the experience memory, the state space was sampled
using the ε-greedy strategy. Here, with probability ε we
take an action uniformly at random from the action space
A, while with probability 1 − ε we act greedily in favor
of the agent’s decision. After each episode, we lower the
ε value by multiplying it with a decay coefficient ψ as in
εnew = ε · ψ .

D. TRAINING AN RL AGENT FOR TRAJECTORY
OPTIMIZATION
In our implementation the drone is trained in an offline man-
ner. In other words, the drone will compute the full trajectory
before taking any action in the simulated environment, which
is modeled as an MDP. Since we use off-policy learning with
sampling, this is easily adaptable to online training, where
the ML model would be continuously trainable even during
its operation. This is done with scalability in mind as we
anticipate that integrated FL implementations require more
fine tuned reward systems.
During the training process, RL needed roughly 50-100

episodes of replaying the same scenario solely to understand
the situation and converge to stable flying routes that do not
incorporate random erratic movements. Once such stability
was achieved, the RL agent managed to learn to fly towards
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TABLE 2. Testing environment settings [8], [38], [45].

slow learners and away from learners that received too much
attention. After an extensive experimentation, the parame-
ters given in Table 1 resulted in a good learning progress.
The results provided in Section V were achieved within 400
episodes of training, which took roughly 80−120 minutes of
training on a GPU accelerated implementation of the script
written in Python.

V. SIMULATION RESULTS AND ANALYSIS
The purpose of our simulation is to best evaluate
the behaviour of our proposed solutions to the AAS
minimization problem that arises in asynchronous FL
networks. Moreover, we aim to both validate our frame-
work and decide on an optimization approach that handles
the problem based on the values introduced in Section II.
Since the performance of the provided trajectories strongly
depends on the arrangement of the nodes, both approaches
were put against a few handpicked scenarios. We chose this
testing approach as aggregation of many randomized runs is
unlikely to provide useful results due to the uniqueness of
each scenario. Additionally, as our goal is to inspect the use-
fulness of using trajectory when maximizing AAS, we test
on deployments with few nodes. In such scenarios it is easier
to sample a challenging scenario for the optimization prob-
lems and execute a performance assessment that is directly
observable.
In Table 2 we list the parameters used for testing both

solutions. The parameters were inspired by object detection
models as in IMAGEAI’s YOLOv3,2 being served by a
rotary-wing UAV3 in a suburban environment. We judge the
performance of the algorithms by how well they maximize
the AAS metric from (7) that is directly dependent on the
average learning done by all nodes subtracted by the achieved
staleness s. As such, the drone trajectory optimization
becomes a balancing act of anticipating moving towards
and away from specific learners and pre-calculating the pos-
sible staleness for that learning cycle. The results shown

2. https://imageai.readthedocs.io/en/latest/detection/
3. https://www.dji.com/dk/matrice100/info#specs

TABLE 3. Coordinates and computational capability for each node k in all three tested

scenarios.

in this section are calculated with a simulation of the non-
approximated scenario in Section II, common for both SCP
and RL.
For testing, we assume that the drone should start at

the center of the CA, pd0 = [0, 0]. This is done in accord
with many works that use a recharging or a battery-swap
station [46] at the center of the CA in order to offer uninter-
rupted, seamless, and standalone service. In our simulated
scenarios, we consider the case in which the drone has fin-
ished a battery swap from a ground station in the center of
the CA, elevated itself to a height H, and initiated its service
while it is at a very unbalanced position with regards to the
node arrangement.
In this way we test the trajectory optimization approaches

in a very challenging environment, where the drone trajectory
starts in an unbalanced and therefore unfavorable position
with regards to the ground FL network. These simulations
cover the first cycle of the drone flight, after the end of
which, changes in the area may occur as some learners drop
due to lack of data or new learners appearing in other areas
of the CA. Therefore, in each cycle the drone will perform
swings across the field of learners, until the time comes for
the drone to go back to the center, recharge, and get back
to orchestrating the FL network.
We tested our approach and evaluated its performance

in Table 3. These three scenarios are representative of
special case arrangements in which the drone needs to
take quick action to best improve the FL’s performance
for that specific FL cycle. The computational capability
fk for each device in Table 3 is also taken in reference
of the task of object detection, where we expect that one
epoch should last roughly one second on a computationally
powerful node.

A. STRAIGHT TRAJECTORY
The first arrangement, and named Straight, considers only
two users K = 2, where the drone has a clear path to the
slowest learner located in the rightmost corner. If no tra-
jectory is considered, and the service provider is static at
the starting location it would achieve an AAS of 3.90 with
s = 5.74. The SCP solution provides a direct flight towards
the slowest learner and achieving an AAS of 7.32 and a
staleness s = 3, outperforming the static implementation by
87.7%. On the other hand, the RL algorithm takes a com-
plicated trajectory, as shown on Fig. 6, and achieves worse
results an AAS of 7 with s = 3.7, outperforming the static
implementation by 79.48%.
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FIGURE 6. Staleness minimization solutions for Straight where: RL yields an AAS of
7 with s=3.7; SCP yields AAS=7.32 with s=3.

FIGURE 7. A datarate heatmap showcasing DL (left) - Learning (middle) - UL (right)
schedule for both RL and SCP approaches for each device in Straight.

Recall that, although no stochastic parameters were
involved, the ε-greedy approach was used in the RL train-
ing for the purpose of exploring the state space. This is
significant since it leads the drone to position itself in unde-
sirable locations, at times. In such cases, the agent eventually
receives a lower reward even though the trajectory change
was caused by a random epsilon event. Thus, RL produces a
skewed trajectory in which the drone dramatically evades the
good learner k = 2 in a behaviour that is most likely due to
overstating the importance of staleness and the positioning
of k = 2. RL is outperformed in this simple scenario mostly
due to the lack of overfitting mitigation for the Q-learning
agent. In future works, we intend to investigate an improved
agent with a combination of RNNs and dropout as in [47].
In Fig. 7, we show the chronological progression of the data
rates for the ML model transmissions for each link in the
Straight scenario. The schedule is clearly visible, starting
with the DL phase (colored bars on the left), followed by a
period of learning (central black bars), and finalize with the
UL phase (colored bars on the right). Therefore, the width
of each bar manifests the duration of the phase for that node.

FIGURE 8. Staleness minimization solutions for Hidden where: RL yields an AAS of
7.8 with s=3.7; SCP yields an AAS of 7.1 with s=4.72.

The graph enables us to further analyze the implication of
the trajectory, and we notice that the major difference occurs
in the DL phase where the RL provided trajectory manages
to decrease the rate towards k = 1 enough to finish later
than k = 1 with the SCP trajectory. Since this also comes at
a cost to the rate for the straggler node k = 2, this measure
does not sufficiently improve the staleness value in the RL
case so as to outperform the SCP provided solution even
though their straggler performance is nearly equal.

B. ONE HIDDEN NODE
The second arrangement, shown in Fig. 8 and named Hidden,
has three learners K = 3 present in the CA. Here the slow-
est learner is hidden far away from the center with two well
performing nodes in the way of the direct trajectory con-
necting it. If static at the starting location, the orchestrator
would achieve an AAS of 4.52 with s = 7.46. Both algo-
rithms show prowess to discover the policy of breaching the
barrier of fast learners to get to the slowest, hence provid-
ing an adequate solution. However, the RL algorithm does
this much more efficiently with an AAS of 7.8 with s =
3.7, outperforming the static implementation by 72.56%. RL
outperforms its SCP counterpart that achieved an AAS of
7.1 with s = 4.72, outperforming the static implementation
by 57.08%. In both SCP and RL implementations, the drone
is trying to leave the barrier of good learners as fast as pos-
sible and move towards the neglected user to match the rate
it gave to the fast learners in the DL phase. In this testing
scenario, using unapproximated rate goes massively in the
benefit of discovering good positions with high precision for
the RL approach. Additionally, in Fig. 9, we show the evo-
lution of the transmission schedule for the Hidden scenario
and highlight the better performance of the RL implementa-
tion particularly when dealing with the slow learner k = 3.
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FIGURE 9. A datarate heatmap showcasing DL (left) - Learning (middle) - UL (right)
schedule for both RL and SCP approaches for each device in Hidden.

FIGURE 10. Staleness minimization solutions for Forced where: RL yields an AAS
of 7.2 with s=3.48; SCP yields an AAS of 6.74 with s=4.02.

Here, the RL guided drone travels very close to k = 3 dur-
ing the final UL phase and, thus, it achieves near maximum
rates and transfers ≈ 52 Mbits each timeslot.
An important note is that during RL training, it was

observed that the RL agent would sometimes try a policy
of flying away from all nodes in an effort to reduce the
performance of nodes k = 1 and k = 2. This signifies the
superiority of using our AAS metric as opposed to solely
relying on s as an optimization metric since AAS “anchors”
the drone from moving away from all learners. If we only
relied on staleness as an independent optimization metric
it would reflect heavily in the total amount of computa-
tion work done by the FL nodes, therefore slow down FL
convergence.

C. FORCED DEPARTURE
Next, in Fig. 10, we consider a third scenario named Forced
that has one well performing node directly in the center
of the CA and two slow learners scattered at two positions
away from the center. This scenario forces the drone orches-
trator to quickly move out from its starting position to the

FIGURE 11. A datarate heatmap showcasing DL (left) - Learning (middle) - UL (right)
schedule for both RL and SCP approaches for each device in Forced.

closest and fastest learner, to serve a more balanced role
away and towards the two other nodes. Here a static drone
fixed at the starting location would achieve an AAS of 4.22
with s = 6.62.
This scenario showcases how the proposed RL algorithm

allows the drone to find a high-performing trajectory that
yields an AAS of 7.2 with s = 3.48, thus significantly out-
performing the static implementation by 70.61%. In contrast,
here, the SCP algorithm achieved an AAS of 6.74 with
s = 4.02, outperforming the static implementation by only
59.71%. As the drone shuffles around after reaching some
satisfactory distance from the good node, it is apparent that
RL-guided trajectories could incorporate many erratic and
unnecessary movements. This behavior of RL is clearly vis-
ible in this scenario due to the relative closeness of all three
nodes next to the starting location. Finally, in Fig. 11 we
can observe that the performance of both RL and SCP is
very similar in treating the problem of maximizing AAS.
Nonetheless, it is noticeable that RL does well at compen-
sating the most disadvantaged node k = 2, particularly in
the UL phase.

D. KEY TAKEAWAYS
In a nutshell, the RL implementation is bound to be superior
in comparison to the SCP approach due to the granularity
of each action it can produce by its progressive deci-
sions. Additionally, as RL needs no approximations for the
environmental parameters, it is capable of discovering true
optimums, if given the time and well done exploration,
overfitting avoidance, and good hyper-parameter adjustment.
However, to advance the RL implementation in a realistic
environment, it is also beneficial to perform online learn-
ing. This would come with great energy requirements as the
drone would have to dedicate a lot of its processing capabil-
ities to improve the implementation (although some of this
could be alleviated through the offline training phase). As
such, simplified approximations such as the SCP approach
may be more feasible to implement in first deployments
of drone orchestrators. We are optimistic that later designs
of RL implementations that are guided by the SCP algo-
rithm will provide superior performance. This combination
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FIGURE 12. The speed distribution of the drone across time for both RL and SCP
guided trajectories, for all three scenarios.

with offline and online RL training, should be adept in find-
ing near optimal trajectories in every stochastic, chaotic and
energy limited implementations.
An important takeaway from all three scenarios is that SCP

generally reacts a lot slower to the distance discrepancies
mainly due to the approximations needed for converting the
problem into a convex one. However, the RL approach yields
many unnecessary movements that may have negative effects
on the drone battery life and therefore its flight duration. For
example, Fig. 12 shows that RL provided trajectories keep
the drone at full speed for the majority of the time. This,
combined with our previous result analysis for Fig. 10, we
can conclude that often times this is unnecessary for the
AAS performance. The common way to address this in RL
is to assign negative rewards for drone’s movements. This
will need to be carefully designed in order to not impair the
performance of the FL network, given the long-term utility
of the application.

VI. CONCLUSION
In this paper, we have considered a drone equipped with a
wireless interface in the role of an orchestrator in an FL
implementation where it coordinates the transmission and
learning by only adjusting its flying trajectory, and there-
fore, the horizontal distance to each node. Considering the
total amount of learning performed across all nodes and
the learning discrepancies between them as an optimization
criterion, two trajectory optimization approaches were com-
pared: deep RL and SCP. From our analysis of their potential
in maximizing the combined performance metric, we have
concluded that RL has shown its suitability and general
superiority in solving the task of trajectory optimization for
lowering staleness in FL networks. Nonetheless, both solu-
tions for the drone-orchestrated FL concept outperform a
static implementation with improvements in the range of
57% to 87.7%. All in all, SCP approaches are simpler and
reliably provide decent performance in all scenarios with-
out the need of hardware accelerated computing. As such,

both approaches are important in transitioning towards supe-
rior FL implementations for scattered networks. However,
RL implementations are necessary when encountering real-
istic wireless channel, weather and user mobility conditions.
This inspires future works where an RL agent goes trough
the process of pre-training with SCP approximated trajecto-
ries, and is then transferred for learning in the real world
environments.
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