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Abstract—In wireless location-aware networks, mobile nodes
(agents) typically obtain their positions through ranging with
respect to nodes with known positions (anchors). Transmit
power allocation not only affects network lifetime, throughput,
and interference, but also determines localization accuracy. In
this paper, we present an optimization framework for robust
power allocation in network localization to tackle imperfect
knowledge of network parameters. In particular, we formulate
power allocation problems to minimize the squared position
error bound (SPEB) and the maximum directional position error
bound (mDPEB), respectively, for a given power budget. We
show that such formulations can be efficiently solved via conic
programming. Moreover, we design an efficient power allocation
scheme that allows distributed computations among agents.The
simulation results show that the proposed schemes significantly
outperform uniform power allocation, and the robust schemes
outperform their non-robust counterparts when the network
parameters are subject to uncertainty.

Index Terms—Localization, wireless networks, resource al-
location, semidefinite programming (SDP), second-order conic
programming (SOCP), robust optimization.

I. I NTRODUCTION

Positional information is of critical importance for future
wireless networks, which will support an increasing number
of location-based applications and services [1]–[9]. Example
applications include cellular positioning, search and rescue
work, blue-force tracking, etc., covering civilian life tomilitary
operations. In GPS-challenged environments, wireless network
localization typically refers to a process that determinesthe
positions of mobile nodes (agents) based on the measurements
with respect to mobile/static nodes with known positions
(anchors), as illustrated in Fig. 1. With the rapid development
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Fig. 1: Location-aware networks: the anchors (red circle)
localize the agents (blue dot) based on inter-node range
measurements.

of advanced wireless techniques, wireless network localization
has attracted numerous research interests in the past decades
[10]–[20].

Localization accuracy is a critical performance measure of
wireless location-aware networks. In recent work [5], [6],the
fundamental limits of wideband localization have been derived
in terms of the squared position error bound (SPEB) and direc-
tional position error bound (DPEB). It shows that localization
accuracy is related to several aspects of design, includingnet-
work topology, signal waveforms, and transmit power. Power
allocation for wireless network localization plays a critical role
in reducing localization errors or energy consumption, when
the nodes are subject to limited power resources or quality-of-
service (QoS) requirements [21]–[23]. Optimal or near-optimal
trade-off between localization errors and energy consump-
tion can be obtained by optimization methods, which have
played an important role in maximizing communication and
networking performance under limited resources [24]–[31].
The authors in [32] formulated several optimization problems
for anchor power allocation in wideband localization systems,
and derived the optimal solution for single-agent networks. In
[33], it exploited the geometrical interpretation of localization
information to minimize the maximum DPEB (mDPEB).1

In [34], it investigated the localization using MIMO radar
systems, and adopted the constraint relaxation and domain
decomposition methods to obtain sub-optimal solutions for
power allocation. In general, how to optimally allocate the
transmit power in location-aware networks still remains asan
open problem.

Power allocation schemes should be adapted to the instan-

1The mDPEB characterizes the maximum position error of an agent over
all directions.
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taneous network conditions, such as network topology and
channel qualities, for optimizing the localization performance.
Previous work on power allocation in location-aware networks
assumes that the network parameters such as nodes’ positions
and channel conditions are perfectly known [32]–[34]. How-
ever, these parameters are obtained through estimation and
hence subject to uncertainty. The power allocation based on
imperfect knowledge of network parameters often leads to sub-
optimal or even infeasible solutions in realistic networks[35]–
[37]. Therefore, it is essential to design a robust scheme to
combat the uncertainty in network parameters.

In this paper, we present an optimization framework for
robust power allocation in network localization to tackle
imperfect knowledge of network parameters. Specifically, we
treat the fundamental limits of localization accuracy, i.e.,
SPEB and mDPEB, as the performance metrics. The main
contributions are summarized as follows.

• We formulate optimization problems for power allocation
to minimize SPEB/mDPEB subject to limited power
resources, and prove that these formulations can be
transformed into conic programs.2

• We propose a robust optimization method for the worst-
case SPEB/mDPEB minimization in the presence of
parameter uncertainty. The proposed robust formulations
retain the same form of conic programs as their non-
robust counterparts.

• We develop a distributed algorithm for robust power allo-
cation, which decomposes the original problem into sev-
eral subproblems enabling parallel computations among
all the agents without loss of optimality.

The rest of the paper is organized as follows. In Section II,
we describe the system model and introduce the performance
metrics. In Section III, we formulate the power allocation
problems into conic programs. In Section IV, robust power
allocation schemes are proposed to combat the uncertainty
in network parameters. In Section V, we further decompose
our robust formulation into several subproblems that can
be independently solved by each agent. In Section VI, the
performance of the proposed schemes is investigated through
simulations. Finally, the paper is concluded in Section VII.

Notations:We use lowercase and uppercase bold symbols to
denote vectors and matrices, respectively;det(A) and tr(A)
denote the determinant and trace of matrixA, respectively; the
superscript(·)T and‖ · ‖ denote the transpose and Euclidean
norm of its argument, respectively; matricesA � B denotes
thatA−B is positive semidefinite. We define the unit vector
u(φ) = [ cosφ sinφ ]T. We use calligraphic symbols, e.g.,N ,
to denote sets, andE{·} andPr{·} to denote the expectation
and probability operators, respectively.

II. SYSTEM MODEL

In this section, we describe the system model, and introduce
two performance metrics of location-aware networks.

2Conic programs can be efficiently solved by off-the-shelf optimization
tools [27], [38]

A. Network Settings

Consider a 2-D location-aware network consisting ofNa

agents andNb anchors, where the sets of agents and anchor
are denoted byNa = {1, 2, . . . , Na} andNb = {Na+1, Na+
2, . . . , Na + Nb}, respectively. The 2-D position of nodek
is denoted bypk. The angle and distance between nodesk
and j are given byφkj and dkj , respectively. The anchors
are mobile/static nodes with known positions, and subject to
limited power resources. The agents aim to determine their
positions based on the radio signals transmitted from the
anchors. For instance, agents can obtain the signal metrics
such as time-of-arrival (TOA) from the received signals, and
then calculate their positions via triangulation [5].

The multipath received waveform at agentk from anchorj
is modeled as [5]

rkj(t) =

Lkj∑

l=1

√
xkj ·α(l)

kj s
(
t− τ

(l)
kj

)
+ zkj(t), t ∈ [0, Tob) (1)

wherexkj is the power of the transmit waveform from anchor
j to agentk, s(t) is a known transmit waveform,α(l)

kj and

τ
(l)
kj are the amplitude and delay, respectively, of thelth path,
Lkj is the number of multipath components,zkj(t) represents
additive white Gaussian noise (AWGN) with two-side power
spectral densityN0/2, and[0, Tob) is the observation interval.

We consider that the measurements between anchors and
agents do not interfere each other by using medium access con-
trol, and the network is synchronized such that the inter-node
distance is estimated using one-way time-of-flight (TOF).3 Our
work can be extended to asynchronous networks where round-
trip TOF is employed for distance estimation, and it will be
discussed in Section III.

B. Position Error Bound

The SPEB introduced in [5] is a performance metric that
characterizes the localization accuracy, defined as

P(pk) , tr
{
J−1

e (pk; {xkj})
}

(2)

whereJe(pk; {xkj}) is the equivalent Fisher information ma-
trix (EFIM) for agentk’s positionpk. Using the information
inequality [39], we can show that the squared position error
is bounded below as

E
{
‖p̂k − pk‖2

}
≥ P(pk)

where p̂k is an unbiased estimate of the positionpk. The
EFIM in (2) can be derived based on the received waveform
in (1) as a2× 2 matrix [5]

Je(pk; {xkj}) =
∑

j∈Nb

ξkj xkj Jr(φkj) (3)

whereJr(φkj) = u(φkj)u(φkj)
T is a 2 × 2 matrix, andξkj

is a positive coefficient determined by the channel properties,

3There are two common ways for inter-node distance estimation based
on TOA: one-way TOF (only anchor transmits) or round-trip TOF (both
anchor and agent transmit). The former requires anchors andagents to be
synchronized for distance estimation.
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given by,4

ξkj =
8π2W 2

c2
(1− χkj)

(α
(1)
kj )

2

N0
(4)

with W as the effective bandwidth,c as the light speed,χkj

as path-overlap coefficient characterizing the effect of multi-
path propagation for localization,N0 as the noise spectrum
density.5

Since the SPEB characterizes the fundamental limit of
localization accuracy and is achievable in high SNR regimes,
we will use it as a performance metric for location-aware
networks, and allocate the transmit power to optimize the
system performance by minimizing the SPEB.

C. Directional Decoupling of SPEB

We then introduce the notations of DPEB and mDPEB [6].
The EFIM (3) can be written, by eigen decomposition, as

Je(pk; {xkj}) = Uθk

[
µ1,k 0
0 µ2,k

]
UT

θk

where µ1,k and µ2,k are the ordered eigenvalues of EFIM
(µ1,k ≥ µ2,k), given by

µ1,k, µ2,k =
1

2

( ∑

j∈Nb

ξkj xkj ±
∥∥∥
∑

j∈Nb

ξkj xkj u(2φkj)
∥∥∥
)

andUθk is a rotation matrix with angleθk, given by

Uθk =

[
cos θk − sin θk
sin θk cos θk

]
.

Geometrically, the EFIM for agentk can be viewed as an
information ellipse given by{z ∈ R

2 : zTJ−1
e (pk; {xkj})z =

1} (see Fig. 2), where2
√
µ1,k and2

√
µ2,k give the major axis

and minor axis, respectively.
Definition 1: The directional position error bound (DPEB)

of agentk along the directionϕ is defined as

P(pk;ϕ) , u(ϕ)T[J−1
e (pk, {xkj})]u(ϕ).

Proposition 1: The mDPEB of agentk is

max
ϕ∈[0,2π)

{P(pk;ϕ)} =
1

µ2,k
. (5)

Proof: See Appendix A.
Proposition 1 can also be understood via the information

ellipse of EFIM. The information for localization achievesthe
maximum along the major axis and the minimum along the
minor axis. Due to the reciprocal, the SPEB is dominated by
the mDPEB, which is the inverse of the smaller eigenvalue
of the EFIM. Therefore, in order to improve the localization
performance, it is more helpful to maximize the smaller
eigenvalue of EFIM, equivalently to minimize the mDPEB that
characterizes the maximum position error of an agent over all
directions. We will use mDPEB as another performance metric
of localization accuracy.

4The derivation ofξkj is given in [5], and this parameter can be obtained
through channel estimation.

5Although the structure of SPEB is derived based on the received wave-
forms for wideband systems in [5], it is also observed in other TOA- or
RSS-based localization systems, e.g., [16], [40]–[42].

x

y

√
µ1,k√

µ2,k

θk

Fig. 2: Geometrical interpretation of the EFIM for agentk.

III. O PTIMAL POWER ALLOCATION VIA

CONIC PROGRAMMING

In this section, we formulate the power allocation problem
using SPEB and mDPEB as the objective functions, respec-
tively. We show that the SPEB minimization is a semidefinite
program (SDP) and the mDPEB minimization is a second-
order conic program (SOCP).

A. Problem Formulation Based on SPEB

We first consider the problem of optimal power allocation
that minimizes the total SPEB while the network is subject toa
budget of power consumption. The problem can be formulated
as6

P1 : min
{xkj}

∑

k∈Na

tr
{
J−1

e (pk; {xkj})
}

(6)

s.t.
∑

k∈Na

∑

j∈Nb

xkj ≤ P tot (7)

xkj ≥ 0, ∀k ∈ Na, ∀j ∈ Nb (8)

where (7) gives the total transmit power budgetP tot for all the
anchors. We first show the convexity of the above problem in
the following proposition.

Proposition 2: The problemP1 is convex inxkj .
Proof: See Appendix B.

SinceP1 is a convex problem, the optimal solution can be
achieved by the standard convex optimization algorithms, e.g.,
interior point method. We next show that such problem can
be converted to a SDP problem, which is a more favorable
formulation since many fast real-time optimization solvers are
available for SDP [43], [44].

To obtain an equivalent formulation toP1, we replace the
EFIMs in (6) with auxiliary matricesMk, and add another
constraint

Mk � J−1
e (pk; {xkj}).

SinceJe(pk) is a positive semidefinite matrix, due to the prop-
erty of Schur complement, the above inequality is equivalent
to [

Mk I

I Je(pk; {xkj})

]
� 0 .

6The structure of the problem retains with additional linearconstraints, such
as the maximum transmit power from anchorj to agentk, and the maximum
total transmit power from anchorj. See Remark 2 for more discussion.



4 IEEE/ACM TRANSACTIONS ON NETWORKING MONTH DATE YEAR

Then, we can obtain a SDP formulationPSDP
1 equivalent to

P1,

P
SDP
1 : min

{xkj},Mk

∑

k∈Na

tr {Mk}

s.t.

[
Mk I

I Je(pk; {xkj})

]
� 0 , ∀k ∈ Na

(7) – (8).

Hence, the optimal solution ofP1 can be efficiently obtained
by solving the SDP formulationPSDP

1 .

B. Problem Formulation Based on mDPEB

We now consider the minimization of total mDPEB as our
objective. The problem can be formulated as

P2 : min
{xkj}

∑

k∈Na

1

µ2,k

s.t. (7) – (8)

which can be equivalently converted to

P
SOCP
2 : min

{xkj ,rk}

∑

k∈Na

1∑
j∈Nb

ξkj xkj − rk

s.t. rk≥
∥∥∥
∑

j∈Nb

ξkj xkj u(2φkj)
∥∥∥, ∀k ∈ Na (9)

(7) – (8).

The constraints (9) defineNa second-order cones given by

Qk = {(rk, zk) ∈ R× R
2 : rk ≥ ‖zk‖}, ∀k ∈ Na

wherezk =
∑

j∈Nb
ξkj xkj u(2φkj). Moreover, the objective

is convex in{xkj , rk}, since the denominator is a positive
linear combination of{xkj , rk}, and the reciprocal is a convex
and decreasing function which preserves convexity [45]. Thus,
we obtain a nonlinear SOCP problem which is convex inxkj .

Remark 1:We consider a general model where each an-
chor can use different transmit power, and our work can be
applied to the anchor broadcasting scenario by simply adding
constraintxkj = xj , ∀k ∈ Na.

Remark 2:Additional linear constraints on transmit power
can be imposed depending on the realistic requirements
of location-aware networks. For example, we can consider
Pmin
kj ≤ xkj ≤ Pmax

kj wherePmin
kj and Pmax

kj are the lower
and upper limit of the transmit power from anchorj to agent
k, respectively; or

∑
k∈Na

xkj ≤ P tot
j whereP tot

j is the upper
limit of the total transmit power from anchorj. Due to the
linearity of these constraints, the convexity of the problem is
retained, and the optimal solution can be obtained via conic
programming.

Remark 3:For the asynchronous networks where round-trip
TOF is employed for distance estimation, we need to allocate
the transmit power for both anchors and agents. Letx′

kj denote
the power of the transmit waveform from agentk to anchor
j. In addition to the total anchor power constraint in (7), we
also impose a total power constraint on agents, i.e.,

∑

k∈Na

∑

j∈Nb

x′
kj ≤ P

′tot (10)

where

x′
kj ≥ 0, ∀k ∈ Na, ∀j ∈ Nb. (11)

It can be shown that the EFIM of agentk is given by

Je(pk; {xkj}) =
∑

j∈Nb

ξkj g(xkj , x
′
kj)Jr(φkj)

where the equivalent powerg(xkj , x
′
kj) = 4

(
x−1
kj + x′ −1

kj

)−1
.

To derive the maximum total equivalent power, we consider
the following problem

max
{xkj ,x′

kj
}

∑

k∈Na

∑

j∈Nb

g(xkj , x
′
kj)

s.t. (7) – (8)

(10) – (11).

Using the Karush-Kuhn-Tucker conditions [46], it can be
proved that the optimal value is reached as a constant
g(P tot, P

′tot) if and only if

x′
kj =

P
′tot

P tot
xkj . (12)

Hence, in order to achieve the maximum total equivalent
power, the power allocated on anchors and agents should be
proportional and consequently, the EFIM for asynchronous
network is

Je(pk; {xkj}) =
∑

j∈Nb

ξkj
4P

′tot

P ′tot + P tot
xkj Jr(φkj)

which is with the same structure as the EFIM of synchronous
network in (3). Therefore, the power allocation on both
anchors and agents in asynchronous networks can be equiva-
lently converted into anchor power allocation in synchronous
networks.

C. Formulations with QoS Guarantee

We next briefly show that the proposed framework also
applies to another two types of problem formulations based
on different QoS requirements.

1) Energy-efficient Formulation:The objective is to mini-
mize the total transmit power subject to the requirements for
agents’ SPEBs, i.e.,

min
{xkj}

∑

k∈Na

∑

j∈Nb

xkj

s.t. tr
{
J−1

e (pk; {xkj})
}
≤ γk, ∀k ∈ Na (13)

(8).

Similarly, a formulation for the mDPEB case can be obtained
by replacing (13) with

1

µ2,k
≤ γk , ∀k ∈ Na. (14)
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2) Min-max SPEB Formulation:The objective is to mini-
mize the maximum SPEB among all the agents, i.e.,

min
{xkj}

max
k

{
tr
{
J−1

e (pk; {xkj})
}}

s.t. (7) – (8).

It can be equivalently transformed into

min
{xkj}, γ

γ

s.t. tr
{
J−1

e (pk; {xkj})
}
≤ γ , ∀k ∈ Na

(7) – (8)

which turns out to be with the same structure as the energy-
efficient formulation. Similarly, a min-max formulation for the
mDPEB case can be obtained by replacing the SPEB with the
mDPEB in the constraint.

Note that since the above formulations with QoS guarantee
have the same structure asP1 or P2, which can be solved
efficiently by conic programing, we will focus onP1 andP2

in the following.
To obtain the optimal solutions ofP1 andP2, it requires

the network parameters, i.e., the channel parameterξkj and the
angleφkj . However,ξkj ’s andφkj ’s are usually not perfectly
known in realistic networks, and only estimated values are
available. Whenξkj ’s andφkj ’s are subject to uncertainty, the
formulationP1 or P2 may fail to provide reliable solutions,
since the actual SPEB/mDEPB is not necessarily minimized.
Therefore, it is essential to design a power allocation scheme
which is robust to the uncertainty in network parameters.

IV. ROBUST POWER ALLOCATION UNDER

IMPERFECTKNOWLEDGE OFNETWORK PARAMETERS

In this section, we consider the location-aware networks
with imperfect knowledge of network parameters, and pro-
pose robust optimization methods to minimize the worst-case
SPEB/mDPEB under parameter uncertainty.

A. Robust Counterpart of SPEB Minimization

In realistic location-aware networks, the network param-
eters, i.e.,ξkj and φkj , can be obtained through channel
estimation or inferred based on the prior information of agents’
positions,7 and hence are both subject to uncertainty. We
adopt robust optimization methodology, which is developed
in recent years to handle the optimization problems with data
uncertainty [36]. Typically, the data defining the optimization
problem is assumed to lie in a certain bounded set, referred
to as uncertainty set. Here we consider the actual channel
parameters and angles lie in linear uncertainty sets, i.e.,8

ξkj ∈ Sξkj , [ ξ̂kj − εξkj , ξ̂kj + εξkj ]

φkj ∈ Sφkj , [ φ̂kj − εφkj , φ̂kj + εφkj ]

7The prior position information is available in applications such as naviga-
tion.

8We consider the parameterξkj related to the channel properties to be
always positive, i.e.,̂ξkj − ε

ξ

kj
> 0.

where ξ̂kj and φ̂kj denote channel parameter and angle with
uncertainty, respectively, andεξkj and εφkj are both small
positive numbers denoting the maximum uncertainty in the
channel parameter and angle, respectively.9

To deal with the network parameter uncertainty, we adopt
robust optimization techniques to guarantee the worst-case per-
formance. Instead of using the estimated values, we consider
minimizing the largest SPEB over the possible set of actual
network parameters, i.e.,

PR-0 : min
{xkj}

max
{ξkj∈Sξ

kj
, φkj∈Sφ

kj
}

∑

k∈Na

tr
{
J−1

e (pk; {xkj})
}

s.t. (7) – (8).

Since tr
{
J−1

e (pk; {xkj})
}

is a monotonically non-
increasing function ofξkj , the maximum SPEB overξkj is
independent ofφkj . Hence, the maximization overξkj simply
follows that

ξ̃kj , arg max
{ξkj∈Sξ

kj
}

tr
{
J−1

e (pk; {xkj})
}
= ξ̂kj − εξkj .

On the other hand, however, the maximization overφkj is not
trivial, because

{φ̃kj} , arg max
{φkj∈Sφ

kj
}

tr
{
J−1

e (pk; {xkj})
}

= arg max
{φkj∈Sφ

kj
}

∥∥∥
∑

j∈Nb

ξkj xkj u(2φkj)
∥∥∥
2

(15)

and the right-hand side of (15) is not a convex problem. Hence,
it is difficult to obtain a close-form solution of{φ̃kj} since it
depends on{xkj}.

We next consider a relaxation for the robust optimization
with respect to{φkj} and introduce a new matrix

Qr(φ̂kj , δkj) = Jr(φ̂kj)− δkj · I (16)

to replaceJr(φkj) in the SPEB in (2). We will show that the
worst-case SPEB overφkj can be bounded above by the new
function for sufficiently largeδkj . The details are given in the
following proposition.

Proposition 3: If
∑

j∈Nb
ξkj xkj Qr(φ̂kj , δkj) � 0 and

δkj ≥ sin εφkj , the maximum SPEB over the actual angleφkj

is always upper bounded as

max
{φkj∈Sφ

kj
}

tr
{
J−1

e (pk; {xkj})
}

≤ tr

{( ∑

j∈Nb

ξkj xkj Qr(φ̂kj , δkj)
)−1

}
. (17)

Moreover, the tightest upper bound in (17) is attained by

sin εφkj = argmin
δkj

tr

{( ∑

j∈Nb

ξkj xkj Qr(φ̂kj , δkj)
)−1

}
.

Proof: See Appendix C.
In the rest of the paper, we take the minimizerδkj = sin εφkj

and denote the matrix

Qr(φ̂kj) = Jr(φ̂kj)− sin εφkj · I
9If uncertainty exists in anchor positions, it can be equivalently converted

into the uncertainty in channel qualities [6].
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by omitting the variableδkj in (16) for simplicity. Then,
we replace the matrixJr(φkj) with Qr(φ̂kj) in the previous
formulation, and propose a robust counterpart ofP1 given by

PR-1 : min
{xkj}

∑

k∈Na

tr

{( ∑

j∈Nb

ξ̃kj xkj Qr(φ̂kj)
)−1

}

s.t.
∑

j∈Nb

ξ̃kj xkj Qr(φ̂kj) � 0, ∀ k ∈ Na (18)

(7) – (8).

Again by the property of Schur complement as inPSDP
1 , the

problemPR-1 is equivalent to a SDP formulation, given by

P
SDP
R-1 : min

{xkj},Mk

∑

k∈Na

tr {Mk}

s.t.

[
Mk I

I
∑

j∈Nb
ξ̃kj xkj Qr(φ̂kj)

]
�0, ∀k ∈ Na

(19)

(7) – (8).

Remark 4:The formulation with QoS guarantee proposed
in Section III-C can also be extended to its robust formulation
using the above method. By such, the SPEB of each agent
is always guaranteed to satisfy its position error requirement.
However, if using the non-robust formulation, the requirements
for agents’ SPEBs, e.g., (13) or (14), can easily be violated
due to imperfect knowledge of network parameters.

Note that from Proposition 3, the new formulationPR-1

is a valid relaxation forPR-0 when the condition (18) holds.
SinceQr(φ̂kj) is not positive definite due todet

(
Qr(φ̂kj)

)
=

sin εφkj(sin ε
φ
kj−1) ≤ 0, such a condition does not necessarily

hold for all power allocation{xkj}. However, we will show
that it holds for the optimal power allocation ofPR-0 with
high probability (w.h.p.) when the number of anchors is large
or the uncertainty in angle is small.

Before giving the proposition, we introduce an equivalent
expression for the channel parameterξkj in (4) as ξkj =

ζkj/d
2β
kj , where ζkj is a positive coefficient characterizing

shadowing effect and small-scale fading process, andβ is the
amplitude loss exponent.10

Proposition 4: Consider a network where all the nodes are
uniformly located in aR × R square region, the minimum
distance between two nodes isr0, and the coefficientζkj has
a support on[ζmin ζmax] where0 < ζmin ≤ ζmax. Let {x∗

kj}
be the optimal solution ofPR-0, andδ = sin εφ whereεφ =
max{εφkj}, then

(a) whenNb→∞ andδ ≤ δmax, whereδmax is the smallest
positive root of equation4δ4−4δ2−2ζmax/ζminδ+1 = 0,
we have

Pr

{ ∑

j∈Nb

ξ̃kj x
∗
kj Qr(φ̂kj) � 0

}
= 1−O

(
exp(−η ·Nb)

)
,

∀k ∈ Na

10We introduce the path loss model here to facilitate the proofof the
Proposition 4. However, the robust power allocation schemes do not require
β, since the channel parameterξkj can be obtained directly through channel
estimation.

whereη is a fixed positive number;
(b) whenεφ → 0, we have

Pr

{ ∑

j∈Nb

ξ̃kj x
∗
kj Qr(φ̂kj) � 0

}
= 1−O

(
(εφ)Nb/2

)
,

∀k ∈ Na.

Proof: See Appendix D.
Remark 5:Proposition 4 implies that the condition (18)

holds w.h.p. at the rate indicated by theO notation, where
O(f(n)) means that the function value is on the order off(n)
[47].

Remark 6:Note that Proposition 4 holds for{x∗
kj}, which

implies that the optimal solution of the original robust for-
mulationPR-0 is included in the feasible set of the proposed
formulationPR-1 (or PSDP

R-1 ) w.h.p.

B. Robust Counterpart of mDPEB Minimization

We investigate the robust power allocation based on mDPEB
formulationP2. To circumvent the intractable maximization
in (15), we consider the robust SPEB formulationPR-1.
Specifically, the objective ofPR-1 can be written as

tr

{( ∑

j∈Nb

ξ̃kj xkj Qr(φ̂kj)
)−1

}
=

1

µ̃1,k
+

1

µ̃2,k
(20)

where µ̃1,k and µ̃2,k are the two eigenvalues of the matrix∑
j∈Nb

ξ̃kj xkj Qr(φ̂kj), given by

µ̃1,k, µ̃2,k =
1

2

( ∑

j∈Nb

ξ̃kj xkj(1− 2 sin εφkj)

±
∥∥∥
∑

j∈Nb

ξ̃kj xkj u(2φ̂kj)
∥∥∥
)
. (21)

Geometrically,̃µ1,k andµ̃2,k are similar to the DPEB’s in two
orthogonal directions. Using Proposition 4, we can show that
µ̃2,k ≥ 0 w.h.p. whenNb is large orεφ is small. Sincẽµ1,k ≥
µ̃2,k, the smaller eigenvaluẽµ2,k dominates the function in
(20). Hence, we formulate a robust counterpart ofP2 based
on µ̃2,k, given by

PR-2 : min
{xkj}

∑

k∈Na

1

µ̃2,k

s.t. µ̃2,k ≥ 0, ∀k ∈ Na (22)

(7) – (8).

Given thatµ̃2,k ≥ 0, the problemPR-2 is equivalent to the
following SOCP problem:

P
SOCP
R-2 : min

{xkj ,rk}

∑

k∈Na

1
∑

j∈Nb
ξ̃kj xkj

(
1− 2 sin εφkj

)
− rk

(23)

s.t. rk ≥
∥∥∥
∑

j∈Nb

ξ̃kj xkj u(2φ̂kj)
∥∥∥, ∀k ∈ Na

(24)

rk ≤
∑

j∈Nb

ξ̃kj xkj

(
1−2 sin εφkj

)
, ∀k ∈ Na

(7) – (8).
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Note that the uncertainty in angleεφkj only exists in the
objective, and does not affect the second-order conic constraint
(24). Hence, the problemPSOCP

R-2 retains the same structure of
PSOCP

2 , and its optimal solution can be efficiently obtained.

V. EFFICIENT ROBUST ALGORITHM USING

DISTRIBUTED COMPUTATIONS

In this section, we designed a distributed robust algorithm
for both SPEB and mDPEB minimization, which decomposes
the original formulation into two-stage optimization problems
and enables parallel computations among all the agents. The
proposed algorithms achieve the global optimal solution with
improved computational efficiency.

A. Algorithm for SPEB Minimization

Despite the convexity of the robust SDP formulationPSDP
R-1 ,

there are multiple positive semidefinite constraints imposed for
multiple agents, and the computational complexity depends
on the number of SDP constraints. To efficiently obtain the
power allocation decision for multi-agent networks, we design
a distributed implementation forPSDP

R-1 , which can be solved
using parallel computations among the agents.

Specifically, we letxkj = ρkjxk wherexk is the total power
assigned for locating agentk, andρkj ∈ [0, 1] is a fractional
number denoting the percentage ofxk allocated to anchor
j. By introducing the two variablesρkj and xk, the robust
formulation for power allocation can be written as

min
{ρkj ,xk}

∑

k∈Na

1

xk
tr

{( ∑

j∈Nb

ξ̃kj ρkj Qr(φ̂kj)
)−1

}

s.t.
∑

j∈Nb

ρkj ≤ 1 (25)

ρkj ≥ 0, ∀k ∈ Na, ∀j ∈ Nb (26)
∑

k∈Na

xk ≤ P tot (27)

xk ≥ 0, ∀k ∈ Na. (28)

Since the constraints onρkj and xk are separable, andxk

and ρkj are only related to the SPEB of agentk, we can
decompose the above problem into two stages. In Stage I,
given the total power budgetxk for agentk, we consider the
optimal allocation ofxk among all the anchors, i.e.,

P
(I)
R-1,k : min

{ρkj},Mk

tr {Mk} /xk

s.t.

[
Mk I

I
∑

j∈Nb
ξ̃kj ρkj Qr(φ̂kj)

]
� 0

(25) – (26).

The optimal solution ofP (I)
R-1,k is denoted byρ∗kj , and it is

independent of the total power for agentk since xk only
appears as a scaler in the objective and can be removed. Since
the problemP

(I)
R-1,k is formulated for agentk, there are totally

Na problems to be solved in Stage I.
In Stage II, we allocate the totalxk for localizing agent

k. The objective is the total SPEB of the agents, where the
parameterρ∗kj ’s are from Stage IP (I)

R-1,k. In particular, we

let Tk = tr
{(∑

j∈Nb
ξ̃kj ρ

∗
kj Qr(φ̂kj)

)−1}
and formulate the

problem as:

P
(II)
R-1 : min

{xk}

∑

k∈Na

Tk

xk

s.t. (27) – (28).

The problemP
(II)
R-1 is convex inxk, and the optimal solution

is given in a closed form as follows.
Proposition 5: Given that ρ∗kj is the optimal solution of

P
(I)
R-1,k, the optimal solution ofP (II)

R-1 is given by

x∗
k =

P tot
√
Tk∑

k∈Na

√
Tk

. (29)

Proof: See Appendix E.
The optimal power allocation for the location-aware net-

work is

x∗
kj = ρ∗kjx

∗
k (30)

wherex∗
k is given in (29). The detailed algorithm is described

in the Algorithm 1.

Algorithm 1 Robust power allocation algorithm for multiple-
agent networks

Require: the angleφ̂kj and the distancêdkj between anchor
j (j ∈ Nb) and agentk (k ∈ Na)

1: Setxk ← 1, ∀k ∈ Na

2: Solve the Stage I problemsP (I)
R-1,k which gives the optimal

solutionρ∗kj
3: Setρkj ← ρ∗kj , ∀k ∈ Na, ∀j ∈ Nb

4: Solve the Stage II problemP (II)
R-1 by using (29) to compute

the optimal solutionx∗
k

5: Setx∗
kj ← ρ∗kjx

∗
k, ∀k ∈ Na, ∀j ∈ Nb

Remark 7:Since each Stage I problemP (I)
R-1,k in Algorithm

1 is with a single SDP constraint, its complexity is much
lower than the original problemPSDP

R-1 which containsNa SDP
constraints. Moreover, theNa Stage I problemsP (I)

R-1,k can be
separately solved by theNa agents, since each agent itself
does not require any information from other agents. Thus, the
computation efficiency can be improved byNa times using the
parallel computations among the agents.

Remark 8:The proposed distributed algorithm can also
be applied to the robust power allocation with individual
power constraint, e.g.,

∑
k∈Na

xkj ≤ P tot
j . In particular, we

replace such constraint with
∑

k∈Na
ρkjxk ≤ P tot

j in the Stage
II formulation P

(II)
R-1, while the Stage I formulationP (I)

R-1,k
remains the same. In such case, the close-form solution in (30)
is not available, however, the optimal solution of the StageII
problem can still be efficiently obtained since the problem is
convex. Consequently, we can obtain a sub-optimal solution
for the overall problem.

B. Algorithm for mDPEB Minimization

A similar decomposition method can be applied to the
mDPEB minimizationPR-2, i.e., by introducing two variables
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Fig. 3: The location-aware network consisting ten anchors
(red circle) and one agents (blue dot), where the anchors are
uniformly distributed in the square region.

ρkj and xk. Instead of solving SDP in SPEB minimization,
each agent will separately solve a SOCP problem with lin-
ear objective for the mDPEB minimization. Specifically, we
rewrite (21) as

µ̃2,k =
xk

2

( ∑

j∈Nb

ξ̃kj ρkj

(
1− 2 sin εφkj

)

−
∥∥∥
∑

j∈Nb

ξ̃kj ρkj u(2φ̂kj)
∥∥∥
)
.

Then, the two-stage formulations are given by

P
(I)
R-2 : max

{ρkj}
µ̃2,k/xk

s.t. µ̃2,k ≥ 0

(25) – (26)

and

P
(II)
R-2 : min

{xk}

∑

k∈Na

1

µ̃2,k

s.t. (27) – (28)

respectively. The optimal power allocation is the product of
the optimal solutions of the two-stage problems, given by (30).
The algorithm for mDPEB minimization is similar to that of
Algorithm 1, and hence, we omit the details here.

VI. SIMULATION RESULTS

In this section, we investigate the localization performance
by the proposed power allocation schemes. The total power
for localization is normalized toP tot = 1, and the channel
parameter is given byξkj = 103/d2kj .

11 The proposed opti-
mization of power allocation, i.e., SDP and SOCP, are solved
by the standard optimization solver CVX [49].

11We choose the free-space propagation model where the path loss exponent
is 2 [48].

2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

Number of anchor s

S
P
E
B

[m
2
]

 

 

SPEB min .

mDPEB min .

Un iform allo cat ion

Fig. 4: The SPEB in single-agent networks with respect to
the number of anchors, obtained by different power allocation
schemes.

A. Power Allocation with Perfect Network Parameters

First, we investigate the SPEB with power allocation as the
number of anchors or agents changes. Three schemes of power
allocation are compared: the allocation via SPEB minimization
formulated inP

SDP
1 , the allocation via mDPEB minimization

formulated inPSOCP
2 , and the uniform allocation which as-

signsP tot equally over all the anchors. Given the number of
anchors and agents, we run Monte Carlo simulation to generate
103 deployments of agents or anchors that are uniformly
distributed in a squared region, i.e.,U( [−10, 10]× [−10, 10] ),
and then compute the average SPEB obtained by each scheme.

In Figs. 3 and 4, we consider the network with a single agent
at the center and anchors uniformly distributed. An example
of the network topology is illustrated in Fig. 3. We plot the
SPEBs obtained by the above-mentioned three schemes in
Fig. 4. A decreasing tendency in SPEB is observed as the
number of anchors increases. This is reasonable since the agent
has more freedom to choose “good” anchors when there are
more anchors. Moreover, the results show that the mDPEB
minimization outperforms the uniform allocation by about
46%, and achieves a SPEB close to the one obtained by SPEB
minimization.

Next, we consider a network with multiple agents. Ten
anchors are placed with fixed locations, and the agents are
uniformly distributed in the region (see Fig. 5). Similarly,
we compare the SPEB obtained by the three schemes with
respect to the number of agents in Fig. 6. It shows that,
even in multiple-agent case, the mDPEB minimization still
achieves a similar performance as the SPEB minimization,
and remarkably outperforms the uniform allocation. It implies
that mDPEB is a meaningful performance metric for the
optimization of power allocation. In addition, we observe that
the average SPEB increases linearly with the number of agents.
This is because each agent tends to obtain less power when
the total power budget is fixed. As indicated by the slope, the
speed of SPEB increase of optimized allocation is about60%
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Fig. 5: The location-aware network consisting ten anchors
(red circle) and eight agents (blue dot), where the agents are
uniformly distributed in the square region.

slower than that of uniform allocation.
Furthermore, we investigate the performance of the two-

stage optimization proposed in Section V which exploits the
distributed computations among multiple agents. In Fig. 6,we
plot the SPEB obtained by the two-stage optimization for both
SPEB and mDPEB minimization. The results show that the
SPEB solved by two-stage optimization perfectly matches that
of one-stage optimization, which validates that the two-stage
scheme can obtain the optimal solution while requiring much
less computational time.

B. Robust Power Allocation with Imperfect Knowledge of
Network Parameters

We then investigate the performance of the power alloca-
tion with imperfect knowledge of network parameters. We
compared the following schemes: allocation by the robust
formulation P

SDP
R-1 and P

SOCP
R-2 , allocation by the non-robust

formulation PSDP
1 and PSOCP

2 , and uniform allocation. We
consider the agent’s actual position lies within a circle ofra-
diusεd centering at its estimated position. Then the maximum
angular uncertainty is determined byεφkj = arcsin(εd/d̂kj).12

The normalized uncertainty set sizeon network parameters is
defined to beε = 2εd/20 which is normalized by the length
of the squared region.

In Fig. 7, we investigate the actual SPEB with respect to
the number of anchors. We consider a single-agent network,
and set the normalized uncertainty set sizeε to be 0.2,
i.e., εd = 2 m. The results show that the robust SPEB
minimization (PSDP

R-1 ) outperforms the non-robust SPEB mini-
mization (PSDP

1 ) by 20%, and outperforms uniform allocation
by 35%; the robust mDPEB minimization (PSOCP

R-2 ) outper-
forms the non-robust mDPEB minimization (PSOCP

2 ) by 30%,
and outperforms uniform allocation by70%. Moreover, we
observe that the actual SPEB of robust mDPEB minimization

12Without loss of generality, we setεd
kj

= εd for all k, j.
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Fig. 6: The average SPEB in multiple-agent networks (Nb =
10) by different power allocation schemes. Both one-stage and
two-stage optimization are considered.

is smaller than that of robust SPEB minimization, and the same
observation is on the non-robust schemes. It implies that the
mDPEB minimization is more robust to the network parameter
uncertainty, compared with the SPEB minimization. This can
be explained as follows: the robust mDPEB minimization can
be viewed as a doubly robust optimization, since it first min-
imizes the maximum positional error over all the directions.
Therefore,PSOCP

R-2 outperformsPSDP
R-1 when the uncertainty in

network parameters is not negligible (e.g.,ε = 0.2).
In Fig. 8, we investigate the actual SPEB with respect to the

normalized uncertainty set sizeε. We consider a single-agent
network with ten anchors deployed on a circle (similar to Fig.
5). As we observe, the actual SPEB of non-robust schemes
quickly increases as the normalized uncertainty set size goes
large. When the normalized uncertainty set size is larger than
0.22 and0.27, respectively, the non-robust SPEB minimization
and non-robust mDPEB minimization even perform worse
than the uniform allocation, while the robust schemes always
achieves better SPEB than all the other schemes. Moreover,
the robust mDPEB minimization outperforms the non-robust
mDPEB minimization and robust SPEB minimization by30%
and23%, respectively, whenε = 0.15. Both Figs. 7 and 8 have
demonstrated the advantage of the proposed robust power al-
location schemes, especially the mDPEB minimization, in the
practical location-aware networks with imperfect knowledge
of network parameters.

VII. C ONCLUSION

In this paper, we presented an optimization framework for
robust power allocation in network localization based on the
performance metrics SPEB and mDPEB. We first showed that
the optimal power allocation with perfect network parameters
can be efficiently obtained via conic programming, and then
proposed robust power allocation schemes to combat uncer-
tainty in network parameters for practical systems. Moreover,
we designed an efficient algorithm for robust power allocation
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Fig. 7: The actual SPEB with respect to number of anchors,
obtained by different power allocation schemes with imperfect
knowledge of network parameters (ε = 0.2).

that allows distributed computations among agents. The sim-
ulation results demonstrated that the robust power allocation
remarkably outperforms the non-robust power allocation and
uniform allocation. Furthermore, we showed that, compared
with the SPEB minimization, the mDPEB minimization is
more robust to network parameter uncertainty for power
allocation.

APPENDIX A
PROOF OFPROPOSITION1

The maximization on DPEB in (5) follows that:

max
ϕ∈[0,2π)

{P(pk;ϕ)}

= max
ϕ∈[0,2π)

u(ϕ)T[J−1
e (pk; {xkj})]u(ϕ)

= max
ϕ∈[0,2π)

u(ϕ)T(U−1
θk

)T

[
µ−1
1,k 0

0 µ−1
2,k

]
U−1

θk
u(ϕ)

= max
ϕ′∈[0,2π)

u(ϕ′)T[J−1
e (pk; {xkj})]u(ϕ′) (31)

where the last equality is due to the fact that the product of
a unit vector and a rotation matrixUθk is still a unit vector.
Now, let ϕ′ = θk in (31), then we have

max
ϕ∈[0,2π)

{P(pk;ϕ)} = max
θk

{
µ−1
1,k cos

2 θk + µ−1
2,k sin

2 θk

}

= µ−1
2,k

where the last equation is due toµ1,k ≥ µ2,k.

APPENDIX B
PROOF OFPROPOSITION2

Since (7)–(8) are all linear constraints, we only need to
show the objective in (6), i.e., the SPEB, is a convex function
in xkj . We write the transmit power of agentk as a vector
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Fig. 8: The actual SPEB with respect to the normalized un-
certainty set size on network parameters, obtained by different
power allocation schemes.

xk = [xk1 xk2 · · · xkNb ]
T, and the SPEB is a function ofxk,

given by

f(xk) , tr

{( ∑

j∈Nb

ξkj xkj Jr(φkj)
)−1

}
.

We choose two arbitraryxk, x
′
k ∈ R

Nb
+ . Given anyα ∈ [0, 1],

we have

f(αxk + (1 − α)x′
k)

= tr

{( ∑

j∈Nb

ξkj
(
αxkj + (1− α)x′

kj

)
Jr(φkj)

)−1
}

= tr

{(
α
∑

j∈Nb

ξkj xkj Jr(φkj) + (1− α)
∑

j∈Nb

ξkj x
′
kj Jr(φkj)

)−1
}

≤ αf(xk) + (1− α)f(x′
k). (32)

The inequality (32) holds since the function tr
{
X−1

}
is

convex in X ≻ 0 [45]. If the matrix X is singular, the
inequality (32) still holds. Sinceξkj is a positive scaler,f(xk)
is convex inxk.

APPENDIX C
PROOF OFPROPOSITION3

Let φ+
kj = φkj + φ̂kj andφ−

kj = φkj − φ̂kj , we have

Jr(φkj)−Qr(φ̂kj , δkj)

=

[
δkj − sinφ+

kj sinφ−
kj cosφ+

kj sinφ−
kj

cosφ+
kj sinφ−

kj δkj + sinφ+
kj sinφ−

kj

]
.

We can show thatJr(φkj)−Qr(φ̂kj , δkj) is positive semidef-
inite if

{
δkj ≥ sinφ+

kj sinφ−
kj ,

δkj ≥ | sinφ−
kj | .
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Fig. 9: Geometrical illustration of the proof of Proposition
4(a) where agent is inside the square region. We choose two
anchorsi and i′ in the shaded region.

Since |φ−
kj | ≤ εφkj , the above two inequality conditions are

guaranteed by

δkj ≥ sin εφkj .

Given that
∑

j∈Nb
ξkj xkj Qr(φ̂kj , δkj) � 0, we have

tr

{( ∑

j∈Nb

ξkj xkj Jr(φkj)
)−1

}

≤ tr

{( ∑

j∈Nb

ξkj xkj Qr(φ̂kj , δkj)
)−1

}

for all φkj ∈ Sφkj . Furthermore, we can show that

Qr(φ̂kj , δ1) � Qr(φ̂kj , δ2) for 0 ≤ δ2 ≤ δ1, which implies that
the function tr

{(∑
j∈Nb

ξkj xkj Qr(φ̂kj , δkj)
)−1}

is a non-
decreasing function ofδkj . Hence, the minimum value of the
right-hand side of (17) is obtained whenδkj = sin εφkj .

APPENDIX D
PROOF OFPROPOSITION4

We first consider the network with a single agent, and then
extend the proof to the multiple-agent case. For a givenk ∈
Na, we need to show that the condition (18) holds for{x∗

kj}
w.h.p. for both cases (a) and (b). Note that since

∑

j∈Nb

ξ̃kj x
∗
kj Qr(φ̂kj) �

∑

j∈Nb

ξ̃kj x
∗
kj Jr(φ̂kj)−

ζmax

r2β0
P tot δkj I

it is sufficient to show that w.h.p.

tr

{( ∑

j∈Nb

ξ̃kj x
∗
kj Jr(φ̂kj)

)−1
}
≤ r2β0

ζmax

2

P tot δ
(33)

whereδ = sin εφ with εφ = max{εφkj}.
For (a): we pick two anchorsi andi′ in the region (see Fig.

9) such that

1) r0 ≤ d̃ki, d̃ki′ ≤ ̺r0 with ̺ > 1;
2) 0 ≤ φki ≤ ∆φ andπ/2 −∆φ ≤ φki′ ≤ π/2 for a small

positive∆φ.

Note that if the agent is at the corner or on the boundary of
the square area, we can rotate the angles accordingly to find
such a region.

It can be shown that there exists at least one such pair of
anchors with probability1+(1−2p0)

Nb−2(1−p0)
Nb, where

p0 = (̺2 − 1)r20∆
φ/2R2. Since the probability goes to 1

exponentially withNb, such a pair of anchors can be found
w.h.p.

Consider a power allocation scheme{P̆ki = P̆ki′ =
P tot/2}, and we show this scheme satisfies the condition (33)
for a sufficiently smallδ. Based on the definition of the optimal
power allocation, we have

tr

{( ∑

j∈Nb

ξ̃kj x
∗
kj Jr(φ̂kj)

)−1
}

≤ max
{φkj}

tr

{( ∑

j∈Nb

ξ̃kj P̆kj Jr(φkj)
)−1

}

≤ max
{φkj}

tr

{( ζmin

̺2βr2β0

P tot

2
(Jr(φki) + Jr(φki′ ))

)−1
}

=
̺2βr2β0
ζmin

2

P tot

2

sin2(π/2− 2∆φ − 2εφ)
.

Therefore, a sufficient condition for (33) is

̺2βr2β0
ζmin

2

P tot

2

sin2(π/2− 2∆φ − 2εφ)
≤ r2β0

ζmax

2

P tot δ

which is equivalent to

2̺2β sin εφ

cos2(2∆φ + 2εφ)
≤ ζmin

ζmax
(34)

where δ = sin εφ. Note that the left-hand side of (34) is
an increasing function in̺ , ∆φ and εφ, when ∆φ and εφ

are both small positive numbers. Thus, the maximumεφ (or
equivalently, maximumδ) to satisfy (34) can be obtained by
taking the limit̺→ 1 and∆φ → 0. It follows that

2 sin εφ

cos2(2εφ)
≤ ζmin

ζmax

and the inequality holds when0 < δ = sin εφ ≤ δmax, where
δmax is the smallest positive root of the equation

4δ4 − 4δ2 − 2
ζmax

ζmin
δ + 1 = 0 .

We give some numerical examples:δmax = 0.318 when
ζmax/ζmin = 1; δmax = 0.096 whenζmax/ζmin = 5.

For (b): Consider a small angle
√
2aεφ as εφ → 0, where

a = (2β+1R2βζmax)/(r
2β
0 ζmin). The probability that allNb

anchors locate in such a small angle of theR×R region is at
most (

√
2aεφ)Nb, which goes to 0 at the rate of polynomial

powerNb/2 asεφ → 0. Hence, we can find two anchors,i and
i′, whose angle separation is larger than

√
2aεφ and smaller

thanπ −
√
2aεφ w.h.p.
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We allocate the power equally on these two anchors, and it
follows

tr

{( ∑

j∈Nb

ξ̃kj x
∗
kj Jr(φ̂kj)

)−1
}

≤ max
{φkj}

tr

{( ∑

j∈Nb

ξ̃kj P̆kj Jr(φkj)
)−1

}

≤ max
{φkj}

tr

{( ζmin

(
√
2R)2β

P tot

2
(Jr(φki) + Jr(φki′ ))

)−1
}

=
2βR2β

ζmin

2

P tot

2

sin2(
√
2aεφ − 2εφ)

.

Finally, we need to show that

2βR2β

ζmin

2

P tot

2

sin2(
√
2aεφ − 2εφ)

≤ r2β0
ζmax

2

P tot sin εφ

or equivalently,

a ≤ sin2(
√
2aεφ − 2εφ)

sin εφ
.

The above inequality holds asεφ → 0, since the limit of its
right-hand side is2a.

Now, we extend the above proof to the multiple-agent
case. In Section V, we decomposed the one-stage problem
PSDP

R-1 into two-stage optimizations. Letρ∗kj and x∗
k denote

the optimal solution ofP (I)
R-1,k and P

(II)
R-1, respectively. Since

the Stage I problemP (I)
R-1,k is formulated for each single agent,

we can show by the above proof that
∑

j∈Nb

ξ̃kj ρ
∗
kj Qr(φ̂kj) � 0

holds w.h.p. for agentk. Moreover, the optimal power allo-
cation is given in (30) asx∗

kj = ρ∗kjx
∗
k, wherex∗

k obtained
in Stage II does not affectρ∗kj . Hence, we can show that the
condition (18) holds w.h.p. for multiple-agent networks.

APPENDIX E
PROOF OFPROPOSITION5

The Lagrangian function is given by

L(xk, uk, v) =
∑

k∈Na

Tk

xk
−
∑

k

ukxk + v

( ∑

k∈Na

xk − P tot

)

whereuk, v ≥ 0. The KKT conditions [46] can be derived as

∂L
∂xk

= −Tk

x2
k

− uk + v = 0 (35)

ukxk = 0

v

( ∑

k∈Na

xk − P tot

)
= 0.

Sincexk is always positive, we haveuk = 0, which leads to
xk =

√
Tk/v in (35). Moreover, the objective is monotoni-

cally decreasing inxk, which implies the optimal allocation
must use all the power resource, i.e.,

∑
k∈Na

xk = P tot. Hence,
the optimal solution is given by (29).
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